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Summary

Cloud computing has been a key technology in the last two decades, enabling the
digital transformation that has shaped the current technology landscape. Within
this trend, Kubernetes is currently the most prominent solution, promoting a model
where applications are split into many loosely coupled components, each packaged
as a Docker container and configured as a microservice. This paradigm effectively
decouples the infrastructure - which can be scaled up or down on demand - from
the application, which is then said to be cloud-native.

Liquid computing deals specifically with the difficulties of a computing infras-
tructure that backs cloud-native workloads. Such an infrastructure is effectively
"liquid" in that it can shift resources and applications from host to host. Liqo
is an open source project launched at Politecnico di Torino that enables liquid
computing on top of Kubernetes: with Liqo, Kubernetes clusters can join each
other in a peer-to-peer fashion to seamlessly create a larger network, with each
cluster still retaining full control over its resources.

The goal of this thesis is to create a Multi-Tenant Kubernetes clusters federation,
implementing a solution that also fits with the Gaia-X vision of federated cloud.The
thesis aims to research and define brokering models for the Liqo ecosystem: service
and resource brokers are an important player in a peer-to-peer topology, establishing
trust, improving scalability and facilitating connections between providers and
consumers. We propose three alternative models, among which we then further
design and implement the Catalog approach, which best fits our use-case and allows
to advertise and discover offers by different providers.

The Catalog can be queried by any authenticated customer, and is also integrated
with Liqo, through a Catalog Connector. As far as this last one, it is implemented
as a Web server, which exposes a REST API and a WebSocket interface, it is
managed by a graphical UI, where it is possible to create, update, delete and join
offers, as well as to start a Liqo peering connection based on a stipulated contract.
Part of the work has been integrated into the Liqo project, and is currently fully
functional in the latest release, instead the Catalog Broker, the Catalog Connector
and its UI have been developed as a Proof-of-Concept, and are available as a
separate project on GitHub.
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Chapter 1

Introduction

Containers are now a defining feature of the cloud computing landscape. Cloud-
native workloads feature tens or hundreds of containers across tens of hosts, and
as workloads become more and more complex several solutions have emerged
to automate their management. Today, Kubernetes is the framework of choice
for container orchestration in medium and large companies, with infrastructure
ranging from traditional data centres to smaller edge facilities. These setups involve
a multitude of compute nodes managed by a single logical entity, and are thus
classified as "single-tenant" clusters.

Liquid computing frameworks like Liqo take this a step further and envision a
peering model where different clusters may share resources and services with each
other. This creates dynamic data centres that can scale endlessly beyond what a
single provider may offer: an entity may peer with a number of providers to extend
their Kubernetes cluster as needed.

Envisioning a computing environment where some clusters are “providers” and
others are “consumers”, a broker is a component that facilitates peering with
providers by offering a standardised, aggregated view of their resources; it may
optionally establish trust in the ecosystem by endorsing specific entities, enabling
secure and reliable resource sharing architectures.

1.1 Classification
We note that the object of brokering may be (hardware) resources or services:
the former effectively presents a PaaS offering, while the latter is a SaaS offering.

The role of a broker also varies in relation to its position on the control plane
and data plane. We identify the following three types:

1. Catalog: a component that merely collects metadata about providers, but is
not otherwise a party to the peering process. Clients consume metadata from

1



Introduction

the catalog, then peer directly with a provider of their choice.

2. Transparent broker: a component that orchestrates the client’s workloads
on the providers, while on the data plane the client retains a direct connection
to the provider clusters (i.e. the broker is transparent).

3. Opaque broker: a component that orchestrates the client’s workloads on
the providers, acting as a proxy on the data plane. The client is not aware of
the existence of specific providers, being presented with an aggregated view of
their resources, so the broker is said to be opaque.

1.2 Goal of the thesis

Brokers are an important addition to resource sharing infrastructures, establishing
trust and discoverability in the ecosystem. These are important in the cloud
environment, which is typically static and well-known, but the latter is especially
important in edge environments with rapidly changing topologies and workloads.
Furthermore, brokers can lower the "barrier to entry" of smaller cloud providers
by aggregating their resources into a larger offering comparable with mainstream
providers.

We observe that the Kubernetes open source ecosystem contains a standard for
service brokering, the Open Service Broker API, as well as an implementation of the
API. However, this implementation responds to the necessities of a single-tenant
Kubernetes cluster, requiring an extension to work in the scenarios described
here. On the other hand, no resource broker exists, again reflecting the reality of
single-tenant environment with little interconnection to other providers.

This thesis aims to define technical models of resource and service brokers,
exploring the capabilities of each model and the challenges that arise. We also
review existing brokering solutions based on Kubernetes and demonstrate an
implementation the Catalog broker that deals with Liqo. Our work integrates
feedback from TOP-IX, a commercial entity that seeks to offer brokering and
networking services in the liquid computing landscape.

One of the most relevant project that it is working on is Structura-X: this is a
lighthouse project of Gaia-X, the European cloud initiative. The goal of Structura-X
is to create a federated infrastructure that will include both cloud providers and
IXPs, capable of competing with the hyperscalers. The first demo of the project
studied, developed and implemented in this thesis has been presented in Paris on
November during the Gaia-X Summit 2022.
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Introduction

1.2.1 Thesis Structure
• Chapter 1: Introduction - This chapter introduces the reader to the topic

of the thesis, and to the problem that we are trying to solve. It also introduces
the reader to the structure of the thesis.

• Chapter 2: Kubernetes - This chapter introduces to the Kubernetes
technology, and to the main concepts that are used in the thesis.

• Chapter 3: Liqo - This chapter introduces to the Liqo project, his behaviour
and his architecture.

• Chapter 4: Broker Models - This chapter introduces to the different broker
models studied in this thesis and a comparison between them. Exploring also
use cases and applications.

• Chapter 5: Catalog - This chapter goes in depth in the Catalog model, the
different components that compose it, its behaviour and its architecture.

• Chapter 6: Implementation - This chapter describes the implementation
solution that has been chosen to implement the proposed architecture.

• Chapter 7: Evaluation - This chapter shows the results of the performance
benchmarks that have been performed to evaluate the proposed implementa-
tion.

• Chapter 8: Conclusions - This chapter makes a final summary of the thesis
work and of the results obtained, and it also introduces the future work that
would be done.
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Chapter 2

Kubernetes

This chapter provides an overview of the Kubernetes architecture showing its
history and evolution through time. This summary lays the foundations for all the
concepts which will be exposed later on. Kubernetes (often shortened as K8s) is
a huge framework, and a deep examination of it would require much more time
and discussion, hence we only provide here a description of its core concepts and
components. Further details can be found in the official documentation [1].

The chapter continues with an introduction to other technologies and tools used
to develop the solution, more precisely, the Virtual Kubelet [2] project, which
allows creating virtual nodes with a particular behavior, and the Kubebuilder [3]
tool, used to build custom resources.

2.1 Kubernetes: a bit of history
Around 2004, Google created the Borg [4] system, a small project with fewer
than 5 people initially working on it. The project was developed in collaboration
with a new version of Google’s search engine. Borg was a large-scale internal
cluster management system, which “ran hundreds of thousands of jobs, from many
thousands of different applications, across many clusters, each with up to tens of
thousands of machines” [4].

In 2013 Google announced Omega [5], a flexible and scalable scheduler for large
compute clusters. Omega provided a “parallel scheduler architecture built around
shared state, using lock-free optimistic concurrency control, in order to achieve
both implementation extensibility and performance scalability” [5].

In the middle of 2014, Google presented Kubernetes as an open-source version
of Borg. Kubernetes was created by Joe Beda, Brendan Burns, Craig McLuckie,
and other engineers at Google. Its development and design were heavily influenced
by Borg, and many of its initial contributors used to work on it. The original Borg
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project was written in C++, whereas for Kubernetes, the Go language was chosen.
In 2015 Kubernetes v1.0 was released. Along with the release, Google set up a

partnership with the Linux Foundation to form the Cloud Native Computing
Foundation (CNCF) [6]. Since then, Kubernetes has significantly grown, achieving
the CNCF graduated status and being adopted by nearly every big company and
cloud provider: AWS [7], Azure [8] and Google Cloud [9] offer managed Kubernetes
clusters. Nowadays, it has become the de facto standard for container orchestration
[10, 11].

2.2 Applications deployment evolution
Kubernetes is a portable, extensible, open-source platform for running and co-
ordinating containerized applications across a cluster of machines. It manages
the life cycle of applications and services using methods that provide consistency,
scalability, and high availability.

What does the term “containerized applications” mean? In the last decades,
the process of deploying applications has undergone significant changes, which are
illustrated in figure 2.1.

Figure 2.1: Evolution in applications deployment.

Traditionally, organizations used to run their applications on physical servers.
One of the problems of this approach was that resource boundaries between
applications could not be applied in a physical server, leading to resource allocation
issues. For example, if multiple applications run on a physical server, one of them
could take up most of the resources, and as a result, the other applications would
starve. A possibility to solve this problem would be to run each application on
a different physical server, but clearly, it is not feasible. This solution could not
scale, would lead to resources under-utilization, and would be very expensive for
organizations to maintain many physical servers.
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The first real solution has been virtualization. Virtualization allows multi-
ple Virtual Machines to run on a single physical server. This technique grants
isolation of the applications between VMs, providing a high level of security, as
the information of one application cannot be freely accessed by other applications.
Virtualization enables better utilization of resources in a physical server, improves
scalability because an application can be added or updated very easily, reduces
hardware costs, and much more. With virtualization, it is possible to group a
set of physical resources and expose it as a cluster of disposable virtual machines.
Isolation certainly brings many advantages, but it requires a quite ‘heavy’ overhead:
each VM is a full machine running all the components, including its operating
system, on top of the virtualized hardware.

A second solution has been proposed recently: containerization. Containers
are similar to VMs, but they share the operating system with the host machine,
relaxing isolation properties. Therefore, containers are considered a lightweight
form of virtualization. Similarly to a VM, a container has its filesystem, CPU,
memory, process space, etc... One of the key features of containers is that they are
portable. They are decoupled from the underlying infrastructure and are totally
portable across clouds and OS distributions. This property is particularly relevant
nowadays with cloud computing: a container can be easily moved across different
machines. Moreover, being “lightweight”, containers are much faster than virtual
machines: they can be booted, started, run, and stopped with little effort and in a
short time.

2.3 Container orchestrators
When hundreds or thousands of containers are created, the need for a way to
manage them becomes essential; container orchestrators serve this purpose. A con-
tainer orchestrator is a system designed to easily manage complex containerization
deployments across multiple machines from one central location. As depicted in
figure 2.2, Kubernetes is by far the most used container orchestrator. A description
of this system is provided in the following.

Kubernetes provides many services, including:

• Service discovery and load balancing A container can be exposed using
the DNS name or using its IP address. If traffic to a container is high, a load
balancer able to distribute the network traffic is provided.

• Storage orchestration A storage system can be automatically mounted,
such as local storage, or dynamic storage supplied by public cloud providers,
and more.
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Figure 2.2: Container orchestrators use. [12]

• Automated rollouts and rollbacks The desired state for the deployed
containers can be described, and the actual state can be changed to the desired
state at a controlled rate. For example, it is possible to automate the creation
of new containers, remove existing ones and adopt all their resources to the
new containers.

• Automatic bin packing Kubernetes is provided with a cluster of nodes that
can be used to run containerized tasks. It is possible to set how much CPU
and memory (RAM) each container needs, and automatically the containers
are sized to fit in the nodes to make the best use of the resources.

• Secret and configuration management It is possible to store and manage
sensitive information in Kubernetes, such as passwords, OAuth tokens, and
SSH keys. It is possible to deploy and update secrets and application configu-
ration without rebuilding the container images and exposing secrets in the
stack configuration.

2.4 Kubernetes architecture
When Kubernetes is deployed, a cluster is created. A Kubernetes cluster consists
of a set of machines, called nodes, that run containerized applications. At least
one of the nodes hosts the control plane and is called master. Its role is to manage
the cluster and expose an interface to the user. The worker node(s) host the pods
that are the application components. The master manages the worker nodes and
the pods in the cluster. In production environments, the control plane usually
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runs across multiple machines, and a cluster runs on multiple nodes providing
fault-tolerance and high availability.

Figure 2.3 shows the diagram of a Kubernetes cluster with all the components
linked together.

Figure 2.3: Kubernetes architecture.

2.4.1 Control plane components
The control plane’s components take global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example,
starting up a new pod). Although they can be run on any machine in the cluster,
they are typically executed on the same machine, which does not run user containers.

API server

The API server is a control plane component that exposes the Kubernetes REST
API and constitutes the front-end for the Kubernetes control plane. Its function is
to intercept REST requests, validate and process them. The main implementation
of a Kubernetes API server is kube-apiserver. It is designed to scale horizontally,
which means it scales by deploying more instances. Moreover, it can operate with
high redundancy by running several instances and balancing traffic among them.

etcd

etcd is a distributed, consistent, and highly available key-value store used as
Kubernetes backing store for all cluster data. It is based on the Raft consensus
algorithm [13], which allows different machines to work as a coherent group and
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survive the breakdown of one of its members. etcd can be stacked in the master
node or be external, installed on a dedicated host. Only the API server can
communicate with it.

