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Abstract

Overall Equipment Effectiveness (OEE) is a core Key Performance Indicator (KPI)

in industrial manufacturing. The downtime experienced by production resources

negatively affects it. Root cause analysis from data retrieved highlights that combi-

nations of products and packaging materials impact unplanned maintenance time

of manufacturing and packaging lines. The main idea of the project is to create an

optimal scheduling model whose aim is to maximise the resource utilisation recom-

mending combinations of products, mixers, packaging materials and packaging lines.

It has been developed with the constant support of GlaxoSmithKline(Consumer

Healthcare)/Haleon Data Science Team whose Dr. Mihaylov is the Principal Data

Scientist.

The development process starts collecting and analysing real data-sets about

GSK Oak Hill (NY, US) Production Site. Process Mining is exploited in order to

discover the end-to-end production flow. Then, information about hard and soft

constraints, which the model enforces, are retrieved. They are related to production,

maintenance, changeovers, shifts and breaks, inventory management and spare

capacity. The objective function minimizes the machine downtime. The model is

designed and developed using Python as programming language and exploiting the

library “ortools.sat.python” as background optimization environment.

The solution space is explored using Greedy Insertion. The heuristic allocates

production blocks minimizing their impact on the objective function. Blocks are
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scheduled starting from packaging lines and going backward.

Relevant insights emphasize that metaheuristics such as Large Neighborhood

Search (LNS) can lead to outstanding results in improving the solution quality

[1, Pisinger et al., 2010]. LNS works implementing a destroy and repair method.

As a result, some blocks of the current solution are removed and located in new

positions [1, Pisinger et al., 2010]. Its application often allows to escape from local

optima and hopefully finding a global optima solution.

Furthermore, a practical implementation of Agglomerative Hierarchical Clus-

tering is developed. It aims at identifying product families based on operational

flows. This would make the procedure of inserting metadata more robust, leading

to higher Data Integrity which is a relevant concern in the pharmaceutical industry.
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Sommario

L’Overall Equiment Effectiveness (OEE) è un fondamentale Key Performance

Indicator (KPI) nell’ambito della produzione industriale. Esso è influenzato neg-

ativamente dal tempo di inattività delle risorse di produzione. Analizzando in

maniera approfondita i dati si evince che gli interventi di manutenzione straordinaria

dipendono dalle combinazioni di prodotti e materiali usati per l’impacchettamento.

L’idea principale del progetto è di schedulare la produzione in modo da massimiz-

zare il grado di utilizzo delle risorse, raccomandando combinazioni di prodotti,

mixers, materiali di impacchettamento e linee di confezionamento. Il modello è

stato sviluppato con il costante supporto di GlaxoSmithKline(Consumer Health-

care)/Haleon Data Science Team, di cui il Dottor Mihaylov è il Principal Data

Scientist.

I primi step necessari per realizzare il progetto richiedono di acquisire e analizzare

datasets contenenti informazioni reali sul sito produttivo di GSK locato in Oak Hill

(NY, US). Il Process Mining è utilizzato per scoprire il flusso di produzione end-to-

end. Successivamente, sono state raccolte le informazioni relative ai vincoli che il

modello deve rispettare. Essi riguardano aspetti legati alla produzione, manuten-

zione, cambi, turni e pause, gestione dell’area di stoccaggio e capacità inutilizzata.

La funzione obiettivo minimizza i tempi di inattività dei macchinari. Il modello è

progettato e sviluppato usando Python come linguaggio di programmazione e la

libreria “ortools.sat.python” come ambiente di ottimizzazione.
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Lo spazio di soluzioni viene esplorato usando l’algoritmo Greedy Insertion.

Tale euristica alloca i blocchi di produzione minimizzando il loro impatto sulla

funzione obiettivo. Tali blocchi sono schedulati partendo dal termine del processo

produttivo, ossia le linee di impacchettamento, e “andando all’indietro” verso le

linee di miscelazione.

Alcuni risultati recenti enfatizzano che l’utilizzo di metaeuristiche, quali la Large

Neighborhood Search (LNS), possono migliorare in maniera sostanziale la qualità

della soluzione [1, Pisinger et al., 2010]. La LNS si sviluppa usando un metodo

di “distruzione e riparazione”. Tale metodo rimuove alcuni blocchi dalla soluzione

corrente e li colloca in una nuova posizione [1, Pisinger et al., 2010]. Spesso, la

sua applicazione permette di “sfuggire” da punti di ottimo locale e trovare una

soluzione globalmente ottima.

Inoltre, è stata sviluppata un’implementazione pratica del Hierarchical Clustering

Agglomerativo. Essa ha lo scopo di identificare famiglie di prodotto sulla base dei

flussi operativi. Questo rende la procedura di inserimento dei metadata più robusta,

aumentando l’integrità dei dati, un aspetto importante nel settore farmaceutico.
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Chapter 1

Introduction

1.1 Research Motivation

Nowadays, manufacturing efficiency and effectiveness are critical requirements to

survive in fierce competitive environments. Production resources, being the heart

of industrial activities and deeply influencing the related KPIs, represent the main

point of interest. Therefore, companies, subject to competitive pressure, strive

to achieve the maximum machine utilisation reducing downtime duration and

frequency.

Equipment downtime refers to time windows where the machine incurs scheduled

or unplanned stops. Planned breaks reduce the risk of failures while keeping an

optimal rate of production. They are often performed at regular intervals and their

duration exhibits a low variance. Conversely, unexpected downtime reasons are

several. In addition, they change from one resource to another [2, Nwanya et al.,

2017]. In industrial sites, unplanned breakdown factors cover, among the others,

supply shortage, worker unavailability and sudden demand changes [3, Yang et al.,

2005]. Such deviations could lead to business disruption if not tackled properly [3,

Yang et al., 2005]. Resource availability and in turn throughput, manufacturing

1



Introduction

lead time, and product quality are just few measures deeply influenced by machine

downtime. Hopefully, Total Predictive Maintenance (TPM) discipline claims that

companies can control and decrease a large percentage of it.

GSK Oak Hill Production Site downtime experienced by resources, manufactur-

ing consumer healthcare products, is deeply analysed in the project. There is an

expectation that an end-to-end view on the process can provide better opportunities

for downtime root cause analysis and equipment utilisation optimisation. Critical

combinations of products, manufacturing and packaging lines are studied. Finally,

an optimal scheduling problem, whose objective is to increase the overall equipment

effectiveness (OEE) of the plant, is designed and developed.

1.2 GlaxoSmithKline(CH)/Haleon

Research, technology and expertise are brought together by GlaxoSmithKline to get

ahead of disease. This approach makes GSK a leading player in the pharmaceutical

industry. It supports people’s health discovering, developing and producing state-

of-the-art vaccines, drugs, and consumer healthcare products. Last year, it supplied

more than 767 million vaccines and 1.7 billion medicines. Next decade future goal

sets the ambitious target to improve the well-being of over 2.5 billion people.

Several profitable investments and strategic adjustments to its consumer health-

care division lead to the creation of Haleon. The new independent organization

is a global leader in its sector. It offers prominent product brands which embrace

Centrum, Voltaren, Sensodyne and Panadol. They are highly trusted means to

enhance the health of people.

GSK Consumer Healthcare and Haleon, collaborating with Politecnico di Torino,

constantly and tirelessly supported the development of the master thesis. In

particular, the work benefits from the knowledge of the Data Science Team settled

in Brentford headquarter (London, UK). Experts involved have a background

2



Introduction

in Mathematics, Physics and Biomedical Engineering. Such cross-disciplinary

environment, made up by people with outstanding hard and soft skills, is the

perfect place to continuously learn and grow. It is truly inspiring seeing people

coming from all over the world (Bulgaria, Greece, Ireland, England, China, France,

etc.,) being highly motivated to achieve common goals. Another relevant aspect

concerns the working atmosphere, which is very comfortable. Smiling, grabbing

a coffee and eating all together are common practices. Therefore, collaboration

among team members is excellent which results in high quality project outcomes.

The thesis content is further enriched thanks to weekly virtual meetings with

GSK Oak Hill Production Site technicians. During meetings, a general overview of

the core processes related to toothpastes manufacturing was provided. In addition,

real datasets, which feed the optimal scheduling algorithm, are deeply analysed.

Finally, relevant insights about operational hard and soft constraints are discussed.

A released picture of the manufacturing site is shown in figure 1.1.

Figure 1.1: GSK Oak Hill Production Site.
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The production site began its activities manufacturing dermatological products.

Toothpastes production started in 2010 with the well known Sensodyne brand.

Two years later the annual production volume of 23 millions of tubes was achieved.

Demand kept growing driven by an increased attention on health and well-being

of elderly population and emerging middle-class. In 2014 the target of supplying

in one year 200 million of tubes was reached. In 2016 the product portfolio was

further enriched by famous toothpaste brands Pronamel and Aquafresh. In 2018

the transition to Enterprise Resource Planning (ERP) system, and the relative

change management, lead to an output reduction. After this period, the growth

proceeded towards the ambition of exceeding the threshold of 400 million tubes in

2027. Figure 1.2 briefly introduces the production site’s achievements.

Figure 1.2: Brief History of GSK Oak Hill Production Site.

1.3 Thesis Structure

The project embraces five chapters starting from the introduction.
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The second section explores the main concepts of process mining. It contains

valuable insights to discover the end-to-end production flow of toothpastes. In

addition, it introduces a practical application of Agglomerative Hierarchical Clus-

tering. It is a famous data mining unsupervised learning technique useful to identify

product clusters based on operational path similarity.

The third chapter provides information related to the GSK/Haleon Oak Hill

Production Site. Then, the goal of the project, which is improving the Overall

Equipment Effectiveness of production resources, is formally discussed. Afterwards,

the python optimal scheduling model is described. Therefore, the objective function

and the relevant constraints, variables, parameters and subscripts are explained.

Finally, the chapter covers heuristics, such as Greedy Insertion, used to explore the

solution space.

The fourth chapter delivers the results of the optimal scheduling model. It starts

showing the input parameters which feed the algorithm. Then, three different

simulations are explored. The first shows a scheduling solution relative to a planning

horizon of four weeks. The second extends the previous solution performing a

weekly review. The third keeps on extending previous results implementing another

weekly review, and it is further enriched dealing with an unexpected long machine

failure.

The thesis terminates with relevant final conclusions and discussing advanced lo-

cal search techniques, known as metaheuristics, which should enhance the scheduling

solution provided.

Unfortunately, the software developed cannot be released because of confiden-

tiality reasons. However, a sample script is available in the shared disk.
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Chapter 2

Process Mining

This chapter examines some of the relevant literature about process mining. It

contains five sections. They are organized in a similar way, beginning exploring the

literature of previous research in that area and concluding illustrating the practical

application of the theory in the project developed.

Specifically, the first section (2.1) explains the key concepts of process mining

and the reasons behind its success. The second section (2.2) is relative to the

importance of data for process mining. It considers the main obstacles to get the

right data, then it formally defines event logs, and finally it shows an event log

comparable to the one analysed in the project. The third section (2.3) further

explores one branch of process mining which is Process Discovery. It focuses on

the metrics designed to evaluate the quality of the results, afterwards it briefly

goes through the key elements of the model Business Process Modeling Notation

(BPMN) and it closes revealing the BPMN extracted from the project’s event log.

The fourth section (2.4) introduces the nowadays need of companies to manage

product variety. As it will be possible to understand, surviving in environments

where the competition is fierce requires providing customers a broad array of choices.

This has benefits, but also several challenges. The last section (2.5) offers a solution
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to product variety challenges. It highlights the concept of product family exploring

four valuable methods to create product groups. It starts with Intuitive Grouping

(2.5.1) showing a method to cluster products based on Bill-of-Material (BOM)

similarity. Then, it describes the Parts Classification and Coding method (2.5.2)

with the well-known Opitz coding scheme. Thereafter, it introduces the Production

Flow Analysis (2.5.3) as another clustering criteria. In conclusion, it explains the

Networked Operations Sequence Analysis (2.5.4). This last sub-section beyond

a brief theoretical explanation, contains a possible application of Agglomerative

Hierarchical Clustering as unsupervised learning technique to create family of

products based on production path similarity.

2.1 Concepts of Process Mining

Transforming raw materials into finished products usually involves multiple man-

ufacturing steps. Furthermore, production processes are not the same for each

material, but they may change depending on product specifications [4, Mayr et

al., 2021]. Thus, it is vital to know which are the expected flows each material

should follow to become final product. This would be valuable in order to increase

production efficiency and survive in competitive environments.

A discipline that assists managers and decision makers to discover and monitor

manufacturing activities is process mining. It provides a family of techniques

focused on supporting organizations to gain valuable information from data [5,

Munoz-Gama et al., 2022]. Process mining is strongly related to both Process

Science (whose main topics are, among others, business process management and

operations research) and Data Science (which includes areas such as data mining

and predictive analytics). Indeed, it conceives data-driven forces and process-centric

forces as complementary, interconnected, and interdependent [5, Munoz-Gama et

al., 2022]. Process mining is domain-agnostic, thus it is not linked to a particular
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process or industry. The only requirements to apply this discipline are that

processes are present and data generated by them is available [5, Munoz-Gama

et al., 2022]. Nowadays, having data available is not challenging, especially in

industrial manufacturing where the production of information is rising continuously.

This is mainly due to the so-called Industry 4.0 revolution enabling a massive

source of complex sensor data [4, Mayr et al., 2021].

Process mining exploits event data to create process models having the aim

of answering to performance and conformance related questions [6, Aalst, 2016].

Process models highlight the sequence of activities to accomplish in order to get a

certain output. Also, they show the different possible paths that can be followed [5,

Munoz-Gama et al., 2022]. Many formal notations - such as Petri nets, Business

Process Model and Notation (BPMN), Unified Modelling Language (UML) and

Event-driven Process Chain (EPC) - can be used to model operational (business)

processes. The formalisms mentioned have in common that processes are described

in terms of activities whose ordering is modelled by casual dependencies [6, Aalst,

2016].

Value inside process-generated data can be extracted by three prominent

branches of process mining.

• Process Discovery: it has the aim of creating a process model from an event log,

without exploiting any a-priori information [6, Aalst, 2016]. Although most

discovery techniques have the goal of showing the sequence of activities in the

process (control-flow, trajectories, activity paths and care pathways), others

focus on gaining valuable knowledge about the functions of resources employed.

They are applied to get insights about role discovery, social networks, and

task prioritisation [5, Munoz-Gama et al., 2022].

• Conformance Checking: it is adopted to understand if real processes are

compliant with the model and vice versa. For instance, conformance checking
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can be useful to verify the so-called “four-eyes” rule which signals that specific

tasks should be performed by at least two people [6, Aalst, 2016]. Hence,

Conformance Checking is a valuable tool to detect, locate and reason deviations,

and to assess their impact [6, Aalst, 2016].

• Process Enhancement: it is a powerful technique to extend and enhance already

developed process models. This is possible exploiting additional information

about the real process recorded in some event logs. Thus, while Conformance

Checking is mostly used to assess the level of alignment between model and

reality, Process Enhancement aims at repairing or extending the a-priori model.

Repairing aims at changing the model to better reflect reality. Extending tries

to further enrich information conveyed by process models. Indeed, exploiting

timestamps it is possible to gain further insights on bottlenecks, service levels,

throughput times, and frequencies [6, Aalst, 2016].

Process mining discipline is made even richer by various perspectives that can

be identified orthogonally to its three sections [7, Huser, 2012].

• Control-flow perspective: it studies the ordered sequence of activities relevant

to the process and identifies the various paths it may take.

• Organizational perspective: it extracts knowledge about resources hidden in

the dataset. For example, which actors (people, systems, roles and depart-

ments) are relevant and the relationship among them. Its aim is to find the

organizational structure by sorting people in terms of roles and organizational

units or highlighting the social network.

• Case perspective: it is based on cases’ properties. They can be classified

according to the values of their data elements. For instance, having a case

showing a refilling order, it could be valuable to discover the supplier or the

amount of material requested.
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• Time perspective: it is related to timing and frequency of events. Information

about timestamps is precious because they allow to discover bottlenecks,

quantify service levels, monitor the utilization of resource, and foresee the

residual process time of running cases.

2.2 Data-Driven process

Process mining establishes links between the actual processes and their data on

the one hand and process models on the other hand [6, Aalst, 2016]. Event logs

constitute the primary input for this discipline [5, Munoz-Gama et al., 2022]. Based

on the principle of garbage in, garbage out process mining’s outcome is highly

reliant on it [6, Aalst, 2016].

However, the task of getting the right data is made challenging by the plethora

of sources which may contain it and by the different perspectives required to find

answers [6, Aalst, 2016]. Sometimes, the information relevant to the analysis may

be scattered due to technical or organizational reasons making the tasks of finding

and extracting it particularly difficult [6, Aalst, 2016]. Meta data, which well

describes structured datasets, could be a valuable support. However, often data is

unstructured or lacking of relevant meta data [6, Aalst, 2016]. In this case, scoping

is vital since it would be pointless to attempt to exhaustively extract event logs

from countless tables and other data sources. The task of getting answers should

be guided by questions instead of being influenced by the presence of lots of data

[6, Aalst, 2016].

Introducing event logs, it is possible to formally define them as a collection of

traces. Conversely, a trace is a set of events - ordered chronologically - referring to

the same case [8, Choueiri et al., 2021]. A case refers to the various entities under

study. They are unambiguously identified using an alphanumeric code. Each event

can mark the beginning or finishing of an activity involved in the manufacturing
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process. Indeed, activities may be not instantaneous and having information about

start time and completion time can be valuable to assess performance related

properties, such as cycle time and waiting time [6, Aalst, 2016]. Thus, process

mining discovers insightful information based on datasets where every instance is

relative to a case, an activity and a point in time [6, Aalst, 2016]. Additionally,

event logs can be further enriched by supplementary features which include [5,

Munoz-Gama et al., 2022]:

• transaction type, which signals the type of the event. Possible records are

‘start’, ‘resume’, ‘complete’, etc;

• resource, which refers to the subject who should perform the activity. It can

be a person or a production machine;

• cost, which refers to the costs associated to events;

• other attributes, referring to supplementary case or event features such as the

size of an order.

In the dataset which contains transactional data about the end-to-end manufac-

turing process to make toothpaste in GSK Oak Hill Production Site, the case ID

refers to the Stock Keeping Unit (SKU) code. Moreover, possible activities may be

dispense materials, mix materials, feed tubes and pack tubes. Timestamps would

record when each case started and finished being processed. Finally, additional

attributes may reveal the quantity manufactured, the production resource, and the

machine downtime. Table 2.1 shows a simplified event log, similar to the one being

studied in the project.
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Case ID Start Time End Time Activity Additional
Attibutes

1AA0 4-5-22 15:02 4-5-22 15:07 Dispense Materials Process-state &
product-state
characteristics

1AA0 4-5-22 15:07 4-5-22 15:18 Mix Materials Process-state &
product-state
characteristics

2AB0 4-5-22 15:02 4-5-22 15:06 Dispense Materials Process-state &
product-state
characteristics

1AA0 4-5-22 15:20 4-5-22 15:22 Feed tubes Process-state &
product-state
characteristics

1AA0 4-5-22 15:22 4-5-22 15:24 Pack tubes Process-state &
product-state
characteristics

2AB0 4-5-22 15:06 4-5-22 15:17 Mix Materials Process-state &
product-state
characteristics

2AB0 4-5-22 15:22 4-5-22 15:24 Feed tubes Process-state &
product-state
characteristics

Table 2.1: Toothpaste production event log.

2.3 Process Discovery

Recent discoveries in the fields of computing and communications deeply affected

companies’ workflow, leading to an increase in the complexity of business processes.

As a result, understanding how the organization is running is vital [9, Process and

Data Science Group - RWTH Aachen University, 2020]. Process Discovery, which

is the first section of process mining, supports organizations to achieve this task.

Indeed, its main goal is to develop a process model which is aligned - “representative”

- to the behaviour observed in the event log. Its output can be evaluated using four
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quality criteria. Satisfying all of them is impossible since they are conflicting with

one another [6, Aalst, 2016].

• Fitness: the discovered model should be able to reply the pattern observed in

the data set.

• Precision: the identified model should avoid behaviours entirely different from

what is recorded in the event log. If the output of process discovery has a

poor level of this metric, then it is underfitting.

• Generalization: it is a measure of the degree to which the developed model

would be capable of replicating the process’ future pattern. A model having a

low level of generalization is overfitting.

• Simplicity: it measures how much the model is straightforward. This last

requirement is linked to Occam’s razor statement: “One should not increase,

beyond what is necessary, the number of entities required to explain anything”.

The end-to-end toothpaste manufacturing process is analysed adopting the

perspective control-flow. In addition, the production path is represented using

the Business Process Model Notation formalism (BPMN) which is the de-facto

standard in the industry [4, Mayr et al., 2021]. It is possible to briefly introduce

its key concepts referring to figure 2.1. In particular, the beginning of the process

is marked with the start event. Conversely, its finishing point is identified with

the end event. More complex models often involve also gateways which represent

alternative paths: a parallel gateway constrains to follow all the routes, whereas

an exclusive gateway implies that just one path can be taken. Finally, the task is

displayed with a box.
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Figure 2.1: Key elements of BPMN.

The output of process discovery techniques applied to the project’s event data

is the model represented in figure 2.2. It highlights the production flow inside the

manufacturing plant. As it is possible to notice, the main production activities are

dispensing, mixing, feeding and packaging. Dispensers feed mixers with several

toothpaste ingredients, where they are blended to make the material paste. After-

wards, the batch is stored in containers and deposited in an inventory area. Finally,

the toothpaste is pumped (feeding) into tubes and the final product is packed.

Concerning production resources, several manufacturing lines and packaging lines

work in parallel.

Figure 2.2: Process model representing the production-flow to make toothpastes.
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2.4 Product Variety

Products are designed and manufactured in order to satisfy customers’ expectations.

However, meeting perceived needs of users is not trivial. They highly vary due

to differences in social values, usage scenarios, constraints and other factors [10,

Elmaraghy et al., 2013]. Organizations able to catch these changing tastes and

fulfil them promptly, offering appropriate products, gain considerable advantage

over their competitors [11, MacDuffie et al., 1996]. Furthermore, offering a wide

range of products potentially leads to differentiation, market expansion, higher

revenues and sales volume.

However, sometimes product variety decisions do not ensure such desirable

outcomes. Experimental research, interestingly, found that a broad array of choices

leads to customers confusion. Also, often users do not have the adequate level of

knowledge to catch differentiation among solutions [10, Elmaraghy et al., 2013].

Along to financial uncertain benefits, decisions about the breadth and depth of

product lines result in significant supply chain challenges. Indeed, as the production

variety increases, materials planning and scheduling end up being more problematic

[11, MacDuffie et al., 1996]. The issues mentioned may lead to a reduction of

manufacturing productivity and lower part quality. Furthermore, producing a wider

assortment of materials requires having more product platforms which translates

in an increase of setup costs [11, MacDuffie et al., 1996]. Other operative side

effects involve line balancing - required to ensure consistent cycle times at each

workstation - which becomes more challenging because of multiple models and

several option combinations [11, MacDuffie et al., 1996]. The multitude of financial

and manufacturing issues above-mentioned makes product variety management

particularly difficult.

In the project, product variety challenges are encountered firstly in dataset

analysis. Indeed, event logs that present many different cases and high diversity
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of behaviour, if not pre-processed adequately, may lead to process diagrams very

confusing and difficult to understand (spaghetti models), as it is shown in figure 2.3.

Figure 2.3: Example of spaghetti model [12, Celver].

Clustering algorithms, by grouping products into families, are useful means

to deal with such complexity, leading to less confusing outputs. Furthermore,

managing efficiently the production of a wide array of materials should result in a

reduction of setup and changeover times/costs and, in turn, increase the Overall
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Equipment Efficiency (OEE) which is coherent with the goal of the thesis [13,

Navaei et al., 2016].

2.5 Product Families

When manufacturing processes are highly dependent on similarity and commonality

among products, it may be beneficial - in terms of efficiency and productivity -

to divide materials into clusters creating product families [14, Kashkoush et al.,

2015]. They are group of products whose roots are on a certain design concept or

obtained from a standard parent and whose design or manufacturing process is

comparable [10, Elmaraghy et al., 2013].

