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Summary

Biofabrication is an emerging field that identifies the set of processes required for the
generation of biologically functional products with structural organization and sub-
sequent tissue maturation process. Biofabrication technologies have the potential
to revolutionize the Regenerative Medicine (RM) domain, which aims to regenerate
damaged tissues. Generally, RM techniques are costly and time-consuming, so
computational approaches can tap into this potential, facilitating innovation in
biofabrication and supporting process and product quality. This Thesis project
developed a software framework capable of generating optimal protocols to improve
biofabrication processes. The framework combines simulation techniques and Rein-
forcement Learning (RL) approaches to computationally generate optimal protocols
for the simulated fabrication of epithelial sheets, while providing a customizable
interface that can be set up with any simulator. The optimization engine uses
a Deep Learning (DL)-based RL algorithm, the Advantage Actor Critic (A2C),
which relies on a customizable neural network that adapts to the specific environ-
ment given to the engine through the interface. The potential of the framework
is demonstrated through the optimization of a cell proliferation process in two
different experiments: the maximization of the final number of obtained cells, and
the obtaining of a defined target shape with cells at the end of the simulation.
The experiments demonstrate both the easiness of implementation of the specific
process and the potential of the RL approach to improve biofabrication processes
in the future.

The Background Section introduces the field of biofabrication in order to pro-
vide the reader enough information to understand the importance of the novelty
introduced by the proposed framework, together with basic notions about Artificial
Neural Networks (ANN) and RL which are needed to understand the technical
aspects about the engineered solution. In particular:

• The Convolutional Neural Networks Section shows briefly the evolution of
neural networks, going from the basic structure of Multilayer Perceptron
(MLP) to Convolutional Neural Network (CNN), in order to understand how
the ANN model that is being used by the deep RL algorithm is built. Then,
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it explains the ANN training process, in order to make the reader understand
how the RL algorithm learns through the ANN model;

• The Reinforcement Learning Section explains the basic concepts of RL, intro-
ducing the first invented methods to make the reader understand how they are
combined in the new A2C and Asynchronous Advantage Actor Critic (A3C)
methods.

The highlighted motivations are related to the need of an automatic process
that can run an optimization process on the searching of an optimal biofabrication
protocol, without the drawbacks of a purely empirical approach, eventually having
to rely on high costs of time and resources. For this reason, this Thesis work
proposes a framework based on an Optimization via Simulation approach, in
which an optimization engine searches the optimal biofabrication protocol through
a specific simulator, which is made so that it can be adapted easily to future
implementations of other simulators.

In the Methods Section the framework structure has been illustrated, going into
the details of each framework component:

• the ANN model, that can be built with a different output for a different
simulator. The proposed ANN is composed by a backbone (which learns the
visual components) and two output heads, an Actor head (which outputs the
action distributions) and a Critic head (which outputs the value of the state
observed from the environment);

• the simulator interface, which contains the functions that are needed by the
training process, so that it remains the same for different simulators, requiring
only a different implementation of the functions;

• the exploration engine, which implements the A2C process that communicates
with both the ANN model and the implemented simulator through its relative
interface.

Finally, the Results Section proposes two experiments for a particular use case,
describing the simulator used and how the framework interacts with it. This section
exposes details of the implemented interface, exemplifying how an interface can be
made. The two experiments are:

• Generating a protocol to maximize the total number of cells. This experiment
relies on the optimization of epithelial cells proliferation, the target of this
experiment is to increase the final number of obtained cells. The learning
algorithm is controlled by how much the total number of cells is increasing
between two simulation steps;
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• Generating a protocol to maximize the total cell number within a defined
target space. This experiment relies on the optimization of the position of the
starting cell, the target of the experiment is to find the best position of the
first cell which is being placed in the simulated space, in order to fill as much
as possible a circular target space. The learning algorithm controlled by the
fraction of cells inside the target space with respect to the total number of
cells in the simulated space. This experiment uses the previous use case as
the proliferation component, meaning that two different processes are learning
at the same time by combining their operations.

The collected results show that the framework is useful to help the user in following
the learning processes in order to obtain an optimal biofabrication protocol, and
the experiments, which have been easily implemented, show that the algorithm is
learning from the environment. As a final consideration, the Conclusions Section
highlights future developments and improvements for the learning process, consid-
ering either improving the RL algorithm with a recent implementation of the A3C,
or the neural network model, by trying different backbones or even completely
different ANN models.

iv



Ringraziamenti

Ringrazio innanzitutto i miei relatori, il Prof. di Carlo, il Prof. Savino, e la
Dr. Bardini, per avermi offerto l’opportunità di lavorare ad un progetto che non
avrei mai creduto essere in grado di portare avanti, e per avermi seguito fino in
fondo credendo nel mio lavoro. Un ringraziamento speciale va a Roberta, che con
molta pazienza mi ha guidato e consigliato nonostante la mia testardaggine, senza
mai farmi dubitare delle mie capacità, e aiutandomi a perfezionare un progetto
di tesi che altrimenti non sarebbe mai venuto così bene. Con le sue indicazioni
fondamentali posso sentirmi più che orgoglioso del lavoro che ho svolto, e mi sento
onorato e fortunato di aver potuto lavorare accanto a lei.

Ringrazio la mia famiglia, per avermi supportato in tutto e in tanti modi,
nonostante le varie difficoltà e senza mai farmi sentire il peso delle mie necessità. In
questi due anni la mia famiglia mi è stata molto accanto, con contributi che vanno
da piccoli gesti ad appoggi essenziali, economici e non. Senza di loro, non avrei
mai potuto farcela in tempo, senza dovermi preoccupare della mia situazione da
fuori sede, e delle comuni preoccupazioni della vita. Mamma, papà, Valeria e la sua
bellissima famiglia, sono parte integrante del mio percorso in quanto persone che,
nonostante vedute diverse, incomprensioni e discussioni, le quali erano comunque
per il mio bene e nel mio interesse, non hanno mai smesso di credere in me.
Nell’anno di distanza, hanno sempre aspettato una mia chiamata, preoccupandosi
del mio benessere e sopportando i miei momenti di intolleranza. Un grazie non
basterà mai a ripagarvi, vi voglio bene.

Ringrazio i miei amici, tutti coloro che hanno continuato a gioire insieme a me
dei miei successi, e a compatirmi quando mi lamentavo eccessivamente dei miei
fallimenti. Grazie a Gabriele, che ha sempre avuto un occhio di riguardo nei miei
confronti, trattandomi sempre come un fratello, il primo a vedere in me qualcosa
che io non riuscivo a vedere, la prima spalla sulla quale poter contare sempre,

v



specialmente negli attimi più bui del mio percorso. Grazie agli sciroppi, che dopo
anni continuano a volersi ritrovare, nonostante aver preso strade diverse. Siete
una garanzia. Un ringraziamento speciale a Stefano, essenziale nel mio percorso,
sia nello studio che nell’amicizia, sempre pronto ad aiutarmi e ascoltarmi, una
compagnia fondamentale in un anno di solitudine da fuorisede. Stefano mi ha
accolto in casa sua, mi ha accompagnato in ogni momento del mio percorso, e
si è sempre fidato di me lavorando insieme, tutto questo volentieri e senza mai
chiedermi nulla in cambio. Mi sento molto fortunato a poter concludere il mio
percorso così come è iniziato: accanto a un vero amico. Grazie anche a Lorenzo,
per avermi accolto insieme a Stefano, e loro due con Michele per aver lavorato con
me nei progetti più belli che potessi realizzare.

Ringrazio i ragazzi del mu nu chapter di HKN, per avermi regalato un’esperienza
indimenticabile, rendendo i miei anni da universitario dopo il covid meno vuoti, tra
cene, eventi, feste, attività, risate ed emozioni. Non avrei mai immaginato di poter
far parte di qualcosa di così grande, anche se piccolo all’apparenza, ed è anche
grazie ai legami stretti con loro se sono sopravvissuto all’università.

