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Chapter 1

Introduction

Today, the rapid expansion of distributed systems, such as Internet of Things and
Cloud Computing, is bringing up increasing issues in keeping systems secure and
trustworthy. Internet of Things refers to physical devices connected to Internet
providing specific services to individuals and companies. Such devices represent
critical elements, as they generate a big amount of data to be stored and processed
and are rarely updated. Moreover, since they are produced by a large variety of
companies, they are not well standardized, thus making it particularly difficult
their trustworthiness. Therefore, the number of potentially malicious devices con-
nected to the Internet and, often placed inside homes and companies, is drastically
increasing.

Another steadily increasing phenomenon is the use of Cloud Computing as new
paradigm for the distribution of IT services. Indeed, the Cloud allows to easily
and almost instantaneously create infrastructures and systems based on virtualized
objects, that enable services to scale with agility and in a more cost-effective way
than past solutions. Moreover, Cloud objects are often automatically distributed
worldwide. The Cloud Provider autonomously manages the cloud infrastructure
and takes care of its security and provisioning. However, this leads to the need for
Trust towards the Cloud Provider and the infrastructure, which, in turn, results in
new challenges and in the need for new instruments able to identify non expected
behaviours in the infrastructure itself.

One of the tools to achieve a better degree of security and trust is the Trusted
Platform Module (TPM), that allows verification of the system state through Re-
mote Attestation. The latter is a process through which a platform, the Attester,
demonstrates its integrity state to an external entity called Verifier. Instead, the
TPM consists of a tamper-resistant device containing a secure crypto processor
devoted to the protection of integrity measurements. They derive from measure-
ments of platform software and settings which are processed through cryptographic
hash algorithms and then stored in the so called Platform Configuration Registers
(PCRs). The Remote Attestation can evaluate the state of a system including all
software executed from the startup until the boot phase or, thanks to the support
of the Operative System (OS), until the moment of the attestation. In order to
do so, the OS monitors and measures all security critical files which are opened
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or modified and then creates a log of events containing the related measurements.
In Linux, the module dedicated to this function is called Integrity Measurement
Architecture (IMA). During the attestation phase, the host sends it to the Verifier
along with an attestation of PCR registers, so that it verifies the values of PCR
registers contained in the attestation and validate its status.

The attestation is based on the generation of a digital signature by the TPM
on the state of its own PCR registers. The signature is made with an Attestation
Key (AK) which is certified by a third-party (CA) after having verified the host
identity, usually through the TPM Endorsement Key (EK). This allows the CA
to have a link between the Attester identity and its emitted signatures. Inside the
attestation, especially when IMA log is used, some sensible information could be
present. This could be sufficient to monitor the user of the platform, thus giving
rise to the need to create a privacy-preserving way of performing system state
attestation.

The Direct Anonymous Attestation (DAA) is a set of cryptographic schemes
that allow remote authentication preserving, at the same time, the platform pri-
vacy. The DAA is based on the use of group signatures, i.e. anonymous digi-
tal signatures that can be generated after acquiring a credential from the group
membership issuer (Issuer) and becoming a group Member. Such signatures can
be verified by a Verifier who will not be able to identify the signer among group
members. The DAA also grants the ability to revoke any malicious credentials and
invalidate additional signatures. The difference with traditional digital signatures
stands in the fact that group signatures possess a mechanism that randomizes the
key used for the creation of the signature based both on the credential released by
the Issuer and the Member secret DAA key. Therefore, the Issuer, even if gener-
ating and knowing the credentials, is not able to distinguish the credential which
the signature has been generated from, so it cannot distinguish the signer identity.

The first DAA protocol, based on symmetric Pairings on Elliptic Curve (ECC-
DAA), was proposed by Brickell, Chen, and Li [1] and later on adopted in the TPM
2.0 specification. The latter was created with the idea to define the essential and
generic API to allow DAA execution, leaving most of the computational part to the
host platform which the TPM is part of. This allowed to minimize the performance
impact due to the TPM limited computational capacity and, moreover, it allowed
to make the DAA implementation flexible, resulting in the possibility to define
new future protocols with the same API.

DAA has also the capability of optionally creating anonymous signatures having
linking capabilities, i.e. giving to the Verifier the capability to understand if two
different signatures were created by the same Signer. This allows to relax the
signature privacy properties and to use the DAA in a wider range of applications.

The aim of this thesis is to create a simple Remote Attestation Framework
based on DAA, which allows to execute the attestation in the closest possible way
to the traditional Remote Attestation, both in terms of performance and process.
Moreover, our goal is to make it work in a Cloud oriented virtual environment
and to create functions that could be integrated in the pipelines of deploy of the

8



Introduction

various distributed objects to obtain objects that autonomously execute DAA with
an external Verifier.

For this purpose, we have created an implementation of a hybrid DAA scheme
from the implementation provided by Wesemeyer et al. [2] based on Chen and Li’s
proposed ECC-DAA scheme. The hybrid scheme brings pseudo-anonymity advan-
tages provided by DAA using linking capabilities and at the same time allows for
the use of pre-existing, higher performance implementations typical of traditional
Remote Attestation.

The implementation consists of 6 modules that execute the various steps of
DAA and perform the functions of the different actors involved. The Issuer and
Verifier have been implemented as http servers that expose the APIs to perform
a DAA. The group Member, instead, performs the setup of the TPM and, by
contacting the provided APIs, joins the group requesting to the Issuer a creden-
tial. Then it generates, certifies, and exchanges an Attestation key (AK) with
the Verifier. Once the AK has been agreed upon, the Member can perform cycles
of remote attestation with the Verifier providing an attestation of PCR registers
associated with the BIOS and IMA Measurement Log. Lastly, the Verifier checks
the attestation and the measurements logs alerting eventual validation problems.

1.1 Structure of the report

The following document uses a bottom-up approach, by first introducing the tech-
nologies used and then presenting the design and implementation of the solution.
This is followed by functional and performance tests on the developed solutions.
Lastly, the final considerations and the future works are discussed.

In chapter 2 we present the TPM starting from the concepts of Root of Trust,
we describe its architecture and the key management. This is followed by an
overview of TCG Software Stack (TSS). We mainly focus on the fundamental
aspects necessary for understanding the developed implementation.

In chapter 3 we describe the Remote Attestation, the actors and the modalities
with which it is used. Moreover, we define the Integrity Measurement Architecture
(IMA) focusing on the Measurement log file, its components and relationship with
PCR registers and TPM.

The chapter 4 deals with the standard ISO 20008:2013 concerning the anony-
mous digital signature, in particular the group signature. We show the common
characteristics among the various mechanisms present in the standard and we de-
scribe the linking-capabilities and open-capabilities. We tackle the problem of
credential revocation and we discuss the various existent revocation mechanisms.
Lastly, we summarize the properties of the standardized mechanisms.

In chapter 5 we focus on the Direct Anonymous Attestation, in particular on the
[2] scheme which will be used in the implementation. We also describe all protocol
steps and the various types of signature that can be created. In conclusion, we
discuss several security problems of such scheme.
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In chapter 6 we examine the implementations design and the reasons for our
implementation choices. It is also present an overview of any application and
communication protocol among them.

In chapter 7 we discuss the choices, projects, and libraries useful in the imple-
mentation. In particular, we will discuss the ecc-daa project on which we relied
and the projects provided by IBM as utilities for projects that use TPM.

The chapter 8 shows some functional tests useful also to understand the func-
tioning of the applications, moreover, some performance tests are proposed in order
to obtain some measurements on their execution times.

Lastly, chapter 9 contains the conclusions and the final comments on the im-
plementation. It is then followed by advice for future works to be able to improve
the current solution or integrate it in other attestation frameworks.
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Chapter 2

Trusted Platform Module

TPM is a specification conceived by Trusted Computing Group (TCG) [3], an ini-
tiative of a large group of IT companies with the aim to promote the development
of Trusted Computing by relying on both hardware and software implementations.
TPM 1.1b, released in 2002, was the first major version of the specification. It
already included the main fundaments of the current standard, such as PCR regis-
ters (and the concept of Root of Storage), key generation, cryptographic operations
and remote attestation (and the concept of Root of Reporting). In 2004, the TPM
1.2 version was published. For the first time, Direct Anonymous Attestation was
introduced as a new method for remote attestation. Lastly, TPM 2.0 was released
in 2014 but it is still continuously updated. Among its new features, it is no-
ticeable the introduction of algorithm agility and the support for Elliptic Curve
Cryptography (ECC). Nowadays, almost every PC, smartphone and server has a
built-in TPM on its motherboard or CPU.

2.1 Trust

For TCG, “trust” is meant to convey an expectation of behavior [3]. The TPM
in a computer reports a result of the measurements made on the software and
hardware in a way that allows to determine if the system is behaving as expected
and, consequentially, to establish the trust.

Trusted Building Block

The TCG defines the Trusted Building Blocks (TBB) as the collection of compo-
nents necessary to form the Root of Trust [3]. For example, in a PC, the TBB
is represented by the combination of the Core Root of Trust for Measurement
(CRTM), the connection between the CRTM storage and the motherboard, the
path that connects the storage of the CRTM and the CPU, the connection between
the TPM and the motherboard, and the connection path between the TPM and
the CPU. It is critical that the TBB is reliable and does not affect the trust goal
of the platform.
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Roots of Trust

TCG defines Roots of Trust primarily as the system elements that must be trusted
because a misbehavior would not be detectable. Secondly, the set of Roots of Trust
is the minimum set of functionalities necessary to allow the measurement of the
trustworthiness of the system [3]. The TCG identifies three Roots of Trust in a
trusted platform:

• Root of Trust for Storage (RTS) is defined as a trusted place to store
data that can be changed only by adhering to strict security policies. The
TPM shield its memory from external entity access, in fact, some of the
data in the TPM memory locations are not sensitive and the TPM does not
protect it from disclosure, for example in the case of PCR values. Instead,
other data are sensitive and the TPM does not allow access without proper
authorization, for example a private part of a key [3]. Since the TPM can
be trusted to prevent inappropriate access to its memory, the TPM can act
as an RTS;

• Root of Trust for Measurement (RTM) oversees sending integrity-
relevant information (measurements) to the RTS [3]. This is typically played
by the host’s CPU controlled by the first set of instructions executed when a
new chain of trust is established (typically on system reset). These instruc-
tions are called Core Root of Trust for Measurement (CRTM);

• Root of Trust for Reporting (RTR) reports on the contents of RTS. An
RTR report is typically a digitally signed digest of the contents of selected
and accessible values within a TPM [3].

Transitive trust

Whether Roots of Trust establishes the reliability of an application that is about to
be executed and, in turn, the application establishes the reliability of a subsequent
application, we can say that we have achieved the transitive trust, due to the fact
that we can trust applications based on the trust of the Roots of Trust [3]. The first
way to reach transitive trust is to making sure of the trustworthiness of the next
application through a trust policy executed before running the next application.
A second way is to make sure that the measurements taken before the execution of
the next application are available to an independent evaluation who will establish
the trust later on. The TPM may support either of these methods.
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2.2 TPM architecture
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D
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m
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Figure 2.1. TPM 2.0 architecture

In order for the implementation to respect the TPM specification, as shown in
Figure 2.1, it is necessary that it contains all the following components [3], whose
mutual interaction allows the operation of the TPM:

• I/O buffer: it is the component through which the host interacts with the
TPM by sending and receiving data.

• Hash engine: used both by the host or as part of other TPM operations,
it performs generic hashing operations.

• Random Number Generator (RNG): it is the source of randomness
in the TPM. The TPM uses RNG for the generation of nonces, keys, and
randomness required in signatures. It is interesting to note that, since the
RNG is a critical component in the infrastructure, the TPM supports more
than one entropy source. It is the manufacturer’s discretion how to use this
potential.

• Key generation: it allows to generate keys of the various protocols sup-
ported by the implementation. Keys can be generated from the RNG or
from hierarchy seeds using approved Key Derivation Function (KDF).
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• Asymmetric and symmetric engines: they are used to perform sym-
metric and asymmetric cryptographic operations like encryption, decryption,
signature and signature verification.

• Authorization Subsystem: it oversees the execution of authorization
checks before allowing a command to run.

• Power Detection: it detects changes in power status and allows the TPM
and host to detect them.

• Volatile memory: it is the memory used to hold data whose lifespan ends
upon TPM restart. Examples are PCRs, current sessions, loaded temporary
keys, etc.

• Non-volatile memory: this is the memory area that contains data that
persist even when the power is removed. Here are contained sensitive data
such as the values of the seeds and any persistent key. Because of this, these
areas contain Shielded Locations which can be accessed only through Pro-
tected Capabilities. Depending on the implementation, there may be enough
free memory left to allow applications to make permanent some transient ob-
ject, for example application-specific keys.

2.2.1 Platform Configuration Registers

The Platform Configuration Registers (PCRs) are internal registers of the
TPM designed to contain the result of a hash and which present a known value
at start-up, usually initialized with all 0s or all 1s. The registers are grouped into
banks and each bank can be configured at TPM startup by specifying which hash
algorithm that bank should use in TPM2 Extend procedure to change the PCR
value. Each register within a bank is identified by an index starting at 0 through
which the particular register can be referenced at the time of its use. There can
be a variable number of banks and registers, however, the specification states that
in the PC Client Platform profile the TPM must contain at least one bank of at
least 24 registers [3].

The PCR value can be updated only through the TPM2 Extend procedure
that consists in updating the values of a PCR register on the basis of the already
present value and of an input value, as following [3]:

PCRnew = HashbankAlg(PCRold∥inputvalue)
The PCR value reset to the initial value at the TPM reset or in case of resettable
registers, usually those with index greater than 15, through the explicit call to
TPM2 pcr reset.

2.3 TPM Hierarchies

The TPM uses hierarchies to organize objects so that they can be related and
managed as groups [4]. At the root of the hierarchies there are primary keys, while
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under them there may be non-primary keys, forming a tree. The cryptographic
root of the hierarchy is the primary seed : a random number that is generated
and kept secret by the TPM. The seed is used to generate primary keys. In turn,
primary keys act as encryption keys for the non-primary keys placed under them.

Hierarchies can be volatile, i.e. erased at each reboot, or persistent, thus re-
tained at the reboot [4]. Three persistent hierarchies are defined: platform, storage
and endorsement. Each one of them is utilized for specific use cases.

Platform hierarchy

The Platform hierarchy is intended to be under the control of the platform manu-
facturer who can exercise it through the code used in the initial stages of platform
startup. To allow this, it displays a unique feature compared to other hierarchies.
At each restart, it is enabled by default and has an authorization value set with
an empty password. In fact, since the intent is to be available to the platform
firmware, no authorization is required to use it in the first boot phase. After start-
ing and until the next reboot, the platform firmware decides whether to keep it
enabled and, if necessary, what policy to adopt in order to use it [4].

Endorsement hierarchy

The Endorsement hierarchy is the privacy-sensitive hierarchy to be used for what
concerns the user privacy. The TPM vendor and the platform vendor certify that
the primary keys of this hierarchy, called Endorsement Keys (EKs), relate to an
authentic TPM mounted on an authentic platform. A primary key from this hier-
archy can only be used in signing operations and not in encryption and decryption
operations. Creating and certifying an EK are privacy sensitive operations as they
allow the key to be traced back to the particular TPM [4].

Storage hierarchy

The Storage hierarchy is meant to be used by the platform owner. It is intended
for non-privacy-sensitive operations [4].

NULL hierarchy

The NULL hierarchy is a special hierarchy, as it is volatile and does not require
any authorization to be used. In fact, its primary seed changes at each restart,
making unusable all previously created keys. This allows to use the TPM as a
cryptographic co-processor, which executes cryptographic algorithms on externally
generated keys after loading them into the hierarchy [4].
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2.4 Key generation

One of the most interesting features of the TPM is the ability to generate crypto-
graphic keys and protect their secrets by not allowing them to leave the security
perimeter. The generation of the keys is based on the internal RNG. Indeed, it
is not possible to generate the keys with other sources of randomness. This guar-
antees that each key that is produced is derived from a reliable source of entropy
and cannot be negatively affected by any careless application [4].

2.4.1 Key and Primary Key generation

All keys that have a parent are wrapped (encrypted) with the parent key and
returned to the caller. This avoid the need for the TPM to memorize those keys,
which, instead, can also be stored in untrusted locations by the caller.

As mentioned above, at the root of a hierarchy there are primary keys that, as
such, have no parents. The TPM allows the creation of an unlimited number of
primary keys thanks to the use of primary seeds. In the generation process of a
primary key, the primary seed of the hierarchy, together with a set of data that
characterize the generation of the key, the public template, are given as input to a
Key Derivation Function (KDF) [4].

The public template consists of the description of the key to be generated,
the algorithm, the length of the key, the policy and the type of key (encryption,
signature, etc.). Furthermore, a unique data can be added by the application to
allow the creation of two different keys, despite using the same template.

2.4.2 Persistence

The keys can possibly be persisted in the non-volatile memory of the TPM through
the EvictControl procedure. This allows to have the key already available in the
internal memory, rather than otherwise have to be loaded or re-generated at each
use [4].

2.4.3 Duplication attributes

The TPM allows in some circumstances to move a key from one parent to another
one, even if this belongs to a different hierarchy or different TPM. This process is
referred to as key duplication. When a key is duplicated, all the children wrapped
by it, and their descendants, become available in the destination. There are two
attributes of each key that control the ability to perform a key duplication [4]:

• fixedTPM: if this parameter is active, the key can never be duplicated.

