
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

High-level design of a Depthwise
Convolution accelerator and SoC

integration using ESP

Supervisors

Prof. Mario Roberto CASU

Dott. Luca URBINATI

Candidate

Riccardo CAPODICASA

A.Y. 2021/2022

Summary

One of the hardest challenge that industry had to front in the last few years was
finding a solution to understand the content of an image in a fully automatic way,
this branch of study is called "Computer Vision". According to LDV Capital, the
number of cameras around the world will proliferate to at least 220% or 45 billion
by 2022. This impressive forecast gives one of the reasons why we need techniques
to process and classify images in an effective way. From this, one of the most
challenging problem in computer vision is "Object Detection", that is the capability
to locate object instances inside an image. In order to solve effectively not only
the object detection problem, but also an entire set of very complex problems like
speech recognition, in 1950s the computer scientist John McCarthy, coined a totally
new paradigm called Artificial Intelligence (AI) or "the science and engineering of
creating intelligent machines that have the ability to achieve goals like humans do".
The goal of this thesis is to realize an hardware accelerator that implements the
Depthwise Convolution algorithm, a light-weight convolution algorithm used in
Deep Neural Networks targeting mobile applications.
The accelerator is coded in C++, synthesized with High Level Synthesis (HLS) using
Catapult HLS and integrated in a System On Chip with a RISC-V processor using
ESP (Embedded Scalable Platforms), an open source tool developed by Columbia
University. ESP gives the possibility to design accelerators and to integrate them
in a SoC, together with processors, memory tiles and input/output interfaces, all
connected with a Network On Chip (NoC). After the design phase of the C++ code,
we went through the validation, synthesis and simulation steps in order to verify
the correct behavior of the Depthwise accelerator. Then we have integrated it into
a complete System On Chip (SoC) using the ESP design flow. The realized SoC is
composed by our accelerator tile, one memory tile, one I/O tile and one processor
tile. In particular, the CPU is a 64-bit Ariane RISC V soft-processor. Finally,
after a preliminary simulation and validation phase in Modelsim of the complete
SoC, we have implemented it into a real FPGA using a proFPGA xc7v2000t; we
have tested our Depthwise Convolution baremetal application on the soft-processor
and in particular, we have measured the execution time of the algorithm for both
general purpose CPU and dedicated hardware accelerator.

ii

The results have highlighted the differences in terms of speed between our acceler-
ator and the general purpose soft-processor. In fact, using the same convolution
parameters, the accelerator takes 15.92 µs to complete the depthwise algorithm,
while the CPU takes 231.48 µs. This is an increment in speed of 93.12%. As last
step we performed a design-space exploration exploiting the flexibility of HLS to
quickly change the accelerator design varying different HLS directives. In particular,
we tried to apply different architecture optimizations in order to find a Pareto
set of solutions in the Layer Latency vs Area space, spanning from low FPGA
resource utilization and high latency (0.0882% of LUTs and 229.1 ms) to high
FPGA resource utilization and low latency (0.1722% of LUTs and 139.8 ms).
Thanks to this Design Space Exploration, a hardware designer will easily find the
right depthwise accelerator to integrate in her ESP-based SoC that satisfies the
overall area and latency constraints.

iii

Acknowledgements

First of all, I want to thank my Family for allowing this to come true. Without
them, I would never have been able to get where I am now and be who I am.
I want to thank Sara, who for so many years has supported me in everything I do,
and is always at my side in every important step of my life.
I want to thank Davide, Ciro and Nico, who are now like a second family always
ready to support me and help me in times of difficulty.
I want to thank Nino and all my classmates, with whom I shared the joys and
sorrows of this journey made of many satisfactions but also many curses.
I want to thank all the friends with whom I shared the summers and all my most
precious memories.
I want to thank Prof. Casu for giving me the opportunity to work on this interesting
project.
I want to thank Luca, who during these months has constantly helped me with
evening meetings on Teams long hours and hours trying to understand and solve
the most absurd problems.
Last but not least, I want to thank myself for never giving up a single day and
being able to achieve this important goal, despite the difficulties.

iv

Table of Contents

List of Tables viii

List of Figures x

1 Introduction 1
1.1 The object detection problem . 1
1.2 Artificial Intelligence: a new paradigm 4
1.3 Thesis focus . 6
1.4 Thesis outline . 7

2 Neural Networks and DNNs 9
2.1 What is a Neural Network? . 9

2.1.1 Neural Networks learning process 11
2.1.2 Different types of DNNs . 13

2.2 Convolutional Neural Networks . 16
2.3 Energy Efficient Convolutions . 20

2.3.1 Depthwise Convolution . 20

3 Embedded Scalable Platforms (ESP) 25
3.1 What is ESP . 25

3.1.1 NoC Architecture . 27
3.1.2 Processor Tile . 28
3.1.3 Memory Tile . 28
3.1.4 Accelerator Tile . 29
3.1.5 Auxiliary Tile . 30

4 Design an accelerator using the ESP flow 33
4.1 Design an accelerator using HLS . 33

4.1.1 Accelerator interfaces and internal structure 34
4.1.2 Available templates and automatic code script 35

4.2 Catapult HLS design flow . 36

vi

4.2.1 Files & Directory hierarchy 37
4.2.2 hls Folder . 39
4.2.3 inc folder . 45
4.2.4 sim folder . 51
4.2.5 softmax_cxx.xml/depthwise_cxx.xml 51
4.2.6 src folder . 52
4.2.7 tb folder . 61

4.3 Accelerator Synthesis & Simulation 65

5 Create a SoC in ESP and implement it on FPGA 69
5.1 Write the Bare-metal application 71

5.1.1 baremetal folder . 71
5.2 SoC Generation . 78
5.3 SoC Simulation . 79
5.4 FPGA Implementation . 79

6 Accelerator Design Space Exploration in Catapult HLS 83

7 Conclusions 89

Bibliography 91

vii

List of Tables

6.1 Design Points Explored . 86

viii

List of Figures

1.1 Generic and Specific Objects (Image taken from [4]) 2
1.2 Types of objects detection with different boundaries around objects

(Image taken from [4]) . 2
1.3 Various challenging conditions for object detection (Image taken

from [4]) . 3
1.4 The hierarchical sub-fields of AI (Image taken from [5]) 4
1.5 Artificial neuron structure (Image taken from [5]) 5

2.1 Neural Network with a single hidden layer (Image taken from [5]) . 10
2.2 Computation of the intermediate output (Image taken from [5]) . . 11
2.3 Inference example (Image taken from [5]) 12
2.4 Backpropgataion (Image taken from [5]) 13
2.5 Feed-forward and Recurrent NNs (Image taken from [5]) 14
2.6 Fully-connected and Sparsely-connected layers (Image taken from [5]) 15
2.7 2D and high dimensional convolution in CNNs (Image taken from [5]) 16
2.8 ReLu functions (Image taken from [5]) 18
2.9 Different types of Pooling layer (Image taken from [5]) 19
2.10 Depthwise Convolution (Image taken from [7]) 21
2.11 Depthwise Separable Convolution (Image taken from [7]) 23

3.1 ESP design and integration flow (image taken from [9]) 26
3.2 Example of a 3 x 3 grid structure in ESP (image taken from [9]) . . 26
3.3 Detailed NoC architecture and interconnection with the different

tiles (image taken from [9]) . 28
3.4 ESP Debug Link application (image taken from [16]) 30

4.1 Common structure of an ESP accelerator tile (image taken from [9]) 34
4.2 esp root folder . 37
4.3 accelerators folder . 37
4.4 catapult_hls folder . 38
4.5 softmax accelerator folder . 38

x

4.6 hw folder . 38
4.7 hls folder . 39
4.8 build_prj_top.tcl . 39
4.9 softmax build_prj.tcl: PLM dimension 40
4.10 depthwise build_prj.tcl: PLM dimension 41
4.11 softmax build_prj.tcl (input files) 41
4.12 depthwise build_prj.tcl: input files 42
4.13 softmax build_prj.tcl: clock period 42
4.14 depthwise build_prj.tcl: clock period 43
4.15 softmax build_prj.tcl: interfaces and PLMs 43
4.16 depthwise build_prj.tcl: interfaces and PLMs 44
4.17 depthwise accelerator structure . 44
4.18 softmax conf_info.hpp . 45
4.19 depthwise conf_info.hpp . 46
4.20 softmax fpdata.hpp . 47
4.21 depthwise fpdata.hpp . 48
4.22 softmax.hpp . 49
4.23 depthwise.hpp: Maximum convolution parameters 50
4.24 depthwise.hpp: PLMs declaration 51
4.25 softmax_cxx.xml . 51
4.26 depthwise_cxx.xml . 52
4.27 src folder . 52
4.28 Basic Block Architecture . 53
4.29 Hierarchical Block Architecture . 54
4.30 softmax.cpp: Configure . 55
4.31 depthwise.cpp: Configure . 56
4.32 softmax.cpp: Load . 57
4.33 depthwise.cpp: Load . 58
4.34 softmax.cpp: Store . 59
4.35 depthwise.cpp: hier top function . 60
4.36 softmax.cpp (hier) . 61
4.37 softmax main.cpp (Configuration) 62
4.38 depthwise main.cpp (Configuration) 63
4.39 softmax main.cpp (Inputs writing) 64
4.40 depthwise main.cpp (Inputs writing) 64
4.41 softmax.cpp (Validation) . 65
4.42 socs folder . 66
4.43 depthwise waveforms (Configure & Load) 66
4.44 depthwise waveforms (Compute) . 67
4.45 depthwise waveforms (Store) . 67

xi

5.1 ESP GUI (Image taken from [9]) 69
5.2 softmax.c (Parameters & Registers definition) 72
5.3 depthwise.c (Parameters & Registers definition) 73
5.4 softmax.c (buffer initialization function) 74
5.5 depthwise.c (buffer initialization function) 75
5.6 softmax.c (main function memories definition) 76
5.7 depthwise.c (main function memories definition) 76
5.8 softmax.c (accelerator run) . 77
5.9 Depthwise accelerator GUI configuration 78
5.10 SoC RTL Simulation . 79
5.11 ProFPGA XC7V2000T connected to a ProFPGA Quad Motherboard 80
5.12 FPGA Programming . 80
5.13 FPGA results on minicom . 81

6.1 Depthwise loops . 84
6.2 Channels Loop in the Catapult HLS Scheduler for a design with 16

Channels and UF=16 design . 85
6.3 LUTs utilization vs Layer Latency design space (Pareto points are

connected with a solid line) . 87

xii

Chapter 1

Introduction

1.1 The object detection problem
One of the hardest challenge that industry had to front in the last few years was
finding a solution to understand the content of an image in a fully automated
way: this branch of study is called "Computer Vision". According to LDV Capital,
the number of cameras around the world will proliferate to at least 220% or 45
billion by 2022 [1]. This impressive forecast gives one of the reasons why we need
techniques to process and classify images in an effective way. One of the most
challenging problem in computer vision is "Object Detection", that is the capability
to locate object instances inside an image. Essentially, given an input image, the
goal of the algorithm is to determine if there are instances of specific objects or not
in it, and if it finds the desired targets, to return also the spatial location of those
instances. We could make an endless list of possible applications on this topic,
for example a video-surveillance system that automatically recognize the license
plate of a car that is making a traffic infraction [2] or an algorithm that with a
better accuracy than traditional techniques is capable to diagnose cancer just from
an histopathological image [3]. These examples help us to understand that object
detection is an important problem for society. Object detection is divided in two
different approaches: the first is the recognition of a broad set of generic object
categories, the second is the recognition of specific object categories. We can see
some examples in Fig. 1.1. Once the object is detected, its spatial location is
often highlighted with a rectangular bounding box (the most used in practice), a
pixel-wise segmentation mask or a closed boundary [4] as reported in Fig. 1.2 (a),
(b) and (c) respectively.

1

Introduction

Figure 1.1: Generic and Specific Objects (Image taken from [4])

Figure 1.2: Types of objects detection with different boundaries around objects
(Image taken from [4])

Why is this technique so challenging? First of all, we have to find and classify
all the object instances inside our image from a pre-determined set of object classes
(Object Classification) in Fig 1.2 (a). Then in case we want to recognize a dog, we
know that there are a lot of different dogs in the world, with different shapes, colors,

2

Introduction

sizes, and most importantly, we can have the same dog that appears differently in
multiple images. In fact it can have different orientations, levels of zoom, poses or
light exposures. So our classifier needs to take care of all of these options in order
to recognize a dog in every possible scenario. We have also the spatial localization
requirement, so we need to check and understand where each object is inside the
image. Some examples of what discussed above are in Fig. 1.3.