Scheduler

The scheduler is the control plane component responsible for assigning the pods
to the nodes. The one provided by Kubernetes is called kube-scheduler, but it
can be customized by adding new schedulers and indicating in the pods to use
them. kube-scheduler watches for newly created pods not yet assigned to a node
and selects one for them to run on. To take its decisions, it considers single and
collective resource requirements, hardware/software/policy constraints, affinity and
anti-affinity specifications, data locality, inter-workload interference, and deadlines.

Kube-controller-manager

The kube-controller-manager is a component that runs controller processes. It
continuously compares the desired state of the cluster (given by the objects’ speci-
fications) with the current one (read from etcd). From a logical point of view, each
controller is a separate process, but to reduce complexity, they are all compiled
into a single binary and run in a single process. These controllers include:

• Node Controller: responsible for noticing and reacting when nodes go down.

• Replication Controller: in charge of maintaining the correct number of
pods for every replica object in the system.

• Endpoints Controller: populates the Endpoint objects (which link Services
and Pods).

• Service Account & Token Controllers: create default accounts and API
access tokens for new namespaces.

Cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager.

The cloud-controller-manager allows the cloud vendor’s code and the Kubernetes
code to evolve independently of each other. In prior releases, the core Kubernetes
code was dependent upon cloud-provider-specific code for functionality. In future
releases, code specific to cloud vendors should be maintained by the cloud vendor

9
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themselves and linked to the cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

• Route Controller: responsible for setting up network routes in the cloud
infrastructure.

• Service Controller: responsible for creating, updating and deleting cloud
provider load balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

2.4.2 Node components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

Container Runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface).

Kubelet

The kubelet is an agent that runs on each node of the cluster, making sure that
containers are running in the node’s pods. This agent receives from the API server
the specifications of the Pods and interacts with the container runtime to run them,
monitoring their state and assuring that the containers are running and healthy.
The connection with the container runtime is established through the Container
Runtime Interface and is based on gRPC.

Kube-proxy

The kube-proxy is a network agent that runs on each node in your cluster, imple-
menting part of the Kubernetes Service concept. It maintains network rules on
nodes, which allow network communication to your Pods from inside or outside of
the cluster. If the operating system is providing a packet filtering layer, kube-proxy
uses it otherwise it forwards the traffic itself.
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Addons

The Addons are features and functionalities not yet available natively in Kubernetes
but implemented by third parties pods. Some examples are DNS, the dashboard
(a web UI), monitoring, and logging.

Figure 2.4: Kubernetes master and worker nodes. [1].

2.5 Kubernetes objects
Kubernetes defines several types of objects, which constitute its building blocks. A
K8s resource object typically contains the following fields [14]:

• apiVersion: the versioned schema of this representation of the object;

• kind: a string value representing the REST resource this object represents;

• ObjectMeta: metadata about the object, such as its name, annotations, labels
etc.;

• ResourceSpec: defined by the user, it describes the desired state of the object;

• ResourceStatus: filled in by the server, it reports the current state of the
resource.

The allowed operations on these resources are the standard CRUD actions:

• Create: create the resource in the storage backend; once a resource is created,
the system applies the desired state.

11
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• Read: comes with 3 variants:

– Get: retrieve a specific resource object by name;
– List: retrieve all resource objects of a specific type within a namespace,

and the results can be restricted to resources matching a selector query;
– Watch: stream results for an object(s) as it is updated.

• Update: comes with 2 forms:

– Replace: replace the existing spec with the provided one;
– Patch: apply a change to a specific field.

• Delete: delete a resource. Depending on the specific resource, child objects
may or may not be garbage collected by the server.

The following list illustrates the main objects needed in the next chapters.

2.5.1 Namespace
Namespaces are virtual partitions of the cluster. By default, Kubernetes creates 4
Namespaces:

• kube-system: it contains objects created by the K8s system, mainly control-
plane agents;

• default: it contains objects and resources created by users, and it is the one
used by default;

• kube-public: readable by everyone (even not authenticated users), it is used
for special purposes like exposing public cluster information;

• kube-node-lease: it maintains objects for heartbeat data from nodes.

It is a good practice to split the workload into many Namespaces to better virtualize
the cluster.

2.5.2 Pod
Pods are the basic processing units in Kubernetes. A pod is a collection of one
or more containers that share the same network and storage and are scheduled
together. Pods are ephemeral and have no auto-repair capability. For these reasons,
they are usually managed by a controller which handles replication, fault-tolerance,
self-healing, etc.
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Figure 2.5: Kubernetes pods. [1]

The Kubernetes scheduler assigns pods to nodes automatically depending on a
number of factors including resource requirements/availability, node characteristics
and topology spread. An important feature widely used in Liqo as well as in this
thesis is the possibility to add constraints, called "affinities", on where a pod can
run. Kubernetes features two types of affinities:

• Node affinities, to select nodes by their labels;

• Pod affinities, to constrain pods against labels on other pods.

Additionally, an affinity may be "required" (meaning that if it can’t be satisfied,
the pod will not be scheduled) or "preferred" (meaning that unsatisfied affinities
will not prevent scheduling).

In this thesis we present two use cases for affinities:

• Required node affinities are used in Liqo to offload pods on specific virtual
nodes, effectively leveraging Kubernetes to control how pods are distributed
on different clusters;

• Preferred pod affinities are used to favour scheduling pods on the same virtual
node, preventing situations where a workload is deployed across geographically
distant clusters causing high service latencies.

Here’s an example of a pod that uses node affinity:

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: pod-with-node-affinity
5 spec:
6 affinity:
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7 nodeAffinity:
8 requiredDuringSchedulingIgnoredDuringExecution:
9 nodeSelectorTerms:

10 - matchExpressions:
11 - key: kubernetes.io/disk-type
12 operator: In
13 values:
14 - ssd

The requiredDuringSchedulingIgnoredDuringExecution field means that
these constraints must be enforced during the pod scheduling, and they are manda-
tory ("required"). In this case, the pod could only be scheduled on nodes with
a SSD. Only the nodes that expose exactly the kubernetes.io/disk-type label
can be chosen by the scheduler.

2.5.3 ReplicaSet
ReplicaSets control a set of pods allowing to scale the number of pods currently in
execution. If a pod in the set is deleted, the ReplicaSet notices that the current
number of replicas (read from the Status) is different from the desired one (specified
in the Spec) and creates a new pod. ReplicaSets are usually not used directly: a
higher-level concept, called Deployment, is provided by Kubernetes.

2.5.4 Deployment
Deployments manage the creation, update, and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of pods.
For this reason, an application is typically executed within a Deployment and
not in a single pod. The difference between ReplicaSets and Deployments is that
Deployments allow for declarative updates to pods: when a Deployment is edited,
a new ReplicaSet is created and the old one is destroyed. This listing is an example
of a Deployment.

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: nginx-deployment
5 labels:
6 app: nginx
7 spec:
8 replicas: 3
9 selector:
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10 matchLabels:
11 app: nginx
12 template:
13 metadata:
14 labels:
15 app: nginx
16 spec:
17 containers:
18 - name: nginx
19 image: nginx:1.7.9
20 ports:
21 - containerPort: 80

The code above allows to create a Deployment with name nginx-deployment and
a label app, with value nginx. It creates three replicated pods and, as defined in
the selector field, manages all the pods labeled as app:nginx. The template field
shows information about the created pods: they are labeled as app:nginx, and
they run in one container the nginx DockerHub image on port 80.

2.5.5 Service
A Service is an abstract way to expose an application running on a set of Pods as
a network service. The network service can have different access scopes depending
on its ServiceType:

• ClusterIP: Service accessible only from within the cluster, it is the default
type;

• NodePort: exposes the Service on a static port of each Node’s IP; the
NodePort Service can be accessed, from outside the cluster, by contacting
<NodeIP>:<NodePort>;

• LoadBalancer: exposes the Service externally using a cloud provider’s load
balancer;

• ExternalName: maps the Service to an external one so that local apps can
access it.

The following Service is named my-service and redirects requests coming from
TCP port 80 to port 9376 of any Pod with the label app=MyApp.

1 apiVersion: v1
2 kind: Service
3 metadata:
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Pod

Node

Figure 2.6: Kubernetes Services. [1]

4 name: my-service
5 spec:
6 selector:
7 app: myApp
8 ports:
9 - protocol: TCP

10 port: 80
11 targetPort: 9376
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Chapter 3

Liqo

In this chapter we present Liqo, an open source project started at Politecnico
di Torino that allows Kubernetes to seamlessly and securely share resources and
services. We give an overview of its architecture with particular regard to some
key features that enabled the development of this thesis.

3.1 Introduction

Computing load on Kubernetes clusters is typically not constant, with peaks and
lows depending on the time of day, business necessities and other factors. For this
reason they are provisioned with an excess of compute resources, so that they may
see full utilization at peak demand. However, this also implies that they often have
spare resources that they are unable to use and that could be shared with other
organizations that are in demand.

Liqo interconnects clusters in a liquid computing fashion (hence the name),
sharing compute resources and services among each other. It creates so-called
"opportunistic data centers" where clusters can offer their resources at any time,
lowering the cost of infrastructure for its peers and creating new opportunities in
the field of edge computing. To do so it leverages the well-known paradigm of
peering that allows for a variety of topologies, both centralized and decentralized.
This also means that at a basic level individual clusters retain full control over
what resources they share and with whom.

It is important to note that Liqo extends the standard Kubernetes APIs in
a way that is transparent to applications and, to some extent, to Kubernetes
administrators. In fact, we will see that the resources described in Chapter 2 are
still valid in the new environment and are often augmented for the purposes of
Liqo. As a result, user applications do not require changes to work with Liqo.
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3.2 Liqo concepts
3.2.1 Discovery
Liqo communicates with clusters over IP. Clusters may be discovered in a number
of ways: the user can add clusters manually by their IP address, but Liqo can
also advertise its presence via mDNS on a local network, or use DNS records
that specify the cluster IPs for a given domain. Manual configuration is the most
flexible method, not requiring any configuration on the other cluster’s part; mDNS
discovery is particularly appropriate for automating the setup of a Liqo federation
on a LAN; and DNS discovery is meant for use cases where an organization has
multiple clusters that may be provisioned dynamically.

No matter how clusters are discovered, the end result is the creation of a custom
resource called ForeignCluster in the local cluster. It represents the remote cluster
and holds information about it.

Cluster 1


L2 broadcast

domain
Cluster 2

Advertisement

Peering request

Peering response

Figure 3.1: Discovery over LAN.

3.2.2 Peering
As mentioned in the introduction, Liqo makes use of the peering model to represent
and regulate the relationship between different, administratively separate clusters.
Peering is a process by which a connection is created between two clusters, one that
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requests resources and one that offers them. It comes after the discovery process,
because it uses the IP endpoint found previously. It consists of three steps:

• Authentication, by which the clusters validate each other’s identity;

• Networking, by which the clusters discover each other’s IP ranges and configure
NAT rules;

• Resource sharing, by which the clusters communicate the amount and type of
resources to exchange.

Let us review the last two steps, which will be key to understanding the
implementation of brokers.

Figure 3.2: A complex peering topology over a LAN. Black: the L2 medium,
green: peerings.

Networking

In the Kubernetes networking model, the cluster administrator defines a "pod CIDR"
and a "service CIDR". These are private subnets (for instance, the default values
on K3s are respectively 10.42.0.0/16 and 10.43.0.0/16) from which IP addresses
are assigned to each pod or service. These IPs are guaranteed to be unique inside
the cluster, and reachable from every node that belongs to the cluster. The
implementation is left to the network plugin, for which there are tens of alternatives
based on many different technologies - the most common ones are Flannel, based
on a VXLAN overlay, Calico, based on BGP, and Cilium, also based on VXLAN.

This model was built to work on a single cluster, and does not translate directly
to a setup with several clusters as there is no guarantee that one’s pod CIDR
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does not overlap with its peers’. Liqo tackles this problem using Network Address
Translation: as part of the peering process, the IPAM (IP Address Management)
module reserves a new subnet that maps to the peer’s pod CIDR by means of
an iptables rule. Packets addressed to remote clusters are then tunneled via a
Wireguard VPN.

We see here an example of a NAT configuration that allocates the subnet
10.45.0.0/16 for the remote cluster’s pod CIDR 10.42.0.0/16:

1 apiVersion: net.liqo.io/v1alpha1
2 kind: NetworkConfig
3 metadata:
4 labels:
5 liqo.io/remoteID: d14e610e-4c1b-402c-a5f1-5ef6f39c0490
6 liqo.io/replication: "true"
7 name: polito-labs-9b173a
8 namespace: liqo-tenant-polito-labs-9b173a
9 spec:

10 backend_config:
11 port: "30020"
12 publicKey: +CiHH3SJp2CQIj/Hu8jlyDWJOn7P40MQZfHfadODu0g=
13 backendType: wireguard
14 cluster:
15 clusterID: d14e610e-4c1b-402c-a5f1-5ef6f39c0490
16 clusterName: polito-labs
17 endpointIP: 194.116.77.110
18 podCIDR: 10.42.0.0/16
19 status:
20 podCIDRNAT: 10.45.0.0/16
21 processed: true

Resource sharing

An important part of peering is determining what resources to share. Liqo imple-
ments a simple request-response model, in that the consumer requests a list of
resources (a ResourceRequest) and the provider responds with an offer for a certain
amount (a ResourceOffer). Note that at the time of writing it is not supported to
ask for specific resources, just empty generic ResourceRequests may be sent.