They have boundaries that can change overtime. Evolving product families

capture new elements whose characteristics overlap, to some extent, to the ones of

entities in the original family [10, Elmaraghy et al., 2013]. Afterwards, succession of

various product generations leads to the appearance of new materials quite different

to the ones present in the original parent cluster [15, Elmaraghy, 2009].

The task of associating materials and finding clusters can be accomplished

exploiting some general methods. Often they take time and require data analysis

carried out by experts [16, Groover, 2001]. Here, the following techniques are

briefly introduced:

• Intuitive Grouping 2.5.1

• Parts Classification and Coding 2.5.2

• Production Flow Analysis 2.5.3

• Networked Operations Sequence Analysis 2.5.4
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2.5.1 Intuitive Grouping

This method, also called visual inspection, is famous for its simplicity and afford-

ability [16, Groover, 2001]. It links products based on physical elements similarities,

discovered by skilled technical personnel, generating clusters. Commonality can be

established by [16, Groover, 2001]:

• design attributes, relative to features such as size, geometry and material;

• manufacturing attributes, concerned to characteristics including the processing

steps to make a part, the cycle time, the batch size, the annual production,

and the setup required.

Given that a part’s shape is mainly defined by the industrial processes performed on

it, there is some overlap between design and manufacturing features [16, Groover,

2001].

One application of visual inspection reliant on design attributes involves the use

of similarity measures relative to Bill-of-Material (BOM) trees [14, Kashkoush et al.,

2015]. This association approach simultaneously addresses three major clustering

criteria [14, Kashkoush et al., 2015]:

1. components similarity;

2. assembly structure, which often denotes assembly sequence;

3. commonality in required amount of elements.

For illustrative purposes, figure 2.4 highlights grouping based on Bill-of-Material.
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Figure 2.4: Three products belonging to the same family based on BOM similarity
[14, Kashkoush et al., 2015].

In the project, a product family based on BOM can include the various tooth-

pastes that can be produced from the same paste of material. They slightly change

in terms of weight or packaging type.

Intuitive grouping is considered as the least accurate methodology to make

product families. Despite this, one of the earliest significant group technology

success stories in the United States employed this technique, the Langston Division

of Harris-Intertype in New Jersey [16, Groover, 2001].

2.5.2 Parts Classification and Coding

This technique assesses commonalities among elements and relates them in a coding

system. Reasons for using a coding scheme include [16, Groover, 2001]:

• design retrieval, which can be exploited by designers - facing the task of

building a new product - to check if a similar element was already developed.

Indeed, slightly modifying an existing item would often require substantially

less time than designing an entire new product from scratch;

• automated process planning, meaning that the process plan to make the new
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element can be retrieved with a simple code comparison. Indeed, often, process

plans of existing materials can be re-adapted to produce new parts having

similar codes;

• machine cell design, based on part codes, able to make all elements of a specific

product family.

Successful performing parts classification and coding takes a plenty of time. It

requires analysing design and/or manufacturing characteristics of every element [16,

Groover, 2001]. The Opitz coding scheme, developed by H. Opitz of the University

of Aachen in Germany, represents one of the most well known systems, if not the

most widely employed, to accomplish this task [16, Groover, 2001]. It adopts the

following alphanumerical sequence:

12345 6789 ABCD

This series of digits can be divided into three sections based on the type of

attributes described [16, Groover, 2001].

1. The first section is called form code and consists of five numbers. It defines

the primary design features of the part.

2. The second section is known as supplementary code and is made up of four

digits. It describes some attributes which would be beneficial in production.

3. The last group, which is made up of four letters, is labelled as secondary code.

Its aim is indicating the manufacturing operation type and sequence. The

user company may design it to meet its specific requirements.

Figure 2.5 provides an overview of the first nine digits.
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Figure 2.5: Basic structure of the Opitz system of parts classification and coding
[16, Groover, 2001].

2.5.3 Production Flow Analysis

Production Flow Analysis (PFA) aims at detecting clusters of materials and relative

machine groupings exploiting data retrieved from production route sheets instead

of product drawings. Families are discovered collecting work parts presenting equal

or comparable routings [16, Groover, 2001]. Referencing to production data, in

place of design information, allows PFA to overcome relevant drawbacks of parts

classification and coding [16, Groover, 2001].

• Despite having different geometries, materials may require similar or even the

same process routings.

• Although some elements have comparable geometries, they may involve quite

different process routings.

The following procedure needs to be applied in order to carry out a Production

Flow Analysis [16, Groover, 2001].
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1. Data collection: it requires information such as material number and manufac-

turing sequence. They are included in shop documents known as route sheets

or operation sheets.

2. Sortation of process routings: clusters of elements - called “packs” - are created

based on commonality of their process routings.

3. PFA chart: it is a tabulation having production resources j in the rows and

parts i in the columns. It is also known as part-machine incidence matrix.

Values of the matrix comply with rule 2.1.

xji =


1 if resource j manufactures material i

0 otherwise
(2.1)

An oversimplified PFA chart is highlighted in figure 2.6.

Figure 2.6: Example of PFA chart [16, Groover, 2001].

4. Cluster analysis: it is performed analysing the entries of the part-machine

incidence matrix. Materials with comparable patterns are grouped together

into families. One feasible output of cluster analysis applied on the initial PFA

chart is shown in figure 2.7. It displays various resource groups inside blocks.
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Figure 2.7: Output of cluster analysis [16, Groover, 2001].

2.5.4 Networked Operations Sequence Analysis

An extension of Production Flow Analysis would-be the Networked Operations

Sequence Analysis. It builds clusters according to operation flow similarity [13,

Navaei et al., 2016]. Also, it overcomes the limit of PFA having the ordering of

processing operations flexible, rather than fixed. Networked Operations Sequence

Analysis has various benefits such as reduction of changeover time and ease of

system reconfiguration [17, Youssef, et al., 2006]. Furthermore, being able to

discover the product manufactured based on its operation flow allows to increase

data integrity. The reason behind this can be explained taking a step back, and

in particular focusing on datasets. As it was mentioned in chapter 2.2, structured

datasets record transactional data and meta data. Transactional data is obtained

automatically exploiting sensors installed in resources involved in the process.

Therefore, they are highly reliant. On the other hand, meta data is often inserted

manually by operators. Errors or failures which may occur in the task of recording

information lead to lower data consistency. This is particularly problematic in

the pharmaceutical industry where data consistency is vital. Thus, being able of

automatically assessing the product manufactured by looking at its operational

path makes the whole procedure more reliant.

In order to create product families Agglomerative Hierarchical Clustering (AHC)

can be employed as unsupervised learning algorithm. The final goal is grouping
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instances in a way that they are similar to each other and dissimilar to entities

belonging to other clusters. AHC is a distance-based clustering algorithm. Thus,

it measures dissimilarity in terms of distance [6, Aalst, 2016]. It is preferred over

k-means clustering because it does not require any assumptions on the amount of

clusters to be generated: they are variable. AHC begins allocating every entity to

a particular singleton cluster. Then, iteratively, the two clusters closest to each

other are merged, until all instances are in the same cluster [6, Aalst, 2016].

The output of the process is displayed through a dendrogram. Cutting it with a

horizontal line corresponds to a concrete clustering [6, Aalst, 2016]. Indeed, each

intersection point between horizontal and vertical segment consists in a family

having as elements the leaves of the vertical line. Thus, moving up and down the

cutting line is possible to vary the abstraction level [6, Aalst, 2016].

For illustrative purposes, a case study showing the application of Agglomerative

Hierarchical Clustering to create product families was developed. The analysis

focuses on nine hundred materials to be manufactured. Several production oper-

ations are required to transform them into final products. Overall, the possible

manufacturing activities are ten. For the sake of clarity, each of them can be

encoded with alphabetic letters going from A to J. The production path followed

by every item i is shown using a symmetrical 10x10 matrix whose elements xi,j,k

comply with equation 2.2. The subscript j is relative to the rows, whereas k to the

columns.

xi,j,k =


1 if material i flows from resource j to resource k

0 otherwise
(2.2)

To make the application crystal-clear, based on equation 2.2, it is possible to

consider a random material i and develop the fictitious matrix 2.3 representing its
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production operation path which is also displayed in figure 2.8.



A B C D E F G H I J

A 0 1 1 1 0 0 0 0 0 0

B 0 0 0 0 1 0 0 0 0 0

C 0 0 0 0 1 0 0 0 0 0

D 0 0 0 0 0 1 0 0 0 0

E 0 0 0 0 0 0 1 0 0 0

F 0 0 0 0 0 0 1 0 0 0

G 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0



(2.3)

Figure 2.8: Production operation path based on matrix 2.3.

Returning to the analysis, materials are evenly split into the following variant

categories according to the number of successors each activity can have, and

production paths not allowed. With the purpose of further highlighting the
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differences among variant categories some matrices are displayed. Each of them is

obtained summing all the matrices of materials belonging to the relative category.

1. Materials whose operations have maximum two successors and diagonals from

the sixth to the ninth cut.



A B C D E F G H I J

A 0 19 14 20 18 31 0 0 0 0

B 0 0 17 24 22 18 20 0 0 0

C 0 0 0 19 16 25 30 23 0 0

D 0 0 0 0 16 15 18 25 17 0

E 0 0 0 0 0 16 12 17 21 28

F 0 0 0 0 0 0 13 15 13 18

G 0 0 0 0 0 0 0 14 22 24

H 0 0 0 0 0 0 0 0 23 19

I 0 0 0 0 0 0 0 0 0 39

J 0 0 0 0 0 0 0 0 0 0



(2.4)

2. Materials whose operations have maximum three successors and diagonals

from the sixth to the ninth cut.



A B C D E F G H I J

A 0 32 34 28 28 37 0 0 0 0

B 0 0 36 26 27 31 28 0 0 0

C 0 0 0 36 34 22 28 31 0 0

D 0 0 0 0 25 19 26 32 30 0

E 0 0 0 0 0 29 20 23 29 26

F 0 0 0 0 0 0 31 22 29 19

G 0 0 0 0 0 0 0 37 32 33

H 0 0 0 0 0 0 0 0 37 42

I 0 0 0 0 0 0 0 0 0 36

J 0 0 0 0 0 0 0 0 0 0



(2.5)
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3. Materials whose operations have maximum four successors and diagonals from

the sixth to the ninth cut.



A B C D E F G H I J

A 0 48 41 42 34 28 0 0 0 0

B 0 0 36 47 36 42 38 0 0 0

C 0 0 0 39 32 40 35 41 0 0

D 0 0 0 0 30 32 34 50 43 0

E 0 0 0 0 0 30 29 36 31 37

F 0 0 0 0 0 0 29 32 51 43

G 0 0 0 0 0 0 0 39 39 42

H 0 0 0 0 0 0 0 0 39 42

I 0 0 0 0 0 0 0 0 0 38

J 0 0 0 0 0 0 0 0 0 0



(2.6)

4. Materials whose operations have maximum two successors, and the first three

diagonals cut.



A B C D E F G H I J

A 0 0 0 0 17 19 13 30 22 13

B 0 0 0 0 0 23 16 23 19 27

C 0 0 0 0 0 0 31 20 24 29

D 0 0 0 0 0 0 0 27 31 37

E 0 0 0 0 0 0 0 0 26 31

F 0 0 0 0 0 0 0 0 0 24

G 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0



(2.7)

5. Materials whose operations have maximum three successors, and the first
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three diagonals cut.



A B C D E F G H I J

A 0 0 0 0 31 31 34 30 34 32

B 0 0 0 0 0 36 35 33 43 41

C 0 0 0 0 0 0 36 39 31 37

D 0 0 0 0 0 0 0 29 37 39

E 0 0 0 0 0 0 0 0 46 38

F 0 0 0 0 0 0 0 0 0 38

G 0 0 0 0 0 0 0 0 0 0

H 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0



(2.8)

6. Materials whose operations have maximum four successors, and the first three

diagonals cut.



A B C D E F G H I J

A 0 0 0 38 38 35 35 42 39 38

B 0 0 0 0 46 41 35 42 30 47

C 0 0 0 0 0 45 33 46 47 40

D 0 0 0 0 0 0 44 40 46 43

E 0 0 0 0 0 0 0 32 36 42

F 0 0 0 0 0 0 0 0 50 44

G 0 0 0 0 0 0 0 0 0 43

H 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0



(2.9)

7. Materials whose operations have maximum two successors and the first four
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antidiagonals cut.



A B C D E F G H I J

A 0 0 0 0 5 23 9 19 19 30

B 0 0 0 9 17 4 18 20 20 23

C 0 0 0 16 9 16 20 14 21 34

D 0 0 0 0 14 10 14 18 17 17

E 0 0 0 0 0 14 15 11 16 28

F 0 0 0 0 0 0 10 18 20 24

G 0 0 0 0 0 0 0 17 19 0

H 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0



(2.10)

8. Materials whose operations have maximum three successors and the first four

antidiagonals cut



A B C D E F G H I J

A 0 0 0 0 27 23 30 27 25 40

B 0 0 0 14 14 22 29 25 25 35

C 0 0 0 26 16 23 19 31 35 38

D 0 0 0 0 20 16 24 14 26 33

E 0 0 0 0 0 21 18 29 22 31

F 0 0 0 0 0 0 22 25 31 30

G 0 0 0 0 0 0 0 28 37 0

H 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0



(2.11)

9. Materials whose operations have maximum four successors and the first four
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antidiagonals cut



A B C D E F G H I J

A 0 0 0 0 34 32 39 42 31 50

B 0 0 0 28 32 34 32 24 44 40

C 0 0 0 40 28 27 31 37 40 40

D 0 0 0 0 30 25 32 35 35 44

E 0 0 0 0 0 32 22 30 38 43

F 0 0 0 0 0 0 31 31 34 44

G 0 0 0 0 0 0 0 37 41 0

H 0 0 0 0 0 0 0 0 0 0

I 0 0 0 0 0 0 0 0 0 0

J 0 0 0 0 0 0 0 0 0 0



(2.12)

The next step is applying hierarchical clustering which requires setting up two

key parameters. They are the linkage technique and the distance metric.

Some well known linkage methods are [18, Virtanen, et al., 2020]:

• single or Nearest Point Algorithm, which computes the distance between two

clusters considering their closest elements;

• complete or Farthest Point Algorithm, which defines the distance between two

clusters referencing to their furthest entities;

• average, which assesses the distance between two clusters considering the mean

gap of all couple of points. Every pair has one item of each cluster;

• centroid, which considers centroids to compute the distance between two

clusters;

• ward, which - iteratively - merges couple of clusters together, minimizing the

increase of the Sum of Squares Error (ESS).
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Figure 2.9: Graphical representation of linkage methods [19, Kijewska, et al.,
2021].

Among the various distance metrics, it is possible to highlight [20, Sampaio,

2022]:

• Euclidean, it computes the distance considering the length of the line passing

between two points;

• Manhattan, it assesses the distance as the sum of absolute differences between

the measures in every dimesion of two points;

• Minkowski, it considers distance as absolute differences to the order of the

Minkowski metric p (p > 0). If p = 1 it corresponds to the Manhattan distance,

instead if p = 2 it is the same of the Euclidean distance;

• Chebyshev, it is the ultimate instance of Minkowski distance having p = +∞;

31



Process Mining

• Cosine, it quantifies distance between points considering the angular cosine.

Figure 2.10: Graphical representation of some well-known Minkowski distances,
i.e., Euclidean, Manhattan and Chebyshev metrics [21, Fu et al., 2021].

To apply the Agglomerative Hierarchical Clustering algorithm it has been chosen

Ward as linkage method and Euclidean as distance metric. The reasons behind

this decision are due to their largely adoption, efficiency in providing satisfactory

results, errors minimization, and fitting well in lower dimensions.

After having grouped materials into variants according to the before mentioned rules,

the results of the experiment can be shown through a dendrogram in figure 2.11.

In order to pick the right number of clusters there are a number of heuristics and

rules-of-thumb. For instance, drawing a horizontal line in between 240 and 250

would lead to group variants, and in turn the relative materials, into three product

families.
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Figure 2.11: Dendrogram showing the results of the experiment.
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Chapter 3

Optimal Scheduling

This chapter is related to the Optimal Scheduling model developed in order to

effectively plan the production of toothpastes. It is divided into four sub-chapters.

The first section (3.1) provides an overview of the production site where tooth-

pastes are made. In particular, it describes the toothpaste as final product, and

lists the raw materials involved in the process. Then, it introduces a comparison

between the end-to-end manufacturing process, as it is described in literature, and

the real production process which takes place in GSK Oak Hill Production Site.

Thus, the main production resources and the activities performed are mentioned.

The second section (3.2) focuses on the goals of the model. It explores the

Overall Equipment Effectiveness, which is a Key Performance Indicator (KPI) that

the proposed solution tries to improve. Here, the main components of the OEE are

described and practical formulae to compute them are provided.

The third section (3.3) highlights the python model designed and developed

in order to represent the real manufacturing process. In particular, the relevant

subscripts (3.3.1), parameters (3.3.2) and decision variables (3.3.3) are listed. Then,

the set of rules enforced are described (3.3.4). Finally, the objective function is

shown (3.3.5).
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The last section (3.4) refers to the approach adopted in order to explore the so-

lution space. In particular, it emphasizes the importance of approximated methods,

such as dispatching rules (3.4.1). They are extremely useful to find satisfactory

results while keeping at an acceptable level the computational complexity. Finally,

the heuristic Greedy Insertion (3.4.2), which is implemented in the project, is

described.

3.1 Production Site Description

GSK production site located in Oak Hill (NY) manufactures mainly toothpastes.

This item is a key part of people’s daily oral hygiene routine, indeed it maintains and

enhances oral healthcare and aesthetics. Historically, first toothpastes appeared

thousand years ago, and since then their composition has evolved remarkably.

Indeed, they moved from suspensions of crushed egg shells or ashes to sophisticated

formulations involving often more than twenty ingredients [22, van Loveren C,

2013]. Today, a rising awareness on oral health is pushing the toothpaste industry,

speeding its growth particularly in developing economies [23, Boukoutaya].

The end-to-end manufacturing process involves several activities and resources.

Exploiting process mining, the list of materials relevant to the analysis and their

production flow has been discovered. However, thoroughly investigating every

manufacturing activity is outside the scope of the project. For this reason, some

production steps are grouped together. In order to provide a clear picture, following

figures (3.1 and 3.2) illustrate respectively the standard end-to-end production

process as it is described in literature, and the simplified one. Focusing on the

simplified process, it bundles production steps upstream mixing considering them

as dispensing activities. Also, operations of filling, capping, labeling and printing

are analysed collectively as a unique packaging step. In addition, to get more

familiar with the process, a brief description of the main production resources and
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their role is following provided.

• Dispenser: it mechanically weighs raw materials. Its aim is to ensure that

the exact quantity of each ingredient is distributed into mixers. Its cycle

time is negligible. Because of this, it is assumed that inbound materials are

immediately dispensed and available to be manufactured in mixers. As a

result, dispensers’ management only marginally influence the optimal schedule

model.

• Mixers: they get several types of ingredients and blending them together they

make batches of paste. Two critical parameters are temperature and humidity,

which are closely monitored. Indeed, they ensure that the mix comes together

adequately. The production site exploits several mixers which work in parallel.

Their production time is relevant and it changes with the type of paste being

manufactured. A certain load capacity - around 10.000+ lbs - constrains the

maximum weight of output batches. It is common practice to fully exploit it,

achieving a load utilization of 100%, when mixers are manufacturing.

• Packaging lines: they fill tubes with toothpaste, but before this a blower and

a vacuum machine are employed to guarantee tube cleanliness. As a result,

dust and particles are swept away. Then, the tube is capped and the opposite

part is opened, so that the pumping machine can load the toothpaste. After

the filling step, the tube is packed. Batches of paste are received from the

storage area which is located between manufacturing and packaging. Similarly

to mixers, also packaging lines work in parallel. Each line has a throughput

(i.e., number of items produced in a unit of time) which can accomplish the

production of more than 100.000+ tubes per day. It does not depend on

the product, although it varies across lines. In particular, some machines,

called High Volume Pace (HVP), can outperform the others. Indeed, they are

designed to reach much higher speed. This is particularly useful to satisfy
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demand peaks and to mitigate the effects of unexpected breakdowns of other

packaging resources.

Focusing on waiting areas, it is particularly relevant to mention the storage between

mixers and packaging lines. Its effective management is vital in order to reach

target Key Performance Indicators (KPIs) and achieve satisfactory results. Indeed,

incoming batches of paste are stored in containers and wait in this area until their

packaging scheduled time arrives. Containers, called “totes”, have a load capacity

of 10.000+ lbs. Often, some totes are not available for regular use because they

are tied up with quality issues or leftover paste that did not get fully consumed.

Furthermore, when a packaging line is using totes it will require at least one extra

tote to act as a static container for each formula it is running.

Figure 3.1: Picture of the end-to-end production process [23, Boukoutaya].

Figure 3.2: Flow chart diagram of the end-to-end production process.

37



Optimal Scheduling

As it was mentioned toothpastes have a complex chemical composition because

of the wide array of properties they should have. Some of them are compounds to

combat dental caries, gum disease, calculus, decay and dentin hypersensitivity [22,

van Loveren C, 2013]. Furthermore, toothpastes contain abrasives to clean and

whiten teeth, flavors for the purpose of breath freshening and dyes for better visual

appeal. To ensure the above-cited characteristics, as listed in table 3.1, several

ingredients are required. For the sake of simplicity, they can be referred as raw

materials. Whereas the output of the blending operation is named as material

paste which is, in turn, the input of packaging activities to make the final product.

Final products differ in terms of material paste, weight and packaging type. It is

relevant to mention that the same material paste can fill several final products,

being the relation between them one-to-many.

Ingredient Type Relative Weight
Liquid Base White - 30%

Gel - up to 80%
Fillers and Abrasives White - 20% - 50%

Gel - 15% - 25%
Rheology Modifiers 0.5% - 2%
Detergent 0.5% - 2.5%
Active Ingredient 0.3%
Flavor 0.5% - 2%
Sweetener 0.2%
Coloring 0.1%
Preservative 0.2%

Table 3.1: Toothpaste ingredients [23, Boukoutaya].

3.2 Scheduling Goals

The main goal of the project is to determine whether the implementation of

an optimal scheduling model would improve the production efficiency measured
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in terms of the OEE (Overall Equipment Effectiveness) indicator. Nowadays,

several Key Performance Indicators support decision making processes at various

organizational layers. Mainly, they assess process deviations and guarantee that

corrective responses can be implemented [24, Corrales, 2020]. OEE is a KPI

designed by Nakajima in 1988 [24, Corrales, 2020]. It is a quantitative index

considered as one of the focal points of the Total Productive Maintenance (TPM)

discipline and of production planning [25, pp. Li, 2021]. It is largely employed,

particularly in manufacturing management, to quantify the unexploited production

capacity of resources and increase the performances of the operations site [26,

Šajdlerová, 2020]. In addition, OEE is widely used as a mechanism to monitor and

control equipment performances when lean manufacturing programs or maintenance

plans are implemented. It aims at minimizing the widely known Six Big Losses in

lean manufacturing [27, Kripya]:

• Equipment Failure;

• Setup and Adjustments;

• Idling and Minor Stops;

• Reduced Speeds;

• Process Defects;

• Reduced Yield.

The Overall Equipment Effectiveness, in compliance with the main concepts of

TPM, is computed dividing the real manufacturing output by what could be

theoretically produced [24, Corrales, 2020]. It depends on three sub-indicators

which refer to the Six Big Losses (figure

OEE = AR × PE × QR (3.1)
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Where the relative factors are respectively assessed applying mathematical

formulae 3.2, 3.3, 3.4.

AR = OT

LT
(3.2)

PE = SCT × TO

OT
(3.3)

QR = QP

TO
(3.4)

Therefore, the OEE, in its primary terms, can be computed using equation 3.5

[25, pp. Li, 2021].

OEE = OT

LT
× SCT × TO

OT
× QP

TO
(3.5)

Which can be further simplified becoming as written in equation 3.6 [25, pp. Li,

2021].

OEE = SCT × QP

LT
(3.6)

In order to fully understand the several formulae introduced, it is necessary to

explain the meaning of each acronym.

• AR means Availability Rate. It is related to the level of exploitation of

production planning time.

• PE stands for Performance Effectiveness. It considers the degree of utilization

of equipment’s design performance.

• QR is Quality Rate. It is the relative amount of conforming products with

respect to the overall number of items manufactured.
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• LT denotes Loading Time. It is assessed considering the Factory Planning

Working Time lowered by the Site Planning Downtime.