Figure 1.3: Various challenging conditions for object detection (Image taken from
[4])

We can identify two different strategies to solve the object detection problem:
high accuracy detection and power efficient detection [4]. The optimal decision
is a trade-off between these two approaches in order to find the best solution
for the specific application. Now that we are aware of the complexity behind a
correct detection of an object, we need an accurate and efficient model in order to
implement this algorithm.

3

Introduction

1.2 Artificial Intelligence: a new paradigm
In order to solve effectively not only the object detection problem, but also an
entire set of very complex problems like speech recognition, a totally new paradigm
is necessary: Artificial Intelligence (AI). It "the science and engineering of creating
intelligent machines that have the ability to achieve goals like humans do", according
to McCarty’s definition dated back to 1950s[5]. So the AI concept is not new but
only starting from 1990s it started to be applied to solve real problems [6], because
of the exponential growth of computer performances, lower cost and grater capacity
of memories and last but not least the huge amount of data available on internet.
Inside AI we can find many other hierarchical sub-fields, as we can see in Fig. 1.4.

Figure 1.4: The hierarchical sub-fields of AI (Image taken from [5])

1. The first layer is Machine Learning or "the field of study that gives computers
the ability to learn without being explicitly programmed" as Arthur Samuel
defined in 1959 [5]. This is a revolutionary approach because in this way
we can write programs that will be able to automatically learn things and
modify themselves dynamically in real time during their execution. The
main limitation of this method is that these types of algorithms can handle
effectively only specific tasks and we need to perform a preliminary training
procedure in order to set their parameters needed for a correct execution.

4

Introduction

2. The second layer that is immediately inside the machine learning field is the
so called Brain-Inspired computation. This layer is focused on implementing
algorithms trying to emulate the human brain that indeed is the best working
machine capable of solving almost every problem by learning [5]. The approach
of these algorithms is to replicate some features that are strictly related to
the working principle of the human brain. In order to understand how this is
done, we need to introduce how the brain is supposed to work accordingly to
the last researches. First of all, we need to know that the main computational
elements of the brain are called neurons. All neurons are connected each
other through two different links: the first one is the dendrite, that enters the
neuron, while the second is the axon, that leaves the neuron. Essentially, one
neuron takes a signal that comes from a dendrite as input, performs some
computations and then provides an output that exits from an axon. These
input and output signals are also called "activations" [5] and the connection
between an axon and other dendrites is called synapse.

Figure 1.5: Artificial neuron structure (Image taken from [5])

The peculiar thing of the synapse is that it scales its input signals xi by weight
factors wi as we can see from Fig. 1.5. We need to underline that nowadays
the real behavior of our brain is still unknown and this method is only an
interpretation of what we know so far about it. Furthermore, we are not able
to completely reproduce this behavior and in order to do that we need to
introduce some simplifications that make AI still far from a real human brain.

3. In the next layer, inside the Brain-Inspired computation, we have an area
that is called Spiking Computing. It derives from the fact that, in reality, the

5

Introduction

signals that come in the synapses are electrical pulses and the information
that will be read by the neuron is not only related to the spike’s amplitude,
but also to its arrival time.

4. Inside Brain-Inspired there is also another important area called Neural
Networks that in turns contains "Deep Learning". These two sets will be the
focus of the next chapter.

1.3 Thesis focus
The goal of this thesis is to realize an hardware accelerator that implements the
Depthwise Convolution algorithm, a light-weight convolution algorithm used in
Deep Neural Networks targeting mobile applications.
The accelerator is coded in C++, synthesized with High Level Synthesis (HLS) using
Catapult HLS and integrated in a System On Chip with a RISC-V processor using
ESP (Embedded Scalable Platforms), an open source tool developed by Columbia
University. ESP gives the possibility to design accelerators and to integrate them
in a SoC, together with processors, memory tiles and input/output interfaces, all
connected with a Network On Chip (NoC). After the design phase of the C++ code,
we went through the validation, synthesis and simulation steps in order to verify
the correct behavior of the Depthwise accelerator. Then we have integrated it into
a complete System On Chip (SoC) using the ESP design flow. The realized SoC is
composed by our accelerator tile, one memory tile, one I/O tile and one processor
tile. In particular, the CPU is a 64-bit Ariane RISC V soft-processor. Finally, after
a preliminary simulation and validation phase in Modelsim of the complete SoC, we
have implemented it into a real FPGA using a proFPGA xc7v2000t; we have tested
our Depthwise Convolution baremetal application on the soft-processor and in
particular, we have measured the execution time of the algorithm for both general
purpose CPU and dedicated hardware accelerator. The results have highlighted
the differences in terms of speed between our accelerator and the general purpose
soft-processor. In fact, using the same convolution parameters, the accelerator
takes 15.92 µs to complete the depthwise algorithm, while the CPU takes 231.48 µs.
This is an increment in speed of 93.12%. As last step we performed a design-space
exploration exploiting the flexibility of HLS to quickly change the accelerator
design varying different HLS directives. In particular, we tried to apply different
architecture optimizations in order to find a Pareto set of solutions in the Layer
Latency vs Area space, spanning from low FPGA resource utilization and high
latency (0.0882% of LUTs and 229.1 ms) to high FPGA resource utilization and low
latency (0.1722% of LUTs and 139.8 ms). Thanks to this Design Space Exploration,
a hardware designer will easily find the right depthwise accelerator to integrate in
her ESP-based SoC that satisfies the overall area and latency constraints.

6

Introduction

1.4 Thesis outline
The reminder of this thesis is organized as follows:

• Chapter 2: introduces Neural Networks and Deep Neural Networks focusing
on Convolutional Neural Networks, providing a small description of all the
main layers of this type of networks. In particular the main focus is on
their mathematical formulations. It deals especially with the standard 2D-
convolution and the depthwise convolution algorithms and their comparison
in terms of reduction of operations and parameters.

• Chapter 3: explains more in detail what is ESP and how it works, starting
from all the flows that the user can use in order to design her own project and
how ESP implements all the blocks that are already available and that are
automatically inserted when creating an SoC.

• Chapter 4: shows how to design an accelerator in ESP and how to design an
accelerator using Catapult HLS in ESP. First, it explains the directory tree of
ESP. Then, it focuses on the main file and folders describing how to modify
each file and each sample source code provided by ESP in a tutorial-like way in
order to make very easy to replicate the steps of this thesis. Finally it explains
the behavior of the accelerator showing the simulation and validation results
obtained in Questasim. So this manuscript wants to contribute to improve the
poor documentation regarding this particular design flow Catapult HLS+ESP.

• Chapter 5: follows the same approach of the previous chapter. Initially it
shows how to create a custom SoC using the ESP GUI. Them it focuses on
how to modify the application code in order to make it work with the Catapult
HLS design flow. It concludes by showing shows how to program and test
our design on the target FPGA providing the simulation results obtained in
Modelsim.

• Chapter 6: shows how we can perform the design space exploration in
Catapult HLS. Then it discusses the effects of the tuned design parameters
and HLS directives on the latency and area choosing different optimization
techniques.

• Chapter 7: it reports the relevant results that comes out after all the tests that
are executed on hardware and outlines some possible future works associated
to this project.

7

Chapter 2

Neural Networks and DNNs

2.1 What is a Neural Network?
Resuming the concepts from the previous chapter, we have seen what AI is and,
in particular, we have analyzed all the sub-fields related to this topic, going from
Machine Learning to Artificial Neural Networks (ANNs) passing through Brain-
Inspired computing. The idea that a neuron works by adding the weighted sum
of the input values is the source of inspiration for ANN. In particular, as we have
seen in the previous chapter, these weights are applied directly to the input axons
in order to provide in output a scaled version of their inputs. However a neuron
does not provide in output only this simple weighted sum but a non-linear version
of it. The non-linearity is introduced by a non-linear function called "activation
function" [5]. To keep the one-to-one correspondence between the biological brain
model and the artificial one, the standard approach is to apply some non-linear
operations to this scaled sum. Also in ANNs we do not have only a single operation
but we will have a sort of cascade of different neurons all connected by different
synapses. In practice, what happens in the simplest case of a three layer ANN is
that the neurons that are in the "input layer" perform an operation on their inputs,
then they provide a particular set of outputs that are be propagated through the
synapses in a middle layer. This middle layer often called "Hidden Layer" repeats
the previous weighted sum operation followed by a non-linearity on its inputs and
through other synapses propagates its outputs to the "output layer". Finally, the
"output layer" provides the final output of the entire ANNs. Often in literature the
output of the neurons are also called "activations" while the synapses are called
"weights". we can see this network in Fig. 2.1 [5].

9

Neural Networks and DNNs

Figure 2.1: Neural Network with a single hidden layer (Image taken from [5])

A mathematical formulation that describes how the hidden layer is obtained
from the input layer is:

Yj = f(
3∑

i=1
Wij · Xi + bj) (2.1)

We can visually see this equation in Fig. 2.2.

Wij are the weights, Xi are the input activations, Yj are the output activations, bj

is a simple bias term of the j-th output neuron and f is the non-linear function of
the considered layer. As we said before, this is the simplest possible configuration,
in fact inside the Neural Networks field there is another area called "Deep Learning"
recalling Fig. 1.4. Within the category of Deep Learning, ANNs become "Deep
Neural Networks" (DNNs). These networks have more than three layers that means
more than one single hidden layer and they can reach also thousands of layers [5].
The great advantage of this approach is that using a DNN we can assign to each
layer the capability to identify a particular feature from the input. The result is
that combining the features extracted by each layer the network becomes more
powerful and achieves better performance for a given task [5]. If we translate this
into the Object Detection problem, we can have for example a DNN where the
pixels of an image are given in input to the first layer.

10

Neural Networks and DNNs

Figure 2.2: Computation of the intermediate output (Image taken from [5])

The output of this initial layer could be for example the interpretation of some
low-level features like lines and edges. Then the next layer will take the output
features of the previous layer as inputs and will modify them in order to identify
more complex (high-level) features like shapes. After that we will have another layer
combining again all the resulting features to identify something more and more
complex. Finally with all these information derived from the combined features,
the network provides a probability that the initial input corresponding to these
features belongs to a specific object class.

2.1.1 Neural Networks learning process
The learning process, also known as "Training", is performed by modifying the
values of the weights (and eventually also of the bias) of the network [5]. In order to
test the performances of our program, we need to run it after the training process
and check the validity of the outputs with respect to the known inputs. This is
called "Inference" process[5]. If we refer to the Object Classification problem, we
can say that when we use a DNN we provide in input the pixels of our image and
at the output we will have a vector of probabilities that the object inside the image
belongs to a known class. The network will predict the object in the image to be
part of the class with the higher output probability or score like in Fig. 2.3.

11

Neural Networks and DNNs

Figure 2.3: Inference example (Image taken from [5])

The goal of the training process is to adjust the weights of the network to maximize
the probability of a correct class prediction and in the meantime to minimize the
probability of an incorrect one. In the ideal case we would have a DNN that
has a 1.0 probability corresponding to the correct class and a probability of 0.0
corresponding to all the incorrect classes.

The gradient descent technique

Considering the case of "Supervised Learning", where each training sample is
associated to a "label", that is the correct/true class it belongs to, during training
we are interested in the difference1 between the true class score and the one
computed by our DNN with the current set of weights: this difference is called
"Loss" (L) [5]. So the actual goal of the training process is to find a specific set of
weights that minimizes this loss on the input data set that we are processing. This
data set is also called "training set". The most used technique to do this operation
is called "Gradient Descent". In short a multiple of the gradient of the loss relative
to each weight (wij) is used to update the weight itself at the end of each "epoch",
that is the time that a network takes to process all the samples in the training set.
The equation that describes this process for an epoch is:

wt+1
ij = wt

ij − α · ∂L

∂wij

(2.2)

where α is called "Learning Rate" [5], t is the epoch, i is used to iterate on the data
inside a layer and j is used to iterate among the layers. So as we can see from the
equation this is an iterative process and it tells us how the weights change at each

1In reality there are a lot of Loss Functions and in general they can do a lot of different
operations not only the simple difference

12

Neural Networks and DNNs

epoch. Usually, in order to efficiently do this gradient operation, a technique called
"Backpropagation" is used. We can visually see this operation in Fig. 2.4 [5]. Since
the focus of the thesis is not on training, but on inference of DNNs on hardware
accelerators, we suggest resource [5] to the interested reader.