Let us present an example of a resource request/offer pair:

1 apiVersion: discovery.liqo.io/v1alpha1
2 kind: ResourceRequest
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3 metadata:
4 labels:
5 liqo.io/remoteID: 4b22f032-9bd7-4afb-a168-91a845e2be50
6 liqo.io/replication: "true"
7 name: liqo-consumer
8 namespace: liqo-tenant-topix-broker-8ef341
9 spec:

10 authUrl: https://194.116.77.110:31466
11 status:
12 offerState: Created
13---
14 apiVersion: sharing.liqo.io/v1alpha1
15 kind: ResourceOffer
16 metadata:
17 labels:
18 liqo.io/originID: 4b22f032-9bd7-4afb-a168-91a845e2be50
19 liqo.io/remoteID: 6376f896-8ad0-45b8-b98e-a78e0d6d7ff5
20 liqo.io/replicated: "true"
21 name: topix-broker
22 namespace: liqo-tenant-topix-broker-8ef341
23 spec:
24 clusterId: 4b22f032-9bd7-4afb-a168-91a845e2be50
25 resourceQuota:
26 hard:
27 cpu: 1908m
28 ephemeral-storage: "35913494528"
29 hugepages-1Gi: "0"
30 hugepages-2Mi: "0"
31 memory: "2664000000"
32 pods: "99"
33 storageClasses:
34 - default: true
35 storageClassName: local-path
36 - storageClassName: liqo
37 status:
38 phase: Accepted
39 virtualKubeletStatus: Created

In this example, a cluster named liqo-consumer requests resources from a
cluster named topix-broker, which offers approx. 2 CPUs, 36 GB of disk storage
and 2.7 GB of RAM. It also offers some storage classes that Persistent Volumes
(PVs) can use.
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3.2.3 Virtual nodes

The final step is to allow Kubernetes to offload pods to the remote cluster. This is
achieved by creating a "virtual node", i.e. a Node resource that does not correspond
to a physical node on the cluster. Kubernetes will be able to schedule pods on it
as if it were a normal node, but Liqo will intercept pods scheduled on it and reflect
them on the remote cluster. The specific component responsible for reflecting the
pods is the virtual kubelet, and it synchronizes the local "shadow pod" with the
remote pod. It also reflects EndpointSlices to allow the local cluster to reach pods
and services that point to the remote cluster.

However, we do not want Kubernetes to treat a virtual node exactly the same
as a physical node - offloading a pod incurs additional latency and possibly costs,
so we want Kubernetes to prevent scheduling on these nodes by default. This is
implemented by adding a taint to the virtual nodes, i.e. a condition that pods
must explicitly "tolerate" to be eligible for being scheduled on the tainted node.
When the user wants to offload a pod, Liqo automatically adds a taint toleration
using a webhook.

Figure 3.3: Reflection of pods and EndpointSlices.
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3.3 Virtual Kubelet
Two Kubernetes-based tools which have been used during the development of
this project are Virtual Kubelet and Kubebuilder. Virtual Kubelet is an open
source Kubernetes kubelet implementation that masquerades a cluster as a kubelet
for connecting Kubernetes to other APIs [2]. Virtual Kubelet is a Cloud Native
Computing Foundation sandbox project.

The project offers a provider interface that developers need to implement to use
it. The official documentation [2] says that “providers must provide the following
functionality to be considered a supported integration with Virtual Kubelet:

1. Provides the back-end plumbing necessary to support the lifecycle management
of pods, containers, and supporting resources in the context of Kubernetes.

2. Conforms to the current API provided by Virtual Kubelet.

3. Does not have access to the Kubernetes API Server and has a well-defined
callback mechanism for getting data like secrets or configmaps”.

Figure 3.4: Virtual-Kubelet concept. [2]
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Broker models

This chapter aims to present the main concepts and the models of resource brokering
on Kubernetes, giving a more punctual high-level definition of the roles and functions
involved in the brokering process. We do so by firstly defining the concepts of
Multi-Tenant and Multi-Cloud which cover a continuous thread throughout the
thesis. Then we go through some user stories and use cases for resource brokering
in cloud services federations, focusing on some real scenarios, proceeding to derive
an understanding of possible added-value services, and finally devise Liqo-based
solutions to offer these services, dwelling in particular on the "Catalog" model which
will be studied deeply in the following chapters.

4.1 Multi-Tenancy and Multi-Cloud
To understand the reasons for some architectural choices and the problems under-
lying the proposed solutions, it is first of all necessary to deepen the concepts of
Multi-Tenancy and Multi-Cloud that play a fundamental role in the entire research
path. In the field of computer science and in particular of software applications,
a Multi-tenant architecture represents a single software instance that serves mul-
tiple and heterogeneous customers. Each customer is called tenant, who has the
possibility to act in a restricted functional domain.

This type of architecture is able to work because each tenant is physically
integrated together with all the others, but is logically separated from them. This
concept has been adopted above all in Cloud adoption and is used most with cloud
computing, in particular in order to allow each tenant’s data to be separated from
each other. This has therefore given the possibility, for example, to use the same
server to host multiple users, and ideally provide them a secure space to store data.

Of course, this approach has brought several advantages in terms of costs and
scalability, but it has also introduced some disadvantages. In particular, it is clear
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to imagine how the general complexity of development has grown considerably,
especially from a security and resource management point of view.

In the other hand, the concept of Multi-Cloud, sometimes also used in the sense
of Hybrid Cloud, is the common background. It simply means a company, or
more generally an enterprise, which during the deployment process makes use of
various heterogeneous cloud providers, including On-Premise, instead of applying
a one vendor business approach. This allows the company not only to be able
to differentiate the services offered and therefore improve their reliability and
redundancy, but also reduces vendor lock-in, thus impacting the competitiveness of
the markets and potentially also costs.

If we imagine all this in a contemporary context, in which the control and
sovereignty of data plays a fundamental role both at a geopolitical level and at a
strategic level in the competition between companies, it makes it easy to understand
how this principle is becoming more and more fundamental in the approach to the
modern Cloud

4.2 User stories
The need for resource brokers arises from creating large-scale Kubernetes clusters
for the purpose of sharing computing resources. Brokers address some shortcomings
of the peer-to-peer, horizontal model in scaling to large numbers of users: as the
number of providers increases, it becomes increasingly harder to have full visibility
over the resources and organizations present on the network - vice versa, each
provider may no longer place the same level of trust in consumers as in a smaller
network with well-known participants. Furthermore, even if each party has full
visibility over the global resources, an "overseeing organization" may be able to
optimize the distribution of workloads using proprietary metrics and the knowledge
of each customer’s needs.

From this consideration we can contextualize the broker as a commercial operator
in the niche of enabling multi-cloud environments, that provides added-value services
to large, pre-existing federations. As such, the broker can additionally be understood
in the GAIA-X framework as a participant that fulfills Federation Services: we will
see that our thesis work addresses existing GAIA-X Federation Services like Access
Management, but also expands the notion of Federated Catalogues to include IaaS
offerings.

As part of thesis I worked closely with TOP-IX (Torino Piemonte Internet
eXchange), the Internet Exchange Point for north-western Italy. TOP-IX is seeking
to expand its business in the direction of being a neutral, trusted intermediary
to data exchange and cloud computing, extending its role consistently with the
historical nature of IXPs.
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One of the most relevant project that we worked on is Structura-X: this project
is born as lighthouse project of Gaia-X, the European cloud initiative. The goal
of Structura-X is to create a federated infrastructure that will include both cloud
providers and IXPs, enabling a trustful environment for the exchange of data
and services. The idea is to create an ecosystem capable of competing with the
hyperscalers, both in terms of networking and in terms of computing layer. The first
demo of the project has been presented in Paris on November during the Gaia-X
Summit 2022. In this occasion, we presented the first version of the Structura-X
architecture, and also of the project studied, developed and implemented in this
thesis.

4.2.1 Generic scenarios
Our research shows that there are a number of different scenarios that address
different needs. We distinguish between B2C and B2B:

B2C

1. Scenario 1 - Discovery: there are a multitude of cloud operators, each
offering different features and having their own clusters. The "cloud market"
is a sprawl with little discoverability integrated into the network.
Customer story: I want to discover what providers are available, so that I can
choose the one that best fits my needs.
Provider story: I want to advertise my resources to potential customers in a
way that is integrated with the federation.

2. Scenario 2 - Metrics and certification: there are many more cloud
operators, to the point that it is infeasible or undesirable for a customer to
choose the optimal one. Furthermore, some metrics of interest (eg. latency)
may not be available to the user, or may be self-certified.
Customer story: I want to choose the optimal cluster, but I don’t have the
time/data to do it myself.
Broker story: I want to certify metrics like latency and uptime, so that I
provide a value-added service.
Provider story: I want to advertise my resources, and compete with other
providers with certified, reliable metrics.

3. Scenario 3 - Data sovereignty: there are a number of organizations that
want to enable access and computation over their data while retaining control
over it.
Customer story: I want to run computations over sensitive data (eg. healthcare
databases).
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Provider story: I want to make my data available, but I also want to make
sure it is in safe hands and in compliance with regulations.
Broker story: I want to certify customers and workloads, so that I provide a
value-added service.

B2B

1. Scenario 1 - Competitiveness: there are a number of small cloud providers
that are individually not competitive with larger players.
User story: I want to access a large amount of computing resources.
Provider 1 story: I want to join forces with other providers to enable a larger,
aggregated commercial offering.
Provider 2 story: I want to increase my visibility in the cloud market to
compete with bigger players and engage new customers.

2. Scenario 2 - Service offering extension: there are a number of cloud
providers that want to extends their service offering on demand without in-
vesting to create a suitable proprietary infrastructure and/or without losing
potential customers.
User story: I need a set of specific service not entirely offered by my cloud
provider.
Provider 1 story: I want to offer to my customers certain services through my
infrastructure by engaging them on demand from other vendors.
Provider 2 story: I want to increase my business providing directly to other
vendors some service offers, exploiting infrastructural resources that would be
wasted.

3. Scenario 3 - GDPR Data compliance: there is Data that, according with
GDPR, need to be stored in a specific geographical location compliant with
the rule, or that, for some reasons, cannot be taken outside some political or
geographical boundaries.
User story: I want to store my data in a place compliant with certain rules and
simultaneously access it from other services hosted in a separate infrastructure
of the same cloud provider.
Provider 1 story: I want to offer to my customers a data space service that
respects their needs joining an IaaS offer provided by another vendor, thus
guaranteeing them a continuity of service.
Provider 2 story: I want to increase my business providing to other vendors
some specific IaaS GDPR compliant offers.
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4.2.2 Real scenarios
Gaia-X

Gaia-X is a project reportedly working on the development of a federation of data in-
frastructure and service providers for Europe to ensure European digital sovereignty.
It seeks to create a proposal for the next generation of data infrastructure for
Europe, as well as foster the digital sovereignty of European cloud service users. It
is reportedly based on European values of transparency, openness, data protection,
and security. To accomplish this it hopes to specify common requirements for a
European data infrastructure and develop a reference implementation.

Structura-X

A lighthouse project for European cloud infrastructure endeavours to enable existing
Cloud Service and Infrastructure Providers (CSP) data and infrastructure services
to be Gaia-X certifiable. The goal is to create an ecosystem of independent CSPs,
orchestrated by a shared layer of federation certification and labelling services based
on Distributed Ledger Technology (DLT). The first milestone on the Structure-
X project is to provide and certify Infrastructure Service Offerings against the
definitions of the Gaia-X Trust Framework to provide Transparency and Trust to
all participants

4.3 Models and use cases
After analyzing the possible scenarios, it is now clear how the existence of a third
entity, the broker, is important and necessary. It acts more or less as a centralized
binder between the various subjects taken into consideration. From the user stories
we can therefore develop, based on the role and the functionalities they will cover,
at least three possible brokering solutions, which are mainly distinguished by the
wideness of control they have in the management of the relationships between
Providers and/or Customers.

These correspond to three different typologies and roles that are mostly in-
dependent with one another, which need to be developed into three software
components:

1. The Catalog: this is represented by an endpoint that customers and providers
can browse and query. The main role is that of advertisement and discov-
ery, both from the point of view of the individual subjects existing in the
federation and of the services offered and made available within the same. The
goal is therefore to rely on broker to be informed of what clusters are on the
network, what are their features and resources, and possibly other information
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(eg. a trusted estimate of their uptime or latency). Thanks to this broker all
the subjects can join available offers and establish new interconnections on
demand. Each interconnection is completely independent from the broker, it is
based on a peer-to-peer model, thus keeping the overall ecosystem completely
decentralized by eliminating the possibility that the broker may somehow be
a single point of failure

2. The Orchestrator: an active component that is in charge only of scheduling
computing resources according to defined policies3. This implies a well defined
splitting between control plane, up to the orchestrator, with data plane,
demanded to the involved customers. So, users rely on brokers to orchestrate
their workloads, either because they do not want to deal with the complexity
of orchestration (for an extreme example, a customer may not even use
Kubernetes, instead deploying Helm charts from the broker) or because the
broker has access to proprietary information that can provide for an optimal
orchestration. This process can also go the other way: providers can require
customers to go through a trusted orchestrator, that acts as a security gateway
to inspect the users’ identities or their workloads.

3. The Aggregator: Unlike the previous two, this broker is completely opaque,
acting as a single virtual cluster, in charge of totally managing control and
data plane of the clusters below him. Providers rely on brokers to present their
resources and those of their partners in aggregated form, creating a commercial
offering that can compete with larger and more established providers. We can
identify this broker as a middleman that presents a unified view of resources.

