
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

High-Level Design of 2D-Convolution
Accelerators for AI Leveraging Embedded

Scalable Platform (ESP)

Supervisors

Prof. Mario Roberto CASU

Dr. Luca URBINATI

Candidate

Federico PERENNO

Academic Year 2021-2022

Summary

Today, Artificial Intelligence (AI) is everywhere and it has made many
technological applications more efficient and reliable. Convolutional Neural
Networks (CNNs) are at the foundation of the vast majority of AI appli-
cations. These types of networks can be extremely accurate, but precision
comes at a high computational cost due to the many mutliply-and-accumulate
operations between input and weight tensors. Loosely-coupled hardware
accelerators supported by general-purpose processors are an effective way to
speed up the computation of CNNs.

Thus, the goal of this thesis is to design accelerators that perform a specific
type of convolution known as 2D convolution. The design process leverages
High-Level Synthesis (HLS) and the Embedded Scalable Platform (ESP) tool,
which simplifies accelerators design and their integration into heterogeneous
System-On-Chips (SoCs).

This manuscript describes how neural networks work, paying particular
attention to CNNs. In the first section it explains the different layers that
usually compose these types of neural networks focusing on convolution since
it is the most common operation in CNNs, as well as the most computation-
ally demanding. The most successful ConvNet models for image classification
are also taken into consideration and their architectures and performances
are quickly compared.

It continues showing how hardware accelerators can be used to perform
specific functions that can be executed in parallel with other operations
performed by the processor core. It also discusses on how accelerators can
be easily designed and synthesized leveraging high-level synthesis tools, such
as Catapult HLS.

2

Then, it illustrates the open source Embedded Scalable Platform (ESP)
developed at Columbia University. ESP combines a flexible design method-
ology with a scalable architecture. This platform accommodates various
Computer-Aided Design (CAD) tools and design flows. In addition, it facili-
tates the integration of different hardware blocks in an SoC which otherwise
would be a very challenging and longer task.

After this preliminary introduction, the thesis addresses the design of the 2D-
convolution accelerators. Each accelerator is integrated into an SoC which
is prototyped on a proFPGA XC7V2000T FPGA with a single external
DDR3 memory module. Different implementations of the same accelerator
are proposed.

The first implementation is a standard 2D convolution with a 18×18×32
input feature map tensor and a 7×7×32×32 weight tensor and it allows
to get a latency of 145.8 ms and an estimated area of 83,268.3 µm2. For
this architecture, the data reading phase, the convolution operation and the
data write back phase are performed in a sequential way. Nonetheless, 2D
convolution is computed 95.65 % faster by our accelerator than it is by the
SoC’s processor core.

The second implementation exploits HLS directives to perform these three
different phases in a pipelined way using a hierarchical design. However, these
phases are performed in parallel only when dealing with multiple independent
batches of data. When processing 16 batches, latency is reduced by 0.91 %
at the cost of a RAM block usage increase of 11.49 % with respect to the
standard approach.

The third implementation employs a sliding window architecture which
uses line buffers to perform the accelerator phases in parallel when processing
a single input batch. This optimized architecture allows to obtain a final
latency reduction of 0.90 % while, regarding the FPGA resource usage, block
RAM usage is decreased by 13.62 % at the cost of only 2.41 % additional
slice logic. Thanks to this final implementation the read and write opera-
tions are now transparent to the actual 2D-convolution kernel. However,
the accelerator is heavily compute bound. Thus, to fully appreciate the
memory optimizations introduced in this thesis, future work should take care

3

of parallelizing the datapath to achieve greater latency reduction against the
first and second implementations.

This thesis contributes to expand the documentation about the Catapult de-
sign flow of ESP with a 2D-convolution accelerator and can also be used as a
detailed tutorial by future hardware designers for designing new accelerators
using Catapult HLS and ESP.

4

Acknowledgements

I wish to express my gratitude to my family and friends for their constant
support throughout the years.
On top of that, I would like to thank my supervisors, Dr. Luca Urbinati and
Prof. Mario Roberto Casu for their precious advice and guidance.

5

Table of Contents

List of Tables 8

List of Figures 9

1 Neural Networks 14
1.1 Deep Neural Networks . 14
1.2 Convolutional Neural Networks 18

1.2.1 Case studies . 22

2 Hardware Accelerators 27
2.1 High Level Synthesis . 30

3 Embedded Scalable Platform 34

4 2D-Convolution Accelerator 42
4.1 2D Convolution . 42
4.2 ESP Accelerator Design . 43

4.2.1 Accelerator Files Organization 45
4.2.2 The Sequential Architecture 52
4.2.3 The Hierarchical Architecture 60

4.3 Co-Simulation and Validation 63
4.3.1 Validation Results 68

4.4 ESP Heterogeneous Integration 70
4.5 FPGA Prototyping . 77

5 Optimized 2D-Convolution Accelerator 80
5.1 2D Convolution with Sliding Window 80
5.2 Synthesis Results and Comparisons 86

6

Bibliography 90

7

List of Tables

1.1 Convolutional Neural Networks: case studies. Performance
based on the ImageNet dataset. 26

4.1 Sequential implementation of the 2D-convolution accelerator
with different run-time parameters and a single batch. Area
estimation by Cataputlt HLS. 69

4.2 Comparison between sequential and hierarchical implementa-
tions for different numbers of batches - same = 1, stride = 1,
clock frequency = 50 MHz. 70

4.3 Latency comparison of the 2D-convolution algorithm between
software execution and our accelerator computation for dif-
ferent input dimensions - batch = 1, same = 0, stride = 1 -
clock frequency = 50 Mhz. 79

5.1 FPGA resource usage of an SoC for each architecture. The
sequential implementation is taken as reference. 86

5.2 Comparison between latency, as clock periods, between the
sequential/hierarchical and the optimized implementations of
the 2D-convolution accelerator, for different parameters and
batch = 1. 87

5.3 Comparison between expected latency, as clock periods, be-
tween the unoptimized and optimized implementations of the
2D-convolution accelerator, for different parameters and batch
= 1. The expected latency results have been computed from
the values in Tab. 5.2 assuming a complete unrolling (32
times) of the for-loop on the output channels. 88

8

List of Figures

1.1 Intuitive comparison between a biological neuron and its math-
ematical model. Source: [3]. 15

1.2 Example of a Neural Network. Source: [3]. 15
1.3 Visual representation of the gradient descent algorithm. Source:

[4]. 16
1.4 Comparison between sigmoid (left) and ReLU (right) activa-

tion functions. Source: [5]. 17
1.5 Convolution between two matrices. Source: [6]. 18
1.6 Different features obtained from the same image. Source: [7]. 19
1.7 Convolution between a kernel and an input channel with

padding. Source: [9]. 20
1.8 Comparison between two convolutions with different stride

values. Source: [10]. 21
1.9 Example of Max and Average Pooling. Source: [12]. 22
1.10 LeNet-5 architecture. Source: [13]. 23
1.11 AlexNet architecture. Source: [14]. 23
1.12 VGG-16 architecture. Source: [15]. 24
1.13 Inception module. Source: [16]. 25
1.14 Residual block examples. Source: [17]. 25

2.1 Comparison between temporal (on the left) and spatial (on
the right) architectures. Source: [2]. 28

2.2 Hardware acceleration architecture. Source: [19]. 28
2.3 Generic FPGA-based hardware accelerator for CNNs. Source:

[20]. 30
2.4 Catapult’s high-level design flow. Source: [22]. 32

3.1 Design flows supported by ESP. Source: [25]. 35
3.2 Tile-based ESP architecture. Source: [24]. 36

9

3.3 Comparison between newly-designed and third-party accelera-
tor sockets. Source: [26]. 38

3.4 ESP accelerator’s design and integration flow. Source: [26]. . 38
3.5 ESP Graphical User Interface for designing an SoC. 40
3.6 Architecture of the first chip based on the ESP platform.

Source: [27]. 41

4.1 2D Convolution with a Single Filter. Source: [28]. 43
4.2 2D Convolution with Multiple Filters. Source: [28]. 43
4.3 ESP accelerator interface. 51
4.4 Input and weight data in the external memory. 54
4.5 2D-convolution Accelerator: sequential architecture. 58
4.6 External memory with inputs and outputs. 59
4.7 2D-convolution Accelerator: hierarchical architecture. 62
4.8 Complete Questasim simulation for the sequential implemen-

tation of the 2D-convolution accelerator. 68
4.9 SoC design in the ESP GUI with both conv2d accelerator

architectures. 71
4.10 Output of the bare-metal test application running on the SoC

synthesized on the FPGA. 78

5.1 2D-convolution Accelerator: optimized architecture. 85

10

Listings

4.1 Example of the interactive template generator script for an
accelerator performing the multiply-and-accumulate operation.
Source: [29]. 44

4.2 2D-convolution accelerator - File Organization. 45
4.3 conv2d_cxx.xml - General information about the 2D-convolution

accelerator. 46
4.4 build_prj_top.tcl - Top Level script needed for building

project. 46
4.5 build_prj.tcl - Example of a Catapult directive. This one

sets the clock constraints. 47
4.6 conf_info.hpp - Struct for configuration parameters. 47
4.7 ac_fixed format provided by Catapult HLS [32]. 48
4.8 fpdata.hpp - Datatypes used for input and output data. . . 49
4.9 conv2d.hpp - Define directives. 49
4.10 fpdata.hpp - Datatype used for partial sums. 50
4.11 conv2d.hpp - Templated structure for PLMs. 50
4.12 conv2d.hpp - Templated structure for the accumulation buffer. 50
4.13 conv2d.hpp - 2D-convolution accelerator interface. 50
4.14 build_prj.tcl - Directives for the synthesis of the accelerator

interface. 51
4.15 basic → conv2d.cpp - Configuration phase. 53
4.16 Batch iterations pseudo-code. 54
4.17 basic → conv2d.cpp - Load phase pt.1: DMA configuration. 55
4.18 basic → conv2d.cpp - Load phase pt.2: loading weights. . . 55
4.19 basic → conv2d.cpp - Load phase pt.3: loading features. . . 56
4.20 basic → conv2d.cpp - Compute phase. 57
4.21 basic → conv2d.cpp - Store phase. 59
4.22 hier → conv2d.cpp - Top-level function. 60
4.23 hier → conv2d.cpp - Store block. 61

11

4.24 tb → main.cpp - Configuration parameters. 63
4.25 tb → main.cpp - Input generation. 64
4.26 tb → main.cpp - Run conv2d accelerator and fetch its output

data. 64
4.27 tb → main.cpp - Golden function. 65
4.28 tb → main.cpp - Output validation. 66
4.29 Message printed on the terminal by the conv2d testbench. . 67
4.30 conv2d_cxx.c - Constant variables. 72
4.31 conv2d_cxx.c - Probe function invocation. 73
4.32 conv2d_cxx.c - Memory allocation and initlialization. . . . 73
4.33 conv2d_cxx.c - init_buf function. 74
4.34 conv2d_cxx.c - Check DMA and TLB capabilities. 74
4.35 conv2d_cxx.c - Pass configuration parameters to the acceler-

ator. 75
4.36 conv2d_cxx.c - Start the accelerator and wait for completion. 75
4.37 conv2d_cxx.c - Output validation and allocated space is freed. 75
4.38 conv2d_cxx.c - Message printed by the bare-metal application. 76
4.39 conv2d_cxx.c - get_counter function. 77
5.1 conv2dlb.cpp - Load Phase. 81
5.2 conv2dlb.cpp - Compute Phase. 83
5.3 conv2dlb.cpp - Store Phase. 85

12

Chapter 1

Neural Networks

1.1 Deep Neural Networks
Artificial Intelligence (AI) has taken the world by storm by making countless
technological applications more efficient and reliable and is regarded by some
experts as the new electricity because of the great impact it is already having
upon industries [1].

Deep Neural Networks (DNNs) are one of the branches of AI which is
evolving and advancing more rapidly. DNNs are everywhere: from commu-
nication to transportation, from robotics to healthcare. DNNs have been
particularly impactful in the last decade because of the availability of high
computational power and huge amounts of data to train models. It comes to
no surprise that most of their applications are related to images and videos,
such as object detection, image classification and segmentation, but also
audio. Indeed, speech recognition has significantly improved in accuracy over
the last years [2].

The name “neural networks” suggests a close relationship with the brain,
but, in reality, the main organ of the nervous system has only served as
an inspiration rather than something to emulate. It is made of neurons,
connected by synapses, whose key characteristic is to scale the transmitted
signals by certain factors called weights. The human brain is believed to
learn by meticulously adjusting these scaling factors in response to learning
stimuli and, in a similar way, neural networks are formed by neurons receiv-
ing weighted signals. In addition to this, neurons do not simply output the

14

Neural Networks

incoming signals, but perform a non-linear function on them, so that the
neural network is capable of modelling complex mathematical functions.

Figure 1.1: Intuitive comparison between a biological neuron and its
mathematical model. Source: [3].

Neural networks are organized in a multi-layered structure: for each layer
there are multiple nodes (neurons) connected to other nodes in different
layers. Input data are organized in the first layer (input layer) and processed
throughout some other layers (hidden layers) until the final result is computed
by the last layer (output layer), as shown in Fig. 1.2. Neural networks are
called “deep” when they have multiple hidden layers (more than 3-4) and
can provide superior accuracy compared to shallow neural networks, which
only dispose of a single hidden layer, at the cost of higher computational
complexity.

Figure 1.2: Example of a Neural Network. Source: [3].

15

Neural Networks

The output of each neuron is referred to as an activation, while each con-
nection (synapses) is a weight, whose value is determined during a learning
time called training, by exploiting ad-hoc algorithms such as the gradient
descent.

It is best practice to initialize weights to random values, resulting in wrong
neural network’s outputs at the beginning of the training phase. However,
weights are adjusted by the gradient descent algorithm, which tries to contin-
uously reduce the difference, referred to as cost or loss function (L), between
the actual outputs and the expected theoretical results. This algorithm takes
the gradient of the loss function over the weight, multiplies it by the learning
rate (α), and subtracts it to the original weight value (w):

w = w − α · ∂L

∂w
(1.1)

This process is iterated until the loss converges to its absolute minimum, as
shown in Fig. 1.3.
When the loss is at the minimum, all weights are set to their optimal values.

Figure 1.3: Visual representation of the gradient descent algorithm.
Source: [4].

The training phase is crucial to calibrate the network’s weights in the
optimal way, but it is also very lengthy, since it requires many forward and

16

Neural Networks

backward passes of a hefty portion of the samples (training samples) through
the network. After the training process, the network is ready to be used for
predicting the outputs of new unseen data. This process is called inference
and it only includes the forward passes.

The most used activation functions are sigmoid, softmax, and rectified linear
unit (ReLU), the de-facto standard for (deep) neural networks.

Given the input x, the sigmoid function σ(x) converts each real input into a
value between 0 and 1, converging, for the most part, to the two extremities:

σ(x) = 1
1 + e−x

(1.2)

The softmax activation function serves a similar, but wider purpose. It
converts the real elements of the vector it receives as an input into a smooth
probability distribution. Softmax is often used as last layer in a neural
network to normalize the results:

σ(zi) = eziq
j ezj

(1.3)

The ReLU function can be applied to the output of a linear transformation
to make it nonlinear. However, since it is a piece-wise linear function, it
preserves many of the properties that make linear models easy to optimize.
Given the input z :

g(z) = max{0, z} (1.4)
A visual comparison between the sigmoid and ReLU functions is shown

in Fig. 1.4.

Figure 1.4: Comparison between sigmoid (left) and ReLU (right) activation
functions. Source: [5].

17

Neural Networks

1.2 Convolutional Neural Networks
Often abbreviated as CNNs or ConvNets, Convolutional Neural Networks
use a different approach for processing data.