Ringrazio infine Martina, non perchè è l’ultima persona da ringraziare, ma perchè
il bello arriva alla fine. Sì, è una frase di circostanza, ma davvero lei è arrivata nel
momento più critico della mia vita, ed è stata essenziale nella conclusione di questo
percorso. Martina ha sentito e sopportato tutto, rimanendomi accanto quando non
riuscivo a studiare con le lezioni a distanza e nulla sembrava avere senso; quando
sentivo di subire ingiustizie tra esami falliti e situazioni scomode; quando credevo
di non farcela e di aver buttato tempo prezioso, specialmente da fuorisede. Martina
ha sopportato la mia incapacità di comunicare a distanza, la mia assenza, la mia
noncuranza, venendone a capo con me e sempre portandomi nel cuore. Ci sono
state discussioni, incomprensioni, difficoltà, ma è stato sempre nel suo interesse che
io stessi bene, e ha fatto sì che non mi sentissi solo nemmeno quando ciò sembrava
inevitabile, quando non riuscivo a non provare ansia e sconforto e le sembrava
di non contribuire al mio benessere, ma la sua presenza in realtà era tutto. Ha
cercato ogni giorno di distanza di farmi aprire, e non chiudermi nelle difficoltà di
una nuova esperienza, e non ci ha pensato due volte a venire a stare con me il
giorno del mio compleanno, quando ne avevo più bisogno, facendomi anche una
bellissima sorpresa. Ha spronato la mia perseveranza, ha fatto sì che mi svegliassi
ogni giorno consapevole che lei aspettava il mio buongiorno, e che avrebbe voluto
sapere succesivamente come avessi passato la mia giornata, e mi ha fatto andare a
letto ogni giorno senza sentirmi solo, pur vivendo in una stanza singola. Non si
può riassumere nè quantificare quello che ha fatto per me, posso solo dire che le
devo la mia salute mentale, il mio successo, il fatto che sono arrivato sin qui nel
miglior modo possibile. A te dedico questa tesi, perchè di te c’è qua dentro più di
quanto tu possa immaginare, ti amo.

vi





Table of Contents

List of Tables x

List of Figures xi

Acronyms xiv

1 Introduction 1

2 Background 3
2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Deep Artificial Neural Networks . . . . . . . . . . . . . . . . 6
2.2.2 Convolutional layers . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Loss and Backpropagation . . . . . . . . . . . . . . . . . . . 11

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Policy Gradients . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Advantage Actor-Critic . . . . . . . . . . . . . . . . . . . . . 21

3 Methods 24
3.1 Artificial Neural Network model . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Model structure . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Model operation . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Simulator interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Training phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Results 36
4.1 Palacell set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Optimization of the final number of cells . . . . . . . . . . . 41
4.2.2 Optimization of the starting position . . . . . . . . . . . . . 49

viii



4.2.3 Computational performance . . . . . . . . . . . . . . . . . . 57

5 Conclusions 58

Appendix A ANN model 60

Appendix B Environment Blueprint 65

Appendix C Training process 68

Appendix D Train manager 74

Appendix E PalaCell2D configuration file 76

Appendix F Singularity definition file 79

Bibliography 80

ix



List of Tables

4.1 Highest number of cells obtained for each training setting. . . . . . 44
4.2 Highest number of cells obtained for each training setting. . . . . . 47
4.3 Highest fraction of cells inside the target space with respect to total

number of cells for each training setting. . . . . . . . . . . . . . . . 52
4.4 Highest fraction of cells inside the target space with respect to total

number of cells for each training setting. . . . . . . . . . . . . . . . 54

x



List of Figures

2.1 The perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Update of separation surface vector through a data sample. . . . . . 7
2.3 Softmax function (left), ReLU function (right). . . . . . . . . . . . . 7
2.4 A perceptron linked to an activation function. . . . . . . . . . . . . 8
2.5 Deep Neural Network. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Convolutional filter applied on input to produce the feature map. . 9
2.7 Example of filter sliding with zero-padding and stride=2. . . . . . . 9
2.8 Example of possible pooling operations for pooling layers. . . . . . . 10
2.9 The residual layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.10 Computational graph of f(x) = log( 3

√
ex2)( ex2

2 ). . . . . . . . . . . . 12
2.11 Backpropagation of the gradient of loss between real value y and
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Chapter 1

Introduction

Following the results and innovations given by Industry 4.0 and digitalization,
such as 3D Printing, Additive Manufacturing or better simulations, the concept
of biofabrication has evolved rapidly in the last decade, with a longer history
of re-definitions. In [1] it is defined as “the automated generation of biologically
functional products with structural organization from living cells, bioactive molecules,
biomaterials, cell aggregates such as micro-tissues, or hybrid cell-material constructs,
through Bioprinting or Bioassembly and subsequent tissue maturation processes”.
This definition clarifies the similarity and the confusion between biofabrication
and bioprinting, which instead produces structures that can be used for other
biological applications, by assembling living and non-living materials. Also in [2]
the terminology used in biofabrication is re-conciliated for a deeper understanding
of its concepts.

In the context of Tissue Engineering (TE), which is an interdisciplinary field
that aims to produce biological substitutes, and Regenerative Medicine (RM),
which aims to restore the structure and function of damaged tissues and organs
[1], biofabrication is an important set of methodologies that can be applied to
reach these goals, as they can generate constructs that more closely recapitulate
the complexity and heterogeneity of tissue and organs than currently available
therapies [2]. Given the potentiality of TE, this field has still many unanswered
questions and the complexity of biological processes limits the ability to design
optimal products and have successful application [3]. On this trail, biofabrication
processes are complex both biologically and technologically, requiring a dynamic
configuration of control parameters, which is called protocol [4]. Taking into account
the need for expertise in the specific biofabrication process that is being followed,
and the complexity of the biological processes (in particular the uncertainty on
cells behavior which is relevant in many TE or RM approaches), advancements in
the field are limited to human ability or luck in exploring the possibilities given
from different process parameters, meaning that using traditional methodologies
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Introduction

is expensive and time-consuming. This is due to the fact that both the quantity
and span of parameters can be large, making their combination a huge space to
explore [3]. Trying each combination of parameters is called brute-force, a method
that is well-known to not work in time-expensive tasks, other than in vast solution
spaces. A brute-force approach is surely nowadays faster, but remains expensive
and operator-depending, and still it’s not fast enough to reach biofabrication goals.

For these reasons, Optimization Algorithms (OA) and Artificial Intelligence
(AI) methods have been and are still being developed, revolutionizing common
applications first and many more applications later. Although OAs and AI work
very well in many cases, with biofabrication they are not sufficient alone. In order
to explain why a certain biofabrication protocol works better than another, the
complexity of biological processes requires not only to take into account the large
ranges of process parameters, but also to explicitly model underlying biological
behaviors and intrinsic characteristics of cells and tissues. In this perspective, two
categories of approaches can be distinguished: black box and white box. With
black box an algorithm acts without showing how it operates, while with white
box there is an explanation about the internal processes. In the perspective of
biofabrication, with white box approach, an algorithm can optimize its processes
while giving information about how they work and why their best settings are
better than the others. Even if it’s evident that white box is preferable, such a
method requires a complex model of the system, which is more difficult to obtain
and handle with respect to black box models.

Following the idea proposed in [4], in this work an Optimization via Simulation
(OvS) approach is proposed, introducing a framework that offers an optimization
engine based on Reinforcement Learning (RL), which is an OA based on interacting
with an environment and learning from its state evolutions. In addition, the
framework offers a customizable interface that is designed to allow future different
implementations by the plug-in of any simulator to the optimization engine. In
this way, the user is allowed to use the framework with any type of interaction,
only by creating the interface and giving it to the framework, so with minimum
effort and programming knowledge required, creating different possible future
implementations of the framework with simulators that are different from the one
used in this project. In the following Sections, some state-of-the-art biofabrication
techniques are presented (section 2.1), together with AI and RL concepts needed
to design the framework (sections 2.2 and 2.3). Then, the adopted methodology is
reported, by explaining the proposed framework and its components (3). Finally,
an experiment is reported to show the potentiality of the framework and how easy
is to adapt it to a specific use case (section 4).
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Chapter 2

Background

2.1 State of the art
Biofabrication is deeply related to Additive Manufacturing (AM), which has evolved
to be used for the production of high value parts with complex geometries [1].
In fact, in [2] it is shown how technologies born in Additive Manufacturing are
now being commonly used in biofabrication, since they allow a more precise
production with less waste production, even if materials can cost more than other
manufacturing techniques (which is exactly the case of biofabrication). So it is
clearer now how biofabrication and Bioprinting overlap, as they have the same
basis, but biofabrication requires also a phase in which the built structure must be
grown further to obtain the needed functional structure, also with approaches that
are not restricted to Additive Manufacturing [1].