Figure 2.4: Backpropgataion (Image taken from [5])

2.1.2 Different types of DNNs
Depending on the application, we can choose between different types of Deep
Neural Networks, where each one is specifically made to be particularly efficient
in solving specific problems. In particular, a first distinction that we can make is
related to how the network computes the output starting from the input and we
can identify two possible solutions:

• Feed-forward networks: in this type of networks, each output is computed
using as inputs the outputs coming from the previous layer. Following this
idea, the final outputs of the network are simply obtained using as inputs the
outputs of the second to last layer. In this Deep Neural Networks we do not

13

Neural Networks and DNNs

need to memorize any information because the outputs of a certain layer are
always independent on the outputs obtained in a previous computation in the
same layer [5].

• Recurrent neural networks: on the contrary, in this type of networks we
need an internal memory in order to store some intermediate outputs that
will be used as inputs for the subsequent computations. In other words, we
are computing new outputs using new inputs and previous outputs from the
same layer [5].

We can see these two different structures in Fig. 2.5

Figure 2.5: Feed-forward and Recurrent NNs (Image taken from [5])

A second distinction is instead related to how the weights are connected from a
layer to the next one:

• Fully-connected layers: In the Fully-connected layer (FC) all the layer’s
outputs are connected to all the next layer’s inputs. Essentially for each output
neuron of a certain layer we make the weighted sum using all the neurons
of the previous layer as inputs. Since each couple of neurons between two
layers requires a unique weight the total number of weights of a FC network
is huge, as well as the required memory to store them and the number of
multiplications between inputs and weights to perform each inference. If all
the layers of a DNN are made in this way, this type of networks is also called
"multi-layer perceptrons (MLP)"

14

Neural Networks and DNNs

• Sparsely-connected layers: Differently from the previous case, with sparsely-
connected layers we can remove some connections between the outputs of a
layer and the inputs of the next layer simply forcing the relative weights to
zero [5].

• Weight sharing: There is also a third approach that is called weight sharing.
In this case if an output is only dependent on a specific set of inputs or on a
fixed window of inputs, we can physically delete the connection with the other
inputs. Then we can share every time the weights that belong to a specific
window in order to compute in a very efficient way the relative output [5].

In Fig. 2.6 we can see the differences between the Fully-connected and Sparsely-
connected layers.

Figure 2.6: Fully-connected and Sparsely-connected layers (Image taken from [5])

One of the most common windowed and weight-shared layer is the so called
Convolutional layer or CONV layer that, as suggested by the name, does a convo-
lution operation between inputs and weights inheriting all the features from the
sparsely-connected layers and weight-shared layers.

15

Neural Networks and DNNs

2.2 Convolutional Neural Networks

In this section we analyze in detail a particular Deep Neural Network called
Convolutional Neural Network or simply CNN. This is one of the most used Neural
Network in Object detection problems and its peculiarity is the use of a multiple
set of convolutional layers in order to determine its final output. Each layer
provides to the next one an higher level of abstraction of the input, also called
"Feature Map" or simply "fmap" that, layer-by-layer, extract and retains the most
important information of that specific layer of the network [5]. A convolutional
layer takes a tensor as input (i.e. a three-dimensional matrix) that could be seen
as a stack of feature maps (two-dimensional matrices called "Channels") along the
third dimension. Then it applies a convolution operation with another tensor that
could be seen as a stack of weights (two-dimensional matrices called "kernels") along
the third dimension. it does an element-wise multiplication between a channel and
the specific associated 2D kernel, then it sums each partial result obtaining one
value of the output feature map (ofmap), in this way it will have in output one
single channel. One possibility is to convolve multiple 3D kernels with the same
input tensor in order to have in output a multi channel ofmap. We can see this
operation in Fig. 2.7.

Figure 2.7: 2D and high dimensional convolution in CNNs (Image taken from [5])

16

Neural Networks and DNNs

Another possible operation is using a multiple set of ifmaps called "Batches" by
using for all of them the same filter tensor. We can also try to write in a formal
way the specific operation that is done by a convolutional layer. First of all we
need to define all the parameters that are needed:

• N = Batch size, with index z

• M = number of ofmap channels, with index u

• C = number of ifmap channels

• H/W = ifmap height and width

• R/S = filters height and width

• E/F = ofmap height and width, with indexes y and x

In particular we set:

• 0 ≤ z < N

• 0 ≤ u < M

• 0 ≤ x < F

• 0 ≤ y < E

• E = (H − R + 2P)/U

• F = (W − S + 2P)/U

Where we have:

• O = ofmaps matrices

• I = ifmaps matrices

• W = filters matrices

• B = biases matrices

• U = stride value

• P = Padding value (zero padding applied to each side)

17

Neural Networks and DNNs

Now we can write our equation [5]:

O[z][u][x][y] = B[u] +
C−1∑
k=0

S−1∑
i=0

R−1∑
j=0

I[z][k][Ux + i][Uy + j] · W[u][k][i][j] (2.3)

Nowadays a modern Convolutional Neural Network is composed by multiple layers,
not only CONV layers. First of all, if we want to perform Object classification
we need a Fully Connected layer at the end of the network simply because after
the feature extraction we need to classify the results in order to correctly detect
the target object between all the possible classes. Not only, in fact a large set of
optional layers has been used in order to improve the entire network performances.
Now we analyze the most used in the order in which they are usually stacked:

1. Non Linearity Layer: After each convolutional layer it is usually inserted
a layer in order to introduce a non linearity function directly on the new
feature map. In the literature have been proposed many non linear functions.
One of the most used function in the past was the sigmoid function or the
hyperbolic tangent. Nowadays, due to its good ratio between network accuracy
and implementation simplicity, the rectified linear unit (ReLU), defined as
y = max(0, x) has become very popular [5], with all its variations like leaky
ReLU or exponential ReLU, we can summarize all these functions in Fig. 2.8.

Figure 2.8: ReLu functions (Image taken from [5])

2. Pooling Layer: Then we can optionally insert the so called Pooling layer that
reduces the feature maps size, keeping the number of channels constant. This

18

Neural Networks and DNNs

pooling computation is applied to each channel separately and has the big
advantage to give to the network the capability to be insensitive to any possible
small noises (for example small shifting of our values) [5]. This operation is
done dividing the original feature map into equal sub matrices. For example
if we have a 4x4 feature map, we can divide it into four 2x2 little matrices.
After that, we can apply two different techniques:

(a) Max Pooling: The new ofmap is made by the maximum numbers of
each sub matrix.

(b) Average Pooling: The new ofmap is constituted by the average of each
sub matrix.

In Fig. 2.9 we can see these pooling operations.

Figure 2.9: Different types of Pooling layer (Image taken from [5])

3. Normalization Layer: A very useful operation that is applied to input data
is to normalize inputs in order to control their distribution and then accelerate
the training process improving also the overall accuracy. After that, in modern
networks, the "Batch Normalization" (BN) technique is applied, in practice the
previous normalized value is further scaled and shifted using three additional
parameters γ, β and ϵ. γ and β are learned from training while ϵ is a constant
used to avoid numerical problems [5]. We can subdivide this operation in four
steps:

(a) At each batch all the mean and standard deviation values are computed
for every feature map for every "x,y" position in the input matrix.

(b) Then each feature map is normalized for the corresponding values of mean
and standard deviation in order to have a zero mean (µ = 0) and a unit
standard deviation (σ = 1).

19

Neural Networks and DNNs

(c) After that the Batch normalization is applied following this equation:

y = x − µ√
σ2 + ϵ

· γ + β (2.4)

(d) Finally this operation is repeated for each training batch.

After the training process all the parameters: mean, standard deviation, γ,
β and ϵ will be fixed and they will not change during the inference process.
It is important to notice that this normalization layer+BN is usually applied
between the convolutional layer and the non linear layer.

2.3 Energy Efficient Convolutions
Object detection nowadays is not the only challenge that we have to face. In fact, the
rise of mobile devices and their widespread diffusion introduce the problem of power
efficiency. This is because we want to use Machine Learning algorithms without
draining the available battery and at the same time keeping all the advantages
related to their very high performances. What we can do is defining new efficient
ways to compute the convolution operation in order to build some energy efficient
CONV Layers.

2.3.1 Depthwise Convolution
Depthwise Convolution is one of the most popular algorithm used to bring Im-
age Classification capabilities on mobile devices with very high energy efficiency
compared to the classical Convolution algorithm. In Depthwise convolution we
apply each kernel to each ifmap. For example, if we have a filter with 3 channels
and an image with 3 channels, what it does is convolving the corresponding image
with corresponding channel and then stacking them back to create the final output
feature map [7] as shown in Fig. 2.10.

A standard 2D convolution takes a DF x DF x M feature map tensor F as input
and produces a DO x DO x N feature map tensor G where DF is the spatial width
and height of a square input feature map, DO is the spatial width and height of
a square output feature map, M is the number of input channels and N is the
number of output channels [8]. The weight tensor K of a standard convolution is
DK x DK x M x N , where DK is the width and height of a square kernel. Using
these parameters, we know that the ofmap, assuming a stride of one and no padding
is computed as [8]:

Gk,l,n =
∑
i,j,m

Ki,j,m,n · Fk+i−1,l+j−1,m (2.5)

20

Neural Networks and DNNs

Figure 2.10: Depthwise Convolution (Image taken from [7])

and from this we can derive the MAC operations number for the algorithm that
will be:

Cconvolution = DK · DK · M · N · DF · DF (2.6)

As we can see from the equation above, the computational cost of a 2D convolution
depends linearly on the number of input channels, output channels, feature map size
and kernel size. This is because with the standard convolution we filter and combine
at the same time the ifmap into the ofmap, so the computational cost depends
linearly both on the kernel size (responsible for filtering) and on the number of
output channels (responsible for combining). With the Depthwise convolution we
do not perform the channel-wise sum of the output features, instead we stack them
together into a multi-channel ofmap. In order to see the difference between the
Depthwise and the standard convolution MAC operations number, we can write
down the equation that tells us how the ofmap is computed using the Depthwise
Convolution:

G’k,l,m =
∑
i,j

K’i,j,m · F’k+i−1,l+j−1,m (2.7)

Now K’ is the depthwise convolutional kernel that has a size of DK x DK x M .
Differently from the standard convolution, in the depthwise operation we have that

21

Neural Networks and DNNs

the m-th filter in the tensor K’ is applied directly to the m-th channel in the input
feature map F’ producing the m-th channel of the output feature map G’ [8]. Now
we derive the MAC operations number for the Depthwise Convolution [8].

Cdepthwise = DK · DK · M · DF · DF (2.8)

We can notice how the Depthwise Convolution is way more efficient compared with
the standard convolution because we lose the linear dependency on the number
of output channels N . Given a CNN, a 2D convolution layer cannot be directly
substituted with a Depthwise Convolution because we will lose the channel-wise
addition of the output features. For this purpose we use the so called Depthwise
Separable Convolution.

Depthwise Separable Convolution

The Depthwise Separable Convolution is an algorithm that separate a standard
convolution into a Depthwise Convolution followed by a 1 x 1 2D convolution,
called Pointwise Convolution. We can see this algorithm in the example showed in
Fig. 2.11

So, while a standard convolution filters and combines at the same time the ifmap
into the ofmap, the Depthwise Separable Convolution splits these operations in
two different "sub-operations", one for filtering and one for combining. This is
exactly like dividing the original CONV Layer in two different layers, one for each
sub-operation. This separation drastically reduces the computational cost of the
algorithm. Recalling the computational cost of the Depthwise Convolution of
2.8 and adding the contribution of the Pointwise Convolution we get the total
computational cost of the Depthwise Separable Convolution [8]:

Cdepthwise separable = DK · DK · M · DF · DF + M · N · DF · DF (2.9)

Finally, we can perform the comparison between the Depthwise Separable Convolu-
tion and the standard 2D convolution by simply computing the ratio between the
MAC operations number:

Creduction = DK · DK · M · DF · DF + M · N · DF · DF

DK · DK · M · N · DF · DF

= 1
N

+ 1
D2

K

(2.10)

This is really a not negligible difference.