• fixedParent: in case it is active, the key cannot be duplicated directly, but
only through a duplication of its parent.
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2.4.4 Restricted singing key

The keys created in the TPM can be used to sign a user input or, in the case of
special keys called restricted singing keys, also to attest data from internal data
structures such as PCR registers or keys. These special keys are obtainable by
specifying the “restricted” attribute when creating the key. For security reasons,
the specification mandates that restricted keys can only be used for signing and
cannot for other purposes such as encryption and decryption of data.

The restricted key can actually sign any input, even if not generated by the
TPM, as long as it does not start with 4 fixed special bytes called TPM GENERATED
[3]. This is possible due to a requirement imposed by the specification, that is,
in order for a signature to be performed on user input, the hash it is trying to
sign must have been created by the TPM. To do this, TPM provides TPM2 Hash,
which allows to compute an hash over a user input and also returns a ticket with
which the TPM, at the signing stage, can verify that it has created the input
hash. Thanks to this requirement, the TPM can fully verify the input that it
will then go on to sign and it can be ensured that the input does not start with
TPM GENERATED. In doing so, the specification reserves the use of the special
bytes exclusively as a prefix to the attestations of its internal structure thus guar-
anteeing that if the signature was created by a restricted key then the attestation
and signature were created by the TPM itself.

2.5 TCG Software Stack

Local TPM Driver SimTPM Driver Virtual TPM Driver

TCTI

TPM Command Transmission Interface (TCTI)

System API (SAPI)

Enhanced System API (ESAPI)

Feature API (FAPI)

Application

TPM Access Broker

Resource Manager

Local TPM TPM Simulator Virtual TPM

TPM Access Broker

Resource Manager

Remote TPM Driver

Remote TPM

Network

Crypto Library

MUAPI

Figure 2.2. TSS stack overview
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To avoid low-level communications with the TPM and to simplify the development
of applications that use the TPM, the TCG Software Stack (TSS) [5] has been
standardized. It is a multi-level stack in which each level offers services at the
higher one. This allows the calling application not to deal with some problems
related to the use of the TPM itself.

Indeed, one of the most critical aspects of the TPM is the fact that it is a system
with limited resources. Therefore, in order to carry out complex operations, it is
necessary that the caller takes care of explicitly managing resources. Another issue
is the inability of the TPM to autonomously manage two callers at the same time.
Thus, if necessary, an external actor has to perform resources switching. As shown
in Figure 2.2, the TSS consists of:

• TPM Device Driver: the layer in charge of sending commands and receiv-
ing responses to a particular TPM[5];

• Resource Manager: is the layer that deals with resource management of
the TPM. Indeed, the TPM has limited resources, so, when needed, it has
to handle the loading of objects, sessions and policies and, when no longer
needed, to flush them for allowing the execution of another call with the
available resources [5]. Its actions must be transparent to the upper layers
of the TSS and its presence is not mandatory. For example, when a single-
application is running, such as BIOS, the application itself may be sufficient
to manage the resources of the TPM;

• TPM Access Broker (TAB): manages, on the other hand, simultaneous
access to the TPM. Its purpose is to ensure that, regardless of the number
and the order in which the various application calls reach the TPM, the
result will be the same as if the TPM were called by only one application at
a time without interference between the various calls [5];

• TPM Command Transmission Interface (TCTI): manages all com-
munications towards the TPM in a standard way, regardless of the type of
underlying TPM, being hardware, virtual, simulated or remote. There are
currently two standard interfaces: the Command/Response Buffer (CRB)
and the legacy TIS interface [5];

• Marshaling/Unmarshalling (MUAPI): is in charge of creating the byte
streams required by the TPM, starting from properly populated data struc-
tures (marshalling) and decomposing the response byte streams from the
TPM into the appropriate data structures (unmarshalling) [5]. It is used by
both SAPI and ESAPI and, for this reason, it maintains its own separate
API;

• System API (SAPI): is an API layer that permits access to all the func-
tions of the TPM [5]. It was created with the aim of being used by all those
software aiming at interacting at a lower level with the TPM, namely BIOS,
firmware, OS, expert application, etc.;
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• Enhanced System API (ESAPI): is an interface built on top of the
System API with the main purpose of reducing the complexity required to
the applications working with low-level calls to the TPM. It is needed that
the calling application is able to perform cryptographic operations [5]. In
fact, to reduce the complexity of the communication, ESAPI prevents users
to personally handle complex interactions with the TPM, such as encrypted
sessions or TPM policies. Although it presents a marked improvement in
terms of ease of use compared to the System API, it is still necessary to
know in depth the details of interfacing with the TPM:

• Feature API (FAPI): represents the API layer designed to be used by
generic applications. It aims to make usable as many TPM functions as
possible without knowledge of TPM low-level details [5].
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Chapter 3

Remote attestation

A system which underwent an involuntary or malicious alteration of its parts could
constitute a threat. Once having defined the integrity requirements of an intact
system, it is possible to use them as parameters to determine whether a system
is corrupted or not, and eventually take compensatory measures to eliminate the
threat. Since a system in an incorrect state may have compromised its own protec-
tion systems, it is not sufficient for the system to self-check in order to guarantee
detection of an undesired state.
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Figure 3.1. Remote attestation

The Remote Attestation mechanism allows a remote challenger (the Verifier) to
certify the status of a system, that is, to understand if that system meets certain
integrity requirements. In detail, the Verifier challenges the system to be certified,
the Attestation Agent, with a nonce that guarantees the freshness of the response.
The Attestation Agent asks the TPM for an attestation of the PCR registers, called
Quote, usually of the ones with an index from 0 to 10, signed with a previously
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certified Attestation Key (AK). The Attestation Agent can add to the Quote a
series of additional information to support the Verifier, allowing the assessment of
the validity of the values contained in the PCRs. As we will see, on Linux this
information includes the IMA measurement log file. The Quote along with the
additional information compose the Integrity Report which is sent to the Verifier.
The Verifier validates the Integrity Report and verifies whether the Quote is fresh
and authentic, thus demonstrating if the system is in a healthy state. An overview
of the entire process in a Linux environment is presented in the Figure 3.1.

3.1 Measured Boot

CRTM measures Core BIOS

CRTM measures Rest of BIOS

CRTM measures Motherboard 
Configuration Settings

BIOS measures ROM Firmware

BIOS measures ROM Firmware Config
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Load Rest of BIOS

Load Firmware Control
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                Kernel Module command line params

   PCR 9: Files read by GRUB

   PCR 10: IMA measurements

Figure 3.2. Measured boot

As already discussed in section 2.1, the role of the RTM is to send the relevant
information to the RTS. In the implementation, the platform CPU sends infor-
mation to the TPM to update the PCR registers through the Extend procedure,
which, as mentioned, is not reversible.

When the TPM and the platform startup, the PCR registers are in a known
default state. The CRTM, which is the code that is first executed in the host
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CPU, measures both the software that will be run immediately after it and the
configurations that might affect its behavior. The measurements will be extended
into the PCR registers. The following software, the BIOS for example, will, in
turn, perform the same operation on the software to be subsequently executed, for
example the boot loader, thus extending the measurements in other PCR registers.
The process continues in this way until the operating system is fully booted. At
each step each software extends new PCR registers with the measurements ob-
tained. The PCR registers index, in which the measurements are extended, are
standardized by the TCG and can be found in Figure 3.2. If the measurements are
correctly performed and the resulting values in each step represent a trusted state
of the system, for transitive trust, all the chain will be also trustworthy. This ap-
proach generates the so-called Chain of Trust. Therefore, if the CRTM is trusted,
we can have a measure of the state of the system and validate its correctness.

It should be noted that the TPM has no ability to directly interfere with the
boot process. The running system, on the other hand, can influence its execution
based on the status of the measurements in the TPM. In fact, the process can use
the state of the TPM to authorize sequential software components in the startup
chain. This can be achieved, for example, by verifying digital signatures of software
components to be performed based on a list of trusted keys. This type of validation
of the boot process is called Secure Boot. Instead, we refer to the process as
Trusted Boot if the possibility of completing the system startup is constrained
to a verification by an external entity (a Verifier), which, via remote attestation,
verifies the validity of the system status.
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3.2 Integrity Measurement Architecture
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Figure 3.3. Ima overview

The Integrity Measurement Architecture (IMA) [6], whose architecture is
shown in Figure 3.3, is a Linux kernel module that is part of the Linux Integrity
Subsystem. It was introduced in 2009 as a TCG-compliant implementation for
measuring dynamic executable contents. It allows the extension of the Chain of
Trust from the BIOS to the application layer and brings the concepts of Measured
Boot to the kernel level allowing to:

• Detect both remotely and locally, within the limits of the case, accidentally
or maliciously modified files (executables, configurations, kernel modules,
etc.);

• Appraising a file measurement to a golden value inserted directly in the
attributes of the file itself;

• Enforcing local file integrity.
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The IMA is designed to be the centralized point of the kernel in which the OS
perform the measurement of files, do the storage of the measurement, extend the
PCR registers, make appraise of the measurement with respect to golden values,
and audit of results.

3.2.1 Measurement Log file

In boot process, it is easily possible to identify a well-defined ordered sequence of
measurements to be carried out. Once the operating system is started, instead,
a large amount of software components are simultaneously executed in an inde-
terminable order, leading to an indefinable order of measurements. It is therefore
important to find a way to allow an external Verifier to check the correctness of
the system status, taking into account that the measurements order and, thus, of
the final measurement, may be different even in the presence of a non-malicious
machine.

For this reason, the IMA manages a Measurement Log file (ML) consisting of a
list of all themeasurement events persisted in the order in which they are measured
by the kernel. The ML is sent to the Verifier during the remote attestation phase
and it is used to verify that the values contained in the PCRs indicate an integral
state of the system. There are two versions of the ML file [6]:

• a binary version, usually located under, /sys/kernel/security/ima/binary_
runtime_measurements;

• a human-readable version, usually located under /sys/kernel/security/

ima/ascii_runtime_measurements.

3.2.2 Fields description

PCR template-hash template filedata-hash filename-hint
10 91f34b5c671d73504b274a919661cf80dab1e127 ima-ng sha1:1801e1be3e65ef1eaa5c16617bec8f1274eaf6b3 boot aggregate
10 8b1683287f61f96e5448f40bdef6df32be86486a ima-ng sha256:efdd249edec97caf9328a4a01baa99b7d66... /init
10 ed893b1a0bc54ea5cd57014ca0a0f087ce71e4af ima-ng sha256:1fd312aa6e6417a4d8dcdb2693693c81892... /usr/lib64/ld-2.16.so
10 9051e8eb6a07a2b10298f4dc2342671854ca432b ima-ng sha256:3d3553312ab91bb95ae7a1620fedcc69793... /etc/ld.so.cache

Table 3.1. ASCII Measurement Log file example

The ASCII version is similar to Table 3.1. Each measurement event is a line in
the ML. Each record contains a certain number of fields depending on the template
used because each template can use different types of file measurements. To date,
the standard provides 3 base templates [7] [6]:

• ima: only supports SHA-1 as a digest for filedata-hash;

• ima-ng: supports digests other than SHA-1 for filedata-hash;

• ima-sig: additionally includes the file signature in the file-signature field.
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The main fields are described as follows:

• PCR index: always present, it contains the index of the PCR register that
has been extended by this measurement;

• template-name: always present, it contains the name of the template used
for the measurement;

• filedata-hash: always present, it contains the hash of the file calculated at
the time of the measurement. It can support various formats depending on
the template used. In case of “ima-ng” and “ima-sig” template, it is possible
to specify which hash to use (“sha1”, “md5”, “sha256”, “sha512”, “wp512”,
. . . ) that would be inserted as a hash prefix in the data-hash file. The
“ima” template, on the other hand, does not contain any prefix since it only
supports SHA-1 and does not insert any prefix;

• filename-hint: always present, it contains the absolute path of the mea-
sured file, except for special cases, such as “boot-aggregate”, where it rep-
resents a reference to the concatenation of the hashes of the post-boot PCR
registers;

• file-signature: only in the case of an “ima-sig” template, signature of the
file contained in the “security.ima” attribute of the file itself;

• template-hash: always present, it is normally a SHA-1 hash of the content
of the “template-data”, that is a binary structure containing all the measure-
ment data specific to a particular template (file-name, file-hash, hash-size,
signature etc... ). In some special cases it can be a string containing all 0s.
In the case of an “ima” template, on the other hand, it is calculated as the
SHA-1 hash of the concatenation of the “filedata-hash”, of the “filename-
hint” plus a quantity of 0s to reach a total length of 256 bytes.

3.2.3 PCR Extend

Given a new measurement, there are currently two different ways of extending a
PCR register. Since there seems not to exists a standard way of calling them, we
just call them extends “Type 1” and extends “Type 2” [8].

Type 1 (zero-pad)

In case of SHA-1 PCR banks:

• if the “template-hash” is made up of all 0s: a digest made up of all 1s is used
to extend the PCR register;

• otherwise, if it is not made up of all 0s: the “template-hash” is passed to the
extend as it is.
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In case of SHA-256 PCR banks, it behaves as in the PCR SHA-1 banks but, before
passing the result to the extends, this is padded with 12 Bytes to 0s thus obtaining
a 256-bit string at the ends.

• if the “template-hash” is made up of all 0s: a binary string made up of 20
bytes at 1 and 12 bytes at 0s is generated;

• otherwise, if it is not composed of all 0s: the “template-hash” concatenated
with 12 Bytes is passed to 0s.

Type 2 (hash)

In case of SHA-1 PCR banks, we proceed with the same logic as Type 1.

• if the “template-hash” is made up of all 0s: a digest made up of all 1s is
passed to the ends of the PCR register;

• otherwise, if it is not made up of all 0s: the “template-hash” is passed to the
extends as it is.

In case of SHA-256 PCR banks:

• if the “template-hash” is made up of all 0s: a digest made up of all 1s is
passed to the ends of the PCR register.

• otherwise, if it is not composed of all 0s: the value passed to the extend
is a hash generated from the “template-data”, with a process equal to the
“template-hash” one, but this time using the hash of the PCR bank (SHA-
256) instead of SHA-1.

It can be noticed that, in Type 2, the generation of the string to be extended in
the PCR can be independent from SHA-1. In contrast, Type 1, always uses SHA-1
in the computation of the “template-hash”. Type 2 on the other hand follows a
generic process that is the same for all bank types. The only variation is the hash
used for calculating “template-data” that matches that of the bank used.

3.2.4 IMA in Remote Attestation

Immediately after adding an element to the ML, the IMA extends the PCR regis-
ters in the TPM (usually only PCR 10 is used), according to the configuration of
the IMA itself. In this way, the ML always contains more measurements than the
ones that are actually extended in the PCR registers. This allows the Verifier to
examine the ML and simulate the extension of the registers made by the system,
by looking for that measurement for which the value of the registers corresponds
to that of the TPM Quote [8].
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Thanks to this approach, a misalignment of some measurements between the
PCR registers and the ML can occur. This allows to verify that the PCR registers
contain a value that can be calculated from the ML regardless of the exact moment
in which the Quote takes place, which could be after updating the ML but before
updating the TPM registers. At the same time, it detects any misalignment that
must be extended in the following remote attestation cycles to prove that the
system is healthy.
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Chapter 4

Anonymous Digital Signature
(ISO 20008:2013)

In conventional digital signature, it is possible to create a signature that cannot be
traced back to the signer. Conceptually, if the private key is in the possession of
more than one entity, it would not be possible to distinguish which owner created
the signature. However, in a system that uses this method to hide the identity
of the signer, it is sufficient that even one of the owners becomes malicious or
discloses the key to make the whole system unreliable. In fact, there is no way
to revoke the ability of a private key holder to issue new signatures. The only
solution would be to create a new key pair and redistribute the keys.

The ISO 20008 standard [9] [10] proposes alternative ways to the conventional
digital signatures to create Anonymous Digital Signature mechanisms. In particu-
lar, we will focus on the so called group signatures. As it is defined in the standard
[9], an Anonymous Digital Signature is a signature which can be verified using
a group public key (in the case of group signatures), or multiple public keys (for
ring signatures), and which cannot be traced to the distinguishing identifier of its
signer by any unauthorized entity, including the signature verifier.
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4.1 Ring signature: multiple public keys
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Figure 4.1. Signature and verification processes for a ring signature mechanism [9]

Ring signatures are characterized by a certain number of ring members whose
public keys are known and allow to hide the identity of the signer (the true signer).
The signature is based on the true signer’s private key and the public keys of
the other Members of the ring (the potential signers). The true signer can sign
regardless of the willingness of the other Members of the ring and without even
letting them know [9]. An overview of the processes is proposed in Figure 4.1.

In order to verify a signature, it is necessary to have all the public keys of
the Members of the ring. In this way, it is possible to validate the signature and
understand if the signer belongs to the ring or not but without the possibility of
identifying him.

A disadvantage of ring signatures is that the complexity of the signature and
its verification is proportional to the number of ring Members. In addition, in
dynamic rings, where new Members can join or leave the ring, all ring Members
and all Verifiers must be notified so that signatures can be generated and validated
accordingly.
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4.2 Group signature: group public key
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Figure 4.2. Signature verification processes in an anonymous signature mecha-
nism using a group public key [9]

Group signatures, on the other hand, are based on a single public key, the group
public key, which allows a Verifier to validate any signature issued by Members of
the group. Creating and verifying a group signature is more complex and requires
several steps [9], Figure 4.2 present an overview of the processes.