In fully-connected layers each neuron applies a linear transformation to
the vector it receives as an input through a matrix of weights. Then a
non-linear transformation is applied to all the elements, exploiting activation
functions.

When neural networks which are solely composed of fully-connected lay-
ers have to process a big input vector, the number of weights to be trained
can grow very large. This results in a huge amount of time spent training
the network and it affects its performance.

In order to reduce the total number of parameters in the neural network, a
different way of treating the input set has been adopted. Instead of applying
weights directly to all neurons, convolutions are performed at each layer to
generate progressively higher-level abstractions of input data, called feature
maps.

Figure 1.5: Convolution between two matrices. Source: [6].

The mathematical operation known as convolution is performed between
two tensors (generalizations of vectors and matrices that can be seen as
multidimensional arrays). The first tensor either corresponds to the CNN’s
input data or to a set of feature maps. The second one is a trainable set of

18

Neural Networks

parameters known as a filter. In general, the input set is split over multiple
channels, while the filter is composed of multiple distinct kernels. Multiply-
and-accumulate operations are performed between the two tensors until a
third one is generated as a result. Fig. 1.5 shows the convolution between
an input channel and a single kernel. These two example matrices can be
seen as unidimensional tensors.

Using multiple filters at each layer results in having multiple feature maps.
Their name is due to the fact that each filter is specifically trained to detect
a different feature. Fig. 1.6 shows how various unique features can be
obtained from the same image and how these can be used to get progressively
higher-level abstractions of the input data.

Figure 1.6: Different features obtained from the same image. Source: [7].

The advantages of adopting convolutions to build a neural network rather
than solely using fully-connected layers are mainly [8]:

• Parameter sharing, which implies that a feature detector used in a
given part of the neural network might be useful elsewhere. Hence, the
same kernel can be re-used with no need to duplicate it and to re-train
it each time;

• Sparsity of connections, given by the fact that for each layer, the
output depends only on a small number of inputs.

19

Neural Networks

Furthermore, ConvNets generally guarantee translation invariance, mean-
ing that when shifting, for example, an image by a few pixels, the neural
network returns the correct result, with no need to repeat the learning pro-
cess. However, gradient descent is still used to train the parameters, which
are now the elements of the filters.

In ConvNets, when the convolution between two tensors is performed, the
output generally has smaller vertical and horizontal dimensions than the
input one. This means that, after multiple consecutive convolutional layers,
the output is inevitably shrunk to a very small size, at a rate depending on
the kernels’ dimensions. Moreover, not all the elements of the input tensor
have the same relevance: the values in the corners affect the output less than
those at the center because they are involved in less convolutions. One way
to overcome these issues is padding. This technique is used to increase the
vertical and horizontal dimensions of the input by increasing the border of
the input by a certain amount (p) of zero-filled layers, depending on the
kernel size (k):

p = k − 1
2 (1.5)

Padding allows to get an output the same size of the input one, as exemplified
in Fig. 1.7.

Figure 1.7: Convolution between a kernel and an input channel with
padding. Source: [9].

There are other instances, however, in which it might be needed to
compress the input data. The convolution operation can be performed in
such a way that the output becomes even more shrunk than it would have

20

Neural Networks

originally been: each kernel is applied over a certain portion of an input
channel and the convolution operation is performed, then the kernel is shifted
by a certain amount of steps and the next output value is computed. This
number of steps is called stride and the larger this value is the smaller
the output dimensions will be. Two examples are reported in Fig.1.8 with
stride=1 and stride=2 at the top and at the bottom, respectively.

Figure 1.8: Comparison between two convolutions with different stride
values. Source: [10].

Although convolutional layers alone are enough to build a functioning
neural network, they are usually combined with other layers. The most
commonly used are [2]:

• Fully-connected: each neuron applies a weight matrix to all the
elements of the feature maps;

• Nonlinear: such as the ReLU and sigmoid functions, this layer is usually
applied after convolutional or fully connected layers to each element of
the feature map tensor. They are used to introduce nonlinearity in the
ConvNet;

21

Neural Networks

• Pooling: it reduces width and height of the feature map tensors to speed
up computation and to make the features themselves more robust [11].
Max and average pooling are the main implementations. The pooling
operation selects either the maximum or the average value in a fixed-
size sub-region of the feature map tensor. These regions’ dimensions
are given by the pooling size parameter. Fig. 1.9 shows the pooling
operation with size=2 on a 4×4 example matrix;

• Normalization: it is used to constrain the distribution of the features
across different layers, which can help to improve accuracy and to speed
up the training process.

Figure 1.9: Example of Max and Average Pooling. Source: [12].

1.2.1 Case studies
Countless CNN models have been developed in the past few decades. It is
important to take a look at some of the most successful ConvNet models for
image classification in order to get an idea on how layers can be structured
and what are the most effective ways to design convolutional neural networks.

The LeNet model was first suggested as far back as 1989 and it is con-
sidered a precursor of the modern CNNs. It is used for digit classification,
hence for recognizing hand-written numbers between 0 and 9 from a small
gray-scale image. The most well-known version is LeNet-5 (1998): this
particular model can identify digits with good accuracy from a gray-scale
picture made of 32×32 pixels using only 5 layers, 3 of which are convolutional
and 2 of which are fully-connected. Additionally, it features two subsampling

22

Neural Networks

layers which perform various operations, including average pooling and the
sigmoid function. It should be noted that padding, max pooling and ReLU
are not adopted yet [13].

Figure 1.10: LeNet-5 architecture. Source: [13].

Starting from 2012, an annual challenge has been run by the ImageNet
project, where contestants could train and test their CNNs on a given dataset
containing more than 14 million images, trying to achieve the lowest amount
of errors.

The ConvNet that won the first edition of the contest was AlexNet. Despite
owing most of its success to the fact that it was trained for the first time
on Graphic Processing Units (GPU) rather than Central Processing Units
(CPU), its architecture is also remarkable. It has 8 layers, 5 convolutional
and 3 fully-connected, as shown in Fig. 1.11.

Figure 1.11: AlexNet architecture. Source: [14].

23

Neural Networks

Although it may look quite similar to the LeNet model, AlexNet is much
larger, since it processes 227×227 RGB images and uses many kernels with
different sizes. It also uses max pooling, stride values different from one,
ReLU activation functions and softmax to determine the output [14].

Two noteworthy models entered the ImageNet contest in 2014: VGG-16
and GoogLeNet. The former is a 16-layer network with 13 convolutional
layers and 3 fully-connected ones, so twice as deep as the 2012 winner. It
is particularly appealing because of its simplicity. Indeed, the VGG model
uses very few blocks repeated all over the network. In particular, it uses 3×3
kernels with a stride=1 and padding, and it reduces the height and width of
feature maps by exploiting 2×2 max pooling [15].

Figure 1.12: VGG-16 architecture. Source: [15].

On the other hand, the GoogLeNet model uses a different approach to
process input data: it has 22 layers mainly organized as inception modules,
meaning that the CNN is not simply composed by single serial connections,
but of parallel ones as well. Each inception block is 2 convolutional layers
deep and is structured as shown in Fig. 1.13 [16].

24

Neural Networks

Figure 1.13: Inception module. Source: [16].

Finally, let us consider the CNN that surpassed for the first time human-
level accuracy with a top-5 error rate of 5% on ImageNet: ResNet.
As neural networks become very deep, they do not get more accurate. On
the contrary, they face the problem of vanishing/exploding gradient: in so-
called plain networks, as errors go through back-propagation, the gradient is
gradually reduced and the ability to update the weights in the early layers is
compromised.

Figure 1.14: Residual block examples. Source: [17].

25

Neural Networks

To overcome this issue, ResNet is based on residual blocks where the last
layer in a block receives two inputs: one coming from the output of the
previous layer (as usual) and the other coming from the input of the same
block. This second connection is called a shortcut and is not associated to
any weight [17].
Thanks to these blocks, extremely deep networks can be implemented without
having to face the vanishing/exploding gradient problem.

Overall, performance improved over time and went from the top-5 error
rate of 16.4% achieved with AlexNet to the astonishing 5.3% obtained by
ResNet-50, a residual network with 50 layers. Complexity was also reduced
by adopting innovative solutions such as the inception modules and the
residual blocks. A comparison of the performance of the CNNs presented in
this chapter is reported in Tab. 1.1 for the ImageNet dataset .

Metrics AlexNet VGG-16 GoogLeNet ResNet-50
Top-5 error 16.4 7.4 6.7 5.3
Input Size 227×227 224×224 224×224 224×224

of CONV layers 5 13 21 49
of FC Layers 3 3 1 1
Total Weights 61M 138M 7M 25.5M

Total MACs 724M 15.5G 1.43G 3.9G

Table 1.1: Convolutional Neural Networks: case studies. Performance
based on the ImageNet dataset.

26

Chapter 2

Hardware Accelerators

An essential component of both convolutional and fully-connected layers are
multiply-and-accumulate operations, which can be executed in parallel to
achieve high performance. Various techniques can be adopted to improve
parallelism, including [2]:

• Temporal architectures, frequently used on CPUs and GPUs. They
use centralized control for many different Arithmetic-Logic Units (ALUs)
that do not exchange data between each other. In these particular
architectures, ALUs only fetch and send data from/to the memory;

• Spatial architectures, often implemented in Application-Specific In-
tegrated Circuit (ASIC) and Field-Programmable Gate Array (FPGA)
designs, which rely on hardware accelerators. In these architectures,
ALUs are all in the same processing array and can send/receive data
directly to/from one another.

Modern CNNs need to perform an enormous amount of computations and
memory accesses, which cause great latency and energy consumption. Many
applications require real-time processing, but it can rarely be met by CPU
and GPU implementations [18].

Hardware accelerators, on the other hand, aim at incrementing the computa-
tional speed by employing ad-hoc custom hardware, designed to implement
a particular algorithm. They focus on performing specific functions and, if
well designed, they are more efficient than software applications running on
general-purpose CPUs and even GPUs.

27

Hardware Accelerators

Figure 2.1: Comparison between temporal (on the left) and spatial (on the
right) architectures. Source: [2].

A generic computer architecture that contains hardware accelerators is
shown in Fig. 2.2.

Figure 2.2: Hardware acceleration architecture. Source: [19].

This hardware acceleration architecture has the benefit of leaving the
CPU free to execute other tasks after it has offloaded a specific computation
to the hardware accelerator, which can be seen as a co-processor. The CPU
has the only tasks of setting up the configuration of the accelerator, namely
the starting memory address from which data can be read, and passively
waiting for the interrupt of job completion (e.g. a “done” signal) coming from

28

Hardware Accelerators

the accelerator. After receiving this signal, the CPU can read the results
of the accelerator’s computation from the main memory. This architecture
yields an improvement in performance when the overhead resulting from
the communication between the CPU and the accelerator costs less than
performing the computation on the CPU itself.

Since the focus of this thesis is to accelerate 2D-Convolution, from now
on we will consider the hardware implementation of this algorithm.

In CPU and GPU implementations each MAC unit needs to read from
the memory three times (filter’s weight, feature map element and partial
sum) and write on it once (updated partial sum). Accelerators, on the other
hand, introduce many layers of local memory hierarchy, providing low-cost
data accesses thus improving energy efficiency and performance.

Additionally, programs on FPGAs run on a bare fabric. This implies that
data can be sent straight to the pins of the FPGA board using peripherals
which help to reduce latency. In GPUs, on the other hand, data are deliv-
ered on standard buses, such as Universal Serial Bus (USB) or Peripheral
Component Interconnect (PCI), which are subject to the Operating System
(OS) resource scheduling. This makes FPGAs more suitable for designing
hardware accelerators, because they guarantee deterministic performance
and latency. ASICs are also a reliable alternative because they are extremely
efficient in energy and area, but when compared to FPGAs, they cost more
and only high production numbers can cover the high non-returning engi-
neering costs, which make them sometimes less desirable [19].

Moreover, FPGAs are particularly suitable for making high-performance
computations, since the reduced latency time makes up for the lower clock
frequency. As an example, the Ultra Scale FPGA has a raw computa-
tional power of 38.3 Tera Operations per second (TOPS) at base frequency.
However, a powerful Nvidia Tesla P40 GPU performs a similar amount of
computations (40 TOPS), but consumes twice the energy [19].

A generic FPGA-based design of a hardware accelerator for CNNs is re-
ported in Fig. 2.3. It should be noted how there are buffers to cache
inputs, coefficients to facilitate data re-use and blocks that perform specific
computations.

29

Hardware Accelerators

Figure 2.3: Generic FPGA-based hardware accelerator for CNNs. Source:
[20].

2.1 High Level Synthesis
FPGAs can be programmed using specialized languages known as Hardware
Description Languages (HDLs). They allow FPGAs to be designed at the
Register-Transfer Level (RTL), making them incredibly flexible. FPGAs’
adaptability and reconfigurability are qualities that make them appealing.
However, HDLs have rigid syntax and operate at a very low level: errors
are extremely likely and hard to fix. For this reason, HDL-programmed
devices can be difficult to debug; this greatly increases design time thus
compromising productivity, especially for complex applications.
Alternatively, at the beginning of this century, a high-level design process has
been developed to simplify hardware design: High Level Synthesis (HLS).
Also known as algorithmic synthesis or behavioral synthesis, HLS takes a
high-level description of a design and compiles it into an RTL implementation
according to user-specified constraints. The high-level property of HLS is
due to two main aspects [21]:

30

Hardware Accelerators

• Abstraction: the description of the HLS design is an untimed (or
partially timed) dataflow. This means that the operations that must be
performed within a clock cycle do not have to be meticulously planned
at design-time;

• Specification Language: concise and reusable design can be imple-
mented thanks to the use of high-level programming languages such as C,
C++, and SystemC. These C-like languages present useful features such
as arrays, structures, loops and pointers.

The output of the HLS flow consists of multiple elements: the RTL imple-
mentation, which includes the RTL netlist automatically generated from the
high-level description of the design, and some additional parameters required
to synthesize it using regular logic synthesis tools. HLS also generates reports
on hardware costs and performance bottlenecks. Additionally, simulation
testbenches and scripts are generated to speed up the development and the
debugging of the design.

The HLS output is generated based on user-specified design constraints,
which can be related to: the target hardware, so that datapath costs can
be estimated; the performance goal, based on which cycle-level timing is
adjusted; the memory architecture which describes how arrays are mapped
to memory interfaces; other interfaces, so that the generated netlist can be
easily integrated with external hardware.

While it is not always true that HLS is superior to manual HDL, it has the
great advantage of giving a lot of freedom to the designer who can just modify
a few lines of high-level code to adjust the hardware design. Moreover, HLS
acts as a bridge between hardware and software designers, since the former
have the flexibility to design hardware at a high-level, while the latter can
work on improving HLS tools, thus minimizing design time.

It becomes also quite simple to test the generated netlist, since the high-level
C-like testbench can be used for both algorithmic and design verification.
Because of its flexibility, HLS makes it relatively easy and quick to experi-
ment with different algorithms and architectures, creating vast design-space
explorations by simply adjusting the various HLS knobs the tool provides.
The most common optimizations, also known as directives, are the following
[19]:

31

Hardware Accelerators

• Loop Unrolling: it allows to replicate the content of for loops allowing
parallel computation. This leads to maximum performance, at the
expense of area;

• Array Partitioning: usually applied together with the previous direc-
tive, it divides large arrays into smaller ones in order to access them in
parallel and to feed the unrolled datapath without memory bottlenecks;

• Pipelining: loops subjected to this directive are forced to start their
next iteration after a fixed number of clock cycles (called Initiation
Interval), even before the end of the current iteration. This implies
that the operations inside these loops are pipelined with input and
output registers, allowing parallel and faster execution with very low
area overhead (only due to registers and control logic).

