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Summary

Fiber Bragg Gratings (FBGs) sensors consist of a set of Bragg reflectors capable
of reflecting a single wavelength of light, directly proportional to the dimensions of
the grating, and transmitting all the others. Analyzing the offset of the reflected
wavelength from the rest state, it is possible to infer a temperature variation, a
strain applied to the sensor, or more. Being based on the use of photons, this type
of sensor is advantageous in environments where the presence of electromagnetic
interferences may cause measurement anomalies in conventional electronic systems.
In addition, it is lightweight, can be multiplexed on a single transmission line, and
is a passive component.

The applications for interfacing with FBG sensors often have a non-intuitive
user interface and have substantial deficiencies in the functionality offered to the
user. Due to the novelty of this type of sensor, which is still being researched, they
lack the innovative capability of precisely correlating the measured values to phys-
ical events. Therefore, the main objective of this thesis is to create an innovative
application, called FBG Data Analyzer, to display in real-time the data coming
from a set of optical fiber sensors. This data is partially processed during acqui-
sition and is shown in a comprehensive and human-readable manner. This thesis
is part of a collaboration between the Department of Control and Computer En-
gineering (DAUIN) and the Department of Mechanical and Aerospace Engineering
(DIMEAS) in the Inter-Departmental Center for Photonic Technologies context.
DIMEAS mainly employs FBG sensors for structural integrity monitoring applied
to aircraft, but it also uses this technology for measuring thermal balances of various
components; these applications can be used for both prognostics and diagnostics
purposes.

The project was preceded by a session of requirements collection from the stake-
holder research team to highlight the needs and expectations concerning the final
application. The requirements include viewing the wavelength peaks trend in the
time domain and possibly performing a spectrum analysis of those time series to
detect oscillatory components by applying the Fast Fourier Transformation (FFT)
algorithm to the selected signals. Another essential requirement is that, given an
empirically determined coefficient, it should be possible to correlate the variation
of the wavelength peak value to the corresponding delta strain/temperature, where
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the variation is the difference between the value reflected by the resting FBG sensor
and the one currently measured. The property just described is the topic currently
under study and validation by the involved research team. The final application,
which is the objective of this thesis, may reveal itself insightful and help perform a
more significant number of tests in a shorter time, thanks to the real-time visual-
ization of data previously available only in post-analysis.

The desktop application has been developed and tested on Windows using the
Qt open-source framework. One of the reasons for its choice is the simplicity of
porting the application to different operating systems. Most of the User Interface
(UI) space is occupied by charts built on top of the Qt Charts module; they have
been heavily customized and improved to meet the operators’ needs. Given the rich
presence of configuration parameters, an automatic saving system was implemented.
It makes use of a JSON file which is also editable with an external editor; this allows
the operators to save different variations of the settings file in a repository to have
ad hoc configurations for each ongoing measurement campaign.

Physical sensor data is captured by the SmartScan by SmartFibres interrogator,
which is the unit responsible for transforming wavelengths into digital values. The
data is then sent to a software called Middleware, which processes this data and
sends it either to a MongoDB database or through a TCP socket. Thanks to
MongoDB’s Change Stream feature, the FBG Data Analyzer can obtain input
data by actively waiting for changes to the current collection or by connecting to
the TCP socket of the Middleware; the connection methods are mutually exclusive.

During the development phase, the functionalities of the software were tested
using an interrogator emulator capable of generating random wavelength peaks for
the configured sensors. In the final phase, two types of tests were carried out. The
first involved measurements of temperature variations induced through a climatic
chamber, while the second regarded measurements of the strain applied to a carbon
fiber specimen, which can simulate the tail of Anubi, a model aircraft designed and
assembled by the Icarus team of the Politecnico di Torino. During the tests, CPU
and RAM usage was closely monitored and remained at constant levels.
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Chapter 1

Introduction

1.1 Overview

The thesis is contextualized in the broader interdisciplinary project PhotoNext.
This project is a result of the collaboration between the Department of Control and
Computer Engineering (DAUIN) and the department of Mechanical and Aerospace
Engineering (DIMEAS), inside the Politecnico di Torino, as part of the Inter-
Departmental Center for Photonic technologies. The research group was founded
in 2017 to combine knowledge and skills in order to develop advanced optical com-
ponents for telecommunication and industrial applications. In addition, the group
could extend this expertise to other fields, like aerospace, sensing, structural mon-
itoring, and more.

Figure 1.1: PhotoNext logo [1]

Part of the research effort is currently being employed to validate the sensing
capabilities of a particular type of optical fiber sensor called Fiber Bragg Grating
(FBG). This sensor can capture a change in temperature, strain, pressure, tilt,
displacement, acceleration, load, and more; all that can be achieved by observing
the refractive index variation inside the optical fiber core caused by such physical
changes. Among the beneficial properties of the FBGs, like being lightweight, small
in size, and having the capability of being multiplexed in a single transmission
line, there is another one that is of greater interest for many fields: they are not
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Introduction

susceptible to electromagnetic interference; this is the significant advantage of being
a photon-based technology.

The component responsible for generating the light to be sent through the fiber
is called Interrogator. The unit injects an ultraviolet beam of light inside the
optical fiber and then analyzes the wavelength that is reflected by the FBG. Then,
it sends the collected information through an Ethernet cable to the Middleware, the
software in charge of cleaning the data coming from the Interrogator and sending
it to the architecture visualization layer; this piece of software is installed and run
on a Raspberry Pi 3 Model B. The transmission to the visualization layer can be
achieved by sending the sensor data directly to the visualization unit using a TCP
socket or inserting it into a MongoDB database, from which the final application
will retrieve it.

Figure 1.2: System architecture

At last, the data reach the visualization application used by the operator per-
forming the measurement. Generally, the interrogator manufacturers provide the
customers with software to visualize the data coming from their devices; however,
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1.2 – Fiber Bragg Grating

they understandably lack some cutting-edge features that may reveal very useful
during the research work. One of them could be correlating the optical fiber refrac-
tive index variation to the physical variation in real-time, allowing the operators to
fully leverage the sensing capabilities of the FBGs.

This thesis tries to fill the gap by creating a new GUI application with an
improved user interface, encapsulating both legacy and innovative features. The
application requirements have been discussed extensively with the researchers of the
DIMEAS, the actual stakeholders in this project, and the final users of the software.
They have also been integral to the development and testing phase, giving constant
feedback to continuously validate the implemented features.

1.2 Fiber Bragg Grating
The FBG technology is based on a set of Bragg reflectors that, put together in a
symmetric structure at a regular distance (pitch) one from the other, allow to reflect
only the light at the Bragg wavelength while making all the others wavelengths pass
through. It is possible to calculate the Bragg wavelength with the formula:

λB = 2neffΛ (1.1)

where 2neff is the refractive index of the fiber core and Λ is the grating pitch.

Figure 1.3: FBG structure [2]

As said before, different physical properties, like temperature or strain, can
affect the refractive index of the silicate, which the reflectors are composed of,
changing the Bragg wavelength reflected by the FBG.
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Introduction

Figure 1.4: FBG applied strain [3]

Figure 1.5: FBG temperature change [3]

When a change in the refractive index occurs, it can be calculated with the
formula:

∆λ

λ0

=
∆(2neffΛ)

2neffΛ
(1.2)
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1.3 – Thesis structure

If the change actuator is a strain, the formula can be developed as follows:

∆λ

λ0

=
∆(2neffΛ)

2neffΛ
= (1 + pe)∆ε = k∆ε (1.3)

where pe is the photoelastic constant (variation of the refraction index with axial
tension), and k is the Bragg grating k factor.

In case of a temperature change, the formula takes the following form:

∆λ

λ0

=
∆(2neffΛ)

2neffΛ
= (α + ξ)∆T (1.4)

where α is the fiber thermal expansion coefficient, and ξ is the thermo-optic coef-
ficient (dependence of the refraction index on temperature).

1.3 Thesis structure
The dissertation of this thesis is divided into the following chapters:

• Chapter 2: System architecture

• Chapter 3: User manual

• Chapter 4: Developer manual

• Chapter 5: Tests & results

• Chapter 6: Conclusions

5
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Chapter 2

System architecture

The following chapter describes all the components involved in the workflow, from
the physical system to be monitored to the visualization of the measured data in
the terminal application.

2.1 System overview
The FBG Data Analyzer is implemented on top of the preexisting architecture
designed and implemented by the PhotoNext group. Indeed, the data fed to the
visualization layer is processed by different components in the underneath layers.

The system is composed of the units below, which work in synergy to complete
the necessary tasks:

• Physical system;

• Interrogator;

• Middleware;

• Database;

• FBG Data Analyzer;

The coming sections will explain in detail what the different components in this
pipeline do and how they cooperate to achieve the desired results.

2.2 Physical system
The physical system can contain the optical fibers hosting the FBGs; therefore, the
entire architecture is system agnostic, and the FBGs can be considered the physical
system. During the development and test phase, the systems monitored with the
FBG Data Analyzer were an aircraft model (ANUBI) and a climatic chamber.

7



System architecture

2.2.1 ANUBI

ANUBI is an aircraft model designed and assembled by the Innovation Center for
Amateur Rocketry and Unmanned Ships (ICARUS) Team. The optical fibers are
anchored to the wings and tail of the model using a specific glue; they are used to
measure the strains applied to the aircraft to monitor its structural integrity and
the physical forces it is subjected to.