A common approach in biofabrication is the use of scaffolds, hierarchical prefab-
ricated structures that support the proliferation of cells, and can be used directly
in a defect site (in situ) [5], or to support the Extracellular Matrix (EM) formation
while delivering bioactive factors in a controlled environment (in vitro) [1][3]. In
vivo/in situ biological techniques are executed directly in the organisms where the
tissue must be placed, while in vitro biological techniques are done in test tubes,
Petri dishes or other environments outside the organism. The latter case allows
more controllable experiments, without the difficulties of managing immunological
responses, but has the drawback of having a biomaterial that does not behave
like real cells in situ. In vitro environments can have many forms; an important
examples are bioreactors, complex devices used to control the growth of 3D tis-
sues [5]. Across developed methodologies, current researches aim at automatize
the biofabrication processes. Controlled strategies have two possible approaches:
bottom-up, based on the ability of cells to synthesize their own EM, or top-down,
which uses scaffold or other supports to allow cells proliferation [5]. Both can be
target of OA and AI methods.
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Modern innovations in OA and AI allowed the introduction of new technologies
(e.g. face recognition or self-driving cars) while allowing also improvements in
existing processes, including biological applications. Optimization Algorithms
[6] try to find an optimum solution in a given task, which can depend from a
mathematical function, a cost function or other performance indexes. An important
example of OA for AI is the Stochastic Gradient Descent, in which a function
parameters are updated iteratively by a little fraction of the function Gradient. In
the case of search-based algorithms, a solution space is explored by evaluating the
performance obtained from different combinations of parameters, in an efficient way,
thanks to heuristics, which are strategies based on common-sense or experience that
are known to work in some cases. The most popular search-based algorithm is the
Genetic Algorithm, in which a new set of solutions is generated by applying little
random changes on the best previous solutions, or by combining them together.
AI is instead an umbrella term, which collects different methodologies that can be
used to fulfill a task mimicking human cognitive functions. Its meaning has been
discussed for decades, but now common agreement follows the analogy of “acting
rationally” described by Norving and Russell in [7], instead of the old “thinking
humanly”. Historically AI has been confused with Deep Learning (DL) [8], but
actually it includes many other algorithms and technologies that can be combined
together with a range of different goals. These algorithms can include also some
OAs, or can work well with them. These approaches are versatile, allowing to
improve the performance of many tasks that needed human effort, or expertise even
with digitalized tools, until recently. For example, now AlphaFold has surpassed
the limit on protein folding prediction [8]. Many more examples of application of
OA and AI in biological processes can be found in [9] for drug discovery, in [10] for
morphology-based cell culture, in [11] for droplet sorting and bright-field imaging
through DL, and in [4] for GA for generating biofabrication protocols.

Many of the reported works improving biofabrication with an experimental
approach need specialized technologies and procedures that, as it’s now evident,
are expensive in costs and time. In contrast to in vivo and in vitro approaches, in
silico methodologies allow to exploit the power of modern computation, in addition
to the possibility of integrating OA and AI to optimize the analysis of the biological
processes, which is critical in biofabrication. However, one of the most important
steps in switching from in vivo/in vitro to in silico is developing a validated model
of the biological process that is being simulated, since the simulated process needs
to behave with high fidelity with respect to the real process in order to obtain a
functional product. A first relevant innovation that joins together in silico and
in vivo or in vitro benefits are the Digital Twins, which are Digital Models that
are validated with the real model first, and then are made able to both obtain
information from and provide instructions to a real plant [12]. Digital twins rely
on the combination of computational models of the physical process, and methods
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to characterize, analyze and optimize the physical process.
Optimization via Simulation (OvS) is an example of this general scheme, which

applies optimization methods on simulated environment. In this way, validated
computational models can support the research for optimal process designs, without
the drawbacks of required cost, time and resources from the experimental exploration
of physical processes. OvS can be model-based, which applies an optimization
algorithm on a simulator (this is a white-box approach where the model of biological
processes explicitly represents underlying biological mechanisms), or metamodel-
based, which uses a metamodel that estimates the input-output relations of the
simulation model [13]. The advantage of using the simulation of a validated
computational model of the physical system in OvS is that its results, that are
directed by a simulator, can be validated on the real process, and explicitly represent
its parts and organization, making it fully understandable. The optimization engine
in OvS can also rely on a black-box model for the optimization part, in the cases
in which it is more accurate, but thanks to the simulation models employed it still
maintains the interpretability that is given by white-box.

Biological systems involved in biofabrication pose peculiar challenges to white-
box computational modeling approaches due to their intrinsic complexity and
their multi-level and multi-scale organization [14]. Existing approaches to model
biological systems range from mathematical to computational models, relying
on either continuous, discrete or hybrid formalisms [15, 16]. The diffusion of
Systems Biology Markup Language (SBML) [17] determined the spread of Ordinary
Differential Equations (ODEs) models in systems biology, while other approaches,
such as Agent-Based Models (ABMs) and discrete models usage is less frequent,
also due to their lack of reproducibility and standardization [18]. Yet, simulation
approaches based on discrete models or ABMs have a great potential to enrich the
toolkit of modelers in computational biology [19]. For example, Petri Nets models
naturally express concurrency and encapsulation, and can be extended to represent
hierarchies of multiple dimensional scales and levels of abstraction, proving very
useful to model complex biological processes [20] such as ontogenesis [14, 21, 22], or
the relations between an host organism and the microbiota[23, 24]. An high-level,
domain-specific language to support accessible and user-friendly construction of
hierarchical Petri Nets models is under development [25, 26].

OvS approaches thus can rely on a range of modeling formalisms and construction
aids for white-box models of the biofabrication process of interest. Similarly, they
can rely on a range of computational approaches for their optimization.

To exploit the potentiality of OvS, Deep RL algorithms are a viable way to
obtain a learning model that acts following the chosen simulator rules. These
algorithms combine the benefits of Artificial Neural Networks (ANN) with the
ability of RL to learn from an environment.
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2.2 Convolutional Neural Networks

Figure 2.1: The perceptron.

2.2.1 Deep Artificial Neural Networks
ANN have a long history of evolution and research, but only in the last decade
this field has encountered an exponential growth thanks to both smart ideas and,
more important, advancements on computational power, GPUs and lowering of
hardware costs [3].

The fundamental idea comes from Multi-Layer Perceptron (MLP), first intro-
duced by Rosenblatt in 1958 [27], which is a chain of nodes, called perceptrons,
which output is the input of another node: every node sums the output of previous
connected nodes, by weighting each connection with a different value. Given x
input sample, n size of input and wi weight for input i:

nØ
i

(wixi) (2.1)

This is inspired by how neurons work: each one propagates an electrochemical
signal through the axons to other neurons thanks to synapses, where each structure
(like the weights) defines what a neuron will perceive, and the neuron structure
will define whether it will activate and fire or not [3].

In MLP the “neurons” are called perceptrons, and their weighted sum (equation
2.1) is applied on a step function (figure 2.1). This means that the perceptron is a
linear classifier, so it can be trained by updating its separation surface vector with
the difference of direction with each training sample (figure 2.2). Unfortunately,
this works only with linearly-separable data [28], which isn’t sufficient for real-
world applications. However, perceptrons are still useful, as it’s sufficient to add
a non-linear activation function at its end to obtain a non-linear classifier. An
example is using the sigmoid function to obtain a logistic regression classifier, but
there are plenties of other activation functions: some of the most important are
softmax [29], which acts like a probability and so is used at the output layers, and
Rectified Linear Unit (ReLU) [30], which fires after an input equal to 0 and never
saturates (figure 2.3).
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Figure 2.2: Update of separation surface vector through a data sample.

A further improvement is given from deep composition: putting together many
layers of perceptron plus activation function allows to obtain a deep model (figure
2.4), which is highly non-linear, from where comes the definition of Deep Learning:
the usage of a perceptron network with many non-linear layers, which is the MLP,
obtaining a Deep Artificial Neural Network [31].