22

Neural Networks and DNNs

Figure 2.11: Depthwise Separable Convolution (Image taken from [7])

23

Chapter 3

Embedded Scalable
Platforms (ESP)

3.1 What is ESP
Embedded Scalable Platforms (ESP) is an open-source research platform for hetero-
geneous SoC design and programming [9]. The main reason behind the development
of this tool is the exponential growth of heterogeneous computing. In fact, nowadays,
the majority of computing systems rely on highly heterogeneous SoC architectures
[9]. These architectures are called heterogeneous because they embed general-
purpose processors like CPUs, special-purpose processors like graphics processing
units, and very specialized accelerators, like image processing or speech recognition
ones, in the same SoC. This transition from homogeneous multi-core processors
to heterogeneous SoCs is driven by the need to obtain very high energy-efficient
computation [9]. Within ESP several design and integration flows for SoCs are
provided. This makes very easy to design complex and large SoCs that could be
implemented into FPGAs for testing or prototyping. With ESP is also possible to
design and implement custom accelerators using one of the following supported
design flows, also reported in Fig. 3.1 [9]:

• C/C++ with Xilinx Vivado HLS

• C/C++ with Mentor Catapult HLS

• SystemC with Cadence Stratus

• Keras, PyTorch, ONNX and TensorFlow with hls4ml [10]

• Chisel, SystemVerilog and VHDL for RTL design

25

Embedded Scalable Platforms (ESP)

Figure 3.1: ESP design and integration flow (image taken from [9])

ESP provides also an intuitive and interactive GUI in which the entire SoC is seen
like a simple tile grid and the components that we want to introduce in the SoC are
the tiles that fill this grid. The user can choose the structure of the grid selecting
how many tiles and which kind of tiles have to include in the SoC. For example, if
we choose a grid dimension of 3 x 3, we are able to create a SoC with 9 different
tiles inside, like shown in Fig. 3.2.

Figure 3.2: Example of a 3 x 3 grid structure in ESP (image taken from [9])

26

Embedded Scalable Platforms (ESP)

In ESP it is possible to choose between four different kind of tiles:

• Processor tile: it implements a CPU in the SoC;

• Accelerator tile: it an hardware accelerator in the SoC;

• Memory tile: it implements the communication mechanism between the
SoC and the main memory;

• Auxiliary tile: it implements the connection with the external peripherals.

All these tiles are interconnected with a complex multi-plane Network On Chip
(NoC) [9]. This is one of the main features of the ESP architecture because with this
approach it has a modular structure where each tile can be designed independently
from the others simplifying the entire design process. This is a completely new and
different approach. The standard approach focuses only on the processor, designing
the rest of the system depending on it. On the other hand with this modularity,
ESP moves the focus to the entire system where all its tiles are on the same level
of importance. [9].

3.1.1 NoC Architecture
The NoC is an intermediate layer used for interconnecting all the tiles in a complete
transparent way from the user point of view. This transparency is ensured by the
fact that all the tiles have specific components and interfaces called "sockets" in
order to be completely decoupled from the NoC interface. For example in Fig.
3.3 we can see the detailed architecture of a six-plane NoC where the modularity
provided by ESP with all the available tiles mentioned before is highlighted. The
description of this complex interconnection system will not be addressed by this
thesis because it is out of its scope but it is possible to read all the details in
document [9].
Now we will provide more details about all the different tiles available in ESP.

27

Embedded Scalable Platforms (ESP)

Figure 3.3: Detailed NoC architecture and interconnection with the different tiles
(image taken from [9])

3.1.2 Processor Tile
This tile allows to choose during the design phase between two different CPUs:
the RISC-V Ariane core from ETH Zurich [11, 12] and the SPARC 32-bit LEON3
core from Cobham Gaisler [13]. They provide a private L1 cache layer and both
can run baremetal applications and/or Linux operating system. This ESP tile
provides also a size configurable unified private L2 cache layer that implements a
directory-based MESI cache-coherence protocol [9]. Thanks to the NoC CPUs do
not need extra communication layers because each processor tile has an internal
local bus communication system. In particular, the LEON3 processor requires a
32-bit AHB bus interface, while the Ariane processor a 64-bit AXI interface [9]. All
the IO operations required by the CPU are directly forwarded to the NoC plane
using an APB adapter. The only custom communication protocol available for
this tile is the one that implements the protocol between the CPU, the interrupt
controller and the system timer available in the auxiliary tile.

3.1.3 Memory Tile
This tile is composed by a channel to an external DRAM [9]. In particular the
designer can choose the number of memories that the SoC should have. When a
memory tile is placed in the SoC, all the logic that manages the different partitioning

28

Embedded Scalable Platforms (ESP)

of the overall memory is automatically inferred by ESP. Inside the memory it is also
present a configurable partition that is used for implementing the Last Level Cache
(LLC). The LLC works together with the CPU L2 cache described before using the
MESI protocol [9]. This cache structure is used to support an operating system
in a Symmetric Multi-Processor configuration allowing also the configuration of a
coherent structure for the accelerators [14].

3.1.4 Accelerator Tile
This tile implements the architecture of a loosely-coupled accelerator [15]. This
specific architecture is able to perform all its tasks in a completely independent
way from the CPU and it exchanges all the data directly with the memory. In ESP
the accelerator is modeled using simple and common interfaces: load/store ports,
in order to exchange data with the memory tiles; configuration signals, used to
provide the required parameters to the accelerator including the start and done
signals. The latter is used to send an interrupt to the CPU when the accelerator
has finished its algorithm. This structure is automatically realized by the ESP
design flow. In addition, ESP provides an accelerator design flow that allows to
integrate also third-party accelerators. A particular run-time configuration that is
really important for an accelerator is the one related to the Coherence protocol
service. This feature makes the SoC extremely flexible because it allows to have in
a single SoC a perfect integration of all the implemented heterogeneous accelerators
[9]. The non-coherent DMA architecture allows an accelerator to communicate
with the memory tiles without passing through the cache hierarchy. Instead, the
fully-coherent approach allows the communication between the accelerator and an
optional private cache installed in the accelerator tile. The LLC-coherent DMA
and the coherent DMA models are supported by the ESP cache hierarchy as
an addition to the directory-based MESI protocol, in which accelerators submit
requests directly to the LLC without having a private cache. While the coherent
DMA maintain the accelerator requests consistent with regard to all of the system
private caches, the LLC-coherent DMA does not. The ESP cache hierarchy handles
the coherent DMA and fully-coherent DMA approaches completely in hardware,
while the non-coherent DMA and the LLC-coherent DMA need some additional
synchronization mechanisms implemented in software using specific HLS directives.
All these mechanisms are not explored in this thesis, but more details can be found
in [9].

29

Embedded Scalable Platforms (ESP)

3.1.5 Auxiliary Tile
This tile contains all the peripherals used by the SoC to communicate with the
external world: an UART interface, a debug link to monitor ESP SoCs on FPGA
discussed later, a digital video interface, the Ethernet NIC, and a monitor module
capable of sending performance information via Ethernet. As we have seen from
Fig. 3.3, this tile is the most complex one because, depending on the SoC structure
it has to provide all the connections required by the accelerators to the external
world and to the other tiles. We can find for example: an interrupt level proxy,
that is meant to handle the communication between the interrupt controller and
the CPU; an Ethernet proxy, that allows to access an ESP SoC via SSH protocol
remotely; a frame-buffer memory directly connected to the memory-mapped I/O
proxy, that can be used by accelerators and processors to write to the video output
for debugging purposes. In addition, ESP provides a dedicated application called
ESP Link. It allows to debug the system connecting to it remotely via Ethernet. In
case of a profpga FPGA, this is done through a dedicated Ethernet debug interface,
that is a board that has to be mounted on the profpga FPGA [9]. ESP Link has a
very simple GUI showed in Fig. 3.4.

Figure 3.4: ESP Debug Link application (image taken from [16])

As we can see, it is possible to configure the static IP of the debug unit on the
FPGA side by simply changing the IP address fields in order to make the connection

30

Embedded Scalable Platforms (ESP)

with the host. In particular, given an ESP SoC on FPGA, there are two possible
ways to access it through Ethernet from a host machine: with a direct link or
through a router. We will not provide other details because we did not use this tool,
but a better explanation is present in the ESP documentation [16]. Instead, the
other peripherals like timer, interrupt controller, bootrom and UART are controlled
directly by all the master devices, that in ESP are the other tiles, thanks to the
proxy pairs embedded in the auxiliary tile (one proxy for the master and the other
for the slave).

31

Chapter 4

Design an accelerator using
the ESP flow

The ESP accelerator design flow allows the creation and then the insertion of
a custom accelerator into the ESP accelerators library. In this way every-time
we create a new accelerator it can be automatically instantiated and used in a
SoC following the dedicated design flow. As we already discussed in the previous
chapter, it is possible to use different languages and different abstraction levels
in order to make our accelerator. We can do for example a cycle-accurate RTL
description or an un-timed behavioral HLS description, but it is also possible to
use hls4ml in order to directly synthesize an accelerator starting from deep learning
models like PyTorch or TensorFlow/Keras [9].

4.1 Design an accelerator using HLS
ESP provides several ESP-compatible accelerator templates together with HLS-
ready skeletons that, in addition to the documentation, simplifies a lot the entire
design process for the HLS flow. There are mainly three reasons behind this choice
to put a lot of effort supporting the HLS design flow [9]:

1. There are a lot of already existing algorithms written in C/C++ that could
be used with HLS to design an accelerator;

2. The use of HLS simplifies the co-design between hardware and software because
we can use the same testbench written in C language to validate both; moreover
the testbench can be used as baremetal application for tests on hardware

3. With HLS we can immediately do a functional verification simply running
our code, while using a classical hardware design we need to do a complete

33

Design an accelerator using the ESP flow

RTL simulation that takes much more time. On the other hand, HLS becomes
inefficient if we want to describe complex and detailed designs that have
particular timing, architecture, and communication constraints.

4.1.1 Accelerator interfaces and internal structure
As we said in the previous chapter, the ESP accelerator tile is a loosely-coupled
architecture [15]. It exchanges big data sets with the memory hierarchy and
carries out coarse-grained computations. Fig. 4.1 depicts the architecture and user
interface of a generic ESP accelerator.

Figure 4.1: Common structure of an ESP accelerator tile (image taken from [9])

In particular with these interfaces the accelerator can perform:

1. The communication with the processor tile using the memory-mapped registers
via the conf_info channel.

2. The configuration of the DMA controller using the load_ctrl and store_ctrl
channels.

34

Design an accelerator using the ESP flow

3. The actual data exchange with the DMA controller using the load_chnl and
store_chnl channels.

4. The notification sending mechanism when it finishes the algorithm using the
acc_done signal.

HLS implements all these channels using latency-insensitive primitives. Both in
the communication within the accelerator and in the communication across the
NoC, these primitives maintain functional correctness in the presence of latency
fluctuation. In particular, this is performed using ready and valid signals. The
valid signal notifies that the data packet in the channel in the current clock cycle is
valid, while the ready signal tells if a component is processing or not, for example
the accelerator de-asserts it when it performs a memory access. Another thing that
we can notice from Fig. 4.1 is that ESP schedules the accelerator execution in four
different phases:

1. Configure: In this phase an external software application (for example the
testbench) configures the parameters, and provides the start signal to the
accelerator using the memory-mapped registers.

2. Load: Here the accelerator using the DMA reads the data from the main
memory tile, and stores it into a private local memory (PLM) inside the
accelerator itself.

3. Compute: The accelerator performs the actual algorithm, in our case it is
the Depthwise Convolution and writes the results into a dedicated PLM

4. Store: In this last phase the accelerator writes the results into the main
memory tile from its output PLM using again the DMA mechanism.

It is important to underline that these PLMs are completely customizable by the
designer, in fact she can choose the banks organization and the amount of ports
available on them.

4.1.2 Available templates and automatic code script
ESP provides also several accelerator templates spread across all the supported
HLS flows. These templates already embed the accelerator description with the
interfaces and the internal structure discussed in the previous section. In particular,
this could be extremely useful for example to understand all the coding guidelines
and all the HLS directives that are used in order to not infer unwanted memories
in the design minimizing the overall area. An additional tool offered by ESP for
accelerator design is an interactive script that creates an accelerator skeleton that
is fully functional and HLS-ready from a set of parameters supplied by the designer.

35

Design an accelerator using the ESP flow

This skeleton contains simple templates and placeholder functions that the designer
could manually customize in order to make its own application specific accelerator.
The parameters required by the script are: unique name and ID, desired HLS
tool flow, a list of application-specific configuration registers, bit-width of the
data tokens, size of the data set and number of batches of data sets. Then, after
generating the skeleton, the designer has to customize the computing algorithm
in the corresponding computation phase of the accelerator, the generation of the
inputs and also the validation of the outputs inside the testbench and in the
baremetal software application and finally organize the PLM structure.