Unfortunately, because of logistic issues, it was impossible to test the applica-
tion in an actual flight, but the tests were performed with the real model in the
laboratory.

Figure 2.1: ANUBI aircraft model [4]

2.2.2 Climatic chamber

A climatic chamber allows for varying and testing two quantities, temperature and
humidity, in a confined space. The common tests performed with this instrument
are the following:

• Thermostatic tests, wherein the only controlled parameter is the temperature;

• Climatic tests, wherein both the temperature and humidity parameters are
controlled simultaneously;

For the purposes of this thesis, only thermostatic tests were conducted. The instru-
ment has dedicated sensors to monitor the quantities mentioned above; therefore,
it was used to validate the temperature readings of the FBG sensors.

8



2.3 – Interrogator

Figure 2.2: Climatic chamber [5]

2.3 Interrogator

The Interrogator is the device in charge of emitting the laser beam into the fibers
and reading back the reflected wavelengths of the FBG sensors.

Multiple products are available from different suppliers; the DIMEAS chose the
SmartScan by SmartFibers interrogator, which is the product that was also used
for the development and testing of the FBG Data Analyzer application.

The SmartScan has 4 channels, each hosting one optical fiber that can support
up to 16 FBGs; therefore, it can read a maximum of 64 FBG sensors simultaneously
connected. For each channel, the Interrogator can collect both raw and peak data,
which are sent through the RJ45 Ethernet Connector embedded in the device using
UDP packets.
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System architecture

Additionally, the device presents a serial port that can be used for diagnostics
and servicing.

Figure 2.3: SmartScan interrogator [6]

2.4 Middleware

The Middleware is a multi-thread C++ command line application that receives
the data generated by the Interrogator and elaborates it to make it usable by the
visualization and database layer. This application generally runs on a Raspberry
Pi 3 Model B connected with an Ethernet cable to the Interrogator.

At the beginning of the thesis work, the most updated version of the Middleware
was only capable of sending the elaborated data to the database. In addition to its
storage functionalities, it was also used as a "proxy" to exchange the FBGs data
between the visualization layer and the Middleware.

During this thesis work, it was introduced a new connection method, already
present in previous versions of the software. However, as will be discussed in the
following chapters, the functionality was revisited and improved.
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2.5 – Database

Figure 2.4: Raspberry Pi 3 Model B [7]

2.5 Database

Figure 2.5: MongoDB logo [8]

MongoDB is a non-relational, fast, and scalable database. These features, to-
gether with the so-called Change Stream, led it to be chosen for this project; this
feature allows a client to listen for changes to a database or collection and be no-
tified when they happen. This mechanism is used by the visualizer application to
retrieve the FBG data from the database when this type of connection method is
chosen.

As it is easy to imagine, the downside of this approach is the latency; indeed, it
must be considered the time required to upload the data from the Middleware to
the database, the time for the change stream notification to fire, and the time the
data takes to be transferred from the database to the FBG Data Analyzer.
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2.6 FBG Data Analyzer
The FBG Data Analyzer has been developed in C++ using the Qt framework.
It displays the data read by the sensors in a very organized and human-readable
manner, giving the operator insights into the acquired data in real-time.

The application retrieves the sensor data by connecting to the TCP socket server
opened by the Middleware or by listening on the MongoDB Change Stream; this
can be decided during the connection configuration phase. Independently from
the connection method, the data received can also be saved locally, allowing the
researchers to make custom analyses of the measured information.

The FBG Data Analyzer can display the instantaneous peak reflected by the
sensors, the trend over time of the peaks, and its spectrum computed using the
FFT algorithm. In addition, given the correct configuration, it is capable of calcu-
lating the change in temperature or strain correlated to the deltas of the peaks and
displaying the current temperature or strain applied to the sensor with their trend
over time.

Figure 2.6: FBG Data Analyzer
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This chapter describes in detail the FBG Data Analyzer functionalities and guides
the user in the configuration of the measurement session.

3.1 Overview
The application is divided into three different views, available in the lateral tab
selector:

• Main: visualizes the instantaneous peaks and their trend over time;

• Measures: visualizes the temperature or strain over time measured by the
linked sensors;

• FFT: visualizes the spectrum of the selected sensors;

Figure 3.1: Views tab

Independently from the view selected in the main window, it is possible to open
a separate window containing a table with the instantaneous peak of every sensor
available.
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3.2 Menu
The menu allows the user to open the table view window, manage the connection
with the Middleware and configure the acquisition saving.

3.2.1 View

Clicking the Table subsection, it is possible to open and close the Table view win-
dow. The new window is detached from the main workspace; therefore, it is possible
to move it around on the desktop, possibly also on another monitor, to always have
an overview of the instantaneous values of the sensors, independently from the
visualized data in the main window.

Figure 3.2: Table view

3.2.2 Connection

From this section, it is possible to select and configure the type of connection to be
used for retrieving the sensor data from the Middleware; the options available are
a TCP connection or a database proxy.

During the same session, it is possible to open and close multiple connections,
even using different methods, without the need to close the application; only one
open connection is allowed at any given time. Independently from the connection
method, inside the status bar located in the bottom-right corner of the screen it is
displayed the current connection status, which can be:

• Disconnected: the connection is closed, and no data is received;

• Connecting: the connection has not been established yet, but the client is
actively trying to connect to the counterpart;

14
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• Connected: the connection is open, and data is flowing into the application;

Figure 3.3: Connection status

TCP connection

The only required parameters for a TCP connection are the IP of the device on
which the Middleware is running and the port to which the socket server has been
bounded.

For obvious reasons, the machine running the FBG Data Analyzer and the
device running the Middleware must be on the same network or be reachable via
the Internet, even if the second option is not advised for latency reasons.

Figure 3.4: TCP connection dialog

Database connection

When using this type of connection, the data is not directly received from the Mid-
dleware, but it passes through a MongoDB instance that notifies and forwards the
sensor data to the FBG Data Analyzer. This connection method can be advanta-
geous when multiple users need to access the sensor data in a fast and easy way, as
it is saved in a remote, quickly reachable, location.

Operators are allowed a high degree of flexibility in defining the parameters for
connecting to the database. They are summarized below:

• Host: server IP or domain name;
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• Port;

• Database: the database, inside the server instance, on which the Middleware
writes the data received from the Interrogator;

• Auth database: the database that will be used to validate the credentials
provided for the connection;

• Username;

• Password;

• Direct connection: allows the client to connect directly to the specified
host as a standalone rather than to the replica set, which is the top-level
abstraction of it;

• SSL/TLS connection: specifies if the connection should be established on
top of an SSL/TLS secure channel;

As it is visible from Figure 3.5, the parameters Auth database, Username, and Pass-
word are optional and only required when an authenticated connection is needed.

Figure 3.5: Database connection dialog
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3.2.3 Acquisition

Within this section, it is possible to start the logging, stop it, and configure with
which modality the sensor data received by the FBG Data Analyzer is saved on
disk.

Opening the settings window, the operator can configure the following param-
eters:

• Sampling: at which rate the instantaneous peak will be sampled and saved;

• Duration: the duration of the acquisition. After that time, the logger is
interrupted, and the log file is finalized;

• Sensors: the subset of the sensors to be logged;

Thanks to the easy-to-use input method, the sensors can be selected with the
modalities below:

• Individually: clicking on the corresponding cell;

• By channel: clicking on the row label;

• By grating index: clicking on the column label;

• By range: clicking on a cell and dragging the cursor to another cell to form
the wanted selection area;

By pressing the CTRL key, it is possible to combine multiple selection methods.

Figure 3.6: Acquisition dialog

After the configuration is confirmed, it is sufficient to click the Start button
in the submenu to start the acquisition and the Stop button to stop it before
the Duration period is elapsed; otherwise, the logger will automatically stop. The
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logger status is easily obtainable with a glance at the status bar in the bottom-right
corner of the application (Figure 3.7). The status can take the following values:

• Idle: the logger is not recording any data;

• Recording: the data received is currently being saved to disk;

The log files are saved in the folder acquisitions with an easily identifiable
name composed of the date and time at which the acquisition was started (e.g.,
20220918-165312.log).

Figure 3.7: Acquisition status

3.3 Views
To easily cycle the different views, a tab system has been implemented on the right
border of the application; this allows the user to quickly move from one set of
information to the other. The only view not in the tab system is the Table view,
which was considered more convenient to have as a separate window, as explained
in Section 3.2.1.

3.3.1 Main view

The Main view plain (Figure 3.8) is divided into three sections. On the left is the
sidebar containing all the available sensors, while on the top-right and bottom-right,
there are the peaks and peak-time charts.

The vertical space occupied by the two charts can be customized by the user
dragging up and down the horizontal divider in grey; the separator can be moved
to the far-top or far-down positions to completely hide one of the two charts and
focus the attention on a single one that will occupy the entire vertical space of the
view (Figure 3.9).

Sidebar

In the sidebar is shown a legend with all the available sensors. This legend is auto-
matically populated, as when the connection is established with the data source, a
sensor discovery procedure takes place, adding each active sensor to the list. When
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Figure 3.8: Main view

a sensor is added, it is shown by default in the charts; it can be easily hidden by
unchecking the grating in the legend.