• SCT refers to Single Cycle Time.

• OT represents the Operating Time. It can be computed diminishing the

Loading Time by the Equipment Downtime which should incorporate, among

others, also Adjustment Time and Failure Time.

• TO denotes the Total Output.

• QP means Qualified Products. They are the result of Total Output minus the

number of non-conforming items.

As bottom line, it was possible to understand that the implications of OEE

theory cover several research fields. They embrace the Internet of Things, Tool

Management, Sustainable Manufacturing and many others [25, pp. Li, 2021].

Figure 3.3: Six Big Losses in Lean Manufacturing [27, Kripya].
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3.3 Final Model

Exploiting data and insights about the production site, a constraint programming

model is designed to develop an optimal scheduling plan which maximizes the OEE

while respecting several constraints.

In order to clear understand it, the main reasoning behind the algorithm built

is provided. The process starts considering data about final products demand.

Therefore, if there is enough production capacity in resources, every SKU’s produc-

tion block is allocated in the packaging line which experiences the lowest expected

downtime. Afterwards, the SKU’s bill-of-material provides information about the

code and the quantity of the relative material paste required to fulfill its demand.

Thus, the demand of every final product is translated into the demand of the

relative material paste which is manufactured in mixers. As before, every batch

is made in the resource which goes through the lowest expected failure time. A

relevant constraint is that the material paste demand must be fulfilled before

packaging lines start. Indeed, it would be impossible to feed toothpaste tubes

without paste.

Furthermore, as it will be possible to notice from Gantt Charts in results section,

production blocks are left aligned. It means that they start as soon as possible. This

way of thinking should reduce the machine downtime due to unutilized capacity.

A python library called “ortools.sat.python” provides the background optimiza-

tion environment to find the optimal solution. The solution space is explored using

Greedy Insertion as constructive heuristic algorithm. It builds the solution schedul-

ing before fixed non-production activities such as maintenance, spare capacity and

shifts. Then, it adds production blocks starting from the ones which lead to the

lowest expected machine downtime. The main methods imported are:

• CpModel, which is able to create models having variables and constraints;
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• CPSolver, which allows to solve models and explore the solution space.

Developing an optimal scheduling plan requires to introduce the following sections:

1. Subscripts 3.3.1;

2. Parameters 3.3.2;

3. Variables 3.3.3;

4. Constraints 3.3.4;

5. Objective Function 3.3.5.

3.3.1 Subscripts

Information extracted from datasets involves several objects belonging to same

classes. Indeed, the model considers several material pastes, final products, and

many production resources. Thus, using subscripts in order to differentiate elements

of the same family results essential. The main subscripts explored are:

• material paste index, i ∈ [1, I];

• final product (SKU) index, p ∈ [1, P ];

• mixer index, j ∈ [1, J ];

• packaging line index, k ∈ [1, K];

• index which counts how many times a certain action (production row, shift,

maintenance, etc.) is repeated t ∈ [1, T ].
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3.3.2 Parameters

Several input parameters are involved in order to effectively schedule the production

in the manufacturing plant. They are grouped together based on the function to

which they are related. In particular they involve:

• Production parameters;

• Inventory parameters;

• Shift parameters;

• Maintenance parameters;

• Changeover parameters;

• Spare Capacity parameters.

Following, an overview of the major production related parameters is provided.

• The time horizon which should be covered by the optimal scheduling program.

In the model it is defined as an object called “horizon”.

horizon = const.

• The set of pastes needed as raw materials to make final products. Every paste

can fulfill the development of several SKUs given the one-to-many relation. A

list, called “pastes”, introduces them in the model.

pastes = [pasteID1, ... , pasteIDI ]

• The set of final products demanded in the planning horizon. In the model

this parameter is defined as a list, called “final_products”, whose elements

represent each SKU code.

final_products = [SKU1, ... , SKUP ]
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• The whole set of materials, comprehensive of pastes and final products. In

the model it is defined as a list, called “materials”. The first I elements are

relative to the code of pastes, whereas last P objects list the SKUs of final

products.

materials = [pasteID1, ... , pasteIDI , SKU1, ... , SKUP ]

• The list of mixers.

mixers = [mixer1, ... , mixerJ ]

• The list of packaging lines.

packaging = [packaging1, ... , packagingK ]

• The list of production resources, such as mixers and packaging lines. In the

model it is called “resources”.

resources = [mixer1, ... , mixerJ , packaging1, ... , packagingK ]

• The load capacity of mixers. It changes among machines. In the model it is

called “capacity”.

capacity = [load_capacity1, ... , load_capacityJ ]

• The production time of mixers to manufacture one batch. It varies with the

material paste to be manufactured. In the model it is called “production_time”.

production_time =



5
time1,1, ... , time1,J

6
5
time2,1, ... , time2,J

6
5
timeI,1, ... , timeI,J

6
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• The expected downtime of mixers when producing each paste. In the model it

is called “downtime_mixers”.

downtime_mixers =



5
down_m1,1, ... , down_m1,J

6
5
down_m2,1, ... , down_m2,J

6
5
down_mI,J , ... , down_mI,J

6


• The throughput of packaging lines. It differs among machines. In the model

it is called “throughput”.

throughput = [throughput1, ... , throughputK ]

• The expected downtime loss of packaging lines when dealing with final items.

In the model it is called “downtime_packaging”.

downtime_packaging =



5
down_p1,1, ... , down_p1,K

6
5
down_p2,1, ... , down_p2,K

6
5
down_pP,1, ... , down_pP,K

6


• The demand of material pastes needed to satisfy the desired production of

final items. It is measured in lbs. In the model it is called “demand_pastes”.

demand_pastes = [demand_paste1, ... , demand_pasteI ]

• The demand of units of final products. It is relative to the planning horizon

above-specified. In the model it is called “demand”.

demand = [demand_SKU1, ... , demand_SKUP ]

Concerning parameters required to deal with inventory management, some of

them are following introduced.
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• The storage capacity of inventory containers. In the model it is called “stor-

age_capacity”.

storage_capacity = const.

• The maximum time each paste can stay in the storage area. In the model it is

called “max_storage_time”.

max_storage_time = const.

The next parameters focus on shift planning. Among them is necessary to define

the following.

• The time between two consecutive production stops in mixers due to employee

breaks. In the model it is called “gap_shifts_mixers”.

gap_shifts_mixers = const.

• The average duration of breaks in mixers. In the model it is called “dura-

tion_shift_mixers”.

duration_shift_mixers = const.

• The time between two consecutive production stops in packaging lines due to

employee breaks. In the model it is called “gap_shifts_packaging”.

gap_shifts_packaging = const.

• The average duration of breaks in packaging lines. In the model it is called

“duration_shift_packaging”.

duration_shift_packaging = const.

Focusing on parameters related to preventive maintenance planning, a list of them

is here provided.
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• The time interval between two consecutive preventive maintenance stops in

mixers. In the model it is called “gap_maintenance_mixers”.

gap_maintenance_mixers = const.

• The average duration of preventive maintenance in mixers. In the model it is

called “duration_maintenance_mixers”.

duration_maintenance_mixers = const.

• The time interval between two consecutive preventive maintenance stops in

packaging lines. In the model it is called “gap_maintenance_packaging”.

gap_maintenance_packaging = const.

• The average duration of preventive maintenance in packaging lines. In the

model it is called “duration_maintenance_packaging”.

duration_maintenance_packaging = const.

Dealing with changeover requirements, it is needed to introduce the following

parameters.

• The duration of changeovers in mixers. In the model it is called “dura-

tion_changeover_mixers”.

duration_changeover_mixers = const.

• The duration of changeovers in packaging lines. In the model it is called

“duration_changeover_packaging”.

duration_changeover_packaging = const.
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Concerning with spare capacity related parameters, the most important is the

following.

• The spare capacity required in the planning horizon. In the model it is called

“duration_spare_capacity”.

duration_spare_capacity = const.

3.3.3 Variables

Solving a model is equivalent to finding, for each variable, a single value belonging

to its initial domain, such that the model is feasible, or optimal based on the

objective function and the relative constraints.

Mostly three types of variables are employed in the model [28, Perron, 2022].

• Boolean, which has just two admissible values (often defined as true and

false). Thus, it works focusing on a conditional statement which identifies

different paths by changing control flow based on whether the code evaluates

the variable as true or false.

• Integer, which is an object that can assume any integer value belonging to a

specified domain.

• Interval, which has the function of both constraints and variables. It is

determined by three integer variables: start, duration, and finish. The reason

behind the fact that it is a constraint is that it respects equation 3.7.

Start + Duration = Finish (3.7)

In addition, it is considered a variable given that it can be employed in planning

rules such as NoOverlap, NoOverlap2D and Cumulative.

Several variables are exploited to develop the model. It is possible to divide them

into different categories based on the purpose they have. Main groups are:
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• Production variables;

• Inventory variables;

• Shift variables;

• Maintenance variables;

• Changeover variables;

• Spare Capacity variables.

Following, an overview of the major production related variable is provided.

• y_mixersi,j,t which is a boolean variable. It gets true if mixer j manufactures

production row t of material paste i.

y_mixersi,j,t =


1 if mixer j makes production row t of paste i

0 otherwise

• production_mixersi,j,t which is an integer variable. It quantifies the lbs of

material paste i manufactured in mixer j during the production row t.

production_mixersi,j,t ≥ 0 ∀ i, j, t

• duration_mixersi,j,t which is an integer variable. It defines the time required

to manufacture production row t of material paste i in mixer j.

duration_mixersi,j,t ≥ 0 ∀ i, j, t

• start_mixersi,j,t which is an integer variable. It defines the start time of

production row t of material paste i in mixer j.

start_mixersi,j,t ≥ 0 ∀ i, j, t
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• end_mixersi,j,t which is an integer variable. It defines the end time of pro-

duction row t of material paste i in mixer j.

end_mixersi,j,t ≥ 0 ∀ i, j, t

• interval_mixersi,j,t which is an interval variable. It is defined by variables

start_mixersi,j,t, duration_mixersi,j,t and end_mixersi,j,t.

interval_mixersi,j,t ∈ [0, horizon] ∀ i, j, t

• y_packagingp,k,t which is a boolean variable. It gets true if packaging line k

makes production row t of final item p.

y_packagingp,k,t =


1 if packaging line k makes production row t of SKU p

0 otherwise

• production_packagingp,k,t which is an integer variable. It assesses the number

of tubes of SKU p made in packaging line k during production row t.

production_packagingp,k,t ≥ 0 ∀ p, k, t

• duration_packagingp,k,t which is an integer variable. It defines the time

required to make production row t of final product p in packaging line k.

duration_packagingp,k,t ≥ 0 ∀ p, k, t

• start_packagingp,k,t which is an integer variable. It defines the start time of

production row t of SKU p in packaging line k.

start_packagingp,k,t ≥ 0 ∀ p, k, t

• end_packagingp,k,t which is an integer variable. It defines the end time of

production row t of final product p in packaging line k.

end_packagingp,k,t ≥ 0 ∀ p, k, t
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• interval_packagingp,k,t which is an interval variable. It is defined by variables

start_packagingp,k,t, duration_packagingp,k,t and end_packagingp,k,t.

interval_packagingp,k,t ∈ [0, horizon] ∀ p, k, t

Concerning variables required to deal with inventory management, some of them

are following introduced.

• start_SAp,j,t which is an integer variable. After having completed production

row t of material paste i in mixer j, the material paste i enters in inventory

and is available to be used in packaging lines to make final product p. Thus,

start_var_SAp,j,t defines the point in time in which production of final

product p can start.

start_SAp,j,t ≥ 0 ∀ p, j, t

• end_SAp,j,t which is an integer variable. It defines the end time in which the

material paste required to make final product p is available in inventory. Thus,

from that moment on, that material paste is not anymore in inventory.

end_SAp,j,t ≥ 0 ∀ p, j, t

• duration_SAp,j,t which is an integer variable. It defines the amount of time

in which it was possible to start producing final product p in packaging lines.

duration_SAp,j,t ≥ 0 ∀ p, j, t

• interval_SAp,j,t which is an interval variable. It depends on start_SAp,j,t,

duration_SAp,j,t and end_SAp,j,t.

interval_SAp,j,t ∈ [0, horizon] ∀ p, j, t
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The next variables focus on shift planning. Among them is necessary to define

the following.

• start_shift_mixersj,t which is an integer variable. It defines the start time

of shift t in mixer j.

start_shift_mixersj,t ≥ 0 ∀ j, t

• end_shift_mixersj,t which is an integer variable. It defines the end time of

shift t in mixer j.

end_shift_mixersj,t ≥ 0 ∀ j, t

• interval_shift_mixersj,t which is an interval variable. It defines the time

frame related to break t in mixer j. It depends on start_shift_mixersj,t,

duration_shift_mixers and end_shift_mixersj,t.

interval_shift_mixersj,t ∈ [0, horizon] ∀ j, t

• start_shift_packagingk,t which is an integer variable. It defines the start

time of shift t in packaging line k.

start_shift_packagingk,t ≥ 0 ∀ k, t

• end_shift_packagingk,t which is an integer variable. It defines the end time

of shift t in packaging line k.

end_shift_packagingk,t ≥ 0 ∀ k, t

• interval_shift_packagingk,t which is an interval variable. It assesses the

interval of time in which there is break t in packaging line k. It is defined by

start_shift_packagingk,t, duration_shift_packaging and

end_shift_packagingk,t.

interval_shift_packagingk,t ∈ [0, horizon] ∀ k, t
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Focusing on variables related to preventive maintenance planning, a list of them is

here provided.

• start_maintenance_mixersj,t which is an integer variable. It defines the

start time of maintenance t in mixer j.

start_maintenance_mixersj,t ≥ 0 ∀ j, t

• end_maintenance_mixersj,t which is an integer variable. It defines the end

time of maintenance t in mixer j.

end_maintenance_mixersj,t ≥ 0 ∀ j, t

• interval_maintenance_mixersj,t which is an interval variable. It defines

the interval of time in which there is maintenance t in mixer j. It con-

siders start_maintenance_mixersj,t, duration_maintenance_mixers and

end_maintenance_mixersj,t.

interval_maintenance_mixersj,t ∈ [0, horizon] ∀ j, t

• start_maintenance_packagingk,t which is an integer variable. It defines the

start time of maintenance t in packaging line k.

start_maintenance_packagingk,t ≥ 0 ∀ k, t

• end_maintenance_packagingk,t which is an integer variable. It defines the

end time of maintenance t in packaging line k.

end_maintenance_packagingk,t ≥ 0 ∀ k, t

• interval_maintenance_packagingk,t which is an interval variable. It shows

the time where maintenance t in packaging k happens. It is defined by
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start_maintenance_packagingk,t, duration_maintenance_packaging and

end_maintenance_packagingk,t.

interval_maintenance_packagingk,t ∈ [0, horizon] ∀ k, t

Dealing with changeover requirements, it is needed to introduce the following

variables.

• start_changeover_mixersi,j,t which is an integer variable. It defines the start

time of changeover in mixer j before production row t of material paste i.

start_changeover_mixersi,j,t ≥ 0 ∀ i, j, t

• end_changeover_mixersi,j,t which is an integer variable. It defines the end

time of changeover in mixer j before production row t of material paste i.

end_changeover_mixersi,j,t ≥ 0 ∀ i, j, t

• interval_changeover_mixersi,j,t which is an interval variable. It defines

the interval of time allocated to changeover, which is required to man-

ufacture production row t of material paste i in mixer j. It considers

start_changeover_mixersi,j,t, duration_changeover_mixers and

end_changeover_mixersi,j,t.

interval_changeover_mixersi,j,t ∈ [0, horizon] ∀ i, j, t

• start_changeover_packagingp,k,t which is an integer variable. It defines the

start time of changeover in packaging line k before making production row t

of final item p.

start_changeover_packagingp,k,t ≥ 0 ∀ p, k, t
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• end_changeover_packagingp,k,t which is an integer variable. It defines the

end time of changeover in packaging line k before making production row t of

final item p.

end_changeover_packagingp,k,t ≥ 0 ∀ p, k, t

• interval_changeover_packagingp,k,t which is an interval variable. It defines

the timeslot allocated to changeover, which is required to make production row

t of SKU p in packaging line k. It considers start_changeover_packagingp,k,t,

duration_changeover_packaging and end_changeover_packagingp,k,t.

interval_changeover_packagingp,k,t ∈ [0, horizon] ∀ p, k, t

Concerning with spare capacity related variables , the most important are the

following.

• start_spare_capacity_mixersj,t which is an integer variable. It defines the

start time of spare capacity t in mixer j.

start_spare_capacity_mixersj,t ≥ 0 ∀ j, t

• end_spare_capacity_mixersj,t which is an integer variable. It defines the

end time of spare capacity t in mixer j.

end_spare_capacity_mixersj,t ≥ 0 ∀ j, t

• interval_spare_capacity_mixersj,t which is an interval variable. It defines

the interval of time where spare capacity t of mixer j is allocated. It is

defined by start_spare_capacity_mixersj,t, duration_spare_capacity and

end_spare_capacity_mixersj,t.

interval_spare_capacity_mixersj,t ∈ [0, horizon] ∀ j, t
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• start_spare_capacity_packagingk,t which is an integer variable. It defines

the start time of spare capacity t in packaging line k.

start_spare_capacity_packagingk,t ≥ 0 ∀ k, t

• end_spare_capacity_packagingk,t which is an integer variable. It defines the

end time of spare capacity t in packaging line k.

end_spare_capacity_packagingk,t ≥ 0 ∀ k, t

• interval_spare_capacity_packagingk,t which is an interval variable. It con-

siders the time-slot where spare capacity t of packaging line k is allocated. It

is defined by start_spare_capacity_packagingk,t, duration_spare_capacity

and end_spare_capacity_packagingk,t.

interval_spare_capacity_packagingk,t ∈ [0, horizon] ∀ k, t

3.3.4 Constraints

Several constraints are developed in order to effectively enforce the production rules.

They are created exploiting methods such as “Add”,“AddDivisionEquality”,“AddModuloEquality”,“AddNoOverlap”

and automatically inserted in the problem. In order to make clear how they work,

a brief description of each of them is here provided [28, Perron, 2022].

• Add inserts a bounded linear expression to the model.

• AddDivisionEquality allows to make divisions and constrains the result setting

a certain target value. It takes as input parameters “target”, “numerator” and

“denominator”. Then it enforces equation 3.8.

target = numerator

denominator
(3.8)
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• AddModuloEquality allows to constrain the division’s modulo to a certain

target value. It takes as input parameters “target”,“var” and “mod”. Then, it

adds constraint 3.9.

target = var % mod (3.9)

• AddNoOverlap avoids that intervals variable, being passed as parameters to

this method, overlap in time.

Several constraints are designed to make the model as much representative of the

reality as possible. They are divided into categories based on the role they have.

The main constraint groups are:

• Production constraints;

• Inventory constraints;

• Shift constraints;

• Maintenance constraints;

• Changeover constraints;

• Spare Capacity constraints;

• Overlap constraints.

Among production constraints, the model is designed in order to satisfy the following

rules.

• Production in mixers lead the boolean variable y_mixersi,j,t getting the value

of one. This is a Big M constraint, given that the parameter M gets a very

high value.

model.Add(production_mixersi,j,t ≤ M × y_mixersi,j,t)
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• Mixer lbs manufacturing equals load capacity - given that they produce at

full capacity - multiplied by the number of batches made in a production row.

model.Add(production_mixersi,j,t = capacityj × batchesi,t)

• Production length in mixers equals the time required to manufacture one

batch times the number of batches made in one production row.

model.Add(duration_mixersi,j,t = production_timei,j × batchesi,t)

• Avoid production of final products in mixers.

model.Add(production_mixersp,j,t = 0)

• Start production row t after having completed t-1 in mixers.

model.Add(start_mixersi,j,t > end_mixersi,j,t−1)

• Each material paste must be produced in a way that its overall demand is

satisfied.

model.Add(sum(production_mixersi,j,t for j in mixers

for t in T ≥ demand_pastesi))

• If final product p demand, as raw material, paste i then production in packaging

line can start just after having completed manufacturing in mixer.

model.Add(start_packagingp,k,t > end_mixersi,j,t)

• If there is production in packaging lines the boolean variable y_packagingp,k,t

gets the value of one.

model.Add(production_packagingp,k,t ≤ M × y_packagingp,k,t)
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• Packaging duration should be an integer number.

model.AddModuloEquality(0, production_packagingp,k,t, throughputk)

• The length of production in packaging lines equals the ratio between the

output tubes divided by the average machine throughput.

model.AddDivisionEquality(duration_packagingp,k,t,

production_packagingp,k,t, throughputk)

• Avoid production of material pastes in packaging lines.

model.Add(production_packagingi,k,t = 0)

• Start production row t after having completed t-1 in packaging lines.

model.Add(start_packagingp,k,t > end_packagingp,k,t−1)

• Packaging lines overall production must satisfy final items relative demand.

model.Add(sum(production_packagingp,k,tfor k in packaging_lines

for t in T ≥ demandp)

Among inventory constraints, the model is designed in order to satisfy the following

rules.

• Material paste enters in storage area once mixer production has finished. Thus,

every final product p requiring material paste i starts simultaneously being

available for packaging lines in that moment.

model.Add(start_SAp,j,t = end_mixersi,j,t)

• Material paste ends being available in inventory when packaging line finishes.

model.Add(end_SAp,j,t = end_packagingp,j,t)
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• Material paste stays available in inventory from when it enters to when it

exits.

model.Add(duration_SAp,j,t = end_SAp,j,t − start_SAp,j,t)

Among shift constraints, the model is designed in order to satisfy the following

rules.

• The interval of time between two subsequent shifts in mixers is constant.

model.Add(start_shift_mixersj,t − start_shift_mixersj,t−1 =

gap_shifts_mixers)

• The interval of time between two subsequent shifts in packaging lines is

constant.

model.Add(start_shift_packagingk,t − start_shift_packagingk,t−1 =

gap_shift_packaging)

Among maintenance constraints, the model is designed in order to satisfy the

following rules.

• The interval of time between two subsequent maintenance in mixers is constant.

model.Add(start_maintenance_mixerj,t − start_maintenance_mixerj,t−1

= gap_maintenance_mixer)

• the duration of maintenance in mixers is constant.

model.Add(end_maintenance_mixerj,t − start_maintenance_mixerj,t =

duration_maintenance_mixer)

• The interval of time between two subsequent maintenance in packaging line is

constant.

model.Add(start_maintenance_packagingk,t−

start_maintenance_packagingk,t−1 =

gap_maintenance_packaging)
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• the duration of maintenance in packaging lines is constant.

model.Add(end_maintenance_packagingk,t−

star_maintenance_packagingk,t =

duration_maintenance_packaging)

Among changeover constraints, the model is designed in order to satisfy the

following rules.

• The changeover in mixers starts when each production row of material paste

finishes.

model.Add(start_changeover_mixersi,j,t = end_mixersi,j,t)

• The changeover in mixers lasts for a constant average duration.

model.Add(end_changeover_mixersi,j,t − start_changeover_mixersi,j,t =

duration_changeover_mixers)

• The changeover in packaging lines starts when each production row of final

product ends.

model.Add(start_changeover_packagingp,k,t = end_packagingp,k,t)

• The changeover in packaging lines lasts for a constant average duration.

model.Add(end_changeover_packagingp,k,t−

start_changeover_packagingp,k,t =

duration_changeover_packaging)

Among spare capacity constraints, the model is designed in order to satisfy the

following rules.
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• In mixers a constant percentage of time should be left as spare capacity.

model.Add(end_spare_capacity_mixerj,t−

start_spare_capacity_mixerj,t =

duration_spare_capacity)

• In mixers spare capacity is scheduled to start at a certain point of time.

model.Add(start_spare_capacity_mixersj,t = const.)

• In packaging lines a constant percentage of time should be left as spare

capacity.

model.Add(end_spare_capacity_packagingk,t−

start_spare_capacity_packagingk,t =

duration_spare_capacity)

• In packaging lines spare capacity is scheduled to start at a certain point of

time.

model.Add(start_spare_capacity_packagingk,t = const.)

Among avoid overlap constraints, the model is designed in order to satisfy the

following rules.