4.2 Catapult HLS design flow
The HLS design flow that we have chosen for this thesis is the C++ Catapult HLS
design flow. This is because right now, it is the only flow that supports the C
co-simulation in ESP. On the other hand, during the time of this thesis, it does not
support the script for the automatic generation of the code and the only support
provided by the ESP documentation is a sample accelerator that performs the
Softmax algorithm [17] with a tutorial step by step on how to implement it in a
SoC and then in a FPGA after the initial validation phase. For this reason, we
have written this chapter as a more detailed tutorial that can be integrated in the
ESP documentation. In particular, our goal is to realize a Depthwise accelerator
with these maximum parameters:

• Maximum ifmap dimension: 16 x 16

• Maximum kernel dimension: 5 x 5

• Maximum number of channels: 16

• Maximum stride: 2

• Maximum padding: 6 (3 for each side)

So we focused our attention on how to modify the Softmax example in order to
realize this accelerator, but the adopted strategy can be followed also for a generic
accelerator with minor modifications.

36

Design an accelerator using the ESP flow

4.2.1 Files & Directory hierarchy
First of all, we need to introduce how ESP is organized in terms of files and directory
hierarchy. In Fig. 4.2 we can see what is inside the esp root folder.

Figure 4.2: esp root folder

In particular, we need to focus on the tree of directories and files that regard the
accelerators. It is very useful to understand all the files that we have to modify
in order to build or debug our accelerator are located. So we need to move inside
the accelerators folder. Here we can see that there are several folders, one for each
different accelerator design flow, as shown in Fig. 4.3.

Figure 4.3: accelerators folder

For our purpose we need to go inside the catapult_hls folder. Here, as we can see
in Fig. 4.4, we have a folder for each accelerator that we have designed following
this HLS flow.

37

Design an accelerator using the ESP flow

Figure 4.4: catapult_hls folder

It is important to notice that the name of these directories is standardized
in ESP and it is $ACCELERATOR_cxx_catapult where the $ACCELERATOR
variable is the name of our accelerator. In this case we can see that we have the
sample softmax_cxx_catapult and we have also already created the folder for the
new Depthwise accelerator that is simply depthwise_cxx_catapult. Instead the
common folder contains the common files that are shared among all the Catapult
accelerators like the ESP header files. In order to see how a complete accelerator
is structured, we can go inside the softmax accelerator folder. Here we have two
different folders: an hardware folder (hw) and a software folder (sw) as shown in
Fig. 4.5.

Figure 4.5: softmax accelerator folder

In this chapter we will analyze only the hardware folder. Finally, moving inside
the hw folder, we can see the softmax accelerator directory hierarchy, shown in Fig.
4.6.

Figure 4.6: hw folder

Now we will analyze in details all the files that are contained in these directories,
showing how they must be modified in order to realize our accelerator.

38

Design an accelerator using the ESP flow

4.2.2 hls Folder
Inside this folder we have only three files as we can see from Fig. 4.7.

Figure 4.7: hls folder

build_prj_top.tcl

This file can be used in order to set some useful parameters for the HLS script.

Figure 4.8: build_prj_top.tcl

In particular as we can see from Fig. 4.8 we can select:

• C simulation with Catapult HLS, asserting the csim flag.

• High level synthesis with Catapult HLS, asserting the hsynth flag.

• RTL simulation with QuestaSim, asserting the rtlsim flag.

• Logic synthesis with Vivado HLS, asserting the lsynth flag.

39

Design an accelerator using the ESP flow

• Debugging of Catapult HLS, asserting the debug flag, which means stopping
the HLS process ad the architect step.

• Hierarchical implementation of the top level design, asserting the hier flag
(this will be discussed later in this chapter).

In this file we do not have to do any modification, but we are free to enable the
flags value. Finally the last two lines call two other scripts, the common.tcl and
the build_prj.tcl

build_prj.tcl

This is the real script that contains all the Catapult HLS directives used to
synthesize the C/C++ code of the accelerator. At the beginning of the file the
variables that will set the dimension of the PLMs used by the accelerator are
defined. In Fig. 4.9 we can see that in the Softmax example only a single PLM
dimension with 128 cells and a bitwidth of 32 bits per cell is needed.

Figure 4.9: softmax build_prj.tcl: PLM dimension

In our case we need three different memory dimensions, one for the PLM that
contains the ifmap, one for the PLM that contains the weights and another one for
the PLM that contains the ofmap, all using a word width of 32 bits. In order to
compute these sizes, we need to use the maximum dimensions that the accelerator
memories can reach. In our case we set:

• IFMAP_WORDSMAX = (INIT_WIDTHMAX + PADDINGMAX)2 ·
CHANNELS_MAX = (16 + 6)2 · 16 = 7744

• KERNEL_WORDSMAX = KERNEL_WIDTH2
MAX ·CHANNELSMAX

= 52 · 16 = 400

• OFMAP_WORDSMAX = {[(INIT_WIDTHMAX + PADDINGMAX −
KERNEL_WIDTHMAX)/STRIDEMIN] + 1}2 · CHANNELSMAX

= {[(16 + 6 − 5)/1] + 1}2 · 16 = 5184

40

Design an accelerator using the ESP flow

Fig. 4.10 shows the updated memory sized in the build_prj.tcl.

Figure 4.10: depthwise build_prj.tcl: PLM dimension

We need to do other few modifications in this file. Scrolling down in the script
we can find the section where all the source files are provided to Catapult, so we
have to replace the Softmax input files with our Depthwise input files. In Fig.
4.11 we can see the Softmax example, while in Fig. 4.12 we can see the applied
modification.

Figure 4.11: softmax build_prj.tcl (input files)

41

Design an accelerator using the ESP flow

Figure 4.12: depthwise build_prj.tcl: input files

It is possible that during the synthesis some timing errors occur, this is due to the
fact that Catapult can not find a feasible solution that satisfy the chosen clock
period. A possible solution to overcome this issue is to increase the clock period in
the tcl script. For example, we can see in Fig. 4.13 that for the Softmax accelerator
the clock period was set to 6.4 ns. This period is unfeasible for our Depthwise
accelerator so, as we can see in Fig. 4.14 we have increased this value to 9.6 ns in
order to let the HLS tool find a schedulable solution.

Figure 4.13: softmax build_prj.tcl: clock period

42

Design an accelerator using the ESP flow

Figure 4.14: depthwise build_prj.tcl: clock period

An interesting section inside this script file is the one regarding the interfaces,
under the #Top-Module I/O comment.

Figure 4.15: softmax build_prj.tcl: interfaces and PLMs

In fact, in Fig. 4.15 we can see the definition of the channels and the interfaces of
the accelerator, already mentioned in the previous section in Fig. 4.1. In particular,
we can notice how they can be modeled in Catapult HLS using the ccs_ioport
in the in_wait and out_wait configurations for the input and output channels,
respectively, instead for the done signal the sync_out_vld configuration is used in
order to implement the handshake mechanism when asserting it.
The last section that we have to modify is the Arrays section, below the interfaces.
Here the required PLMs are physically defined. In Fig. 4.15 we can see that the
Softmax accelerator needs only two PLMs, one for the inputs and one for the
outputs and both are modeled with a one read/one write RAM block. For the

43

Design an accelerator using the ESP flow

Depthwise accelerator we need three PLMs, one for the ifmap, one for the kernel
and one for the ofmap, as shown in Fig. 4.16.

Figure 4.16: depthwise build_prj.tcl: interfaces and PLMs

After this modification, the final structure of our Depthwise accelerator will be the
one showed in Fig. 4.17.

Figure 4.17: depthwise accelerator structure

44

Design an accelerator using the ESP flow

Makefile

This is a simple file that is used to get the useful source files and parameters for
the synthesis process directly from the common directory and we do not need to
modify it.

4.2.3 inc folder
This folder contains four header files required by the accelerator. In particular
these header files declare some useful datatypes that are used in the C++ code of
the accelerator.

conf_info.hpp

In this header file a C struct called conf_info_t is declared. It contains the run-time
parameters required by the accelerator. The only modification that we have to do
is simply putting inside this structure the parameters that our accelerator needs. In
Fig. 4.18, for example, we can see that the Softmax accelerator needs only a batch
parameter while in 4.19 inside the conf_info_t structure there are the Depthwise
parameters.

Figure 4.18: softmax conf_info.hpp

45

Design an accelerator using the ESP flow

Figure 4.19: depthwise conf_info.hpp

debug_info.hpp

This header file contains only a C struct called debug_info_t but in this case we
do not need to do any modification.

fpdata.hpp

In this header file some useful datatypes that are used to represent fixed point
numbers inside the accelerator are declared. In order to declare these variables the
algoritmic_C datatypes from the ac_fixed.h library are used. The algoritmic_C
datatype is a specific set of Catapult HLS datatypes used to represent numbers
and interfaces [18]. In our case, as we can see from Fig. 4.20 for the Softmax
accelerator, we only use the ac_fixed and ac_int datatypes to define our fixed
point data.

46

Design an accelerator using the ESP flow

Figure 4.20: softmax fpdata.hpp

In particular, in the example, we notice that the word length is set to 32 bits
with the FX_WIDTH define. Then with FX_IN_IL and FX_OUT_IL the length
for the integer part of the input and output numbers is set,respectively. In this
way it is possible to have two different representations for inputs and outputs. It
is important to notice the declaration of the FPDATA_IN and FPDATA_OUT
datatypes. Here it is used the ac_fixed datatype where we can specify the total
bitwidth, the length of the integer part, if the number must be considered with
(true) or without sign (false), which are the rounding and overflow mechanisms.
For our Depthwise accelerator, as we can see in Fig 4.21 we have modified the
integer length setting both the inputs and outputs to 16 and considering both
signed numbers.

47

Design an accelerator using the ESP flow

Figure 4.21: depthwise fpdata.hpp

softmax.hpp/depthwise.hpp

This header file is used to declare the DMA datatypes, the PLMs datatypes and
the interfaces of the accelerator’s top module using the algorithmic_C datatypes.
We can see the entire file for the Softmax example in Fig. 4.22

48

Design an accelerator using the ESP flow

Figure 4.22: softmax.hpp

First of all we can see the declaration of the dma_data_t datatype using the
ac_int. Within this DMA datatype, the DMA_WIDTH parameter will be set
from the command line by the user before executing the .tcl file. Then with some
DEFINE directives the maximum values of the accelerator parameters and the
size of the PLMs are defined. After that, we have the declaration of the generic

49

Design an accelerator using the ESP flow

PLM C struct using the template class approach in order to let the user choose
the datatypes for the data inside each memory. Then we can see the actual PLMs
declarations. For the Softmax accelerator only two memories with the same size
are declared, one for the inputs plm_in_t and one for the outputs plm_out_t,
using the FPDATA_IN and FPDATA_OUT declared in the fpdata.hpp header file.
Finally, in the last section the real function that implements the accelerator top
module is declared. This is the function that we have to call in software when we
want to run our accelerator in baremetal. The arguments of this function are all
the interfaces declared using the ac_channel and ac_sync datatypes. In particular,
the ac_channels are used for the data that will be transferred with DMA, while
the ac_sync is only used for the done signal. The only modifications that we have
to do in this file are related to the several DEFINE directives and the declaration
of the PLMs. In Fig. 4.23 we can see our Depthwise maximum values for the
convolution parameters, while in Fig. 4.24 we have the declaration of the new
additional kernel PLM.

Figure 4.23: depthwise.hpp: Maximum convolution parameters

50

Design an accelerator using the ESP flow

Figure 4.24: depthwise.hpp: PLMs declaration

4.2.4 sim folder
In this folder there is only a Makefile that define some variables with useful paths
for the script execution. We do not need to modify it.

4.2.5 softmax_cxx.xml/depthwise_cxx.xml
In this file some variables that are useful for the ESP SoC integration of our
accelerator are defined.

Figure 4.25: softmax_cxx.xml

In Fig. 4.25 we can see that, for the Softmax accelerator are defined:

• The name of the accelerator that will be used in ESP

• A brief description of the accelerator

• The data size

• A unique ID that is used in ESP to identify the accelerator

• The HLS tool used for the accelerator description

• The name of the parameters that are passed to the accelerator

51

Design an accelerator using the ESP flow

Figure 4.26: depthwise_cxx.xml

These fields are common to all the accelerators. In fact in Fig. 4.26 we can see the
modifications needed to adapt this file to our Depthwise accelerator.