The sensors, color-wise, are grouped by channel; the system assigns a base
color to it, and the gratings within are assigned a gradient level. The level is
determined automatically based on the number of gratings present in the channel;
for each sensor added, all the gradient levels assigned with the same base color are
recalculated to always have an optimal level distribution.

Clicking on the color next to the sensor, a color picker will pop up, allowing
the user to change the base color assigned to that channel. When the selection is
confirmed, the colors of all the sensors inside the channel will be recomputed. The
sensor colors are synced and reflected in every view.

Clicking the button below the legend makes it possible to open the charts options
window (Figure 3.10), which allows tuning the charts setup based on the operator’s
specific needs.

While the majority of the options inside the window are specific for one of
the two charts and will be covered in the following sections, the Show chart grid
influences both the charts in the view, enabling or disabling the grid overlay that
helps to get a quick qualitative estimate of the values in the charts (Figure 3.11).
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Figure 3.9: Main view focused on one chart

Figure 3.10: Main view options

Peaks chart

This chart visualizes the instantaneous peak of each selected sensor. The values
on the y-axis are predefined because the intensity is not a piece of information
available from the Middleware. At the same time, on the x-axis, the wavelength of
the peaks is represented in nanometers (nm).

By default, the x-axis range is readjusted every time a peak is received, granting
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Figure 3.11: Main view with chart grid enabled

that every piece of information available is always visible on the charted area. The
downside to this approach could be noticed in scenarios where significant sporadical
variations can occur. Indeed, in that case, the useful segment of the range could
become very small compared to the fully displayed range since the readjustment
in this modality only increases it without ever shrinking it. For the described
scenarios it was implemented the dynamic readjustment mode activated by the
option Dynamic peak chart range (Figure 3.10). In this mode, the range is shrunk
and expanded to always show all the available data without wasting horizontal
space, since the current minimum and maximum peaks are always pinned to the
start and the end of the x-range, respectively.

In addition to the table view, it is possible to get the precise peak wavelength
value also from the chart; indeed, hovering with the mouse cursor on one of the
series in the peaks chart, the series will be highlighted, and a label indicating the
precise wavelength value will pop up near the peak of the series (Figure 3.12).

Peak-time chart

This chart visualizes the peak trend over time of the selected sensors. On the y-axis
is reported the peak wavelength in nanometers (nm), while on the x-axis is shown
the relative time in hours, minutes, and seconds. The y-axis range is automatically
scaled to contain all the peaks in the charted timespan, but it can also be manually
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Figure 3.12: Peaks chart with grey series highlighted

configured with the Manual wavelength range option. The sampling frequency and
the timespan visualized can be both changed with the options Time series sampling
and Time series range, respectively (Figure 3.10).

It is possible to view older points in the series that are not included in the
current window by hovering the chart with the mouse pointer and using the scroll
wheel of the mouse or the touchpad scroll gesture. While scrolling, the y-range
will dynamically adjust to include the minimum and maximum peak values in the
x-axis range. To exit the scroll mode and go back to the live one, where the chart
automatically scrolls to display the current instant, it is sufficient to scroll back to
the last data points or to simply double-click on the chart.

Since the chart grid can only give a qualitative estimate of the coordinates
of a point, a crosshair feature was embedded in every time chart. Keeping the
mouse left button pressed inside the chart area, a crosshair will appear under the
cursor position, projecting its exact coordinates to the axes (Figure 3.13); holding
the button pressed and moving the mouse cursor around, it is possible to see the
precise values of different data points in the past.

3.3.2 Measures view

Within the Measures view (Figure 3.14) are visualized the trend over time of tem-
peratures and strains correlated to the variations of the sensor peaks. The area is
divided into three sections: on the left is the sidebar, from which new sensors can
be configured and added to the legend; on the top-right, it is possible to see the
strains chart, while on the bottom-right, that of the temperatures. The vertical
space of the charts can be customized as explained in Section 3.3.1.
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Figure 3.13: Time chart crosshair

Figure 3.14: Measures view

Sidebar

The legend present in this view has the same feature as the one in the Main view,
covered in Section 3.3.1, with a couple of differences. Initially, the legend starts
without any sensor; the user must manually configure and add them to the view.
For that reason, it is also possible to delete the sensors, for example, to correct
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a mistake made during the configuration; to do that, it is sufficient to hover the
sensor to be deleted with the mouse and click on the red X that will pop up next
to it, as shown in Figure 3.15.

Figure 3.15: Sensor deletion

By clicking the Add... button, a new sensor can be configured to register a strain
or a temperature. When configuring a new temperature sensor (Figure 3.16), two
parameters must be specified:

• kT : the experimentally determined coefficient correlating the ∆λ to the ∆T ;

• T0: the current temperature, used to calibrate the sensor;

When configuring a new strain sensor (Figure 3.17), the parameters to be specified
may vary from two to three:

• kε: the experimentally determined coefficient correlating the ∆λ to the ∆ε;

• ε0: the current strain, used to calibrate the sensor;

• T Sensor: this field is optional, and if present, it indicates the grating to
use as a temperature reference to compensate the strain read, since both
temperature and strain variations have a role in the change of the Bragg
wavelength.

Time charts

The temperature and strain charts have the same features and characteristics as
the peak-time chart in the Main view and are described in Section 3.3.1. The only
difference is the y-axis unit of measure, which may vary based on the one used for
the calibration since the actual computed values are only deltas.
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Figure 3.16: New temperature sensor Figure 3.17: New strain sensor

3.3.3 FFT view

Figure 3.18: FFT view

This view (Figure 3.18) visualizes the spectrum of the selected sensors. It com-
prises two sections, the sidebar and a single chart occupying most of the view.

The spectrum is computed using the Fast Fourier Transformation (FFT) al-
gorithm applied to a window of n samples; the window does not advance by one
element at a time but in steps of n elements. Because of that, the FFT of the signal
is not calculated every time a new sample is available but only when n new elements
are ready to be utilized. This behavior was decided with the input of the research
team involved in the requirements analysis and testing, and highly improves the
computation performance.
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The sidebar contains the legend, which works in the same way as the one in
the Main view, analyzed in Section 3.3.1. For performance reasons, the spectrum
analysis is only performed for the displayed sensors; when a sensor is hidden, its
spectrum is kept in memory, but it will be recalculated only after the configured
amount of samples is acquired from the time it is shown again.

Options

Thanks to the Options window, it is possible to configure the following parameters:

• Plot direct component: by default, the first value of the FFT result vector,
which represents the direct component of the signal analyzed, is not plotted
to make the chart more readable;

• Sampling: the frequency at which the analyzed signal will be sampled;

• Samples: the number of samples on which to compute the FFT (must be a
power of 2);

• Show chart grid: displays a grid in the chart background.

Figure 3.19: FFT options

3.4 Configuration
All the options and settings described in the sections above are automatically saved
in the JSON file settings.json located in the FBG Data Analyzer installation
folder. This is very convenient and allows the operators to change the configuration
with an external editor without having to use the application GUI. Additionally,
this saving method makes it very easy to back up the settings or create predefined
templates to be used in similar measurement campaigns.
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This chapter describes the development setup and environment; the reader will be
walked through the codebase architecture. This chapter can be a handy starting
point for future developers who will continue working on this project.

4.1 Qt framework

Figure 4.1: Qt logo [9]

Qt is an open-source multi-platform framework that supplies developers with
a toolkit to create applications for different platforms with a relatively low effort;
indeed, a lot of Qt classes exist to cover multiple technological areas, from the
Graphical User Interface (GUI) to the network communication, and wrap low-level
platform-specific functionalities and APIs, offering a common and unique interface.

On top of that, different classes and external modules exist to facilitate specific
aspects and needs that a developer might have; for instance, the charting system
of the application is built on top of the Qt Charts module, while the socket com-
munication is handled with the Qt Network one.

Specifically for the development of the FBG Data Analyzer, Qt v6.2.4 was used.

27



Developer manual

4.1.1 Signals & slots

In this framework, events are handled slightly differently from the approach of other
ones; instead of using callbacks, as often done, Qt uses a signal/slot mechanism. In
this methodology, an object that wants to let the outer world know that something
occurred can register a signal that will be emitted when the event occurs; the
signal is emitted a priori, as the object does not know about others that may be
interested in the event. On the other hand, objects can also register slots, which
are practically public member functions that have the ability to be attached and
react to specific signals. Finally, signals and slots can be connected together with
the function connect() so that a slot is triggered when a signal is emitted; the
connected signal and slot do not have to be owned by the same object. Multiple
slots can be connected to the same signal, and symmetrically, a single slot can be
connected to various signals.

As will be presented in the following sections, the FBG Data Analyzer heavily
uses this system to handle events.

Figure 4.2: Signals and slots connection [10]
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4.1.2 GUI definition

The three key classes that define a GUI in Qt are the following:

• QWidget: the base class of every drawable class that represents a base element
of the GUI. Every QWidget can be displayed as a window if it does not have
a parent; otherwise, it will be rendered inside the parent QWidget;

• QMainWindow: a special class that describes the main window of the appli-
cation that is opened at start-up. For this reason, it is designed to allow an
easy presentation of a menu bar, a central widget, and a status bar;

• QLayout: a class that every QWidget containing multiple elements can use to
organize how those subcomponents should be displayed in the view.