• Each mixer can manufacture just one material at a time. Thus, overlap

between each pair of material pastes i and i’, and each production row t and

t’ must be avoided.

model.AddNoOverlap(interval_mixersi,j,t, interval_mixersi′,j,t′)
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• In mixers overlap between material pastes production, shift, maintenance,

changeovers, and spare capacity must be avoided.

model.AddNoOverlap(interval_mixersi,j,t, interval_shift_mixersj,t′ ,

interval_maintenance_mixersj,t′ ,

interval_changeover_mixersi′,j,t′ ,

interval_spare_capacity_mixersj,t′)

• Each packaging line can fill and pack just one production row of SKU at

a time. Thus, overlap between each pair of final items p and p’, and each

production row t and t’ must be avoided.

model.AddNoOverlap(interval_packagingp,k,t, interval_packagingp′,k,t′)

• In packaging lines overlap between SKU production, shift, maintenance,

changeovers, and spare capacity must be avoided.

model.AddNoOverlap(interval_packagingp,k,t,

interval_shift_packagingk,t′ ,

interval_maintenance_packagingk,t′ ,

interval_changeover_packagingp′,k,t′ ,

interval_spare_capacity_packagingk,t′)

3.3.5 Objective Function

The goal of the optimal scheduling model is to find a solution which maximizes

the Overall Equipment Effectiveness while respecting the constraints highlighted

above. Thus, the objective function minimizes the OEE components which affect

negatively this indicator. In particular, the model tries to schedule the production

in order to minimize the expected time each production resource results unavailable

because of unplanned downtime. It is computed multiplying the expected duration
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of production by the average percentage of downtime incurred while manufacturing.

Other factors which affect the machine availability such as production breaks and

planned maintenance are seen as constants by the objective function. Indeed,

production rules enforce them to happen with a certain frequency.

model.Minimize(sum(duration_mixersi,j,t × downtime_mixersi,j

for i in pastes for j in mixers for t in T)+

sum(duration_packagingp,k,t × downtime_packagingp,k

for p in final_products for k in packaging_lines for t in T))

3.4 Solution Approach

In a nutshell, scheduling aims at allocating activities to resources over a certain

time window. Often, resources are not infinite, therefore jobs are forced to share

or, more likely, compete with each other to get them [29, Ruiz, 2015]. Scheduling is

carried out with a certain objective to optimize, it may involve one or more criteria

such as resource utilization or production costs [29, Ruiz, 2015].

Unfortunately, solving scheduling models is dramatically hard. Indeed, the vast

majority of them fall into the NP-Hard class of computational problems [30, Grabot

et al., 1994]. The reason behind this lies on their combinatorial nature which is

relative to binary decisions. Generally, they involve activity-job allocations, task

sequencing, changeovers, maintenance, and inventory management [30, Grabot et

al., 1994]. Solving models, which involve several tasks, resources and jobs over a

long time horizon, may be challenging using exact methods [31, Moniz et al., 2014].

Thus, at this point it is relevant to wonder if optimal solutions are truly needed

in practice or not. In fact, scheduling models always reflect reality introducing
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a certain degree of approximation [31, Moniz et al., 2014]. It is due to real data

estimation which then fed the algorithms. In addition, sometimes in order to avoid

dramatically high computational complexity, constraints are designed as linear

approximations or aggregations [31, Moniz et al., 2014]. As a result, finding a

global optimal solution which sorts out an approximated problem may be pointless

[30, Grabot et al., 1994]. In this case, it is possible to tackle real problems using

alternative techniques such as heuristics [30, Grabot et al., 1994]. A possible

definition of heuristic is a process which exploits the structure of the problem being

studied in the most efficient way to reach a high quality solution while taking the

lowest computational time [32, Widmer et al.]. They offer prompt answers even for

highly complex scheduling models. Notably, solutions proposed are nearly optimal,

despite this achievement can be demonstrated just if the optimality gap can be

computed or forecasted [30, Grabot et al., 1994].

3.4.1 Dispatching Rules

Improving the productivity was the need which first scheduling methods tried to

satisfy. At the beginning of the 20th century, they started being implemented in up-

to-date manufacturing sites. Production planning was performed by hand, simply

using pen and paper [29, Ruiz, 2015]. Nowadays, in several companies the scheduling

mechanism is almost the same. Mainly, manufacturing scheduling is developed

exploiting spreadsheets and straightforward methods to get acceptable results [29,

Ruiz, 2015]. Trivial rules are often termed as dispatching rules, sequencing laws, or

priority rules [29, Ruiz, 2015]. They are widely adopted in the industrial world in

order to tackle scheduling problems [33, Kaban et al., 2013].

Dispatching rules are simple heuristics which involve activities or entities ordering

when they arrive or when it becomes feasible to manufacture them. They are

based on choices made over a collection of admissible activities [29, Ruiz, 2015].
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In the course of time, several dispatching rules have been designed by scientists

[34, Holthaus et al., 1997]. Interestingly, experimental results highlight that it does

not exist a single rule which leads to higher performance considering all relevant

objectives such as average processing time, mean and variance tardiness. Thus, the

selection of the proper methodology is relative to the criterion which the model

aims to improve upon [34, Holthaus et al., 1997].

A standard classification of dispatching rules divides them into static and

dynamic [33, Kaban et al., 2013]. Static rules order entities assigning priority values

which are not variable as time passes. Thus, they are not a function of time, but

just of entity and/or resource data. Conversely, dynamic rules consider also the

passage of time.

Most common dispatching rules include the following [29, Ruiz, 2015].

• First Come First Served (FCFS), it schedules entities based on arrival order.

Thus, jobs are sequenced using a First In First Out (FIFO) policy.

• Shortest Processing Time (SPT), it orders jobs starting from the ones with

lowest processing time. The opposite methodology is the Longest Processing

Time (LPT) rule. SPT procedure leads to mean processing time minimization

[34, Holthaus et al., 1997].

• Earliest Due Date (EDD), it allocates first the items with earliest due date.

It is worth to mention that dispatching rules are incredibly quick. Their com-

putational complexity is around O(n log n), where n is relative to the number of

entities or activities to plan [29, Ruiz, 2015]. Other strength points embrace being

straightforward to develop and understand. These features are very appreciated by

human schedulers [29, Ruiz, 2015]. On the other hand, the widely known trade-off

cost-quality predicts their main disadvantage, which refers to the difficulty to find

global optimal solutions. It is mainly due to the fact that just local information is
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exploited in order to take a decision [33, Kaban et al., 2013]. Overall, considering

benefits and drawbacks it is possible to conclude saying that they find large adop-

tion especially because of their easiness to develop and use, and responsiveness to

the dynamic environment of production systems [33, Kaban et al., 2013].

3.4.2 Greedy Insertion

Greedy Insertion (GI), similar to dispatching rules, is a construction heuristic which

generates a solution incrementally [35, Tavares et al., 2009]. In every iteration the

solution is enriched with a new product until each of them has been scheduled

[35, Tavares et al., 2009]. Every material is allocated starting from the one which

leads to the lowest expected downtime. In this way an initial scheduling solution

is generated. The greedy heuristics are widely employed to decrease the time

required to get results [36, Bekkar et al., 2016]. Indeed, largely, greedy techniques

need reduced polynomial time complexity and they often reach higher quality

local optima [36, Bekkar et al., 2016]. In addition, they are not challenging to

implement and scalable [36, Bekkar et al., 2016]. The GI technique implemented in

the project iteratively assigns final products to packaging lines and material pastes

to mixers. Items are ordered starting from the one which has the lowest impact on

the minimization problem. Blocks are scheduled going backward from packaging

lines until the whole production has been planned. The solver run simulations until

a local optimum is attained. As it will be detailed explained in section 5, the initial

solution developed can be further enhanced applying metaheuristics [35, Tavares et

al., 2009]. They are particularly powerful because, with little parameters setting,

they are able to discover global optimal solutions, escaping from the traps of local

optimal points, in reduced CPU times.
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Results

This chapter provides the relevant results of the optimal scheduling model developed.

It contains four sub-chapters.

The first section (4.1) goes through the input parameters which are used to

feed the algorithm. Knowing them is essential to understand the scheduling plans

shown afterwards.

The second section (4.2) exhibits the results of the first simulation. It contains

a step by step process to effectively schedule materials. Then, the local optimal

solution is shown using a Gantt Chart.

The third section (4.3) explores the results of the second simulation. The

previous solution is updated implementing a weekly review which extends the

production plan of one week.

The fourth section (4.4) introduces the last simulation. It extends the model

considering another weekly review. In addition, it deals with an unexpected machine

failure.
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4.1 Input Parameters

The main results of the optimal scheduling model developed can be explored feeding

the algorithm with dummy data. Real information about GSK Oak Hill Production

Site are not shared because of confidentiality reasons. However, the model is well

aligned with its real process.

The end-to-end fictitious operational flow involves six mixers and six packaging

lines. Final products are the output of packaging lines, whereas material pastes

are manufactured in mixers. The model schedules toothpastes production over a

time window of four weeks which starts on January 1st 2023 and ends on January

29th 2023.

Thirty-two SKUs, in various amount, are demanded by customers. Producing

them requires fourteen pastes. This section explains the input parameters required

to build a scheduling plan for the first three final products (SKU1, SKU2 and

SKU3). However, detailed information about other materials involved in simulations

is displayed in appendix A.

The optimal scheduling process starts feeding the algorithm with data relative

to the relationship between final products and pastes. For this purpose, table 4.1

shows which input materials are needed to produce the first three SKUs.

Final Product Material Paste
SKU1 Paste1
SKU2 Paste2
SKU3 Paste2

Table 4.1: SKU1, SKU2, SKU3 Bill of Materials.

Several constraints are introduced in the model in order to align it to reality. In

particular, it includes as hard constraint the complete satisfaction of customers’

demand over the planning horizon. Therefore, production blocks of each toothpaste

are created in order to achieve this objective.
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Target final product output, for the three SKUs considered, is illustrated in

table 4.2.

Final Product Demand [tubes]
SKU1 300.000
SKU2 300.000
SKU3 600.000

Table 4.2: SKU1, SKU2, SKU3 target demand.

The next step is to compute, for each paste, the production amount needed to

satisfy SKUs demand. To accomplish this task, it is not enough to know which

material is required to make every final product. The missing piece of data is the

conversion rate. It states the number of toothpaste tubes made with one lib of

material paste. Relevant information about conversion rate of SKU1, SKU2 and

SKU3 is shown in table 4.3.

Final Product Material Paste Conversion Rate [tubes/lb]
SKU1 Paste1 3
SKU2 Paste2 2
SKU3 Paste2 3

Table 4.3: SKU1, SKU2, SKU3, conversion rate.

At this point, having available the proper data, pastes demand can be computed.

The target output relative to the first two materials is displayed in table 4.4. It

should be be fulfilled as soon as possible, otherwise packaging lines cannot start.

Indeed, pastes, after being manufactured, are stored in containers and kept in

inventory. Then, they are moved near to packaging lines to continuously feed them.

Material Paste Demand [lbs]
Paste1 100.000
Paste2 350.000

Table 4.4: Paste1, Paste2 target demand.
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Switching the attention on packaging lines, they are described by a key indicator,

which is the throughput. It assesses the expected quantity of toothpastes made in

one hour. This metric is function of the packaging line and not of the SKU being

produced. Relevant information about average throughput is shown in table 4.5.

Packaging Line Throughput [tubes/hour]
Packaging1 6.000
Packaging2 5.000
Packaging3 5.000
Packaging4 5.000
Packaging5 5.000
Packaging6 4.000

Table 4.5: Average throughput packaging lines.

Considering manufacturing lines, they have a maximum load capacity which

cannot be exceeded. In addition, it is common practice to work at full capacity.

Therefore, batches produced by mixers have a weight which equals the maximum

load capacity. Data about this parameter is displayed in table 4.6.

Manufacturing Line Load Capacity [lbs]
Mixer1 20.000
Mixer2 20.000
Mixer3 20.000
Mixer4 20.000
Mixer5 20.000
Mixer6 20.000

Table 4.6: Average mixers load capacity.

Another relevant indicator, to comprehensively describe mixers, is the processing

time. It represents the average number of hours needed to manufacture each batch.

It depends on both, mixer and material paste. Average processing times of Paste1

and Paste2 are displayed in table 4.7.
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Paste Mixer1 Mixer2 Mixer3 Mixer4 Mixer5 Mixer6

Paste1 12 12 12 12 12 12
Paste2 10 10 10 10 10 10

Table 4.7: Paste1, Paste2 processing time [hh].

Focusing on the final goal of the scheduling model, the machine downtime is

introduced. It is split in failures affecting manufacturing lines and breakdowns

relative to packaging lines. It is computed considering all the relevant causes which

lead to production stoppages. Thus, the result is a percentage indicator obtained

dividing the amount of time spent in breakdown status by the total available

production time, for every resource and for every material paste.

In manufacturing lines the downtime depends on the material paste and on the

mixer employed. Information about expected likelihood of unplanned maintenance

in mixers, when manufacturing the first two pastes, is represented in table 4.8.

Paste Mixer1 Mixer2 Mixer3 Mixer4 Mixer5 Mixer6

Paste1 0.15 0.56 0.55 0.60 0.49 0.48
Paste2 0.59 0.21 0.35 0.54 0.42 0.46

Table 4.8: Mixers expected percentage downtime.

As it was mentioned above, unfortunately, also packaging lines experience

machine failures related to SKUs production. The likelihood of downtime is a

function of both packaging line and final product. Data relative to packaging

downtime when dealing with SKU1, SKU2, and SKU3 is shown in table 4.9.

Final Product Line1 Line2 Line3 Line4 Line5 Line6

SKU1 0.47 0.44 0.40 0.25 0.34 0.38
SKU2 0.44 0.21 0.28 0.34 0.32 0.14
SKU3 0.43 0.25 0.29 0.23 0.21 0.23

Table 4.9: Packaging lines expected percentage downtime.
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Despite the project aims at minimizing unplanned maintenance experienced by

machines, there are other reasons which lead to production stoppage. They include

interruptions due to shifts and breaks, planned maintenance, changeover, and spare

capacity. They are characterized by duration and frequency and measured in hours.

Expected duration of every non-value-added activity is provided in table 4.10.

It is possible to see that manufacturing lines do not incur in stops due to shifts.

On the other hand, they are required in packaging lines where they take one hour.

Planned maintenance, changeover and spare capacity account respectively for eight,

six and fourteen hours, regardless the resource.

Interruption Cause Manufacturing Lines Packaging Lines
Shift 0 1
Maintenance 8 8
Changeover 6 6
Spare Capacity 14 14

Table 4.10: Planned non-productive time [hh].

Concerning frequency, the expected values are shown in table 4.11. It is possible

to notice that shift in manufacturing lines does not happen. As a result, blank field

is left. Whereas, in packaging lines it should happen every half day. Maintenance is

expected to occur every two and four weeks, respectively in mixers and packaging

lines. Changeover frequency is blank because it happens every time there is a

product switch in the machine. Thus, its frequency is not a-priori fixed. Finally,

spare capacity is left every week in every production resource.

Interruption Cause Manufacturing Lines Packaging Lines
Shift - 12
Maintenance 336 672
Changeover - -
Spare Capacity 168 168

Table 4.11: Planned shutdown frequency [hh/stop].
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Implementing inventory management constraints would significantly increase the

computational time. In addition, the optimal scheduling model would be very hard

to understand. Thus, it is avoided. It is assumed that there is plenty of space to

store containers. As a result, storage area capacity is almost infinite. Furthermore,

no material degradation is considered. Therefore, material pastes can remain in

inventory for long time before being used.

4.2 Scheduling Results

This section provides the solution of the optimal scheduling model. It meets all

the constraints provided. It is judged by the solver as optimal. Run time is around

twenty minutes.

Results are described beginning with the allocation of non-production blocks

such as maintenance, spare capacity and shift. Changeover depends on materials

switching in machines. Therefore, it will be added simultaneously to them. A

step by step procedure to schedule the production of SKU1, SKU2 and SKU3 is

highlighted. Finally, the whole scheduling plan, comprehensive of every material,

is provided and the relevant failure time is computed.

Maintenance planning involves both manufacturing and packaging lines. In

order to meet constraints, it is performed in mixers and packaging lines once every

two and four weeks respectively. Its expected duration is eight hours. Concerning

spare capacity, it is allocated in every resource. Its length is fourteen hours. It is

exploited, eroding the relative block, if actual production time exceeds the schedule.

It may happen in case of unexpected demand peaks, or machine breakdowns.

Packaging activities interruption because of shifts is expected to happen every half

day for a duration of one hour. They are related to workers lunch and breaks needs.

Mixing activities, being highly automated do not incur in such kind of stoppages.

Table 4.12 provides all information related to start time and finish time of the
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above-mentioned non-value-added activities. This schedule, useful for illustrative

purposes, involves just Mixer1 and Packaging1. However, an exhaustive plan is

exhibited in appendix A.

Production Resource Activity Start Time End Time
Mixer1 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Mixer1 Maintenance 2023-01-27 13:00 2023-01-27 21:00
Mixer1 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Mixer1 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Mixer1 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging1 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging1 Spare Capacity 2023-01-07 07:00 2023-01-07 21:00
Packaging1 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging1 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging1 Shift 2023-01-01 00:00 2023-01-01 01:00
Packaging1 Shift 2023-01-01 12:00 2023-01-01 13:00
Packaging1 Shift 2023-01-02 00:00 2023-01-02 01:00
Packaging1 Shift 2023-01-02 12:00 2023-01-02 13:00
Packaging1 Shift 2023-01-03 00:00 2023-01-03 01:00
Packaging1 Shift 2023-01-03 12:00 2023-01-03 13:00
Packaging1 Shift 2023-01-04 00:00 2023-01-04 01:00
Packaging1 Shift 2023-01-04 12:00 2023-01-04 13:00
Packaging1 Shift 2023-01-05 00:00 2023-01-05 01:00
Packaging1 Shift 2023-01-05 12:00 2023-01-05 13:00
... ... ... ...
Packaging1 Shift 2023-01-28 00:00 2023-01-28 01:00
Packaging1 Shift 2023-01-28 12:00 2023-01-28 13:00

Table 4.12: Mixer1 and Packaging1 non-production blocks four weeks schedule.

The optimal scheduling of maintenance, spare capacity and shift is displayed in

figure 4.1. The Gantt Chart plotted shows that maintenance (dark gray blocks) is

carried out simultaneously in all production resources which need it. Spare capacity

(blue blocks) is planned in the last part of the week in each machine. Shift stops

(thin light gray blocks) happen just in packaging lines, twice per day.
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Figure 4.1: Non-production blocks four weeks schedule.

Production blocks are scheduled in order to meet constraints and minimize the

overall plant downtime. They are allocated using greedy insertion. Thus, each

material is made where the expected failure time is the lowest.

Considering SKU1, it is produced in Packaging4.

The reason behind this choice is that making 300.000 tubes takes 60 hours

in that resource. Having an expected percentage downtime of 0.25, the machine

breakdown time would be 15 hours. Packaging2, Packaging3, Packaging5 and

Packaging6 have higher expected percentage downtime and equal or lower through-

put. Therefore, the time lost would be more relevant. Packaging1 has a higher

throughput, but it would need 50 hours to produce the output demanded, and

the downtime is expected to be 23.5 hours. Thus, Packaging4 guarantees the best

local result.

Similar reasoning leads to choose Mixer1 to manufacture Paste1.

Another consideration is related to the mixer production row. Indeed, dividing

the production quantity by the load capacity, it is possible to see that five batches

are made, one after the other. Relevant information about production amount
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(measured in lbs in case of pastes and in tubes in case of SKUs), start time and

end time is shown in table 4.13.

Resource Activity Production Start Time End Time
Mixer1 Paste1 100.000 2023-01-17 02:00 2023-01-19 14:00
Packaging4 SKU1 300.000 2023-01-22 18:00 2023-01-25 06:00

Table 4.13: Production schedule to make SKU1.

The Gantt Chart in figure 4.2 graphically displays the production schedule to

make the first final product. Both items involved, Paste1 and SKU1 are represented

through a blue colour bar.

In addition, the output contains information about the storage area. It correctly

highlights that an inventory block is created. It starts when Paste1 exits from

Mixer1, whereas it ends in the point in time where Packaging4 finishes producing

the demanded quantity of SKU1.

Figure 4.2: SKU1 Optimal Scheduling Plan.

Considering SKU2 and SKU3, the choice of where producing them depends on

production demand, throughput and expected percentage downtime.
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The requirement to minimize downtime leads to make SKU2 in Packaging6,

leading to 10.5 hours of expected time losses.

Similarly, SKU3 achieves the lowest downtime (12.6 hours) in Packaging5.

Applying the same reasoning in manufacturing lines, production rows of Paste2

are scheduled in Mixer2 and Mixer3. Production rows consist of ten batches made

one after the other in both resources.

In mixers the allocation choice depends on the lowest expected likelihood of

downtime. Indeed, the other factors (load capacity and processing time) which

could influence the decision do not vary with respect to the material paste.

Additional insights about output quantity, start time and end time are shown

in table 4.14.

Resource Activity Production Start Time End Time
Mixer2 Paste2 200.000 2023-01-01 00:00 2023-01-05 04:00
Mixer3 Paste2 200.000 2023-01-01 00:00 2023-01-05 04:00
Packaging5 SKU3 300.000 2023-01-07 21:00 2023-01-12 21:00
Packaging6 SKU2 300.000 2023-01-07 22:00 2023-01-11 01:00

Table 4.14: Production schedule to make SKU2, SKU3.

The previous Gantt Chart is further enriched adding production blocks relative

to SKU2 (light aquamarine bar) and SKU3 (dark aquamarine bar). They both

require as input Paste2 (aquamarine bar). The result is shown in figure 4.3.

As before, it is interesting to analyse storage area blocks. Indeed, the inventory

now stocks two more set of containers, which are respectively used to continuously

feed Packaging6 and Packaging5. The first ones store the amount of Paste2

needed to make SKU2. Conversely, the others contain the quantity of input

material required to fully satisfy the demand of SKU3. As before, they start when

the mixer finishes manufacturing Paste2, and they last until the relative SKU

production in packaging line ends.
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Figure 4.3: SKU2, SKU3 Optimal Scheduling Plan.

The complete set of information about material production scheduling is provided

in appendix A. It exhibits several tables showing, for every resource, details about

the item produced, the relative quantity, the scheduled start time and finish time.

Following, it is displayed the Gantt Chart which exhaustively shows production

and non-production blocks allocated to every resource.

In figure 4.4 changeovers (black bars) are required every time a production row

(set of batches being manufactured one after the other) ends.

Considering storage area blocks, they are covered to make the output visualiza-

tion as clear as possible. However, the final figure, which also embraces storage

area bars, is shown in appendix A.

In order to easily understand which is the input material related to every SKU,

the colour of every final product resembles the colour of the relative paste (i.e.,

the material paste in purple manufactured in Mixer6 feeds purple shade SKUs in

Packaging5). The legend is contained appendix A.
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Figure 4.4: Production resources four weeks schedule.

After production planning, it is mandatory to check that all constraints are

satisfied. A stringent rule, the algorithm must be compliant to, is the complete

fulfilment of customers’ demand. Achieving this target requires producing enough

lbs of pastes. Having inputs available, expected quantity of toothpastes can be

made. Table 4.15 shows that minimum productions of pastes and SKUs are achieved.

It is worth to mention that total quantities are obtained aggregating either the

output of manufacturing lines in case of pastes, or the output of packaging lines in

case of final products.

Material Paste Total Production Target Demand
Paste1 100.000 100.000
Paste2 400.000 350.000
SKU1 300.000 300.000
SKU2 300.000 300.000
SKU3 600.000 600.000

Table 4.15: Paste1, Paste2 comparison between production and demand.

The last output of the scheduling model provides insights about the expected
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non-value-added time experienced by every resource 4.16. Planned stops such as

maintenance, shift and spare capacity lead to a fixed contribution, based on hard

constraints, which cannot be optimized. What the algorithm minimizes is the loss

of productivity due to changeover and downtime.

Resource Downtime Changeover Maintenance Shift S. Capacity
Mixer1 38 36 16 0 56
Mixer2 43 18 16 0 56
Mixer3 55 18 16 0 56
Mixer4 53 24 16 0 56
Mixer5 36 24 16 0 56
Mixer6 119 48 16 0 56
Packaging1 49 36 8 56 56
Packaging2 44 24 8 56 56
Packaging3 42 36 8 56 56
Packaging4 67 24 8 56 56
Packaging5 81 36 8 56 56
Packaging6 75 48 8 56 56

Table 4.16: Four weeks non-value-added time per resource [hh].