4.4 Catalog
Now that we have a clearer picture of our design goals, let us understand how the
standard Kubernetes resources and the Liqo paradigm can be used to accomplish
these tasks, and how they were extended. We note that much of the functionality
in the "peer-to-peer version" of Liqo can be reused to a large extent, at least for a
proof of concept. The only parts that require substantial changes are the resource
enforcement for the management of multi-tenant peerings and the customization of
the peering resource reservation in such a way as to bypass the standard process in
which Liqo calculates and allocates resources.

At the functional level, a catalog needs to receive peering credentials and the
commercial offers of each provider cluster, store and aggregate them, and send the
full list to each one wants to browse the catalog when a query is issued.

The aspect of peering credentials is arguably the simpler. As mentioned in section
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Figure 4.1: A diagram that illustrates a Catalog model example.

2. Query

3. Response

4. PeerConsumer

Catalog 1. Advertise

Provider

Figure 4.2: A conceptual model of how a catalog can be used.

3, peering takes place over IP with an optional authentication step based on a token.
As such, it is sufficient for a cluster to know the provider’s IP address, its cluster
ID, and its authentication token. With this information the provider/customer can
run Liqo peering command to establish the connection, and Liqo will proceed to
do the rest.
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The representation of cluster resources is more complex depending on the specific
business requirements: Liqo supports sharing hardware resources with a format that
encapsulates Kubernetes’ ResourceQuotas, but a customer may also be interested
in SaaS offerings or in certified metrics for uptime/latency/etc. In our thesis we
will concentrate only on the first case, trying to develop a IaaS environment.

We might be tempted to reuse parts of the Liqo peering logic in our catalog. In
a one-to-one peering, sharing the list of hardware resources is a substantial part
of creating the peering: after authentication is carried out and networking is set
up, the consumer creates a ResourceRequest in the provider cluster, which in turn
creates a ResourceOffer in the customer cluster to signal acceptance, for a better
understanding we demand the reader to go back to the right section 3.2.2 where
we explained this concepts. (This architecture is intended to support a resource
negotiation process, as hinted by the CR naming, but at the time of writing it is
not possible to encode queries in the ResourceRequest or to limit the resources
offered.) A catalog would then need to collect ResourceOffers from all providers,
but in doing so it will need to open one peering for each provider. This makes
for a rather unwieldy solution in terms of resource usage, not to mention that the
broker needs to run a Liqo instance (and possibly a Kubernetes stack) exclusively
for collecting ResourceOffers.

We propose an alternative, light-weight solution where we decouple the resource
advertisement from the peering process. Indeed, if we define a stand-alone protocol
for advertisements and queries, the catalog only needs to support our protocol.
Additionally, decoupling these two processes enables a range of complex resource
negotiation logics, ranging from unconditional acceptance (which might be desired
in simple, one-to-one peerings where negotiations happen on paper) to extensible
and dynamic marketplaces (which we envisage in a wide computing federation).

Our protocol conceptualizes resource offers as a multitude of "packages", each
with a set of hardware resources as well as, potentially, SaaS and other immaterial
resources. We call each "package" a plan, and a collection of plans is an offer.
This reflects the offer structure of commercial computing providers like Amazon
AWS, Azure or DigitalOcean: there are a number of offers optimized for different
workloads, and each offer has a number of plans that determine the size.

We will go in depth with the description of this model in the next chapters,
where we also explain the evolution of this model in a distributed fashion and
of course we describe how all the components interact each other and elaborates
and/or exchange data.
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Figure 4.3: Part of the DigitalOcean catalog: note the list of offers on the left
and the list of plans on the right.

4.5 Orchestrator
Recall the user story described at the beginning of this chapter (B2C - Scenario 2).
To the consumer, orchestration is a value-added service by which optimal providers
are chosen according to some (possibly private) metrics; to the provider, it is a tool
for competing with certified metrics, as well as - potentially - a security filter in
front of consumers.

We can define an Orchestrator as an intermediary that operates on the control
plane, with the primary function of enforcing some policy in the peering process
and in the distribution of workloads. This policy may take a number of forms,
ranging from optimizing metrics to authentication and authorization constraints,
but a common feature is that the Orchestrator takes the additional responsibility
in actuating a policy; compare this with the Catalog, which is merely a passive
component that provides non-binding suggestions.
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Figure 4.4: A diagram that illustrates an Orchestrator model example.
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Figure 4.5: A conceptual model of how an orchestrator can be used.

At the implementation level, the Orchestrator is able to enforce arbitrary policies
if we establish that all peerings must go through it. At the same time, it is not
entirely "opaque": we want customers to retain visibility into what providers their
pods are being offloaded to, and vice versa, we want a provider to know what
customers it is serving. In fact, performance-wise it would be ideal if the data plane
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was direct between the customer and the provider, while the control plane retains
the Orchestrator as an intermediary: if on the other hand the data plane had to
pass through the broker, the latency would suffer from the extra hop, and the
broker would have to allocate sufficient bandwidth for serving all of its customers.
In essence, if we want to develop a scalable brokering solution it is a prerequisite
that we decouple the control plane from the data plane, so that only the control
plane may be proxied.

4.6 Aggregator

Figure 4.6: A diagram that illustrates an Aggregator model example.

At the beginning of this chapter we have explored some user stories that can be
used to motivate the need for a brokering solution. In this section, in particular,
we will focus on the use case (B2B - Scenario 1) of a cloud provider that wants to
be competitive in the market by joining forces with other cloud providers (in the
Figure 4.6 Provider B and C), to be able to offer a better service to its customers
(Provider A) or just to increase its market share and visibility.

In this scenario, the brokering model that best suits the needs is the Aggregator
model, because it allows the cloud provider to federate its resources with other
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cloud providers, and to offer them in the market as a single entity. In this way,
the cloud provider can offer a better service to its customers, maybe with a better
price, performance, or with a better service diversification.

2. Peer

3. Offload

5. TrafficConsumer

4. Offload

6. Proxy

Aggregator
1. Peer

Provider

Figure 4.7: A conceptual model of how an aggregator can be used.

Unlike the Orchestrator, in this case both the “Control plane” and the “Data
plane” of the cloud providers are proxied and controlled by the Aggregator, which
is in charge of aggregating their resources, and of distributing the workloads to
the ones that are able to handle them based on some metrics and policies. On top
of that it exposes to the customers, and so to the market in an opaque way, the
aggregated resources of the providers that are federated with it. The final result is
that no one knows and matters about the exposition of its services and resources to
the market, and how the workloads are distributed among the providers federated
with the Aggregator. They just should define their own policies, if they wants, or
let the Aggregator decide where based on metrics.

This model implies of course an high responsibility for the Aggregator, because
it becomes the single point of management of the resources of the providers that
are federated with it. Moreover it has to be sure that the resources of the providers
are not overused, and that the workloads are distributed in a fair way among the
parties. To do that, the Aggregator has to be able to monitor the resources and
metrics of the overall environment.

From a security and reliability point of view, it should appear as a single point
of failure, in fact if the Aggregator fails, all the providers that are federated with
it will not be reachable anymore. To avoid this, a complex system of redundancy
and failover should be implemented, and the Aggregator should be able to recover
from failures in a fast way. Moreover, the providers should be able to bypass the
Aggregator in case of failure, or provide backup peerings with other instances of
the Aggregator.
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Chapter 5

Catalog

5.1 Overview
Until now we have focused on studying the different models of brokering and
the strategies to implement them with the purpose of designing and enabling an
efficient and scalable architecture that fits the requirements of a Kubernetes clusters
federation.

Our choice fell on the Catalog model, leaving out the other two models, because
it is the most suitable for our use case, and it is also the most scalable and efficient.
Moreover, it is the lightest, and the only one that does not centralize the entire
infrastructure, which is one of the key requirements for a federation of clusters.
This model is also the most flexible, as it allows to implement different strategies
to aggregate and collect offers, to implement different policies to manage them and
also because it lends itself better to being extended in the future with new features,
as for example negotiation logics.

Lastly, it is the most suitable for the Gaia-X vision of federated cloud, where
multiple cloud providers through heterogeneous infrastructure can join together
to extend their services and resources. We do not forget that in a federation of
clusters the primary goal is to avoid a loss of control over the resources, and to
maintain the autonomy of each cluster. The Catalog model allows to achieve this
goal, so we decided to implement it.
The above mentioned requirements can be summarized in the following points:

• The broker must allow CSPs to advertise their resources and offers to the
federation.

• The broker must allow CSPs to discover and join offers from other CSPs.

• The broker must implement a standard interface that IaaS providers can sub-
scribe to, which is an important element for application portability, preventing
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vendor lock-in.

• The broker must be able to establish trust, improving scalability and facil-
itating connections between providers and consumers by aggregating offers
and allowing for complex topologies going beyond the current point-to-point
model.

• The broker must be able to manage multiple tenants.

• The broker has to be agnostic to the underlying infrastructure.

• The broker has to be agnostic about what happens between the CSPs. In fact
data plane and control plane of each peering have not to be on the control of
the broker.

• CSPs have to be able to create and manage contracts with other CSPs through
the catalog.

• CSPs have to be able to create, update, delete and join offers through the
catalog.

• CSPs have to be able to enstablish a Liqo peering connection with other CSPs
based on a stipulated contract through the catalog.

• CSPs have to be able to manage the peering and revoke eventually the contract
through the catalog.

• CSPs must be able to create a peering connection with an automatic assignment
of resources to each one.

• CSPs must be able to continuously monitor the status of the peering connection
and the resources assigned to them.

• CSPs must be able to mantain the control of their resources.

• The connections between the broker and the CSP must be secured.

• The connections between CSPs must be secured, authenticated and encrypted,
and must be able to support multiple tenants.

• Each connection between CSPs must follow a peer-to-peer model, where each
CSP can be both a provider and a consumer.

Analyzing the pros and cons of all models, we have identified the Catalog as the
most suitable model for our use case. In fact, its lightweight nature and the fact
that it is not a central point of failure, make it a good candidate for a distributed
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architecture where many different tenants would like to cooperate in creating a
common environment.

Moreover, the Catalog model follows all the criteria listed above, and it is also the
most flexible model, since it allows to implement different strategies for the discovery
and advertisement of offers. In fact, the Catalog model can be implemented in
a centralized way, where all the offers are stored in a single database, or in a
distributed way, where each CSP can store its offers in a local database and share
them with other CSPs through a synchronization mechanism.

In this thesis we have implemented a distributed Catalog, where each CSP can
store its offers and share them with other CSPs through the broker. In the following
sections we will describe the Catalog architecture and the different components
that compose it.

We will also describe the Broker and its APIs, which are the standard interfaces
that IaaS providers could use to interact with him, and the Catalog Connector,
which is the component that contains the core logic to interact with the Liqo
controller and the Liqo external resource monitor through a gRPC server, and that
manages the offers and contracts through a REST API and a WebSocket interface.

Finally, we will describe the Catalog Connector UI, which is a graphical interface
that allows cluster admins to interact with the Catalog Connector through a web
browser, allowing them to create, update, delete and join offers, creating and
managing contracts with other CSPs, and to establish Liqo peering connections
based on stipulated contracts.

5.2 Objects: Offers and Contracts
First of all, we have to define the objects that represent the information that the
Catalog will store. We have mainly two different types of objects: Offers and
Contracts.

An Offer, as already defined in the previous chapters, is an object that is
composed by different metadata such as the ID, the Provider name, the creation
date, the availability, the description and so on. It is attached by a collection of
Plans that can be interpreted as a package of resources that a CSP is willing to
share with other CSPs. Each plan can be composed of a single type of resource, or
a set of different types of resources, such as CPU, memory, storage, GPU, etc. In
fact, the Catalog is not tied to a specific type of resource, and it can be used to
share any kind of them. Moreover, a plan can be attached to different metadata,
such as the name, the price (defining also the billing strategy understood as billing
period and currency), the quantity, and so on. Each offer can be created by a CSP,
and it can be updated or deleted by the same. It is also possible to decide if it has
to be published on subscribed brokers or only saved locally. This strategy allow
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CPS admins to draft them or make them unavailable to other CSPs anytime.
Offers are encoded as a simple JSON object. We report an example offer with

three plans:

1 {
2 "offerID": "...",
3 "offerName": "Storage-optimized offer",
4 "offerType": "storage",
5 "description": "We designed this offer for all your storage needs.",
6 "created": "timestamp",
7 "status": true,
8 "plans": [
9 {

10 "planID": "..."
11 "planName": "plan-basic",
12 "planCost": "1.0",
13 "planCostCurrency": "USD",
14 "planCostPeriod": "Monthly",
15 "planQuantity": 10,
16 "resources": {
17 "cpu": "1000m",
18 "memory": "2Gi",
19 "storage": "100Gi"
20 }
21 },
22 {
23 "planID": "..."
24 "planName": "plan-medium",
25 "planCost": "2.0",
26 "planCostCurrency": "USD",
27 "planCostPeriod": "Monthly",
28 "planQuantity": 10,
29 "resources": {
30 "cpu": "2000m",
31 "memory": "4Gi",
32 "storage": "300Gi"
33 }
34 },
35 {
36 "planID": "..."
37 "planName": "plan-performance",
38 "planCost": "5.0",
39 "planCostCurrency": "USD",
40 "planCostPeriod": "Monthly",
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41 "planQuantity": 10,
42 "resources": {
43 "cpu": "8000m",
44 "memory": "32Gi",
45 "storage": "1Ti"
46 }
47 },
48 }
49 }

Listing 5.1: An example Offer JSON object
On the other hand a contract is an object that consists of several metadata such
as the buyer ID, in this case represented by the Liqo ClusterID, the Provider
information, which include all the data needed to start a peering connection with
the seller, the creation date, and of course the offer plan configuration which it
is linked to, which describes the resources that have to be enforced during the
peering.
This configuration is useful to define the resources that the buyer will be assigned
and reserved to. On the other side it represents a way for the seller to control that
the resource usage is not exceeding the limits defined in the contract.
Here an JSON document as example of a Contract object.