To control the appearance of every component, the framework introduced the Qt-
StyleSheet (QSS) language, inspired by the Cascading Style Sheets (CSS) language,
which is commonly used for defining the style of HyperText Markup Language
(HTML) pages; indeed, QSS is straightforward to learn, having prior knowledge of
CSS.

4.1.3 Memory management

The QObject is the class from which every class inside the Qt framework inherits.
Instead of instantiating the objects in the stack, Qt heavily uses dynamic memory
allocation; for this reason, at first glance, it may seem an arduous job to keep
everything that must be handled and deleted under control, making the system
look prone to memory leaks and more. That is not the case as QObjects are
organized in hierarchies, where every object that is instantiated is added to the
children’s list of the parent; when the parent is deleted, every child in the tree will
automatically be deleted.

Therefore, it is common to find in the codebase function calls that have as
arguments dynamic instantiations of objects without having the allocated memory
registered in the caller object. Ownership of the new entity will directly pass to
the callee, that will take care of deleting it when suitable.

4.2 MainWindow

The MainWindow is the class that describes the main window of the application that
is opened at the program launch by the entry point main function (Figure 4.3) and
where all the user-defined components reside.

All the views are initialized inside the constructor of this class (Figure 4.4),
along with the global variables that need to be accessed by most of the classes.
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int main(int argc , char *argv [])
{

QApplication a(argc , argv);
MainWindow w;
w.show();
return a.exec();

}

Figure 4.3: Main function

ConnectionManager g_connection;
CustomStatusBar *g_statusBar;
SessionSettings *g_settings;

MainWindow :: MainWindow(QWidget *parent)
...

{
...
g_settings = new SessionSettings ();

QTabWidget *tabView = new QTabWidget(this);
tabView ->addTab(new PeakTimeView(tabView), "Main");
tabView ->addTab(new MeasuresView(tabView), "Measures");
tabView ->addTab(new FFTView(tabView), "FFT");
...
g_statusBar = new CustomStatusBar ();

setCentralWidget(tabView);
setMenuBar(new CustomMenuBar ());
setStatusBar(g_statusBar);
setWindowTitle("FBG Data Analyzer");

}

Figure 4.4: MainWindow constructor

The views are those described in the preceding chapter, while the global variables
are instances of the following classes:

• ConnectionManager, which manages the connections to the database or the
TCP server;
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• CustomStatusBar, which represents the status bar at the bottom of the ap-
plication;

• SessionSettings, which handles the automatic save and load of the settings
available;

4.3 SessionSettings

Every option in the FBG Data Analyzer is automatically saved upon submission by
the user; this also includes the selected sensors in the various chart legends, along
with every channel color, independently from the selection state.

All this is handled with the SessionSettings class, which keeps track of the op-
tions in a JSON document stored in the private variable m_settings. This variable
is initialized in the constructor by calling the function loadSettings(), which reads
the content of the settings.json file and parses it in a JSON document. The class
exposes some getters and setters that allow other objects to access specific docu-
ment sections; an example is presented in Figure 4.5. When the SessionSettings
object is destroyed, the settings.json file is overwritten with the content of the
m_settings variable using the writeSettings() function.

Since the channel colors are synced between all the chart legends in the ap-
plication, this class is also responsible for notifying all of them when a color is
updated; this is achieved by emitting the signal sensorColorChanged(). When
the saveSensorColor() (Figure 4.7) function is called, the new base color selected
for the channel is passed as an argument; it then recalculates the individual sensor
colors and emits the signal for each one of them. The gradient steps are determined
by evenly distributing the useful gradient range among the sensors contained in the
m_gratings map, which contains the number of gratings present in every channel.
That map is kept updated by the getSensorColor() function (Figure 4.6) that is
called by the chart legends every time a new sensor is detected.

4.4 ConnectionManager

The ConnectionManager acts as a proxy and point of access for every type of
connection method currently used. It is an abstraction designed to facilitate the
reception of sensor data for the components that need it; in this way, the classes
that consume the data can be connection-method agnostic and just have a single
interface to handle the connections.

The class exposes slots and signals that are then internally routed to the current
instance of the ConnectionInterface pointed by the private variable m_conn. The
only slots that differ based on the connection method are the ones that open it with
the counterpart, mongoConnect() and tcpConnect(). When one of these methods
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void SessionSettings :: saveDbInfo(QString host , int port ,
QString db)

{
auto &connection = m_settings["connection"]["db"];
connection["host"] = host.toStdString ();
connection["port"] = port;
connection["database"] = db.toStdString ();

}
...
QVector <QVariant > SessionSettings :: getDbInfo ()
{

...
auto &connection = m_settings["connection"]["db"];
auto host =

QString(connection["host"].get <std::string >().c_str());
auto port = connection["port"].get <int >();
auto database =

QString(connection["database"].get <std::string >().c_str());
return { host , port , database };
...

}

Figure 4.5: Settings getter & setter

QColor SessionSettings :: getSensorColor(int channel , int
grating)

{
if(! m_gratings.contains(channel))

m_gratings[channel] = grating + 1;
else if(grating >= m_gratings[channel ])

m_gratings[channel] = grating + 1;
...

}

Figure 4.6: getSensorColor function

is called, the current connection is closed, and the m_conn object is deleted; once
that is done, a new connection is opened using the method implicitly chosen by call-
ing the respective slot, and the new instance is saved again in the m_conn pointer.
At this stage, all the signals and the disconnect() slot exposed by the class are
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void SessionSettings :: saveSensorColor(int channel , int
grating , QColor color)

{
float step = m_gratings[channel] > 1 ? GRADIENT_RANGE /

(m_gratings[channel] - 1) : 0;
for(int gr=0; gr<m_gratings[channel ]; gr++)
{

float p = 1 - step * gr;
int r = color.red() * p + 255 * (1 - p);
int g = color.green() * p + 255 * (1 - p);
int b = color.blue() * p + 255 * (1 - p);
emit sensorColorChanged(channel , gr, QColor(r, g, b),

color);
}

}

Figure 4.7: saveSensorColor function

wired with m_conn again by calling the makeConnections() function (Figure 4.8),
while the consumers continue to receive the signals containing the sensor data as
anything happened because the object they are connected to never changed. Look-
ing at the example in Figure 4.9, the links that are detached and reconnected when
the connection method changes are the ones between the ConnecetionManager and
the ConnectionInterface derivates on the right, while the connections on the left
remain in place for the entire life cycle of the consumers, even during a connection
change.

The actual classes that directly handle the connections are MongoInterface
and TCPInterface; these two classes both inherit from the abstract class
ConnectionInterface and implement its pure virtual slots, connect() and
disconnect().

4.4.1 MongoInterface

This class manages the physical connection with the MongoDB instance using the
C++ driver officially provided, called mongocxx. The driver builds on top of the
C driver libmongoc and uses the matching BSON package bsoncxx, which im-
plements the BSON specification, used for handling the data exchanged with the
database.
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void ConnectionManager :: makeConnections ()
{

connect(m_conn , &ConnectionInterface :: statusChanged ,
this , &ConnectionManager :: statusChanged);

connect(m_conn , &ConnectionInterface :: peakReceived , this ,
&ConnectionManager :: peakReceived);

connect(m_conn , &ConnectionInterface :: connectionFailed ,
this , &ConnectionManager :: connectionFailed);

connect(m_conn , &ConnectionInterface :: configReceived ,
this , &ConnectionManager :: configReceived);

connect(m_conn , &ConnectionInterface :: latencyComputed ,
this , &ConnectionManager :: latencyComputed);

connect(m_conn , &ConnectionInterface :: connectionClosed ,
this , &ConnectionManager :: connectionClosed);

}

Figure 4.8: makeConnections function

Figure 4.9: ConnectionManager schema

Status thread

When the slot connect() is called, the thread m_statusTh is started, and
the m_status is changed to Connecting ; this thread runs in a loop until the
disconnect() slot is called. At every cycle, it tries to ping the database to check
the connection status; if the server is unreachable, it enters/maintains the status
Connecting and retries to ping the server after one second; otherwise, if the con-
nection is established, it enters/maintains the Connected status and, if it was not
already running, it starts the m_streamTh thread.
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Stream thread

The m_streamTh runs in a loop as long as the interface status remains Connected. It
reads the MongoDB Change Stream (Section 4.4.1) and elaborates the data received
(Figure 4.10). If a new peak is obtained, it emits the signal peakReceived() to
inform the interested consumers. If the elapsed time since the last latency compu-
tation exceeds the LATENCY_FREQUENCY definition, it also calculates the difference
between the current timestamp and the one at which the Interrogator measured
the peak, emitting the signal latencyComputed() with the result.

Instead, if a configuration message is received, it adds the new sensor to the de-
tected gratings list and informs the system emitting the signal configReceived().

The configuration message is only transmitted one time when the Middleware
starts the measurement. This may cause a problem with the auto-detection mech-
anism in case the FBG Data Analyzer connects to the database after that record
is generated. For this reason, when a new peak of a sensor that was not passively
detected is received, the application calls the function fetchConfig() to execute
a query on the database that fetches all the configuration entries available in the
collection; the resulting gratings are inserted in the list of detected sensors and the
configReceived() signal is synthetically emitted for each one of them.