The standard [10] defines 7 implementation mechanisms for obtaining a group
signature. Each mechanism has its own unique features but shares many common
characteristics on which categorizations can be created. First of all, there are
common actors and procedures that we are going to examine below.
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4.2.1 Group membership issuing process
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Figure 4.3. Group membership issuing process [9]

The possibility of introducing newMembers into the group is entrusted to the group
membership issuer (or Issuer) which keeps the group issuing key that allows the
generation of the group membership credential [9].

The process, visible in Figure 4.3, can be done entirely by the Issuer or through
a joint work of the candidate Member and the Issuer. In the second case, a Member
who wants to join the group creates a group member private key and contacts the
Issuer who optionally verifies the identity of the candidate Member through a
distinguishing identifier and finally provides the group membership credential to
the Member [9].

Only the combination of the group member private key and the group mem-
bership credential provided by the Issuer can generate a valid signature. This
combination is called group member signature key [9] .

This means that the Issuer must be trusted by everyone because it could autho-
rize any malicious Members, but also that if he does not know the group member
private key of a Member he would still not be able to impersonate him. In this
case, the mechanism would possess the “non-repudiation” property [9].
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4.2.2 Linking capabilities
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Figure 4.4. Group signature linking process [9]

Some mechanisms incorporate a linking process, described in Figure 4.4. They
provide a way for a group signature linker to identify if two signatures have been
produced by the same signer. Usually, the use of this property is optional and al-
lows user-controlled-linkability, that consists in the choice by the signer to possibly
generate a linkable signature or not [9].

Some mechanisms require the use of a linking key which is a private data
element that permits the group signature linker to carry out the linking process.

The linking base (bsn), instead, represents the public element involved in the
signature process, which, if used with the same value in two separate signatures,
allows to link the two signatures.

4.2.3 Opening capabilities

group signature opening key group public
parameter group public key

   group membership opener

opening process

distinguishing identifier evidence of binding

Figure 4.5. Group membership opening process [9]

The opening process, shown in Figure 4.5, is the process performed by the group
membership opener, which allows to be able to trace the identity of the signer
starting from the anonymous signature. Only a few mechanisms support it. Some

32



Anonymous Digital Signature (ISO 20008:2013)

of them allow to provide, in addition to the identity of the signer, also a proof
called evidence of binding [9]. This proof can be used by an evidence evaluator to
make sure that the given signature belongs to the same identity that the opener
has provided. There may be several reasons why it is useful to obtain evidence of
binding. For example this becomes necessary if the result of the evaluation must
be verified by a third party other than the opener.

4.2.4 Signature and verification process

As already mentioned, only group Members in possession of a signature key can
create a signature. Unlike a conventional digital signature, in the group signature
process, if the mechanism supports it, there can be an optional linking base that
can possibly be delivered together with the signature, as it is a public parameter.
As displayed in Figure 4.2, it is also interesting to note that the signature depends
not only on the “group public parameter”, but also on the “group public key” [9].

The verification is conceptually similar to the conventional signature: the
“group public key” and the “group public parameters” are required to verify the
validity of the signature.

4.2.5 Revocation mechanisms
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a) Global revocation b) Local revocation

Figure 4.6. Group signature revocation processes [9]

An interesting topic about anonymous digital signatures is the ability to revoke
a Member’s right to create new signatures and/or notice that already created
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signatures have been generated by revoked Members. The revocation mechanisms
are dependent on the implementation mechanism, even if several characteristics
are shared. An overview of the revocation process is proposed in Figure 4.6.

The standard defines 3 different levels of revocation for anonymous digital
signatures using group public key [9]. Each level allows different types of autho-
rizations to be revoked:

• Level 1 revocation (Group revocation): The entire group is revoked.
If the authorization of an entire group needs to be revoked, the appropriate
group public key shall be added to a group public key revocation list. Any
signature associated with a revoked group public key shall be rejected [9].
This revocation method is the same as the one used with a conventional
digital signature scheme.

• Level 2 revocation (Global Revocation): It consists of a global revoca-
tion of single group membership credential, so that signatures created with
those credentials can be revalued as invalid by Verifiers [9]. Depending on
the mechanisms, it can be achieved in 2 main ways:

– Credential Update: it is an update of the credentials of each Member
of the group and of the “group public key”, carried out by the Issuer
and possibly supported by the Members. It can be done cyclically at
regular intervals or as soon as a malicious Member is detected [9].

– Group global revocation list : when a malicious Member is detected, a
trusted authority inserts data in the list. Each Verifier can judge the
validity of the signature created by a potential malicious Member based
on the data present in the list [9].

• Level 3 revocation (Local Revocation): Level 3 revocation or Verifier-
local revocation is the ability of a single Verifier to revoke a particular group
membership credential [9]. This does not compromise the validity of the
credential for all other Verifiers who will continue to consider the signature
valid. The Verifier who wants to use a revocation of this type will make use
of a personal Verifier local revocation list in which he will enter the data
obtained from the signatures of the Member to be revoked as needed.

4.2.6 Types of revocation list

Depending on the type of revocation list, this enters the verification or signature
processes in different ways. For example, some revocation mechanisms require the
signer to prove at the time of signing that he is authorized to create the signature
based on the revocation list present at the time of signing. Other revocation
methods require, instead, that the Verifier consults the list during the signature
verification process [9].

It is also possible that the list is “compressed” into a single parameter to
increase the efficiency of the verification but without this parameter revealing
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sensitive information regarding the privacy of the signer [11]. A mechanism that
compresses a revocation list to a single parameter is also known as an accumulator.

The contents of the revocation lists can be of the following main types:

• In private key revocation, the private signature key of the revoked Mem-
ber is inserted into the list [9]. In this way, a Verifier is able to understand if
the signature to verify was created by a revoked Member, usually by repeat-
ing the signature operation or part of it for each revoked key. It is worth
remembering that the Issuer or another trusted authority has access to the
private signature key at the time of issuing the credential only in some spe-
cific situations. Such a list can be used both in global and local revocation.

• In membership credential revocation, the group membership credential
of the revoked Member is added to the revocation list [9]. The signer might
be required to provide proof that its credential is not on the list. Depending
on the mechanism, such a list can be used in global revocation.

• In verifier blacklist revocation, the signature (or part of it) corresponding
to a particular “signature linking base” is included in the list [9]. The Verifier
can check, thanks to the linking capability, that the signature belongs to a
signer whose signature is already present in the revocation list. Such a list
can be used in local revocation.

• In signature revocation, a signature (or a partial signature) is included
in the revocation list [9]. A Verifier, thanks to additional evidence provided
by the signer or an evidence provided by the group membership opener, can
verify that the signature belongs to a signer who has created a signature
in the list. Depending on the mechanism, such a list can be used in either
global or local revocation.

4.2.7 Mechanisms proprieties summary

To conclude, let us briefly summarize the most distinctive properties of the vari-
ous mechanisms defined in the standard. For this purpose, we consider two fun-
damental aspects of the various implementations. Firstly the type of revocation
mechanism that can be used (Figure 4.7), secondly the mathematical assumptions
underlying them (Figure 4.8) [9]. It is noteworthy that the mechanism 4, which
we will use in the implementation of this thesis, supports potentially all types of
revocation seen above. Moreover, as we will see, the implementation acts as an
Static Diffie Hellman oracle that weakens its security strength.
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Private key revocation Verifier blacklist
revocation Signature revocation Credential update

Mechanism 1 ✔ ✔

Mechanism 2 ✔ ✔

Mechanism 3 ✔ ✔ ✔

Mechanism 4 ✔ ✔ ✔ ✔

Mechanism 5 ✔

Mechanism 6 ✔

Mechanism 7 ✔

Figure 4.7. Mechanisms: possible type of revocation [10]

Strong RSA
assumption

Decisional  
Diffie-Hellman

assumption

Strong  
Diffie-Hellman

assumption

Lysyanskaya-Rivest-
Sahai-Wolf (LRSW)

assumption
Static Diffie-Hellman

Mechanism 1 ✔ ✔
Mechanism 2 ✔ ✔ ✔
Mechanism 3 ✔ ✔
Mechanism 4 ✔ ✔ ✔
Mechanism 5 ✔ ✔
Mechanism 6 ✔ ✔
Mechanism 7 ✔ ✔

Figure 4.8. Mechanisms: mathematical assumptions [10]
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Chapter 5

Direct Anonymous Attestation

The Direct Anonymous Attestation (DAA) is a set of anonymous digital signature
schemes performed using TPM. The generation of an anonymous signature with
DAA is possible thanks to the collaboration between the TPM and the host device
(Host). Due to the limited resources that the TPM possesses, the TPM must be
used only for necessary operations, assuming the role of principal signer. By
contrast, the Host, with a much higher computing capacity, as assistant signer,
is responsible for the remaining calculations. The TPM and the Host together
form the so called Platform. Such division of the signer role between TPM and
Host enhances the complexity of the anonymous digital signature schemes as it
is necessary to consider the Host as potentially untrusted [12]. As we will see,
although the Host knows the credential, it will not be able to autonomously emit
signatures.

5.1 Schemes and TPM specification

The first DAA scheme, RSA based, was proposed by Brickell, Camenisch, and
Chen in 2004 and later standardized in the TPM1.2 specification [13]. Brickell,
Chen, and Li proposed the first DAA scheme based on symmetric Pairings on
Elliptic Curve (ECC-DAA) [1] which inspired the TPM 2.0 specification.

The specification provides a series of generic APIs that allow to perform a sub-
set of the DAA-related operations which were thought to be necessarily performed
by the TPM. According to the TPM specification writers, these APIs should be
generic enough to allow new DAA schemes in the future without changing the
specification. Indeed, over the years there have been various attempts to achieve
DAA in different and increasingly efficient way [12] [14] [15]. However, many of
the proposals turned out to be fallacious and required new developments [14].

Whether you want to attest an internal TPM object or sign a generic in-
put, the specification provides a number of specific APIs for each purpose. In
any case, any signature using DAA needs to perform a preliminary operation
called TPM2 Commit that computes and returns some parameters necessary for
anonymous signing. The TPM2 Commit accepts as input 2 points, then perform
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the point multiplications on the provided points with the DAA secret key and a
random key rcv, then return intermediate signing values and a counter value cv.
Through the counter value, the TPM, in the next stage of signing, will be able to
derive rcv which is necessary for its computation.

The signing of a generic input is done with the TPM2 Sign. In order for
the TPM to validate the signature input, the specification forces to use as input
a hash necessarily produced by the TPM itself. This mechanism is to prevent
malicious input as discussed in subsection 2.4.4. For this reason it is necessary
to call TPM2 Hash which will provide a ticket tkt to be presented later at the
signing stage as proof that the hash being given as input has been generated and
validated by the TPM. Once the ticket has been obtained from the TPM2 Hash
and the counter from the TPM2 Commit, the call to the TPM2 Sign is made to
complete the anonymous digital signature.

For the attestation of PCR registers, in a manner quite similar to non-anonymous
attestation, TPM2 Quote is used. The API accepts as input the counter value of
the TPM2 Commit and the set of PCR registers to be attested and returns the
attestation.

It is also possible to certify a generic object (for example, a key) in the TPM,
that is, to issue an attestation certifying that the object is present in the TPM and
has specific public data. For this use case, TPM2 Certify is used, which accepts as
input the references to the object to be attested and the counter value and returns
the desired attestation.

5.1.1 Applications

There are many application that increasingly require the need to preserve user
privacy. Particularly important is the topic of the Internet of Things, where very
simple devices have low security capabilities. To increase their security and test
their operating status, they could be sustained by a TPM and use remote attesta-
tion. Furthermore, applications such as vehicle-to-vehicle communication should
prevent the possible tracking of users, at the same time guaranteeing the authen-
ticity of the communication [16]. DAA constitute an adequate solution to the lack
of user privacy characterizing traditional methods.

A DAA protocol is already integrated into the FIDO authentication framework
[17], in which the TPM creates a signature using DAA for authentication purpose.
The attempt to use the DAA in Cloud Services [18] is also very interesting to
allow the user to choose which services can use its data and prevent disastrous
data leaks, where the connection between the user’s identity and his actions would
seriously damage its privacy.

In addition, thanks to the ability to perform PCR registers attestation via
TPM2 Quote, DAA can be used to perform remote attestation. DAA allows to
certify the state of a system while preserving the user’s privacy. First of all, it
allows system attestations without the need to know the identity of the system
and therefore of the user. Secondly, it minimizes the amount of information that
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a malicious user would possess if he was able to access information regarding the
claims (data minimization principle) [15].

5.1.2 Anonymity and unlinkability

As mentioned in subsection 4.2.2, the presence of a linking base (bsn) in the signa-
ture creation phase gives the possibility to link two signatures. If two signatures
performed by the same signer use the same bsn, then it will be possible for a
Verifier to find out and link them to the same author. Otherwise, in case it is not
possible to link the two signatures made by the same signer, we say we have the
property of unlinkability.

On other hand, the concept of anonymity can be defined as the impossibility
for any actor, including the Issuer, to find the identity of the platform given a set
of signatures.

We can say for the purposes of this paper that the privacy of the Platform is
preserved when the proprieties of anonymity and unlinkability are simultaneously
respected.

If a signer chooses to create a linkable anonymous digital signature using the
same bsn several times, it would leave a trace that would convince a Verifier that
the signatures were all created by the same entity, but would still not allow it to
trace its identity. In this case we have the so called pseudo-anonymity or linkable
anonymity.

The ability to relax the privacy property of a Platform and to use pseudo-
anonymity allows a system with anonymous actors to create a classification of
information not relating to an actor identity, but on its pseudonym. It therefore
allows to have a history of the signing activity carried out by a Platform, while
respecting its anonymity. It could also be possible to revoke the possibility of a
Platform to issue other valid signatures by identifying it by its pseudonym.

If the Platform wants to generate a new pseudonym, it could start to create sig-
natures with a new bsn and then it will be associated with the new pseudonym. It
is responsibility of the service to prevent unacceptable behavior from the Platform,
possibly rejecting signatures that are outside a well-constructed whitelist.

If an application needs to make sure that a certain Member of the group of
possible signers can have only one pseudonym, then it could force all users to use
the same bsn in all signatures. In this way, in fact, each signature produced by users
is accepted only if the chosen bsn is present. As consequence, the requirement to
use it results in the possibility, starting from a signature, to revoke Member ability
to perform new signatures.

It is clear that the possibility of having adaptable anonymity and adaptable
unlinkability allows, at the expenses of privacy, to obtain simpler systems and to
extend possible applications. The more privacy guarantees we give to a system, the
more difficult it will be to guarantee its security. The more the privacy properties
are relaxed, the more it is possible to control the system with ease and efficiency.
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This is the manifestation of the tradeoff between security and privacy in which the
DAA offers new tools in favor of privacy.

5.1.3 Remote attestation: full and hybrid DAA

In the case a Platform is willing to execute a remote attestation using exclusively
the DAA, it should first create a DAA key and obtain a credential from the Issuer.
Once having obtained the credential, it is able to perform a Quote attestation
through the DAA key and the received credential. Therefore, the Verifier validate
the attestation signature by only knowing the public parameters of the signature
group which the Platform is part of.

For simplicity we call this way of carrying out the remote attestation full-DAA,
since all the various phases, including the Quote, are carried out with the use of
operations related to the DAA.

However, carrying out a full-DAA remote attestation brings with it some disad-
vantages compared to the traditional one. First of all, the fact that it is a relatively
recent technology with few ready implementations, also given the great variabil-
ity of the existing schemes. Secondly, the DAA adds complexity and requires a
higher workload for the TPM, which leads to longer signatures execution times. In
contexts where the same TPM is shared among several actors who carry out the
remote attestations, this could be a not negligible problem. Recently, new schemes
have been created to narrow the gap with traditional signatures by increasing the
performance of the DAA [15].

As discussed in subsection 5.1.2, it is possible to sacrifice unlinkability to obtain
guarantees on the Host’s pseudonym. This allows to create a hybrid protocol
where Quotes are executed by means of an Attestation Key (AK) and a traditional
attestation. After obtaining the credential from the Issuer, it is used to certify a
traditional AK with DAA and exchange it with the Verifier. The latter will be
able to verify that the AK has been signed by a member of the group. With a
previous agreement between the parties on the use of a known, fixed, bsn and with
the use of this bsn in the AK certification phase, it is ensured that in the future
the Member cannot try to certify a new AK without being identified thanks to the
linking properties. A correlation is then created between the Host’s pseudonym
and the AK that the Host will use to sign the Quote attestations.

Thanks to this hybrid version of the protocol, it is possible to obtain the privacy
advantages guaranteed by the DAA used in the key certification and the advantages
of traditional attestation methods. On the other hand, this solution can only be
used where the pseudo-anonymity of the Platform is sufficient as each attestation
would become linkable. The implementation proposed in this thesis uses this
hybrid version of remote attestation.
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5.2 Wesemeyer scheme

Let us now discuss the implementation details of the scheme proposed by Wese-
meyer et al. [2] that will be used in the implementation proposed in this thesis.
We have chosen this scheme as it presents a complete description of the protocol,
including the TPM calls, and a C++ implementation of the various parts of the
protocol that we have used as basis for this thesis project. Moreover, a formal
analysis of the security of the protocol useful for future works is provided. The
scheme is based on Mechanism 4 of ISO 20008-2 [10] from which it inherits the
linking capabilities and the revocation mechanisms.