Figure 2.4: Catapult’s high-level design flow. Source: [22].

There are many high-level synthesis tools. Catapult HLS by Mentor
Graphics is the one we used in this thesis to design our accelerator: it is able

32

Hardware Accelerators

to “synthesize interfaces, data structures and loops to an ASIC or FPGA
technology and produce an optimized RTL implementation”, as shown in
the red block in Fig. 2.4 [22]. The main output files of Catapult are: the
resulting RTL implementation of the HLS design that can be simulated with
logic synthesis tools such as Synopsys Design Compiler; HDL files (VHDL
and Verilog) of the synthesized design; RTL simulation scripts; the log of
the HLS commands and directives applied to the HLS code in input. It also
supports a Graphical User Interface (GUI) with command line and scripts
to easily set up the synthesis process.

33

Chapter 3

Embedded Scalable
Platform

In recent years, CMOS scaling has been slowing down [23] and modern
computing systems are relying more and more on Systems-on-Chip (SoC)
designs which integrate many hardware components. Whether it is for AI,
Internet of Things (IoT) or multimedia applications, modern SoCs couple
general-purpose processors with specialized hardware accelerators. Therefore,
their architecture is heterogeneous.

We have seen how the high-level synthesis flow facilitates the design of
an accelerator. Nonetheless, integrating multiple heterogeneous components,
especially accelerators, in a scalable way can be quite challenging. For this
reason, an open source SoC research platform, known as Embedded Scalable
Platform (ESP), was created as the result of many years of research and
teaching at the Columbia University in New York City [24].

ESP combines a flexible design methodology with a scalable architecture [25].
It is flexible because it accommodates various Computer-Aided Design (CAD)
tools and design flows; it is scalable because it allows to easily reuse previously
designed accelerators. It is open source since all its hardware components are
without copyright and so free to be accessible and usable in anyone’s projects.

As just said, multiple design flows are supported by the ESP methodol-
ogy. This allows to create many heterogeneous components from different
abstraction levels:

34

Embedded Scalable Platform

1. Components can be developed following the traditional RTL design flow
from specifications in HDLs such as SystemVerilog or VHDL;

2. Accelerators can be designed from high-level descriptions written in
C-like programming languages, leveraging commercial HLS tools like
Catapult, together with the ESP automation tools;

3. For some specific machine learning (ML) applications, the HLS code of
accelerators can be generated from network models in PyTorch, Keras
and TensorFlow.

New accelerators can be integrated, as well as third-party Intellectual Prop-
erty (IP) blocks that implement the ASCII protocol, like the Ariane RISC-V
processor core or the Nvidia Deep Learning Accelerator (NVDLA).

ESP has a GUI that guides the designer through the interactive floor-planning
of the SoC, which can also be quickly prototyped on FPGAs thanks to ESP’s
push-button flows.

Figure 3.1: Design flows supported by ESP. Source: [25].

Tiles are at the foundation of the ESP architecture and their number can
be selected at design time depending on the application. They may contain:
a processor core, a loosely-coupled accelerator, a memory channel and some
other peripherals. A multi-plane Network-on-Chip interconnects the various

35

Embedded Scalable Platform

tiles. Fig. 3.2 shows an example of SoC floor-planning based on 16 tiles
organized in a 4×4 matrix.

Figure 3.2: Tile-based ESP architecture. Source: [24].

While other open source RISC-V platforms for heterogeneous integration
are modeled around the processor core, accelerators and processors have the
same relevance in the system-centric ESP architecture.

Let us now address more in detail the different types of tiles that the
ESP tool comprises:

• Processor Tile: three different cores are available in the ESP library:
the 32-bit SPARC V8 Leon3 core, the 64-bit RISC-V CVA6-Ariane core,
and the 32-bit RISC-V IBEX core. These come with their private L1
cache and can boot Linux. A configurable private L2 cache can also be
added to the cores. Moreover, ESP supports system-level coherency and
dedicated planes in the NoC. Another NoC plane supports Input-Output
(IO) and Interrupt Request (IRQ) channels, typically used by processors
and accelerators to communicate with each other;

• Memory Tile: each memory tile has one channel that connects the SoC
to the external memory. Depending on the application, up to 4 tiles can
be used. After their configuration, the hardware logic needed to handle
the memory address space is automatically created. Also, the size of

36

Embedded Scalable Platform

the memories is configurable and data transfers from/to the memories is
performed with coherent Direct Memory Access (DMA) units that are
present inside accelerator tiles.

• Accelerator Tile: it allows to easily integrate loosely-coupled accelera-
tors that perform specific tasks. Accelerators exchange large amounts of
data with the memory hierarchy and can run independently from the
processor cores. Private Local Memories (PLMs) are also present inside
each accelerator tile to store local data and are generally much smaller
than the external memory. Additionally, various cache coherency models
can be selected at runtime and can be dynamically reconfigured.

• Auxiliary Tile: it is an optional tile that contains all the shared pe-
ripherals in the SoC, memories excluded. For instance, these peripherals
can be: a digital video interface, a debug link or a monitor module. This
particular tile is very flexible because it has to support many devices,
but, for the same reason, it is also the most complex.

In addition, the ESP platform offers some services for the design of the
accelerator tile, like dynamic voltage and frequency scaling, as well as per-
formance counters and monitors. These services can be set at design time,
while reconfigurability options are available at runtime.

However, the elements that simplify the most the SoC integration are the
hardware sockets.

The accelerator socket allows different accelerators to be designed inde-
pendently from the rest of the SoC. Newly designed accelerators, as well as
third-party IP blocks like NVDLA, can be easily inserted into an accelerator
tile without specifying any configuration for: virtual memory and DMA,
data transfers from/to the PLMs, memory mapped registers, and interrupt
requests. Indeed, the multi-plane NoC only interacts with the socket. More-
over, if a third-party accelerator has only a subset of these functionalities,
the socket can be simplified to accommodate them. NVDLA, for instance, is
a configurable accelerator and communicates in a way that is similar to the
ESP-socket model.
A comparison between newly-designed and third party accelerator sockets is
reported in Fig. 3.3.

37

Embedded Scalable Platform

Figure 3.3: Comparison between newly-designed and third-party accelerator
sockets. Source: [26].

The invocation of accelerators from a user application is made through the
ESP accelerator’s Application Programming Interface (API). This means that
a computationally intensive software execution can be quickly replaced with
the corresponding hardware accelerated version exploiting a single function
code that starts the accelerator execution. In addition, the accelerator’s
PLMs are allocated in such a way that the performance is not affected. This
is due to the fact that the ESP library preserves the concept of virtual
address space.

Figure 3.4: ESP accelerator’s design and integration flow. Source: [26].

38

Embedded Scalable Platform

The design and integration of a new accelerator is facilitated by ESP
because, as previously stated, it accommodates different design flows and
it supports many CAD tools. These flows are interactive or automated for
the most part and consist of the steps reported in Fig. 3.4 [26]. The figure
shows how the newly-designed accelerators’ design flow differs from the one
of third-party accelerators. Since we are more interested in the former, we
shall focus on the steps needed to design an accelerator from scratch, but it
should be noted that a different, yet equivalent, design flow exists for the
integration of already existing IP blocks like the NVDLA.

Depending on the chosen design flow, the user is invited to start from
an accelerator’ skeleton. It can be based either on a very simple accelerator
available in the ESP documentation, or an automatically generated template
produced by an interactive template generator. This generator also produces
the device drivers and the unit testbench which models the behavior of the
accelerator socket. Bare-metal test applications are also generated. These
software applications can be run directly on the processor tile of the SoC
without needing an OS. In this way, out-of-the-box simulation and full-system
prototyping are enabled.

It should also be noted that ESP facilitates the invocation of accelerators
from software applications running on top of Linux. However, this possibility
has not been explored in this thesis and only bare-metal applications were
used for testing RTL implementations.

While many phases of the accelerator design flow are either interactive
or automated, designers are responsible for manually writing the algorithm
needed for the computational part of the accelerator. Functions required to
generate the inputs and to validate the outputs must also be customized for
both the unit testbench and the bare-metal test applications.

Commercial HLS tools can be leveraged to produce the RTL implemen-
tation of the accelerator which is added to the ESP library of IP components
and can later be integrated into the SoC.

39

Embedded Scalable Platform

Figure 3.5: ESP Graphical User Interface for designing an SoC.

Fig. 3.5 shows the ESP GUI for designing an SoC. The GUI automatically
discovers all the RTL codes of the already developed accelerators and it
allows to insert them in the corresponding accelerator tiles. Additionally,
bare-metal test programs can be compiled thanks to a set of makefiles. Fi-
nally, ESP produces the full RTL implementation of the SoC which includes
also processor, memory and I/O tiles: now it is ready to be prototyped on
top of an FPGA board.

Recently, the agile design methodology of ESP was employed to develop an
SoC with a tile-based architecture for the application domain of swarm-based
perception [27]. Third-party accelerators, as well as newly designed ones,
were integrated on a SoC together with multiple processor cores and memory
channels, as shown in Fig. 3.6. A team of ten full-time designers was able to
complete this project in 4 months, 3 less than the 7 which would be needed
to design this kind of chip without leveraging ESP. This achievement further
shows the remarkable capabilities of the ESP platform.

40

Embedded Scalable Platform

Figure 3.6: Architecture of the first chip based on the ESP platform.
Source: [27].

41

Chapter 4

2D-Convolution
Accelerator

So far, we have taken a look at various modern ConvNets and pinpointed the
convolution as the most common operation in these types of networks, as well
as the most computationally demanding. We saw how hardware accelerators
can be used to perform specific functions in parallel with other operations
performed by the processor core. Then, we discussed how these components
can be easily designed and synthesized leveraging high-level synthesis tools.
Finally, we illustrated the open source ESP platform which facilitates the
integration of different hardware blocks in an SoC.
With this knowledge, the task of designing an accelerator performing a
2D convolution between input and weight tensors can be addressed in the
following paragraph.

4.1 2D Convolution
A tensor is a 3-dimensional data structure composed by 2-dimensional ma-
trices stacked along the third spatial dimension. A 2-dimensional matrix is
called “channel” or “kernel” whether it belongs to the input/feature map
tensor or to the filter/weight tensor, respectively.
Usually, 2D convolution convolves more than one filter with the same input
tensor. For each filter, each input channel is convolved with the correspond-
ing kernel and then all these partial results are added together to generate
one output channel, as shown in Fig. 4.1. For this reason, the number

42

2D-Convolution Accelerator

of kernels is equal to the number of input channels. This results in the
filter only moving in two directions: height and width, hence the name “2D
convolution”.

Figure 4.1: 2D Convolution with a Single Filter. Source: [28].

Repeating the same process for every filter gives as a result an output
tensor with a number of channels determined by the total amount of filters,
as reported in Fig. 4.2.

Figure 4.2: 2D Convolution with Multiple Filters. Source: [28].

4.2 ESP Accelerator Design
When designing hardware accelerators it can be quite challenging to devise
an interface that can easily communicate with other hardware components.
However, this is made easy by ESP, which grants support for various HLS
tools. Since C++ is the language of choice for our design:

43

2D-Convolution Accelerator

• Accelerators can be designed leveraging Xilinx Vivado HLS. For this
particular tool, ESP provides an interactive template generator script
which allows to easily produce the skeleton of a generic accelerator from
some user-defined parameters, as reported in Listing 4.1;

========== Initializing ESP accelerator template ==========

* Enter accelerator name [dummy]: mac
* Select design flow (Stratus HLS , Vivado HLS) [S]: V
* Enter ESP path [/ space/esp - master]:
* Enter unique accelerator id as three hex digits [04A]: 056
* Enter accelerator registers

- register 0 name [size]: mac_len
- register 0 default value [1]: 64
- register 0 max value [64]:
- register 1 name []: mac_vec
- register 1 default value [1]: 100
- register 1 max value [100]:
- register 2 name []: mac_n
- register 2 default value [1]:
- register 2 max value [1]: 16
- register 3 name []:

* Configure PLM size and create skeleton for load and store:
- Enter data bit -width (8, 16, 32, 64) [32]:
- Enter input data size in terms of configuration registers

(e.g. 2 * mac_len }) [mac_len]: mac_len * mac_vec
data_in_size_max = 6400

- Enter output data size in terms of configuration registers
(e.g. 2 * mac_len) [mac_len]: mac_vec
data_out_size_max = 100

- Enter an integer chunking factor (use 1 if you want PLM size equal
to data size) [1]:
Input PLM has 6400 32- bits words
Output PLM has 100 32- bits words

- Enter number of input data to be processed in batch (can
be function of configuration registers) [1]: mac_n
batching_factor_max = 16

========== Generated accelerator skeleton for mac ==========

Listing 4.1: Example of the interactive template generator script for an
accelerator performing the multiply-and-accumulate operation. Source: [29].

• However, the accelerator generated by the aforementioned script does
not support the co-simulation of C++ and RTL, because the C++
testbench is not able to model the DMA controller and to respond
to the blocking requests of the accelerator [29]. Since we believe that
the co-simulation of our accelerator is extremely useful at design time,
we must rely on a different tool, Catapult HLS, that can perform the
simulation of the high-level design and the co-simulation of its RTL

44

2D-Convolution Accelerator

implementation. Although ESP does not provide a script to generate
the skeleton of the accelerator for this particular tool, an example of a
softmax accelerator is available in the ESP documentation [30].

4.2.1 Accelerator Files Organization

The provided softmax accelerator, which performs a simple computation
between elements of the same input vector, does not simply consist of a
single file with the high-level description of the accelerator, but it is divided
in multiple directories. They include various C++ files as well as scripts that
automate both the synthesis and the validation of the design. Therefore we
decided to start from this set of files and directories to develop our conv2d
accelerator.Our plan is to integrate it in an SoC with a 64-bit Ariane RISC-V
processor. The file organization for this accelerator is reported in Lst. 4.2:

<esp >/ accelerators / catapult_hls / conv2d_cxx_catapult
| - hw
| | - conv2d_cxx .xml
| | - hls
| | | - Makefile
| | | - build_prj .tcl
| | | - build_prj_top .tcl
| | - inc
| | | - conf_info .hpp
| | | - fpdata .hpp
| | | - conv2d .hpp
| | - src
| | | - basic
| | | - hier
| | - tb
| | - main.cc
| - sw

| - baremetal
| | - conv2d_cxx .c
| | - Makefile
| - linux

Listing 4.2: 2D-convolution accelerator - File Organization.

The main division is between the files needed to design the hardware (hw)
and those related to the software (sw). The former comprises the source
code, the unit testbench and the Catapult scripts for the accelerator, while
the latter includes the test applications and the device drivers needed for
the bare-metal and Linux execution on FPGA [31].

45

2D-Convolution Accelerator

The conv2d_cxx.xml file contains some information about the accelera-
tor, including the device ID and the name of the HLS tool that is being
employed, in addition to the list of registers that can be overwritten by the
user, as shown in Lst. 4.3.

<?xml version ="1.0" encoding ="UTF -8"?>
<sld >

<accelerator name=" conv2d_cxx " desc=" Accelerator CONV2D [C++]" data_size ="
4" device_id ="145" hls_tool =" catapult_hls_cxx ">
<param name="batch" desc="batch" />
<param name="n_w" desc="n_w" />
<param name="n_h" desc="n_h" />
<param name="n_c" desc="n_c" />
<param name="kern" desc="kern" />
<param name="filt" desc="filt" />
<param name="same" desc="same" />
<param name=" stride " desc=" stride " />

</ accelerator >
</sld >

Listing 4.3: conv2d_cxx.xml - General information about the 2D-
convolution accelerator.