Figure 2.3: Softmax function (left), ReLU function (right).

MLP consist of layers of more perceptrons, where layers between input and
output ones are called hidden layers, and each layer neuron has a connection to
each of its next layer neurons (figure 2.5). Moreover, different layers can have
different activation functions.

ANN can be trained by updating the neurons weights by comparing the output
that the network gives when feeded with data with their truth value. This requires
a labeled dataset, which has an associated category for each datapoint, and works
by improving weights that are useful to produce the correct output, and reduce the
ones that worsen the performance. This allows the network to adapt its layers so
that only the needed data features are used, while in traditional Machine Learning
models it is critical to decide which features are useful for a classification task, as
dimensionality reduction improves accuracy and interpretability [32].
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Figure 2.4: A perceptron linked to an activation function.

Figure 2.5: Deep Neural Network.

2.2.2 Convolutional layers
MLP are still not enough, as they don’t reach good performance in complex
applications. The first great improvement that brought DL to its current evolution
is the convolutional layer [33]: a matrix (filter) applies a discrete convolution
on an image color channels (RGB), producing a feature map (figure 2.6). The
weights of the filter act at the same way of MLP weights, so during training they
adapt to learn only important and useful features in the images. How much a
convolutional layer slides on the image is called stride, while the filter size is called
receptive field, and together they define the output feature map size (figure 2.7).
In addition to convolutional layers, pooling layers (originally C-cells [33]) reduce
the size of a feature map by combining together its subsections and thus reducing
the computational power and memory required by the network (figure 2.8). Then,
just as in MLP, activation functions can be added after the convolutional layer.
Finally, more filters of the same type can be stacked together in a single layer, just
like color channels are stacked in an RGB image, letting the network learn different
features at the same time.

Thanks to Convolutional Layers, Convolutional Neural Networks (CNN) [34]
are born, allowing new network architectures and the resolution on highly complex
tasks that require images, videos, or even other time-sequence data such as audio
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Figure 2.6: Convolutional filter applied on input to produce the feature map.

Figure 2.7: Example of filter sliding with zero-padding and stride=2.

or text. Classic perceptron layers (here called fully-connected layers) can still
be used, and usually they are put at the end of the network, in order to collect
what the convolutional layers have processed and to decide with softmax functions
the output categories probabilities, at least in a classical classification task. For
example, a network with two softmax can be trained to tell if, in an image from a
dataset with images of cats and dogs, there is a cat or a dog. The first important
simple CNN architectures are AlexNet [35], VGG [36], GoogleNet [37]. All of these
architectures obtained one after the other a lower error on the ImageNet Large
Scale Visual Recognition Challenge ILSVRC [38], but reached soon a limit due
to the depth of the networks: a too deep network have a lower performance due
to the “vanishing gradients” problem, which means that the gradients of the first
layers becomes too small to let the network learn something, but also a deeper
network means more memory usage and more computational time required.

To solve this problem, [39] introduces the Residual Network, a novel architecture
that uses the Residual Layer, which contains more convolutional layers in sequence,
and a skip connection from the start to the end of the layer. ResNet networks are
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Figure 2.8: Example of possible pooling operations for pooling layers.

Figure 2.9: The residual layer.

proposed with more residual layers stacked together. This kind of connection allows
the network to pass the gradient on, avoiding the vanishing gradient (figure 2.9).
From now on, more architectures have been proposed, with new possible tasks, e.g.:

• object detection, detecting the position of something in the image;
• segmentation, assigning a category to each pixel of the image;
• instance segmentation, a combination of both the previous tasks;
• sequential data processing, videos, audios, texts
• image generation, generating images from other images or from textual de-

scription;
• description generation, generating textual description of images;
• domain generalization, recognizing objects across different domains (e.g. pho-

tos, drawings, cartoons).

and many more are under development.
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2.2.3 Loss and Backpropagation
The training process in ML concerns the updating of a learning model parameters
such that either an error is minimized or a performance index is maximized. In
the setting of DL this update goes through an error function called loss function.
Given a classifier C, its loss function is the measure of the error that C makes
when predicting the label of input training data, by using its true known labels:L(C, x, y) = 1 if C(x)! = y

0 otherwise
(2.2)

where L is the loss function, x is the predicted label and y is the true label. There
are many possibilities for a loss function. Some common losses are Mean Square
Error (MSE), Cross-Entropy, Huber [40] (and more in [41], [42]), but personalized
functions can be used. In general, loss can be written as:Ø

x,y

L(C, x, y)P (x, y) (2.3)

where P (x, y) is the probability of predicting a label x when the true label is y.
Training the classifier means minimizing the loss function, which translates into
computing its gradient with respect to its parameters. To apply the gradient, the
loss function needs to be differentiable at all points, so the gradient function needs
to be continuous.

An optimization algorithm that can be used is Gradient Descent [43], an iterative
algorithm:

• start from a random setting of parameters, then iteratively:
• calculate the gradient of the loss function;
• update the parameters with a small fraction of the gradient;
• stop at minimum.

Mathematically, the gradient of a function is orthogonal to level curves, which
means that its direction goes to the steepest direction starting from the point in
which it is evaluated. However, if the surface is too steep its value can be high, so
subtracting it from the parameters could lead to surpass the loss point of minimum,
so iteratively the algorithm could jump around it without never reaching it, or
either reach a different local minimum which is not optimal. This is why the
gradient needs to be multiplied with a small number λ:

θt+1 = θt − λ∇Lθt (2.4)

where θt are the classifier C parameters at timestep t. The number λ is the Learning
Rate (LR) [44], which must be set properly: a too high value causes overshooting,
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which is jumping around the point of minimum, while a too small LR causes a slow
convergence speed, or no learning at all. An hyperparameter optimization phase
during training allows finding a good LR value. It can also follow an adaptive
strategy, which makes it change during time: a decay parameter ρ [44] reduces the
LR over time, and a momentum parameter v accumulates the gradient directions
over time:

λt+1 = λ0e−ρt (2.5)
vt+1 = λvt − α∇L(θt) (2.6)

θt+1 = θt + vt+1 (2.7)
Gradient descent can be applied even to non-convex functions, but in this case it’s
not guaranteed to reach a global optimum [45]. Luckily, in the case of DL it is not
necessary: training too well the model leads to overfitting [46], which means that
the model cannot generalize and so doesn’t work well on new unseen data . In
this case, training error is very low, but accuracy on test data (which is new data
not used during training) is high. However, gradient descent is still not sufficient,
as in ML tasks require usually a big number of training samples and parameters,
making gradient descent impractical as it needs to be computed for each sample
and parameter. Stochastic Gradient Descent (SGD) (from the idea of Robbins and
Monro [47]) is an approximation of gradient descent, which applies the algorithm
on a small batch of data at a time, called minibatch, which is much faster with
an accuracy reduction as trade-off. As a further advantage, minibatches can be
processed in parallel. Everytime the algorithm uses all the training samples it
is called an epoch. To avoid bias, SGD needs a shuffled training dataset, which
increases the algorithm performance [48].

Figure 2.10: Computational graph of f(x) = log( 3
√

ex2)( ex2

2 ).
The gradient computation remains still a problem. Computing the gradient

manually or with the simple chain rule is a long process, even computationally.
Common loss functions are convex, but generally personalized losses aren’t. As
a work-around computational graphs are used [49], which consist in a Directed
Acyclic Graph (DAG) where each intermediate node is a computation that could
depend from more previous nodes, while more following nodes could depend from
it. In Figure 2.10 the computational graph of f(x) = log( 3