MongoDB change streams

As cited above, the Stream thread uses the MongoDB Change Stream feature to get
sensor data. Change streams allow applications to access real-time data changes
without the complexity and risk of tailing the oplog. Applications can use change
streams to subscribe to all data changes on a single collection, a database, or an
entire deployment, and immediately react to them. Because change streams use the
aggregation framework, applications can also filter for specific changes or transform
the notifications at will [11].

Figure 4.10: Change Stream schema

4.4.2 TCPInterface

This class handles the direct connection with the Middleware through a TCP socket;
it uses the socket wrapper QTcpSocket, shipped with the Qt framework.
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Socket connection

The socket instance is kept in the private pointer variable m_socket. When the
connect() slot is called, the m_status is changed to Connecting and the m_socket
slot connectToHost() is called to attempt to establish the connection with the
server. When the socket connection state changes, the m_socket emits the signal
stateChanged(), including the current state of the socket. If the socket is in the
UnconnectedState, the TCPInterface object enters/maintains the status Connect-
ing and the connectToHost() slot is called again, creating a non-blocking event
loop entirely based on the slots and signals of the QTcpSocket class (Figure 4.11);
the loop is only interrupted when the connection is established or the disconnect()
slot of the TCPInterface is called. On the other hand, if the stateChanged()
signal returns ConnectedState, the m_status is changed to Connected, and the
m_parserTh thread is started.

QAbstractSocket :: connect(m_socket , &QTcpSocket :: stateChanged ,
[this]( QTcpSocket :: SocketState state){
if(m_status == status :: disconnected)

return;

switch(state)
{
case QTcpSocket :: ConnectedState:

changeStatus(status :: connected);
m_parserTh ->start ();
break;

case QTcpSocket :: UnconnectedState:
changeStatus(status :: connecting);
...
m_socket ->connectToHost(m_host , m_port ,

QTcpSocket ::ReadOnly , QTcpSocket :: IPv4Protocol);
break;

}
});

Figure 4.11: Handler of the stateChanged signal

Once the socket connection is established and it is ready to read the data on the
communication channel, the m_socket emits the signal readyRead() and continues
to do so as long as data is received. When this is triggered, all the available data
on the socket, which is JSON formatted, is read and put in the m_queue for further
elaboration by the consumer m_parserTh.
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Parser thread

This thread runs in a loop as long as the m_status is Connected. In every cycle,
the thread extracts all the complete JSON objects available from the m_queue and
elaborates them singularly.

Every time a new socket connection is established, the first message sent by the
Middleware includes the active gratings detected; for every sensor in the array, the
configReceived() signal is emitted to inform the system. The subsequent mes-
sages are sensor peak information, which is forwarded to the interested consumers
with the signal peakReceived(). Analogously to the MongoInterface, when a
new peak is received and the LATENCY_FREQUENCY time is elapsed from the last
time the latency was computed, a new latency calculation is done and emitted with
the latencyComputed() signal.

4.5 ChartLegend

This class implements the legend widget in the sidebar of every view, which shows
the available sensors, allows to hide or show them, and changes the channel colors.
This object is also the only one that interacts directly with the series inside the
charts. Its constructor takes in input the following parameters:

• SessionSettings::viewEnum view: the type of view in which this legend
is placed; this is used to save the configuration in the correct section of the
settings.json file;

• QString name: the name that will be shown above the legend in the GUI;

• QList<BaseChart*> charts: the list of actual charts that the legend needs
to control;

• bool editable: false by default, it indicates if the list of sensors can be
changed by deleting them; for example, this is set to true in the Measures
view.

The ChartLegend class implements only the slot addSensor() that takes in input
the channel and grating of the sensor to be added to the legend; this slot is generally
connected to the configReceived() emitted by the ConnectionManager and is
the one that tells the charts to create a new series for the sensor (Figure 4.12).
When the slot is called, a new LegendRow is created, which includes the QCheckBox
to show and hide the sensor, the sensor name, and the ColorPicker to change
its channel color; the checkbox and the color picker are initialized based on the
values that are contained in the g_settings variable, fetched with the functions
getSensorVisibility() and getSensorColor() respectively.
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PeakTimeView :: PeakTimeView(QWidget *parent)
{

...
PeakChart *chart1 = new PeakChart ();
TimeChart *chart2 = new TimeChart ();
...
// Sidebar
ChartLegend *legend = new

ChartLegend(SessionSettings :: PeakTimeView , "Sensors",
{chart1 , chart2 });

connect (& g_connection ,
&ConnectionManager :: configReceived , legend ,
&ChartLegend :: addSensor);

...
}

Figure 4.12: ConnectionManager & ChartLegend connection

The colorChanged() signal of the ColorPicker object is connected with a
handler that calls the saveSensorColor() slot of g_settings, which internally
emits the sensorColorChanged() signal to inform all the other legends and charts
that the sensor colors were changed (Figure 4.7). To implement this mechanism,
the ChartLegend object is also connected to the last mentioned signal; the event
loop that those interconnections would cause is blocked thanks to the check on
the master color that is passed as an argument to the ColorPicker::setColor()
function (Figure 4.13).

void ColorPicker :: setColor(const QColor &color , const QColor
&master , bool set)

{
if(master != m_color)
{

setPalette(QPalette(color));
if(set) m_color = master;
emit colorChanged(master);

}
else setPalette(QPalette(color));

}

Figure 4.13: setColor function
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4.6 BaseChart
All the charts visible in the views are instances of classes derived from the
BaseChart (Figure 4.14), which itself extends the QChartView implemented in the
Qt Charts module. This class is the owner of the sensor series, which are saved
in the map m_series, and exposes the slots showed in Figure 4.15. Additionally,
it defines the protected virtual methods onShowSensor() and onRemoveSensor()
that the derived classes can implement to perform some actions when a sensor is
shown/hidden or it is permanently removed from the chart. The BaseChart class
does not actually add or remove any data points to the series; this task is delegated
to the subclasses.

Figure 4.14: BaseChart derived classes

4.6.1 PeakChart

The peak chart is used to display the instantaneous sensor peaks that are re-
ceived by the application. In the constructor, the peakReceived() signal of the
g_connection is connected to the newPeak() class slot. When a new peak is re-
ceived, a series is constructed by setting the extremes to zero and creating a peak
with the shape of the QEasingCurve::InOutQuad, with the highest point coincid-
ing with the sensor peak (Figure 4.16). At the same time, if the peak received is
the first one of the sensor, a label with the peak value is created and placed above
the peak point; the label is hidden by default and is only shown when the series is
hovered with the mouse. In case the sensor already has a label in the chart, its text
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class BaseChart : public QChartView
{
...
protected:

QMap <QPair <int , int >, QLineSeries*> m_series;
virtual void onShowSensor(int channel , int grating , bool

show) {};
virtual void onRemoveSensor(int channel , int grating) {};

public slots:
void addSensor(int channel , int grating , const QColor

&color);
void showSensor(int channel , int grating , bool show);
void setColor(int channel , int grating , const QColor

&color);
void removeSensor(int channel , int grating);
void showChartGrid(bool state);

};

Figure 4.15: BaseChart definition

is updated along with its position in the chart to keep it aligned with the correct
wavelength value. The labels are created and updated by calling the setLabel()
method.

Range adjustment

To keep all the peaks inside the charted area, the x-axis range is constantly adjusted
by calling the adjustRange() method (Figure 4.17). When a new data point is
added to the chart, the method checks if the new value is contained in the current
range by confronting it with the m_min and m_max variables, that store the extremes
of the range and the sensors that defined them; if this is not the case, one of the
two extremes of the range is expanded to include the new point, and the variables
m_min and m_max are accordingly updated.

It is easy to see how an outlier could skew the range permanently, reducing
the legibility of the chart. To address this issue, the dynamic range option was
introduced; the option is active when the m_dynamicRange variable is set to true.
During the time the option remains active, in addition to the standard extremes
check, it is also checked if the sensor that generated the new peak is the one that
determined one of the extremes; if the condition is met and the new value is inside
the current range, the sensor with the new highest or lowest value is searched in the
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void PeakChart :: newPeak(int channel , int grating , qreal peak)
{

...
if(series ->isVisible ())

adjustRange(sensor , peak);

QEasingCurve curve(QEasingCurve :: InOutQuad);
series ->append (1000, 0);
for(int i=10; i>0; i-=1){

float fI = i / 10.0;
float val = curve.valueForProgress (1 - fI);
series ->append(peak - fI/4, val);

}
for(int i=0; i<=10; i+=1){

float fI = i / 10.0;
float val = curve.valueForProgress (1 - fI);
series ->append(peak + fI/4, val);

}
series ->append (2000, 0);
setLabel(channel , grating);

}

Figure 4.16: PeakChart::newPeak

m_peaks map, which contains the latest peak of each sensor. The found sensor/peak
pair is set as the new m_min or m_max, suitably updating the range. This method
will always keep the sensors with the minimum and maximum peaks anchored to
the extremes of the x-axis range.