The hls folder contains the TCL scripts needed by Catapult to perform
the synthesis and the co-simulation. In particular, the build_prj_top.tcl
script allows to set the flags which indicate the operations to be performed
by Catapult: simulation of the C++ code, high-level synthesis and RTL
simulation. These flags may be enabled only one at a time or all together,
as shown in the following Listing.

array set opt {
The ’csim ’ flag enables C simulation .
The ’hsynth ’ flag enables HLS.
The ’rtlsim ’ flag enables RTL simulation .
The ’debug ’ flag stops Catapult HLS before the architect step.
The ’hier ’ flag enables an implementation with hierarchical blocks .
csim 1
hsynth 1
rtlsim 1
debug 0
hier 0

}
source ../../../ common /hls/ common .tcl
source ./ build_prj .tcl

Listing 4.4: build_prj_top.tcl - Top Level script needed for building
project.

The build_prj.tcl script, automatically called by the previous TCL script,
contains all the Catapult commands required to carry out the HLS flow.

46

2D-Convolution Accelerator

Many important directives are set such as clock period, pipeline constraints
and design goal. For the synthesis of our first conv2d accelerator we initially
set: clock frequency to 50 MHz, initiation interval to 1, and design goal to
latency.

directive set -CLOCKS { \
clk { \

-CLOCK_PERIOD 20 \
-CLOCK_EDGE rising \
-CLOCK_HIGH_TIME 10 \
-CLOCK_OFFSET 0 .000000 \
-CLOCK_UNCERTAINTY 0.0 \
-RESET_KIND sync \
-RESET_SYNC_NAME rst \
-RESET_SYNC_ACTIVE low \
-RESET_ASYNC_NAME arst_n \
-RESET_ASYNC_ACTIVE low \
-ENABLE_NAME {} \
-ENABLE_ACTIVE high \

} \
}

Listing 4.5: build_prj.tcl - Example of a Catapult directive. This one
sets the clock constraints.

The inc directory contains the header files which are directly needed by the
source files to design the accelerator.
The conf_info.hpp file reported in Lst. 4.6 hosts the structure needed
to handle the user-defined accelerator parameters that will be stored in
memory-mapped registers.

struct conf_info_t {
uint32_t stride ;
uint32_t same;
uint32_t filt;
uint32_t kern;
uint32_t n_c;
uint32_t n_h;
uint32_t n_w;
uint32_t batch;

};

Listing 4.6: conf_info.hpp - Struct for configuration parameters.

The meaning of these configuration variables is the following:

• n_w: width of the input tensor;

• n_h: height of the input tensor;

• n_c: number of channels in the input tensor;

47

2D-Convolution Accelerator

• kern: number of kernels in a filter;

• filt: number of distinct filters, hence output channels;

• same: 0 for no padding, or 1 for an output the same width and height
of the input one;

• stride: number of input values that each kernel jumps when moving
over the input channel;

• batch: number of input batches the accelerator has to compute.

The fpdata.hpp header file defines fixed-point datatypes using the format
provided by Catapult (ac_fixed). In a fixed-point representation there is a
decimal point that separates the total number of bits (W) into two sets: the
most significant bits correspond to the integer part (I), while the remaining
least significant bits are related to the fractional part (W - I).

ac_fixed <int W, int I, bool S, ac_q_mode Q, ac_o_mode O>

Listing 4.7: ac_fixed format provided by Catapult HLS [32].

The rest of its arguments are: S, which allows to select whether the value is
either signed (true) or unsigned (false); Q, used to select the quantization
policy; O, used to select the overflow policy.

For our design we chose to set the word length of our input and output data
to 32 bits. Additionally, we set the integer and the fractional parts to have
the same amount of bits, 16 each, and the signed flag to true, so that our
accelerator could handle both positive and negative numbers.
The quantization policy decides what to do with the extra fractional bits.
The most notable options are: AC_TRN which simply truncates/deletes them,
and AC_RND_CONV which rounds them to the nearest even. For the input it is
preferable to truncate the excess bits, while for the output they get rounded
to achieve higher precision.
On the other hand, the overflow policy determines what to do when the
integer part exceeds the predefined amount of bits. Most notably, there
are the AC_WRAP option, which simply drops the bits to the left of the most
significant bit (MSB), and the AC_SAT option, which saturates the values
either to the minimum or to the maximum representable number, depending
on which one is closer. So, the input and output data have the format
reported in Lst. 4.8.

48

2D-Convolution Accelerator

ac_fixed <32, 16, true , AC_TRN , AC_WRAP > FPDATA_IN ;
ac_fixed <32, 16, true , AC_RND_CONV , AC_SAT > FPDATA_OUT ;

Listing 4.8: fpdata.hpp - Datatypes used for input and output data.

However, most of the information regarding the design is in the main header
file, conv2d.hpp, which contains the maximum values that the accelerator
parameters can assume. In particular, we decided that our accelerator can
handle at most:

• An 18 × 18 × 32 input tensor;

• A 7 × 7 × 32 × 32 weight tensor;

• A stride of 2;

• 16 different batches.

Global #define directives can be used to set these constant parameters, as
shown in Lst. 4.9.

// PLM and data dimensions
define DATA_WIDTH 32

define BATCH_MAX 16
define N_W_IN_MAX 18
define N_H_IN_MAX 18
define N_C_MAX 32
define KERN_MAX 7
define FILT_MAX 32
define STRIDE_MAX 2
define N_W_OUT_MAX 18
define N_H_OUT_MAX 18

define FILTERS_SIZE_MAX KERN_MAX * KERN_MAX * N_C_MAX * FILT_MAX // 50176
define INPUTS_SIZE_MAX N_W_IN_MAX * N_H_IN_MAX * N_C_MAX // 10368
define OUTPUTS_SIZE_MAX N_W_OUT_MAX * N_H_OUT_IN_MAX * FILT_MAX // 10368

Listing 4.9: conv2d.hpp - Define directives.

Based on these values, one additional datatype used for the partial sums of
the MAC operations can be set in the fpdata.hpp file: FPDATA_ACC.
When multiplying and accumulating FPDATA_IN values whose integer part is
on 16 bits, overflows may occur, meaning that 16 bits may not be enough
to represent the resulting integer part. Therefore, we must consider the
worst case scenario in which 32 different input channels are convolved with
a 7 × 7 × 32 filter. In this case, 1568 distinct products need to be added

49

2D-Convolution Accelerator

together. The total number of bits (Iacc) needed to represent the integer part
of this value is given by the following formula:

Iacc = ⌈2 · 16 bits − 1 + log2(1568)⌉ = 42 bits (4.1)

Hence, the FPDATA_ACC datatype has the format shown in Lst. 4.10:

ac_fixed <58, 42, true , AC_RND_CONV , AC_SAT > FPDATA_ACC ;

Listing 4.10: fpdata.hpp - Datatype used for partial sums.

Conv2d.hpp also contains some templated structures which facilitate the
declaration of arrays and matrices. The structure called plm_t comprises an
array that has S elements of a given T datatype. This structure is especially
useful to describe the PLMs where features, weights and outputs can be
stored, as shown in Lst. 4.11.

// The PLM array is encapsulated in a templated struct
template <class T, unsigned S>
struct plm_t {
public : T data[S];
};

// PLM typedefs
typedef plm_t <FPDATA_IN , INPUTS_SIZE_MAX > plm_inputs_t ;
typedef plm_t <FPDATA_IN , FILTERS_SIZE_MAX > plm_filters_t ;
typedef plm_t <FPDATA_OUT , OUTPUTS_SIZE_MAX > plm_outputs_t ;

Listing 4.11: conv2d.hpp - Templated structure for PLMs.

We also defined a similar buf_t templated structure which comes in handy
for defining the accumulation buffer used to store the partial sums of the
multiply and accumulate operations.

// The Buffer matrix is encapsulated in a templated struct
template <class T, unsigned R, unsigned C>
struct buf_t{
public : T data[R][C];
};

// Buffer typedefs
typedef buf_t <FPDATA_ACC , N_W_OUT_MAX , N_H_OUT_MAX > buf_acc_t ;

Listing 4.12: conv2d.hpp - Templated structure for the accumulation
buffer.

Finally, the interface of the accelerator is reported in the header file, as
shown in Lst. 4.13.

50

2D-Convolution Accelerator

void conv2d_cxx_catapult (
ac_channel < conf_info_t > &conf_info ,
ac_channel <dma_info_t > & dma_read_ctrl ,
ac_channel <dma_info_t > & dma_write_ctrl ,
ac_channel <dma_data_t > & dma_read_chnl ,
ac_channel <dma_data_t > & dma_write_chnl ,
ac_sync & acc_done);

Listing 4.13: conv2d.hpp - 2D-convolution accelerator interface.

The ESP accelerator interface is common to all the supported HLS flows and
it allows to:

• interact with the CPU via memory-mapped registers through the
conf_info port;

• set the DMA controller leveraging the dma_read_ctrl and
dma_write_ctrl ports;

• exchange data with the DMA via dma_read_chnl and
dma_write_chnl;

• signal the end of the task to the processor with acc_done.

Figure 4.3: ESP accelerator interface.

This interface is able to properly communicate with external components
if the following directives are set in the build_prj.tcl script.

Top-Module I/O
directive set

/ $ACCELERATOR / conf_info:rsc -MAP_TO_MODULE ccs_ioport.ccs_in_wait

51

2D-Convolution Accelerator

directive set
/ $ACCELERATOR / dma_read_ctrl:rsc -MAP_TO_MODULE ccs_ioport.ccs_out_wait

directive set
/ $ACCELERATOR / dma_write_ctrl:rsc -MAP_TO_MODULE ccs_ioport.ccs_out_wait

directive set
/ $ACCELERATOR / dma_read_chnl:rsc -MAP_TO_MODULE ccs_ioport.ccs_in_wait

directive set
/ $ACCELERATOR / dma_write_chnl:rsc -MAP_TO_MODULE ccs_ioport.ccs_out_wait

directive set
/ $ACCELERATOR / acc_done:rsc -MAP_TO_MODULE ccs_ioport.ccs_sync_out_vld

Listing 4.14: build_prj.tcl - Directives for the synthesis of the accelerator
interface.

To guarantee that data are properly synchronized at the interface via a
latency-insensitive protocol, certain specific datatypes for the accelerator
ports must be used along with the aforementioned directories [33]. Indeed,
the ports are based on either the ac_channel or the ac_sync models pro-
vided by Catapult. The former enables point-to-point connection between
two instances through FIFOs and Catapult adds the necessary handshaking
signals to the RTL implementation during synthesis. The latter is a synchro-
nization channel that serves a similar purpose and is synthesized with the
proper handshaking signals too.

4.2.2 The Sequential Architecture
The actual high-level description of the accelerator is stored in the src direc-
tive. There are two available C++ implementations: the first one describes
a sequential architecture (basic), while the second one implements the accel-
erator based on a hierarchical architecture (hier).

In fact, the accelerator execution comprises four distinct phases: config-
uration, load, compute and store.
In the sequential implementation all these four phases are executed sequen-
tially, while in the hierarchical design they can be pipelined.

Configuration Phase

In the configuration phase the parameters stored in the memory-mapped
registers are read via the conf_info port. Data coming from this ac_channel
are stored in the proper conf_info_t structure. In this way, each parameter
can be assigned to a local variable and used for the subsequent phases. Some
of these variables are: the amount of padding to add to the input tensor,

52

2D-Convolution Accelerator

the resulting width and height of the padded input tensor, as well as the
width and height of the output tensor. It should also be noted that the
stride parameter is used to determine the dimensions of the output tensors.
However, since there is no technology library, imported by Catapult HLS,
that allows to set a non-constant variable as the divisor in a division, a
multiplexed implementation is employed instead, as shown in Lst. 4.15.

// Parameters
struct conf_info_t params ;
uint8_t batch = 0;
uint8_t n_w = 0;
uint8_t n_h = 0;
uint8_t n_c = 0;
uint8_t kern = 0;
uint8_t filt = 0;
uint8_t same = 0;
uint8_t stride = 0;

// Read accelerator configuration
params = conf_info .read ();

batch = params .batch;
n_w = params .n_w;
n_h = params .n_h;
n_c = params .n_c;
kern = params .kern;
filt = params .filt;
same = params .same;
stride = params . stride ;

// Padding
const uint8_t pad = ((stride * (n_w - 1) - n_w + kern) / 2) * same;

// Width and Height of Padded Input Tensor
const uint8_t n_w_in = n_w + 2 * pad;
const uint8_t n_h_in = n_h + 2 * pad;

// Width and Height of Output Tensor - Multiplexed implementation
uint8_t n_w_out ;
uint8_t n_h_out ;
if (stride == 1){

n_w_out = (n_w + 2 * pad - kern) + 1;
n_h_out = (n_h + 2 * pad - kern) + 1;

}
else{

n_w_out = (n_w + 2 * pad - kern)/2 + 1;
n_h_out = (n_h + 2 * pad - kern)/2 + 1;

}

Listing 4.15: basic → conv2d.cpp - Configuration phase.

Whether they are weights or features, input values are stored in the external
memory. They can be divided into different independent batches and we

53

2D-Convolution Accelerator

decided to organize them as shown in Fig. 4.4.

Figure 4.4: Input and weight data in the external memory.

Batching allows a single accelerator to perform multiple independent
convolutions as long as the inputs are properly located. At each batch
iteration the load, compute and store phases are all executed sequentially, as
reported in the following pseudo-code in Lst. 4.16.

for (uint8_t b = 0; b < batch; b++) {

LOAD_PHASE (...)

COMPUTE_PHASE (...)

STORE PHASE (...)
}

Listing 4.16: Batch iterations pseudo-code.

Load Phase

During the load phase, weights and features are read from the external mem-
ory and stored into smaller PLMs. The dma_read_ctrl and dma_read_chnl
ports enable this data transfer. In particular, the former contains the follow-
ing information:

• The index specifying the memory offset of the first input;

54

2D-Convolution Accelerator

• The length of the DMA transaction;

• An encoding of the DMA width, which in our case is set to 64 bits so
that it is compliant with the Ariane RISC-V core standards.

// DMA configuration
dma_info_t dma_read_info = {0, 0, 0};

// DMA variables
uint16_t dma_read_data_index = 0;
uint16_t dma_read_data_length = n_w * n_h * n_c + kern * kern * n_c * filt;

// Configure DMA read channel (CTRL)
dma_read_data_index = dma_read_data_length * b;
dma_read_info = { dma_read_data_index , dma_read_data_length , DMA_SIZE };
bool dma_read_ctrl_done = false;

LOAD_CTRL_LOOP :
do { dma_read_ctrl_done = dma_read_ctrl . nb_write (dma_read_info);}
while (! dma_read_ctrl_done);

Listing 4.17: basic → conv2d.cpp - Load phase pt.1: DMA configuration.

Once the DMA controller has been set as shown in Lst. 4.17, two distinct
for-loops store the weights and the features in two different PLMs.
Storing the elements of the filters is quite straightforward: at every cycle of
the LOAD_WEIGHTS_LOOP a new 64-bit data is read from the DMA channel
and only the 32 least-significant bits are kept, as shown in Lst. 4.18.

// Private Local Memory
plm_filters_t plm_f;

LOAD_WEIGHTS_LOOP :
for (uint16_t i = 0; i < FILTERS_SIZE_MAX ; i++) {

// DMA_WIDTH = 64
// DATA_WIDTH = 32
// discard bits in the DMA range (63 ,32)
// keep bits in the DMA range (31 ,0)
ac_int <DATA_WIDTH , false > data_ac = dma_read_chnl .read (). template slc <
DATA_WIDTH >(0);

FPDATA_IN data;
data. set_slc (0, data_ac);

plm_f.data[i] = data;

if (i == kern * kern * n_c * filt - 1) break;
}

Listing 4.18: basic → conv2d.cpp - Load phase pt.2: loading weights.