√
ex2)( ex2

2 ) is shown as
an example.
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A fast way to compute the gradients without the drawbacks of long symbolic
calculations is Automatic Differentiation (AD) [50], which keeps track of intermedi-
ate variables to exploit their dependencies, through computational graphs. It has
two alternatives: Forward mode and Reverse mode. Starting from the example of
Figure 2.10 the dependencies are:

f = d ∗ g

g = b/2

d = log(c)

c = 3
√

b

b = ea

a = x2

• forward mode: each variable gradient is computed starting from input nodes to
output nodes, so that an already-computed derivative can be used subsequently
in the computation of derivatives of nodes that depend on them. Given input
x and i-th node ni:

dni

dx
= dni

dni−1

dni−1

dx

so from the example:

da

dx
= 2x

db

dx
= db

da

da

dx
= (ea)da

dx

dc

dx
= dc

db

db

dx
= 1

3 3
√

b2

db

dx

dd

dx
= dd

dc

dc

dx
= 1

c

dc

dx

dg

dx
= dg

db

db

dx
= 1

2
db

dx

df

dx
= df

dd

dd

dx
+ df

dg

dg

dx
= g

dd

dx
+ d

dg

dx
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• reverse mode: dependencies are stored like in the forward mode starting from
input up to output nodes (forward pass); then, starting from output node back
to input one, each node differentiation is computed by summing the product
of following connected nodes derivative, each multiplied by their derivative
with respect to the actual node (backward pass). Given input x and i-th node
ni:

df

dni

= df

dni+1

dni+1

dni

so from the example:
df

dx
= df

da

da

dx

df

da
= df

db

db

da

df

db
= df

dc

dc

db
+ df

dg

dg

db

df

dc
= df

dd

dd

dc

df

dd
= g

dd

dc
= 1

c

dc

db
= 1

3 3
√

b2

df

dg
= d

dg

db
= 1/2

db

da
= ea

da

dx
= 2x

In the case of ANN, backward mode is called Backpropagation [51], and it can
be seen in Figure 2.11. Performance of backpropagation depends on many factors:
starting weights of the network, learning rate, training set. In any case, several
problems can be faced by setting them wrongly: for example exploding gradients
(too high values that can lead to loss values jumping around, or even numerical
errors) or overfitting.
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Figure 2.11: Backpropagation of the gradient of loss between real value y and
output value ȳ.

Modern DL libraries have their own implementation of backpropagation: Py-
Torch uses its autograd engine [52], while Tensorflow has GradientTape [53]. Via
backpropagation through the hidden layers, the network learns what features of the
input data are relevant at each layer with no concept of science or prior knowledge
required.

2.3 Reinforcement Learning

Figure 2.12: Agent and Environment interaction.

RL is a subset of OAs whose main components (agent, environment, reward)
differentiates it from the other algorithms [54] (figure 2.12):

• Environment, can be interacted and has a state that changes with every
interaction

• Agent, can act on the Environment and see how its state changes

• Reward, a score that is given from the environment when the agent interacts
with it, and depends on the goal of the algorithm
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The function of the reward is to tell how good is the taken action, so that the agent
can take it into account while deciding if that action is suited to the environment
state or not. Each environment state has a value, which can be seen as how much
reward can be collected in the optimal case while being in that state. Both the
reward and the state values can be used to decide if an action can be taken or not
in the future: different strategies can vary in how much they are considered, but
usually it’s more important to take actions that maximize the accumulated reward,
so going in the highest-value states is the common objective.

RL can be formalized through Markov Decision Process (MDP) [55], which
consist in trajectories of state-action-reward, extending the Markov Chains [56].
Trajectories are collected by iteratively seeing environment state s, taking an action
a and collecting a reward r, for each timestep t:

s0, a0, r0, s1, a1, r1, s2, a2, r2, ..., st, at, rt, ...

Following the trajectories, rewards are collected so that the return value can be
estimated:

Gt =
tØ

i=0
ri = r0 + r1 + r2 + ... + rt (2.8)

A RL algorithm aims to maximize the return value Gt, which is the same as
saying that environment states have the maximum values, respecting the reward
hypothesis, which says that any goal can be translated in maximizing the return
value. The true value of a reward is a difficult engineering problem, as it must be
well suited to the goal and the environment, and must be able to better differentiate
between good and bad action in a way that lets the algorithm learn [55]. Moreover,
the process could go on indefinitely, so to avoid a divergence (reaching a too big
value) a discount rate 0 < γ < 1 is used:

Gt =
tØ

i=0
γiri = r0 + γr1 + γ2r2 + ... + γtrt (2.9)

This value is an hyperparameter as it defines how much the reward values are
important on the short-run and on the long-run.

The environment state is completely described, but it could be not fully observ-
able. The agent has its representation of the environment state, based on what
it can see and what it needs. An important step here is the Markov Hypothesis,
which says that the future states are independent from the past states (Markov
Property) [55], so in probabilistic terms:

P [st+1|st] = P [st+1|s0, s1, s2, ..., sn] (2.10)

or in simpler words, the current state is enough to completely know the environment,
thus simplifying way more the mathematical treatment of the process. In MDP a
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policy π is a map of the transition probabilities between the environment states,
which is held by the agent, so in other terms it defines the agent behavior in the
environment by telling it what to do given a state. The policy can be changed
either considering the states transitions (deterministic policy), or also considering
the possible actions in the current state (probabilistic policy). Given a policy,
the state value function or V-function vπ defines the value of each state, and is
evaluated by starting from a state s and following the policy, and then averaging
the expected future rewards:

vπ(s) = Eπ[
+infØ
i=0

γirt+i+1|st = s] = Eπ[rt+1 + γrt+2 + γ2rt+1 + ...|st = s] (2.11)

The action value function or Q-function Qπ defines the value of each action in each
state, and is evaluated by starting from a state s, taking an action a and following
the policy π, and then averaging the expected future rewards with respect to the
policy:

Qπ(s, a) = Eπ[
+infØ
i=0

γirt+i+1|st = s, at = a] = [rt+1 + γV (st+1)] (2.12)

which is equivalent to taking an action a in the state s and then evaluating the
state value function of the next state. Each state-action values of the Q-function
are called Q-values. Taking into account the policy π(a|s), so the probability of
taking action a in state s:

vπ(s) =
Ø

a

π(a|s)Qπ(s, a) (2.13)

Thanks to the rewards, an RL agent can update the state value function and the
Q-function to let the policy converge to the optimal one, but the exact way how this
is done is a specific RL algorithm. The general idea is to maximize the expected
rewards obtained in the future, which of course are not known in advance. However,
we can simplify this mathematical treatment by rewriting the state value (equation
2.11) function in a recursive way:

vπ(st) = Eπ[rt+1 + γ(rt+2 + γrt+3 + ...)] = Eπ[rt+1 + γv(st+1)|st = s] (2.14)

then, taking into account transition probabilities p(s′|s, a) of going into state s’ by
taking action a in state s, since the expectation E is the sum of outcomes multiplied
by their probabilities, equations 2.13 and 2.14 can be rewritten as:

vπ(s) =
Ø

a

π(a|s)
Ø
s′

p(s′|s, a)(r + γvπ(s′)) (2.15)
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where r is the reward given by the transition from s to s’. This leads to a straight-
forward conclusion: to converge to an optimal policy, so a policy that makes the
agent behave in the best possible way, it’s enough to update the known state
value function (by starting with a random one) with the obtained reward and the
discounted next state value. Finally the discount value makes really sense, as its
value can definitely change how much the algorithm can give more weight on either
the already known value or the obtained reward, defining so how much it learns
from the environment and how much it must follow the already known policy. This
gives us an iterative approach as a starting point for RL algorithms.

Finally, if we want to optimize the policy, we need to get the best possible value
for each state, obtaining from equation 2.15 the optimal state value function v∗(s):

v∗(s) = max
π

vπ(s) = max
π

Ø
a

π(a|s)Qπ(s, a) = maxa

Ø
s′

p(s′|s, a)(r + γv∗(s′))

(2.16)
Even if until now these functions seem long and tricky, they all mean that we can
start from our actual knowledge and update it by taking a discounted amount and
choose the action with the best value.

2.3.1 Q-learning

Figure 2.13: Q-learning representation of RL.