4.6.2 TimeChart

The time chart is used to visualize all the trends over time. New peaks are received
from the g_connection object by connecting its peakReceived() signal to the
newPeak() slot. When a new peak is received, its timestamp is confronted with
the one inside the m_lastSensorUpdate map; if the elapsed time is longer or equal
to the m_sampling time, it is passed to the toChartValue() virtual method that
converts the peak into the actual value to be added to the m_series and the value
in the m_lastSensorUpdate is refreshed. The cited virtual method is intended to
be overridden by the derivate classes; by default, it returns the value passed as an
argument.
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void PeakChart :: adjustRange(QPair <int , int > sensor , qreal
peak)

{ ...
if(peak < m_min.second || m_min.second == 0)
{

xAxis ->setMin(peak - PEAK_OFFSET);
m_min = {sensor , peak};

}
if(peak > m_max.second)
{

xAxis ->setMax(peak + PEAK_OFFSET);
m_max = {sensor , peak};

}

if(m_dynamicRange)
{

if(sensor == m_min.first && peak > m_min.second)
{

m_min = min();
xAxis ->setMin(m_min.second - PEAK_OFFSET);

}
if(sensor == m_max.first && peak < m_max.second)
{

m_max = max();
xAxis ->setMax(m_max.second + PEAK_OFFSET);

}
}

}

Figure 4.17: PeakChart::adjustRange

Range adjustment

The adjustRange() method (Figure 4.18) is called every time a new peak is regis-
tered. As done in the PeakChart class, it resizes the vertical range to include every
visible point. A peculiarity of this chart is that the user can manually fix the y-axis
range; when this option is set, the value of the m_staticRange variable is set to
true.

In addition to the vertical range, also the x-axis range is constantly updated to
keep the m_lastUpdate timestamp at the far right of the range and the timestamp
(m_lastUpdate - m_range) at the far left, unless the chart is in scrolling mode,
which will be analyzed in a section below. The m_lastUpdate variable represents
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the timestamp at which the last peak was received, while the m_range one represents
the timeframe the user has selected to be shown in the chart.

void TimeChart :: adjustRange(QPair <int , int > sensor , qreal
peak , qint64 timestamp)

{ ...
if(m_start.toMSecsSinceEpoch () == 0)
{

QDateTime now =
QDateTime :: fromMSecsSinceEpoch(timestamp);

m_start = now;
xAxis ->setRange(now , now.addMSecs(m_range));

}
else if(m_lastUpdate.toMSecsSinceEpoch () >

xAxis ->max().toMSecsSinceEpoch () && !m_scrollingMode)
{

xAxis ->setRange(m_lastUpdate.addMSecs(-m_range),
m_lastUpdate);

}
...
if(peak < m_min.second)
{

if(! m_staticRange && !m_scrollingMode)
yAxis ->setMin(peak - PEAK_OFFSET_TIME_CHART);

m_min = {sensor , peak};
}
if(peak > m_max.second)
{

if(! m_staticRange && !m_scrollingMode)
yAxis ->setMax(peak + PEAK_OFFSET_TIME_CHART);

m_max = {sensor , peak};
}
updateCrosshairCoord ();

}

Figure 4.18: TimeChart::adjustRange

Crosshair

The functionality implemented in this class allows the user to project on the x
and y axes the current coordinates of the mouse position by simply holding the
left mouse button. This class was implemented by using the QGraphicsScene of
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the BaseChart and directly calling its paint methods to draw the crosshair overlay
composed of QGraphicsItem objects.

With the checkCoordConstraints() method, the time chart makes sure not
to allow the crosshair to be printed outside the charted area but to clip it to its
boundaries. By moving the mouse outside the bounds of the chart, while holding
down the left mouse button, it is possible to fix one coordinate at an edge of the
chart and vary the other.

Every time the adjustRange() method is called, also the method
updateCrosshairCoord() (Figure 4.19) is executed to update the coordinates of
the crosshair projected to the axes that, otherwise, would be stuck at the values in
which the mouse button was initially pressed without considering the scale change.

void TimeChart :: updateCrosshairCoord ()
{

auto series = chart()->series ()[0];
auto pos = chart()->mapFromParent(m_mousePosition);
auto coord = chart ()->mapToValue(pos , series);

coord = checkCoordConstraints(coord , pos);
m_crosshair.changeCoordinates(coord);

}

Figure 4.19: updateCrosshairCoord function

Scrolling mode

Since the chart by default always shows the most recent m_range time window, a
functionality to scroll the chart was designed to allow the user to see data points
older than that time frame. To implement that, the following event handlers were
overridden:

• wheelEvent() (Figure 4.20): this event is fired when the wheel mouse is
scrolled; the chart is scrolled by the number of degrees the wheel is rotated.
It activates the scroll mode when the user scrolls backward the chart and
deactivates it when the chart is scrolled forward to the timestamp of the last
received peak.

• mouseDoubleClickEvent(): the event is used to detect the double click on
the chart area. It deactivates the scroll mode independently by the chart
time position and resets the timeframe visualized to display the most recent
timestamp.
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While the chart is scrolled, the y-axis range is automatically adjusted using the
setMinMax() function to visualize all the data points in the time range displayed.
If the crosshair is active, its coordinates are updated to reflect the change.

void TimeChart :: wheelEvent(QWheelEvent *event)
{

qreal degree = event ->angleDelta ().y() / 8;
...
if(xAxis ->min() > m_start && degree < 0)
{

m_scrollingMode = true;
chart()->scroll(degree , 0);
if(xAxis ->min() < m_start)

xAxis ->setMin(m_start);
}
else if(xAxis ->max() < m_lastUpdate && degree > 0)
{

m_scrollingMode = true;
chart()->scroll(degree , 0);
if(xAxis ->max() > m_lastUpdate)
{

xAxis ->setMax(m_lastUpdate);
m_scrollingMode = false;

}
}

setMinMax ();
updateCrosshairCoord ();

}

Figure 4.20: wheelEvent implementation

StrainChart

This class extends the TimeChart class to implement the virtual method
toChartValue() for converting the peak variations to a delta strain, as shown
in Figure 4.21. It uses the saveMeasureParams() slot to retrieve the sensor con-
figuration inserted by the user and to save them for future measurements through
the SessionSettings::saveStrainSensor method.
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qreal toChartValue(QPair <int , int > sensor , qreal peak)
override

{
if(m_constants.contains(sensor))
{

qreal dW = peak - m_initialPeaks[sensor ];
qreal numerator;
if(m_tempSensors.contains(sensor))
{

auto tempSensor = m_tempSensors[sensor ]. first;
if(m_lastPeaks.contains(tempSensor))
{

qreal dWT = m_lastPeaks[tempSensor] -
m_tempSensors[sensor ]. second;

numerator = dW - dWT;
}
else numerator = dW;

}
else numerator = dW;

return numerator / m_constants[sensor] +
m_initialStrains[sensor ];

}
return 0;

};

Figure 4.21: StrainChart::toChartValue

TemperatureChart

This class extends the TimeChart class to implement the virtual method
toChartValue() for converting the peak variations to a delta temperature, as
shown in Figure 4.22. It uses the saveMeasureParams() slot to retrieve the sen-
sor configuration inserted by the user and to save them for future measurements
through the SessionSettings::saveTempSensor method.

4.6.3 FFTChart

This chart class, which extends the BaseChart one, is specifically designed to com-
pute and represent the FFT of the selected signals. To calculate the FFT, every
sensor has assigned an instance of the ffft::FFTReal class included in the FFTReal
library [12], developed by Laurent de Soras.
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qreal toChartValue(QPair <int , int > sensor , qreal peak)
override

{
qreal dW = peak - m_initialPeaks[sensor ];
return dW / m_constants[sensor] + m_initialTemps[sensor ];

};

Figure 4.22: TemperatureChart::toChartValue

Since calculating the FFT requires a precise sampling rate, it is not enough to
follow the same approach used in the TimeChart. To have more precise samplings,
in the updatePeak() slot is implemented a for loop that takes the time elapsed
between a peak received and the following one and divides it by the m_sampling
value; it then create synthetic samples in-between, at the correct sample rate,
considering the value of the signal in that time frame constant (Figure 4.23).

void FFTChart :: updatePeak(int channel , int grating , qreal
peak , qint64 timestamp)

{
...
int delta = timestamp - m_lastPeaks[sensor ]. timestamp;
for(int i=0; i < delta / m_sampling; i++)
{

m_lastPeaks[sensor ]. timestamp += m_sampling;

if(m_lastPeaks[sensor ]. timestamp == timestamp)
addSample(sensor , peak);

else
addSample(sensor , m_lastPeaks[sensor ].peak);

}
m_lastPeaks[sensor ].peak = peak;

}

Figure 4.23: updatePeak slot

When the selected amount of samplings, saved in the m_window, is collected, the
FFT is computed by calling the computeSpectrum() method (Figure 4.24). The
FFTReal::do_fft() method returns the output vector of the algorithm (f), which
is processed to create the series reflecting the spectrum of the sampled input signal.
By default, the item at f [0] is not plotted, as it represents the DC component of
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the signal and may throw out of scale the vertical range of the chart. The user can
set the m_plotDC variable to true by acting on the options to change that behavior
and plot the DC component.

void FFTChart :: computeSpectrum(QPair <int ,int > sensor)
{ ...

qreal f[m_window ];
m_fftEngines[sensor]->do_fft(f,

m_buffers[sensor ]. constData ());

QList <QPointF > points;
...
for(int i = 0; i<m_window /2; i++)
{

qreal abs;
if(i == 0)
{

if(! m_plotDC) continue;
abs = f[i] / m_window;

}
else
{

qreal real = f[i];
qreal img = f[m_window /2 + i];
abs = qSqrt(real*real + img*img) / m_window;

}

qreal freq = i * (1/( m_sampling /1000.0)) / m_window;
...
points.append(QPointF(freq , abs));

}

m_series[sensor]->clear();
m_series[sensor]->append(points);
...