4.3 First Weekly Review

It is interesting to show that the optimal scheduling model provided is not static.

Indeed, among the various input parameters which feed the algorithm, it is possible

to choose the review frequency. It allows to get updated information about expected

demand and availability of resources. A rolling review period of one week is adopted

to reschedule the solution based on the additional data retrieved. As a result,

the new planning horizon covers the four weeks between January 8th 2023 and

February 5th 2023.

The revised plan satisfies all the manufacturing constraints while minimizing the

production site downtime. It is supposed that the demand of nine additional SKUs

(SKU33, SKU34,..,SKU41) should be satisfied. In order to do so, four new material

pastes (Paste15, Paste16, Paste17, Paste18) must be manufactured. Relevant data
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about them is introduced in appendix B. The solver takes around two hours to

explore the search space and find a local optimal solution.

Concerning non-production blocks, spare capacity and shift schedule is updated.

The reason is the one week extension of the planning period. Indeed, previous

scheduling plan ends on 29th January 2023. Conversely, the updated plan finishes

on February 5th 2023. Thus, it is needed to cover the additional week. Therefore,

new spare capacity blocks and machine stoppages due to shifts are introduced. On

the other hand, planned maintenance is not required. Indeed, in manufacturing

lines it should be performed once every two weeks, whereas in packaging lines

every four. Being last ones scheduled respectively on January 27th 2023 and

January 13th 2023, it is not needed to plan a new maintenance before February 5th

2023. The scheduling plan of non-value-added activities in Mixer1 and Packaging1

is illustrated in table 4.17. The complete version which includes all production

resources is provided in appendix B.

Production Resource Activity Start Time End Time
Mixer1 Maintenance 2023-01-13 07:00 2023-01-13 15:00
Mixer1 Maintenance 2023-01-27 15:00 2023-01-27 23:00
Mixer1 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Mixer1 Spare Capacity 2023-01-13 15:00 2023-01-14 05:00
Mixer1 Spare Capacity 2023-01-19 22:00 2023-01-20 12:00
Mixer1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer1 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Packaging1 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging1 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Packaging1 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging1 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging1 Spare Capacity 2023-02-01 12:00 2023-02-02 02:00
Packaging1 Shift 2023-01-01 00:00 2023-01-01 01:00
Packaging1 Shift 2023-01-01 12:00 2023-01-01 13:00
... ... ... ...
Packaging1 Shift 2023-02-04 00:00 2023-02-04 01:00
Packaging1 Shift 2023-02-04 12:00 2023-02-04 13:00

Table 4.17: Mixer1 and Packaging1 non-production blocks five weeks schedule.
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The scheduling can be effectively visualized using the Gantt Chart in figure 4.5.

Figure 4.5: Non-production blocks five weeks schedule.

Focusing on production blocks, given that the new planning horizon starts on

January 8th 2023, the old schedule before that day results frozen (i.e., unchanged).

It is still displayed, but it belongs to the past. What the model optimizes is the

production plan in the new time window. A remarkable difference is that mixers

manufacture four new pastes which afterwards feed packaging lines to meet the

additional demand of SKU33, SKU34, .. ,SKU41. It should be noticed that the

updated plan does not merely insert new production blocks leaving the others

unaffected. For instance, it happens to Paste6 (green bar) which moves from

Mixer4 to Mixer3, whereas the second production row of Paste9 (purple bar)

switches from Mixer6 to Mixer1. They are reallocated in order to provide the

overall lowest plant downtime. The Gantt Chart in figure 4.6 displays the complete

scheduling plan related to every production resource. As before, storage area

blocks are covered. However, they are illustrated in appendix B. Concerning the

legend which links every bar colour with the relative material, it is also displayed

in appendix B.
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Figure 4.6: Production resources five weeks schedule.

Relevant information about non-value-added time experienced by every resource

is contained in table 4.18. This result updates table 4.16. Indeed, it is related to

the five week period starting from January 1st 2023.

It is relatively easy to forecast fixed contributions such as spare capacity, shift,

and maintenance. Being spare capacity planned once per week with a duration of

fourteen hours, then in five weeks it leads to an expected production loss of seventy

hours. Manufacturing lines do not incur in shift stoppages, whereas packaging lines

experience two hour of break per day. As a result, they waste seventy hours in five

weeks. Concerning maintenance, it keeps the plan of the previous model.

Focusing on variable contributions such as changeover and downtime, they

are always higher than previous values shown in table 4.16. The main reasons

of this fact are the following. This table covers five weeks whereas the other

four. Increasing the amount of SKUs demanded, it is needed to switch from one

product to another more often (higher setup contribution). Finally, it is known

that downtime is computed multiplying the historical percentage of time a machine

spent in breakdown with the production time. Therefore, given that making more
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materials requires higher production time, then the downtime increases.

Resource Downtime Changeover Maintenance Shift S. Capacity
Mixer1 66 42 16 0 70
Mixer2 51 24 16 0 70
Mixer3 166 36 16 0 70
Mixer4 122 42 16 0 70
Mixer5 52 30 16 0 70
Mixer6 100 42 16 0 70
Packaging1 102 54 8 70 70
Packaging2 66 36 8 70 70
Packaging3 87 54 8 70 70
Packaging4 67 24 8 70 70
Packaging5 113 42 8 70 70
Packaging6 75 48 8 70 70

Table 4.18: Five weeks total non-value-added time per resource [hh].

4.4 Second Weekly Review

Moving forward in time until January 14th 2023, the optimal scheduling model

goes through a second weekly review. The new planning horizon considered covers

the period between January 15th 2023 and February 12th 2023. Conversely, the

schedule of the weeks before, belonging to the past, results frozen. This simulation

is enriched dealing with a relatively long machine failure.

Recent information retrieved highlights that additional SKU42, SKU43,..,SKU50

are demanded by customers. Their bill-of-materials involve new material pastes

(Paste19, Paste20, Paste21) which need to be manufactured in order to satisfy

the relative final products demand. Detailed information about relevant input

parameters of new materials is exhibited in appendix C.

The solver is able to explore the search space and find a local optimal solution

in two hours. All constraints are respected while minimizing the overall production

site downtime.

Starting analysing non-value-added activities, they should be extended to cover
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the additional week (from February 5th 2023 to February 12th 2023) which the

new model is planning. Therefore, one spare capacity block is scheduled to be left

in every production resource in the new week. Also, shifts in packaging lines are

extended to embrace the new period. Finally, another maintenance is required

to be performed in both manufacturing and packaging lines since last ones are

scheduled respectively more than two and four weeks before February 12th 2023.

The illustrative plan of non-production blocks in Mixer1 and Packaging1 is shown

in table 4.19. The complete six weeks schedule is exhibited in appendix C.

Production Resource Activity Start Time End Time
Mixer1 Maintenance 2023-01-13 07:00 2023-01-13 15:00
Mixer1 Maintenance 2023-01-27 15:00 2023-01-27 23:00
Mixer1 Maintenance 2023-02-10 15:00 2023-02-10 23:00
Mixer1 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Mixer1 Spare Capacity 2023-01-13 15:00 2023-01-14 05:00
Mixer1 Spare Capacity 2023-01-19 22:00 2023-01-20 12:00
Mixer1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer1 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer1 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Packaging1 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging1 Maintenance 2023-02-10 06:00 2023-02-10 14:00
Packaging1 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Packaging1 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging1 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging1 Spare Capacity 2023-02-01 12:00 2023-02-02 02:00
Packaging1 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Packaging1 Shift 2023-01-01 00:00 2023-01-01 01:00
Packaging1 Shift 2023-01-01 12:00 2023-01-01 13:00
... ... ... ...
Packaging1 Shift 2023-02-11 00:00 2023-02-11 01:00
Packaging1 Shift 2023-02-11 12:00 2023-02-11 13:00

Table 4.19: Mixer1 and Packaging1 non-production blocks six weeks schedule.

Displaying non-production blocks using a Gantt Chart, it is possible to vi-

sualize that the planning horizon has been extended until February 12th 2023.
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Consequently, maintenance , spare capacity and shift plans cover the additional

week. What is interesting to highlight is that the model deals with the case of

an unplanned machine breakdown. Indeed, figure 4.7 shows a dark red bar in

Mixer5. It is due to a mixer failure whose duration is expected to be five days. As

a result, the algorithm should reschedule production blocks taking into account

the unavailability of this resource from January 15th 2023 to January 20th 2023.

Figure 4.7: Non-production blocks six weeks schedule.

Focusing on production blocks, the relative scheduling plan is updated in order

to produce the additional SKUs demanded. It means that, to best integrate

them, the others may change their production resource in order to find the global

lowest downtime. Also, the solution provided should promptly react to the failure

of Mixer5. Therefore, materials previously scheduled in that resource must be

reallocated. This happens to the second production row of paste10 (pink block)

which is rescheduled to be manufactured in Mixer4. Conversely, as it was previously

announced, the scheduling before January 15th 2023 is unchanged.

Considering storage area blocks, they are not included in figure 4.8. They are

covered in order to allow a clear visualization of the optimal scheduling model
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provided. However, a six weeks scheduling, comprehensive of inventory blocks, is

represented in a Gantt Chart in appendix C.

Figure 4.8: Production resources six weeks schedule.

Finally, the algorithm displays the expected non-value-added time experienced

by every production resource. The output is shown in table 4.20.

Covering six weeks leads to eighty-four hours of spare capacity (fourteen hours

per week). In addition, packaging lines should stop because of shifts twice per day

for one hour. Therefore, the total production loss is eighty-four hours.

Concerning maintenance, being performed three times in mixers and twice in

packaging lines, it respectively accounts for twenty-four and sixteen hours. Mixer5

exhibits 144 maintenance hours because of the failure which is expected to last 120

hours.

Finally, the expected downtime and changeover required are computed. As it is

possible to see, among critical manufacturing lines there is Mixer3 with 182 hours

of downtime and Packaging5 with 145 hours.
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Resource Downtime Changeover Maintenance Shift S. Capacity
Mixer1 70 54 24 0 84
Mixer2 65 36 24 0 84
Mixer3 182 36 24 0 84
Mixer4 147 42 24 0 84
Mixer5 80 36 144 0 84
Mixer6 101 48 24 0 84
Packaging1 102 54 16 84 84
Packaging2 86 48 16 84 84
Packaging3 87 54 16 84 84
Packaging4 108 42 16 84 84
Packaging5 145 66 16 84 84
Packaging6 75 60 16 84 84

Table 4.20: Six weeks total non-value-added time per resource [hh].
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Chapter 5

Conclusion and Future Work

The project explores the end-to-end optimal scheduling model which, hopefully

in the future, would support industrial manufacturing sites to plan toothpastes

production. Working side-by-side with GSK(CH)/Haleon Data Science Team the

complete real operational flow has been discovered. Weekly meetings with site

technicians and proper data analysis resulted in the design of several, production

related, hard and soft constraints. Concerning the objective function, it aims at

maximizing the OEE by minimizing the whole plant expected downtime. Therefore,

it covers manufacturing and packaging lines. The development phase is carried out

using python constraint programming packages. Given that scheduling belongs to

the class of NP-Hard computational problems, cloud computing - Azure - is used

to run three simulations. The first suggests a scheduling solution which covers a

planning horizon of four weeks. The second extends the previous solution performing

a weekly review. The third keeps on extending previous results implementing

another weekly review, and it is further enriched dealing with an unexpected long

machine failure. Greedy Insertion is the heuristic chosen to explore the solution

space leading to local optimal results. Future research includes the application of

metaheuristics such as Large Neighbourhood Search or Simulated Annealing. They
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may further improve the solution quality discovering a global optima scheduling. In

addition, the thesis embraces a practical application of Agglomerative Hierarchical

Clustering which groups products into families based on process flow similarities.

5.1 Metaheuristics

Conventionally, scheduling - belonging to the class of NP-Hard computational

problems - has been tackled using heuristics like descent algorithms [32, Widmer et

al., 2008]. They move through the solution space X switching, at every iteration,

the old solution with a better new one. This loop continues until the objective

function does not improve anymore. Therefore, the exploration ends when a local

minimum is found [32, Widmer et al., 2008]. Being incapable of getting away from

the first local minimum discovered is the main drawback of descent processes [32,

Widmer et al., 2008]. Indeed, combinatorial optimization problems often have

several local optima points which lead to sub-optimal results [32, Widmer et al.,

2008]. Referencing to an objective function whose pattern is displayed in figure 5.1,

descent methods starting from an initial solution s0 would stop in s3. However,

f(s3) differ greatly from the global optimal value f(s∗).

Figure 5.1: Illustrative objective function curve [32, Widmer et al., 2008].
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In addition, the algorithm developed create a scheduling plan starting from

packaging lines and going backward. Therefore, every SKU is assigned to the

packaging line which experiences the lowest expected downtime. As a result, the

relative material paste is constrained to be manufactured before the production of

that SKU. This may lead to solution which are optimal considering just packaging

downtime, but sub-optimal if the system is the whole production plant.

Considering for example SKU2 which is produced in packaging1 from February

2th 2023 to February 4th 2023 and the relative input material, paste1, which is

manufactured in mixer1 from January 31th 2023 to February 1th 2023. They

lead to 15 and 10 hours of downtime respectively in packaging lines and mixers.

Therefore, 25 hours of plant downtime. What may happen is that if paste1 were

not constrained to be ready before February 2th 2023 a better solution could be

producing it in mixer2 (which was manufacturing paste3 from January 31th 2023

to February 2th 2023) from February 2th 2023 to February 3th 2023. Then, SKU2

would have been produced in packaging2 from February 3th 2023 to February 5th

2023. This new solution would lead to 18 and 6 hours of downtime respectively in

packaging lines and mixers. Therefore, 24 hours of plant downtime. Thus, a sub-

optimal solution in packaging lines (15 against 18 hours of downtime) potentially

leads to better overall results.

Walking through this weakness is possible using advanced local search techniques,

which are usually known as metaheuristics [32, Widmer et al., 2008]. They exploit

heuristics and control them with higher level strategies. The goal is to efficiently

inspect the solution space [37, Blum et al., 2001]. It is possible given that they

embrace methods able to escape from objective function valleys (local minima).

For instance, they may allow the algorithm to switch to worse solutions (producing

SKU2 in packaging2 rather than packaging1) to find global optima (producing

paste1 in mixer2 rather than mixer1) [32, Widmer et al., 2008]. Furthermore, they
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are often stochastic and do not involve problem-related knowledge [37, Blum et al.,

2001]. This class of algorithms includes Large Neighborhood Search (LNS) and

Simulated Annealing (SA).

5.1.1 Large Neighborhood Search

Large Neighborhood Search is a metaheuristic introduced by Shaw in 1998 [1,

Pisinger et al., 2010]. Broadly, the algorithm starts implementing Local Search

(LS) on an initial solution to optimize it. Then, the solution is perturbed to avoid

being trapped into local optima. Iterations end when the termination condition is

met [37, Blum et al., 2001].

Figure 5.2: Perturbation effect [37, Blum et al., 2001].

The perturbation is performed using the destroy and repair method. Destroy

randomly removes from the current solution a certain percentage of blocks, while

repair relocates them exploiting a greedy heuristic [1, Pisinger et al., 2010].

Focusing on the destroy phase, it often embraces a randomness element which

ensures that blocks removed in every iteration are different [1, Pisinger et al., 2010].

The crucial parameter is the percentage of destruction [1, Pisinger et al., 2010].
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If it is too low, then the heuristic may not effectively explore the solution space.

Conversely, a relevant perturbation would lead LS to restart from a casual point [1,

Pisinger et al., 2010]. Approaches to deal with the degree of destruction include

either the possibility to progressively increase it, or picking it casually from a

certain range which depends on the instance size [1, Pisinger et al., 2010].

Considering repair, it can be optimal meaning that the destroyed solution is

completely rebuilt in the most effective way [1, Pisinger et al., 2010]. Another option

is choosing a heuristic repair [1, Pisinger et al., 2010]. It assumes that a good enough

solution, developed from the partial one, is also acceptable. In choosing, it should

be considered that optimal repair takes a plenty of computational time, but could

hopefully find the global best solution [1, Pisinger et al., 2010]. However, taking into

account diversification aspects, optimal repair may not be interesting given that

just enhancing solutions will be produced. This would make challenging leaving

local minima unless relevant percentage of destruction is accepted [1, Pisinger et

al., 2010].

LNS algorithm is shown in figure 5.3. It employs the variable xb which contains

the optimal value found during the exploration, the actual solution is x, whereas

xt refers to a transitional solution which may be rejected or accepted as current

one [1, Pisinger et al., 2010]. Destroy is accomplished using function d(), whereas

r() implements repair [1, Pisinger et al., 2010]. Thus, d(x) yields the solution x

destroyed, whereas r(d(x)) returns the rebuilt destroyed solution x. Explaining the

process step by step, it starts initializing the optimal solution. Then, a while loop

begins. It ends when the termination condition is met [1, Pisinger et al., 2010]. In

line four the destroy and repair methods are executed leading to the transitional

solution xt. In line five, the heuristic analyses xt and eventually accepts it [1,

Pisinger et al., 2010]. If this happens the current solution x is updated. Acceptance

criterion may be approving just better solutions [1, Pisinger et al., 2010]. Finally, if
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the objective function improves the optimal solution is updated. The termination

condition can be related to maximum computational time or number of loops [1,

Pisinger et al., 2010]. It is worth to highlight that LNS does not explore the whole

neighbourhood of a solution, but just samples of it [1, Pisinger et al., 2010].

Figure 5.3: Large Neighborhood Search algorithm [1, Pisinger et al., 2010].

Concluding remarks are that LNS fluctuates between infeasible and feasible

solutions. The first are due to the destroy method. Whereas, repair guarantees

feasibility requirement [1, Pisinger et al., 2010].

5.1.2 Simulated Annealing

Simulated Annealing (SA) is often employed to deal with optimization problems

[38, Yavuz et al., 2017]. It is a probabilistic technique which emulates the annealing

process in metallurgy. A key control parameter is the temperature [39, Sieniutycz

et al., 2018]. In annealing, it is gradually lowered keeping in mind that quick

cooling leads to anomalies in the crystal structures. Conversely, too slow cooling

leads to excellent crystals spending the lowest energy, but it also takes exorbitant

processing time [39, Sieniutycz et al., 2018].

SA technique stochastically accepts a worse solution [39, Sieniutycz et al., 2018].
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The likelihood of this acceptance follows the same pattern of the temperature

in the metallurgy process above described. It starts taking a high value and

then it gradually decreases up to almost zero in the last iterations [40, Arora,

2004]. As a result, the algorithm allows worse solutions in early stages. However,

when it approaches the termination, having a marginal likelihood ensures that

non-improving designs are nearly always discarded [40, Arora, 2004]. This strategy

supports the model to escape from valleys [40, Arora, 2004].

The algorithm begins setting the initial temperature T0 (which approximates

the global optimal value of the objective function) [40, Arora, 2004]. Afterwards, it

selects casual points in the neighbourhood of the actual solution and computes the

objective value there [40, Arora, 2004]. If the solution improves, then the point is

accepted and the optimal value is updated. Otherwise, the point may be accepted

or rejected. Acceptance criterion of non-improving solutions is related to the value

of the probability density function of the Bolzman-Gibbs distribution which again

depends on the temperature parameter [40, Arora, 2004]. If this value is higher

than a certain threshold, the point is accepted and the optimal current solution

is updated. Finally, if the termination condition is not met, the temperature is

lowered and a new iteration begins. The algorithm can stop based on several rules.

The most widely adopted are the following [40, Arora, 2004].

• Termination because the solution has improved below a certain threshold

during the most recent N iterations.

• Termination because the maximum number of attempts has been reached.

• Termination because a certain solution value has been achieved.

SA does not demand function continuity and differentiability [40, Arora, 2004].

Therefore, this technique finds application also in non-differentiable problems.

Having available plenty of time, it is able to find global optimal solutions regardless
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the variable types involved (continous, discrete, integer) [40, Arora, 2004]. In case

there is a tight time window, parallel computing can be a valuable mean to boost

calculations [40, Arora, 2004].
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Appendix A

Optimal Scheduling Results

Final Product Material Paste Final Product Material Paste
SKU1 Paste1 SKU17 Paste7
SKU2 Paste2 SKU18 Paste8
SKU3 Paste2 SKU19 Paste8
SKU4 Paste3 SKU20 Paste8
SKU5 Paste3 SKU21 Paste9
SKU6 Paste4 SKU22 Paste9
SKU7 Paste4 SKU23 Paste9
SKU8 Paste4 SKU24 Paste10
SKU9 Paste5 SKU25 Paste10
SKU10 Paste5 SKU26 Paste10
SKU11 Paste5 SKU27 Paste11
SKU12 Paste6 SKU28 Paste11
SKU13 Paste6 SKU29 Paste12
SKU14 Paste6 SKU30 Paste12
SKU15 Paste7 SKU31 Paste13
SKU16 Paste7 SKU32 Paste14

Table A.1: Complete Bill of Materials.
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Final Product Demand [tubes] Final Product Demand [tubes]
SKU1 300.000 SKU17 375.000
SKU2 300.000 SKU18 200.000
SKU3 600.000 SKU19 200.000
SKU4 300.000 SKU20 255.000
SKU5 400.000 SKU21 400.000
SKU6 250.000 SKU22 320.000
SKU7 500.000 SKU23 360.000
SKU8 500.000 SKU24 160.000
SKU9 200.000 SKU25 200.000
SKU10 500.000 SKU26 200.000
SKU11 500.000 SKU27 150.000
SKU12 200.000 SKU28 100.000
SKU13 200.000 SKU29 100.000
SKU14 400.000 SKU30 100.000
SKU15 200.000 SKU31 300.000
SKU16 400.000 SKU32 250.000

Table A.2: Target demand.
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Final Product Material Paste Conversion Rate
[tubes/lb]

SKU1 Paste1 3
SKU2 Paste2 2
SKU3 Paste2 3
SKU4 Paste3 3
SKU5 Paste3 4
SKU6 Paste4 5
SKU7 Paste4 10
SKU8 Paste4 5
SKU9 Paste5 4
SKU10 Paste5 5
SKU11 Paste5 10
SKU12 Paste6 2
SKU13 Paste6 2
SKU14 Paste6 4
SKU15 Paste7 8
SKU16 Paste7 4
SKU17 Paste7 5
SKU18 Paste8 4
SKU19 Paste8 8
SKU20 Paste8 3
SKU21 Paste9 4
SKU22 Paste9 8
SKU23 Paste9 6
SKU24 Paste10 4
SKU25 Paste10 2
SKU26 Paste10 2
SKU27 Paste11 3
SKU28 Paste11 2
SKU29 Paste12 1
SKU30 Paste12 1
SKU31 Paste13 1
SKU32 Paste14 1

Table A.3: Conversion rate final product - material paste.

101



Optimal Scheduling Results

Material Paste Demand [lbs]
Paste1 100.000
Paste2 350.000
Paste3 200.000
Paste4 200.000
Paste5 200.000
Paste6 300.000
Paste7 200.000
Paste8 160.000
Paste9 200.000
Paste10 240.000
Paste11 100.000
Paste12 200.000
Paste13 300.000
Paste14 250.000

Table A.4: Target material paste demand.