1 {
2 "contractID":"0a2e226b-9d54-4b3b-9e65-80c71200e252",
3 "buyer-cluster-id":"ab5764bd-5403-4de4-b1e8-9b0f4cb0b798",
4 "seller":{
5 "clusterPrettyName":"Cloud Service Provider example",
6 "clusterContractEndpoint":"http://10.0.0.7:8010",
7 "clusterName":"cloudprovider",
8 "clusterID":"191a8cba-14e4-4fde-a60a-6995f812e047",
9 "endpoint":"https://172.18.0.2:30425",

10 "token":"3470cebaeeade3e7b190c064aaf912de08..."
11 },
12 "offer":{
13 "offerID":"191a8cba-14e4-4fde-a60a-6995f812...",
14 "offerName":"CPU Offer",
15 "offerType":"computational",
16 "description":"This id a CPU oriented offer",
17 "plans":[
18 {
19 "planID":"191a8cba-14e4-4fde-a60a-6995f812...",
20 "planName":"Basic",
21 "planCost":10.0,
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22 "planCostCurrency":"USD",
23 "planCostPeriod":"week",
24 "planQuantity":10,
25 "resources":{
26 "cpu":"100000m"
27 }
28 }
29 ],
30 "providerPrettyName":"Cloud Service Provider example",
31 "created":1668966474385,
32 "status":true
33 },
34 "planID":"191a8cba-14e4-4fde-a60a-6995f812...",
35 "enabled":true,
36 "created":1668966490
37 }

Listing 5.2: An example Contract JSON object
In order to make this possible, an extension of Liqo controller manager has been
implemented, which is responsible for the enforcement of the contract. This
argument will be discussed in depth in the next sections, moreover, we will see how
the Liqo controller manager is able to monitor the resource usage of the buyer and
to enforce the contract limits by avoiding the overuse of resources.

5.3 Architecture design: distributed Catalog
The main focus of our studies was to design a solution that satisfies the requirements
of a Kubernetes clusters federation and that scales well in a distributed environment.
Our purpose was to design a solution that is able to manage multiple tenants and
to scale horizontally, in order to support a large number of CSPs. We initially
identify two possible implementations path: a full mesh peer-to-peer architecture
(Figure 5.1) and a selective on demand architecture (Figure 5.2) that needs to
be supported by a Broker, in particular the Catalog model widely studied in the
previous chapter. The first solution is the most simple one, but it would not be a
good choice for our use case because it is not scalable, both in terms of resource
consumption and in terms of discoverability, so it is not efficient due it requires that
all clusters should be connected to each other. The second one is more complex to
be implemented and managed, but it is more scalable and efficient.
Our challenge converges on the second one: in fact, it allows to interconnect only
the clusters that are really interested in sharing resources without know or peer
themselves a priori. Moreover it could be possible to allow to add more brokers to
the system, increasing the scalability of the environment, giving in this way the
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Figure 5.1: An example of a full meshed kubernetes cluster federation with Liqo

possibility to the CSPs to choose the broker that better fits their needs (dataspace
topics, geographical constrains, etc.), exposing its offers with different strategies
and policies.
We realized that, as explained previously, this model imposes a centralized broker,
that however might have added a single point of failure to the system, so the hard
work was to design an architecture where the broker maintains as much as possible
a lightweight role, avoiding that its failure could affect the whole system.
Obtaining this result involved to split the broker, and so the architecture, in two
different elements, that from this moment we will call Catalog Broker and Catalog
Connector. So we mostly moved the complexity of the system to the Catalog
Connector, that is the component located and run on each CSPs cluster. In this
way:

• The Catalog Broker becomes a simple component that is responsible for the
continuous synchronization and aggregation of the offers between the different
CSPs and the authentication and authorization of the CSPs and the requests
coming from them.

• The Catalog Connector is the component that is responsible for the man-
agement of the owned offers and the contracts (sold or purchased), for the
communication and synchronization with the Catalog Broker, for the creation
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Figure 5.2: An example of a on-demand kubernetes cluster federation with Liqo

of the peering connections with other CSPs, and for the enforcement of the
contracts limits when a peering connection request is received.

Basically, we can say that the strategy applied was to move on the edge all the
complexity of the system.
In the Figure 5.3 we can definitely see the final architecture of the Catalog, that for
the reasons explained above we can also define Distributed Catalog. On each CSP
there is a Catalog Connector, usable through a UI1, in charge of interact internally
with the own cluster and externally with the Broker. On each IXP2, instead, a
Catalog Broker. Thanks to this choices we also maintained the vanilla behaviour of
the Liqo peering, focusing our effort only on adding to it some fundamental missing
features as the enforcement of the resources limits and multi-tenancy.

1User Interface
2Internet Exchange Provider
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Figure 5.3: Final design of our Kubernetes cluster federation through the dis-
tributed Catalog

5.4 Catalog Broker
The Catalog Broker, as previously said, is the component that is responsible for
the continuous synchronization and aggregation of the offers between the different
CSPs, grouping and broadcasting them in JSON objects that we defined as Catalog
(one per each CSP), the authentication of each Provider that wants to be part of
the federation, dressing the role of federator, and finally the authorization of the
requests coming from this federated CSPs.
It is implemented as a simple Web server that exposes a REST API for CRUD3

operations on Offers and a WebSocket interface for the continuous broadcasting
of messages to update the connected clients (CSPs). This simple design allowed
it to be extended, built and deployed everywhere, on a single server, VM or on
a Kubernetes cluster, moreover to be flexible, light and compatible with almost
all the standard infrastructures. We did this choice because of in our idea of
Federation, it is reasonable to think that the IXPs are the most suitable place
to host this component, because they are probably already connected to all the
CSPs, and they are the most neutral and trusted point of the network, moreover

3Create, Read, Update, Delete

44



Catalog

their infrastructure is not so computing intensive, so they can host it without any
problem.
Careful readers will notice that the Catalog Broker, as we defined it, requires
some form of persistence, i.e. a way to store information about the CSP peering
credentials and their offers. The choice of persistence engine fell on NoSQL
technologies, and specifically on MongoDB. The main reason for choosing NoSQL
databases is that the schema is potentially flexible: a provider may offer resources
with arbitrary labels that may not be known to the broker, one may want to extend
the project to support more structured offers (eg. including pricing information or
constraints), and even the schema for peering credentials may conceivably change
in the future. This is complemented by the fact that we need very simple CRUD
operations on offers that do not need the complex features of SQL. Finally, we
envision the possibility for the broker to run simple queries (but still beyond
the scope of CRUD), for example to select all plans below some price threshold:
MongoDB already implements support for queries, which we wouldn’t have if for
example we used simple files for persistence.

Here set of main APIs implemented in our Catalog Broker:

• POST /authenticate: receives peering credentials and provides a JWT

• POST /subscribe: enstablishes a WebSocket connection to the broker to
receive catalog updates

• GET /catalog: gets the full catalog of offers offered by all the providers
registered on broker

• POST /offer/<id>: creates a new offer, or updates it if it exists

• DELETE /offer/<id>: deletes the offer identified by an ID

The use of technologies like JSON and WebSocket, that are primarily oriented to
the Web, enabled that can easily integrate with a wide range of existing tools and
libraries, such as the ones used to implement the Catalog Connector. This is a
very important feature, because it allows each contributor to the project to use
the tools that are most familiar to them, and to focus on the specific part of the
project that they are interested in, allowing the project to be easily extended and
maintained in the future by a large community of developers.
Let go deeper into each aspect and related APIs in the next sections.

5.4.1 Authentication
The authentication is the first step that a CSP has to do in order to be part of the
federation. For our purpose we decided to use a simple authentication mechanism

45



Catalog

based on a JWT4, that is a standard for representing claims securely between two
parties. Of course this solution is not the most secure one, but it is the most simple
and flexible one, and it is enough for our PoC5 use case.
The token is composed of a header, a payload and a signature, and it is signed
by the broker using a secret key. The payload contains the information about the
CSP, such as the Cluster Name, the Liqo ClusterID, Liqo token and endpoint for
the peering. This token is released by the broker to the CSP, and it is used by
the Catalog Broker to authenticate all the requests coming from the CSP, this
represents a security layer which prevents unauthorized users from interacting with
the broker. To obtain the token, the CSP has to send a POST request to the
/authenticate endpoint of the Catalog Broker, with the following payload:

1 {
2 "clusterName": "LiqoClusterName",
3 "clusterID": "LiqoClusterID",
4 "endpoint":"http://123.456.78.90:35426",
5 "token":"LiqoAuthToken"
6 }

The Catalog Broker will check if the CSP is already registered, and if it is not,
it will generate a new token and it will store the CSP Liqo information in the
database. Then it will send the token to the CSP, that will use it for all the other
requests to the Catalog Broker, attaching it to the header of the request as a Bearer
token.
This solution is intrinsically insecure, for the moment it represents only a placeholder
ready to be implemented in the future. For instance, a secure behaviour could be
the possibility to release a JWT only if the CSP is whitelisted or authenticated by a
trusted third party, or if it owns a certification released previously by a certification
authority, as it happens in the case of Gaia-X Federated Catalog. Of course all the
requests coming from the CSPs will be authenticated by the Catalog Broker, and
if the token is not valid, the request will be rejected.

5.4.2 Offers reflection
To better understand the concept of Offers reflection, we need to have in mind
what is a Broker and what could be a Broker in the context of a Cloud Federation.
Starting from the definition of a Broker, we can say that it is like an intermediary

4JSON Web Tokens
5Proof of Contept
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between two or more parties, that is able to exchange information and to mediate
between them. Moreover, usually, it is also responsible for what happens between
the two parties, and it is the one that is responsible for the final result of the
exchange.
In the context of a Cloud Federation, the Broker is, as already mentioned several
times, the component that is responsible for the collection and aggregation of the
offers of the different CSPs, and the distribution of the final aggregated catalog to
the CSPs that are part of the federation. About this last aspect, we can say that
the Broker is in charge of continuously update the parties about what is happening
in the federation. Actually, different ready to use brokering solutions are already
available, such as Apache Kafka, Apache Pulsar, RabbitMQ, etc. But, in our
case, we decided to implement our own Broker, because we wanted to have a more
flexible and customizable solution, that could be easily extended and adapted to
our needs. Moreover, different functionalities could result not useful for our use
case, increasing the complexity of the system, and adding some overhead. For
example, in our case, we don’t need a message queue, because we don’t need to
store the messages.
Our customized broker message flow is very simple, and it is based on a WebSocket
connection, that is a bidirectional communication channel between a client and a
server. The client can send messages to the server, and the server can send messages
to the client. The WebSocket protocol is a standard protocol, and it is supported
by all the major browsers, and it is also supported by all the major programming
languages. We use this protocol because it is very simple to implement, and it is
very efficient and very easy to scale, because it is based on a single TCP connection.
Moreover, it is also very secure, because it is based on TLS. In our case, the broker
is the server, and the CSPs are the clients. The broker is responsible for the
distribution of the offers to the clients, and it is also responsible for the update of
the offers, when a new offer is added, edited or removed. Due to this behaviour
we decided to use this channel only uni-directional, from the server to the clients,
this explains why we call this process Offers reflection. To open a WebSocket
connection, the client has to send a POST request to the /subscribe endpoint of
the Catalog Broker, and it has to attach the token (already released) to the header
of the request as a Bearer token. The Catalog Broker will check if the token is
valid, and if it is, start the following procedure:

1. Entablish the WebSocket connection

2. Extract the CSP Liqo information from the token

3. Get all the offers from the database excluding the ones of the CSP that is
trying to connect

4. Wrap and organize the offers in a JSON object, that is an array of catalog
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objects, one per each CSP in the federation that has at least one offer

5. Send the JSON object to the CSP through the WebSocket connection

The CSP will receive the JSON object, and it will parse it, extracting the offers
of the other CSPs. From this point, it will be able to receive the updates of the
offers of the federation, without doing any other request to the Catalog Broker.
Here we can see the main advantages of this solution, that is the possibility to
have real-time updates, without the need of periodically polling the Catalog Broker.
Following an example of the JSON object that the CSP could receive (for the sake
of simplicity, we are showing only the catalog of one CSP, but in reality at time
of the connection the it will receive an array of the catalog of all the CSPs in the
federation):

1 {
2 "clusterID":"191a8cba-14e4-4fde-a60a-6995f812e047",
3 "clusterName":"cloudprovider",
4 "clusterPrettyName":"Cloud Service Provider",
5 "clusterContractEndpoint":"http://contracts.example.it",
6 "endpoint":"https://172.18.0.2:30425",
7 "token":"3470cebaeeade3e7b190c064aaf912de08d94b06787dbd4c9523...",
8 "created":1669393527206,
9 "offers":[

10 {
11 "offerID":"191a8cba-14e4-4fde-a60a-6995f812e047_57c9090c...",
12 "offerName":"CPU Offer",
13 "offerType":"computational",
14 "description":"here you can find the description of the offer",
15 "plans":[
16 {
17 "planID":"191a8cba-14e4-4fde-a60a-6995f812e047_57c9090c..._1",
18 "planName":"Basic Plan",
19 "planCost":15,
20 "planCostCurrency":"USD",
21 "planCostPeriod":"week",
22 "planQuantity":10,
23 "resources":{
24 "cpu":"100000m",
25 "memory":"128Gi"
26 },
27 },
28 {
29 "planID":"191a8cba-14e4-4fde-a60a-6995f812e047_57c9090c..._2",
30 "planName":"Enthusiast Plan",
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31 "planCost":45,
32 "planCostCurrency":"USD",
33 "planCostPeriod":"week",
34 "planQuantity":10,
35 "resources":{
36 "cpu":"500000m",
37 "memory":"512Gi"
38 },
39 },
40 ],
41 "created":1669393827573,
42 },
43 ],
44 }

Listing 5.3: An example of a Catalog JSON object
At the end we can summarize our proposed mechanism to exchange information
over a WebSocket transport with the following specification:

• When a Customer (a provider that acts as customer) first connects to the
Catalog Broker over WebSocket, this sends a full list of offer catalogs.