}

Figure 4.24: computeSpectrum method
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4.7 SessionLogger

This class is used to save on file the peaks received by the selected sensors; it ex-
poses the slots in Figure 4.25. By calling the changeSettings() slot, the sampling
frequency (m_sampling), duration of the measurement (m_duration), and the sen-
sors to be logged are set. When the start() slot is called, the actual acquisition
starts: a file with the name <yyyyMMdd-hhmmss.log>, pointed by m_file, is cre-
ated in the acquisitions folder, and the sampling starts. The stop() slot can be
used to stop the acquisition before the m_duration time runs out.

class SessionLogger : public QObject
{ ...
public slots:

void start();
void stop();
void changeSettings(long sampling , long duration ,

QList <QPair <int , int >> sensors);
void updatePeak(int channel , int grating , qreal peak ,

qint64 timestamp);
};

Figure 4.25: SessionLogger slots

Since the log file takes a snapshot of all the selected sensors at a given timestamp,
and the sensor peaks are not received in a synchronized way, the algorithm below
(Figure 4.26) was designed in the updatePeak() slot, which is connected to the
ConnectionManager::peakReceived() signal. The m_samples buffer starts empty
and is the one that is saved recurrently to file, while the m_peaks buffer contains
the last peak received for every sensor. When a peak with a timestamp equal to the
timestamp to sample (m_sampleTS) is received, it is saved in the m_samples buffer;
instead, if the timestamp is higher, the value already present in m_peaks is put
in the m_samples buffer and the newly received value overwrites it. After all the
sensors are sampled at m_sampleTS or a timestamp higher or equal to m_sampleTS
+ m_sampling is received, the m_samples buffer is logged and cleared, and the
m_sampleTS is increased by m_sampling, starting the new sampling cycle. In the
latter case, the sensors that have not been sampled yet are considered constant at
the last registered peak.

When the stop() slot is called, either automatically or manually, the m_file
is closed.
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void SessionLogger :: writeRow ()
{ ...

m_samples.clear();
m_sampleTS += m_sampling;
...

}

void SessionLogger :: addSample(QPair <int ,int > sensor , qreal
peak)

{
if(m_samples.contains(sensor))
{

for(auto s : m_peaks.keys())
{

if(! m_samples.contains(s))
m_samples[s] = m_peaks[s];

}
writeRow ();

}
m_samples[sensor] = peak;
if(m_samples.count() == m_peaks.count())

writeRow ();
}

void SessionLogger :: updatePeak(int channel , int grating ,
qreal peak , qint64 timestamp)

{ ...
if(( timestamp > m_sampleTS &&

!m_samples.contains(sensor)) || timestamp > m_sampleTS
+ m_sampling)

{
addSample(sensor , m_peaks[sensor ]);

}
else if(timestamp == m_sampleTS || timestamp ==

m_sampleTS + m_sampling)
{

addSample(sensor , peak);
}
m_peaks[sensor] = peak;

}

Figure 4.26: Logging algorithm
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4.8 Views
The views are only used to set the layout of the widgets inside them and to define
their various signal/slot interconnections without defining any relevant logic, as
shown in Figure 4.27. The only exception is the MeasuresView class, which will be
analyzed in the next section.

4.8.1 MeasuresView

This view shows strain and temperature sensors, and since a temperature may
compensate for a strain, a check must be performed before adding one of the first
types. To do so, the ConnectionManager::configReceived() signal is not di-
rectly connected to the ChartLegend::addSensor slot, but instead, it is proxied
by the MeasuresView::checkSensor slot implementing a mechanism to let the
strain sensors await for the temperature one they depend on, before adding them
to the chart.

When a new sensor configuration is received, the checkSensor() method
checks if the relative temperature sensor has already been added by looking in
the m_sensors vector. If it is found, the strain sensor is added to the view; other-
wise, it is added to the m_sensorsQueue. When a temperature sensor configuration
is received, the sensor is immediately added, and all the strain sensors present in
the m_sensorsQueue, depending on it, are added as well.

4.9 Middleware
The Middleware software was mostly kept as it was implemented in the previous
thesis works; it was just modified to support the TCP connection mode. The data
sent on the channel is JSON encoded.

The TCP socket server is started with the start_tcp_server() method, which
opens a socket binding it to the interface 0.0.0.0 on port TCP_SOCKET_PORT,
defined in the parser.hpp header file. After the socket is opened, the
tcp_clients_collector() thread is started and assigned to the handler
tcp_clients_th; this thread runs in a loop and accepts new incoming connec-
tions, saving the client handlers in the tcp_clients vector and sending, as the
first message on the channel, the object containing the currently active gratings
(Figure 4.28).

Then, when the amount of peak data collected reaches the configured
PEAK_DATA_NUMBER, along the mongodbDAO::insertMultipleData() method,
which sends it to the MongoDB database, is also called the function
send_tcp_data(); this function sends the available data in batch to all the clients
that are currently connected to the socket, using the JSON object presented in
Figure 4.29.
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PeakTimeView :: PeakTimeView(QWidget *parent)
...
{

QSplitter *charts = new QSplitter ();
PeakChart *chart1 = new PeakChart ();
TimeChart *chart2 = new TimeChart ();;
...
charts ->addWidget(chart1);
charts ->addWidget(chart2);
...
ChartLegend *legend = new

ChartLegend(SessionSettings :: PeakTimeView , "Sensors",
{chart1 , chart2 });

connect (& g_connection ,
&ConnectionManager :: configReceived , legend ,
&ChartLegend :: addSensor);

QPushButton *options = new QPushButton("Options ...");
connect(options , &QPushButton ::clicked , m_optionsDialog ,

&MainOptionsDialog ::exec);
connect(m_optionsDialog ,

&MainOptionsDialog :: dynamicRangeSet , chart1 ,
&PeakChart :: setDynamicRange);

connect(m_optionsDialog , &MainOptionsDialog ::gridSet ,
chart1 , &BaseChart :: showChartGrid);

connect(m_optionsDialog ,
&MainOptionsDialog :: samplingChanged , chart2 ,
&TimeChart :: changeSampling);

...
QVBoxLayout *sidebar = new QVBoxLayout ();
sidebar ->addWidget(legend);
sidebar ->addWidget(options);
...
QHBoxLayout *layout = new QHBoxLayout(this);
layout ->addLayout(sidebar);
layout ->addWidget(charts);

this ->setLayout(layout);
}

Figure 4.27: PeakTimeView constructor
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{
"active_gratings": [x, y, z, ...]
// where x, y, and z are the grating indexes

}

Figure 4.28: Active gratings data structure

{
"index": number , // grating index
"timestamp": number // data read by the Interrogator
"curr_time": number // data sent out by the Middleware
"wavelength": number // sensor peak

}

Figure 4.29: Peak data structure
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Chapter 5

Tests & results

During the development phase, tests were mainly conducted using an Interrogator
emulator; however, during the alpha testing phase, some scenarios were tested with
real devices in the DIMEAS laboratory. Below will be described some of the tests
performed.

5.1 Instruments
The following devices were used for the test scenarios:

• Windows laptop: the FBG Data Analyzer application ran on a Windows
10 64-bit machine equipped with an Intel i7-11800H @ 2.3GHz CPU, 32GB
of RAM, and an NVIDIA GeForce RTX 3050 Ti GPU;

• Raspberry Pi 3 Model B: the Middleware ran on top of the Raspberry Pi
OS v5.15;

• MongoDB: a remote MongoDB instance hosted on a server of the Politecnico
di Torino reachable from the internet;

• Interrogator: SmartScan by SmartFibres (Figure 5.1);

• Climatic chamber: the BEGER KK-50 CHLT (Figure 5.3) was used as
climatic chamber;

• Carbon fiber specimen: a flexible carbon fiber bar (Figure 5.2) used for
traction and compression mechanical tests;

5.1.1 Setup

The Raspberry Pi was connected to the Interrogator with an Ethernet cable, while
it was connected to the internet thanks to an iPhone 12 used as a hotspot. The
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laptop running the FBG Data Analyzer was connected to the same hotspot allowing
the two devices to be reachable to one another in the same LAN, enabling the use
of the TCP connection mode.

Figure 5.1: Interrogator

Figure 5.2: Carbon fiber specimen
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Figure 5.3: Climatic chamber

5.2 Temperature correlation validation

The objective of this test was to determine the actual validity of the functionality
that allows the visualization of the temperature measured by the FBG. In par-
ticular, this is possible by converting the registered wavelength values using the
appropriate calibration coefficients previously calculated by the operator.
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5.2.1 Procedure

The focus of this test was only the sensor in channel 0, grating 0. The climatic
chamber temperature was taken to 100°C stable; then the sensor was configured in
the Measures view with a kT of 0.01 and a T0 of 100.