Thanks to the iterative computation of the state value function (equation 2.15),
an analogue version of the Q-function can be written:

Qπ(s, a) =
Ø
s′

p(s′|s, a)(r + γ
Ø
a′

π(a′|s′)Qπ(s′, a′)) (2.17)

where this time the outcomes are the Q-values of the next states and the probabilities
are given by the policy itself, to compute the inner expectation. We can notice
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that this value corresponds to the state value function of the considered next state
vπ(s′), so we can rewrite again this function as:

Qπ(s, a) =
Ø
s′

p(s′|s, a)(r + γvπ(s′)) (2.18)

Now, since the optimal state value function can depend on choosing the best actions
through the Q-function, as shown at the end of previous Section, the strategy is
now to optimize directly the Q-function:

Q∗(s, a) = max
π

Qπ(s, a) (2.19)

which follows the iterative approach given from the Bellman equation. Starting
from a random Q-function, we can choose the best action each time and update the
function itself, obtaining the Q-learning algorithm (figure 2.13). This algorithm
can be formulated in a model-based (or stochastic) method, through the transition
probabilities:

Q∗(s, a) = r + γ
Ø
s′

p(s′|s, a) max
a′

Q∗(s′, a′) (2.20)

or in a model-free (or deterministic) method, that requires only the Q-values:

Q∗(s, a) = (1− α)Q∗(s, a) + α(r + γQ∗(s′, a′)) (2.21)

where the parameter α defines how much value is taken from the current state,
and how much from the reward and best next possible state, meaning that the
Q-function can be updated more with the new information, or remain more or less
the same. Both require simply to run the agent on the environment, collect the
reward, and update with simple computations the Q-function. The deterministic
method is even simpler, and since its Q-values are an association of state and
action they can be collected in a matrix called Q-table. This process requires also
a parameter ϵ that defines the probability to take a random action, or to take
the best action according to the Q-table. In this way, if the probability of taking
random actions is high, even taking wrong actions allows the algorithm to learn
faster the optimal value for each action, and then it can be reduced to start doing
more right actions, reaching the algorithm convergence. More important, it can be
demonstrated that the Q-algorithm is able to converge to the optimal Q-function
with a large amount of trials [55].

This algorithm is solid as it always converges when taking each state-action
transition enough times [55], but has the drawback of having large Q-tables even
for little complex problems, so it would require a long time to try every action
many times for every state to let the model converge well to the optimal one. For
this reason, a CNN can be used to approximate the Q-function. Still, this method
is only able to work with discrete actions (e.g. up, down, left, right), so continuous
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actions (e.g. a real number representing an acceleration) need to be discretized
(divided into intervals) and to be limited to a minimum and a maximum value in
order to work with Q-learning.

2.3.2 Policy Gradients
As already said, Q-function can be hard to learn for some applications, and it can
be easier to map directly states to action. Moreover, Q-learning does not work with
neither continue nor stochastic actions, and can be unstable other than suffering
from states uncertainty. On the contrary, policy gradient can work with continuous
or even stochastic actions, by relying on the optimization of a parameterized
model that represents the policy [57]. In particular, policy gradient estimates the
parameters of a learning model so that the policy πθ(a|s) is optimal, by maximizing
the expected reward as objective function:

J(θ) = Eπ[Gt] (2.22)

θ∗ = argmax
θ

(J(θ)) (2.23)

Generally it follows the gradient update rule of Gradient Ascent, similar to the one
of Gradient Descent already seen in Section 2.2.3 (equation 2.4):

θt+1 ← θt + λ∇θJ(θt) (2.24)

but the gradient of J cannot be computed, so we need to rewrite it first:

δJ(θ)
δθ

= δ

δθ
Eπ[G(t)] = δ

δθ

Ú
πθ(τ)G(τ)dτ =

Ú
G(τ) δ

δθ
πθ(τ)dτ = (2.25)

=
Ú

G(τ)πθ(τ) δ

δθ
log πθ(τ)dτ = Eπ[G(t) δ

δθ
log πθ(t)] (2.26)

where at the penultimate step the following identity has been used:

δ

δθ
log πθ(x) = 1

πθ(x)
δ

δθ
πθ(x)→ δ

δθ
πθ(x) = πθ(x) δ

δθ
log πθ(x) (2.27)

So the derivative of the expected return is the expectation of the return weighted
by the derivative of the log probability of actions in a given state. This result tells
that it’s enough to collect more trajectories and average them out, by considering
for each timestep the probability of taking an action, sampling it and multiplying
it with the return value. The defined objective function means nothing more
than increasing the probability of taking actions that cause a good reward, and
decreasing the probability of taking actions that cause a bad reward: this happens
since if a sequence of actions lead to an improvement to the policy, then the gradient
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will have a positive value on some parameters, which will be incremented in the
update. This method requires only to act on the environment and then retrieve
data, so it is completely model-free, and it introduces the REINFORCE algorithm
[58]:

Algorithm 1 REINFORCE algorithm
start with random θ0 parameters
for n episodes do

start from initial state s0
while not done do

observe state st and sample an action at from policy πθ(a|s)
collect st, st+1, rt, log(πθ(at|st))

compute Gt for every t
θ ← θ + λ∇θJ(θ)

Reaching a final state is an episode, and the algorithm can be ran from an
arbitrary number of episodes. Certainly more episodes means converging more
to the optimal policy. To act with discrete actions, the policy can simply be a
discrete distribution of actions that can be taken, and then the algorithm chooses
an action by sampling from the distribution. To act with continuous action, a
Gaussian distribution can be used by updating its mean and variance, and then
the algorithm can sample a value by it.

2.3.3 Advantage Actor-Critic
Policy Gradients can suffer from high variance in the gradient computations, while
Q-learning cannot represent continue actions, which could prevent reaching a
global optimum solution [59]. An important advancement in RL are the Actor
Critic algorithms [60], which join together both Q-learning and Policy Gradients
algorithms: the Critic evaluates how good and bad are the taken actions, so the
Q-value, or the states in which the environment falls after an action, so the state
value, while the Actor defines how the agent will behave, so it contains the policy
which is a probability distribution over actions that can be taken in a given state.
In this way, the Actor objective function remains the same of the REINFORCE
algorithm (left member), while the Critic actor is simply the Mean Square Error
(MSE) between the current action value and the best possible action (right member):

∇θJ(θ) =
T −1Ø
t=0

[Gt+1
δ

δθ
log πθ(t) + 1

2(Q(st, at)− V (st))2] (2.28)
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Figure 2.14: Data flow in A2C.

where T is the last timestep. The algorithm is almost the same of REINFORCE,
while the learning model is composed of both probability distribution for Actor
and Q-function (or Q-table) for critic. Sapling randomly from the distributions
has however the drawback of increasing the variability in log probabilities, so the
policy could converge to a sub-optimal one. Moreover, the fact that the expected
return is multiplied by the log probabilities will worsen this issue. For these reasons,
the log probabilities can be multiplied with a smaller value that still depends on
the expected return, making so that the policy is updated with smaller steps thus
becoming more stable. One of these approach is the Advantage Actor-Critic [61],
in which the log probabilities are multiplied for the Advantage, which express how
much the taken action is better with respect to the others:

A(st, at) = Q(st, at)− V (st) = rt+1 + γV (st+1)− V (st) (2.29)

from which follows the new objective function, schematized in Figure 2.14, where
the member on the right is exactly the advantage:

∇θJ(θ) =
T −1Ø
t=0

[A(st, at)
δ

δθ
log πθ(t) + 1

2(Q(st, at)− V (st))2] = (2.30)

=
T −1Ø
t=0

[A(st, at)
δ

δθ
log πθ(t) + 1

2A(st, at)2] (2.31)

22



Background

Advantage Actor-Critic can be proposed in two forms:

• Asyncronous Advantage Actor-Critic (A3C) [61], able to perform more parallel
trainings to improve the performance in a shorter time, by syncing their
results;

• Synchronous Advantage Actor-Critic (A2C) [62], one or more agents act at a
time and their result are joined together by resolving their inconsistencies.

A3C is surely more performing as it explores more the search space, and is more
reliable, while A2C is simpler to implement. In any case, both are simple to
implement by using Deep ANN, where each agent is a different neural network
model, comprised of an Actor head and a Critic head:

• the Actor head can use a layer with softmax activation functions as output
layer, to approximate the distributions of discrete actions, or two parallel
layers that represent both mean and variance that will be used to sample a
continue action from a consequent Gaussian distribution;

• the Critic head uses its output layer to generate the state value.

Figure 2.15: Actor and Critic heads with common backbone (1) and individual
backbone (2).