In this chapter we first define the used notation, and afterwards we will present
the prerequisites for the execution of the protocol, i.e. the definition of the public
and private parameters of the group. We will then proceed with the description of
the make credential procedure, that is a procedure defined in the TPM2 specifica-
tion fundamental for the exchange of a secret starting from the TPM Endorsement
Key (EK). We will also describe the join protocol between the TPM, the Host and
the Issuer that will allow the Platform to obtain a DAA credential. We will next
analyze the various signature types and Host-TPM protocol phases in order to
create attestations of the PCR registers (Quote), of specific object of the TPM
(Certify) or generate signatures on generic inputs (message sign). We will then
describe the verification mechanism of the various types of signatures. Lastly, we
will make some considerations concerning the security of the scheme showing two
criticalities nowadays present in its usage. The first is due to the elliptic curves
that are currently used by the TPM, while the second one is due to the fact that,
to date, the TPM behaves as a static Diffie-Hellman oracle.

The notation used in the following discussion is given below [2]:

t A security parameter.
p, n Prime numbers.

[x, y] The set of integers from x to y inclusive, if x, y are integers satisfying
x ≤ y.

Zp The set of integers modulo p, i.e., [0, p− 1]. These form a prime field,
Fp. Also note that Fpm is an extension finite field with pm elements,
where m is a positive integer.

Zp∗ The multiplicative group of invertible elements in Zp , i.e. the set of
integers in [1, p− 1].

G1 An additive cyclic group of order n over an elliptic curve. The curve
has points with co-ordinates in Fp × Fp .

P1 A generator of G1.
G2 An additive cyclic group of order n over an elliptic curve. The curve

has points with co-ordinates in Fp2 × Fp2 .
P2 A generator of G2.

[k]P Multiplication operation that takes a positive integer k and a point P
on the elliptic curve E as input and produces as output another point
Q on the curve E, where Q = [k]P = P + P + ...+ P, i.e., the sum of
k copies of P .
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GT A multiplicative cyclic group of order n.

ĥ A bilinear map ĥ : G1 × G2 → GT such that for all P ∈ G1, Q ∈ G2,
and all positive integers a, b, the equation ĥ([a]P, [b]Q) = ĥ(P,Q)ab

holds. This bilinear map is also called a pairing function.
H A cryptographic hash-function.
Hp {0, 1}∗ → Zp is used when we want to hash to a co-ordinate on the

elliptic curve.
Hn {0, 1}∗ → Zn is used when we want to hash to a multiplier for an

elliptic curve point.
Hk {0, 1}∗ → Z2k a general hashing function.
Hs The “map to point” function, used to map a random string, rs, to a

tuple Hs(rs) = (s2, y2) such that (Hp(s2), y2) is a point on the curve
G1. The function Hs is essentially the function I2P given in ISO/IEC
standard document 11770-4 [19] using SHA256 as the Key Derivation
Function (KDF).

⊥ The item is unspecified. To avoid unnecessary if–then–else constructs
in the diagrams, this carries through. So, for group items, for example,
if A = ⊥, then [b]A will also equal ⊥.

len16(x) The length of x expressed as a 16-bit integer (most significant bit
first).

senc A symmetric-key encryption function, senc(data, key).
sdec A symmetric-key decryption function, sdec(cipher, key).
aenc An asymmetric encryption function, aenc(data, ekey).
adec An asymmetric decryption function, adec(cipher, dkey).

m A message to be signed.

To use the scheme it is first necessary to establish which are the cryptographic
parameters that will then be used by all the actors involved [2]. In particular:

• a security parameter t;

• an asymmetric bilinear group pair (G1, G2) of large prime numbers order n
and a pairing function ĥ;

• two generators, P1 and P2.

At the time of group creation, the Issuer:

• chooses two integers x, y in Zn which are the Issuer’s private keys;

• chooses X = [x]P2 and Y = [y]P2;

• publishes group public parameters = (G1, G2, GT , ĥ, P1, P2, Hn, Hp, Hk);

• publishes group public key = (X, Y).
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5.2.1 Make credential procedure

The make credential procedure is a procedure described in the TPM2 specification
[3]. This allows an external actor that has the EK of the TPM and the public data
of one of the keys created by that TPM to be able to create a message containing
a secret that is readable only by the TPM to which the two keys belong [2]. In
our case, given:

• ε, public data of the TPM RSA Endorsement Key,

• QPD, public data for the TPM DAA key,

• C the DAA attestation key credential,

• a random credential key K which is used to encrypt C.

We want to make sure that K can be used by a certain Host only if:

• ε comes from the Host’s TPM,

• the DAA key was generated by the same TPM.

The make credential procedure is used twice in the join phase. The first time
without the attestation key credential in input, as the intention is to verify that
the Host has access to the TPM and therefore is able to unwrap the credential
blob created. The second time, on the other hand, is complete with the signed
credential with which the Host can ensure that it comes from the Issuer [2]. We
proceed as follows:

• validate that ε belongs to a legitimate TPM and has the characteristics we
expect. In our case ε must conform to the TCG endorsement [3] key profile,
i.e. it is a 2048-bit RSA key, uses AES 128 as the symmetric encryption
algorithm and SHA256 as hash algorithm;

• ensure that the properties of the DAA key is conform to what is expected.
That is, the key must be restricted, fixedTPM, fixedParent and use SHA256
as hash algorithm. The DAA key name is calculated by deriving it from the
public data of the key [3]:

QN = nameAlgID16||Hname(QPD)

nameAlgID16 is the 16-bit identifier which represents the hash algorithm of
the key, for the SHA256:

Hname(QPD) = 0x000b

• generate a random seed s of t bits;
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• generate an encryption key ke and a HMAC key kh through a key derivation
function:

ke = KDF (s, “STORAGE ′′, QN)

kh = KDF (s, “INTEGRITY ′′, NULL)

• encrypt K using ke via AES 128 in CFB mode and IV to zero:

K̂ = senc(K, ke)

• generate the HMAC, H, of K̂ using kh:

H = hmac(kh, len16(K̂)||K̂||QN)

• generate the credential blob as:

CB = H||len16(K̂)||K̂

• encrypt the seed s with ε to get ŝ, which is what in the TPM specification is
called the secret. The encryption uses RSA-OAEP encryption with SHA256
as the hash function and MGF1 padding:

ŝ = aenc(s, ε)

• encrypt C using K:

Ĉ = senc(C,K)

• output Ĉ, CB and ŝ.

To derive the credential, the Host uses TPM2 ActivateCredential to unwrap
the credential blob and retrieve the key K. At this point he can use K to decrypt
the credential C.
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5.2.2 Join
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Figure 5.1. Initialing the join [2]

When creating a new membership credential, the candidate Member and Issuer
perform the following operations as shown in Figure 5.1 [2]:

• the TPM creates the DAA key and the relative public key Qs. The Host
receives both the public data of the QPD key and the secret QSD data. The
Host then sends QPD and the ε public endorsement key to the Issuer;
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NOTE: the key must be fixedTPM, fixedParent and restricted to
allow attestations of internal objects of TPM.

• the Issuer creates the K1 challenge and encapsulates it with ε through the
make credential procedure and then sends the result to the Host;

• the Host and the TPM through the TPM2 ActivateCredential extract the
challenge and obtain K1;

• Str = X||T ||K1||ε is built. It will be used later in the hash. The presence
of ε is very important due to the fact that it protects against attacks from
possible malicious TPM [20];

• the Host calls the TPM2 Commit with S and (s2, y2) unvalorized;

• the data is merged and passed to TPM2 Hash which, in addition to the hash,
produces a tkt ticket used to confirm that the hash is generated by the TPM;

• the TPM2 Sign is called where the TPM checks tkt and eventually generates
the signature;

• the signature is sent to the Issuer together with the value of theK1 challenge;
The Issuer verifies the validity of the challenge and the signature.

At this point of the join, the Issuer is convinced that the DAA key and the EK ε
belong to the same TPM [2].

The second phase of the join begins, here the Issuer creates the attestation
key credential (A,B,C,D) for the specific DAA key, sends it encapsulated to the
platform, which, in turn, can check its validity and acquire it as shown in Figure 5.2
[2]:

• the Issuer generates the attestation key credential cre := (A,B,C,D);

• the Issuer signs the cre credential and generates σcre. It is basically a double
Schnorr signature that allows the Host to verify that D and B are correctly
formed, that is, that B and P1 have the same discrete logarithm of D and
Qs;

• the Issuer creates the K2 encryption key with which it encrypts the attesta-
tion key credential, then encapsulates the cypher-text with themake credential
procedure and the result sent to the Host;

• the Host uses the TPM2 ActivateCredential to obtain the K2 encryption
key. It then uses the key to decrypt the C certificate and thus obtain the
attestation key credential;

• the Host checks the signature applied by the Issuer;

• the Host confirms that the attestation key credential is valid using the bilin-
ear map h.
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Figure 5.2. Completing the join [2]
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5.2.3 Sign
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Figure 5.3. Preparing to use the DAA key [2]

Signing with an DAA key is a 2-step process [2]. In the first phase, as shown in
Figure 5.3, the key credential certification obtained in the join phase by the Issuer
is randomized, thus creating (R, S, T,W ).

The TPM2 Commit is then carried out in preparation for the next signature
phase. It is possible to create the signature with a bsn set or not. The bsn will
make the signature linkable, but will require additional operations by the TPM,
which will lengthen the execution times of the signature. In particular, if the bsn
is not used, the TPM2 Commit will return only E = [rcv1]S, while K L J will
remain undefined and will not contribute to the hash Hk, which will be calculated
in the second phase.

In the second phase, the DAA key will be used for the actual signature. There
are 3 types of signature defined:

• the Message Sign, i.e. a signature of a given message passed as input;

• the Certify, i.e. an attestation of a TPM key by signing its public data;

• the Quote, i.e. an attestation of the public data of the PCR registers includ-
ing of their values.

Each type has its own way of proceeding in generating the signature, as detailed
below.
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Message signature
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Figure 5.4. Signing a message m [2]

If the Host want to sign a generic message, as shown in Figure 5.4, it has to [2]:

• calculate md = Hk(m);

• compute c = Hk(md||R||S||T ||W ||J ||K||L||E) with K, L and J used only if
bns is present;

• call the TPM2 Hash passing as input c and obtain, together with the hash,
the ticket tkt1;

• call the TPM2 Sign passing the hash and the tkt1 ticket;

• compute h2 = Hn(nM ||h1);

• return the signature σM = (bsn,R, S, T,W, J,K, h2, s, nM).
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Key certify
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Figure 5.5. Certifying a key QK [2]

In case the Host wants to certify a TPM key, then, as shown in Figure 5.5, it will
[2]:

• load the key to be certified into the TPM via TPM2 Load ;

• compute c = Hk(“credential data”||R||S||T ||W ||J ||K||L||E) with K, L and
J used only if bns is present;

• call TPM2 Certify ;

• compute h1 = Hk(c||Hk(A)) and h2 = Hn(nC ||h1);

• return the attestation σK = (bsn,R, S, T,W, J,K, h2, s, nC).
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Quote
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Figure 5.6. Quote a set of PCR values [2]

If, on the other hand, a Quote is needed, as shown in Figure 5.6, the Host has to
[2]:

• compute c = Hk(“pcr data”||R||S||T ||W ||J ||K||L||E) with K, L and J used
only if bns is present;

• call the TPM2 Quote;

• compute h1 = Hk(c||Hk(P )) and h2 = Hn(nC ||h1);

• return the attestation σQ = (bsn,R, S, T,W, J,K, h2, s, nQ).

5.2.4 Verify

Verification of a DAA signature also consists of two stages. The first stage is
independent of the signature type and concerns verification of the credential of the
attestation key. The second stage depends on the type of signature and relates to
the verification of the actual signature [2].

Verify of DAA credential

For verification of the DAA credential, the Verifier:

• verifies ĥ(R, Y ) = ĥ(S, P2) and that ĥ(R +W,X) = ĥ(T, P2);
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• computes E ′ = [s]S − [h2]W .

If the bsn is set, in addition:

• computes (s2, y2) = Hs(bsn);

• computes J ′ = (Hp(s2), y2);

• verifies that J = J ′;

• computes L′ = [s]J − [h2]K.

Verify a message signature

Given the message signature σM = (bsn,R, S, T,W, J,K, h2, s, nM) and message
m, the Verifier:

• computes md′ = Hk(m);

• computes c′ = Hk(md′||R||S||T ||W ||J ||K||L′||E ′) with K, L′ and J used
only if bns is present;

• computes h′
1 = Hk(c

′);

• computes h′
2 = Hn(nM ||h′

1);

• checks that h′
2 = h2.

Verify a key attestation

Given the attestation signature σK = (bsn,R, S, T,W, J,K, h2, s, nC), the attesta-
tion A and the public data of the certificated key QKPD, the Verifier:

• extracts key name QN from QKPD;

• checks QN corresponds to the given in A;

• computes c′ = Hk(“credential data
′′||R||S||T ||W ||J ||K||L′||E ′) with K, L′

and J used only if bns is present;

• computes h′
1 = Hk(c

′||Hk(A));

• computes h′
2 = Hn(nc||h′

1);

• verifies that h′
2 = h2.
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Verify a Quote attestation

Given σQ = (bsn,R, S, T,W, J,K, P, h2, s, nQ) and the Quote attestation P , the
Verifier:

• computes c′ = Hk(“PCR data′′||R||S||T ||W ||J ||K||L′||E ′);

• computes h′
1 = Hk(c

′||Hk(P ));

• computes h′
2 = Hn(nc||h′

1);

• verifies that h′
2 = h2.

5.2.5 Linkability

As reported in [10], it is possible to check if two signature are linked, that is, if
they are created by the same signer, by verifying the equality of J and K in the
two signatures.

If all signer sign with the same bsn, all signatures will have the same J , from
which it will be possible to check that the user has complied with the obligation
to use the specific bsn.

K on the other hand depends on both bsn and DAA key so it is dependent on
the signer who generate the signature. If we had two signatures having the same
K, then we could conclude that the signatures were issued by the same signer. In
case the protocol requires always using a particular bsn, then K can be used to
discern a revoked Member. In fact, checking that K is not in a list of revoked users
would ensure under these conditions that the Member credential is not revoked.

5.2.6 Parameter selection and BN P256 (in)security

As highlighted, the proposed implementation requires pairing friendly EC curves.
To date, the TPM has only 2 standardized curves of this type: BN P256 and
BN P638.

Recent developments [21] show that the BN P256 curve is not as safe as ex-
pected and therefore it is necessary to use the BN P638 but its implementation
in the TPM is optional and therefore hardly implemented in physical TPMs. For
this reason, the BN P256 has been chosen until the BN P638 become usable. The
choice of curve specifications comes as a consequence as:

• t = 256, G1, G2 set by BN P256;

• P1 is set by the TPM specification;

• P2 is set by the AMCL [22], a cryptographic library used for the implemen-
tation;
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• Hk is fixed SHA256;

• Hp is the result of SHA256 mod(p);

• Hn is the result of SHA256 mod(n).

5.2.7 Static Diffie-Hellman Oracle

Like Acar et al. have shown [23], to date, the APIs present in TPM 2.0 can be
used as Static Diffie-Hellman Oracle. With the introduction of the ECC-DAA
and support for Schnorr signatures, the TPM Commit API has been added to be
used in the DAA as a preliminary step before signing. The operation takes an
input h and returns W := hw where w ∈ Zp is chosen randomly by the TPM. The
TPM Sign accepts a c as input and returns r := cx + w, where x is the private
key. It is therefore possible to calculate hx = (hr/W )1/c. Therefore, this algorithm
provides the possibility, given a choice h in input, to obtain hx, that is, it behaves
like a Static Diffie-Hellman Oracle. This weakens the security of a signature on a
BN P256 curve from 2128 to 2118. Fortunately, due to the slow processing speed
of the TPM and to the limits that can be imposed on the maximum number of
signatures in a given time frame, the attack is difficult to make.
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Design

The goal of this thesis is the implementation of a remote attestation framework
using DAA in a distributed context. We can imagine a context where the various
attestation actors, i.e. Members, Issuers and Verifiers can also reside on different
machines and communicate through REST calls. It should be possible that there
is some kind of orchestrator that can generate distributed objects, which, in their
first startup will perform an automatic configuration phase that will lead them to
become Members through interaction with the Issuer who must be able to verify
their eligibility. Verification of the identity of Members by the Issuer is beyond
the scope of this thesis. In addition, it is assumed that the Member and Verifier
have trusts with respect to the Issuer.

For this purpose we have chosen to build an infrastructure to enable Direct
Anonymous Attestation based on the hybrid scheme previously outlined in subsec-
tion 5.1.3. In this way we can distinguish the initial configuration phase, in which
each distributed object becomes Member and exchanges an AK with a Verifier,
with the remote attestation phase, which stays equivalent to that of traditional re-
mote attestation. To simplify management in a distributed environment, we chose
to develop attestation in push mode, that is, where the attester (Member) period-
ically contacts a verification server (Verifier) providing a Quote and the BIOS and
IMA event log. This way, the Verifier does not have to have the authorizations to
contact each Member and for that reason may also be outside the infrastructure
where Member reside.

Six modules have been created to carry out the various phases of a hybrid DAA
as show in Figure 6.1:

• the Issuer is a webserver that Manages the creation of credentials to allow
new members access to the group;

• the Verifier is a web server that allows the exchange of an AK with the
Member and then handles push remote attestations by verifying and logging
any problems related to signatures or attestations;

• the Provision tpm is an application that manage the creation and persis-
tence in the TPM of the Endorsement Key (EK);
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Figure 6.1. Implementation overview

• the Member join creates the DAA key, executes the join with the Issuer
and obtains and persists the generated credential;

• the Member ak is responsible for creating an Attestation Key (AK), certi-
fying it using the DAA, and, finally, exchange the key with a Verifier;

• the Member uses the AK for the purpose of traditional remote attestation
with the Verifier.