Paste Mixer1 Mixer2 Mixer3 Mixer4 Mixer5 Mixer6

Paste1 12 12 12 12 12 12
Paste2 10 10 10 10 10 10
Paste3 8 8 8 8 8 8
Paste4 14 14 14 14 14 14
Paste5 10 10 10 10 10 10
Paste6 14 14 14 14 14 14
Paste7 12 12 12 12 12 12
Paste8 15 15 15 15 15 15
Paste9 10 10 10 10 10 10
Paste10 12 12 12 12 12 12
Paste11 9 9 9 9 9 9
Paste12 13 13 13 13 13 13
Paste13 10 10 10 10 10 10
Paste14 12 12 12 12 12 12

Table A.5: Mixers processing time [hh].
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Paste Mixer1 Mixer2 Mixer3 Mixer4 Mixer5 Mixer6

Paste1 0.15 0.56 0.55 0.60 0.49 0.48
Paste2 0.59 0.21 0.35 0.54 0.42 0.46
Paste3 0.52 0.58 0.25 0.54 0.41 0.41
Paste4 0.51 0.50 0.40 0.18 0.40 0.43
Paste5 0.10 0.53 0.45 0.38 0.44 0.48
Paste6 0.30 0.51 0.43 0.15 0.45 0.49
Paste7 0.10 0.53 0.47 0.42 0.43 0.41
Paste8 0.50 0.55 0.46 0.42 0.12 0.35
Paste9 0.42 0.45 0.20 0.48 0.52 0.39
Paste10 0.35 0.51 0.45 0.43 0.15 0.46
Paste11 0.32 0.45 0.44 0.47 0.38 0.16
Paste12 0.10 0.42 0.45 0.45 0.40 0.31
Paste13 0.52 0.15 0.41 0.41 0.41 0.36
Paste14 0.50 0.45 0.43 0.41 0.43 0.16

Table A.6: Mixers expected percentage downtime.
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Final Product Line1 Line2 Line3 Line4 Line5 Line6

SKU1 0.47 0.44 0.40 0.25 0.34 0.38
SKU2 0.44 0.21 0.28 0.34 0.32 0.14
SKU3 0.43 0.25 0.29 0.23 0.21 0.23
SKU4 0.43 0.34 0.22 0.33 0.31 0.43
SKU5 0.22 0.13 0.23 0.42 0.22 0.44
SKU6 0.43 0.33 0.35 0.25 0.37 0.23
SKU7 0.20 0.43 0.46 0.18 0.44 0.31
SKU8 0.43 0.45 0.32 0.22 0.38 0.32
SKU9 0.15 0.37 0.34 0.24 0.26 0.29
SKU10 0.21 0.26 0.23 0.32 0.36 0.34
SKU11 0.15 0.45 0.35 0.43 0.45 0.46
SKU12 0.38 0.23 0.16 0.33 0.53 0.35
SKU13 0.47 0.31 0.12 0.47 0.22 0.23
SKU14 0.31 0.49 0.13 0.26 0.39 0.33
SKU15 0.21 0.18 0.24 0.45 0.47 0.48
SKU16 0.22 0.18 0.36 0.24 0.24 0.32
SKU17 0.33 0.16 0.47 0.43 0.41 0.26
SKU18 0.45 0.28 0.32 0.28 0.29 0.27
SKU19 0.52 0.33 0.33 0.47 0.33 0.26
SKU20 0.42 0.30 0.24 0.36 0.48 0.21
SKU21 0.33 0.41 0.35 0.34 0.26 0.36
SKU22 0.43 0.36 0.46 0.33 0.25 0.45
SKU23 0.57 0.47 0.37 0.42 0.23 0.34
SKU24 0.36 0.23 0.37 0.37 0.22 0.21
SKU25 0.42 0.35 0.34 0.46 0.38 0.13
SKU26 0.17 0.25 0.22 0.35 0.47 0.25
SKU27 0.22 0.33 0.11 0.44 0.35 0.25
SKU28 0.48 0.44 0.23 0.32 0.31 0.33
SKU29 0.17 0.33 0.20 0.33 0.32 0.42
SKU30 0.36 0.22 0.44 0.36 0.16 0.27
SKU31 0.24 0.34 0.55 0.24 0.35 0.14
SKU32 0.13 0.37 0.26 0.23 0.32 0.25

Table A.7: Packaging lines expected percentage downtime.
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Manufacturing Line Activity Start Time End Time
Mixer1 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Mixer1 Maintenance 2023-01-27 13:00 2023-01-27 21:00
Mixer2 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Mixer2 Maintenance 2023-01-27 13:00 2023-01-27 21:00
Mixer3 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Mixer3 Maintenance 2023-01-27 13:00 2023-01-27 21:00
Mixer4 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Mixer4 Maintenance 2023-01-27 13:00 2023-01-27 21:00
Mixer5 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Mixer5 Maintenance 2023-01-27 13:00 2023-01-27 21:00
Mixer6 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Mixer6 Maintenance 2023-01-27 13:00 2023-01-27 21:00

Table A.8: Manufacturing lines four weeks maintenance plan.

Packaging Line Activity Start Time End Time
Packaging1 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging2 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging3 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging4 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging5 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging6 Maintenance 2023-01-13 05:00 2023-01-13 13:00

Table A.9: Packaging lines four weeks maintenance plan

105



Optimal Scheduling Results

Manufacturing Line Activity Start Time End Time
Mixer1 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Mixer1 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Mixer1 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer2 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Mixer2 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Mixer2 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer2 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer3 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Mixer3 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Mixer3 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer3 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer4 Spare Capacity 2023-01-07 07:00 2023-01-07 21:00
Mixer4 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Mixer4 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer4 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer5 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Mixer5 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Mixer5 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer5 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer6 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Mixer6 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Mixer6 Spare Capacity 2023-01-19 22:00 2023-01-20 12:00
Mixer6 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00

Table A.10: Manufacturing lines four weeks spare capacity plan.
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Packaging Line Activity Start Time End Time
Packaging1 Spare Capacity 2023-01-07 07:00 2023-01-07 21:00
Packaging1 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging1 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging2 Spare Capacity 2023-01-07 07:00 2023-01-07 21:00
Packaging2 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging2 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging2 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging3 Spare Capacity 2023-01-07 07:00 2023-01-07 21:00
Packaging3 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging3 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging3 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging4 Spare Capacity 2023-01-07 07:00 2023-01-07 21:00
Packaging4 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging4 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging4 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging5 Spare Capacity 2023-01-07 07:00 2023-01-07 21:00
Packaging5 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging5 Spare Capacity 2023-01-19 22:00 2023-01-20 12:00
Packaging5 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging6 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Packaging6 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging6 Spare Capacity 2023-01-19 21:00 2023-01-20 11:00
Packaging6 Spare Capacity 2023-01-26 04:00 2023-01-26 18:00

Table A.11: Packaging lines four weeks spare capacity plan.

Packaging Line Activity Start Time End Time
Packaging1 Shift 2023-01-01 00:00 2023-01-01 01:00
Packaging1 Shift 2023-01-01 12:00 2023-01-01 13:00
Packaging1 Shift 2023-01-02 00:00 2023-01-02 01:00
Packaging1 Shift 2023-01-02 12:00 2023-01-02 13:00
... ... ... ...
... ... ... ...
Packaging6 Shift 2023-01-27 00:00 2023-01-27 01:00
Packaging6 Shift 2023-01-27 12:00 2023-01-27 13:00
Packaging6 Shift 2023-01-28 00:00 2023-01-28 01:00
Packaging6 Shift 2023-01-28 12:00 2023-01-28 13:00

Table A.12: Packaging lines four weeks shift plan.
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Tables from A.13 to A.24 show production schedule of material pastes and SKUs.

In particular, for each resource it is shown the material manufactured, the relative

amount produced, the start time and the end time. After every production,

the changeover is required. Its duration is six hours in both manufacturing and

packaging lines.

Resource Activity Production [lbs] Start Time End Time
Mixer1 Paste5 100.000 2023-01-02 06:00 2023-01-04 08:00
Mixer1 Changeover - 2023-01-04 08:00 2023-01-04 14:00
Mixer1 Paste5 100.000 2023-01-04 22:00 2023-01-07 00:00
Mixer1 Changeover - 2023-01-07 00:00 2023-01-07 06:00
Mixer1 Paste7 100.000 2023-01-07 20:00 2023-01-10 08:00
Mixer1 Changeover - 2023-01-10 08:00 2023-01-10 14:00
Mixer1 Paste12 100.000 2023-01-14 03:00 2023-01-16 20:00
Mixer1 Changeover - 2023-01-16 20:00 2023-01-17 02:00
Mixer1 Paste1 100.000 2023-01-17 02:00 2023-01-19 14:00
Mixer1 Changeover - 2023-01-19 14:00 2023-01-19 20:00
Mixer1 Paste12 100.000 2023-01-20 15:00 2023-01-23 08:00
Mixer1 Changeover - 2023-01-23 08:00 2023-01-23 14:00

Table A.13: Mixer1 four weeks production schedule.

Resource Activity Production [lbs] Start Time End Time
Mixer2 Paste2 200.000 2023-01-01 00:00 2023-01-05 04:00
Mixer2 Changeover - 2023-01-05 04:00 2023-01-05 10:00
Mixer2 Paste13 140.000 2023-01-09 17:00 2023-01-12 15:00
Mixer2 Changeover - 2023-01-12 15:00 2023-01-12 21:00
Mixer2 Paste13 160.000 2023-01-14 03:00 2023-01-17 11:00
Mixer2 Changeover - 2023-01-17 11:00 2023-01-17 17:00

Table A.14: Mixer2 four weeks production schedule.
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Resource Activity Production [lbs] Start Time End Time
Mixer3 Paste2 200.000 2023-01-01 00:00 2023-01-05 04:00
Mixer3 Changeover - 2023-01-05 04:00 2023-01-05 10:00
Mixer3 Paste3 100.000 2023-01-05 10:00 2023-01-07 02:00
Mixer3 Changeover - 2023-01-07 02:00 2023-01-07 08:00
Mixer3 Paste3 100.000 2023-01-07 22:00 2023-01-09 14:00
Mixer3 Changeover - 2023-01-09 14:00 2023-01-09 20:00

Table A.15: Mixer3 four weeks production schedule.

Resource Activity Production [lbs] Start Time End Time
Mixer4 Paste4 80.000 2023-01-01 00:00 2023-01-03 08:00
Mixer4 Changeover - 2023-01-03 08:00 2023-01-03 14:00
Mixer4 Paste4 80.000 2023-01-04 17:00 2023-01-07 01:00
Mixer4 Changeover - 2023-01-07 01:00 2023-01-07 07:00
Mixer4 Paste6 160.000 2023-01-07 22:00 2023-01-12 14:00
Mixer4 Changeover - 2023-01-12 14:00 2023-01-12 20:00
Mixer4 Paste6 160.000 2023-01-14 03:00 2023-01-18 19:00
Mixer4 Changeover - 2023-01-18 19:00 2023-01-19 01:00

Table A.16: Mixer4 four weeks production schedule.

Resource Activity Production [lbs] Start Time End Time
Mixer5 Paste8 80.000 2023-01-01 00:00 2023-01-03 12:00
Mixer5 Changeover - 2023-01-03 12:00 2023-01-03 18:00
Mixer5 Paste8 80.000 2023-01-03 18:00 2023-01-06 06:00
Mixer5 Changeover - 2023-01-06 06:00 2023-01-06 12:00
Mixer5 Paste10 120.000 2023-01-09 18:00 2023-01-12 18:00
Mixer5 Changeover - 2023-01-12 18:00 2023-01-13 00:00
Mixer5 Paste10 120.000 2023-01-14 03:00 2023-01-17 03:00
Mixer5 Changeover - 2023-01-17 03:00 2023-01-17 09:00

Table A.17: Mixer5 four weeks production schedule.
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Resource Activity Production [lbs] Start Time End Time
Mixer6 Paste4 80.000 2023-01-01 00:00 2023-01-03 08:00
Mixer6 Changeover - 2023-01-03 08:00 2023-01-03 14:00
Mixer6 Paste9 100.000 2023-01-03 18:00 2023-01-05 20:00
Mixer6 Changeover - 2023-01-05 20:00 2023-01-06 02:00
Mixer6 Paste9 100.000 2023-01-07 20:00 2023-01-09 22:00
Mixer6 Changeover - 2023-01-09 22:00 2023-01-10 04:00
Mixer6 Paste7 100.000 2023-01-10 04:00 2023-01-12 16:00
Mixer6 Changeover - 2023-01-12 16:00 2023-01-12 22:00
Mixer6 Paste11 40.000 2023-01-14 03:00 2023-01-14 21:00
Mixer6 Changeover - 2023-01-14 21:00 2023-01-15 03:00
Mixer6 Paste11 60.000 2023-01-15 03:00 2023-01-16 06:00
Mixer6 Changeover - 2023-01-16 06:00 2023-01-16 12:00
Mixer6 Paste14 120.000 2023-01-16 16:00 2023-01-19 16:00
Mixer6 Changeover - 2023-01-19 16:00 2023-01-19 22:00
Mixer6 Paste14 140.000 2023-01-20 12:00 2023-01-24 00:00
Mixer6 Changeover - 2023-01-24 00:00 2023-01-24 06:00

Table A.18: Mixer6 four weeks production schedule.

Resource Activity Output [tubes] Start Time End Time
Packaging1 SKU11 504.000 2023-01-09 11:00 2023-01-12 23:00
Packaging1 Changeover - 2023-01-12 23:00 2023-01-13 05:00
Packaging1 SKU9 204.000 2023-01-14 03:00 2023-01-15 13:00
Packaging1 Changeover - 2023-01-15 13:00 2023-01-15 19:00
Packaging1 SKU10 504.000 2023-01-15 22:00 2023-01-19 10:00
Packaging1 Changeover - 2023-01-19 10:00 2023-01-19 16:00
Packaging1 SKU26 204.000 2023-01-20 11:00 2023-01-21 21:00
Packaging1 Changeover - 2023-01-21 21:00 2023-01-22 03:00
Packaging1 SKU32 252.000 2023-01-24 00:00 2023-01-25 18:00
Packaging1 Changeover - 2023-01-25 18:00 2023-01-26 00:00
Packaging1 SKU29 102.000 2023-01-27 16:00 2023-01-28 09:00
Packaging1 Changeover - 2023-01-28 09:00 2023-01-28 15:00

Table A.19: Packaging1 four weeks production schedule.
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Optimal Scheduling Results

Resource Activity Output [tubes] Start Time End Time
Packaging2 SKU5 400.000 2023-01-09 14:00 2023-01-12 22:00
Packaging2 Changeover - 2023-01-12 22:00 2023-01-13 04:00
Packaging2 SKU17 375.000 2023-01-16 00:00 2023-01-19 03:00
Packaging2 Changeover - 2023-01-19 03:00 2023-01-19 09:00
Packaging2 SKU16 400.000 2023-01-21 08:00 2023-01-24 16:00
Packaging2 Changeover - 2023-01-24 16:00 2023-01-24 22:00
Packaging2 SKU15 200.000 2023-01-26 17:00 2023-01-28 09:00
Packaging2 Changeover - 2023-01-28 09:00 2023-01-28 15:00

Table A.20: Packaging2 four weeks production schedule.

Resource Activity Output [tubes] Start Time End Time
Packaging3 SKU4 300.000 2023-01-10 09:00 2023-01-12 21:00
Packaging3 Changeover - 2023-01-12 21:00 2023-01-13 03:00
Packaging3 SKU27 150.000 2023-01-16 14:00 2023-01-17 20:00
Packaging3 Changeover - 2023-01-17 20:00 2023-01-18 02:00
Packaging3 SKU28 100.000 2023-01-18 02:00 2023-01-18 22:00
Packaging3 Changeover - 2023-01-18 22:00 2023-01-19 04:00
Packaging3 SKU14 400.000 2023-01-20 10:00 2023-01-23 18:00
Packaging3 Changeover - 2023-01-23 18:00 2023-01-24 00:00
Packaging3 SKU13 200.000 2023-01-24 00:00 2023-01-25 16:00
Packaging3 Changeover - 2023-01-25 16:00 2023-01-25 22:00
Packaging3 SKU12 200.000 2023-01-26 17:00 2023-01-28 09:00
Packaging3 Changeover - 2023-01-28 09:00 2023-01-28 15:00

Table A.21: Packaging3 four weeks production schedule.

Resource Activity Output [tubes] Start Time End Time
Packaging4 SKU8 500.000 2023-01-08 19:00 2023-01-12 23:00
Packaging4 Changeover - 2023-01-12 23:00 2023-01-13 05:00
Packaging4 SKU7 500.000 2023-01-14 23:00 2023-01-19 03:00
Packaging4 Changeover - 2023-01-19 03:00 2023-01-19 09:00
Packaging4 SKU6 250.000 2023-01-20 10:00 2023-01-22 12:00
Packaging4 Changeover - 2023-01-22 12:00 2023-01-22 18:00
Packaging4 SKU1 300.000 2023-01-22 18:00 2023-01-25 06:00
Packaging4 Changeover - 2023-01-25 06:00 2023-01-25 12:00

Table A.22: Packaging4 four weeks production schedule.

111



Optimal Scheduling Results

Resource Activity Output [tubes] Start Time End Time
Packaging5 SKU3 300.000 2023-01-07 21:00 2023-01-12 21:00
Packaging5 Changeover - 2023-01-12 21:00 2023-01-13 03:00
Packaging5 SKU23 360.000 2023-01-14 05:00 2023-01-17 05:00
Packaging5 Changeover - 2023-01-17 05:00 2023-01-17 11:00
Packaging5 SKU21 265.000 2023-01-17 11:00 2023-01-19 16:00
Packaging5 Changeover - 2023-01-19 16:00 2023-01-19 22:00
Packaging5 SKU22 320.000 2023-01-20 16:00 2023-01-23 08:00
Packaging5 Changeover - 2023-01-23 08:00 2023-01-23 14:00
Packaging5 SKU21 135.000 2023-01-24 18:00 2023-01-25 21:00
Packaging5 Changeover - 2023-01-25 21:00 2023-01-26 03:00
Packaging5 SKU30 100.000 2023-01-27 21:00 2023-01-28 17:00
Packaging5 Changeover - 2023-01-28 17:00 2023-01-28 23:00

Table A.23: Packaging5 four weeks production schedule.

Resource Activity Output [tubes] Start Time End Time
Packaging6 SKU19 80.000 2023-01-06 06:00 2023-01-07 02:00
Packaging6 Changeover - 2023-01-07 02:00 2023-01-07 08:00
Packaging6 SKU2 300.000 2023-01-07 22:00 2023-01-11 01:00
Packaging6 Changeover - 2023-01-11 01:00 2023-01-11 07:00
Packaging6 SKU19 120.000 2023-01-11 17:00 2023-01-12 23:00
Packaging6 Changeover - 2023-01-12 23:00 2023-01-13 05:00
Packaging6 SKU20 256.000 2023-01-14 15:00 2023-01-17 07:00
Packaging6 Changeover - 2023-01-17 07:00 2023-01-17 13:00
Packaging6 SKU18 200.000 2023-01-17 13:00 2023-01-19 15:00
Packaging6 Changeover - 2023-01-19 15:00 2023-01-19 21:00
Packaging6 SKU25 200.000 2023-01-20 11:00 2023-01-22 13:00
Packaging6 Changeover - 2023-01-22 13:00 2023-01-22 19:00
Packaging6 SKU31 300.000 2023-01-22 19:00 2023-01-25 22:00
Packaging6 Changeover - 2023-01-25 22:00 2023-01-26 04:00
Packaging6 SKU24 160.000 2023-01-26 19:00 2023-01-28 11:00
Packaging6 Changeover - 2023-01-28 11:00 2023-01-28 17:00

Table A.24: Packaging6 four weeks production schedule.
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Optimal Scheduling Results

Material Paste Total Production [lbs] Target Demand [lbs]
Paste1 100.000 100.000
Paste2 400.000 350.000
Paste3 200.000 200.000
Paste4 240.000 200.000
Paste5 200.000 200.000
Paste6 320.000 300.000
Paste7 200.000 200.000
Paste8 160.000 160.000
Paste9 200.000 200.000
Paste10 240.000 240.000
Paste11 100.000 100.000
Paste12 200.000 200.000
Paste13 300.000 300.000
Paste14 260.000 250.000

Table A.25: Material pastes comparison between production and demand.
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Optimal Scheduling Results

Final Product Total Production [tubes] Target Demand [tubes]
SKU1 300.000 300.000
SKU2 300.000 300.000
SKU3 600.000 600.000
SKU4 300.000 300.000
SKU5 400.000 400.000
SKU6 250.000 250.000
SKU7 500.000 500.000
SKU8 500.000 500.000
SKU9 204.000 200.000
SKU10 504.000 500.000
SKU11 504.000 500.000
SKU12 200.000 200.000
SKU13 200.000 200.000
SKU14 400.000 400.000
SKU15 200.000 375.000
SKU16 400.000 200.000
SKU17 375.000 200.000
SKU18 200.000 255.000
SKU19 200.000 400.000
SKU20 256.000 255.000
SKU21 400.000 400.000
SKU22 320.000 320.000
SKU23 360.000 360.000
SKU24 160.000 160.000
SKU25 200.000 200.000
SKU26 204.000 200.000
SKU27 150.000 150.000
SKU28 100.000 100.000
SKU29 102.000 100.000
SKU30 100.000 100.000
SKU31 300.000 300.000
SKU32 252.000 250.000

Table A.26: Final products comparison between production and demand.
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Optimal Scheduling Results

Figure A.1: Complete four weeks Optimal Scheduling Plan.
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Optimal Scheduling Results

Material Paste Colour
Paste1 Blue
Paste2 Aquamarine
Paste3 Bisque
Paste4 Brown
Paste5 Cadet blue
Paste6 Chartreuse
Paste7 Dark goldenrod
Paste8 Dark olive green
Paste9 Dark orchid
Paste10 Palevioletred
Paste11 Sea green
Paste12 Magenta
Paste13 Dark Gray
Paste14 Thistle

Table A.27: Material pastes legend.

Final Product Colour Shade Final Product Colour Shade
SKU1 Blue SKU17 Dark goldenrod
SKU2 Light Aquamarine SKU18 Dark olive green
SKU3 Dark Aquamarine SKU19 Dark olive green
SKU4 Bisque SKU20 Dark olive green
SKU5 Bisque SKU21 Dark orchid
SKU6 Brown SKU22 Dark orchid
SKU7 Brown SKU23 Dark orchid
SKU8 Brown SKU24 Palevioletred
SKU9 Cadet blue SKU25 Palevioletred
SKU10 Cadet blue SKU26 Palevioletred
SKU11 Cadet blue SKU27 Sea green
SKU12 Chartreuse SKU28 Sea green
SKU13 Chartreuse SKU29 Yellow
SKU14 Chartreuse SKU30 Yellow
SKU15 Goldenrod SKU31 Dark gray
SKU16 Dark goldenrod SKU32 Thistle

Table A.28: SKUs legend.
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Appendix B

First Weekly Review Results

Final Product Material Paste Final Product Material Paste
SKU33 Paste15 SKU38 Paste17
SKU34 Paste15 SKU39 Paste18
SKU35 Paste16 SKU40 Paste18
SKU36 Paste17 SKU41 Paste18
SKU37 Paste17

Table B.1: Additional Bill of Materials.

Final Product Demand [tubes] Final Product Demand [tubes]
SKU33 150.000 SKU38 300.000
SKU34 350.000 SKU39 400.000
SKU35 400.000 SKU40 320.000
SKU36 500.000 SKU41 240.000
SKU37 200.000

Table B.2: Additional demand.
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First Weekly Review Results

Final Product Material Paste Conversion Rate
[tubes/lb]

SKU33 Paste15 2
SKU34 Paste15 2
SKU35 Paste16 2
SKU36 Paste17 5
SKU37 Paste17 2
SKU38 Paste17 3
SKU39 Paste18 8
SKU40 Paste18 8
SKU41 Paste18 4

Table B.3: Additional conversion rate final product - material paste.

Material Paste Demand [lbs]
Paste15 250.000
Paste16 200.000
Paste17 300.000
Paste18 150.000

Table B.4: Additional material paste demand.

Paste Mixer1 Mixer2 Mixer3 Mixer4 Mixer5 Mixer6

Paste15 12 12 12 12 12 12
Paste16 10 10 10 10 10 10
Paste17 10 10 10 10 10 10
Paste18 11 11 11 11 11 11

Table B.5: Mixers additional material processing time [hh].

Paste Mixer1 Mixer2 Mixer3 Mixer4 Mixer5 Mixer6

Paste15 0.43 0.56 0.15 0.30 0.49 0.48
Paste16 0.59 0.35 0.25 0.54 0.42 0.46
Paste17 0.23 0.10 0.21 0.43 0.48 0.41
Paste18 0.20 0.12 0.38 0.34 0.34 0.23

Table B.6: Mixers additional expected percentage downtime.
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First Weekly Review Results

Final Product Line1 Line2 Line3 Line4 Line5 Line6

SKU33 0.39 0.25 0.32 0.30 0.42 0.29
SKU34 0.38 0.21 0.33 0.35 0.41 0.23
SKU35 0.51 0.46 0.45 0.50 0.41 0.47
SKU36 0.32 0.38 0.39 0.42 0.38 0.35
SKU37 0.25 0.38 0.41 0.45 0.40 0.39
SKU38 0.36 0.42 0.48 0.39 0.38 0.42
SKU39 0.41 0.35 0.25 0.41 0.36 0.43
SKU40 0.45 0.36 0.29 0.38 0.30 0.45
SKU41 0.37 0.22 0.15 0.30 0.24 0.38

Table B.7: Packaging lines additional expected percentage downtime.