55

2D-Convolution Accelerator

Then, the features are loaded into another PLM in the LOAD_FEATURES_LOOP.
However, this PLM is not simply initialized with the values coming from
the external memory, but, depending on whether the padding parameter has
been set or not, it may be necessary to load certain cells with zeroes. A
specific algorithm has been implemented to support this functionality, which
allows to temporarily pause the read operation from the DMA and to fill the
PLM with zeroes where needed, as reported in Lst. 4.19.

// Private Local Memory
plm_inputs_t plm_in ;

LOAD_FEATURES_LOOP :
for (uint8_t chan = 0; chan < N_C_MAX ; chan ++) {

for (uint8_t row = 0; row < N_W_IN_MAX ; row ++) {
for (uint8_t col = 0; col < N_H_IN_MAX ; col ++) {

FPDATA_IN data;
// Non -zero values
if ((row >= pad) && (col >= pad) && (col < n_h_in - pad)

&& (row < n_w_in - pad)) {
ac_int <DATA_WIDTH , false > data_ac = dma_read_chnl .read ().

template slc <DATA_WIDTH >(0);
data. set_slc (0, data_ac);

}
else // Zero values

data = 0;

uint16_t index_in = chan * n_w_in * n_h_in + row * n_h_in + col;
plm_in .data[index_in] = data;

if (col == n_h_in - 1) break;
}
if (row == n_w_in - 1) break;

}
if (chan == n_c - 1) break;

}

Listing 4.19: basic → conv2d.cpp - Load phase pt.3: loading features.

This algorithm allows to have the padded input ready to be convolved without
having to worry about padding anymore. Once both PLMs have been loaded,
the accelerator is ready to perform the convolution operation between the
features and the weights.

Compute Phase

A set of nested for-loops allows to iteratively compute the partial sums for
each element of the output tensor resulting in an output stationary conv2d
implementation.
The complete algorithm is reported in Lst. 4.20.

56

2D-Convolution Accelerator

// Accumulation buffer
buf_acc_t buf_acc ;
for (uint8_t fl = 0; fl < FILT_MAX ; fl ++) {

for (uint8_t k = 0; k < N_C_MAX ; k++) {
for (uint8_t i = 0; i < N_W_OUT_MAX ; i++) {

for (uint8_t j = 0; j < N_H_OUT_MAX ; j++) {
// This holds a single MAC result
ac_fixed < FPDATA_WL + FPDATA_OUT_IL - 1, FPDATA_OUT_IL * 2 -

1, true , AC_RND_CONV , AC_SAT > acc = 0;

// First element of input tensor
uint8_t x = i * stride ;
uint8_t y = j * stride ;

// Kernel rows and columns are m and n respectively
for (uint8_t m = 0; m < KERN_MAX ; m++) {

for (uint8_t n = 0; n < KERN_MAX ; n++) {
uint16_t index_f , index_in ;
index_in = n_w_in * n_h_in * k + x * n_w_in + y;
index_f = fl * kern * kern * n_c + k * kern * kern +

m * kern + n;
acc += plm_f.data[index_f] * plm_in .data[index_in];

y++; // Move right by one position
if (n == kern - 1) break;

}
x++; // Move down by one position
y = j * stride ; // Restart column position
if (m == kern - 1) break;

}
uint16_t index_out = n_w_out * n_h_out * fl + i* n_w_out + j;
if (k == 0)

buf_acc .data[i][j] = acc;
else

buf_acc .data[i][j] += acc;
if (k == n_c - 1)

plm_out .data[index_out] = buf_acc .data[i][j];
if (j == n_h_out - 1) break;

}
if (i == n_w_out - 1) break;

}
if (k == n_c - 1) break;

}
if (fl == filt - 1) break;

}

Listing 4.20: basic → conv2d.cpp - Compute phase.

We have already seen in paragraph 4.1 how for the 2D-convolution algorithm,
the number of kernels in a filter corresponds to the amount of input channels.
For this reason, each kernel is convolved with the corresponding channel
one at the time. Each partial sum is temporarily stored in a small register
(acc) before being written into a large one (buf_acc) in order to reduce
the number of accesses to the latter in the same clock cycle. The large

57

2D-Convolution Accelerator

accumulation buffer is only updated before striding the kernel in the next
position of the receptive field.
Once each kernel in a filter has been convolved with all the input channels,
the output values are moved to the output PLM (plm_out). Then, the same
convolution operations between the input tensor and the other filters are
executed until all the elements of the output tensor have been computed.

Figure 4.5: 2D-convolution Accelerator: sequential architecture.

Store Phase

Finally, once all output values have been written into the output PLM, they
can be stored in the external memory by purposefully setting the DMA
controller. Since in this phase we assume to have a single memory at our
disposal, we want the accelerator to store the outputs in the external memory
without overwriting the inputs. Thus, in the store phase the dma_write_ctrl

58

2D-Convolution Accelerator

port must be set at each batch iteration in such a way that data allocation
is compliant with the arrangement reported in Fig. 4.6.

Figure 4.6: External memory with inputs and outputs.

After setting the DMA controller, data are written from the output PLM
to the DMA write channel. Since the DMA channel is 64-bit wide and
the output data are on 32 bits, the upper bits are set to a constant value
(DEADBEEF in hexadecimal notation).

// Configure DMA write channle (CTRL)
dma_write_data_index = (dma_read_data_length * batch) +

dma_write_data_length * b;
dma_write_info = { dma_write_data_index , dma_write_data_length , DMA_SIZE };
bool dma_write_ctrl_done = false;
STORE_CTRL_LOOP :
do { dma_write_ctrl_done = dma_write_ctrl . nb_write (dma_write_info);}
while (! dma_write_ctrl_done);
// Force serialization between DMA control and DATA data transfer
if (dma_write_ctrl_done) {
STORE_LOOP :

for (uint16_t i = 0; i < OUTPUTS_SIZE_MAX ; i++) {
FPDATA_OUT data = plm_out .data[i];
ac_int <DMA_WIDTH , false > data_ac ;
ac_int <32, false > DEADBEEF = 0 xdeadbeef ;

data_ac . set_slc (32, DEADBEEF . template slc <32 >(0));
data_ac . set_slc (0, data. template slc <DATA_WIDTH >(0));
dma_write_chnl .write(data_ac);

if (i == dma_write_data_length - 1) break;
}

}

Listing 4.21: basic → conv2d.cpp - Store phase.

59

2D-Convolution Accelerator

After completing all the batch iterations, the accelerator execution is over.
A pulse is sent via the acc_done signal to communicate the task completion
to the processor.

The sequential architecture of our 2D-convolution accelerator is shown in
Fig. 4.5.

4.2.3 The Hierarchical Architecture
In the hierarchical implementation the config, load, compute and store phases
are described in distinct functions/blocks which are able to run concurrently.
However, concurrency can only be ensured by applying specific HLS con-
straints and by adopting the proper coding style. If these conditions are
fulfilled, the necessary synchronization signals are automatically added by
the HLS toll, in this case Catapult HLS.

Each C++ function implementing a different accelerator phase is called
by the top-level function. These blocks exchange data through globally
defined PLMs, which are modelled as ac_channels and come with a set of
handshaking signals that are crucial to ensure synchronization. Configura-
tion parameters are also transferred through this type of channel. Moreover,
synchronization signals (ac_sync) are used to determine the end of each
phase.
Once all phases have been completed, the accelerator notifies the processor
via the acc_done signal.

void conv2d_cxx_catapult (
ac_channel < conf_info_t > &conf_info ,
ac_channel <dma_info_t > & dma_read_ctrl ,
ac_channel <dma_info_t > & dma_write_ctrl ,
ac_channel <dma_data_t > & dma_read_chnl ,
ac_channel <dma_data_t > & dma_write_chnl ,
ac_sync & acc_done)
{

// Private Local Memories
static ac_channel < plm_inputs_t > plm_inputs ;
static ac_channel < plm_filters_t > plm_filters ;
static ac_channel < plm_outputs_t > plm_outputs ;

// Configuration channels
static ac_channel < conf_info_t > plm_conf_load ;
static ac_channel < conf_info_t > plm_conf_compute ;
static ac_channel < conf_info_t > plm_conf_store ;

60

2D-Convolution Accelerator

// Done signals
static ac_sync config_done ;
static ac_sync load_done ;
static ac_sync compute_done ;
static ac_sync store_done ;

// Accelerator blocks
config (conf_info , plm_conf_load , plm_conf_compute , plm_conf_store ,
config_done);
load(plm_conf_load , plm_inputs , plm_filters , dma_read_ctrl ,
dma_read_chnl , load_done);
compute (plm_conf_compute , plm_inputs , plm_filters , plm_outputs ,
compute_done);
store(plm_conf_store , plm_outputs , dma_write_ctrl , dma_write_chnl ,
store_done);

config_done . sync_in ();
load_done . sync_in ();
compute_done . sync_in ();
store_done . sync_in ();

acc_done . sync_out ();
}

Listing 4.22: hier → conv2d.cpp - Top-level function.

In addition, each block must contain a local instance of the shared memory
to perform memory operations. For example, the store block receives the
PLM containing the outputs via an ac_channel port and then it copies its
content into a local PLM. Finally, it reads the data from this local instance
and it writes each output value in the external memory through the DMA
channel, as shown in Lst. 4.23.

void store(
// ...
ac_channel < plm_outputs_t > & plm_outputs , // shared memory over ac_channel
// ...

) {
// read from the ac_channel into a local instance of the memory
plm_outputs_t plm_tmp = plm_outputs .read ();
for (uint16_t i = 0; i < OUTPUTS_SIZE_MAX ; i++) {

FPDATA_OUT data = plm_tmp .data[i];
dma_write_chnl .write(data);

}
}

Listing 4.23: hier → conv2d.cpp - Store block.

61

2D-Convolution Accelerator

Figure 4.7: 2D-convolution Accelerator: hierarchical architecture.

62

2D-Convolution Accelerator

The hierarchical architecture allows to execute the different phases con-
currently, as long as data-dependencies are respected. However, this comes
at the cost of a larger area compared to the sequential architecture, due to
the fact that subsequent blocks require a copy of the same memory each and
additional hardware to exchange data. The corresponding architecture is
shown in Fig. 4.7.

4.3 Co-Simulation and Validation
The main.cpp file in the tb folder is the testbench used by Catapult and
QuestaSim to carry out the simulation and co-simulation of the accelerator
and so to validate the results.

In the C++ unit testbench the configuration parameters can be manu-
ally set and other parameters needed for validation can be derived from
them.
For instance, we may perform the convolutions between 4 batches of 5×5×3
input tensors and 3 × 3 × 3 × 3 filters with padding and a stride equal to 1
as shown in Lst. 4.24. This is useful especially during the debugging phase
of the accelerator because the RTL simulation requires a huge amount of
time when the accelerator has to process large input and weight tensors.

// Set config parameters
const uint8_t batch = 4;
const uint8_t n_w = 5;
const uint8_t n_h = 5;
const uint8_t n_c = 3;
const uint8_t kern = 3;
const uint8_t filt = 3;
const uint8_t same = 1;
const uint8_t stride = 1;

// Parameters for validation
const uint8_t pad = ((stride * (n_w - 1) - n_w + kern)/2) * same;
const uint8_t n_w_out = (n_w + 2 * pad - kern)/(stride) + 1;
const uint8_t n_h_out = (n_h + 2 * pad - kern)/(stride) + 1;

const unsigned input_size = n_w * n_h * n_c + kern * kern * n_c * filt;
const unsigned output_size = n_w_out * n_h_out * filt;

// Accelerator configuration
ac_channel < conf_info_t > conf_info ;

conf_info_t conf_info_data ;

63

2D-Convolution Accelerator

conf_info_data .batch = batch;
conf_info_data .n_w = n_w;
conf_info_data .n_h = n_h;
conf_info_data .n_c = n_c;
conf_info_data .kern = kern;
conf_info_data .filt = filt;
conf_info_data .same = same;
conf_info_data . stride = stride ;

// Pass configuration to the accelerator
conf_info .write(conf_info_data);

Listing 4.24: tb → main.cpp - Configuration parameters.

The testbench can also randomly initialize the input data of the accelerator,
exploiting the srand() and rand() functions, as shown in Lst. 4.25. Weights
and features are not only used to fill the dma_read_channel, so that the
accelerator can fetch them, but they are also stored in an array, so that
a specific golden function (conv2d_tb) can perform in software the same
algorithm of the accelerator to create the golden output, used to compare
the output of the accelerator.

// Communication channels
ac_channel <dma_info_t > dma_read_ctrl ;
ac_channel <dma_data_t > dma_read_chnl ;

// Testbench data
FPDATA_IN inputs [input_size * BATCH_MAX];

// initialize random seed:
srand (time(NULL));
for (unsigned i = 0; i < conf_info_data .batch * input_size ; i++) {

FPDATA_IN data_fp = (rand () % 200 - 100) * 0.25;
inputs [i] = data_fp ;

ac_int <DMA_WIDTH , true > data_ac ;
ac_int < DMA_WIDTH /2, true > DEADBEEF = 0 xdeadbeef ;
data_ac . set_slc (DMA_WIDTH /2, DEADBEEF . template slc < DMA_WIDTH /2 >(0));
data_ac . set_slc (0, inputs [i]. template slc <DATA_WIDTH >(0));

dma_read_chnl .write(data_ac);
}

Listing 4.25: tb → main.cpp - Input generation.

Once the configuration parameters and the inputs have been set, the accelera-
tor can be run. Then, the output data are fetched from the dma_write_chnl
port, as shown in Lst. 4.26.

// Testbench data
FPDATA_OUT outputs [output_size * BATCH_MAX];

64

2D-Convolution Accelerator

// Run the accelerator
conv2d_cxx_catapult (conf_info , dma_read_ctrl , dma_write_ctrl , dma_read_chnl ,

dma_write_chnl , acc_done);

// Testbench stalls until data ready
while (! dma_write_chnl . available (conf_info_data .batch * output_size)) {}

// Fetch outputs from the accelerator
for (unsigned i = 0; i < conf_info_data .batch * output_size ; i++) {

ac_int <DATA_WIDTH , true > data = dma_write_chnl .read (). template slc <
DATA_WIDTH >(0);
outputs [i]. template set_slc <32 >(0 , data);

}

Listing 4.26: tb → main.cpp - Run conv2d accelerator and fetch its output
data.