With reference to the Figure 6.1, the Platform configures its TPM, creating
the EK (1) (Provision tpm). It then generates the DAA key (2) and requests a
credential from the Issuer (3-4) (Member join). The possession of such credential
renders it a Member of the group, allowing to generate (5), exchange (6) and
register (7) the AK with the Verifier (Member ak). At this point, it is ready to
iterate the execution of the remote attestation with the Verifier in push mode
making a Quote (8) and than sending that with BIOS and IMA log (9) (Member).
Finally, the Verifier validates the AK, signature, and attestations (10) and produces
an attestation log (11) containing any validation problems.

Let us now describe the applications and their interactions in more detail,
focusing first on how they work and then describing the protocols.
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6.1 Applications

Issuer

The Issuer application acts as the Issuer from DAA scheme by handling group
secret keys and the possibility to admit new members into the signature group
through credentials release. It deals with the verification of the candidate identity
and ensuring the compliance of an authorization policy for the purpose of creden-
tial release. As previously mentioned, the Issuer is a HTTP webserver waiting
for requests by candidates Member willing to join the group through the “Join
protocol”. The user manual can be found in section A.1.

Provision tpm

Provision tpm has the aim of setting all TPM configurations so that the TPM
is then usable by the following applications. Its main function is to generate the
EK which will be used as parent key during the DAA generation and to force its
persistence in the TPM.

This is a non-fundamental step, as it could already exist an EK which is persis-
tent in the TPM for various reasons. The generated EK uses handle=0x810100c0
as well as all the following modules. To date, the only way to change the han-
dle value is directly modifying the source code and recompiling the application.
Therefore, it is necessary to possibly launch it at most once for each machine to
be attested. The user manual can be found in section A.2.

Member join

The Member join creates or reads from a file a DAA key and executes “Join
protocol” together with the Issuer to obtain a DAA credential which will be stored
in an output file. The user manual can be found in section A.3.

Verifier

The Verifier has a double role in this hybrid version of DAA scheme. It allows
Members to register an AK through a key certification via DAA and, meanwhile,
it manages the verification of the measurements regularly sent by the Member.
For the AK registration, the Verifier executes with the Member the “AK exchange
protocol”, receiving an AK certificate from the Member, forcing, during the signa-
ture phase, the use of a fix bsn chosen by the Verifier. The Verifier then verifies
that the DAA signature is valid and it also ensures that the Member has never
before exchanged an AK with it by guaranteeing that it can exchange at most a
single AK with each Member. To do this, as discussed in subsection 5.1.2 and
subsection 5.2.5, it exploits linking capabilities of the DAA that, through the use
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of the fixed bsn, will produce a fingerprint in the signature by which we can dis-
tinguish whether that Member has already made an attempt to exchange the AK
or not.

In order to verify the measurements, the Verifier receives from the Member
through the “Push measurement protocol” the attestation of the TPM and of the
state of the PCR registers as well as the logs of BIOS and IMA events. It then
checks the signature of the attestation with the AK and verifies that the declared
state of the PCRs matches the one obtained from the received BIOS and IMA
events. It also checks that each event is expected, i.e. present in a list of expected
measurements. It thus produces a measurement log in which any problems in
validations or any unexpected BIOS and IMA measurements are persisted. The
user manual can be found in section A.4.

Member ak

The Member ak has the aim to generate an AK in the TPM and register it to a
specific Verifier through the “AK exchange protocol”. To do that, it needs both
the DAA credential and the DAA key, with which it will perform the certification
of the AK. If successful, the data of the generated AK will be persisted into a
specific file. The user manual can be found in section A.5.

Member

The Member is an application meant to be regularly called to perform a traditional
remote attestation with the Verifier through the “Push measurement protocol”.
The Member needs an AK previously exchanged with the Verifier with which it
intends performing the attestation.

The Member asks TPM to make a Quote of the configured PCR registers and
afterwards reads the BIOS and IMA measurements thus composing the payload
to forward to the Verifier. The user manual can be found in section A.6.

6.2 Protocols

Join protocol

The aim of the Join protocol is to agree the Issuer and the candidate Member on
a DAA credential.

The candidate first requests the public data of the group. He then sends his EK
and DAA key to the Issuer so that the Issuer can verify his identity via the EK. In
case the Issuer reputes that the candidate can join the group, it creates a challenge
to the candidate, via the make credential procedure, with the purpose of proving
that he is the holder of the EK and DAA key received. In case the candidate
succeeds in solving the challenge through the activate credential procedure, he
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will ask the Issuer for the issuance of a credential for his DAA key through the use
of the obtained credential key. The Issuer then verifies the validity of the response
to the challenge and if it is valid, produces an encrypted DAA credential with a
new credential key that can be derived from a new challenge that it will pose to
the candidate. Finally, the candidate extracts the new credential key and decrypts
the DAA credential. Implementation details can be found in section B.1.

AK exchange protocol

The exchange of the AK between the Member and the Verifier is handled through
the AK exchange protocol.

The Member after creating an AK makes a DAA attestation on the key with
a static bsn derived from a previous interaction with the Verifier. In this way he
can prove that he is a Member of the signing group, and through the fixed bsn he
can prove to the Verifier that he has never before attempted to exchange an AK
with him. In fact, the Verifier at the end of the AK exchange, stores the Member’s
signature point K (PT K ) so that it can detect future uses of the same DAA key
for key certification. Implementation details can be found in section B.2.

Push measurement protocol

Through the Push measurement protocol, a Member performs a remote attestation
with the Verifier.

The Member request a Quote to the TPM signed with the AK first exchanged
with the Verifier obtaining an attestation of the PCR registers. In addition, obtains
the BIOS and IMA measurements logs and sends everything to the Verifier. The
Verifier checks the validity of the used AK and validates the signature of the
Quote attestation. It then examines the BIOS and IMA logs for unexpected events
by incrementally calculating the expected value of the PCR registers. It then
compares the values of the PCR registers in the attestation with those derived.
If it encounters validation problems or unexpected events it writes the result in a
measurement log. Implementation details can be found in section B.3.
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Chapter 7

Implementation

In this chapter we describe the technologies and dependencies used to success-
fully achieve an implementation that respected the design proposed in the chapter
chapter 6. The first implementation choice was the programming language since it
was necessary to create an implementation as low-level as possible for the purpose
of integrations in future projects. As mentioned previously, our implementation is
heavily based on the implementation proposed by [2]. It is a C++ project divided
into several applications that we will present in the next chapter. As described
earlier, the motivation behind this choice is the presence of an accurate description
of the protocol and the presence of a security proof of the protocol itself.

7.1 ecc-daa project

The development of the thesis is strongly based on the ecc-daa project [24] from
which it takes the implementation of cryptographic primitives DAA. ecc-daa is a
C++ project composed of various sub-projects, one for each program, that per-
form the various functions related to DAA. The implementation developed in this
thesis inherits various code blocks from the ecc-daa project and readjusts them for
our purpose. The same structure of the ecc-daa project has been maintained for
backwards compatibility and future use.

We see below the list of programs in the ecc-daa project along with a brief
description of how they work:

• provision tpm: has the aim of preparing the TPM. It takes care of the
creation of an RSA endorsement key and makes it persistent. This avoids
that the creation of the key is performed at each step as it is a very slow
operation on hardware TPMs.

• make daa credential: generates the DAA key and performs the join step.
It performs both the part of the Member and the Issuer by generating the
credential that the Issuer issues to the member after the join phase.
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• daa sign message: starting from the credential and the DAA key, it signs
an input message and returns the signature together with some associated
information, including the randomized credential created for the signature.
It can also be configured to use a random bsn which will affect the presence
of the points J and K in the signature output.

• verify daa signature: reads a signature and the associated randomized
credential and checks the signature and credential.

• daa certify key: starting from a credential and a DAA key, it creates loads
and signs an ECDSA key, generating a certificate for it associated with a
randomized credential. It can also be configured to use a random basename
which will affect the presence of the points J and K in the signature output.

• daa quote pcr: starting with a credential and a DAA key, it uses TPM2 Quote
to read and sign the values of a PCR set. It then returns the signature with
the associated randomized credential. It can also be configured to use a ran-
dom bsn which will affect the presence of the points J and K in the signature
output.

• verify daa attest: is used to verify the claims produced by the daa certify key
or the daa quote pcr. The signature is verified together with the associated
randomized credential.

7.1.1 Dependencies

The ecc-daa project has some dependencies that will also be used in the imple-
mentation of this thesis. Let us look at them briefly giving a brief description and
an overview of their use in the project.

ibmswtpm2 is a software implementation of the TCG TPM 2.0 specification
created by IBM based on a previous Microsoft implementation. It allows to launch
a TPM simulator which you can connected to though a socket interface [25].

ibmtss is a user space TSS for TPM 2.0. It implements the functionality
equivalent to (but not API compatible with) the TCG TSS working group’s ESAPI,
SAPI, and TCTI API’s but with a different interface [26]. It comes with over
110 TPM tools samples that can be used for scripted apps, rapid prototyping,
education, and debugging. It also has a web based TPM interface, suitable for
practicing when unfamiliar with TCG technology and also useful for basic TPM
management.

Apache Milagro Cryptographic Library (AMCL), is a multi-lingual and
architecturally agnostic cryptographic library that supports elliptic curve cryptog-
raphy, pairing-friendly curve cryptography, RSA, AES symmetric encryption and
hash functions. It is designed from the ground up with side-channel attack resis-
tance in mind. AMCL has now been extended and is being re-released as MIRACL
Core [22]. The library is used for elliptic curves calculations, either in credential
creation, signature creation or verification activities.
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OpenSSL is a general purpose cryptography library that provides an open
source implementation of the Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols [27]. It also includes tools for handling big numbers,
generating RSA private keys and Certificate Signing Requests (CSRs), checksums,
managing certificates and performing encryption/decryption. The library is used
as the basis for cryptographic functions, especially big numbers, hashes and for
ECDSA signatures. Utilities have been built to reproduce the functions useful to
the protocol.

7.2 Structure and implementation choices

functions using the TPM or directly
related to implementing the protocols

utilities which do not use the TPM, e.g
timing routines, OpenSSL routines

Daa_impl

Utilities Daa_code

include common include common

set of programs that
implement and time the

protocols

TPM, Issuer and Host classes
used to implement the protocols

Daa_tpm

include common Tpm_experiments

Figure 7.1. Project overview

In Figure 7.1 we can have a look at the code structure of the thesis project.
It is a single C++ project divided into several folders with common code for
all applications and application-specific folders. The “Utilities” folder contains
wrappers to dependencies that do not use TPM, for example timing routines and
OpenSSL routines. In the “Daa code” folder, on the other hand, we can find
wrappers for direct calls to TPM and support classes for the implementation of
DAA protocols. All software main functions are placed under “Tpm experiments”.

All program inputs and all Data Transfer Objects (DTOs) used for REST calls
in the various application protocols are intermediated by a tool called ByteBuffer,
which allows standardization of the way C and C++ objects and structures are
serialized and then sent in the protocols. It is possible to find more details in
section B.4.
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7.2.1 Dependencies and other useful project

For the development of the Issuer and Verifier, it was necessary to find a library
that would allow us to be able to create a simple webserver that would smoothly
support REST calls and the HTTPS protocol. To this end, libhttpserver was
chosen. It is a C++ library for building high performance RESTful web servers
with the aim to directly support all possible HTTP features and, thanks to its
simple semantic, allow the user to mainly focus on his application and not on
HTTP request handling details [28].

As for applications running on the Platform side, they need to contact the
webservers to make REST calls. For this purpose, we chose httplib [29], a header-
only library for making simple and expressive HTTP calls.

The other fundamental project to carry out the verification of the BIOS and the
IMA measurements log is the project IBM TPM Attestation Client Server
(ACS) from kgoldman (IBM) [8]. kgoldman is also one of the author of ibmtss e
ibmswtpm2 which, as said, are the basis of the entire project. The ACS project
has been fundamental to fully understand how the IMA manages measurement
log files (ML). Unfortunately, current Linux kernel (5.15.0-33-generic) is using a
different technique for the calculation of the hashes to be extended in the PCR
than the one currently present in the ACS project.

7.3 Verification and revocation details

In this section we describe the Verifier configurations and behavior details regard-
ing remote attestation verification by showing some examples and expected results.
Finally, we will discuss how to obtain the revocation of a Member’s signing cre-
dential and prevent that Member from using the AK again or may attempt to
exchange a new one.

7.3.1 File measure whitelist and blacklist paths

During the Push measurement protocol the Verifier validated each BIOS and IMA
measurement by using a set of expected measurements, the whitelist database, and
a collection of paths not to be checked, called blacklist path database. Each entry in
the whitelist database is composed of a pair of file name and hash. The file name
refers to the absolute path (terminated with a ‘\0’) of a possible file having a
certain hash. Multiple records for each file name can exist as they represent the
possible expected versions of a file in a specific file path. To date, the database is
a JSON file which can be configured as startup parameter. Each record have the
same scheme as that shown in Listing 7.1.

Listing 7.1. Example of a whitelist database entry

1 {

2 "file_name":"/usr/lib/x86_64-linux-gnu/libgcc_s.so.1\u0000",
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3 "hash":"63eb91b5d726e401c5affb2a035e175c374cae75cdf25a1f..."

4 }

In contrast, the blacklist path is a database containing an set of absolute paths
that should not alerts in case a file that matches the path has validation problems.
In detail, it is a list of regex that validate the file name to decide whether to
emit alert. To date, they are implemented with a JSON array persisted in a
configurable file as startup parameter. Each entry corresponds to a regex that, in
case of match to file name, does not emit alert even if the measure is invalid. In
Listing 7.2 can be found an example showing the insertion in the path blacklist
of any file whose absolute path begins with /home/user/daa_test/Verifier/ or
/home/user/daa_test/Member/:

Listing 7.2. Example of a path blacklist database

1 [

2 "^\/home\/user\/daa_test\/Verifier\/.+$",
3 "^\/home\/user\/daa_test\/Member\/.+$"
4 ]

Register mode

To easily enable the generation of the measurement whitelist database from a
trusted Member, it is possible to start the Verifier in Register Mode (as reported
in user manual in section A.4) and proceed with a remote attestation with member
application. By doing so, the Verifier, whenever it detects a measurement absent
in the whitelist, will proceed to add it to the database by adding the file name and
hash pair. In any case, within the measurement log there will still be an alert for
each measurement not found.

7.3.2 Measuration warnings and errors

The results of each measurement performed with the Push measurement protocol
are saved by the Verifier in a specific directory called measurement_logs in the
base directory set in startup configurations. We can find an example of measure-
ment log in Listing 7.3.

Listing 7.3. Example of measurement log without alert

1 [INFO]: Challenge:

9da708ad90cd490193c9bf2f3246b6f9e29b4a406750745e118cba5639b9d829

2 [INFO]: AK public data:

00580023000b00050472000000100018000b00030010002096b488e

8006507e5c41a557ce61dcafd8eb29e0a1d8fa27822a07cf48e8977de0020899411cf3363c0a757

87d6f1985213062767490095111b064235ff842a4cef9c

3 [INFO]: Attestation:

ff54434780180022000b12113ef24b72de8ed6ed9855bc1e2a75aa1eb9

8ce14ef06f68acc433aa34866d00209da708ad90cd490193c9bf2f3246b6f9e29b4a406750745e1

18cba5639b9d82900000000014b3fdc000000000000000001201910230016363600000001000b03

ff07000020efbfcff7383329c244b54a97d147627305b1a2c35f67d20c9f890ad7afb80e21
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4 [INFO]: nc: d24b334e683396d962d76e984736b61f2abe519b4d9bfa8112f4f0f6037994d2

5 [INFO]: sig_s:

bc9072003a269b99f6a098a0db1bdf47f390191ae43261179cfeb96978702beb

6 [INFO]: h2: 26a7633d389fa253fd84ccd6a92c49d903a2fdad08b23e9d813fcd362803c671

7 [INFO]: isPaddedBanks: 0

8 [INFO]: Verification ok

In the header of each measurement log it is possible to find the various input
received by the Member for that measurement: the challenge, the AK used in
the signature, the attestation produced by the TPM in the quote and the related
signature. In addition, if the application is started with log level=2, also the entire
BIOS and IMA log will be logged in the same file.

Warnings

In case a BIOS or IMA measurement is invalid, ie. that is not present in the
whitelist measurements and not matching the blacklist paths, this will be reported
in the log as WARN. The result will be a log similar to the one in Listing 7.4.

Listing 7.4. Example of measurement log with alerts

1 ...

2 [WARN]: Alert: time between two measurement is greater than the timeout. 542

seconds passed from last measurement.

3 [WARN]: The reset counter was changed

4 [WARN]: The restart counter was changed

5 [WARN]: The safe flag is false

6
7 [WARN]: Unmatched Bios Measurements, 9 found:

8 [WARN]: Hash:

194ed60de92dd28d096e142b6b68b8da78cd9012ea40beff9aa2be92e8491738 Pcr: 9

9 [WARN]: Hash:

cc6aa04ba7cefc2fb8c7b479369c23618ac9d0e03c256d3113044dd4e2dcf2c5 Pcr: 8

10 [WARN]: Hash:

3ba11d87f4450f0b92bd53676d88a3622220a7d53f0338bf387badc31cf3c025 Pcr: 4

11 ...