There are many ways to create an ANN for Actor-Critic, and all can either use
a common part (backbone) to process data and then pass the output to both heads,
or there can be two separated processing layers for both heads from the beginning
(figure 2.15).
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Chapter 3

Methods

The framework proposed in this project is designed to respond to requirements to
overcome the limits of traditional strategies that optimize biofabrication processes,
highlightened in Section 2.1:

• need of human expertise and intervention; the framework is designed to
autonomously act on a simulator and validated model;

• problem-specificity of the biofabrication solution; the framework has an easy-
to-implement interface, which requires a little knowledge of Python language,
supporting accessibility and flexibility, with the possibility to generalize its
use to different simulators;

• expensiveness of traditional experimental methods; the combination of a
simulator with an exploration engine based on RL allows an optimal exploration
of the solution space without both the time and cost required by the empirical
processes;

• interpretability of the solution; using an ANN to generate biofabrication
protocols together with a simulator that represents the biological process gives
an hybrid between black-box and white-box approaches, leveraging on both
interpretability of the biofabrication protocol and a model capturing biological
complexity that is required to learn the optimal one.

To tackle these challenges, this Thesis proposes an Optimization via Simulation
methodology where the optimization process relies on RL models and the A2C
algorithm to learn optimal biofabrication protocols, interfacing with simulations
of white-box models of the growth of epithelial cellular sheets in culture. To
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support these functionalities, this work also provides a framework to implement
the RL model, optimization process and the interface to the simulator, featuring
the components shown in Figure 3.1:

• Learning model, a CNN that takes images as input and provides actions as
output;

• Exploration engine, implements the A2C algorithm to learn the optimal
biofabrication protocol;

• Simulator interface, contains the functions that must be implemented to
attach a simulator to the framework.

Figure 3.1: The proposed framework components.

The proposed framework executes the following flow:

• the exploration engine takes observations from the simulator and gives them
to the learning model;

• the learning model receives an observation of the simulator state (which is an
image) via the simulator interface, and produces an action as output to the
exploration engine;

• the exploration engine executes the action on the simulator via the simulator
interface, and collects the mentioned data together with other data needed to
learn.
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The simulator is accessed through a common simulator interface, which needs
to be implemented for the specific employed simulator. Since the simulator commu-
nicates with the model during execution, the produced action sequence is defined
as an Online protocol.

Considering this general functioning, the detailed framework design is as follows.
The exploration engine implements a RL agent, by using the A2C algorithm

(section 2.3.2) together with the ANN model (section 2.2), while the simulator part
represents the RL environment, whose states are the observations, and that provides
the exploration engine with the reward values for each action-state transition.

On the other hand, the learning model provides the probability distributions of
actions. By running the exploration engine for a number of episodes, which are
epochs for the ANN model, the latter can learn the best policy for a specific appli-
cation, through the loss defined by the A2C algorithm. Each specific application
defines the employed simulator and the target of the simulation.

This work implements a A2C algorithm that is a variant of the existing one. The
proposed A2C uses a single isolated Agent that does not share its data. This stems
from the intention of balancing the trade-off which inherently underlies model-based
OvS: the interpretability of white-box simulation models has high computational
cost [13]. To focus on the framework adaptivity potentialities, this work relies
on the simplification of the RL model. In fact, using a single-agent A2C allows
to have a simple RL model, that still can reach adequate performance without
the drawback of synchronizing multiple agents. Moreover, the proposed approach
allows running multiple learning experiments as parallel agents, both to perform
larger experimental campaigns over fixed parameters, and to systematically explore
hyperparameters to experimentally define the best ones for a given application in a
shorter time (section 4.2.3). In the following Sections, each framework component
will be explored with more details to better understand the data flow across the
framework, the learning process functioning and how they support the optimization
of biofabrication processes.

3.1 Artificial Neural Network model
This Section elucidates ANN model structure and operation in relation to the other
framework components.

3.1.1 Model structure
The ANN model is built to be general and flexible, that is, to allow any simulator
to be attached and any application to be implemented in the future. In particular,
it can provide the actions required by the environment, whichever their number or
their type is (both in the case they act over a continue and a discrete space). The
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ANN model implementation relies on the tensorflow library (version 2.9.1) [63].
The model structure is shown in Figure 3.2 and is based on the A2C model which
has been illustrated in Section 2.3.3:

• a backbone processes the environment state as observations to learn the
visual components which are important to represent it. In this way, the Critic
and the Actor can estimate their values. This implementation relies on the
ResNet18 model [39] as a backbone.

• a Critic head processes the backbone output to generate the current state
value;

• an Actor head processes the backbone output to generate:

– one value through a softmax function for each discrete action;
– two values (µ, mean and σ, variance) to generate a Gaussian distribution,

from which sample a value, for each continuous action.

Figure 3.2: ANN model.

The Actor head and Critic head both have as an input layer a fully connected
layer (a simple MLP layer), defined as ’dense’ in tensorflow, and their number of
neurons can be decided as hyperparameters. The ANN model outputs’ size depends
on the implemented environment, since different applications may require different
set of actions for the respective simulators. For this reason, having a model whose
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output size can be adapted is crucial to allow flexibility in using different simulators
as for the Actor head:

• the number of output Gaussian distributions (and so number of neurons in
both mean and variance layers) is equal to the number of continue actions;

• the number of output (parallel) layers with softmax activations is equal to the
number of discrete actions; each layer’s output has a size corresponding to the
number of possible values of its corresponding discrete action.

The Actor head clips the output values of variance layers and of discrete action
layers between 10−2 and 103, to avoid numerical issues in computation during the
training phase. More details on the heads and on the backbone can be found in
Appendix A.

3.1.2 Model operation
The first operation step is building the model. This requires to specify the size and
shape of data that will be given to the ANN as an input. In fact, this determines
the size and shape of its convolutional layers’ output. The framework operates the
ANN model with an input shape of (1, width, height, channels), where width and
height are, respectively, the width and the height of the image that constitutes an
observation of the environment, while channels is the number of color channels
from the image (e.g. it equals 3 for RGB images).

The model passes the generated values and distributions to the exploration
engine, which uses them to act on the environment, and to generate the values
needed for computing the objective function used in A2C, which in turn reflects in
the update of the ANN weights through backpropagation (section 2.2.3).

3.2 Simulator interface
In order to support generality and flexibility in the framework, its design devises
from its first implementation the use of different simulators in the future. For this
reason, the training process needs to rely on fixed functions and format for data
exchange, regardless of the implemented application and the relative simulator
chosen. For this reason, the framework features a simulator interface, that is, a
model containing the list of functions that need to be implemented, so that they
can be called in a piece of code regardless of their implementation. This allows
the framework to potentially work with any application, and to track data in a
personalized way through the learning process. This allows the user to check in
real-time how the learning process is progressing, decide what data to save in order
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to analyze the generated protocols and the training progression, and also when to
save this data.

In this work, an environment is defined as a specific implementation of the
simulator interface. In order to attach the chosen simulator, it is sufficient to
implement a personalized version of the environment file (Appendix B) whose
structure is inspired by the one proposed in [64]. Its main attributes are required to
set the ANN model (as already specified in Section 3.1), and for parameters specific
to the training process, such as the learning rate, number of epochs, maximum
number of steps for each epoch, the possibility to restore the training from a previous
state, and finally the name of the directory that will contain the output data. The
main functions allowing the simulator interface to support the advancement of
the training process follow. In order to define a specific implementation of the
environment, it is necessary to maintain the external signature of these function and
to implement their internal functioning according to the specific simulator attached.
Comments in the code refer to the general functionalities to be implemented below
them (the insertion points are indicate by < insert code here >).