Manufacturing Line Activity Start Time End Time
Mixer1 Maintenance 2023-01-13 07:00 2023-01-13 15:00
Mixer1 Maintenance 2023-01-27 15:00 2023-01-27 23:00
Mixer2 Maintenance 2023-01-13 06:00 2023-01-13 14:00
Mixer2 Maintenance 2023-01-27 14:00 2023-01-27 22:00
Mixer3 Maintenance 2023-01-13 06:00 2023-01-13 14:00
Mixer3 Maintenance 2023-01-27 14:00 2023-01-27 22:00
Mixer4 Maintenance 2023-01-13 07:00 2023-01-13 15:00
Mixer4 Maintenance 2023-01-27 15:00 2023-01-27 23:00
Mixer5 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Mixer5 Maintenance 2023-01-27 13:00 2023-01-27 21:00
Mixer6 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Mixer6 Maintenance 2023-01-27 13:00 2023-01-27 21:00

Table B.8: Manufacturing lines five weeks maintenance plan.

Packaging Line Activity Start Time End Time
Packaging1 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging2 Maintenance 2023-01-13 07:00 2023-01-13 15:00
Packaging3 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging4 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging5 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging6 Maintenance 2023-01-13 05:00 2023-01-13 13:00

Table B.9: Packaging lines five weeks maintenance plan.
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First Weekly Review Results

Manufacturing Line Activity Start Time End Time
Mixer1 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Mixer1 Spare Capacity 2023-01-13 15:00 2023-01-14 05:00
Mixer1 Spare Capacity 2023-01-19 22:00 2023-01-20 12:00
Mixer1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer1 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer2 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Mixer2 Spare Capacity 2023-01-13 14:00 2023-01-14 04:00
Mixer2 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer2 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer2 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer3 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Mixer3 Spare Capacity 2023-01-13 14:00 2023-01-14 04:00
Mixer3 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer3 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer3 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer4 Spare Capacity 2023-01-07 07:00 2023-01-07 21:00
Mixer4 Spare Capacity 2023-01-13 15:00 2023-01-14 05:00
Mixer4 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer4 Spare Capacity 2023-01-26 05:00 2023-01-26 19:00
Mixer4 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer5 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Mixer5 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Mixer5 Spare Capacity 2023-01-19 22:00 2023-01-20 12:00
Mixer5 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer5 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer6 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Mixer6 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Mixer6 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer6 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer6 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00

Table B.10: Manufacturing lines five weeks spare capacity plan.

120



First Weekly Review Results

Packaging Line Activity Start Time End Time
Packaging1 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Packaging1 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging1 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging1 Spare Capacity 2023-02-01 12:00 2023-02-02 02:00
Packaging2 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Packaging2 Spare Capacity 2023-01-13 15:00 2023-01-14 05:00
Packaging2 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging2 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging2 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Packaging3 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Packaging3 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging3 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging3 Spare Capacity 2023-01-26 04:00 2023-01-26 18:00
Packaging3 Spare Capacity 2023-02-01 12:00 2023-02-02 02:00
Packaging4 Spare Capacity 2023-01-07 07:00 2023-01-07 21:00
Packaging4 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging4 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging4 Spare Capacity 2023-01-26 05:00 2023-01-26 19:00
Packaging4 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Packaging5 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Packaging5 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging5 Spare Capacity 2023-01-19 03:00 2023-01-20 12:00
Packaging5 Spare Capacity 2023-01-26 05:00 2023-01-26 19:00
Packaging5 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Packaging6 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Packaging6 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging6 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging6 Spare Capacity 2023-01-26 05:00 2023-01-26 19:00
Packaging6 Spare Capacity 2023-02-01 19:00 2023-02-02 02:00

Table B.11: Packaging lines five weeks spare capacity plan.
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First Weekly Review Results

Packaging Line Activity Start Time End Time
Packaging1 Shift 2023-01-01 00:00 2023-01-01 01:00
Packaging1 Shift 2023-01-01 12:00 2023-01-01 13:00
Packaging1 Shift 2023-02-04 00:00 2023-02-04 01:00
Packaging1 Shift 2023-02-04 12:00 2023-02-04 13:00
... ... ... ...
... ... ... ...
Packaging6 Shift 2023-01-01 00:00 2023-01-01 01:00
Packaging6 Shift 2023-01-01 12:00 2023-01-01 13:00
Packaging6 Shift 2023-02-04 00:00 2023-02-04 01:00
Packaging6 Shift 2023-02-04 12:00 2023-02-04 13:00

Table B.12: Packaging lines five weeks shift plan.

Resource Activity Production [lbs] Start Time End Time
Mixer1 Paste5 100.000 2023-01-02 06:00 2023-01-04 08:00
Mixer1 Changeover - 2023-01-04 08:00 2023-01-04 14:00
Mixer1 Paste5 100.000 2023-01-04 22:00 2023-01-07 00:00
Mixer1 Changeover - 2023-01-07 00:00 2023-01-07 06:00
Mixer1 Paste9 100.000 2023-01-08 00:00 2023-01-10 02:00
Mixer1 Changeover - 2023-01-10 02:00 2023-01-10 08:00
Mixer1 Paste12 100.000 2023-01-10 08:00 2023-01-13 01:00
Mixer1 Changeover - 2023-01-13 01:00 2023-01-13 07:00
Mixer1 Paste1 100.000 2023-01-14 05:00 2023-01-16 17:00
Mixer1 Changeover - 2023-01-16 17:00 2023-01-16 23:00
Mixer1 Paste12 100.000 2023-01-16 23:00 2023-01-19 16:00
Mixer1 Changeover - 2023-01-19 16:00 2023-01-19 22:00
Mixer1 Paste17 160.000 2023-01-20 12:00 2023-01-23 20:00
Mixer1 Changeover - 2023-01-23 20:00 2023-01-24 02:00

Table B.13: Mixer1 five weeks production schedule.
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First Weekly Review Results

Resource Activity Production [lbs] Start Time End Time
Mixer2 Paste2 200.000 2023-01-01 00:00 2023-01-05 04:00
Mixer2 Changeover - 2023-01-05 04:00 2023-01-05 10:00
Mixer2 Paste13 140.000 2023-01-09 00:00 2023-01-11 22:00
Mixer2 Changeover - 2023-01-11 22:00 2023-01-12 04:00
Mixer2 Paste13 160.000 2023-01-15 21:00 2023-01-19 05:00
Mixer2 Changeover - 2023-01-19 05:00 2023-01-19 11:00
Mixer2 Paste17 160.000 2023-01-20 10:00 2023-01-23 18:00
Mixer2 Changeover - 2023-01-23 18:00 2023-01-24 00:00

Table B.14: Mixer2 five weeks production schedule.

Resource Activity Production [lbs] Start Time End Time
Mixer3 Paste2 200.000 2023-01-01 00:00 2023-01-05 04:00
Mixer3 Changeover - 2023-01-05 04:00 2023-01-05 10:00
Mixer3 Paste3 100.000 2023-01-05 10:00 2023-01-07 02:00
Mixer3 Changeover - 2023-01-07 02:00 2023-01-07 08:00
Mixer3 Paste6 160.000 2023-01-08 08:00 2023-01-13 00:00
Mixer3 Changeover - 2023-01-13 00:00 2023-01-13 06:00
Mixer3 Paste6 160.000 2023-01-14 12:00 2023-01-19 04:00
Mixer3 Changeover - 2023-01-19 04:00 2023-01-19 10:00
Mixer3 Paste16 100.000 2023-01-20 10:00 2023-01-22 12:00
Mixer3 Changeover - 2023-01-22 12:00 2023-01-22 18:00
Mixer3 Paste16 100.000 2023-01-23 11:00 2023-01-25 13:00
Mixer3 Changeover - 2023-01-25 13:00 2023-01-25 19:00

Table B.15: Mixer3 five weeks production schedule.
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First Weekly Review Results

Resource Activity Production [lbs] Start Time End Time
Mixer4 Paste4 80.000 2023-01-01 00:00 2023-01-03 08:00
Mixer4 Changeover - 2023-01-03 08:00 2023-01-03 14:00
Mixer4 Paste4 80.000 2023-01-04 17:00 2023-01-07 01:00
Mixer4 Changeover - 2023-01-07 01:00 2023-01-07 07:00
Mixer4 Paste7 100.000 2023-01-08 00:00 2023-01-10 12:00
Mixer4 Changeover - 2023-01-10 12:00 2023-01-10 18:00
Mixer4 Paste18 100.000 2023-01-10 18:00 2023-01-13 01:00
Mixer4 Changeover - 2023-01-13 01:00 2023-01-13 07:00
Mixer4 Paste18 60.000 2023-01-14 05:00 2023-01-15 14:00
Mixer4 Changeover - 2023-01-15 14:00 2023-01-15 20:00
Mixer4 Paste15 140.000 2023-01-16 02:00 2023-01-19 14:00
Mixer4 Changeover - 2023-01-19 14:00 2023-01-19 20:00
Mixer4 Paste15 120.000 2023-01-20 10:00 2023-01-23 10:00
Mixer4 Changeover - 2023-01-23 10:00 2023-01-23 16:00

Table B.16: Mixer4 five weeks production schedule.

Resource Activity Production [lbs] Start Time End Time
Mixer5 Paste8 80.000 2023-01-01 00:00 2023-01-03 12:00
Mixer5 Changeover - 2023-01-03 12:00 2023-01-03 18:00
Mixer5 Paste8 80.000 2023-01-03 18:00 2023-01-06 06:00
Mixer5 Changeover - 2023-01-06 06:00 2023-01-06 12:00
Mixer5 Paste3 100.000 2023-01-08 00:00 2023-01-09 16:00
Mixer5 Changeover - 2023-01-09 16:00 2023-01-09 22:00
Mixer5 Paste10 120.000 2023-01-09 22:00 2023-01-12 22:00
Mixer5 Changeover - 2023-01-12 22:00 2023-01-13 04:00
Mixer5 Paste10 120.000 2023-01-16 16:00 2023-01-19 16:00
Mixer5 Changeover - 2023-01-19 16:00 2023-01-19 22:00

Table B.17: Mixer5 five weeks production schedule.
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First Weekly Review Results

Resource Activity Production [lbs] Start Time End Time
Mixer6 Paste4 80.000 2023-01-01 00:00 2023-01-03 08:00
Mixer6 Changeover - 2023-01-03 08:00 2023-01-03 14:00
Mixer6 Paste9 100.000 2023-01-03 18:00 2023-01-05 20:00
Mixer6 Changeover - 2023-01-05 20:00 2023-01-06 02:00
Mixer6 Paste7 100.000 2023-01-08 02:00 2023-01-10 14:00
Mixer6 Changeover - 2023-01-10 14:00 2023-01-10 20:00
Mixer6 Paste11 40.000 2023-01-10 20:00 2023-01-11 14:00
Mixer6 Changeover - 2023-01-11 14:00 2023-01-11 20:00
Mixer6 Paste11 60.000 2023-01-11 20:00 2023-01-12 23:00
Mixer6 Changeover - 2023-01-12 23:00 2023-01-13 05:00
Mixer6 Paste14 120.000 2023-01-16 12:00 2023-01-19 12:00
Mixer6 Changeover - 2023-01-19 12:00 2023-01-19 18:00
Mixer6 Paste14 140.000 2023-01-20 11:00 2023-01-23 23:00
Mixer6 Changeover - 2023-01-23 23:00 2023-01-24 05:00

Table B.18: Mixer6 five weeks production schedule.

Resource Activity Output [tubes] Start Time End Time
Packaging1 SKU11 504.000 2023-01-08 03:00 2023-01-11 15:00
Packaging1 Changeover - 2023-01-11 15:00 2023-01-11 21:00
Packaging1 SKU9 204.000 2023-01-14 04:00 2023-01-15 14:00
Packaging1 Changeover - 2023-01-15 14:00 2023-01-15 20:00
Packaging1 SKU10 504.000 2023-01-15 20:00 2023-01-19 08:00
Packaging1 Changeover - 2023-01-19 08:00 2023-01-19 14:00
Packaging1 SKU26 204.000 2023-01-21 13:00 2023-01-22 23:00
Packaging1 Changeover - 2023-01-22 23:00 2023-01-23 05:00
Packaging1 SKU29 102.000 2023-01-23 05:00 2023-01-23 22:00
Packaging1 Changeover - 2023-01-23 22:00 2023-01-24 04:00
Packaging1 SKU37 204.000 2023-01-24 04:00 2023-01-25 14:00
Packaging1 Changeover - 2023-01-25 14:00 2023-01-25 20:00
Packaging1 SKU32 252.000 2023-01-26 17:00 2023-01-28 11:00
Packaging1 Changeover - 2023-01-28 11:00 2023-01-28 17:00
Packaging1 SKU36 504.000 2023-01-28 18:00 2023-02-01 06:00
Packaging1 Changeover - 2023-02-01 06:00 2023-02-01 12:00
Packaging1 SKU38 300.000 2023-02-02 02:00 2023-02-04 04:00
Packaging1 Changeover - 2023-02-04 04:00 2023-02-04 10:00

Table B.19: Packaging1 five weeks production schedule.
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First Weekly Review Results

Resource Activity Output [tubes] Start Time End Time
Packaging2 SKU5 400.000 2023-01-09 17:00 2023-01-13 01:00
Packaging2 Changeover - 2023-01-13 01:00 2023-01-13 07:00
Packaging2 SKU17 375.000 2023-01-14 14:00 2023-01-17 17:00
Packaging2 Changeover - 2023-01-17 17:00 2023-01-17 23:00
Packaging2 SKU16 400.000 2023-01-20 12:00 2023-01-23 20:00
Packaging2 Changeover - 2023-01-23 20:00 2023-01-24 02:00
Packaging2 SKU15 200.000 2023-01-26 17:00 2023-01-28 09:00
Packaging2 Changeover - 2023-01-28 09:00 2023-01-28 15:00
Packaging2 SKU34 350.000 2023-01-28 15:00 2023-01-31 13:00
Packaging2 Changeover - 2023-01-31 13:00 2023-01-31 19:00
Packaging2 SKU33 150.000 2023-02-02 00:00 2023-02-03 06:00
Packaging2 Changeover - 2023-02-03 06:00 2023-02-03 12:00

Table B.20: Packaging2 five weeks production schedule.

Resource Activity Output [tubes] Start Time End Time
Packaging3 SKU4 300.000 2023-01-10 11:00 2023-01-12 23:00
Packaging3 Changeover - 2023-01-12 23:00 2023-01-13 05:00
Packaging3 SKU27 150.000 2023-01-14 17:00 2023-01-15 23:00
Packaging3 Changeover - 2023-01-15 23:00 2023-01-16 05:00
Packaging3 SKU41 240.000 2023-01-16 05:00 2023-01-18 05:00
Packaging3 Changeover - 2023-01-18 05:00 2023-01-18 11:00
Packaging3 SKU28 100.000 2023-01-18 11:00 2023-01-19 07:00
Packaging3 Changeover - 2023-01-19 07:00 2023-01-19 13:00
Packaging3 SKU14 400.000 2023-01-20 10:00 2023-01-23 18:00
Packaging3 Changeover - 2023-01-23 18:00 2023-01-24 00:00
Packaging3 SKU12 200.000 2023-01-24 03:00 2023-01-25 19:00
Packaging3 Changeover - 2023-01-25 19:00 2023-01-26 01:00
Packaging3 SKU13 200.000 2023-01-26 21:00 2023-01-28 13:00
Packaging3 Changeover - 2023-01-28 13:00 2023-01-28 19:00
Packaging3 SKU39 400.000 2023-01-28 22:00 2023-02-01 06:00
Packaging3 Changeover - 2023-02-01 06:00 2023-02-01 12:00
Packaging3 SKU40 320.000 2023-02-02 02:00 2023-02-04 18:00
Packaging3 Changeover - 2023-02-04 18:00 2023-02-05 00:00

Table B.21: Packaging3 five weeks production schedule.
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First Weekly Review Results

Resource Activity Output [tubes] Start Time End Time
Packaging4 SKU7 500.000 2023-01-07 21:00 2023-01-12 01:00
Packaging4 Changeover - 2023-01-12 01:00 2023-01-12 07:00
Packaging4 SKU8 500.000 2023-01-14 03:00 2023-01-18 07:00
Packaging4 Changeover - 2023-01-18 07:00 2023-01-18 13:00
Packaging4 SKU1 300.000 2023-01-20 11:00 2023-01-22 23:00
Packaging4 Changeover - 2023-01-22 23:00 2023-01-23 05:00
Packaging4 SKU6 250.000 2023-01-23 21:00 2023-01-25 23:00
Packaging4 Changeover - 2023-01-25 23:00 2023-01-26 05:00

Table B.22: Packaging4 five weeks production schedule.

Resource Activity Output [tubes] Start Time End Time
Packaging5 SKU3 600.000 2023-01-07 21:00 2023-01-12 21:00
Packaging5 Changeover - 2023-01-12 21:00 2023-01-13 03:00
Packaging5 SKU21 400.000 2023-01-16 07:00 2023-01-19 15:00
Packaging5 Changeover - 2023-01-19 15:00 2023-01-19 21:00
Packaging5 SKU22 320.000 2023-01-20 12:00 2023-01-23 04:00
Packaging5 Changeover - 2023-01-23 04:00 2023-01-23 10:00
Packaging5 SKU23 285.000 2023-01-23 14:00 2023-01-25 23:00
Packaging5 Changeover - 2023-01-25 23:00 2023-01-26 05:00
Packaging5 SKU30 100.000 2023-01-26 19:00 2023-01-27 15:00
Packaging5 Changeover - 2023-01-27 15:00 2023-01-27 21:00
Packaging5 SKU23 75.000 2023-01-27 21:00 2023-01-28 12:00
Packaging5 Changeover - 2023-01-28 12:00 2023-01-28 18:00
Packaging5 SKU35 400.000 2023-01-28 18:00 2023-02-01 02:00
Packaging5 Changeover - 2023-02-01 02:00 2023-02-01 08:00

Table B.23: Packaging5 five weeks production schedule.
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First Weekly Review Results

Resource Activity Output [tubes] Start Time End Time
Packaging6 SKU19 80.000 2023-01-06 06:00 2023-01-07 02:00
Packaging6 Changeover - 2023-01-07 02:00 2023-01-07 08:00
Packaging6 SKU2 300.000 2023-01-07 22:00 2023-01-11 01:00
Packaging6 Changeover - 2023-01-11 01:00 2023-01-11 07:00
Packaging6 SKU19 120.000 2023-01-11 17:00 2023-01-12 23:00
Packaging6 Changeover - 2023-01-12 23:00 2023-01-13 05:00
Packaging6 SKU20 256.000 2023-01-14 03:00 2023-01-16 19:00
Packaging6 Changeover - 2023-01-16 19:00 2023-01-17 01:00
Packaging6 SKU18 200.000 2023-01-17 06:00 2023-01-19 08:00
Packaging6 Changeover - 2023-01-19 08:00 2023-01-19 14:00
Packaging6 SKU31 300.000 2023-01-20 10:00 2023-01-23 13:00
Packaging6 Changeover - 2023-01-23 13:00 2023-01-23 19:00
Packaging6 SKU25 200.000 2023-01-23 21:00 2023-01-25 23:00
Packaging6 Changeover - 2023-01-25 23:00 2023-01-26 05:00
Packaging6 SKU24 160.000 2023-01-26 19:00 2023-01-28 11:00
Packaging6 Changeover - 2023-01-28 11:00 2023-01-28 17:00

Table B.24: Packaging6 five weeks production schedule.

Material Paste Total Production [lbs] Target Demand [lbs]
Paste15 260.000 250.000
Paste16 200.000 200.000
Paste17 320.000 300.000
Paste18 160.000 150.000

Table B.25: Additional material pastes comparison between production and
demand.

128



First Weekly Review Results

Final Product Total Production [tubes] Target Demand [tubes]
SKU33 150.000 150.000
SKU34 350.000 350.000
SKU35 400.000 400.000
SKU36 504.000 500.000
SKU37 204.000 200.000
SKU38 300.000 300.000
SKU39 400.000 400.000
SKU40 320.000 320.000
SKU41 240.000 240.000

Table B.26: Additional SKUs comparison between production and demand.

Figure B.1: Complete five weeks Optimal Scheduling Plan.
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First Weekly Review Results

Material Paste Colour
Paste15 Maroon
Paste16 Olive drab
Paste17 Orange
Paste18 Light gray

Table B.27: Material pastes updated legend.

Final Product Colour Shade
SKU33 Maroon
SKU34 Maroon
SKU35 Olive drab
SKU36 Orange
SKU37 Orange
SKU38 Orange
SKU39 Light gray
SKU40 Light gray
SKU41 Light gray

Table B.28: SKUs updated legend.
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Appendix C

Second Weekly Review

Results

Final Product Material Paste Final Product Material Paste
SKU42 Paste19 SKU47 Paste20
SKU43 Paste19 SKU48 Paste21
SKU44 Paste19 SKU49 Paste21
SKU45 Paste20 SKU50 Paste21
SKU46 Paste20

Table C.1: Additional Bill of Materials.

Final Product Demand [tubes] Final Product Demand [tubes]
SKU42 100.000 SKU47 300.000
SKU43 500.000 SKU48 240.000
SKU44 300.000 SKU49 360.000
SKU45 200.000 SKU50 300.000
SKU46 320.000

Table C.2: Additional demand.
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Second Weekly Review Results

Final Product Material Paste Conversion Rate
[tubes/lb]

SKU42 Paste19 2
SKU43 Paste19 5
SKU44 Paste19 3
SKU45 Paste20 4
SKU46 Paste20 4
SKU47 Paste20 5
SKU48 Paste21 2
SKU49 Paste21 6
SKU50 Paste21 5

Table C.3: Additional conversion rate final product - material paste.

Material Paste Demand [lbs]
Paste19 250.000
Paste20 180.000
Paste21 240.000

Table C.4: Additional material paste demand.

Paste Mixer1 Mixer2 Mixer3 Mixer4 Mixer5 Mixer6

Paste19 8 8 8 8 8 8
Paste20 10 10 10 10 10 10
Paste21 9 9 9 9 9 9

Table C.5: Mixers additional material processing time [hh].

Paste Mixer1 Mixer2 Mixer3 Mixer4 Mixer5 Mixer6

Paste19 0.10 0.56 0.45 0.30 0.49 0.48
Paste20 0.28 0.16 0.49 0.47 0.36 0.31
Paste21 0.14 0.28 0.24 0.46 0.51 0.30

Table C.6: Mixers additional expected percentage downtime.
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Second Weekly Review Results

Final Product Line1 Line2 Line3 Line4 Line5 Line6

SKU42 0.38 0.36 0.40 0.32 0.45 0.51
SKU43 0.25 0.29 0.27 0.20 0.35 0.39
SKU44 0.30 0.36 0.29 0.25 0.28 0.40
SKU45 0.39 0.21 0.24 0.29 0.31 0.36
SKU46 0.29 0.26 0.28 0.36 0.28 0.39
SKU47 0.25 0.18 0.29 0.39 0.41 0.45
SKU48 0.29 0.27 0.25 0.36 0.21 0.36
SKU49 0.25 0.35 0.30 0.31 0.15 0.28
SKU50 0.26 0.30 0.23 0.25 0.19 0.29

Table C.7: Packaging lines additional expected percentage downtime.