12 [WARN]: Unmatched Ima Measurements, 523 found:

13 [WARN]: Hash:

54c863325bb96debab77e600bf76806085d2cecf3f16297bfc921f336e724133 File

name: boot_aggregate

14 [WARN]: Hash:

83db13d7730b34530fc27161ed9d9c9c54e274d45d0e3e56db766ff2966d6b05 File

name: /usr/lib/modprobe.d/blacklist_linux_5.15.0-52-generic.conf

15 [WARN]: Hash:

f4877bdf7d58fb0481713bcad5e8e9d5408bf730eaf914ef3948c5f9989b67ec File

name: /usr/lib/modules/5.15.0-52-generic/modules.softdep

16 [WARN]: Hash:

4151e0b3705f33575e86cc2196491f2b91d7fd25fc31f1bef807dfafc29ea4b7 File

name: /usr/lib/modules/5.15.0-52-generic/modules.dep.bin

17 ...

18 [INFO]: Verification ok

The log contains a row per any invalid measurement. In the case of BIOS
measurements, they contain the PCR register and the hash of the measurement.
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Instead, in case of IMA measurements, they contain the absolute paths and the
hash of the measured file. If the time between two following POST/measurement

exceeds the set time, a warning containing the number of seconds elapsed between
the two measurements by will be emitted. Moreover, a warning will be also emitted
if the two measurements reports different reset or restart counters as essential for
detecting TPM or platform restarts.

Errors

In case of absence of errors, the log will contain a row showing “Verification OK”.
Conversely, as shown in Listing 7.5, if problems concerning the signature verifi-
cation, challenge verification or AK verification arise, the log will contain one or
more ERRORs with the relative description of the identified problem.

Listing 7.5. Example of errors in the measurements log

1 ...

2 [ERROR]: Verification error: Error in challenge checking: challenge not

registered.

3
4 [ERROR]: Verification error: Error in challenge checking: registered ak_pd

!= quote ak_pd

5
6 [ERROR]: Verification error: Attestation extra data != challenge

7
8 [ERROR]: Verification error: Measurement’s digest not compatible with

attestation’s one

9
10 [ERROR]: Verification error: Signature check failed

7.3.3 AK revocation

As previously mentioned, during the AK exchange protocol the Verifier, after
having verified the Member’s AK, inserts it in a database of the active keys to-
gether with the Member pseudonym PT K. In the proposed implementation, the
database is a JSON file passed as a parameter to the application and contains
an array of records structured as in Listing 7.6. Details can be found in the user
manual in section A.4.

Listing 7.6. Example active AKs database

1 [

2 {

3 "ak_pd": "00580023000b00050472000000100018000b00030010002096b488e80...",

4 "l_m": "ef417945a3d1adf85d4c90a8414e764136f4316d5d06ef2ec5a652b1...",

5 "lmt": 1665345806,

6 "pt_k": "000200200e796d3118420d02e95b252de4c499e2d34f607b2ea41e2cbd..."

7 },

8 ...

9 ]
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In case a Member turns out to be malicious, or in the general case one wants to
revoke of the AK exchanged with a particular Verifier, the Verifier must proceed
to edit the entry for that AK in the database. To give a practical example, let
us imagine the case where we have a Member whose attestation Quote makes us
infer it underwent an attack and whose DAA credentials may have been stolen
together with the AK exchanged. By looking at the measurement log related to
the suspected measurement, we can retrieve the logged AK public data ak pd.
Once retrieved we modify the database of active AKs by searching for the entry
containing as ak pd the value sought. In particular, we can modify the ak pd value
by inserting any value different from the initial one. In this way, future attestations
using that AK will not be accepted and a warning/error will be issued alerting
to the attempted use of an nonexistent key. This is regardless of the validity of
the created attestation. By doing so, the AK is revoked and, due to the presence
of the PT K in the database, the Member’s DAA credential cannot be used to
certify new AKs without the Verifier blocking and warning of the attempt.

The proposed method can be considered a Verifier blacklist revocation of the
DAA credential. To date, this is the only revocation method supported.

7.4 Considerations

We conclude this chapter with consequential considerations for the proposed im-
plementation. In particular, we spend a few words about the possibility of the
Member’s anonymity being lost despite the DAA due to other factors that may
cause the identity to be discovered. We will also discuss the Issuer, its ability to
issue signatures, and the need for trusts against it.

7.4.1 Member anonymity

The DAA is a tool that helps lay the groundwork for remote attestation that
safeguards the signer’s anonymity, however, may not be sufficient to guarantee
it. As described in subsection 5.1.3 and implemented in this thesis, the use of
a pseudonym allows us to have a way of identifying a Member who has already
exchanged an AK but it is achieved at the expense of the privacy of the Platform.
This compromise enables us to obtain a protocol similar to that of traditional
remote attestation and being able to have a history of the attestations received
allowing us to do a temporal analysis of them, detecting changes in system state,
such as resets, or measuring the time between two subsequent attestations.

In addition, another important aspects for Platform anonymity are the BIOS
log and IMA logs sent to the Verifier at each remote attestation. In these logs there
is much information concerning the Platform that could, in specific contexts, be
sufficient not only to characterize the Platform and collecting data about it, but
also to discover its identity. For instance, if considering a well-known configuration
file logged in the IMA log and containing a Host identifier, it would be possible
retrieve its content, thus Platform identity, through a dictionary attack. Another
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example could be a software in execution uniquely by a specific host whose identity
is known: the presence of the particular software hash in the IMA log would
directly correlate to that Platform identity. On the other hand, in case from the
attestation history or/and form the BIOS and IMA log the Platform could be
identified, it would make the solution from a privacy point of view equivalent to
traditional remote attestation. It is therefore important to consider the context in
which the devices operate in order to determine the impacts regarding Platform
privacy.

7.4.2 Trust of the Issuer

The Issuer can autonomously emit new credentials, indeed it could generate a
DAA key and autonomously perform the Join protocol to obtain any number of
DAA credentials. No group Members or Verifier could notice either the creation
or the use of these credentials. To the Verifier, their usage would seem similar to
the one by any other legit Member. Nonetheless, the Issuer could not impersonate
another Members nor use their pseudonyms, since it does not possess the Member’s
DAA key. Indeed, each Verifier verifies the Member pseudonym PT K, which
directly depends on the DAA key. We can find in the role of the Issuer some
parallels with that of Certification Authority (CA) has in the traditional remote
attestation. Indeed, they both generate transitive trust toward the signer through
a certification of its signature key. In the case of traditional remote attestation,
the CA implicitly or explicitly certifies the correlation between the public key and
the signer identity. On the other hand, in the case of DAA attestation, through
the credential release, the Issuer certifies that a specific signer is reliable group
Member capable of producing signatures that can be associated with the identity
of the group itself.
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Test and validation

In this chapter we propose some of functional and performance tests on the devel-
oped applications. We initially describe the testbed used in test execution and its
configuration, than, for each protocol used by the applications we will see some
tests that are intended, on one hand, to show in practice how to perform certain
operations, and on the other hand, to provide an overview of the execution times
of the applications and their analysis.

8.1 Testbed

The test environment provides the execution of the various applications in sep-
arated virtual machines (VM) in order to simulate remote attestations in a dis-
tributed environment. The test environment consists of 3 VMs:

• the Issuer VM simulates the machine in which the Issuer is run. This is
configured with the group secret key and executes the “Issuer” application
waiting for candidates for the group;

• the Verifier VM simulates a generic Verifier listening for requests from
various platforms. It executes the “Verifier” application with a preloaded
IMA whitelist to make the result of attestations more realistic;

• the Platform VM simulates the Platform to be attested through a virtual
TPM instance mounted as a device and managed by the hypervisor. This is
configured via “Provision tpm“ for the generation of an EK that will then
be used in the various tests.

All VMs uses a fresh installation of Ubuntu attempting to simulate an environ-
ment as standard as possible. The VM were deployed in the same host, based
on Proxmox 7,2.11 [30] a Linux open-source distribution based on Debian which
allows graphical management of VMs and virtual TPMs, as well as allowing for
easy backups and restores of these. Proxmox 7,2.11 virtualization is based on qemu
7.0.0-3. Moreover, each VM uses Kernel-based Virtual Machine (KVM). The host
has the following configuration:
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• CPU: AMD Ryzen 3900X (x86, 12 core, 24 thread, 3.8GHz) supporting
hardware-assisted virtualization;

• RAM: 16x2GB DDR4 3200Mhz CAS 16;

• SSD: NVME 80K IOPS.

8.1.1 VMs setup

Each of the VMs presented was configured from a fresh installation of Ubuntu
22.04.1 LTS based on Linux 5.15.0-52-generic kernel. Following the OS installa-
tion, the environment setup procedure proposed under section B.5 was performed
and then the various applications were installed in /etc/{appname}. In addition,
we create /home/thesis/daa_test/{actorname}/ as the base directory for ap-
plication inputs and outputs. Now each VM is ready and it is possible to proceed
with application execution.

Issuer VM

For the Issuer configuration, was used as group issuing key the one proposed in
the Listing 8.2. From this we derive the group public key reported in Listing 8.3.
Finally, the verifier application is started with the parameters shown in Listing 8.1.

Listing 8.1. Issuer execution command

1 /etc/issuer \

2 -d /home/thesis/daa_test/Issuer \

3 -fisk fisk.data \

4 -fipk fipk.data

Listing 8.2. fisk.data containing group issuing key

1 0002002065a9bf91ac8832379ff04dd2c6def16d48a56be244f6e19274e97881a776543c0020

2 126f74258bb0ceca2ae7522c51825f980549ec1ef24f81d189d17e38f1773b56

Listing 8.3. fipk.data containing group public keys

1 000200920002004600020020c824b17d4f4e845eebfdcaabc1eccef8afdc3ef2f8e2eabdc230

2 4a20e6b0b1e90020b0fc6dba0bda080e2f4a7965b2fdbf5fc6b2678683ae35d4004d1ac483f6

3 12920046000200206e20706db66d3abce4a8a4b5fb9d87e624a770fe835518bfadf449a6e65f

4 7c6c0020a48aa8741b05553289a2424d0a5ed85f5e77ca139428f22c88e8346cb863307e0092

5 00020046000200204e705fe26bf2918ce1d22cc0c956e570c7260cae27113adbf61e3b9f1e9a

6 5dce002087a097c489d8cb8f570ea621e6c60f858be3abf11de858e2202d579c1d7a22430046

7 00020020c09a8b38bc9bf70580e23904633c63655fc61f28a04cab527596c5d8b690d7e60020

8 54bed983371e5af0d4ac6e80af66ee5b2d5fbfe006220ac4f7384e601083739c
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Verifier VM

To make performance tests more complex and truthful and to evaluate the re-
sults of functional tests more cleanly, the Verifier was initialized with a whitelist
database of BIOS and IMA measurements preloaded with about 70000 records. In-
stead, the database of already exchanged AKs is initially empty. Verifier startup
configurations are shown in Listing 8.4. The fixed bsn to be used in AK certifi-
cation by the Member is indicated in Listing 8.5. Finally the group public key is
naturally the same as that reported in Listing 8.3.

Listing 8.4. Verifier execution command

1 /etc/verifier \

2 -d /home/thesis/daa_test/Verifier \

3 -fipk fipk.data \

4 -fbsn bsn.data \

5 -fakdb aks_database.json \

6 -fbiosw bios_whitelist.json \

7 -fimaw ima_whitelist.json

Listing 8.5. bsn.data containing the fixed bsn to be used in the AK certify

1 000200920002004600020020c824b17d4f4e845eebfdcaabc1eccef8afdc3ef2

Platform VM

The Platform VM is the one that simulates the Platform to be attested, so it will
contain a virtual TPM2 revision 1.64 that it will use after an initial phase of con-
figuration and creation of the EK. The configuration is accomplished by running
”Provision tpm” application with the command shown in Listing 8.6. In addi-
tion we prepare the configuration file pcr_configuration.json, as in Listing 8.7,
which will later be used in the Push measurement protocol. Functional and per-
formance tests will use this VM to initiate execution of the various protocols and
evaluate outcomes.

Listing 8.6. Provision tpm execution command

1 /etc/provision_tpm -t

Listing 8.7. pcr_configuration.json - PCRs Quote configuration file

1 {

2 "algorithm": "SHA256",

3 "selectedPcrs": [0,1,2,3,4,5,6,7,8,9,10],

4 "imaMeasurementType": "FULL_SIZE_BANKS"

5 }
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8.2 Functional Test

Functional tests are intended to show the operation and expected results of the
designed protocols so that the functioning of the protocols can be better under-
stood. The tests were run in the testbed described above, specifically we are going
to run them on the Platform VM since Issuer and Verifier are servers that handle
requests without the need for restart.

8.2.1 Join protocol

The purpose of the test is to verify the Join protocol and the release of a credential
through the interaction between the Member join and the Verifier. Checks on
EK are disabled to allow multiple iterations without being blocked by the fact
that EK is already being used. To run the test, we start the Member join as
in Listing 8.8 and we expect the DAA key and credential will be generated. In
particular, we expect the credential to be generated in /home/thesis/daa_test/

Member/credential.data containing data similar to that in Listing 8.9. The DAA
key, on the other hand, is created and saved in /home/thesis/daa_test/Member/

daa_key.data and has a similar structure to Listing 8.10.

Listing 8.8. Member join execution

1 /etc/member_join \

2 -t \

3 -d /home/thesis/daa_test/Member \

4 -fipk fipk.data \

5 -fdk daa_key.data \

6 -fc credential.data \

7 -iu https://issuer:8080 \

8 -ll 2

Listing 8.9. Credential file

1 00040046000200203a2c3c92deab24382674ff4896c425f441ae852dac453f29b88bddb803438

2 54b002068b24ad56b59a09bcb562fdaf8a486cf2bf64fa8d190b3c630399fb8afccfea9004600

3 020020453910c08803010b9f0009965146d55fbabd501c188fd79d8753e2d09db623560020de4

4 20f20eb7b18f5917a222f93ac6b872ea7deefdab1d2e5147ba713cd6b540900460002002023ec

5 579ae6bd2c98846b449bd2039e7a3ab77583fe799ab0d835f00f41b955690020269c5169ca59f

6 36c08a51a906e8cef7e7082e3080887b42c30e29c3dde7a0dd3004600020020908541a7e7d935

7 bb300e795fd2e33f9ce7d9a9d2fc24ae61d71c66110e31d1770020e1019d66a0b7f02e08d564d

8 975dadedb66c5ccb98779368fe5a37ac967bf763b

Listing 8.10. DAA key file

1 00020080007e00203f03bf8ba678739201d6c616edd3a4e80a13e4ca9c81bfd5bc2c054b6d417

2 24500103b8700c846539a5d34aa45da1f568053075545bb36e6fa71096c5d34221e6e6ab09484

3 d860eee6b3ff9c7f39830a0b0b5e6d83070eae8a40a938ea7aeb803a62f95236ea68eb5246c6e

4 f620ce7a406ad9a2f1f0fab5f1dd3a354005c005a0023000b0005047200000010001a000b0001

5 0010001000204417086f07c4845bd21adf56d6eab443e8f4c6a106bb3a575814d41073f270c70

6 020e55bb5ea5db9c035f4224f9074e350947a02dbda87500adfc4fa171593bb04e8
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Instead, in the case of reusing the same challenge retrieved from the POST join/
issuercredential or in case the request to the POST join/makefullcredential

is invalid the Issuer returns an error preventing the credential from being released.

8.2.2 AK exchange protocol

Let us now try to verify the behavior of the AK exchange protocol and the interac-
tion between the Member ak and the Verifier. We run Listing 8.11 and expect to
get in /home/thesis/daa_test/Member/ak.data a file valued similarly to List-
ing 8.12.

Listing 8.11. Member ak execution

1 /etc/member_ak \

2 -t \

3 -d /home/thesis/daa_test/Member \

4 -fak ak.data \

5 -fipk fipk.data \

6 -fdk daa_key.data \

7 -fc credential.data \

8 -vu https://verifier:8081

9 -ll 2

Listing 8.12. AK data file

1 007e00202a1c0344077be5ea73c4deca5489a7eefddac04afb12fedcf8ab947a296c6d6a00107

2 2b535402556129cd12e2375bf9ba8900dbdb38261370f7dfff4781784d1ec456b6837141d9bc0

3 766eb5abdbc556ebc50a894ae81bd7509dbef25002846f401620b783ccda5a952b17b6602292e

4 98285d6088f9b7f9096935907\r\n

5 00580023000b00050472000000100018000b0003001000202e51b951e86999c526aac9a49a71b

6 d616ed8248789accf51f90b78d0eb389ea600207d93a49380ef8687e264bbc3fbd8238f6823c6

7 4eccc2ac8a56dd4754005677b2

In case we try to use the same credential a second time we expect the Verifier to
detect the attempt in the POST /akRegister due to the verification of the PT K
and not accept the AK.

8.2.3 Push measurement protocol

Finally with regard to the Push measurement protocol, the execution of the Mem-
ber is expected to result in the creation of a log in /home/thesis/daa_test/

Verifier/measurement_logs that would later allow us to obtain the information
needed to identify problems in the Platform attestation. In particular, we test the
behavior of an attestation subsequent to the creation, modification, and execution
of a binary with root privileges. This will trigger measurement by the IMA that
will be saved in the IMA log and consequently we expect the Verifier to take this
into account during validation.