After the configuration was completed, the climatic chamber temperature con-
trol was stopped, and the door opened; as soon as that was done, the sensor imme-
diately began a steep descent to a low of about 50°C, as can be seen in Figure 5.4.
The drop after the relatively clean first phase is characterized by a peak up and
then a lower rate descent full of noise caused by the turbulences generated by the
constant flow of hot and cold air in and out of the climatic chamber.

Figure 5.4: Temperature drop

After a couple of minutes, the door was closed again. Because of the still hot
metallic surfaces inside the chamber, the temperature started to rise again with a
clean exponential move, stabilizing at about 88°C (Figure 5.5).

5.2.2 Results

During the test sequence, the temperatures registered by the FBG Data Analyzer
were constantly compared with the ones measured by the internal temperature
sensor of the climatic chamber. The results were excellent as not only the two
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Figure 5.5: Temperature rise

temperatures were aligned with a difference of about a degree, but the results also
highlighted the extreme reactiveness of the FBG sensor compared to the embedded
sensor, thanks to the real-time visualization and synchronization with the physical
phenomena.

5.3 Strain correlation validation

The objective of this test sequence was to validate the response of the measured
strain gauge to the physical force applied to the carbon fiber specimen.

5.3.1 Procedure

The carbon fiber specimen was positioned to have one extremity supported on the
table, fixed, and the other hanging outside the plane with no support. This allowed
using the table as a pivot point to band up or down the bar.

With the bar put in place, the FBG sensor in channel 1, grating 0, was configured
in the Measures view with a kε of 0.001 and calibrated with a ε0 of 0.

With the setup completed, the carbon fiber bar was bent manually and with
some sample weights, observing the measured strain gauges. A negative strain was
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measured when the bar was banded upward; on the other hand, a positive strain
was detected when the bar was bent downward. In addition to the sign of the
measured strain, also the magnitude was commensurated to the amount of force
applied, returning to the base value of 0 when no forces were involved.

In the strain chart shown in the upper section of Figure 5.6, it is possible to
observe an extract of a measurement generated during the test phase.

Figure 5.6: Strain chart trace

5.3.2 Results

The feature implementation returned positive results, allowing the operator to pre-
cisely and efficiently visualize in the chart the strain applied to the object in the
unit of measure determined by the kε and ε0 values.

5.4 Multiple sensors accuracy

This test aimed to perform a measurement with two sensors to verify and compare
the measured values with the expected ones and to verify the legibility of multiple
parallel series on the Measures view charts.
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5.4.1 Procedure

The climatic chamber was taken to 70°C; at this point, the two sensors at channel
0, grating 0, and channel 2, grating 0, were both configured with a kT of 0.012 and
calibrated at the current temperature. Then, the climatic chamber was configured
to lower the temperature to 50°C, and the chart was observed for the next 10
minutes until the chamber reached the set temperatures.

As it is possible to observe in Figure 5.7, the gradual descent in temperature
was different for the two sensors. The Ch0Gr0 slope was characterized by quite
some noise; this behavior was expected as the optical fiber containing the sensor
was uncoated and kept suspended by two clips with more freedom of movement in
comparison to the Ch2Gr0, which instead was attached on top of a bar, covered in
resin. This is the reason that made the descent of the Ch2Gr0 sensor very steady.

Figure 5.7: Trace of two temperature sensors

From the chart it can be noticed a difference of about 4°C between the readings
of the two sensors; this is in part expected, since the Ch0Gr0 sensor (hotter) is
positioned about 20cm above the Ch2Gr0 one (colder), and the embedded temper-
ature sensor of the climatic chamber is placed in its upper section, closer to the
Ch0Gr0 ; however, the difference could have also been partially exaggerated by the
imprecision of the constant used to configure the Ch2Gr0 sensor.
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5.4.2 Results

Both the traces were clearly visible and analyzable, allowing the user to study the
phenomena with great detail. They highlighted how the FBG Data Analyzer could
be a great instrument to study events measured with the FBG sensors, validating
the premises of this thesis.

5.5 Performance analysis

During the tests described above, latency, memory usage, and CPU usage were
constantly monitored to analyze the characteristics and performances of the FBG
Data Analyzer.

5.5.1 Latency

The latency was monitored thanks to the built-in latency indicator present in the
status bar of the application. The latency was calculated from the moment the
Middleware elaborated the data to the one where the FBG Data Analyzer received
it.

TCP connection

During the tests described in Section 5.2 and Section 5.3, the connection mode
selected was the TCP one. During the tests, the minimum latency registered was
14 ms, while the maximum was recorded at 66 ms. The overall average latency
during the measurements was around 33 ms.

Database connection

The test described in Section 5.4 was performed using the database connection
mode. During this scenario, the minimum detected latency was 118 ms, while
the maximum value registered was 790 ms. During the timeframe of the test, the
average computed latency was 246 ms.

Results

As expected, the TCP connection method was the fastest in delivering the data
from the Middleware to the FBG Data Analyzer; therefore, it is the most indicated
for scenarios requiring real-time responses to the measured physical events. For
every other situation, using one method over the other is not a real game changer
since the database connection method has latencies more than acceptable for typical
measurement campaigns.

62



5.5 – Performance analysis

5.5.2 CPU & RAM usage

The CPU and memory statistics were monitored utilizing the Process Explorer [13]
application, distributed by Microsoft. The application lists all the processes running
on the machine and, above other things, allows the user to open a chart displaying
the CPU, memory, and I/O usage of a selected process. The monitoring was made
over the course of a testing day, allowing multiple samples of different scenarios to
be gathered; that data was used to make the conclusions below.

CPU

As can be seen from Figure 5.8 and Figure 5.9, the FBG Data Analyzer is very
lightweight on the CPU. In a standard measurement scenario, its usage bounced
from 1% to 3%, with peaks over these values, up to about 7%, when scrolling charts
containing different series and large time-windows; this increased CPU usage is
caused by the computation of new minimum and maximum values, which must be
continuously updated to adjust the chart range to the displayed data.

Memory

The memory was monitored to detect eventual memory leaks or general anomalies
in the use made of the memory by the FBG Data Analyzer. After multiple tests
have been executed, it can be said with certainty that the application is not affected
by any significant memory issues.

To demonstrate a typical memory consumption trace, a standard execution was
monitored for about 30 minutes. Figure 5.8 shows the first 10 minutes of moni-
toring, where the program instantiates new objects and fills the memory with new
data points incoming from the Middleware; in this phase, memory usage slowly in-
creases, remaining at acceptable levels. The FBG Data Analyzer was kept running
for another 20 minutes while the data received was also being logged on the local
disk; a snapshot of the last 10 minutes of execution has been impressed in Fig-
ure 5.9. As can be noticed, the memory utilization at this point remained constant,
demonstrating that the series data point cap was working correctly; indeed, at that
moment, all the series had reached the RETENTION_COUNT points limit, at which the
data structure becomes a FIFO (First In First Out), deleting one element for each
new one added to the buffer.
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Figure 5.8: CPU and RAM traces of the first 10 minutes of execution

Figure 5.9: CPU and RAM traces of the last 10 minutes of execution
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Chapter 6

Conclusions

The objective of this thesis work was to create an innovative visualization tool to
allow the researcher of the PhotoNext team to have an additional instrument for
studying and validating the properties of the FBG sensors.

The developed application was designed on top of a thorough requirements
analysis and custom-tailored for the operators that will use it. The development
phase was also preceded by a study of the technologies used in the context of this
project and a study to choose the best suiting stack for implementing the proposed
solution.

6.1 Results

The FBG Data Analyzer application, the result of the efforts put into this project,
was developed with a modular architecture designed on top of the Qt framework,
making it easily expandable with new features, as it will be required with the
advancement of research in the field.

At the current state, the application meets the initial requirements, as it can
visualize in a user-friendly interface the instantaneous sensor peaks, their trend
over time, their correlation with the physical variations causing the peak changes,
and the spectrum of the signals received. On top of that, the TCP connection
mode was successfully introduced, and a logging system was implemented to save
the measurements on the local disk, allowing the user to easily import them into
post-analysis software.

All the features mentioned above underwent multiple tests during the develop-
ment phase and were validated with the final tests performed in the laboratory,
with the collaboration of one of the researchers of the PhotoNext group. During
the tests, in addition to the proper functioning of the implemented features, it was
also possible to verify how the response times of the FBG Data Analyzer remained
at acceptable levels for a real-time application, one of the key requirements that

65



Conclusions

emerged from the initial analysis.
The application in its current state was shown and tested with some stakehold-

ers, receiving positive feedback.

6.2 Future works
All the source code of the FBG Data Analyzer and the Middleware is available in
a Bitbucket repository owned by the DAUIN. Thanks to the designed architecture,
it should be reasonably easy to implement new features and maintain the current
codebase.

The project is still in the beta stage; therefore, there are surely bugs to be
discovered and fixed, and additional tests to be carried out.

In the current phase, while a measurement is ongoing, the application partially
supports variation to the physical layout of the sensors; still, research and develop-
ment of a system to enable this fully and securely are encouraged.

All the resources and essential elements to support multiple Interrogators to
be used in the same application instance are there, and they just need to be put
together; instead, the opposite case is already supported, allowing multiple FBG
Data Analyzer instances, also running in different systems, to receive the data of a
single Interrogator.

Finally, the porting to another operating system could be worth the effort,
requiring a fraction of the work that would be needed if the application was not
implemented on top of the Qt platform.
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