When all outputs have been stored into the corresponding array, the test-
bench can validate the results by invoking the golden function with the same
inputs and weights provided to the accelerator.
The software convolution has a similar algorithm to the one employed by
the accelerator. The main differences regard the datatypes, which are now
int and double, and by the fact that overflows are handled by a few if
statements in order to make the results compliant to the fixed point repre-
sentation of output data in the accelerator.

void conv2d_tb (FPDATA_IN *input , double * output)
{

// Parameters
const int filt = 3;
const int kern = 3;
// ...
const int n_w_out = (n_w + 2 * pad - kern)/(stride) + 1;
const int n_h_out = (n_h + 2 * pad - kern)/(stride) + 1;

// Padding
double paddedBuffer [n_w_in * n_h_in * n_c];
unsigned indexInp = kern * kern * n_c * filt;
for (unsigned chan = 0; chan < n_c; chan ++) {

for (unsigned row = 0; row < n_w_in ; row ++) {
for (unsigned col = 0; col < n_h_in ; col ++) {

unsigned index_pad = chan* n_w_in * n_h_in + row* n_h_in + col;
if ((row >= pad) && (col >= pad) && (col < n_h_in - pad)

&& (row < n_w_in - pad)) {
paddedBuffer [index_pad] = input[indexInp]. to_double ();
indexInp ++;

}
else {

paddedBuffer [index_pad] = 0;
}

}

65

2D-Convolution Accelerator

}
}

double acc = 0;
unsigned x, y;
// Set golden output
for (unsigned fl = 0; fl < filt; fl ++) {

for (unsigned i = 0; i < n_w_out ; i++) {
for (unsigned j = 0; j < n_h_out ; j++) {

x = i * stride ;
y = j * stride ;
for (unsigned m = 0; m < kern; m++) {

for (unsigned n = 0; n < kern; n++) {
for (unsigned k = 0; k < n_c; k++) {

unsigned index1 , index2 ;
index1 = fl * kern * kern * n_c + k * kern *

kern + m * kern + n;
index2 = n_w_in * n_h_in * k + x* n_w_in + y;
acc += input[index1]. to_double () *

paddedBuffer [index2];
}
y++;

}
x++;
y = j * stride ; // Restart column position

}
unsigned index3 = n_w_out * n_h_out * fl + i* n_w_out + j;
// Overflow handling
if (acc >= 32768)

output [index3] = 32767.999985;
else if (acc < -32768)

output [index3] = - 32768;
else

output [index3] = acc;
acc = 0;

}
}

}
}

Listing 4.27: tb → main.cpp - Golden function.

Each output of the 2D-convolution accelerator is compared to the corre-
sponding golden value. If the difference between the two is larger than a
very small allowed_error, the error counter is increased. If any error is
detected, the testbench return value is set to 1, otherwise it is set to 0.

// Testbench data
double gold_outputs [output_size * BATCH_MAX];

// Testbench return value (0 = PASS , non -0 = FAIL)
int rc = 0;

// Validation
for (unsigned i = 0; i < conf_info_data .batch; i++) {

66

2D-Convolution Accelerator

conv2d_tb (inputs + i * input_size , gold_outputs + i * output_size);
}
unsigned errors = 0;
double allowed_error = 0.001;

for (unsigned i = 0; i < conf_info_data .batch * output_size ; i++) {
float gold = gold_outputs [i];
FPDATA_OUT data = outputs [i];
// Calculate absolute error
double error_it = abs_double (data. to_double () - gold);
if (error_it > allowed_error) {

ESP_REPORT_INFO (VON , "[%u]: %f (expected %f)", i, data. to_double (),
gold);

errors ++;
}

}
if (errors > 0) {

ESP_REPORT_INFO (VON , " Validation : FAIL (errors %u / total %u)", errors ,
output_size * ESP_TO_UINT32 (conf_info_data .batch));
rc = 1;

} else {
ESP_REPORT_INFO (VON , " Validation : PASS");
rc = 0;

}
ESP_REPORT_INFO (VON , " - errors %u / total %u", errors , output_size *

ESP_TO_UINT32 (conf_info_data .batch));

CCS_RETURN (rc);

Listing 4.28: tb → main.cpp - Output validation.

In addition, the ESP_REPORT_INFO function, which is provided by ESP in the
softmax documentation, can be exploited to print out information regarding
the accelerator’s configuration and validation.
The message in Lst. 4.29 is the result of a working conv2d accelerator.

Info: main (): --------------------------------
Info: main (): ESP - Conv2D [Catapult HLS C++]
Info: main (): Single block
Info: main (): --------------------------------
Info: main (): Configuration :
Info: main (): - batch: 4
Info: main (): - n_w: 5
Info: main (): - n_h: 5
Info: main (): - n_c: 3
Info: main (): - kern: 3
Info: main (): - filt: 3
Info: main (): - same: 1
Info: main (): - stride : 1
Info: main (): Other info:
Info: main (): - DMA width: 64
Info: main (): - DMA size [2 = 32b, 3 = 64b]: 3
Info: main (): - DATA width: 32
Info: main (): - Batch size: 156
Info: main (): - memory in (words): 624

67

2D-Convolution Accelerator

Info: main (): - memory out (words): 300
Info: main (): --------------------------------
Info: main (): Validation : PASS
Info: main (): - errors 0 / total 300
Info: main (): --------------------------------

Listing 4.29: Message printed on the terminal by the conv2d testbench.

When simulating the RTL implementation of the accelerator, QuestaSim
allows to visualize the waveforms of its signals. This can be very useful to
test the ESP accelerator behavior. In particular, we can observe how and
at which point: the configuration parameters are set, the input data are
fetched from the DMA channel, the output values are written into the DMA.
By measuring the number of clock cycles between the start and the end
of the accelerator execution we can also derive information regarding the
accelerator performance, i.e. the execution latency.

An example of the output of a QuestaSim simulation with batch = 4, input
tensor = 5 × 5 × 3, weight tensor = 3 × 3 × 3 × 3, same padding = 1 and
stride=1 is shown in Fig. 4.8, where the two cursors are positioned at the
start and at the end of the accelerator execution.

Figure 4.8: Complete Questasim simulation for the sequential implementa-
tion of the 2D-convolution accelerator.

4.3.1 Validation Results
Multiple tests have been made with different run-time parameters to validate
both the sequential and hierarchical architectures of the 2D-convolution
accelerator. In particular, we focused on the area and on the latency of
each accelerator implementation. The former can be roughly derived during
synthesis by Catapult. The latter is obtained from the QuestaSim RTL
simulation of the accelerator and it is measured as the number of clock

68

2D-Convolution Accelerator

periods between the beginning and the end of the accelerator execution.
All the experiments are reported in Tab. 4.1, but the real value of FPGA
resource usage is obtained by the Vivado reports after place and route, i.e.
bitstream generation.

First, we considered the sequential implementation of our accelerator on a
single batch of weights and features. We changed a few other parameters to
check whether the area, latency and results would be affected by them. As
reported in Tab. 4.1, we tested an accelerator with different input dimensions,
from smallest to largest, while also testing different padding and stride values.
As expected, no error is ever detected and the estimated area of the design
is not affected by the user-defined parameters. However, parameters affect
the latency which increases as the number of computations grows.

The results show how the number of weights, features and output values
greatly affects latency. For the same reason, the number of batch iterations
can also increase latency up to 16 times, the maximum number of batches
allowed by the design.

Features Filters Same Stride Area [µm2] Lat. [clks]
1×1×1 1×1×1×1 0 1 83,268.3 12
5×5×3 3×3×3×3 0 1 83,268.3 918
5×5×3 3×3×3×3 1 1 83,268.3 2335

18×18×32 7×7×32×32 0 2 83,268.3 1,868,038
18×18×32 7×7×32×32 0 1 83,268.3 7,290,502

Table 4.1: Sequential implementation of the 2D-convolution accelerator
with different run-time parameters and a single batch. Area estimation by
Cataputlt HLS.

In the sequential implementation computations on each batch are per-
formed, as the name may suggest, in a sequential way. On the other hand,
the hierarchical implementation allows to perform the load phase of a new
batch while the compute phase of a previous batch is still being executed.
So if a new batch is ready to be computed, but the compute function has not
finished yet, the load function stalls until the compute block loads the new
batch. Vice versa, if the compute function has already finished to process the
current batch, but the load function has not finished to read the new batch,

69

2D-Convolution Accelerator

the compute function stalls until the new batch is ready. Data dependencies
are not violated because data are stored into FIFO-like ac_channel ports
which come with the necessary synchronization signals. Therefore, we expect
a better overall latency when dealing with a number of batches greater than
1.
Tab. 4.2 shows a comparison between estimated area and latency of the
sequential and hierarchical implementations of the same accelerator. The
device under test performs the 2D convolution between 18 × 18 × 32 input
tensors and 7 × 7 × 32 × 32 filters with same padding and a stride value
equal to 1.

Batches Architecture Area Latency [ms]
1 sequential 83268.3 - 145.81 -
1 hierarchical 91576.3 +10% 145.81 0%
8 sequential 83268.3 - 1166.47 -
8 hierarchical 91576.3 +10% 1156.54 -0.85%
16 sequential 83268.3 - 2332.95 -
16 hierarchical 91576.3 +10% 2311.67 -0.91%

Table 4.2: Comparison between sequential and hierarchical implementations
for different numbers of batches - same = 1, stride = 1, clock frequency =
50 MHz.

The table shows how for multiple batch iterations the hierarchical archi-
tecture improves performance at the cost of area. When dealing with 16
batches the performance is improved by 0.91%. Clearly, for a single batch the
latency is the same and there is no advantage with respect to the sequential
implementation.

4.4 ESP Heterogeneous Integration
ESP does not only facilitate the design flow of an accelerator, but it also
eases its integration into heterogeneous SoCs.
ESP supports many FPGA boards [34]. In this thesis, we chose to work with
the proFPGA XC7V2000T FPGA module.

To create an SoC, we need to launch the ESP scripts from inside the folder

70

2D-Convolution Accelerator

whose name corresponds to the FPGA model we are going to use. When
the SoC-design GUI provided by ESP is open, it shows a default SoC config-
uration, where tiles are organized in a 2×2 grid containing: the processor
core, the memory controller and memory channel, the auxiliary tile, and an
empty tile.

Figure 4.9: SoC design in the ESP GUI with both conv2d accelerator
architectures.

For our design we selected the modern Ariane RISC-V processor core and
replaced the empty tile with the accelerator tile containing the RTL imple-
mentation of one of our 2D-convolution accelerators. Both the sequential
and the hierarchical architectures can be selected. If we increase the grid to
a 2×3 mesh, both versions of the accelerator can be integrated in the same
SoC chip. The resulting SoC configuration is shown in Fig. 4.9.

Based on the SoC configuration, the corresponding RTL implementation is
automatically generated. A full-system RTL simulation can be performed
and, thanks to a bare-metal test application which runs directly on top of
the processor tile, we can validate our accelerators at system level, i.e. taking
into account the processor and all the other peripherals.

The bare-metal test application is in the sw folder of the accelerator. We

71

2D-Convolution Accelerator

again started from the softmax template and then we customized it to be
similar to the testbench.
Indeed, as reported in Lst. 4.30, the convd2d_cxx.c bare-metal application
allows to set the parameters as global variables and to indicate the address
of each corresponding 32-bit memory-mapped register. Each address is in-
creased by four bytes starting from 0x40 and these registers are arranged
following to the order specified in conf_info.hpp.
In addition, the bare-metal application allows to set the name and identifica-
tion number of the accelerator in case more accelerators of the same kind
are present in the SoC.

// Accelerator identifiers
define SLD_CONV2D_CXX 0x145
define DEV_NAME "sld , conv2d_cxx_catapult "

/* User - defined parameters */
/* <<--params -->> */
const int32_t batch = 1;
const int32_t n_w = 18;
const int32_t n_h = 18;
const int32_t n_c = 32;
const int32_t kern = 7;
const int32_t filt = 32;
const int32_t same = 0;
const int32_t stride = 1;

/* Other parameters derived from user - defined ones */
const uint8_t pad = ((stride * (n_w - 1) - n_w + kern) / 2) * same;
const uint8_t n_w_in = n_w + 2 * pad;
const uint8_t n_h_in = n_h + 2 * pad;
const uint8_t n_w_out = (n_w + 2 * pad - kern)/(stride) + 1;
const uint8_t n_h_out = (n_w + 2 * pad - kern)/(stride) + 1;
const uint16_t IN_SIZE = n_w * n_h * n_c + kern * kern * n_c * filt;
const uint16_t OUT_SIZE = n_w_out * n_h_out * filt;

/* User defined registers */
/* <<--regs -->> */
define CONV2D_CXX_STRIDE_REG 0x5c
define CONV2D_CXX_SAME_REG 0x58
define CONV2D_CXX_FILT_REG 0x54
define CONV2D_CXX_KERN_REG 0x50
define CONV2D_CXX_N_C_REG 0x4c
define CONV2D_CXX_N_H_REG 0x48
define CONV2D_CXX_N_W_REG 0x44
define CONV2D_CXX_BATCH_REG 0x40

Listing 4.30: conv2d_cxx.c - Constant variables.

72

2D-Convolution Accelerator

Based on the accelerator identifiers, the probe function1 can be used to
check whether the device has been correctly integrated in the SoC. Useful
information about the device under test, including its location, is also stored
in the espdevs structure.

int ndev;
struct esp_device * espdevs ;

ndev = probe (& espdevs , VENDOR_SLD , SLD_CONV2D_CXX , DEV_NAME);

if (ndev == 0) {
print_uart (" conv2d_cxx not found\n");
return 0;

}

Listing 4.31: conv2d_cxx.c - Probe function invocation.

The memory spaces needed to store the golden outputs and the inputs/out-
puts of the accelerator are allocated using aligned_malloc. In addition, the
memory region needed to store the accelerator’s input and output data is
split into chunks and the corresponding page table is populated accordingly,
as shown in Lst. 4.32.

typedef int64_t token_t ;
token_t *gold;
token_t *mem;
unsigned ** ptable ;

// Allocate memory
gold = aligned_malloc (out_size);
mem = aligned_malloc (mem_size);

// Alocate and populate page table
ptable = aligned_malloc (NCHUNK (mem_size) * sizeof (unsigned *));
for (i = 0; i < NCHUNK (mem_size); i++)

ptable [i] = (unsigned *) &mem[i * (CHUNK_SIZE / sizeof (token_t))];

// Initialize the memory
init_buf (mem , gold);

Listing 4.32: conv2d_cxx.c - Memory allocation and initlialization.

Thanks to the init_buf function, the elements of the input and weight
tensors are stored into the external memory. However, init_buf doesn’t
generate only the input values to write into the memory, but it also calls a

1Most functions, structures and constants used by the bare-metal application are
defined in the esp_accelerator.h and esp_probe.h headers files available at: https:
//github.com/sld-columbia/esp.

73

https://github.com/sld-columbia/esp
https://github.com/sld-columbia/esp

2D-Convolution Accelerator

golden function (conv2d_sw), which is very similar to the one exploited by
the previously mentioned C++ testbench, in order to set a golden output
tensor. Thus, the golden output values are stored in the external memory so
that they can be easily accessed during validation.

static void init_buf (token_t *in , token_t * gold)
{

int i, j;
// initialize input
for (i = 0; i < batch; i++) {

for (j = 0; j < IN_SIZE ; j++) {
float data_flt = ((i * IN_SIZE + j) % 200) * 0.25 - 25;
token_t data_fxd = 0 xdeadbeef00000000 | float_to_fixed32 (

data_flt , 16);
in[i * in_words_adj + j] = (token_t) data_fxd ;

}
}
// set golden output
for (i = 0; i < batch; i++) {

conv2d_sw (in + (i* IN_SIZE), gold + (i* OUT_SIZE));
}

}

Listing 4.33: conv2d_cxx.c - init_buf function.

Regarding the invocation of the 2D-convolution accelerator, it is not as
straightforward as in the C++ testbench. First, the processor checks whether
the DMA and the Translation Look-aside Buffer (TLB) are enabled or not,
as reported in Lst. 4.34.

dev = & espdevs ;

// Check DMA capabilities
if (ioread32 (dev , PT_NCHUNK_MAX_REG) == 0) {

print_uart (" -> scatter - gather DMA is disabled . Abort .\n");
return 0;

}

// Check TLB capabilities
if (ioread32 (dev , PT_NCHUNK_MAX_REG) < NCHUNK (mem_size)) {

print_uart (" -> Not enough TLB entries available . Abort .\n");
return 0;

}

Listing 4.34: conv2d_cxx.c - Check DMA and TLB capabilities.

Then, the processor overwrites the accelerator registers with both common
(for instance the page table’s address or the accelerator’s coherency model)
and accelerator-specific configuration parameters, as shown in Lst. 4.35.