• When a Provider creates, updates or deletes its offers, the updated catalog of
offers is broadcast to all subscribed customers.

• No state is associated with subscribers, so if they disconnect and reconnect (eg.
because they restart the application, or due to a temporary network failure)
the full list of catalogs is sent again.

5.4.3 Discovery and Advertisement APIs
The population of the Catalog Broker is up to the CSPs, that are responsible for
the advertisement and the management of their own offers. The Catalog Broker,
in this case, takes a passive role, and that does not care about for the creation
of the offers and its content, but, as said previously, it is only responsible for the
aggregation and the distribution of them. For this purpose, we implement the
following methods on the Catalog Broker, beyond those already described:

1. POST /offer/<id>

2. DELETE /offer/<id>

3. GET /catalog
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Mainly we can divide these in two categories: the discovery API, and the adver-
tisement APIs. The discovery APIs are used by the CSPs, in the role that we
can define as consumer, to discover the offers of the others in the federation. The
advertisement APIs are used, in the role that we can define as provider, to advertise
their own offers to the the federation. This behaviour is of course interchangeable
anytime. On the provider side fall the API number 1 and 2, a set of REST APIs
for CRUD operations on own offers. These APIs, as always, require authentication
via JWT as a security layer which prevents unauthorized users from modifying
offers on the Catalog Broker.
Through this API the provider can publish its commercial offering, update it as
required, and remove it when it is no longer available. The POST method is used
to create or update a new offer, it receives in the body of the request the offer to
be added or updated, and as query parameter the ID of the offer. Internally the
Catalog Broker will check if the offer already exists, and if it does, it will update it
overwriting the existing, otherwise it will create a new offer. The DELETE method
is used to remove an offer, it receives in the query parameter the ID of the offer to
be removed. Both require the authentication via JWT, attached in the header of
the request as a Bearer token, that will be used to check if the user is authorized
and recognized by the Catalog Broker, but above all to extract the information of
the CSP that is trying to perform the operation, in order to check if it is the owner
of the offer.
We apply a similar reasoning for the customer-side interface. In this case, although,
we only need a method to query the available offer catalogs. For this purpose
we implement the GET method on the /catalog endpoint. This method does
also require the same authentication system, to avoid unauthorized users, in this
unauthorized CSPs, to fetch and download information that are available only for
the federation members. It does not require any parameter, and it returns the
catalog of the federation, that is an array of catalog objects, one per each CSP
that has published at least one offer. In other words, we’re looking at a producer-
subscriber scheme, that coupled with the WebSocket connection, completes and
makes available a lightweight and real-time communication and interaction system
for the environment, avoiding wasteful polling and keeping the system as simple
and reactive as possible.

5.5 Catalog Connector
As explained in the previous chapters, our goal was to move the most of the logic of
our federation Broker on the edge, in the CSPs, and to keep the Catalog Broker as
simple as possible allowing the environment to continue working even if the Catalog
Broker is down. For this reason, we decided to implement a Catalog Connector,

50



Catalog

with a much higher processing and functional complexity but which also allows not
to affect the federation in case of failure of the single Provider. The final result is
that up to this component there are most of the processes useful to the correctly
working of the ecosystem. In particular it amis to:

• Communicate with the Catalog Broker through the collection of APIs described
previously.

• Expose outside the cluster a POST method responsible of receiving the requests
from the other CSPs to join/purchase a specific offer.

• Interact with the Kubernetes API server to obtain the Liqo peering informa-
tions and create the resources usefull to instantiate a peering with the other
CSPs.

• Expose inside the cluster an set of APIs to be used by the UI to interact
with the Catalog Connector and indirectly with the Catalog Broker. This will
include also the REST methods for performing the CRUD operations on own
offers and contracts stored on the Database.

• Allowing Liqo to acquire the contracts informations and the attached resources
limits. These will be used by the Liqo Controller Manager to reserve the right
amount of resources on the cluster to the CSP that is going to be peered.

We can resume the internal subset of module of the Catalog Connector in the
following figure that we will individually explain in the following paragraphs.
As we can see, the Connector consists of different elements. First of all a Server,
which contains our backend logic and it is responsible about the management
of all those operations that include the manipulation of data and the instantia-
tion/management of WebSocket connections, playing as a proxy between the UI
and the Broker. Moreover it acts as controller through Liqo functionalities, as
well as an API Endpoint to expose himself to internal and external requests. To
this more logical elements, we add a Database, that is a MongoDB instance (the
implementative choice is obviously the same of the Catalog Broker), used to store
the contracts and the offers of the CSP, but in the future it cuold be extent to store
the information about the peering status of the different clusters, the resources still
available in own cluster and so on. Still, we add a gRPC server, queried by Liqo
for the retrieving of contracts informations, and finally a User Interface that is the
frontend of the Catalog Connector, and makes these operations easier and more
user friendly for the administrator of the CSP.
When we had to implement this component, we found ourselves faced with the
problem of having to choose whether to keep the same language used with the
Catalog Broker with the disadvantage of running into greater difficulties in in-
teracting with k8s or adding the overhead of using two different frameworks by
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exploiting the implementation advantage due to the simplicity obtained thanks
to wide libraries and documentation available for our use case. We decided to
choose the second option, exploiting the Go language for the implementation of the
Catalog Connector, using the k8s and Liqo libraries to interact with the cluster
and the MongoDB driver to interact with the Database. At the end, from the
frontend-side, we decided to use the React framework, based on the TypeScript
language, which is the most used in the industry and which allows us to have a
very simple and intuitive interface, with a very low learning curve for the users
who in the future want to use and extend its functionalities. This choice was also
dictated by the fact that we wanted to have a modern and responsive interface,
which could be used on any device, from a smartphone to a desktop computer,
without having to make any compromises on the user experience.

Figure 5.4: A closer and technical overview of the federation architecture

5.5.1 API Server: UI and Contracts
First aspects that we have to consider, describing the Catalog Connector, are the
interactions and the underlying communication system between the UI and the
backend logic. As we have seen in the previous paragraph, the UI is the frontend
of the Catalog Connector, and it is the interface that the CSP administrator will
use to interact with the core logic of the Server.
To design the architecture that we had in mind, we focused our effort mainly on
two principles, very similar to the ones we have seen for the Catalog Broker, with
the purpose of implementing a lightweight and reactive system that meets and fits
the requirements of a modern and dynamic environment.
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Basically, we wanted to coexist two different channel of communication, one classic
and synchronous, based on the REST APIs, and one asynchronous and reactive,
based on the WebSocket connection.
The first one, as we have seen, is used of course to perform the CRUD operations
on the offers and contracts stored on the Database, is exploited when a new session
of the UI is started to retrieve the information about the federation or when the
Catalog Connector is initialized for the first time, as well as to get and set the
Provider and Liqo informations.
The second one, instead, is used to notify the UI about the changes in the federation,
and to allow to update the information in real time, without having to perform any
polling operation to the server. In fact, in a federation, the number of changes that
can occur could be very high, and the Catalog should be updated several times in a
short time, so it is important to have a system that can converge as fast as possible
to the new state of the federation, showing coherent and consistent information to
the user.
Now that we know how Catalog Broker, Connector and UI work together, it is
time to see how the Catalog Connector works internally and how it manages the
above-mentioned communication channels.
In the Figure 5.4 we have shown a more technical and closer overview of the
federation architecture. What immediately catches the eye is the presence of
two different WebSocket Connections, one from the UI to the Server (Catalog
Connector) and one from the Server to the Catalog Broker. These two connections
are physically separated but logically connected thanks to a complex system of
channel pools and go routines that allows the Server to receive messages from the
subscribed Brokers and forward them to all the active UI sessions. In this way, for
instance, if a user "A" of the CSP "A" performs the registration of a new Catalog
Broker, the server receiving the whole federation catalog from him is able to forward
it to all the active UI sessions of the CSP A, allowing all connected user (B, C, D,
etc.) to see the update in real time. Of course this is just one of the possible corner
case examples that we can make, but it is important to understand the importance
and the complexity of this system. Moreover through this implementation strategy
we avoid to instantiate multiple WebSocket connections from the UI to the Catalog
Broker, which would be a waste of resources and a source of possible errors and
problems.
After that, as already mentioned, we need to describe the synchronous communica-
tion channel, which is based on the REST APIs. Going in depth, this is the list of
the APIs that we have implemented:

• GET /api/contracts: returns the list of all the contracts stored on the
Database.

• POST /api/contracts/buy: creates a request to buy a specific offer plan, and
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returns the status of the operation (CUSTOMER-SIDE).

• POST /api/contracts/sell: used to accept a request to buy a specific offer
plan, and returns the status of the operation (PROVIDER-SIDE).

• DELETE /api/contracts/:id: deletes and revokes the contract with the
specified id.

• GET /api/offers: returns the list of all own offers stored on the Database.

• POST /api/offers: creates or update an offer on the Database.

• DELETE /api/offers/:id: deletes the offer with the specified id.

• GET /api/brokers: returns the list of all the Catalog Brokers registered on
the Database.

• POST /api/brokers: creates a Catalog Broker on the Database and try to
connect to it.

• DELETE /api/brokers/:id: deletes the Catalog Broker with the specified id
and disconnects from it.

• PUT /api/brokers/:id: updates the Catalog Broker subscription with the
specified id.

• GET /api/cluster/init: returns the information about the readiness of the
Catalog Connector.

• POST /api/cluster/init: initializes the Catalog Connector.

• GET /api/cluster/parameters: returns the Liqo cluster parameters.

• GET /api/cluster/prettyname: returns the CSP pretty name.

• POST /api/cluster/prettynames: updates the CSP pretty name.

• GET /api/cluster/contractendpoint: returns the endpoint of the CSP
useful to join offers and stipulate contracts.

• POST /api/cluster/contractendpoint: updates the endpoint of the CSP
useful to join offers and stipulate contracts.

• GET /api/subscribe: instantiates a WebSocket connection with the Catalog
Connector from the UI.

• GET /api/catalog: makes a request to the Catalog Broker to retrieve the
whole federation catalog.
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Among these, those that deserve more attention are the ones that allow the Catalog
Connector to buy and sell offers, creating contracts between the CSPs, the ones
that allow to interact with Liqo to instantiate a peering with a specific CSP, and
the ones that allow to makes CRUD operations on the Database. The first two
groups of APIs will be described after in the next paragraphs, here we focus on the
last one.
About the CRUD operations, we have to say that they are very similar to the ones
we have seen for the Catalog Broker, with the only difference that the Catalog
Connector is able to perform them on its database, and manipulate and save
only the owned offers without saving the federation received ones. The notable
concept is that it is responsible of the synchronization of the offers with the Catalog
Broker, so also of the consistency of the CSP offers in the federated Catalog. Every
time a new offer is created, updated or deleted, the Catalog Connector sends a
request to the Catalog Broker to update the federation catalog. For this reason
this process becomes very important and delicate. In fact, if the synchronization is
not performed correctly, the Catalog Connector could be in a state of inconsistency
with the Catalog Broker, and the offers could be not correctly updated on it.
To avoid this problem, we have implemented such a security mechanism that allows
the Catalog Connector to understand if the Catalog Broker is in a consistent
state or not, to emergency clear the remote catalog and to immediately stop the
synchronization process, notifying the user about the problem, to let him decide
what to do. For the moment we follow the strategy of using a timestamp as
consistency indicator, but we are working on a more complex and reliable solution
such as a cryptographic signature or hashing.