4.2.6 src folder
In Fig. 4.27 we can see that inside this folder there are other two folders, one that
is called basic and the other one that is called hier.

Figure 4.27: src folder

This is because, with Catapult HLS, we can design an accelerator following two
different architectures:

• Basic Block Architecture: the accelerator phases are executed sequentially.
After the initial "Configure" phase, the "Load", "Compute" and "Store" phases
are all executed in sequence. It means that after a "Load" we will have the
"Compute" and then the "Store". After the "Store" phase, if the accelerator
works on multiple batches we will have another "Load" and so on. This
behavior is summarized in Fig. 4.28.

52

Design an accelerator using the ESP flow

Figure 4.28: Basic Block Architecture

• Hierarchical Block Architecture: the accelerator phases are executed in
a pipelined way. After the initial "Configure" phase, the "Load", "Compute"
and "Store" phases are all executed as in a pipeline. It means that after a
"Load" we will have the "Compute" and in the meanwhile also the "Load" of
the next batch, then we will have the "Store" and the "Compute" of the second
batch, but also the "Load" of the third batch and so on. We can see how
this hierarchical architecture works in Fig. 4.29. This is a big improvement
in terms of speed with respect to the basic architecture. Clearly we need to
take into account also an increment in terms of area due to the additional
logic to support this more complex behavior. It is important to notice that
we can appreciate this speed increment only if our accelerator supports a
computation in multiple batches, otherwise there are no differences in terms
of speed between the two architectures and we will see only an unwanted area
increment.

Inside both basic and hier folder there is a C++ source code file that implements,
for each architecture, the accelerator top module function declared previously in
the accelerator header file.

53

Design an accelerator using the ESP flow

Figure 4.29: Hierarchical Block Architecture

softmax.cpp/depthwise.cpp (basic)

The accelerator top module function starts with the definition of some useful
variables used to setup the DMA data transfer.

In particular, as we can see from Fig. 4.30, we have the following variables:

• dma_read_data_index: used to set the offset from which we want to
start reading the external memory using the DMA.

• dma_read_data_length: used to set the number of readings that we want
to perform.

• dma_write_data_index: used to set the offset from which we want to
start writing in the external memory using the DMA.

• dma_write_data_length: used to set the number of writings that we
want to perform.

54

Design an accelerator using the ESP flow

Figure 4.30: softmax.cpp: Configure

After the PLMs definition we can see the "Configure" phase at line 49 where we
read our accelerator parameters value using the read() function applied to the
conf_info structure. For the Softmax example we need only to set the number of
batches. Fig. 4.31 shows how we have to modify this section in order to adapt the
"Configure" phase to our Depthwise accelerator.

55

Design an accelerator using the ESP flow

Figure 4.31: depthwise.cpp: Configure

After the "Configure" phase we need to set the DMA variables in order to
perform the "Load" phase correctly. So we need a loop that checks that the DMA
is correctly configured using a variable called dma_read_ctrl_done and then we
can proceed with the "Load" phase. In the "Load" phase we simply use the read()
function on the dma_read_chnl in order to read data coming from the DMA
channel and store them into our input PLM. We can see this process in Fig. 4.32
for the Softmax accelerator. In this case the DMA width is considered equal to 64
bits.

56

Design an accelerator using the ESP flow

Figure 4.32: softmax.cpp: Load

In order to adapt the "Load" phase to our Depthwise accelerator, we need to
consider that we have two input memories, one for the ifmap and the other for the
kernel, so we need to divide this phase in two "sub-phases". In the first "sub-phase"
we need to read data coming from the DMA channel and save them into the ifmap
PLM. Then, when we have read an amount of data equal to the maximum size of
the ifmap memory, we can move to the second "sub-phase" and complete the "Load"
phase saving all the remaining data into the kernel PLM. It is important to notice
that this order is only an arbitrary choice coming from the memory definition in
the testbench. We can see this modification in Fig. 4.33.

57

Design an accelerator using the ESP flow

Figure 4.33: depthwise.cpp: Load

After the "Load" phase we have the "Compute" phase that is where we have
the actual accelerator algorithm that we want to accelerate. In our case we have
substituted the Softmax computation with the Depthwise Convolution algorithm.
Finally, as we did for the "Load" phase, we need to set the DMA variables for the
"Store" phase. In Fig. 4.34 we can see the entire "Store" phase for the Softmax
accelerator. This phase does not require any modification because we simply write
our accelerator outputs in the DMA channel. It is important to notice that, since
the DMA width is assumed to be 64 bits and the data width is 32 bits, when we
write something in the DMA channel we need to fill the missing most significant
32 bits with a fixed template. In the Softmax example we can see that the word
"0xdeadbeef" is used for convenience. In our Depthwise accelerator we have followed
the same approach.

58

Design an accelerator using the ESP flow

Figure 4.34: softmax.cpp: Store

softmax.cpp/depthwise.cpp (hier)

The hierarchical architecture source code file is very similar to the basic architecture
one. The only difference is that the "Configure", "Load", "Compute" and "Store"
phases now are different C++ functions that are called by the main (top) function
in this order as shown in Fig. 4.35.

59

Design an accelerator using the ESP flow

Figure 4.35: depthwise.cpp: hier top function

These functions are all synchronized using a dedicated ac_sync done signal that
triggers the next phase when the previous one is completed. An important thing
that we have to notice is that, since the PLMs are shared among all the phases, in
order to avoid unwanted inferred memories, it is a good practice in Catapult HLS
to define temporary memories inside each function and then write their content in
the actual PLM once the phase is finished. We can see this process in Fig. 4.36 at
line 79 and 105 for the load phase.

60

Design an accelerator using the ESP flow

Figure 4.36: softmax.cpp (hier)

4.2.7 tb folder
In this folder there is the testbench C++ source code file. This testbench is
used during the accelerator RTL simulation in order to provide the inputs to the
accelerator and then to check the correctness of the output results with a validation
phase.

main.cpp

First of all, we have to define the accelerator configuration writing the values that
we want to assign to each accelerator parameter. Then we need to create the
DMA communication channels in order to be able to provide the inputs to the
accelerator and also read the outputs once the accelerator has done. Finally, we
need to define the inputs and outputs arrays together with the golden outputs
array. The golden outputs will be compared with the accelerator’s outputs during
the validation phase.
In Fig. 4.37 we can see this first configuration phase for the Softmax accelerator.

61

Design an accelerator using the ESP flow

Figure 4.37: softmax main.cpp (Configuration)

This section must be modified with our specific accelerator parameters and with
the required arrays that will be used to fill the accelerator PLMs. In Fig. 4.38 we
can see the modifications that we have done in order to configure our Depthwise
accelerator. We have inserted all the Convolution parameters and we have added
an inputs array that contains the kernels.

62

Design an accelerator using the ESP flow

Figure 4.38: depthwise main.cpp (Configuration)

Then we have to pass these arrays to the accelerator. To do that, we need to
write into the dma_read_chnl the data contained inside the inputs memory using
the ac_channel write() function. It is important to notice that also in this case we
need to pay attention to the DMA width and data width. In fact, if we consider
that the DMA width is equal to 64 bits and the data width is equal to 32 bits,
writing these data into the DMA channel we need to fill the most significant 32
bits with a template. As we did also in the accelerator C++ source code file, we
can use as template the word "0xdeadbeef" that will fill the missing 32 bits. The
next step is to pass the parameters configuration to the accelerator. This is a
simpler process because we only need to use the ac_channel write() function using
the configuration struct conf_info_data as argument. After that, we can finally
run the accelerator simply calling the accelerator top module function using as
arguments the DMA interfaces. In Fig. 4.39 we can see all these steps for the
Softmax accelerator.

63

Design an accelerator using the ESP flow

Figure 4.39: softmax main.cpp (Inputs writing)

Figure 4.40: depthwise main.cpp (Inputs writing)

64

Design an accelerator using the ESP flow

In order to pass the stimuli to our Depthwise accelerator, we write on the
dma_read_chnl the ifmap array, and then the kernel array. We can see these two
writing operations in Fig. 4.40. The last thing that we have to do is to fetch the
accelerator outputs and compare them with the golden outputs obtained from the
testbench function. The only modification that is required for this validation phase
is to generate the golden output inside the testbench. In our case we replaced the
Softmax function with the Depthwise one. Fig. 4.41 reports the validation phase
for the Softmax accelerator.

Figure 4.41: softmax.cpp (Validation)

4.3 Accelerator Synthesis & Simulation
Now that the design of the accelerator is completed, we can synthesize and simulate
it running the build_prj_top.tcl script In order to run our script we need to go back
in the esp root folder and move in the socs directory. Here there are several folders,
one for each supported FPGA. In our case, we need to go into the profpga-xc7v2000t
folder. We can see all the directories inside the socs folder in Fig. 4.42.

65

Design an accelerator using the ESP flow

Figure 4.42: socs folder

Now from the profpga-xc7v2000t folder we can run this command on the shell
to execute the HLS script:

DMA_WIDTH=64 make depthwise_cxx_catapult-hls (4.1)

After the synthesis process and the C co-simulation, Questasim shows up. We only
have to run the simulation and check if the validation phase is passed correctly with
0 errors. In addition, we can also see the waveforms in order to better understand
the behavior of the accelerator.

Figure 4.43: depthwise waveforms (Configure & Load)

In Fig. 4.43 we can see how the "Configure" phase and "Load" phase are done. When
the reset is de-asserted, the conf_info_rsc_rdy signal goes up to 1 and, together
with the �,extitconf_info_rsc_vld tells the accelerator to read the configuration
parameters. Then, after setting the DMA variables, the dma_read_ctrl_rsc_vld
goes up to 1 and in the next clock cycle also the dma_read_chnl_rsc_rdy goes
from 0 to 1: This will start the "Load" phase.

66

Design an accelerator using the ESP flow

Figure 4.44: depthwise waveforms (Compute)

From Fig. 4.44 we can see that after reading all the data the two signals
dma_read_chnl_rsc_rdy and dma_read_chnl_rsc_vld go from 1 to 0, then the
"Compute" phase will start.

Figure 4.45: depthwise waveforms (Store)

When the "Compute" phase ends, as we can see in Fig. 4.45, the validation signal
dma_write_chnl_rsc_vld goes up to 1 starting the "Store" phase. Then, when all
the writings are completed, the "Store" ends with the dma_write_chnl_rsc_vld
signal that goes back to 0. Finally, at the next clock cycle the done signal
acc_done_rsc_vld goes up to 1 and after that the simulation ends.

67

Chapter 5

Create a SoC in ESP and
implement it on FPGA

The main purpose of the ESP accelerator design flow is the creation of a large
set of IP components that can be selected to build a complete SoC leveraging the
modularity provided by the platform [9]. The ESP SoC design flow is totally based
on a GUI that helps the designer with an interactive design process. In Fig. 5.1 we
can see how this GUI looks like and which are the main steps for the accelerator
design flow and the SoC design flow.

Figure 5.1: ESP GUI (Image taken from [9])

Thanks to this GUI it is possible to configure the SoC choosing [9]:

• the number, the position and the type of tiles.

• the desired accelerator to insert in each accelerator tile

69

Create a SoC in ESP and implement it on FPGA

• the desired processor core

• the cache hierarchy configuration

• the clock domain for each tile

• the desired system monitors

In order to complete the SoC configuration process we need to click on the Generate
SoC config push-button within the GUI, after that, ESP generates a configuration
file that is used during the simulation process to generate [9]:

• the RTL sockets

• the NoC routing tables

• the system memory mapping

• the device tree for the target processor

• the configuration parameters for all the proxy components

• the software header files

Finally, once the SoC is completed, the designer can run a full SoC RTL simulation
with a bare-metal program running on the soft-core processor. In addition to that,
using a specific make target, it is possible to generate the bitstream for one of the
supported FPGA boards, that at the moment are [9]:

1. Xilinx XCU128

2. Xilinx VCU118

3. Xilinx VC707

4. Profpga XCVU440

5. Profpga XC7V2000T

In particular, if we monitor the FPGA with the UART interface we can also run
the bare-metal program on the FPGA. ESP gives also the possibility to run Linux
application on the selected soft-core processor, but this will not be analyzed in this
thesis. It is possible to find more information in the reference document [9].