In order to do this, we let the IMA measure an executable twice, first for its
creation and execution, then for its modification and re-execution. We obtain this
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result by proceeding as in Listing 8.13, by making a temporary copy of /bin/cat
and then replacing the copy with /bin/cp. Running the Member as in Listing 8.14
we expect, as in Listing 8.15, that the report contain the two executions both
reported as WARN because even if the hash of the two applications (/bin/cat e
/bin/cp) are present in the whitelist database, these were run in a path that is
not the standard, whitelisted path (/bin), but were instead performed in /home/

thesis/test.

Listing 8.13. Force double IMA measurement

1 cd /home/thesis/test

2 cp /bin/cat ./cat #Copy /bin/cat binary to current directory

3 ./cat justexec #Execute the cloned copy of /bin/cat to let IMA measure it

4 cp /bin/cp ./cat #Overwrite the cloned /bin/cat with /bin/cp

5 ./cat justexec #Re execute to let IMA re-measure it because data changed

Listing 8.14. Member execution

1 /etc/member \

2 -t \

3 -d /home/thesis/daa_test/Member \

4 -fcfg pcr_configuration.json \

5 -fak ak.data \

6 -vu https://verifier:8081 \

7 -fbm /sys/kernel/security/tpm0/binary_bios_measurements \

8 -fim /sys/kernel/security/ima/binary_runtime_measurements

Listing 8.15. Verifier measurement report

1 [WARN]: Unmatched Ima Measurements, 2 found:

2 [WARN]: Hash:

dd5526c5872cce104a80f4d4e7f787c56ab7686a5b8dedda0ba4e8b36a3c084c File

name: /home/thesis/test/cat

3 [WARN]: Hash:

5cbd6e8d5aaa714a0910f5ee7710004cbf0a22c940eda1abec6f0194f430b94c File

name: /home/thesis/test/cat

If instead we add to the blacklist paths the entire directory /home/thesis/

test/ and all its sub files, we expect to no longer find WARNs in the report. So
let’s proceed to configure the blacklist path database as in Listing 8.16 and, by
re-running the Member, we get a report without the 2 WARNs as expected.

Listing 8.16. Verifier blacklist path file

1 ["^\/home\/thesis\/test\/.+$"]

8.3 Performance Test

In this section can be found performance tests of the applications, the collected
measurements and their analyses. In order to obtain detailed information on the
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execution timings of the various parts of each application, timers were inserted
within the code. They measure execution time for each part and report it in the
log file. From there they are extracted, aggregated and finally collected into tables
showing the mean and standard deviation of the most impactful measures.

8.3.1 Join protocol

For measuring the timing of the Join protocol, it was performed a total of 500 times
through re-execution of Listing 8.17. In each iteration the Issuer instance is the
same and executes the protocol without being subject to restart. To make sure that
each test uses the TPM in a state that is as clean as possible, at each iteration, the
tpm2 clear is called and then the EK is recreated via the Provision tpm. Results
are summarized in Table 8.1.

Listing 8.17. Join protocol execution cycle

1 tpm2_clear

2 provision_tpm -t

3
4 rm /home/thesis/daa_test/Member/credential.data

5 rm /home/thesis/daa_test/Member/daa_key.data

6
7 /etc/member_join \

8 -t \

9 -d /home/thesis/daa_test/Member \

10 -fipk fipk.data \

11 -fdk daa_key.data \

12 -fc credential.data \

13 -iu https://issuer:8080

Table 8.1. Join protocol time report

Time (ms) Mean SD
Create and load DAA key (TPM2 Create, TPM2 Load) 4,67 0,35
GET /public/groupdata 4,19 0,21
POST /join/issuercredential 2,03 0,14
TPM2 ActivateCredential 3,08 0,23
TPM2 Commit 1,45 0,18
TPM2 Hash 1,22 0,12
TPM2 Sign (DAA) 1,53 0,22
POST /join/makefullcredential 14,2 0,52

Total execution time 56,32 1,18

8.3.2 AK exchange protocol

In the case of the AK exchange protocol as well, 500 executions of the protocol
were carried out through iterations showed in Listing 8.18. In each iteration the
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Verifier instance is the same and executes the protocol without being subject to
restart. For this reason, re-executing the Join protocol is critical to requesting a
new DAA credential that would otherwise lead to receiving an error message due
to the PT k already being in the database. Results are summarized in Table 8.2.

Listing 8.18. Ak exchange protocol execution cycle

1 tpm2_clear

2 provision_tpm -t

3
4 rm /home/thesis/daa_test/Member/credential.data

5 rm /home/thesis/daa_test/Member/daa_key.data

6 rm /home/thesis/daa_test/Member/ak.data

7
8 /etc/member_join \

9 -t \

10 -d /home/thesis/daa_test/Member \

11 -fipk fipk.data \

12 -fdk daa_key.data \

13 -fc credential.data \

14 -iu https://issuer:8080

15
16 /etc/member_ak \

17 -t \

18 -d /home/thesis/daa_test/Member \

19 -fak ak.data \

20 -fipk fipk.data \

21 -fdk daa_key.data \

22 -fc credential.data \

23 -vu https://verifier:8081

Table 8.2. Ak exchange protocol time report

Time (ms) Mean SD
Create and load AK (TPM2 Create, TPM2 Load) 4,23 0,30
TPM2 Commit 2,25 0,23
TPM2 Certify (DAA) 1,83 0,11
GET /akRegister/publicData 3,18 0,19
POST /akRegister 36,87 5,36

Total execution time 52,13 5,49

8.3.3 Push measurement protocol

Finally, regarding the Push measurement protocol once again it was run for 500
iterations. For each run, as shown in Listing 8.19, an execution of Member were
performed. In each iteration the Verifier instance is the same and executes the
protocol without being subject to restart. The results of the times concerning the
Platform are summarized in Table 8.3. On the Verifier side, on the other hand,
the measured times are shown in Table 8.4.
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Listing 8.19. Push measurement protocol execution cycle

1 /etc/member \

2 -t \

3 -d /home/thesis/daa_test/Member \

4 -fcfg pcr_configuration.json \

5 -fak ak.data \

6 -vu https://verifier:8081 \

7 -fbm /sys/kernel/security/tpm0/binary_bios_measurements \

8 -fim /sys/kernel/security/ima/binary_runtime_measurements

Table 8.3. Push measurement protocol: Platform time report

Time (ms) Mean SD
TPM2 Load (AK) 2,6 0,1
POST /measurement/challenge 3,25 0,15
Read BIOS events 1,86 0,06
Read IMA events 116,8 2
TPM2 Quote 1,9 0,1
Data processing for POST /measurement 343 5
POST /measurement 6813 46,5

Total execution time 7280 47

Table 8.4. Push measurement protocol: Verifier time report

Time (ms) Mean SD
Request parse 536 6,5
Process BIOS measurements 9,6 0,3
Process IMA measurements 6143 20
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8.3.4 Considerations

It can be seen that the execution times of the TPM functions are very low, on the
order of 1-4ms. This is due to the use of a virtual TPM in the tests, which if it
were replaced by a physical TPM would make the processing times substantially
longer. In fact, the TPM was born with the idea that it could be an inexpensive
chip, and this causes hardware implementations to sacrifice processing speed in
favor of a cheaper implementation. Today the market offers various hardware
implementations of the TPM each with very different performances as well. To
give an idea of the possible processing times of a typical physical TPM we propose
here the Table 8.5, extrapolated from [2] showing the execution times of various
APIs using a Raspberry Pi 3 and a TPM evaluation module created by Infineon
[31].

Another important consideration is the timing of sending, parsing and validat-
ing the IMA log in the Push measurement protocol. These take up most of the
protocol execution time as they require having to process tens of thousands of IMA
log entries. To minimize the impact of the IMA log, it is convenient to redesign
the protocol by not sending the entire IMA log each cycle and revalidating it each
time but instead incrementally sending only the new entries thus greatly reducing
the size of the requests and the protocol processing time.

Table 8.5. Hardware TPM reference times

Time (ms) Mean SD
TPM2 Create 219.2 2.2
TPM2 Load 36.4 2.6
TPM2 ActivateCredential 219.4 3.2
TPM2 Commit 224.0 1.0
TPM2 Hash 26.2 2.0
TPM2 Sign (DAA) 65.5 3.7
TPM2 Certify (DAA) 53.9 3.0
TPM2 Quote (DAA) 53.6 2.0
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Conclusions

The purpose of the thesis project was to implement a system that allows remote
attestation using DAA in a manner as similar as possible to traditional remote
attestation so that it can be easily integrated into existing attestation frameworks.
We therefore made an implementation of a hybrid attestation scheme that uses
DAA to perform an anonymous authenticated exchange of an Attestation Key with
a Verifier and then uses it to perform traditional remote attestations. In this way,
we achieved the benefits of performance and architectural similarity with existing
solutions and, at the same time, increased the privacy guarantees of the Platform
if it is used in appropriate application contexts.

The implementation provides a valuable baseline for future developments and,
due to the architectural similarity and modularity of the design, for integration
into any existing attestation frameworks. However, there are some open issues
and criticalities that require further development and are beyond the scope of
this thesis. The first open issue concerns the privacy of the Platform. In fact,
the pseudo-anonymity used as a compromise for obtaining this hybrid solution,
combined with the presence of possible privacy-sensitive data in the BIOS and
IMA measurement logs could, in particular contexts, provide sufficient elements
to identify the attester. There are also technical improvements that can be made
to the proposed implementation. Primarily, as visible from the performance tests,
the heaviest component of the entire process is the sending and verification of the
IMA log, which can be significantly improved by creating an incremental attes-
tation mechanism that sends only the new measured events between attestation
cycles instead of sending and reverifying the entire log each cycle. Secondly, it is
relevant for future developments to implement mechanisms to verify the inputs of
the various protocol APIs and applications in order to prevent attacks and make
implementations more robust. Finally, it would be very valuable to extend the cur-
rent implementations also to application contexts where it is necessary to share the
same TPM among various attesters, such as in the case of OS-level virtualization,
which is becoming the standard solution of today’s distributed systems.
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User manual

The following sections present the user manuals of the various applications, in
particular the inputs, the outputs and environment variables parameters of each
application. For each parameter, we will specify in the following order: the pa-
rameter’s short name and full name, any input it requires, any default values for
each input and finally a description of them. In addition, in case an input requires
a particular structure or encoding, this will be specified in the description. In the
encodings, there is extensive use of serialized ByteBuffers, which are described in
detail in section B.4. When we say that we expect input in ByteBuffer format we
mean that we want a ByteBuffer encoded in hexadecimal as input.

For example, if we want to say that the parameter with short name “-fipk”
and full name “--fileissuerpublickeys” accepts as input a file path that has inside
encoded in hexadecimal a container ByteBuffer with two G2 points representing
the X and Y points of the group public key, we write:

• -fipk, --fileissuerpublickeys <file> - <file>:=ipks.data - File containing
group public keys X and Y encoded as ByteBuffer(G2 point, G2 point).

All applications have the following parameters in common that allow them to
control the log level and obtain the version or help menu:

• -ll, --loglevel <level> - <level>:=0 - Log level can be one of the following
values [0: WARN, 1: INFO, 2: DEBUG];

• -h, --help – Show help menu;

• -v, --version – Show code version.

A.1 Issuer

[Input]:
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• -d, --datadir <directory> - <directory>:=. - Data directory where are
located other files;

• -fipk, --fileissuerpublickeys <file> - <file>:=ipks.data - File containing
group public keys X and Y encoded as ByteBuffer(G2 point, G2 point);

• -fisk, --fileissuersecretkeys <file> - <file>:=isks.data - File containing
group secret keys data x and y encoded as ByteBuffer(BIG, BIG);

• -fhcert, --filehttpscertificate <file> - File used as https certificate, if not
present it will use only http;

• -fhkey --filehttpskey <file> - File used as https key, if not present it will use
only http.

A.2 Provision tpm

[Input]:

• -t, --dev - Use the TPM device;

• -s, --sim - Use the TPM simulator.

[Environment variables]

• TPM DATA HOME - TPM_DATA_HOME=/var/TPM_data - Base directory for
IBM TSS files.

A.3 Member join

[Input]:

• -d, --datadir <directory> - <directory>:=. - Data directory where are
located other files;

• -fipk, --fileissuerpublickeys <file> - <file>:=ipks.data - File containing
group public keys X and Y encoded as ByteBuffer(G2 point, G2 point);

• -iu --issuerurl <url> - Issuer URL to be used in API call;

• -t, --dev - Use the TPM device;

• -s, --sim - Use the TPM simulator.

[Input/Output]:
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• -fdk, --filedaakey <file> - <file>:=daa_key.data - If the file exists, it will
be used as data source by the DAA key. Otherwise, it will be created a DAA
key whose data will be inserted in the file during execution. The DAA key
file is encoded as ByteBuffer(TPM2B PRIVATE).

[Output] :

• -fc, --filecredential <file> - <file>:=credential.data - Output file for the
generated credential encoded as ByteBuffer(Daa credential).

[Environment variables]

• TPM DATA HOME - TPM_DATA_HOME=/var/TPM_data - Base directory for
IBM TSS files.

A.4 Verifier

[Input]

• -d, --datadir <directory> - <directory>:=. - Data directory where are
located other files;

• -reg, --registermode – By default, the register mode is deactivated, but it is
activated if the flag is present;

• -fipk, --fileissuerpublickeys <file> - <file>:=ipks.data - File containing
group public keys X and Y encoded as ByteBuffer(G2 point, G2 point);

• -fimab, --fileimapathblacklist <file> - <file>:=ima_path_blacklist.json
- File with a JSON array of regex of blacklist paths;

• -fbsn, --filebsn <file> - <file>:=bsn.data - File containing the fixed bsn
of this verifier encoded as Bytebuffer;

• -fhcert, --filehttpscertificate <file> - File used as https certificate, if not
present it will use only http;

• -fhkey --filehttpskey <file> - File used as https key, if not present it will use
only http.

[Input/Output]

• -fbiosw, --filebioswhitelist <file> - <file>:=bios_whitelist.json - File
with a JSON array of “hash”-“pcr index” JSON objects;

• -fimaw, --fileimawhitelist <file> - <file>:=ima_whitelist.json - File with
a JSON array of “file name”-“hash” JSON objects;

• -fakdb, --fileaksdatabse <file> - <file>:=aks_database.json - File with
a JSON array of “ak pd”-“pt k” JSON objects.
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A.5 Member ak

[Input]

• -d, --datadir <directory> - <directory>:=. - Data directory where are
located other files;

• -t, --dev - Use the TPM device;

• -s, --sim - Use the TPM simulator;

• -vu --verifierurl <url> - Verifier URL to be used in API call;

• -fipk, --fileissuerpublickeys <file> - <file>:=ipks.data - File containing
group public keys X and Y encoded as ByteBuffer(G2 point, G2 point);

• -fdk, --filedaakey <file> - <file>:=daa_key.data - File containing DAA
key’s private data encoded as ByteBuffer(TPM2B PRIVATE);

• -fc, --filecredential <file> - <file>:=credential.data - File containing
DAA credentail encoded as ByteBuffer(Daa credential).

[Environment variables]

• TPM DATA HOME - TPM_DATA_HOME=/var/TPM_data - Base directory for
IBM TSS files.

[Output]

• -fak, --fileattestationkey <file> - <file>:=ak.data - Output file containing
AK’s public data encoded as ByteBuffer(TPM2B PUBLIC).

A.6 Member

[Input]

• -d, --datadir <directory> - <directory>:=. - Data directory where are
located other files;

• -t, --dev - Use the TPM device;

• -s, --sim - Use the TPM simulator;

• -vu --verifierurl <url> - Verifier URL to be used in API call;

• -fak, --fileattestationkey <file> - <file>:=ak.data - File containing AK’s
public data encoded as ByteBuffer(TPM2B PUBLIC);
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• -fbm, --filebiosmeasurement <file> - <file>:=/sys/kernel/security/tpm0/
binary_bios_measurements - File containing binary BIOS measurements
log;

• -fim, --fileimameasurement <file> - <file>:=/sys/kernel/security/ima/
binary_runtime_measurements - File containing binary IMA measurement
log;

• -fcfg, --fileconfiguration <file> - <file>:=configuration.json - File con-
taining configuration about PCRs to be attested.

[Environment variables]

• TPM DATA HOME - TPM_DATA_HOME=/var/TPM_data - Base directory for
IBM TSS files.
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Developer manual

This chapter presents the developer manual useful for getting details on protocols,
serialization of objects and structures, and finally the development environment
setup in order to better understand and reproduce the proposed implementation.
First, the designed protocols will be presented and for each one the APIs and
their purpose, as well as their requests and responses, will be described. All
APIs use a JSON body to pass input parameters. For each API, we will specify
the parameter name, the encoding used and a description of them. Many of the
communication parameter are encoded as hexadecimal serialized ByteBuffer, which
will be described in detail in section B.4.

For example, if we want to say that the parameter named “ipk” contains the
group public keys data encoded in hexadecimal derived from a container Byte-
Buffer with two G2 points representing the X and Y points of the group public
key, we write:

• ipk: ByteBuffer(G2 point, G2 point) - Group public keys G2 points X and
Y .

B.1 Join protocol

The aim of the Join protocol is to agree with the client on a DAA credential,
verify the candidate identity by its EK and allow the candidate to verify the
Issuer identity through the group public key. An overview is shown in Figure B.1.

Member_join Issuer

1) GET /public/groupdata

2) POST /join/issuercredential

3) POST /join/makefullcredential

Figure B.1. Join protocol overview
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The protocol is implemented with three endpoints:

• GET /public/groupdata

• POST /join/issuercredential

• POST /join/makefullcredential

GET /public/groupdata

It returns the public keys of the group managed by the Issuer. In the flow it is
called by the Member join application.