74

2D-Convolution Accelerator

// Pass common configuration parameters
iowrite32 (dev , SELECT_REG , ioread32 (dev , DEVID_REG));
iowrite32 (dev , COHERENCE_REG , ACC_COH_NONE);
iowrite32 (dev , PT_ADDRESS_REG , (unsigned long long) ptable);
iowrite32 (dev , PT_NCHUNK_REG , NCHUNK (mem_size));
iowrite32 (dev , PT_SHIFT_REG , CHUNK_SHIFT);

// Pass accelerator - specific configuration parameters
iowrite32 (dev , CONV2D_CXX_BATCH_REG , batch);
iowrite32 (dev , CONV2D_CXX_N_W_REG , n_w);
iowrite32 (dev , CONV2D_CXX_N_H_REG , n_h);
iowrite32 (dev , CONV2D_CXX_N_C_REG , n_c);
iowrite32 (dev , CONV2D_CXX_KERN_REG , kern);
iowrite32 (dev , CONV2D_CXX_FILT_REG , filt);
iowrite32 (dev , CONV2D_CXX_SAME_REG , same);
iowrite32 (dev , CONV2D_CXX_STRIDE_REG , stride);

Listing 4.35: conv2d_cxx.c - Pass configuration parameters to the
accelerator.

Later, the accelerator is started by overwriting the register (CMD_REG) that
contains accelerator-specific commands with the proper CMD_MASK_START
bitmask. The status register (STATUS_REG) is continuously read (polling) to
determine when the task execution is completed, as shown in Lst. 4.36.

// Run accelerator
iowrite32 (dev , CMD_REG , CMD_MASK_START);

// Wait for completion
done = 0;
while (! done) {

done = ioread32 (dev , STATUS_REG);
done &= STATUS_MASK_DONE ;

}
iowrite32 (dev , CMD_REG , 0x0);

Listing 4.36: conv2d_cxx.c - Start the accelerator and wait for completion.

Finally, the accelerator’s results are validated by the validate_buf function
which compares them with the golden outputs and the bare-metal application
frees the allocated space before termination.

/* Validation */
errors = validate_buf (& mem[out_offset], gold);
if (errors)

print_uart (" ... FAIL\n");
else

print_uart (" ... PASS\n");

aligned_free (ptable);
aligned_free (mem);
aligned_free (gold);

75

2D-Convolution Accelerator

return 0;

Listing 4.37: conv2d_cxx.c - Output validation and allocated space is
freed.

The simulation of the execution of the bare-metal application on the SoC
is done by QuestaSim. The simulation time is quite long since the 2D
convolution is computed in both software and hardware, the former being
much slower than the latter. However, after approximately 40 minutes (time
depends on the accelerator run-time parameters) the outputs are validated
and the following message is printed out:

[...]
ESP - Ariane boot loader
Scanning device tree ...
[probe] sld , conv2d_cxx_catapult .0 registered
Address : 0 x60010000
Interrupt : 6
[probe] sld , conv2d_cxx_catapult .1 registered
Address : 0 x60010100
Interrupt : 7
Found 00000002 devices : sld , conv2d_cxx
memory buffer base - address = 00000000 A0100DA0
ptable = 00000000 A01014F0
Generate input ...
input data @00000000A0100DA0
gold output data @00000000A0100B30
... input ready!
-> Non - coherent DMA
[probe] sld , llc_cache .0 registered
Address : 0 x6000e000
Interrupt : 12
[probe] sld , l2_cache .0 registered
Address : 0 x6000d900
Interrupt : 12
Start ...
Done
validating ...
gold output data @00000000A0100B30
output data @00000000A0101280
total errors 00000000
... PASS
-> Non - coherent DMA
[probe] sld , llc_cache .0 registered
Address : 0 x6000e000
Interrupt : 12
[probe] sld , l2_cache .0 registered
Address : 0 x6000d900
Interrupt : 12
Start ...
Done
validating ...
gold output data @00000000A0100B30

76

2D-Convolution Accelerator

output data @00000000A0101280
total errors 00000000
... PASS
DONE
** Program Completed !

Listing 4.38: conv2d_cxx.c - Message printed by the bare-metal
application.

4.5 FPGA Prototyping
Finally, the SoC design with either one 2D-convolution accelerator or both
implementations can be deployed on the FPGA board. The corresponding
bitstream (top.bit) is generated leveraging Xilinx Vivado.

The FPGA is connected via ethernet to a remote server (host) that can
be accessed via ssh tunnelling. The UART interface of the SoC can be
accessed with Minicom, a serial communication program, because the FPGA
has a UART interface board connected to the host computer via USB. The
same bare-metal test application used for RTL simulation can be run on
the FPGA and its output is displayed on the host’s screen thanks to Minicom.

As reported in Fig. 4.10, the FPGA output message corresponds to the one
that had been printed out during the RTL simulation in QuestaSim, meaning
that our SoC design has been correctly prototyped.

The bare-metal test application exploits the following function to measure
the number of clock cycles needed to perform the 2D convolution in both
software and hardware; asm_volatile is used to run assembly instructions
inside a C/C++ code.

static inline uint64_t get_counter () {
uint64_t counter ;
asm volatile (

"li t0 , 0;"
"csrr t0 , mcycle ;"
"mv %0, t0"
: "=r" (counter)
:
: "t0"

);
return counter ; }

Listing 4.39: conv2d_cxx.c - get_counter function.

77

2D-Convolution Accelerator

Figure 4.10: Output of the bare-metal test application running on the SoC
synthesized on the FPGA.

78

2D-Convolution Accelerator

Tab. 4.3 shows the comparison between the execution times of the 2D
convolution being run on the SoC’s processor core and being computed by
the sequential implementation of our custom accelerator, for a 50 MHz clock
frequency.

Features Filters Proc. Lat. [ms] Acc. Lat. [ms] Reduc.
5×5×3 3×3×3×3 0.5205 0.0184 96.47 %

18×18×3 7×7×3×3 3358.21 145.81 95.65 %

Table 4.3: Latency comparison of the 2D-convolution algorithm between
software execution and our accelerator computation for different input di-
mensions - batch = 1, same = 0, stride = 1 - clock frequency = 50 Mhz.

As expected, the hardware accelerator provides a remarkable latency
improvement. In particular, compared to the software execution, our 2D-
convolution accelerator provides a 96.47 % latency reduction with the smaller
input and a 95.65 % improvement with the larger one.
This further demonstrates with numbers that accelerating convolutional
layers in hardware leads to an enormous latency reduction, enabling CNNs
inference in many latency critical scenarios, such as autonomous driving.

79

Chapter 5

Optimized
2D-Convolution
Accelerator

In the previous chapter we illustrated two different implementations of
our 2D-convolution accelerator. The results reported in Tab. 4.2 show
how the hierarchical architecture provides a latency decrease at the cost of
area with respect to the sequential implementation, but only for multiple
batch iterations. However, when convolving a single batch of tensors, the
hierarchical solution does not provide any advantage whatsoever. This is
due to the fact that, as shown in Fig. 4.7, all input data fetched from the
external memory are saved inside the corresponding PLMs during the load
phase before being transferred to the compute block through ac_channels.
Similarly, the results are sent back to the external memory only after they
have all been computed and temporarily stored within the outputs’ PLM.
For this reason, all phases are executed in a sequential way just as in the
sequential implementation, despite the additional hardware.

5.1 2D Convolution with Sliding Window
Our aim is to fetch/store data from/to the external memory as the compute
phase is being executed, i.e. in a transparent way. Thus, our datapath needs
to carry out the convolution operation as soon as input data are fetched.

80

Optimized 2D-Convolution Accelerator

This can be achieved by modifying the high-level description of the hierarchi-
cal implementation of the 2D-convolution accelerator. Let us call this new
implementation “optimized”.

In particular, we employed a sliding-window architecture which allows to
reuse feature map data while fetching only the new elements needed by the
current iteration of the algorithm. In this architecture only one kernel is
fetched from the external memory and sent to the compute block, while
line buffers are exploited to transfer only the feature map elements that are
needed right away.

Since our accelerator can handle a 7×7×32×32 weight tensor and a 18×18×32
input tensor, a register with 7×7 elements is enough to store the kernel.
Consequently, 7 line buffers are used to temporarily hold 18 feature map
elements each.

As the first set of partial sums is being stored into the accumulation buffer
in the compute block, the load block concurrently fetches either one or two
rows of features, depending on the stride parameter. The newly fetched
elements are then replaced into the line buffers in a circular way.

Usually, the same input tensor is convolved with multiple filters; this would
require each input channel to be fetched from the external memory more
than once. In order to avoid to increase the number of accesses to the outside
memory, when features are fetched for the first time they are also saved in a
features PLM, in addition to being stored into the line buffers as previously
described. In this way, feature map elements can be quickly reloaded into
the line buffers from this local memory when needed.
The resulting load algorithm of our conv2dlb accelerator is reported in Lst.
5.1.

for (uint8_t fl = 0; fl < FILT_MAX ; fl ++) {
for (uint8_t k = 0; k < N_C_MAX ; k++) {

// Fetch Kernel
// Configure DMA read channel (CTRL)
dma_read_data_index = batch_size *b + kern*kern*n_c*fl + kern*kern*k;
dma_read_data_length = kern * kern;
dma_info_t dma_read_info = { dma_read_data_index ,

dma_read_data_length , DMA_SIZE };
bool dma_read_ctrl_done = false;

LOAD_CTRL_LOOP1 :

81

Optimized 2D-Convolution Accelerator

do { dma_read_ctrl_done = dma_read_ctrl . nb_write (dma_read_info);}
while (! dma_read_ctrl_done);
// Force serialization between DMA control and DATA transfer
if (dma_read_ctrl_done) {

for (uint8_t m = 0; m < KERN_MAX ; m++) {
for (uint8_t n = 0; n < KERN_MAX ; n++) {

FPDATA_IN data;
uint8_t index_f = m * kern + n;

ac_int <DATA_WIDTH , false > data_ac = dma_read_chnl .read ()
. template slc <DATA_WIDTH >(0);

data. set_slc (0, data_ac);
plm_tmp_f .data[index_f] = data;
if (n == kern - 1) break;

}
if (m == kern - 1) break;

}
plm_kernel .write(plm_tmp_f);

}
// Fetch Input Channel
if (fl == 0) {

// Configure DMA read channel (CTRL)
dma_read_data_index = batch_size *b + filters_size + k*n_w*n_h;
dma_read_data_length = n_w * n_h;
dma_read_info = { dma_read_data_index , dma_read_data_length ,

DMA_SIZE };
dma_read_ctrl_done = false;

LOAD_CTRL_LOOP2 :
do { dma_read_ctrl_done = dma_read_ctrl . nb_write (dma_read_info);}
while (! dma_read_ctrl_done);

}
// Indicate when to write the line buffers for the first time
uint8_t write_buf = kern - 1;
if (dma_read_ctrl_done) {

for (uint8_t row = 0; row < N_W_IN_MAX ; row ++) {
for (uint8_t col = 0; col < N_H_IN_MAX ; col ++) {

FPDATA_IN data;
if (fl == 0) {

// Padding
uint16_t index_in = k * n_w_in * n_h_in +

row * n_w_in + col;
if ((row >= pad) && (col >= pad) && (col <n_h_in -pad)

&& (row < n_w_in -pad)) {
ac_int <DATA_WIDTH , false > data_ac =

dma_read_chnl .read (). template slc <DATA_WIDTH >(0);
data. set_slc (0, data_ac);

}
else {

data = 0;
}

plm_tmp_in .data[index_in] = data;
}
else {

uint16_t index_in = k * n_w_in * n_h_in +
row * n_w_in + col;

data = plm_tmp_in .data[index_in];

82

Optimized 2D-Convolution Accelerator

}
uint8_t row_norm ;
switch (kern) {

case 1:
row_norm = row % 1;
break;

case 3:
row_norm = row % 3;
break;

case 5:
row_norm = row % 5;
break;

case 7:
row_norm = row % 7;
break;

}
buf_tmp_lin .data[row_norm][col] = data;
if (col == n_h_in - 1) break;

}
if (row == write_buf) {

buf_linear .write(buf_tmp_lin);
// next buffer overwrite depends on stride value
write_buf += stride ;

}
if (row == n_w_in - 1) break;

}
}
if (k == n_c - 1) break;

}
if (fl == filt - 1) break;

}

Listing 5.1: conv2dlb.cpp - Load Phase.

The compute algorithm must also be slightly modified, so that each weight
is convolved with the correct line buffer. This is done by means of a switch
statement, synthesized as a multiplexer which selects for each MAC operation
the respective input channel’s row. The complete algorithm is shown in Lst.
5.2.

for (uint8_t fl = 0; fl < FILT_MAX ; fl ++) {
for (uint8_t k = 0; k < N_C_MAX ; k++) {

plm_tmp_f = plm_kernel .read ();
for (uint8_t i = 0; i < N_W_OUT_MAX ; i++) {

buf_tmp_lin = buf_linear .read ();
for (uint8_t j = 0; j < N_H_OUT_MAX ; j++) {

FPDATA_ACC acc = 0;
uint8_t x = i * stride ; // input row
uint8_t y = j * stride ; // input col
for (uint8_t m = 0; m < KERN_MAX ; m++) {

for (uint8_t n = 0; n < KERN_MAX ; n++) {

uint8_t index_f = m * kern + n;
uint8_t x_tmp;

83

Optimized 2D-Convolution Accelerator

switch (kern) {
case 1:

x_tmp = x % 1;
break;

case 3:
x_tmp = x % 3;
break;

case 5:
x_tmp = x % 5;
break;

case 7:
x_tmp = x % 7;
break;

}
acc += buf_tmp_lin .data[x_tmp][y] *

plm_tmp_f .data[index_f];
y++;
if (n == kern - 1) break;

}
x++;
y = j * stride ; // Restart column position
if (m == kern - 1) break;

}
if (k == 0)

buf_tmp_acc .data[i][j] = acc;
else

buf_tmp_acc .data[i][j] += acc;
if (k == n_c - 1) {

var_tmp_out = buf_tmp_acc .data[i][j];
var_output .write(var_tmp_out);

}
if (j == n_h_out - 1) break;

}
if (i == n_w_out - 1) break;

}
if (k == n_c - 1) break;

}
if (fl == filt - 1) break;

}

Listing 5.2: conv2dlb.cpp - Compute Phase.

It should also be noted that, as soon as an element of the accumulation
buffer is completed, it is sent to the store block, while the partial sums of the
MAC operations remain stored into the accumulation buffer. This enables
the execution of both load and store phases to be transparent to the actual
computation of the 2D convolution.
The store block is the same as in the unoptimized 2D-convolution accelerator
with the exception that its corresponding PLM is implemented as a 32-bit
register, since it contains just a single element of the output tensor instead
of an 18×18×32 RAM block, as reported in Lst. 5.3.

84

Optimized 2D-Convolution Accelerator

Figure 5.1: 2D-convolution Accelerator: optimized architecture.

85

Optimized 2D-Convolution Accelerator

for (uint16_t i = 0; i < OUTPUTS_SIZE_MAX ; i++) {
FPDATA_OUT var_tmp_out = var_output .read ();
FPDATA_OUT data = var_tmp_out ;
ac_int <DMA_WIDTH , false > data_ac ;
ac_int <32, false > DEADBEEF = 0 xdeadbeef ;
data_ac . set_slc (32, DEADBEEF . template slc <32 >(0));
data_ac . set_slc (0, data. template slc <DATA_WIDTH >(0));
dma_write_chnl .write(data_ac);

if (i == dma_write_data_length - 1) break;
}

Listing 5.3: conv2dlb.cpp - Store Phase.

The architecture of the optimized 2D-convolution accelerator is shown in
Fig. 5.1.