70

Create a SoC in ESP and implement it on FPGA

5.1 Write the Bare-metal application
In the previous chapter we have analyzed the content of the hw folder inside the
Catapult HLS accelerators main directory for the Softmax accelerator example.
Then we have shown how to modify all the files in order to adapt this sample to a
generic accelerator, in our case, the Depthwise accelerator. Now we analyze what is
inside the sw folder. Inside the sw folder there are other two different folders: the
baremetal folder which contains the bare-metal application and the Linux folder
which contains all the files required to compile Linux. Since we are not dealing
with Linux, the next paragraph is dedicated to the baremetal folder only.

5.1.1 baremetal folder
Inside this folder we have the actual bare-metal application C source code file (.c)
that we can use as a software testbench for the SoC in order to see if our new
accelerator is working correctly inside the complete system.

softmax.c/depthwise.c

First of all, as we can see in Fig. 5.2, we define a new datatype called token_t
that will be the datatype used inside the memories and during the DMA transfers.
In this case this is an int64_t because we have chosen a 64 bits DMA. Then we
need to define the accelerator name and its unique ID that we have provided in the
xml file inside the hw folder of the accelerator. The most important part of this
section is the definition of all the accelerator parameters, the PLMs dimensions
and the addresses of the user defined registers. These registers will be the physical
location where the accelerator will read its parameters. As we can see from the
case of the Softmax accelerator, since we need only the batch parameter, we will
use only one register at the address 0x40. It is important to notice that we have to
choose this addresses carefully because: we do not want to write on registers used
by the system for other internal parameters, and two consecutive addresses are
separated by 16 bits. For example, if we want to add a parameter into the Softmax
accelerator, we need to assign it to the register at the 0x44 address. The complete
address map of I/O registers defined by ESP is available at the following resource
[19].

71

Create a SoC in ESP and implement it on FPGA

Figure 5.2: softmax.c (Parameters & Registers definition)

For our Depthwise accelerator, as shown in Fig. 5.3, we have decided to assign
these addresses starting again from 0x40 and going up to 0x5c. Another important
aspect that we need to take into account is that the parameters must be addressed
in the same order as they are defined in the xml accelerator file. In our case, since
our INIT_WIDTH_REG is assigned to the largest address, it must be the last
parameter defined in the xml file.

72

Create a SoC in ESP and implement it on FPGA

Figure 5.3: depthwise.c (Parameters & Registers definition)

73

Create a SoC in ESP and implement it on FPGA

Then we need a function that initializes the input buffers, used later for the
accelerator call, and that produces the golden outputs, stored in the golden output
memory. This function is called init_buf and is reported in Fig. 5.4. The C code
that computes the golden outputs starting from the input values can be the same
code used for the C testbench discussed in Paragraph 4.2.7.

Figure 5.4: softmax.c (buffer initialization function)

To adapt this function to our Depthwise accelerator, we need to separate the
initialization of the ifmap from the initialization of the kernels, considering that
both will come from the same input memory. Then, we need to insert the Depthwise
algorithm instead of the Softmax one. We can see all these changes in Fig. 5.5.

74

Create a SoC in ESP and implement it on FPGA

Figure 5.5: depthwise.c (buffer initialization function)

Now we can move into the main function of the bare-metal program. Here, as
a first step, we have the definition of the actual memories. In particular we have
to notice that, if we use a single memory tile inside our SoC, we have to use only
one single memory that will contain both the inputs and the outputs also in this
code. For this reason is very important to define in a correct way the size of the
memory. In Fig. 5.6 we can see that the memory size for the Softmax accelerator
is computed as in_size + out_size. Another useful variable defined here is the
out_offset: this variable acts like an index that point to the cell where the first
output is stored.

75

Create a SoC in ESP and implement it on FPGA

Figure 5.6: softmax.c (main function memories definition)

Figure 5.7: depthwise.c (main function memories definition)

76

Create a SoC in ESP and implement it on FPGA

For our Depthwise accelerator we need to modify these memory sizes taking
into account that our memory will be realized by three different sections: the
ifmap section, the kernels section and the ofmap section. So our sizes become
in_size+kernel_size+out_size. We need also to modify the out_offset variable
accordingly. These changes are reported in Fig. 5.7. The last code section that
is important to analyze is the section in which we give the start command to the
accelerator waiting for its completion and then we perform the validation phase
and it is valid both for the Softmax and Depthwise baremetal C codes. This is
shown in Fig. 5.8. As we can notice, in order to give the start to the accelerator, we

Figure 5.8: softmax.c (accelerator run)

simply write a fixed bit mask called CMD_MASK_START using the iowrite32()
function into a specific memory-mapped register called CMD_REG. At this point
we poll the register called STATUS_REG with the ioread32() function until the
done variable goes to 1, which corresponds to the done signal coming from the
accelerator. After we exit from the while loop, we can finally perform the validation
phase by comparing the output of the accelerator with the golden output calculated
by the baremeal as explained before.

77

Create a SoC in ESP and implement it on FPGA

5.2 SoC Generation
When the bare-metal application is ready we can proceed with the SoC generation.
First of all, from the socs directory we need to move into our board folder, in our
case the profpga-xc7v2000t folder, and then run the make-esp-xconfig command
on a terminal to open the ESP GUI. Now we have to choose the grid dimension
in order to accommodate our Depthwise accelerator and then, we need to select
the 64-bit Ariane processor because we used a DMA_WIDTH = 64 to build
the accelerator. An important thing that we need to highlight is that the the
clock frequency of this Ariane CPU is set to 50 MHz in ESP. This is a very low
frequency for a modern CPU, but we have to remember that this entire design flow
is meant to create a SoC that will be implemented on a FPGA. The low frequency
is required because the CPU will be emulated by the FPGA. Now we can choose
the Depthwise accelerator tile directly from the GUI. In Fig. 5.9 we can see the
final configuration of the GUI to design a single-core Depthwise accelerator SoC.

Figure 5.9: Depthwise accelerator GUI configuration

The last thing that we need to do is to press the Generate SoC Config push-button
to apply the changes and build the SoC.

78

Create a SoC in ESP and implement it on FPGA

5.3 SoC Simulation
In order to test the behavior of our SoC, we can run a full-system RTL simulation in
Questasim running the following dedicated ESP make scripts on the terminal. First
of all we need to compile the baremetal application with the following command:

make depthwise_cxx-baremetal (5.1)

Then we have to run the actual simulation with the make qsim command specifying
the test program with:

TEST_PROGRAM=./soft-build/ariane/baremetal/depthwise_cxx_catapult.exe
(5.2)

After the simulation process we will see on the terminal an outcome like the one in
Fig. 5.10.

Figure 5.10: SoC RTL Simulation

If the simulation ends without errors, the outcome will be PASS otherwise it will
be FAIL with the associated number of found errors.

5.4 FPGA Implementation
The last step that we need to do is the implementation of the SoC on FPGA. ESP
provides a dedicated integration flow that allows to create a bitstream, program
the FPGA and run the bare-metal application on the board with some simple make
commands. In Fig. 5.11 we can see our target board: the Profpga-xc7v200t.

79

Create a SoC in ESP and implement it on FPGA

Figure 5.11: ProFPGA XC7V2000T connected to a ProFPGA Quad Motherboard

First we need to generate the bitstream. This can be done running the make
vivado-syn command. At the end of this quite long process a file in the board folder
called top.bit is generated: it is the actual bitstream file. Then we can program
the FPGA running the make fpga-program command. The outcome from the shell
will be the one showed in Fig. 5.12.

Figure 5.12: FPGA Programming

Finally, we can run the bare-metal application directly on the FPGA. This can be
done with the make fpga-run command specifying the test program with:

TEST_PROGRAM=./soft-build/ariane/baremetal/depthwise_cxx_catapult.exe
(5.3)

80

Create a SoC in ESP and implement it on FPGA

In order to see the results coming from the FPGA, we need a tool to print on
screen the data coming from the UART serial interface. In Fig. 5.13 we can see
the outcome obtained during the RTL Simulation from a terminal running the
minicom program.

Figure 5.13: FPGA results on minicom

81

Chapter 6

Accelerator Design Space
Exploration in Catapult HLS

In the final part of this thesis we performed a design space exploration of our
Depthwise accelerator using Catapult HLS. The design space exploration consists
in adjusting some "design knobs" in order to explore the Latency vs Area space of
possible solutions, and find which of them belong to the Pareto optimal curve. The
parameters that we want to compare are the Latency vs Area and Latency vs Power
Consumption of the Accelerator inside the SoC. Also in this case we want to leverage
the high flexibility provided by Catapult HLS and ESP. With Catapult HLS we
applied several directives that allow the designer to choose different optimization
techniques and parameters configuration, then we used Vivado in order to perform
the logic synthesis and obtain the area parameters. We performed an exploration
considering the Channels loop unrolled and the Kernel loops pipelined, varying
the maximum number of channels (CH) going from 1 to 16, the Unrolling Factor
(UF) going from 1 to 16 and the Initiation Interval (II) going from 1 to 3. Then
we set the accelerator parameters for the input width and weight size to their
maximum values: 16x16xCH and 5x5xCH, respectively. We can see the chosen
design points in the first column of Tab. 6.1. The names mentioned in this design
space are those of the variables coming from the C++ code of our Depthwise
algorithm. In particular, in Fig. 6.1 we can see the Depthwise convolution kernel
of our accelerator, where the for loop over the channels is the external one labeled
as CHANNELS_LOOP and the for loops over the kernel’s dimensions (height and
width) are called J_LOOP and K_LOOP, respectively.

83

Accelerator Design Space Exploration in Catapult HLS

Figure 6.1: Depthwise loops

The UF is a value that represents how many times we replicate a loop in our
design in order to increase the concurrency of all the operation inside the loop. For
example, in Fig. 6.2 we can see the Catapult HLS Scheduler for an accelerator
with 16 Channels and UF=16. In this case we have that the CHANNELS_LOOP
is replicated 16 times and that all these loops are scheduled in the same clock cycle
meaning that they are running in parallel. When a loop is pipelined, the II of a
loop is the number of clock cycles after which we can start a new iteration of that
loop. For example, if we pipeline a loop with II=1, we can start a new iteration
after each clock cycle. We started doing the exploration for the entire SoC, but we
noticed that the reports generated by Vivado were always the same. In particular
we had the number of LUTs equal to 106618 (8.73%), the number of DSPs equal
to 41 (1.90%) and a Power consumption of 4.627 W (3.916 W of Dynamic Power
and 0.711 W of Static Power). This happened because that the Area and Power
contribution of the Depthwise accelerator inside the SoC is too small with respect
to all. the other SoC components. This is why we used the reports generated by
Vivado for the accelerator and not for the entire SoC to obtain our results. Below
are summarized the results obtained from the exploration.

84

Accelerator Design Space Exploration in Catapult HLS

Figure 6.2: Channels Loop in the Catapult HLS Scheduler for a design with 16
Channels and UF=16 design

As we can see from Tab. 6.1, the latency increases with the maximum number of
channels and also with the II, but it decreases when we decide to unroll the design,
and higher is the UF, lower is the latency. This is valid for all the points except
for the solutions with CH=16 and UF=2. This could be due to some sub-optimal
internal logic synthesis optimizations made by Vivado. Another thing that we can
notice from the table is that the if we increase the UF we will have not only a
lower latency, but also an higher resource utilization (as expected), especially in
terms of LUTs. This is not always true, in fact if we see the resource utilization
differences between the solutions with a different number of channels, we notice
that, for example, the single channel solution is almost always the worst in terms of
resource utilization. This is because, since it is the simpler solution with the lower
latency, Vivado immediately finds a possible implementation that closes timing
that does not require further optimizations. We can notice also that the resource
utilization in terms of DSPs is almost the same for all the design points with some
exception: for example, moving from the solution with CH=4, UF=1, II=1 to the
solution with CH=16, UF=1, II=1 we would expect an increase in terms of LUTs,
instead as we can see in the table we have a decrease of that number, but almost
double the number of DSPs used. It is possible that Vivado optimizes the design
looking for a trade-off between the number of LUTs and the number of DSPs.