5.5.2 Offer joining and Peering
Until now we have seen all the aspects about how the Catalog Connector manages
the synchronization with the Catalog Broker, how it works internally and manages
Offers, and consequently how it makes CRUD operations on the Database. All these
aspects represent the underlying concepts to better understand the real purpose
of our study, which is the possibility to explore and join offers and to stipulate
contracts between CSPs in a Kubernetes cluster federation.
As far as the the offer joining is concerned, we have to start doing an overview
about what were the main problems that we have faced during the designing of
this feature.
First of all, due to how we had implemented the Catalog Broker, we had to deal with
the fact that it was not thought, and therefore capable, to operate as middleman
for complex operations like a negotiation. This is just a design limitation, that, as
we have seen in the previous paragraph, we strictly imposed from the beginning
to avoid a relevant centralization of the Catalog Broker. If from one side this is
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a good thing, because it allows to have a more flexible, distributed and scalable
environment, from the other side it is a problem because it forces us to implement
a new logic for the direct communication between two different CSPs and so two
different Catalog Connectors.
To overcome this problem, we have decided to make available a couple of APIs:
one that is exposed only internally to the UI and that allows to make an internal
request for the creation of a contract, and one that is exposed externally to the
federation and that allows to make a request to buy a specific offer plan. In the
Figure 5.5 we can see the sequence diagram that describes the offer joining process
with the consequent contract creation.

Figure 5.5: Offer joining and contract creation sequence diagram

In order, the steps are the following:

1. The user selects an Offer from the Catalog of the UI and clicks on the Join
button of a specific Plan.

2. The UI makes a request to the Catalog Connector to buy the selected Offer
Plan, specifying the offer id and the plan id.

3. The Catalog Connector, after checking the validity of the request, makes a
request to the Catalog Connector of the remote CSP to buy the selected Offer
Plan, specifying the offer id, the plan id and its own clusterID. To make this
possible, it uses the Contract Endpoint hostname or IP previously provided
by the remote CSP during the offers publishing phase.

4. The Catalog Connector of the remote CSP, after checking the validity of the
request, answers to the Catalog Connector of the local CSP with the newly
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created contract, if the request is valid, or with an error message otherwise.

5. The Catalog Connector of the local CSP, checks the validity of the response
and, if it is successful, it deposits the contract in the own Database and sends
a notification to the UI.

6. The UI, after receiving the notification, updates the UI with the new contract
in the Contracts section.

Careful readers may have noticed that the Contract stored by the Consumer
(the buyer) it is the same received and stored by the Provider (the seller). This
behaviour it is clearly due to the will to have data consistency between the two
CSPs, we are talking about a negotiation, and so we have to be sure that the two
parties are in agreement about the same contract.
For the moment we have not implemented a logic for the negotiation, such as a
payment or a billing system, because it is not the main purpose of our study. In
the future, we will implement a more complex logic after some researches about
the best way to implement it.

5.5.3 Liqo controller
Now that we have in mind all the process of our study, we can move our attention
to the integration of our Catalog Connector with Liqo (Chapter 3).
Our goal was basically to make the Catalog Connector of the Consumer (the
buyer) able to interact with Liqo to instantiate a peering with a specific CSP,
and, viceversa, to make the Liqo Endpoint of the Provider (the seller) able to
communicate with the Catalog Connector to obtain the needed information to
answer to a peering request reserving the correct resources written in the Contract
between the two CSPs. The second part of this goal was the most complex and it
is deeply explained in a dedicated next section, here we will focus on the first one.
Firstly we studied how works the standard behavior of Liqo and we discovered
that a Liqo peering session starts always from the Consumer towards the Provider :
this workflow fits perfectly with our needs. We also understood that this process
started from the creation of a new CR6 called ForeignCluster, included in the Liqo
framework, that is created in the Consumer cluster, so, to not reinvent the wheel,
we decided to reuse the same process exploiting the functionalities available with
the Liqo library.
Thanks to this, we have been able to implement a new controller inside the Catalog
Connector that could answer the request of peering coming from the UI, forwarding
it to Liqo, without applying any modification to vanilla version of Liqo.

6Custom Resource
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A complete sequence diagram of the peering process is shown in Figure ?? in the
Section 6.2.

5.6 Catalog connector UI
The main topic of this section is the UI of the Catalog Connector, which is the
unique interface that the user has to interact with to manage the Catalog Connector.
We already explained all the concepts and the logic behind the Catalog Connector
UI, but we have not yet seen how it looks like and how it works in practice. In
this section we will see the main features of the Catalog Connector UI, and we will
explain how it works.
The UI is composed by four main parts: the Catalog section, the Contracts section,
the Broker section and of course the My Offers section.
All this sections are equally important, because they allow the access to the main
features of the Catalog Connector. Moreover, another page has been added to the
UI, the Overview page, that for the moment is just almost totally a placeholder,
but that could be used in the future to show some statistics about the Cluster, the
existing peering, with its related metrics and status, and so on. Actually, the only
thing that really works is the part of this page that shows the Provider information
and allows to change the Provider pretty name and the Provider Contract Endpoint.
Here a screenshot of the Overview page of the Catalog Connector UI

Figure 5.6: Catalog Connector UI: Overview page
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When a user opens the Catalog Connector UI for the first time, it will be redirected
to an initialization page, where it will be asked to insert some information, such as
the Provider pretty name and the Provider Contract Endpoint. After that, the
user will be redirected to the Overview page. If we move to the Catalog section, we
can see that it appears empty, because the Catalog Connector is not yet connected
to any Catalog Broker. To to do this, we have to move on the Broker section and
click on the + (plus) button Figure 5.7, now we have to insert the Broker hostname
or IP and the Broker name Figure 5.8.

Figure 5.7: Catalog Connector UI: Broker section
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Figure 5.8: Catalog Connector UI: Broker connection

Figure 5.9: Catalog Connector UI: Catalog section

After that, the Catalog Connector will be connected to the Broker and the Catalog
section will be populated with the offers published by the other CSPs on the
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Figure 5.10: Catalog Connector UI: Offer details

federated Catalog. Now it is possible to browse the Catalog Figure 5.9, explore the
offers Figure 5.10, and buy the desired offer Figure ??, and join one of its Plans,
clicking on the Join button Figure ??.
When the user buys an offer, the Catalog Connector will create a new Contract
between the two CSPs, and the Contract will be stored in the Purchased Contracts
section. The user can also revoke the Contract, and the Catalog Connector will
delete the Contract also from the corresponding remote CPS.
Of course, the user can also publish its own offers through the My Offers section
Figure 5.11, and as widely explained before the Catalog Connector will publish
them on the Broker. He has to click on the Insert a New Offer button to create
a new offer, jumping on a page where he can fill a form with the desired Offer
information Figure 5.12. It can create till 6 Plans for each offer, and each Plan can
have a different price and billing method and a different set of resources 5.13.
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Figure 5.11: Catalog Connector UI: My Offers section

Figure 5.12: Catalog Connector UI: My Offers creation
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Figure 5.13: Catalog Connector UI: My Offers Plan creation
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Chapter 6

Implementation

Until now, starting from the initial problem definition, we have seen how our
research and study has led us to discover the various architectural solutions that
could be used to reach the goals of the project, we have defined the main concepts
and the requirements that should satisfy our model of a Multi-tenant federated
brokering system between kubernetes clusters, designing and in the meanwhile
explaining the implementation of the main components of the desired environment:
the Catalog Broker, the Catalog Connector and its UI.
But, as we said before, the goals of this project were from one side to implement a
working prototype of the proposed solution, also with the purpose of validating it
with the mentioned Structura-X PoC, on the other hand we needed to implement
in Liqo a system to support the multi-tenancy in a fashion that better suits our
requirements of resource enforcements and workloads identity validation, enabling
at the same time a way to customize the assignment of resources during the
establishment of a new peering connection
We have widely explain the first goal, but we have not yet seen how we have
implemented the second one, and why we have chosen to implement it in this way.
This section is dedicated to this topic, because the work behind is noteworthy and
has taken a lot of time and effort, and we think that it is important to explain it
in detail.
We can mainly divide the work done in two parts: the first one is related to the
implementation of a new feature in Liqo, that for semplicity for the moment we can
call as Liqo Multi-tenancy, and the second one that is related to the modification
of an already existing component in Liqo, the External Resource Monitor, that was
born as an element useful for the Aggregator brokering model, but which we have
redesigned as an extension point to implement external mechanism of resource
assignments to each peering connection different from the default one, with the
purpose to suit Liqo for our scenario.
If the first case it is a real new feature, design and developed from scratch, the
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second one is a strengthening of the behaviour of an already existing component.
This two parts can be respectively expanded in the following descriptions:

• Liqo: Multi-tenancy: A system that enables Liqo for a multi-tenant manage-
ment of the established peering, adding a new layer of control both regarding
the check and validation of the workload offloading requests for each peering
and the enforcement of the resources consumption limits assigned to the
corrisponding tenant.

• Liqo: Custom peering: A system able to intercept and modify the standard
liqo peering flow to customize the assignment of the resources to each peering
connection based on an external source of information without impacting the
standard Liqo behaviour.

At the time of writing this document, both the features are already implemented
and merged in the Liqo repository, and they are available in the latest release of
the project, the version 0.6.

6.1 Liqo: Multi-Tenancy
The Liqo framework is mainly designed to able, in a single domain, to create a
continuum between different Kubernetes clusters, it is also capable to work in
a Multi-cloud environment, as long as this clusters are managed by the same
Kubernetes administrator. From the point of view of the interconnection and the
sharing/offloading of resources, Liqo is the perfect solution to fit our needs, but it
is not designed, by principle, to be used in a multi-tenant environment. As far as
this last point is concerned, Liqo could represent a limit, because it conflicts with
the initial idea of our project.
The standard behaviour of Liqo, in fact, does not care about partitioning and
isolating the usage of the resources between the different tenants, moreover it does
not provide any kind of control on the resources consumption assigned to each one.
This is explained because it was not intrinsically thought for this purpose.
Starting from this point, we challenged ourselves to understand how to enable Liqo
to work also in this direction, and after a long period of study and research, we
have found a solution by taking inspiration from the Resource Quota object of
Kubernetes, which is a standard feature of the Kubernetes framework, and which
is used to limit the resources consumption of a single namespace. It provides
constraints that limit aggregate resource consumption per namespace. It can limit
the quantity of objects that can be created in a namespace by type, as well as the
total amount of compute resources that may be consumed by workloads in that
namespace.
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In our case, we have decided to implement a similar system, not at the namespace
level, but at the peering level. To realize this, we have decided to implement a new
Liqo component, mainly based on a Validating Admission Webhook and a Cache
system, that will intercept the requests of the pods offloading, in particular the
ShadowPod Liqo CRD, making on the fly some checks and validations, and then
decide if the request can be accepted or not. This behaviour is better explained in
the Figure 6.1 and described in detail in the following paragraphs.

Figure 6.1: Liqo Multi-tenancy

6.1.1 ShadowPod Validating Webhook
The first step to realize the Liqo Multi-tenancy system was the implementation
of a new Validating Admission Webhook. A Webhook is a user-defined HTTP
callback that is called and triggered by an event. There are two types of Webhooks:
Mutating Webhooks and Validating Webhooks. The first one is used to modify the
request before it is accepted, while the second one is used with the purpose to
validate the request before it is accepted.
In our case, the event is represented by the creation of a new ShadowPod object.
Intercepting this event, our Validating Webhook will be able to make some checks
and validations on the request before deciding if the request could be accepted or
not.
The first check that we have implemented is the one that controls if the ShadowPod
is created in a namespace that is allowed and its ownership corresponds to the
tenant that is trying to create the resource. This check is performed by comparing
the origin ClusterID of the ShadowPod with the destination ClusterID mapped to
the namespace in which the ShadowPod is created. If the two ClusterIDs are equal,
the request is accepted, otherwise it is rejected.
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The second check is related to the resources consumption limits assigned to the
tenant, but for a better understanding of this check, we decided to dedicate the
following paragraph to it.

6.1.2 Resource Enforcement

As previously anticipated, in this paragraph we try to explain our implementation
solution for the resource enforcement, which is the second check that we have
implemented in the Validating Webhook.
We already mentioned that our strategy takes inspiration from the Resource Quota
object of Kubernetes and its behaviour. In fact, it is not a coincidence that we
have decided to reuse, from the Kubernates library, some of the functions that are
used to manage the Resource Quota object, and in particular the implementation
in charge of manipulating the aggregate resources consumption, adapting it to
our needs, or for example the logic used to calculate the resources consumption
of a single Pod, starting from the defined resources limits of the containers and
initContainers that compose it.
Up to here everything was pretty simple, but the question we arised was: how
can we know the already consumed resources by the tenant to calculate if the
new request goes over the assigned limits or not, without adding a computational
overhead to the system.
The answer to this question has been given by implementing a Cache system, which
is a custom data structure that supports our Webhook and stores the information
of each peering connection and the defined limits imposed by the corresponding
ResourceOffer, as well as the resources consumption of each tenant.
This system is updated in real time by the Validating Webhook, which is the only
component that has access to it, and which is the only one that can make the
properly calculations. Moreover, this Cache allowed us to solve the problem of the
possible inconsistencies that could arise trusting the system snapshots returned by
the Kubernetes API server when it is queried by the Controller Runtime Go Client.
This solution has paid off, both in term of performance, as we will see in the
following section dedicated to the benchmarks, and in term of reliability. But the
optimal solution have been found adding a refresh mechanism to the Cache system,
which is responsible to periodically update the information stored in the Cache by
querying the Kubernetes API server, in order to avoid possible inconsistencies that
could arise due to an possible failure of the Validating Webhook or possible corner
cases that we have not considered, consolidating the stored data.