5.2 Synthesis Results and Comparisons
As previously seen, the 2D-convolution accelerator has been optimized to
reduce its latency by making the load, compute and store phases run in
parallel. However, by comparing the optimized hierarchical implementation
shown in Fig. 5.1 with the unoptimized hierarchical architecture in Fig. 4.7,
we might notice that the dimensions of PLMs and shared memories have
also been reduced.

For our accelerator design, we decided to prioritize latency as design goal.
For this reason we synthesized PLMs as registers rather than as RAM blocks,
with the exception of the features PLM. Using registers for the two Kernel
PLMs, the two Line Buffers, the two Single Output registers and all the
corresponding ac_channels was required to maintain the Initiation Interval
equal to 1 for the three phases, since using RAM blocks would have taken
more than one clock cycle to pass data between two consecutive phases.

Architecture Slice Logic [%] Block RAM [%] DSP [%]
Sequential 20.31 39.32 2.31

Hierarchical 20.33 (+ 0.02) 50.81 (+ 11.49) 2.31 (+ 0.00)
Optimized 22.70 (+ 2.41) 25.70 (- 13.62) 2.13 (- 0.18)

Table 5.1: FPGA resource usage of an SoC for each architecture. The
sequential implementation is taken as reference.

86

Optimized 2D-Convolution Accelerator

Tab. 5.1 shows the FPGA resource usage obtained by the Vivado reports
after place and route for an SoC integrating the sequential, the hierarchical
or the optimized implementation of our 2D-convolution accelerator. With
respect to the sequential implementation of our 2D-convolution accelerator
the unoptimized hierarchical architecture yields a 11.49% block RAM usage
increase. However, the optimized architecture requires a slight increase of
slice logic being used (+2.41 %) because of the additional registers and
logic (MUXs and registers for Kernel PLM, Line Buffers, Output and the
corresponding ac_channels), but, on the other hand, the block RAM usage
is significantly reduced (−13.62 %). Since the compute phase has not been
substantially altered, the number of Digital Signal Processing (DSP) blocks
being employed is not affected as much.

The comparison between unoptimized and optimized architectures of our
2D-convolution accelerator in terms of latency, for batch = 1, is reported
in Tab. 5.2 and it is measured as the number of clock periods between the
beginning and the end of the accelerator execution.

Arch. Features Filters Same Stride Latency [clks]
Seq./Hier. 5×5×3 3×3×3×3 0 1 918

Opt. 5×5×3 3×3×3×3 0 1 760 (-17.21%)
Seq./Hier. 5×5×3 3×3×3×3 1 1 2335

Opt. 5×5×3 3×3×3×3 1 1 2063 (-11.65%)
Seq./Hier. 18×18×32 7×7×32×32 0 2 1,868,038

Opt. 18×18×32 7×7×32×32 0 2 1,806,518 (-3.29%)
Seq./Hier. 18×18×32 7×7×32×32 0 1 7,290,502

Opt. 18×18×32 7×7×32×32 0 1 7,225,526 (-0.90%)

Table 5.2: Comparison between latency, as clock periods, between
the sequential/hierarchical and the optimized implementations of the 2D-
convolution accelerator, for different parameters and batch = 1.

The latency results prove that the different accelerator phases are executed
in a transparent way. For instance, in the case of a 5×5×3 input tensor
being convolved with a 3×3×3×3 weight tensor with no padding (lines 1
and 2), 156 values need to be fetched and 27 must be stored from/to the
external memory. The sequential architecture needs 183 clock cycles to carry
out these two phases. On the other hand, the optimized implementation

87

Optimized 2D-Convolution Accelerator

only needs an overhead of 25 clock periods after which the load and store
phases are seamlessly performed. If we add the overhead difference (158) to
the latency of the optimized architecture (760), we obtain the latency of the
sequential architecture (918).

Thus, our goal of executing the different accelerator phases in parallel with
a single batch, while also reducing the FPGA resource usage, has been
achieved. However, latency reduction can be rather substantial (17.21 % for
the aforementioned case) or it can be quite small (0.90 % with maximum
input dimensions), depending on how similar the execution times for the
different accelerator phases are. In fact, in the first example (-17.21%) the
time of the compute phase is slightly bigger than the time of the load and
store phases, while in the last example (-0.90%) the time of the compute
phase is much larger. So, The execution of our 2D-convolution accelerator
is now heavily compute-bound. Nonetheless, if we were to parallelize the
execution of the datapath by unrolling completely (32 times) the for-loop on
the output channels, for instance, we would obtain a much more significant
latency reduction, as reported in the last column of Tab. 5.3. This optimiza-
tion would come at the cost of some additional slice logic and of around 32
times the DSPs being used, which wouldn’t be an issue since our accelerator
is currently using just 2.13 % of the available DSP resources.

Arch. Features Filters Same Stride Latency [clks]
Seq./Hier. 5×5×3 3×3×3×3 0 1 428 -

Opt. 5×5×3 3×3×3×3 0 1 270 -36.9%
Seq./Hier. 5×5×3 3×3×3×3 1 1 981 -

Opt. 5×5×3 3×3×3×3 1 1 709 -27.7%
Seq./Hier. 18×18×32 7×7×32×32 0 2 118,145 -

Opt. 18×18×32 7×7×32×32 0 2 56,625 -52.1%
Seq./Hier. 18×18×32 7×7×32×32 0 1 290,945 -

Opt. 18×18×32 7×7×32×32 0 1 225,969 -22.3%

Table 5.3: Comparison between expected latency, as clock periods, between
the unoptimized and optimized implementations of the 2D-convolution ac-
celerator, for different parameters and batch = 1. The expected latency
results have been computed from the values in Tab. 5.2 assuming a complete
unrolling (32 times) of the for-loop on the output channels.

88

Optimized 2D-Convolution Accelerator

Thus, we encourage future hardware designers to further optimize the
compute phase of our architecture, since the load and store phases have been
made transparent to it.

89

Bibliography

[1] S. Lynch. Andrew Ng: Why AI Is the New Electricity. 2017. url:
https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-
new-electricity (cit. on p. 14).

[2] V. Sze, Y.-H. Chen, T.-J. Yang, and J. Emer. Efficient Processing
of Deep Neural Networks: A Tutorial and Survey. Aug. 2017. url:
https://arxiv.org/abs/1703.09039 (cit. on pp. 14, 21, 27, 28).

[3] CS231n Convolutional Neural Networks for Visual Recognition. url:
https://cs231n.github.io/neural-networks-1/ (cit. on p. 15).

[4] IBM - Gradient Descent. url: https://www.ibm.com/cloud/learn/
gradient-descent (cit. on p. 16).

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http :
//www.deeplearningbook.org. MIT Press, 2016 (cit. on p. 17).

[6] Convnet - notebook. url: https://people.minesparis.psl.eu/
fabien.moutarde/ES_MachineLearning/TP_convNets/convnet-
notebook.html (cit. on p. 18).

[7] C. Kevin. Feature Maps. url: https://medium.com/@chriskevin_
80184/feature-maps-ee8e11a71f9e (cit. on p. 19).

[8] A. Ng, Y.B. Mourri, and K. Katanforoosh. Convolutional Neural Net-
works. Coursera. url: https://www.coursera.org/learn/convolut
ional-neural-networks (cit. on p. 19).

[9] K. Patel. Convolutional Neural Networks — A Beginner’s Guide. url:
https://towardsdatascience.com/convolution-neural-networ
ks-a-beginners-guide-implementing-a-mnist-hand-written-
digit-8aa60330d022 (cit. on p. 20).

90

https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity
https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity
https://arxiv.org/abs/1703.09039
https://cs231n.github.io/neural-networks-1/
https://www.ibm.com/cloud/learn/gradient-descent
https://www.ibm.com/cloud/learn/gradient-descent
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://people.minesparis.psl.eu/fabien.moutarde/ES_MachineLearning/TP_convNets/convnet-notebook.html
https://people.minesparis.psl.eu/fabien.moutarde/ES_MachineLearning/TP_convNets/convnet-notebook.html
https://people.minesparis.psl.eu/fabien.moutarde/ES_MachineLearning/TP_convNets/convnet-notebook.html
https://medium.com/@chriskevin_80184/feature-maps-ee8e11a71f9e
https://medium.com/@chriskevin_80184/feature-maps-ee8e11a71f9e
https://www.coursera.org/learn/convolutional-neural-networks
https://www.coursera.org/learn/convolutional-neural-networks
https://towardsdatascience.com/convolution-neural-networks-a-beginners-guide-implementing-a-mnist-hand-written-digit-8aa60330d022
https://towardsdatascience.com/convolution-neural-networks-a-beginners-guide-implementing-a-mnist-hand-written-digit-8aa60330d022
https://towardsdatascience.com/convolution-neural-networks-a-beginners-guide-implementing-a-mnist-hand-written-digit-8aa60330d022

BIBLIOGRAPHY

[10] A. Wang. Convolutional Neural Networks(CNN) num. 1: Kernel, Stride,
Padding. url: https://www.brilliantcode.net/1584/convoluti
onal-neural-networks-1-convolution-layer-stride-padding-
kernel/ (cit. on p. 21).

[11] H. Gholamalinezhad and H. Khosravi. «Pooling methods in deep neural
networks, a review». In: arXiv preprint arXiv:2009.07485 (2020) (cit.
on p. 22).

[12] H. Yingge, I. Ali, and K.-Y. Lee. «Deep Neural Networks on Chip - A
Survey». In: Feb. 2020, pp. 589–592 (cit. on p. 22).

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. «Gradient-Based
Learning Applied to Document Recognition». In: (Nov. 1998) (cit. on
p. 23).

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. «ImageNet classification
with deep convolutional neural networks». In: NIPS’12: Proceedings of
the 25th International Conference on Neural Information Processing
System. Dec. 2012, pp. 1097–1105 (cit. on pp. 23, 24).

[15] K. Simonyan and A. Zisserman. «Very deep convolutional networks
for large-scale image recognition». In: arXiv preprint arXiv:1409.1556
(2014) (cit. on p. 24).

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich. «Going deeper with convolu-
tions». In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2015, pp. 1–9 (cit. on pp. 24, 25).

[17] K. He, X.Zhang, S.Ren, and J.Sun. «Deep residual learning for image
recognition». In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 770–778 (cit. on pp. 25, 26).

[18] Han Jia and Xuecheng Zou. «An FPGA-Based Resource-Saving Hard-
ware Accelerator for Deep Neural Network». In: International Journal
of Intelligence Science 11 (Jan. 2021), pp. 57–69 (cit. on p. 27).

[19] M. Ravi, A. Sewa, S. T.G., and S.S.S. Sanagapati. «FPGA as a Hard-
ware Accelerator for Computation Intensive Maximum Likelihood Ex-
pectation Maximization Medical Image Reconstruction Algorithm». In:
IEEE Access 7 (2019), pp. 111727–111735 (cit. on pp. 28, 29, 31).

91

https://www.brilliantcode.net/1584/convolutional-neural-networks-1-convolution-layer-stride-padding-kernel/
https://www.brilliantcode.net/1584/convolutional-neural-networks-1-convolution-layer-stride-padding-kernel/
https://www.brilliantcode.net/1584/convolutional-neural-networks-1-convolution-layer-stride-padding-kernel/

BIBLIOGRAPHY

[20] R. Zhao, W. Luk, X. Niu, H. Shi, and H. Wang. «Hardware Accelera-
tion for Machine Learning». In: 2017 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). 2017, pp. 645–650 (cit. on p. 30).

[21] Y. Sun, G. Wang, B. Yin, J. R. Cavallaro, and T. Ly. «Chapter 8 -
High-level Design Tools for Complex DSP Applications». In: DSP for
Embedded and Real-Time Systems. Ed. by R. Oshana. Oxford: Newnes,
2012, pp. 133–155 (cit. on p. 30).

[22] Catapult® Synthesis User and Reference Manual. Mentor, a Siemens
Business. 2018 (cit. on pp. 32, 33).

[23] N. Haron and S. Hamdioui. «Why is CMOS scaling coming to an END?»
In: Jan. 2009, pp. 98–103 (cit. on p. 34).

[24] ESP - The open source SoC platform. url: https://www.esp.cs.
columbia.edu (cit. on pp. 34, 36).

[25] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman,
E.G. Cota, M. Petracca, C. Pilato, and L.P. Carloni. «Agile SoC devel-
opment with open ESP». In: 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD). IEEE. 2020, pp. 1–9 (cit. on
pp. 34, 35).

[26] D. Giri, K.-L. Chiu, G. Eichler, P. Mantovani, and L.P. Carloni. «Ac-
celerator Integration for Open-Source SoC Design». In: IEEE Micro
41.4 (2021), pp. 8–14 (cit. on pp. 38, 39).

[27] T. Jia et al. «A 12nm Agile-Designed SoC for Swarm-Based Perception
with Heterogeneous IP Blocks, a Reconfigurable Memory Hierarchy, and
an 800MHz Multi-Plane NoC». In: Proceedings of the 48th European
Solid-State Circuits Conference (ESSCIRC 2022). 2022 (cit. on pp. 40,
41).

[28] K. Bai. A Comprehensive Introduction to Different Types of Convolu-
tions in Deep Learning. Towards Data Science. url: https://towards
datascience.com/a-comprehensive-introduction-to-different-
types-of-convolutions-in-deep-learning-669281e58215 (cit. on
p. 43).

[29] How to: design an accelerator in C/C++ (Xilinx Vivado HLS). url:
https://www.esp.cs.columbia.edu/docs/cpp_acc/cpp_acc-
guide/ (cit. on p. 44).

92

https://www.esp.cs.columbia.edu
https://www.esp.cs.columbia.edu
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://www.esp.cs.columbia.edu/docs/cpp_acc/cpp_acc-guide/
https://www.esp.cs.columbia.edu/docs/cpp_acc/cpp_acc-guide/

BIBLIOGRAPHY

[30] ESP Softmax Accelerator. url: https://www.esp.cs.columbia.edu/
prebuilt/mentor_cpp_acc/ (cit. on p. 45).

[31] How to: design an accelerator in C/C++ (Mentor Catapult HLS).
url: https://www.esp.cs.columbia.edu/docs/mentor_cpp_acc/
mentor_cpp_acc-guide/ (cit. on p. 45).

[32] Algorithmic C (AC) Datatypes Reference Manual. Siemens EDA. 2022
(cit. on p. 48).

[33] L. P. Carloni. «From Latency-Insensitive Design to Communication-
Based System-Level Design». In: Proceedings of the IEEE 103.11 (2015),
pp. 2133–2151 (cit. on p. 52).

[34] ESP - The ESP Vision. url: https://www.esp.cs.columbia.edu
(cit. on p. 70).

93

https://www.esp.cs.columbia.edu/prebuilt/mentor_cpp_acc/
https://www.esp.cs.columbia.edu/prebuilt/mentor_cpp_acc/
https://www.esp.cs.columbia.edu/docs/mentor_cpp_acc/mentor_cpp_acc-guide/
https://www.esp.cs.columbia.edu/docs/mentor_cpp_acc/mentor_cpp_acc-guide/
https://www.esp.cs.columbia.edu

	List of Tables
	List of Figures
	Neural Networks
	Deep Neural Networks
	Convolutional Neural Networks
	Case studies

	Hardware Accelerators
	High Level Synthesis

	Embedded Scalable Platform
	2D-Convolution Accelerator
	2D Convolution
	ESP Accelerator Design
	Accelerator Files Organization
	The Sequential Architecture
	The Hierarchical Architecture

	Co-Simulation and Validation
	Validation Results

	ESP Heterogeneous Integration
	FPGA Prototyping

	Optimized 2D-Convolution Accelerator
	2D Convolution with Sliding Window
	Synthesis Results and Comparisons

	Bibliography