[Request]: empty.

[Response]:

1 {

2 "ipk": "000200920002004600020020c824b17d4f4e845eebfdcaab..."

3 }

• ipk: ByteBuffer(G2 point, G2 point) - Group public keys G2 points X and
Y .

POST /join/issuercredential

It takes as input the public data from EK and from candidate’s DAA key and
performs make credential obtaining (cb1, s1), which is returned to the candidate.
It then inserts the credential key K1 used in make credential in a database waiting
for the candidate to later return it in /join/makefullcredential.

[Request]:

1 {

2 "e": "ea25d5bade63c4096e396ab18e8d6dc337b9cb2ffd60662bf04906...",

3 "q_pd": "005a0023000b0005047200000010001a000b000100100010002..."

4 }

• e: ByteBuffer(TPM2B PUBLIC) - Candidate’s EK public data;

• q pd: ByteBuffer(TPM2B PUBLIC) - Candidate’s DAA key’s public data.

[Response]:

1 {

2 "cb1": "0020db43715b6a7620e112e2362cdf717d3e67f5cbaf06f2a74b835...",

3 "s1": "e507d4034ce26ac7dabdeb7343f9b38a79b5c1d0f635eb363e3fa1e8..."

4 }
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• cb1: ByteBuffer(RSA2048 signature) - Value of cb1 generated from make credential
procedure;

• s1: ByteBuffer(BIGNUM) - Value of s1 generated from make credential pro-
cedure.

POST /join/makefullcredential

It takes as input the signature (nJ , v, w) and the result from activate credential
K1, checks both the signature andK1 validity by searching in the database. It then
performs another activate credential obtaining (cb2, s2). It creates the DAA cre-
dential for the client and encrypts it with K2 used in the new activate credential.
Finally, it returns (cb2, s2) and the credential.

[Request]:

1 {

2 "k1": "a6df5ca78d0506de4cb1db5f6b0d4ba8",

3 "nj": "e1a72d610396f428f563b273fc0d4d416f65d19d01d4c925874534cab55603fa",

4 "v": "c3d6279b81b7fd90df127e72719b762e41085609da10de6ec24d6b8876a15045",

5 "w": "0be74c09c59dad46d7197e1b389e7d37125a12561633d573ea099f9dc36a4690"

6 }

• k1: ByteBuffer(DIGEST 2B) - Credential key K1 used in the first acti-
vate credential;

• nj: ByteBuffer(ECC PARAMETER 2B) - nj returned by the TPM signing
procedure;

• v: ByteBuffer(BIGNUM) - v returned by the TPM signing procedure.

• w: ByteBuffer(ECC PARAMETER 2B) - w returned by the TPM signing
procedure.

[Response]:

1 {

2 "cb2": "0020517ae241397354f96e082f972c3f1820de83bfcf4b3043015e4...",

3 "s2": "aa99097d3f3a3caebc70bd192fe3152cc72ac505e54fa1d594e39473...",

4 "daa_cre": "047a31add8091d8fc0c4c143a5a411033a908e5d61e22bccfe7...",

5 }

• cb2: ByteBuffer(RSA2048 signature) - cb2 generated from make credential
procedure;

• s2: ByteBuffer(BIGNUM) - s2 generated from make credential procedure;

• daa cre: ByteBuffer(AES-128-CTR(Daa credential)) - The DAA credential
encrypted with AES-128-CTR using K2 as key.
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B.2 AK exchange protocol

The exchange of the AK is handled through the AK exchange protocol, as shown
in Figure B.2, during which the Verifier checks, through the linking property of
the DAA signature, whether the Member has not previously tried to register other
AK. Afterwards, it verifies the group signature authenticity and associates the AK
to the Member’s pseudonym.

Member_ak Verifier

1) GET /akRegister/groupdata

2) POST /akRegister

Figure B.2. AK exchange overview

GET /akRegister/publicData

It returns the bsn that characterizes the Verifier. The returned bsn will be used
during AK attestation as signature bsn.

[Request]: empty.

[Response]:

1 {

2 "bsn": "000200920002004600020020c824b17d4f4e845eebfdcaabc1eccef8afdc3ef2"

3 }

• bsn: ByteByffer(256 bytes random payload) - Verifier specific basename to
be used in AK’s certification signature.

POST /akRegister

It takes as input the randomized credential (R, S, T,W ) used for the signature, the
signature result (bsn, J,K, h2, s, nc), AK public data (qps pd) and the attestation
(A). It checks that J is related to Verifier specific bsn, it evaluates the validity of
the attestation relative to AK public data, thus it validates the signature. More-
over, it checks that K has never been previously used in any registration, to avoid
the same Member to register two different AK. If the validation is successful, it
registers in the database the AK together with K.

[Request]:
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1 {

2 "bsn": "000200920002004600020020c824b17d4f4e845eebfdcaabc1eccef8afdc3ef2",

3 "certificate": "ff544347801700000000000000000002d17c000000000000000...",

4 "daa_credential": "0004004600020020cdf9494862e52809b6929ec49c467ce8ba...",

5 "h2": "fab85de6a7a50e8a82339b42a588476a0a1cd163b6384773330fc7ee5a517988",

6 "ipks": "000200920002004600020020c824b17d4f4e845eebfdcaabc1eccef8afdc...",

7 "label": "63726564656e7469616c2064617461",

8 "nt": "39383af69bbe0f0c2c9ba0fb7de88467f6fa932b4042fb5c8317bf73a7d43240",

9 "pt_j": "00020020f8ef5b8feb3b448e6e74b56eaea90d68db556b1eb7eae7e5597e...",

10 "pt_k": "00020020f4d7ccb6263b1ba847dd0c2a73b0b2ec27d8e4faab2ac997ddb3...",

11 "qps_pd": "00580023000b00050472000000100018000b0003001000209ba8db1278...",

12 "sig_s": "94434fb252e6f423d321559cee5e9a03ca23f2c00fd49f9fbfdde679184f9fbc"

13 }

• ipks: ByteBuffer(G2 point, G2 point) - Group public keys G2 points X and
Y ;

• bsn: ByteBuffer(256 bytes random payload) - Basename selected by Verifier;

• daa credential: ByteBuffer(Daa credential) - Randomized DAA credential
used for signature;

• h2: ByteBuffer(BIGNUM) - h2 signture’s output parameter: h2 = hash(nc∥h1);

• label: constant string = “credential data”;

• pt j: ByteBuffer(G1 point) - Point J , signature output, depend on bsn;

• pt k: ByteBuffer(G1 point) - Point K, signature output, depend on point
J and DAA private key;

• qps pd: ByteBuffer(TPM2B PUBLIC) - AK’s public data;

• nt: ByteBuffer(ECC PARAMETER 2B) - nc random value generated dur-
ing signature;

• sig s: ByteBuffer(TPM2B ECC PARAMETER) - s result of signature pro-
cess;

• certificate: ByteBuffer(TPMS ATTEST) - AK key’s certificate (attesta-
tion).

[Response]: “true” in case of success.

B.3 Push measurement protocol

Though the Push measurement protocol, a Member sends to the Verifier the BIOS
and IMA measurements together with the involved PCR registers quotes. The
Verifier checks the validity of the used AK, the quote signature and, finally, the
measurements validity relative to the values received as input from the Member. If
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a validation fails, it is logged in WARN in a Log file relative to the measurement.
An overview of the protocol is shown in Figure B.3.

Member Verifier

1) POST /measurement/challenge

2) POST /measurement

Figure B.3. Push measurement protocol overview

POST /measurement/challenge

It takes as input the public data of the AK with which the measurement is to be
made. It returns a string to be used by the attester as optional data in the quote
it will carry out. The challenge and its association with the AK are stored in the
database so that they can be verified later.

[Request]:

1 {

2 "ak_pd": "00580023000b00050472000000100018000b0003001000209ba8db1278..."

3 }

• ak pd: ByteBuffer(TPM2B PUBLIC) - AK’s public data.

[Response]:

1 {

2 "challenge":

"83310137672cadec01cdc880f6978f70d6bcf08131757c6814abd8ac6c0d909d"

3 }

• challenge: ByteBuffer(256bytes random payload) - Value to be added as
extra parameter in the Quote attestation.

POST /measurement

It takes as input the randomized credential (R, S, T,W ) used for the signature,
the signature result (bsn, h2, s, nc), AK public data (qps pd) and the attestation
(A). It also retrieves BIOS and IMA measurements lists.

[Request]:
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1 {

2 "ak_pd": "00580023000b00050472000000100018000b0003001000209ba8db1278...",

3 "attestation": "ff54434780180022000bc944a5df23e39231b002ec7ef569f0c...",

4 "challenge":

"39e815c61efb79efe01483bd47a601c5c5151ef672b66c29ce9bbfe7e0b7c7ec",

5 "h2": "91f20b0a7fc12564b7fdad2f498a70c07274e9b49b72b28f29bf90f9fc46efff",

6 "nt": "870e3e9a474daf5a3a71f41e195c4a518dd81309a760ada87f3b463fcdc20a63",

7 "sig_s": "560b8f325bb1596c2f50e7f69745544bb7baa357b8e46e08122f693988dd12f6",

8

9 "bios_measurement_events": [

10 "00000000000000030000000000000000000000000000000000000000000000...",

11 "000000010000000600000001000b6918630adf88621acc953b4b5869e653d0...",

12 "000000020000000500000001000b9dbd87163112e5670378abe4510491259a...",

13 "000000020000000600000001000bac08c54b65d8474bfa9dce0ca99f9886dc...",

14 "000000020000000600000001000bceff39f4eda92a15d96dd54f2236b44c61...",

15 "..."

16 ],

17 "ima_measurement_events": [

18 "0000000ab1cd730ee01e7137e7881fcb42fd8462c5c8de1900000006696d61...",

19 "0000000a0b5a1ee5112b581fc74040146ce5bdb607c1e1ac00000006696d61...",

20 "0000000adbc038c03d50fed2ac6f7f8eb210f7e670d1c72000000006696d61...",

21 "0000000ab6a0d6a27247a1af40cd7101130c688f7714251300000006696d61...",

22 "0000000afa5df98ea572ec24c06f0ef9452a9ab23a1a41a700000006696d61...",

23 "0000000ab0594fefde8e4981dfded3099cf0c45968e64c8800000006696d61...",

24 "0000000a0f8b2256c6159adfec34fc26b0f70f62b189e9a600000006696d61...",

25 "..."

26 ]

27 }

• ak pd: ByteBuffer(TPM2B PUBLIC) - AK’s public data;

• attestation: ByteBuffer(TPMS ATTEST) - PCR’s Quote attestation;

• challenge: ByteBuffer(256bytes random payload) - Given by verifier in the
/measurement/challenge;

• h2: ByteBuffer(BIGNUM) - h2 signture’s output parameter: h2 = hash(nc∥h1);

• nt: ByteBuffer(ECC PARAMETER 2B) - nc random value generated dur-
ing signature;

• sig s: ByteBuffer(TPM2B ECC PARAMETER) - s result of signature pro-
cess;

• bios measurement events: ByteBuffer(TCG PCR EVENT) - Binary val-
ues of BIOS measurement events;

• ima measurement events: ByteBuffer(ImaEvent) - Binary values of IMA
measurement events.

[Response]: true
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B.4 ByteBuffer

ByteBuffer is a fundamental class acting as generic dynamic array of bytes, used
as data structure in all operations on binary data such binary operations, hash,
signatures, etc. In addition, it is used as a conversion class to and from other
object types and as a standard for encoding and decoding objects.

ByteBuffer serialization

The first use of the ByteBuffer is as a tool to support serialization of objects to
allow persistence on files or to use them on communication channels. Given a
ByteBuffer as input, serializing it means creating a new ByteBuffer with 2 extra
bytes that are used as a header to specify the size of the payload, that is, the
length of the input to be serialized. The two bytes of the header are calculated as:

firstByte = payloadSize/256

secondByte = payloadSize%256

In this way, it is possible to re-caluclate the payloadSize during the deserialization
phase as:

payloadSize = firstByte ∗ 256 + secondByte.

For instance, if receiving as input a ByteBuffer of 800 bytes payload, its serializa-
tion would be a new ByteBuffer of 802 bytes, whose first bytes, i.e. the header,
would be equal to:

firstByte = 800/256 = 3

secondByte = 800%256 = 32

The remaining 800 bytes are equivalent to the ones of the ByteBuffer in input.
The ByteBuffer thus created is ready to be persisted or sent as a communication
DTO since it has the information to be reconstructed later by deserialization.

ByteBuffer as container

The second important use of the ByteBuffer is as a container for several, and
even diverse, objects. Indeed, through the serialise_byte_buffers function it
is possible to take multiple ByteBuffers, serialize them one by one, and merge
them into a new ByteBuffer, thus allowing to serialize complex objects. The
resulting ByteBuffer is composed by a payload made up of the concatenation
of the serialization of the input ByteBuffers plus a header composed of 2 bytes.
The header bytes are calculated from the number of ByteBuffer to be serialized
(numBBs) as follows:

firstByte = numBBs/256

secondByte = numBBs%256
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In this way, when deserializing, it is possible to go back to numBBs computing:

numBBs = firstByte ∗ 256 + secondByte

For example, if taking as input 530 different ByteBuffers, the output will be made
up by a header having:

firstByte = 530/256 = 2

secondByte = 530%256 = 18

The payload, instead, is the concatenation of the serialization of the single Byte-
Buffers in input.

Hex string

Hex string allows to assess whether a string in input is codified in hexadecimal and
to normalize it to have an even number of characters. Hex string is easily converted
to ByteBuffer and vice versa allowing a simple transformation of ByteBuffers into
hexadecimal strings. All complex objects requiring to be saved on file or sent to the
network are converted to ByteBuffer and then codified into hexadecimal through
Hex string.

B.4.1 ByteBuffer conversion utils

A number of utility classes have been created to simplify and centralize the con-
version of the various object types to ByteBuffer and vice versa. We do below
some examples that may help new developers better master the tool.

The serialization of a generic C/C++ struct is simply derived from the se-
rialization of the entire memory section composing the struct. For example a
widely used structs are those regarding TSS like TPM2B PUBLIC which is de-
fined in the TPM specification and describes the public data of a generic TPM
object. Another is the ImaEvent that is defined in TSS utils library and allows
to easily manipulate the IMA binary measurement events through several utilities
from the library. Concerning the objects related to IBM TSS, a function called
TSS_Structure_Marshal() takes as input the TSS struct and convert in standard
manner to an output buffer easily converted and serialized with the ByteBuffer.
Another example are the BIG and BIGNUM structs, representing BigNumber re-
spectively of AMCL and OpenSSL. These have utility functions for conversion to
ByteBuffer, big_to_bb and bn2bb respectively.

Some utilities define the serialization process of objects used as cryptographic
parameters and as points of elliptic curves. Lets have a look as an example at
the serialization of G1 point and G2 point. A G1 point consists of a pair of val-
ues (x, y) indicating coordinates on a curve, each 32 bytes long. Serialization can
be performed with g1_point_serialise which is equivalent to serialise_byte_

buffers(x,y) of its coordinates. The Daa credential is the composition of four
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G1 point representing the four points of the DAA credential. A G2 point, on the
other hand, is composed of a couple of coordinates, G2 coord, which in turn is com-
posed of 2 values (x, y), each of 32 bytes. Serialization is obtained through g2_

point_serialise which is actually serialise_byte_buffers(serialise_byte_

buffers(x1,y1),serialise_byte_buffers(x2,y2)) where (x1, y1) e (x2, y2) are
the values of the first and second coordinate of the two G2 points, respectively.

B.5 Setup environment

In this section it is shown how to configure the development environment in order
to properly compile and run the applications. We begin by configuring the TPM
simulator and compiling the TSS libraries, then compiling the support libraries,
and finally the thesis project applications.

ibmswtpm2

Download ibmtpm1661.tar.gz from https://sourceforge.net/projects/ibmswtpm2/
and extract it in /opt/ibmtpm1661. Then compile with:

1 cd /opt/ibmtpm1661/src

2 make

create a symbolic link in /opt/ibmtpm:

1 cd /opt

2 ln s ibmtpm1661 ibmtpm

3 chmod 755 -R /opt/ibmtpm

(Follow ibmtpm.doc for more compilation details)

ibmtss

Download ibmtss1.6.0.tar.gz from https://sourceforge.net/projects/ibmtpm20tss/
and extract it in /opt/ibmss1.6.0. Then compile it with:

1 /configure

2 make

3 make install

and create a symbolic link in /opt/ibmtss:

1 cd /opt

2 ln s ibmss1.6.0 ibmtss

3 chmod 755 -R /opt/ibmtss

(Follow ibmtss.doc for more compilation details)

To launch the TPM simulator run:

1 sudo /opt/ibmtpm/src/tpm\_server

94



Developer manual

finally, to launch all tests and verify operation, run:

1 /opt/ibmtss/utils/reg.sh -a

libhttpserver

To configure libhttpserver it is necessary to clone the project from the repository
https://github.com/etr/libhttpserver, configure, compile and install it:

1 git clone https://github.com/etr/libhttpserver

2 cd libhttpserver

3 ./configure

4 make

5 make install

thesis applications

Each application has its own directory in this path: /Daa_code/Daa_tpm/Tpm_

experiments. The environment variable must be set to allow linking to ibtss utils
library:

1 export LD_LIBRARY_PATH=/opt/ibmtss/utils

To compile any application, in the path of the specific application, just do:

1 make
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