Manufacturing Line Activity Start Time End Time
Mixer1 Maintenance 2023-01-13 07:00 2023-01-13 15:00
Mixer1 Maintenance 2023-01-27 15:00 2023-01-27 23:00
Mixer1 Maintenance 2023-02-10 15:00 2023-02-10 23:00
Mixer2 Maintenance 2023-01-13 06:00 2023-01-13 14:00
Mixer2 Maintenance 2023-01-27 14:00 2023-01-27 22:00
Mixer2 Maintenance 2023-02-10 13:00 2023-02-10 21:00
Mixer3 Maintenance 2023-01-13 06:00 2023-01-13 14:00
Mixer3 Maintenance 2023-01-27 14:00 2023-01-27 22:00
Mixer3 Maintenance 2023-02-10 14:00 2023-02-10 22:00
Mixer4 Maintenance 2023-01-13 07:00 2023-01-13 15:00
Mixer4 Maintenance 2023-01-27 15:00 2023-01-27 23:00
Mixer4 Maintenance 2023-02-10 15:00 2023-02-10 23:00
Mixer5 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Mixer5 Maintenance 2023-01-27 13:00 2023-01-27 21:00
Mixer5 Maintenance 2023-02-10 14:00 2023-02-10 22:00
Mixer6 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Mixer6 Maintenance 2023-01-27 13:00 2023-01-27 21:00
Mixer6 Maintenance 2023-02-10 15:00 2023-02-10 23:00

Table C.8: Manufacturing lines six weeks maintenance plan.
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Second Weekly Review Results

Packaging Line Activity Start Time End Time
Packaging1 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging1 Maintenance 2023-02-10 06:00 2023-02-10 14:00
Packaging2 Maintenance 2023-01-13 07:00 2023-01-13 15:00
Packaging2 Maintenance 2023-02-10 07:00 2023-02-10 15:00
Packaging3 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging3 Maintenance 2023-02-10 07:00 2023-02-10 15:00
Packaging4 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging4 Maintenance 2023-02-10 05:00 2023-02-10 13:00
Packaging5 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging5 Maintenance 2023-02-10 05:00 2023-02-10 13:00
Packaging6 Maintenance 2023-01-13 05:00 2023-01-13 13:00
Packaging6 Maintenance 2023-02-10 05:00 2023-02-10 13:00

Table C.9: Packaging lines six weeks maintenance plan.

134



Second Weekly Review Results

Manufacturing Line Activity Start Time End Time
Mixer1 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Mixer1 Spare Capacity 2023-01-13 15:00 2023-01-14 05:00
Mixer1 Spare Capacity 2023-01-19 22:00 2023-01-20 12:00
Mixer1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer1 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer1 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Mixer2 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Mixer2 Spare Capacity 2023-01-13 14:00 2023-01-14 04:00
Mixer2 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer2 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer2 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer2 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Mixer3 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Mixer3 Spare Capacity 2023-01-13 14:00 2023-01-14 04:00
Mixer3 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer3 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer3 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer3 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Mixer4 Spare Capacity 2023-01-07 07:00 2023-01-07 21:00
Mixer4 Spare Capacity 2023-01-13 15:00 2023-01-14 05:00
Mixer4 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer4 Spare Capacity 2023-01-26 04:00 2023-01-26 18:00
Mixer4 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer4 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Mixer5 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Mixer5 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Mixer5 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer5 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer5 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer5 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Mixer6 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Mixer6 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Mixer6 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Mixer6 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Mixer6 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Mixer6 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00

Table C.10: Manufacturing lines six weeks spare capacity plan.
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Second Weekly Review Results

Packaging Line Activity Start Time End Time
Packaging1 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Packaging1 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging1 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging1 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging1 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Packaging1 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Packaging2 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Packaging2 Spare Capacity 2023-01-13 15:00 2023-01-14 05:00
Packaging2 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging2 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging2 Spare Capacity 2023-02-01 11:00 2023-02-02 01:00
Packaging2 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Packaging3 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Packaging3 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging3 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging3 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging3 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Packaging3 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Packaging4 Spare Capacity 2023-01-07 07:00 2023-01-07 21:00
Packaging4 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging4 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging4 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging4 Spare Capacity 2023-02-01 10:00 2023-02-02 00:00
Packaging4 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Packaging5 Spare Capacity 2023-01-07 06:00 2023-01-07 20:00
Packaging5 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging5 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging5 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging5 Spare Capacity 2023-02-01 12:00 2023-02-02 02:00
Packaging5 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00
Packaging6 Spare Capacity 2023-01-07 08:00 2023-01-07 22:00
Packaging6 Spare Capacity 2023-01-13 13:00 2023-01-14 03:00
Packaging6 Spare Capacity 2023-01-19 20:00 2023-01-20 10:00
Packaging6 Spare Capacity 2023-01-26 03:00 2023-01-26 17:00
Packaging6 Spare Capacity 2023-02-01 12:00 2023-02-02 02:00
Packaging6 Spare Capacity 2023-02-07 17:00 2023-02-08 07:00

Table C.11: Packaging lines six weeks spare capacity plan.
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Second Weekly Review Results

Packaging Line Activity Start Time End Time
Packaging1 Shift 2023-01-01 00:00 2023-01-01 01:00
Packaging1 Shift 2023-01-01 12:00 2023-01-01 13:00
Packaging1 Shift 2023-02-04 00:00 2023-02-04 01:00
Packaging1 Shift 2023-02-04 12:00 2023-02-04 13:00
... ... ... ...
... ... ... ...
Packaging6 Shift 2023-02-10 00:00 2023-02-10 01:00
Packaging6 Shift 2023-02-10 12:00 2023-02-10 13:00
Packaging6 Shift 2023-02-11 00:00 2023-02-11 01:00
Packaging6 Shift 2023-02-11 12:00 2023-02-11 13:00

Table C.12: Packaging lines six weeks shift plan.

Resource Activity Production [lbs] Start Time End Time
Mixer1 Paste5 100.000 2023-01-02 06:00 2023-01-04 08:00
Mixer1 Changeover - 2023-01-04 08:00 2023-01-04 14:00
Mixer1 Paste5 100.000 2023-01-04 22:00 2023-01-07 00:00
Mixer1 Changeover - 2023-01-07 00:00 2023-01-07 06:00
Mixer1 Paste9 100.000 2023-01-08 00:00 2023-01-10 02:00
Mixer1 Changeover - 2023-01-10 02:00 2023-01-10 08:00
Mixer1 Paste12 100.000 2023-01-10 08:00 2023-01-13 01:00
Mixer1 Changeover - 2023-01-13 01:00 2023-01-13 07:00
Mixer1 Paste1 100.000 2023-01-14 05:00 2023-01-16 17:00
Mixer1 Changeover - 2023-01-16 17:00 2023-01-16 23:00
Mixer1 Paste12 100.000 2023-01-16 23:00 2023-01-19 16:00
Mixer1 Changeover - 2023-01-19 16:00 2023-01-19 22:00
Mixer1 Paste19 120.000 2023-01-20 12:00 2023-01-22 12:00
Mixer1 Changeover - 2023-01-22 12:00 2023-01-22 18:00
Mixer1 Paste19 140.000 2023-01-22 18:00 2023-01-25 02:00
Mixer1 Changeover - 2023-01-25 02:00 2023-01-25 08:00
Mixer1 Paste21 120.000 2023-01-28 08:00 2023-01-30 14:00
Mixer1 Changeover - 2023-01-30 14:00 2023-01-30 20:00

Table C.13: Mixer1 six weeks production schedule.
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Second Weekly Review Results

Resource Activity Production [lbs] Start Time End Time
Mixer2 Paste2 200.000 2023-01-01 00:00 2023-01-05 04:00
Mixer2 Changeover - 2023-01-05 04:00 2023-01-05 10:00
Mixer2 Paste13 140.000 2023-01-09 00:00 2023-01-11 22:00
Mixer2 Changeover - 2023-01-11 22:00 2023-01-12 04:00
Mixer2 Paste13 160.000 2023-01-15 00:00 2023-01-18 08:00
Mixer2 Changeover - 2023-01-18 08:00 2023-01-18 14:00
Mixer2 Paste17 160.000 2023-01-20 10:00 2023-01-23 18:00
Mixer2 Changeover - 2023-01-23 18:00 2023-01-24 00:00
Mixer2 Paste20 100.000 2023-01-27 21:00 2023-01-29 23:00
Mixer2 Changeover - 2023-01-29 23:00 2023-01-30 05:00
Mixer2 Paste20 80.000 2023-01-30 05:00 2023-01-31 21:00
Mixer2 Changeover - 2023-01-31 21:00 2023-02-01 03:00

Table C.14: Mixer2 six weeks production schedule.

Resource Activity Production [lbs] Start Time End Time
Mixer3 Paste2 200.000 2023-01-01 00:00 2023-01-05 04:00
Mixer3 Changeover - 2023-01-05 04:00 2023-01-05 10:00
Mixer3 Paste3 100.000 2023-01-05 10:00 2023-01-07 02:00
Mixer3 Changeover - 2023-01-07 02:00 2023-01-07 08:00
Mixer3 Paste6 160.000 2023-01-08 08:00 2023-01-13 00:00
Mixer3 Changeover - 2023-01-13 00:00 2023-01-13 06:00
Mixer3 Paste6 160.000 2023-01-14 12:00 2023-01-19 04:00
Mixer3 Changeover - 2023-01-19 04:00 2023-01-19 10:00
Mixer3 Paste15 140.000 2023-01-21 12:00 2023-01-25 00:00
Mixer3 Changeover - 2023-01-25 00:00 2023-01-25 06:00
Mixer3 Paste15 120.000 2023-01-27 22:00 2023-01-30 22:00
Mixer3 Changeover - 2023-01-30 22:00 2023-01-31 04:00

Table C.15: Mixer3 six weeks production schedule.

138



Second Weekly Review Results

Resource Activity Production [lbs] Start Time End Time
Mixer4 Paste4 80.000 2023-01-01 00:00 2023-01-03 08:00
Mixer4 Changeover - 2023-01-03 08:00 2023-01-03 14:00
Mixer4 Paste4 80.000 2023-01-04 17:00 2023-01-07 01:00
Mixer4 Changeover - 2023-01-07 01:00 2023-01-07 07:00
Mixer4 Paste7 100.000 2023-01-08 00:00 2023-01-10 12:00
Mixer4 Changeover - 2023-01-10 12:00 2023-01-10 18:00
Mixer4 Paste18 100.000 2023-01-10 18:00 2023-01-13 01:00
Mixer4 Changeover - 2023-01-13 01:00 2023-01-13 07:00
Mixer4 Paste18 60.000 2023-01-14 05:00 2023-01-15 14:00
Mixer4 Changeover - 2023-01-15 14:00 2023-01-15 20:00
Mixer4 Paste10 120.000 2023-01-15 20:00 2023-01-18 20:00
Mixer4 Changeover - 2023-01-18 20:00 2023-01-19 02:00
Mixer4 Paste17 160.000 2023-01-20 10:00 2023-01-23 18:00
Mixer4 Changeover - 2023-01-23 18:00 2023-01-24 00:00

Table C.16: Mixer4 six weeks production schedule.

Resource Activity Production [lbs] Start Time End Time
Mixer5 Paste8 80.000 2023-01-01 00:00 2023-01-03 12:00
Mixer5 Changeover - 2023-01-03 12:00 2023-01-03 18:00
Mixer5 Paste8 80.000 2023-01-03 18:00 2023-01-06 06:00
Mixer5 Changeover - 2023-01-06 06:00 2023-01-06 12:00
Mixer5 Paste3 100.000 2023-01-08 00:00 2023-01-09 16:00
Mixer5 Changeover - 2023-01-09 16:00 2023-01-09 22:00
Mixer5 Paste10 120.000 2023-01-09 22:00 2023-01-12 22:00
Mixer5 Changeover - 2023-01-12 22:00 2023-01-13 04:00
Mixer5 Breakdown - 2023-01-14 04:00 2023-01-19 04:00
Mixer5 Paste16 100.000 2023-01-20 16:00 2023-01-22 18:00
Mixer5 Changeover - 2023-01-22 18:00 2023-01-23 00:00
Mixer5 Paste16 100.000 2023-01-23 19:00 2023-01-25 21:00
Mixer5 Changeover - 2023-01-25 21:00 2023-01-26 03:00

Table C.17: Mixer5 six weeks production schedule.
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Second Weekly Review Results

Resource Activity Production [lbs] Start Time End Time
Mixer6 Paste4 60.000 2023-01-01 00:00 2023-01-03 08:00
Mixer6 Changeover - 2023-01-03 08:00 2023-01-03 14:00
Mixer6 Paste9 100.000 2023-01-03 18:00 2023-01-05 20:00
Mixer6 Changeover - 2023-01-05 20:00 2023-01-06 02:00
Mixer6 Paste7 100.000 2023-01-08 02:00 2023-01-10 14:00
Mixer6 Changeover 2023-01-10 14:00 2023-01-10 20:00
Mixer6 Paste11 40.000 2023-01-10 20:00 2023-01-11 14:00
Mixer6 Changeover - 2023-01-11 14:00 2023-01-11 20:00
Mixer6 Paste11 60.000 2023-01-11 20:00 2023-01-12 23:00
Mixer6 Changeover - 2023-01-12 23:00 2023-01-13 05:00
Mixer6 Paste14 120.000 2023-01-15 07:00 2023-01-18 07:00
Mixer6 Changeover - 2023-01-18 07:00 2023-01-18 13:00
Mixer6 Paste14 140.000 2023-01-20 12:00 2023-01-24 00:00
Mixer6 Changeover - 2023-01-24 00:00 2023-01-24 06:00
Mixer6 Paste21 120.000 2023-01-27 23:00 2023-01-30 05:00
Mixer6 Changeover - 2023-01-30 05:00 2023-01-30 11:00

Table C.18: Mixer6 six weeks production schedule.

Resource Activity Output [tubes] Start Time End Time
Packaging1 SKU11 504.000 2023-01-08 03:00 2023-01-11 15:00
Packaging1 Changeover - 2023-01-11 15:00 2023-01-11 21:00
Packaging1 SKU9 204.000 2023-01-14 04:00 2023-01-15 14:00
Packaging1 Changeover - 2023-01-15 14:00 2023-01-15 20:00
Packaging1 SKU10 504.000 2023-01-16 02:00 2023-01-19 14:00
Packaging1 Changeover - 2023-01-19 14:00 2023-01-19 20:00
Packaging1 SKU26 204.000 2023-01-20 10:00 2023-01-21 20:00
Packaging1 Changeover - 2023-01-21 20:00 2023-01-22 02:00
Packaging1 SKU29 102.000 2023-01-23 03:00 2023-01-23 20:00
Packaging1 Changeover - 2023-01-23 20:00 2023-01-24 02:00
Packaging1 SKU32 252.000 2023-01-24 02:00 2023-01-25 20:00
Packaging1 Changeover - 2023-01-25 20:00 2023-01-26 02:00
Packaging1 SKU37 204.000 2023-01-26 22:00 2023-01-28 08:00
Packaging1 Changeover - 2023-01-28 08:00 2023-01-28 14:00
Packaging1 SKU36 504.000 2023-01-28 14:00 2023-02-01 02:00
Packaging1 Changeover - 2023-02-01 02:00 2023-02-01 08:00
Packaging1 SKU38 300.000 2023-02-02 00:00 2023-02-04 02:00
Packaging1 Changeover - 2023-02-04 02:00 2023-02-04 08:00

Table C.19: Packaging1 six weeks production schedule.

140



Second Weekly Review Results

Resource Activity Output [tubes] Start Time End Time
Packaging2 SKU5 400.000 2023-01-09 17:00 2023-01-13 01:00
Packaging2 Changeover - 2023-01-13 01:00 2023-01-13 07:00
Packaging2 SKU17 375.000 2023-01-14 14:00 2023-01-17 17:00
Packaging2 Changeover - 2023-01-17 17:00 2023-01-17 23:00
Packaging2 SKU16 400.000 2023-01-20 18:00 2023-01-24 02:00
Packaging2 Changeover - 2023-01-24 02:00 2023-01-24 08:00
Packaging2 SKU15 200.000 2023-01-26 20:00 2023-01-28 12:00
Packaging2 Changeover - 2023-01-28 12:00 2023-01-28 18:00
Packaging2 SKU33 150.000 2023-01-30 23:00 2023-02-01 05:00
Packaging2 Changeover - 2023-02-01 05:00 2023-02-01 11:00
Packaging2 SKU47 300.000 2023-02-02 01:00 2023-02-04 13:00
Packaging2 Changeover - 2023-02-04 13:00 2023-02-04 19:00
Packaging2 SKU46 320.000 2023-02-04 19:00 2023-02-07 11:00
Packaging2 Changeover - 2023-02-07 11:00 2023-02-07 17:00
Packaging2 SKU45 200.000 2023-02-08 07:00 2023-02-09 23:00
Packaging2 Changeover - 2023-02-09 23:00 2023-02-10 05:00

Table C.20: Packaging2 six weeks production schedule.

Resource Activity Output [tubes] Start Time End Time
Packaging3 SKU4 300.000 2023-01-10 11:00 2023-01-12 23:00
Packaging3 changeover - 2023-01-12 23:00 2023-01-13 05:00
Packaging3 SKU27 150.000 2023-01-14 17:00 2023-01-15 23:00
Packaging3 changeover - 2023-01-15 23:00 2023-01-16 05:00
Packaging3 SKU41 240.000 2023-01-16 05:00 2023-01-18 05:00
Packaging3 changeover - 2023-01-18 05:00 2023-01-18 11:00
Packaging3 SKU28 100.000 2023-01-18 11:00 2023-01-19 07:00
Packaging3 changeover - 2023-01-19 07:00 2023-01-19 13:00
Packaging3 SKU14 400.000 2023-01-20 10:00 2023-01-23 18:00
Packaging3 changeover - 2023-01-23 18:00 2023-01-24 00:00
Packaging3 SKU12 200.000 2023-01-24 03:00 2023-01-25 19:00
Packaging3 changeover - 2023-01-25 19:00 2023-01-26 01:00
Packaging3 SKU13 200.000 2023-01-26 17:00 2023-01-28 09:00
Packaging3 changeover - 2023-01-28 09:00 2023-01-28 15:00
Packaging3 SKU39 400.000 2023-01-28 15:00 2023-01-31 23:00
Packaging3 changeover - 2023-01-31 23:00 2023-02-01 05:00
Packaging3 SKU40 320.000 2023-02-02 00:00 2023-02-04 16:00
Packaging3 changeover - 2023-02-04 16:00 2023-02-04 22:00

Table C.21: Packaging3 six weeks production schedule.
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Second Weekly Review Results

Resource Activity Output [tubes] Start Time End Time
Packaging4 SKU7 500.000 2023-01-07 21:00 2023-01-12 01:00
Packaging4 Changeover - 2023-01-12 01:00 2023-01-12 07:00
Packaging4 SKU8 500.000 2023-01-14 03:00 2023-01-18 07:00
Packaging4 Changeover - 2023-01-18 07:00 2023-01-18 13:00
Packaging4 SKU1 300.000 2023-01-20 15:00 2023-01-23 03:00
Packaging4 Changeover - 2023-01-23 03:00 2023-01-23 09:00
Packaging4 SKU6 250.000 2023-01-23 09:00 2023-01-25 11:00
Packaging4 Changeover - 2023-01-25 11:00 2023-01-25 17:00
Packaging4 SKU42 100.000 2023-01-26 17:00 2023-01-27 13:00
Packaging4 Changeover - 2023-01-27 13:00 2023-01-27 19:00
Packaging4 SKU44 300.000 2023-01-28 17:00 2023-01-31 05:00
Packaging4 Changeover - 2023-01-31 05:00 2023-01-31 11:00
Packaging4 SKU43 500.000 2023-02-02 00:00 2023-02-06 04:00
Packaging4 Changeover - 2023-02-06 04:00 2023-02-06 10:00

Table C.22: Packaging4 six weeks production schedule.
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Second Weekly Review Results

Resource Activity Output [tubes] Start Time End Time
Packaging5 SKU3 600.000 2023-01-07 21:00 2023-01-12 21:00
Packaging5 Changeover - 2023-01-12 21:00 2023-01-13 03:00
Packaging5 SKU21 400.000 2023-01-15 00:00 2023-01-18 08:00
Packaging5 Changeover - 2023-01-18 08:00 2023-01-18 14:00
Packaging5 SKU22 320.000 2023-01-20 10:00 2023-01-23 02:00
Packaging5 Changeover - 2023-01-23 02:00 2023-01-23 08:00
Packaging5 SKU23 255.000 2023-01-23 08:00 2023-01-25 11:00
Packaging5 Changeover - 2023-01-25 11:00 2023-01-25 17:00
Packaging5 SKU23 105.000 2023-01-26 17:00 2023-01-27 14:00
Packaging5 Changeover - 2023-01-27 14:00 2023-01-27 20:00
Packaging5 SKU30 100.000 2023-01-27 20:00 2023-01-28 16:00
Packaging5 Changeover - 2023-01-28 16:00 2023-01-28 22:00
Packaging5 SKU35 400.000 2023-01-28 22:00 2023-02-01 06:00
Packaging5 Changeover - 2023-02-01 06:00 2023-02-01 12:00
Packaging5 SKU48 240.000 2023-02-02 02:00 2023-02-04 02:00
Packaging5 Changeover - 2023-02-04 02:00 2023-02-04 08:00
Packaging5 SKU49 360.000 2023-02-04 08:00 2023-02-07 08:00
Packaging5 Changeover - 2023-02-07 08:00 2023-02-07 14:00
Packaging5 SKU50 200.000 2023-02-08 07:00 2023-02-09 23:00
Packaging5 Changeover - 2023-02-09 23:00 2023-02-10 05:00
Packaging5 SKU50 100.000 2023-02-10 13:00 2023-02-11 09:00
Packaging5 Changeover - 2023-02-11 09:00 2023-02-11 15:00

Table C.23: Packaging5 six weeks production schedule.
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Second Weekly Review Results

Resource Activity Output [tubes] Start Time End Time
Packaging6 SKU19 80.000 2023-01-06 06:00 2023-01-07 02:00
Packaging6 Changeover - 2023-01-07 02:00 2023-01-07 08:00
Packaging6 SKU2 300.000 2023-01-07 22:00 2023-01-11 01:00
Packaging6 Changeover - 2023-01-11 01:00 2023-01-11 07:00
Packaging6 SKU19 120.000 2023-01-11 17:00 2023-01-12 23:00
Packaging6 Changeover - 2023-01-12 23:00 2023-01-13 05:00
Packaging6 SKU20 256.000 2023-01-14 03:00 2023-01-16 19:00
Packaging6 Changeover - 2023-01-16 19:00 2023-01-17 01:00
Packaging6 SKU18 200.000 2023-01-17 02:00 2023-01-19 04:00
Packaging6 Changeover - 2023-01-19 04:00 2023-01-19 10:00
Packaging6 SKU25 200.000 2023-01-20 10:00 2023-01-22 12:00
Packaging6 Changeover - 2023-01-22 12:00 2023-01-22 18:00
Packaging6 SKU31 300.000 2023-01-22 18:00 2023-01-25 21:00
Packaging6 Changeover - 2023-01-25 21:00 2023-01-26 03:00
Packaging6 SKU24 160.000 2023-01-26 17:00 2023-01-28 09:00
Packaging6 Changeover - 2023-01-28 09:00 2023-01-28 15:00
Packaging6 SKU34 128.000 2023-01-30 22:00 2023-02-01 06:00
Packaging6 Changeover - 2023-02-01 06:00 2023-02-01 12:00
Packaging6 SKU34 234.000 2023-02-02 08:00 2023-02-04 18:00
Packaging6 Changeover - 2023-02-04 18:00 2023-02-05 00:00

Table C.24: Packaging6 six weeks production schedule.

Material Paste Total Production [lbs] Target Demand [lbs]
Paste19 260.000 250.000
Paste20 180.000 180.000
Paste21 240.000 240.000

Table C.25: Additional material pastes comparison between production and
demand.
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Second Weekly Review Results

Final Product Total Production [tubes] Target Demand [tubes]
SKU42 100.000 100.000
SKU43 500.000 500.000
SKU44 300.000 300.000
SKU45 200.000 200.000
SKU46 320.000 320.000
SKU47 300.000 300.000
SKU48 240.000 240.000
SKU49 360.000 360.000
SKU50 300.000 300.000

Table C.26: Additional SKUs comparison between production and demand.

Figure C.1: Complete six weeks Optimal Scheduling Plan.
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Second Weekly Review Results

Material Paste Colour
Paste19 Moccasin
Paste20 Red
Paste21 Steel blue

Table C.27: Material pastes updated legend.

Final Product Colour Shade
SKU42 Moccasin
SKU43 Moccasin
SKU44 Moccasin
SKU45 Red
SKU46 Red
SKU47 Red
SKU48 Steel blue
SKU49 Steel blue
SKU50 Steel blue

Table C.28: SKUs updated legend.
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