67



Implementation

6.2 Liqo: Custom peering

Solved the problem of the Liqo Multi-tenancy, we have decided to go further,
trying to understand if it was possible to obtain a more flexible and customizable
behaviour of the Liqo peering, without impacting the standard flow, and without
modifying almost at all the Liqo codebase. We had clear in mind what was our
goal, but all the first roads we have tried to follow, have led us to a dead end,
because they all required a deep modification of Liqo, and this have been involved
a lot of work, and a lot of time, going against the initial idea of our project.
One of the possible solutions, that we have tried to examine, involved the under-
standing of how much it would cost, in terms of time and effort, to modify the
CRDs in charge to manage the peering peering process. We are talking about
the ResourceRequest and ResourceOffer Liqo CRDs. In fact, these two CRDs are
the ones that are used to exchange the information between the two clusters, and
respectively to trigger a request of peering creation and to answer to it providing
the information about the resources that are available to be shared.
The basic idea was to add some new fields to the ResourceRequest CRD, in order
to allow the consumer cluster to specify the resources that it wants to get from the
provider cluster. Besides that, as already said, this solution would have involved a
lot of work, and a lot of time, in order to apply this changes we would have had to
drastically modify Liqo, probably rewriting a lot of code, without the certainty of
the result. Moreover, this would have been a very risky choice, because it would
have been very difficult to guarantee the correct functioning of the system. And for
this reason, we asked ourselves if, at the end, we were going down the right path.
Fortunately, after a long period of study and research, we have found a solution
that has allowed us to obtain the desired result.
We focused our attention on how Liqo performs the calculation of the resources that
are available to be shared, in particular we paid attention to the Liqo Controller
Manager component, which, among all his duties, it is in charge to demand to
the Local Resource Monitor component to calculate, starting from some internal
metrics, the resources that the provider cluster is able to share. We realized that
there was the possibility to replace the Local Resource Monitor component with the
External Resource Monitor component. This element is basically a gRPC client,
that makes available a set of interfaces useful to query and communicate with an
external gRPC server.
Its native purpose was to use this component to integrate an external brokering
system able to run as an Aggregator of resources of multiple clusters, exposing them
as a single entity. We already explained this concept in the previous paragraph
where we explored the Brokering models (Chapter 4). What resulted interesting for
us, was the possibility to modify this component to implement external mechanism
that runs custom logic to forward to the Liqo Controller Manager the resources
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that we wanted to share.
In the next paragraph we will explain how this component has been used to obtain
the desired result and how it has been implemented. Here a representation of
the architecture of our final solution, with the main components involved in the
implementation of the Custom Peering.

Figure 6.2: Custom Peering Architecture and flow

6.2.1 External Resource Monitor
We almost said everything about the External Resource Monitor, but we have not
yet explained how it has been implemented. The External Resource Monitor is a
gRPC client that declares a set of interfaces that can be used to query an external
gRPC server. We have already described its purpose and its gRPC interfaces in
the right paragraph, but we have not yet explained how it works. Basically, when
the Liqo Controller Manager is instantiated to deal with the External Resource
Monitor (for simplicity from now we will call it EMS), it creates a new EMS object,
which wraps a gRPC client that is in charge to connect to the EMS gRPC server
running on the same cluster with a specific IP/hostname. After the connection is
established, the system is ready to manage the peering requests. From this moment
there are three methods involved in the process:

• func (m *ExternalResourceMonitor) Register(...) This is the method
that sets an update notifier to the EMS object, which is the function that
instantiates a subscription to keep listening to possible notification.

• func (m *ExternalResourceMonitor) ReadResources(...) This is the
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method that is called by the Liqo Controller Manager to ask to the gRPC
server a set of resources to be shared, given a specific ClusterID of the Con-
sumer cluster. This method is called every time a new peering request is
received and it answers with a ResourceList kubernetes object, which is a map
that contains key-value pairs, where the key is the name of the resource and
the value is the quantity of that resource.

• func (m *ExternalResourceMonitor) RemoveClusterID(...) This is the
method that is called by the Liqo Controller Manager to notify the EMS
gRPC server that a cluster has been removed and so the peering process has
been terminated.

6.2.2 gRPC Server
To complete the implementation of the Custom Peering, we have had to implement
the other side of the EMS, that is mainly composed by two components: a gRPC
server able to receive the requests from the EMS client, and compatible with the
EMS gRPC interfaces, and a custom logic that is in charge to compute the resources
that we want to assign to each cluster.
If we pay attention to the Figure 6.2 and we remember what we have seen and
explained in the Catalog Connector (chapter 5.5), focusing on the Figure 5.4, it
becomes clear that the EMS gRPC server in question is the same included in our
Catalog Connector component. At this point it is simple to us to explain the new
flow of the Liqo Peering.
Once a new Contract (chapter 5.2) is created and stored both in the Provider and
Consumer clusters:

1. The Consumer admin can click and start the peering request process.

2. The Consumer Catalog Connector creates some internal resources that send a
peering request towards the Provider cluster through a ResourceRequest.

3. The Provider cluster is triggered by the ResourceRequest and forwards the
request to its EMS.

4. The EMS tries to communicate with the gRPC server inside the Catalog
Connector, attaching the ClusterID of the Consumer cluster.

5. The Catalog Connector search in the Contract database the one that matches
the ClusterID of the Consumer cluster.

6. If the Contract is found, the Catalog Connector returns the resources that are
specified in the Contract to the EMS.
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7. The EMS sends the ResourceList to the Liqo Controller Manager, which
will use them to create the ResourceOffer that will be sent to the Consumer
cluster.

Now the peering process is completed, the connection is established and the
Consumer cluster can start to use the resources that are shared by the Provider
cluster.

6.3 Conclusion
In this chapter we have seen two different approaches to solve two different problems.
In the first case our solution was completely a new feature, where we designed,
implemented and tested new concepts and new components in a production ready
fashion. In the second case we have used the existing Liqo components, coupled
with new external ones, to impose a new behaviour to the Liqo peering, without
changing its core, but only studying and applying a workaround that ables us to
obtain the desired result.
This two solutions, if combined together, allowed us to exploit Liqo in a new way,
going beyond the architectural limits of the original project, and to obtain a new and
interesting application use case of Liqo, without however affecting the performance,
in terms of resource consumption and offloading latency, of the original project.
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Chapter 7

Evaluation

The proposed work requires validation in terms of resources consumption and
latency. The analysis separately considers the two different implementations parts
explored in the previous chapter 6.
In particular, about what concerns the Validating Webhook and the Resource
Enforcement, we have to benchmark how much they affect the offloading latency
performance and the resource consumption, in terms of RAM, of the Liqo Controller
Manager, considering the additional step that have been added to the offloading
process, and the cache that is used to store the multi-tenant peering information.
On the other hand, about what concerns the Custom Peering, the evaluation is
focused on the additional latency that has been added to the peering process using
the External Resource Monitor rather than the Local Resource Monitor, considering
that the big difference is not represented by a new implemented component, however
by a new behaviour of the existing ones and its intrinsic latency overhead due
to the communication with the external gRPC server. We will see better in the
following paragraphs.

7.1 Benchmarks and Measurements
First of all let us to discover the test environment that we have used to perform
the benchmarks. We have run our benchmark on a Kubernetes cluster composed
by 7 nodes, 3 masters and 4 that act as worker nodes, where the master nodes are
used to run the control plane components of the cluster, while the worker nodes are
used to run the user applications. The nodes are connected to each other through
a 10 Gbps network.
The overall cluster at our disposal offers:

• 96 vCPUs
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• About 528 GB of RAM

The onboard Kubernetes version is 1.24.7 and the Liqo version is 0.6.1. The cluster
is hosted on premises, in a datacenter, and it is managed by TOP-IX Consortium,
the company that has supported my thesis. Moreover this cluster was used to test
and validate the Structura-X PoC discussed in the chapter 4, where we, together
with other important CSPs, Academies, System integrators in Europe, have used
Liqo to simulate a Kubernetes clusters full-mesh Federation.
Now that we have seen the test environment, let us see the benchmarks that we
have performed to evaluate the result of the proposed work.

7.1.1 Liqo: Single-Tenant vs Multi-Tenant
As said initially, we structured our benchmarks in two different parts. For the first
one the goal was to understand how much the Validating Webhook and the Resource
Enforcement affect the offloading latency performance. So we did a comparison
between Liqo in single-tenant mode and Liqo in multi-tenant mode, considering
the same application and the same workload, but with different configurations of
the Liqo Controller Manager.
The tests were performed simulating inside our environment two different K3s
clusters, one of them is the Provider cluster, the other one is the Consumer cluster.
The Provider cluster owns 100 worker nodes and 1 master, while the Consumer
cluster only 1 master. The steps followed to benchmark the offloading latency
performance were the following:

1. Deploy the Provider cluster, with its worker nodes, and the Consumer cluster
as Pods that runs inside testing environment.

2. Establish a Liqo peering between the two clusters only in the direction Con-
sumer -> Provider. So the Consumer cluster can offload its workloads to the
Provider cluster.

3. Inside the Consumer cluster create a Namespace and a NamespaceOffload-
ing (Liqo CRD) and deploy recursively inside it a defined number of pods,
automatically offloaded to the Provider cluster.

4. Measure the time passed from the moment the first pod is deployed to the
moment the last pod is running.

5. Remove all the resources created in the previous steps.

The steps from 2 to 5 have been repeated for different numbers of pods, following
the subset of 10, 100, 1000 and 10000. This test has been performed three times
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Figure 7.1: Liqo: Single-Tenant vs Multi-Tenant - Offloading Latency

for both the single-tenant and the multi-tenant mode of Liqo, and the results are
shown in figure 7.1.
As we can see from this figure, the offloading latency performance is completely
not affected by the multi-tenant mode of Liqo, and the difference between the
two modes it is practically negligible. This is due to the fact that the Validating
Webhook and the Resource Enforcement have a very low impact on the offloading
latency performance, respect of capability of Kubernetes to schedule pods. Most of
the time is spent by the Kubernetes to bring up the pods into a running state, and
not by the Liqo components.

The same test has been done with the purpose to calculate the resource consumption
of the Liqo Controller Manager, considering the additional cache that is used to
store the multi-tenant peering information with the result that is not affected by the
multi-tenant mode of Liqo. This is due to the fact the usage of RAM is the same
already used by other existing components inside the Liqo Controller Manager that
work on the same resources already managed by our new components, overlapping,
in fact, the RAM usage made by our cache.
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Chapter 8

Conclusions

This work introduces a new way to take advantage of the Liqo project, going
beyond the architectural limits of the original project, and to obtain a new and
interesting application use case. What we were searching for was a straightforward
and intuitive way to enable a federation of Kubernetes clusters that can be found
application in a real world scenario, and not only in a research environment.
With this purpose we studied what was the state of art and the technology that
was already available. This bring us to choose the Liqo project as the base of our
work, that perfectly fits for needs in terms of lightness and flexibility. Moreover,
the Liqo project is already a mature project, with a lot of features that simplify our
work, and it is already used in production by some important companies, besides
that the Politecnico di Torino where, in the moment I write this thesis, it is used
as system to manage Exams in the Cloud.
The model we had in mind had some strict requirements about the scalability
and the performance, in fact, we would introduce a system that was able to
federate a lot of clusters going beyond the already existing peer to peer full-mesh
architecture. For this reason we explored different brokering models that can help
the environment to scale up and to be more performing, from one side, reducing
the topology complexity, and from the other side that can add a layer of trust and
security in a multi-tenant environment, avoiding anyway that the broker should
become a single point of failure.
So we have designed and implemented a federated architecture that includes a
central brokering point that enables all the federated clusters to advertise them
and their resources to the ecosystem and, viceversa, by the others to discover what
is already available in the federation. To reach the expected result we split our
thesis work in two parts that follow two implementation methodologies: one well
tested and with a high level of coding quality which aims to extend the Liqo project
adding a new feature that allows its use in a multi-tenant mode, and moreover
finding a way to workaround the standard peering process to enable a different
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strategy for the assignment of the shared resources.
In the other hand, in a more experimental fashion, we have implemented a PoC
to validate the proposed federation model and to show the potential of this work.
These two approaches allowed us to be able to explore widely the proposed goal of
this thesis work, and to be able to validate it in a real world scenario, in particular
in the context of the European lighthouse project Structura-X.
Together with important European partners of this project, we have been able to
implement a working demo of the integration of Liqo with Structura-X, and we
have presented it in Paris during the Gaia-X Summit 2022. In this occasion we had
the opportunity to show the prototype of the Catalog developed in this thesis work
as part of the Structura-X project, presenting its functionalities and its capability
to federate cloud providers and IXPs. The demo has been very successful, and the
implemented project have received a lot of positive feedbacks.

8.1 Next steps
Following the footsteps of the European project Gaia-X and in particular of its
lighthouse Structura-X we want to carry on what have been done until now to a
more solid and stable version of the proposed architecture.
Next steps will involve the implementation of a more complete and robust version
of the broker, that will be also able to manage the negotiation processes between
different Providers, designing and implementing advanced business logics and billing
models. And since the broker is the central point of the federation, it will be also the
point where the security and the trust will be managed, and where the policies will
be enforced, for this reason we want to make it complaint with the requirements
defined in Gaia-X to enable it to be part of the Gaia-X Federated Catalogues.
This will imply the implementation of the already defined Trust Framework and
the capability to became a federator point for the CSPs that will be part of the
federation.
In this scenario, me and the company where I work, will continue to be involved in
the contribution to the Liqo project to improve and extend its functionalities.
After that we could open our envision also to the application services, making a
step forward in the direction of the Gaia-X Federated Services, going over the only
infrastructural level, giving also to Service Providers the possibility to federate
their services and to offer them in this federation environment.
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