85

Accelerator Design Space Exploration in Catapult HLS

Design Point Accelerator Latency (ms) DSPs LUTs
CH=1, UF=1, II=1 0.284 4 (0.1851%) 1590 (0.1302%)
CH=4, UF=1, II=1 1.14 5 (0.2315%) 1132 (0.0927%)
CH=4, UF=2, II=1 1.12 5 (0.2315%) 1165 (0.0954)
CH=4, UF=4, II=1 1.11 5 (0.2315%) 1253 (0.1026)
CH=16, UF=1, II=1 4.47 9 (0.4167%) 1087 (0.0890%)
CH=16, UF=2, II=1 4.52 5 (0.2315%) 1200 (0.0982%)
CH=16, UF=4, II=1 4.41 5 (0.2315%) 1292 (0.1057%)
CH=16, UF=8, II=1 4.38 5 (0.2315%) 1564 (0.1280%)
CH=16, UF=16, II=1 4.37 5 (0.2315%) 2104 (0.1722%)
CH=1, UF=1, II=2 0.446 4 (0.1851%) 1580 (0.1293%)
CH=4, UF=1, II=2 1.79 6 (0.2778%) 1077 (0.0882%)
CH=4, UF=2, II=2 1.77 5 (0.2315%) 1193 (0.0977%)
CH=4, UF=4, II=2 1.76 5 (0.2315%) 1281 (0.1048%)
CH=16, UF=1, II=2 7.06 4 (0.1851%) 1221 (0.0999%)
CH=16, UF=2, II=2 7.11 4 (0.1851%) 1236 (0.1012%)
CH=16, UF=4, II=2 7.0 5 (0.2315%) 1324 (0.1083%)
CH=16, UF=8, II=2 6.97 4 (0.1851%) 1617 (0.1323%)
CH=16, UF=16, II=2 6.96 4 (0.1851%) 2239 (0.1833%)
CH=1, UF=1, II=3 0.59 4 (0.1851%) 1582 (0.1295%)
CH=4, UF=1, II=3 2.38 6 (0.2778%) 1081 (0.0885%)
CH=4, UF=2, II=3 2.37 5 (0.2315%) 1123 (0.0919%)
CH=4, UF=4, II=3 2.36 5 (0.2315%) 1221 (0.0999%)
CH=16, UF=1, II=3 9.44 4 (0.1851%) 1216 (0.0955%)
CH=16, UF=2, II=3 9.49 5 (0.2315%) 1213 (0.0992%)
CH=16, UF=4, II=3 9.39 5 (0.2315%) 1309 (0.1071%)
CH=16, UF=8, II=3 9.35 5 (0.2315%) 1602 (0.1311%)
CH=16, UF=16, II=3 9.34 5 (0.2315%) 2171 (0.1777%)

Table 6.1: Design Points Explored

Finally, we can see how the II impacts on the latency and resource utilization of
our designs: if we increase the II, we notice an increment in terms of latency, but
also a reduction in terms of resource utilization. So changing this value in the DSE
was worth to explore a larger set of design points. However, this is true for all
the design points except for the solutions with 16 channels and II=1 that has the
lower area with respect to the solutions with II>1. Probably this is because, as we
mentioned before, Vivado does not do any additional optimizations to satisfy the
timing constraints.

86

Accelerator Design Space Exploration in Catapult HLS

Considering an hypothetical layer characterized by an input tensor of 16x16x512
and a weight tensor of 5x5x512 we can summarize Tab. 6.1 in a plot where we put
on the x axis the resource utilization in terms of LUTs and on the y axis the Layer
Latency computed as:

Layer_Latency = Acc_Latency · Layer_CH

Acc_CH
(6.1)

Where: Acc_Latency is the accelerator latency reported in Tab. 6.1; Layer_CH
is the number of channels of the layer, in our case 512; Acc_CH is the number
of channels of the accelerator, in our case 1, 4 or 16. This is only an example, in
general these considerations can be applied also to more complex layers. Finally
we draw the Pareto front to connect all the optimal design points.

Figure 6.3: LUTs utilization vs Layer Latency design space (Pareto points are
connected with a solid line)

From Fig. 6.3 we can see that in order to have a design with a low layer latency
(139.8 ms), we have to accept a greater resource utilization (0.1722% of LUTs).
On the other hand, if we want a design with a small resource utilization (0.0882%
of LUTs), we have to pay with an higher latency (229.1 ms). As we can see the
point with CH=16, UF=16 and II=1 has a resource utilization in terms of LUTs of
0.1722% with a Layer Latency of 139.8 ms, but the point with CH=16, UF=1 and
II=1 has a resource utilization in terms of LUTs of 0.089% with a Layer Latency
of 143 ms. We have that the resource utilization is almost the double with a

87

Accelerator Design Space Exploration in Catapult HLS

gain of only 3.8 ms. The SoC designer could use a plot like this to decide which
Depthwise accelerator better suits the area budget and/or the latency constraint
of the application.

88

Chapter 7

Conclusions

This thesis work showed how it is possible to create a custom hardware accelerator
using ESP and integrate it in a complete SoC in order to test it into an FPGA. In
particular, we have analyzed in details the Catapult HLS design flow provided by
ESP. For this reason this thesis will contribute to the actual ESP documentation
[20]. Then we have performed a Design Space Exploration of our design and we have
seen how it is possible to choose between different solutions with different latency
and resource usage. This is extremely useful because, thanks to the modularity
provided by ESP, the designer can select for her SoC the best accelerator that
fits the constraints from the specific application. For example, if we have a tight
latency constraints, we can choose the solution that has the lowest latency, but
the highest area. Thanks to its simplicity and flexibility ESP is on the good way
to become a real standard for heterogeneous SoC integration. In the end, some
possible hints and perspectives to expand this thesis work in the next future could
be:

• Realize a complete CNN using standard tools like Tensorflow.

• Train the network with a specific data set in order to perform object detection.

• Perform the inference and see the network performances.

• Implement the network in ESP using the hls4ml design flow.

• Substitute the standard convolutional layer with the simple function call of
our Depthwise accelerator and measure the latency advantages at network
level

89

Bibliography

[1] LDV Capital. «Five Year Visual Technology Market Analysis: 45 Billion
Cameras by 2022 Fuel Business Opportunities». In: (Aug. 2017). url: https:
//www.ldv.co/insights/2017 (cit. on p. 1).

[2] W. Wang; J. Yang; M. Chen; P. Wang. «A Light CNN for End-to-End Car
License Plates Detection and Recognition». In: 7 (Nov. 2019), pp. 173875–
173883. url: https://ieeexplore.ieee.org/document/8915848 (cit. on
p. 1).

[3] S. Dabeer; M. Khan; S. Islam. «Cancer diagnosis in histopathological image:
CNN based approach». In: 16 (2019). url: https://www.sciencedirect.
com/science/article/pii/S2352914819301133 (cit. on p. 1).

[4] L. Liu; W. Ouyang; X. Wang; P. Fieguth; J. Chen; X. Liu; M. Pietikäinen.
«Deep Learning for Generic Object Detection: A Survey». In: (Sept. 2018)
(cit. on pp. 1–3).

[5] V. Sze; Y. Chen; T. Yang; J. Emer. «Efficient Processing of Deep Neural
Networks: A Tutorial and Survey». In: (Aug. 2017) (cit. on pp. 4, 5, 9–16, 18,
19).

[6] R. Anyoha. «The History of Artificial Intelligence». In: (Aug. 2017). url:
https://sitn.hms.harvard.edu/flash/2017/history- artificial-
intelligence/ (cit. on p. 4).

[7] A. Pandey. «Depth-wise Convolution and Depth-wise Separable Convolution».
In: (Sept. 2018). url: https://medium.com/@zurister/depth- wise-
convolution-and-depth-wise-separable-convolution-37346565d4ec
(cit. on pp. 20, 21, 23).

[8] A. Howard; M. Zhu; B. Chen; D. Kalenichenko; W. Wang; T. Weyand; M. An-
dreetto; H. Adam. «MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications». In: (Apr. 2017) (cit. on pp. 20, 22).

[9] P. Mantovani; D. Giri; G. Di Guglielmo; L. Piccolboni; J. Zuckerman; E. G. Cota;
M. Petracca; C. Pilato; L. P. Carloni. «Agile SoC Development with Open
ESP». In: (Aug. 2022) (cit. on pp. 25–30, 33, 34, 69, 70).

91

https://www.ldv.co/insights/2017
https://www.ldv.co/insights/2017
https://ieeexplore.ieee.org/document/8915848
https://www.sciencedirect.com/science/article/pii/S2352914819301133
https://www.sciencedirect.com/science/article/pii/S2352914819301133
https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/
https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec
https://medium.com/@zurister/depth-wise-convolution-and-depth-wise-separable-convolution-37346565d4ec

BIBLIOGRAPHY

[10] In: (). url: https://fastmachinelearning.org/hls4ml/# (cit. on p. 25).
[11] «Ariane». In: (). url: https://github.com/pulp-platform/ariane (cit.

on p. 28).
[12] F. Zaruba and L. Benini. «The Cost of Application-Class Processing: Energy

and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in
22-nm FDSOI Technology». In: 27 (Nov. 2019), pp. 2629–2640 (cit. on p. 28).

[13] Cobham Gaisler. «LEON3». In: (). url: www.gaisler.com/index.php/
products/processors/leon3 (cit. on p. 28).

[14] D. Giri; P. Mantovani and L. P. Carloni. «Runtime Reconfigurable Memory
Hierarchy in Embedded Scalable Platforms». In: (2019), pp. 719–726 (cit. on
p. 29).

[15] E. G. Cota; P. Mantovani; G. Di Guglielmo and L. P. Carloni. «An Analysis of
Accelerator Coupling in Heterogeneous Architectures». In: (2015), 202:1–202:6
(cit. on pp. 29, 34).

[16] P. Mantovani D. Giri. «How to: design a single-core SoC». In: (Aug. 2021).
url: https://www.esp.cs.columbia.edu/docs/singlecore/singlecore-
guide/ (cit. on pp. 30, 31).

[17] H. Mahmood. «The Softmax Function, Simplified». In: (Nov. 2018). url:
https://towardsdatascience.com/softmax-function-simplified-714
068bf8156 (cit. on p. 36).

[18] D. Burnette. «Algorithmic C (AC) Datatypes Reference Manual». In: (Aug.
2022). url: https://github.com/hlslibs/ac_types/blob/master/
pdfdocs/ac_datatypes_ref.pdf (cit. on p. 46).

[19] D. Giri; P. Mantovani; G. Tombesi; J. Zuckerman. «ESP the open-source SoC
platform». In: (). url: https://www.esp.cs.columbia.edu/docs/specs/
esp_address_map.pdf (cit. on p. 71).

[20] D. Giri; P. Mantovani; G. Tombesi; J. Zuckerman. «ESP the open-source SoC
platform». In: (). url: https://www.esp.cs.columbia.edu (cit. on p. 89).

92

https://fastmachinelearning.org/hls4ml/#
https://github.com/pulp-platform/ariane
www.gaisler.com/index.php/products/processors/leon3
www.gaisler.com/index.php/products/processors/leon3
https://www.esp.cs.columbia.edu/docs/singlecore/singlecore-guide/
https://www.esp.cs.columbia.edu/docs/singlecore/singlecore-guide/
https://towardsdatascience.com/softmax-function-simplified-714068bf8156
https://towardsdatascience.com/softmax-function-simplified-714068bf8156
https://github.com/hlslibs/ac_types/blob/master/pdfdocs/ac_datatypes_ref.pdf
https://github.com/hlslibs/ac_types/blob/master/pdfdocs/ac_datatypes_ref.pdf
https://www.esp.cs.columbia.edu/docs/specs/esp_address_map.pdf
https://www.esp.cs.columbia.edu/docs/specs/esp_address_map.pdf
https://www.esp.cs.columbia.edu

	List of Tables
	List of Figures
	Introduction
	The object detection problem
	Artificial Intelligence: a new paradigm
	Thesis focus
	Thesis outline

	Neural Networks and DNNs
	What is a Neural Network?
	Neural Networks learning process
	Different types of DNNs

	Convolutional Neural Networks
	Energy Efficient Convolutions
	Depthwise Convolution

	Embedded Scalable Platforms (ESP)
	What is ESP
	NoC Architecture
	Processor Tile
	Memory Tile
	Accelerator Tile
	Auxiliary Tile

	Design an accelerator using the ESP flow
	Design an accelerator using HLS
	Accelerator interfaces and internal structure
	Available templates and automatic code script

	Catapult HLS design flow
	Files & Directory hierarchy
	hls Folder
	inc folder
	sim folder
	softmax_cxx.xml/depthwise_cxx.xml
	src folder
	tb folder

	Accelerator Synthesis & Simulation

	Create a SoC in ESP and implement it on FPGA
	Write the Bare-metal application
	baremetal folder

	SoC Generation
	SoC Simulation
	FPGA Implementation

	Accelerator Design Space Exploration in Catapult HLS
	Conclusions
	Bibliography