• reset prepares the environment for the next episode starting from an initial
state;

1 de f r e s e t ( s e l f ) :
2 obse rvat i on = None
3

4 # environment r e s e t to i n i t i a l s t a t e
5 # < i n s e r t code here >
6

7 # c r e a t i o n o f the obse rvat i on o f the i n i t i a l s t a t e
8 # < i n s e r t code here >
9

10 re turn obse rvat i on
11

• render returns an image showing the environment state;

1 de f render ( s e l f ) :
2 image = None
3

4 #c r e a t i o n o f the obse rvat i on o f the cur rent s t a t e
5 # < i n s e r t code here >
6

7 re turn image
8
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• adapt_action transforms the actions provided by the ANN in a format that
can be used by the step method;

1 de f adapt_actions ( s e l f , d i s c r e t e _ a c t i o n s=None , cont inue_act ions=
None ) :

2

3 a c t i o n s = None
4

5 #prepare the needed a c t i o n s f o r the s tep func t i on
6 # < i n s e r t code here >
7

8 re turn a c t i o n s
9

• step acts on the environment with the provided actions and provides to the
training process an observation of the environment, the reward value, and a
boolean value that tells whether the environment has reached a terminal state
or not;

1 de f s tep ( s e l f , a c t i on ) :
2

3 obse rvat i on = None
4 #c r e a t e obse rvat i on o f the new s t a t e
5 # < i n s e r t code here >
6

7 reward = 1
8 #d e f i n e the value o f the reward
9 # < i n s e r t code here >

10

11 done = False
12 #dec ide i f a f i n a l s t a t e has been reached
13 # < i n s e r t code here >
14

15 #execute the s p e c i f i e d ac t i on on the s imu la tor
16 # < i n s e r t code here >
17

18 #None i s always returned s i n c e usage o f the four th returned
value i s s t i l l not implemented

19 re turn observat ion , reward , done , None
20

These methods must interact with the class attributes and with the simulator
to implement the environment. In this way, the exploration engine is able to call
them, avoiding the need to recode it for each different simulator and application
(figure 3.3).
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Figure 3.3: Environment implementations for different simulators.

Other methods in the environment allow to keep track of the training perfor-
mance, to define the data that needs to be saved in a file, and to restore the training
with that data:

• save_performance is called during the training to decide whether or not
to collect performance indexes related to the environment into environment
variables;

1 de f save_performance ( s e l f , va lue s ) :
2

3 #save environment data needed as performance indexes in to
s p e c i f i c v a r i a b l e s

4 # < i n s e r t code here >
5

6 #the checks on whether or not to save t h i s data depend on the
environment

7 #values i s a l i s t that conta in s in order f i r s t epoch Q−value ,
e l apsed epoch time , l a s t epoch l o s s value , cur rent epoch

number
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• get_performance is called during the training to save the performance indexes
in a checkpoint file;

1 de f get_performance ( s e l f ) :
2

3 #return saved performance indexes
4 # < i n s e r t code here >
5

6 re turn s e l f . performance_indexes

• load_performance is called to restore the performance indexes in the respec-
tive environment variables when restoring the training from a previous state
through checkpoint files;

1 de f load_performance ( s e l f , va lue s ) :
2

3 #r e s t o r e the saved performance indexes
4 #’ va lue s ’ has the same s t r u c t u r e o f the performance indexes

returned from the get_performance func t i on
5 # < i n s e r t code here >

• check_performance called during the training to decide whether or not to
save the collected performance indexes in a checkpoint file;

1 de f check_performance ( s e l f , va lue s ) :
2

3 #add checks to dec ide whether to save data in a f i l e ( and
return True ) or not ( and return Fal se )

4 #values has the same s t r u c t u r e o f the va lue s parameter in
save_performance func t i on

5 # < i n s e r t code here >
6

7 re turn Fal se

• data_to_save is called during the training to save data in a checkpoint file,
which have been collected during the training inside the environment, and
that can be analyzed successively after the training process;

1 de f data_to_save ( s e l f ) :
2

3 #return environment data to be saved in a checkpo int f i l e
4 # < i n s e r t code here >
5

6 re turn s e l f . data_to_save
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• load_data_to_save is called to restore the collected data in the respective
variables inside the environment, when restoring the training from a previous
state through checkpoint files;

1 de f load_data_to_save ( s e l f , data ) :
2

3 #r e s t o r e the data returned with the data_to_save f u n c t i o n s in
the r e s p e c t i v e v a r i a b l e s

4 # < i n s e r t code here >

3.3 Training phase
The heart of the exploration engine is the train class with its train function,
which interacts with both the environment and the model, implementing the A2C
algorithm. They can be found in the train.py file (see Appendix C):

1 de f t r a i n ( s e l f , save_every =10, stat ing_epoch =0) :
2 . . .

The class contains relevant attributes for the training, such as the learning rate
lr and the discount rate gamma. Its functions are get_infos and train. The first
returns and prints strings with useful information in real-time, while the second
starts the training, allowing to specify for how many epochs to save the needed data
(save_every parameter, default 10) and from which epoch to start (starting_epoch
parameter, default 0) The starting_epoch parameter is useful if there is the need
to restore the training from a previous state through the saved data.

The train function executes the following operations:

• Initial check: it checks the environment for the presence of all the necessary
methods;

• ANN optimizer creation: it creates an optimizer for the ANN training;

• ANN building: it builds the ANN with the specific input size;

• Checkpoint loading: it loads checkpoint files (if a previous state is being
restored);

• Training loop: it starts the training iterations from starting_epoch + 1,
and continues until the maximum epoch number specified is reached;

• Data collection start: opening a GradientTape tensorflow section, so that
the flow of data inside the model is tracked.
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Figure 3.4: Training process. The black arrows represent the interactions, the
red ones represent the data needed for backpropagation.

During every epoch, it is possible to show information in real time. Figure 3.4
provides an overview of the training process, which, during each epoch, performs
the following steps:

• Reset: inside the GradientTape section the environment is reset (Figure
3.4.2), obtaining the initial state observation (Figure 3.4.3);

• Observation: the observation is given to the model (Figure 3.4.4), which will
provide the first actions (Figure 3.4.5); the model provides also the state value,
which will be saved, together with the logarithm of the probability of getting
the obtained action, in order to compute the loss at the end of the epoch;

• Iteration: iteratively, the obtained actions are given to the environment
(Figure 3.4.6, Figure 3.4.7), which will generate an observation (7,1) and will
provide it to the training process;

• Loss estimation: once reached a terminal state, the Q-values and advantages
are estimated, converted to tensors, and used together with the saved data to
compute the objective functions defined by A2C, for both Actor and Critic
losses;

• Backpropagation: the two losses are summed together and used by the
GradientTape section as loss to compute the gradients, which are then back-
propagated in the ANN through the optimizer (Figure 3.4.8);

• Data collection: before starting the next epoch, the function checks if there
is the need to save data or not. This check depends both on condition specified
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inside the environment and on the epoch number as specified through the
save_every parameter, and saves the required data in files if needed.

Figure 3.5: A2C implementation. The train manager executes more agents in
parallel.

As an important improvement to performance, a train_manager (see Appendix
D) allows to specify an environment for each combination of hyperparameters,
so that the train function can run multiple times in parallel over them (Figure
3.5). The train_manager consists in a single function, parallel_train, which
runs more training processes with different hyerparameters, executing the following
operations:

• Hyperparameters definition: different lists of hyperparameters are defined;
• Environments creation: for each combination of values of the different lists,

a different environment is created, specifying the names of the checkpoint files
needed to restore the training from a previous state;

• Subprocesses creation: for each environment, a subprocess that executes
the training is run through the process class from the Python module
multiprocessing. A pipe (a communication channel) is passed to the sub-
process;

• Subprocesses storing: each training subprocess is stored, so that it is
possible to request real time information on the training through the pipe,
and also to wait for all the subprocesses to end their training.
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Results

This Thesis work applies the proposed methodology on a specific use case, that is,
the biofabrication of epithelial sheets. In particular, it relies on the PalaCell2D
simulator and model provided in [65]. After describing the set-up of the PalaCell2D
environment (Section 4.1), this Section illustrates the validation strategy and the
experiments performed to demonstrate the functionality of the framework (Section
4.2).

4.1 Palacell set-up
The PalaCell2D framework simulates the proliferation of epithelial cells oriented to
tissue morphogenesis [65], and acts as the environment for the framework. It relies
on a vertex model, representing cells through their membrane, which is modeled as
a set of vertices (figure 4.1). In this vertex model variant, cells don’t share vertices,
thus allowing the presence of interstitial gaps, and considering cells in contact when
their distance is under a threshold.

The number of vertices of a cell changes dynamically so that the density of
vertices remains uniform along the membrane. This allows mechanisms such as
apoptosis (programmed death of the cell) or proliferation (division of a cell into
two daughter cells). Both mechanical properties and impact of inner and outer
fluids of the cells are simulated through internal and external forces. Apoptosis and
proliferation are controlled through the cells’ internal pressure, depending from the
cell mass m, the cell area A, the pressure sensitivity η and the target density ρ0:

pint = η(m

A
− ρ0) (4.1)

This pressure controls how much the cell can grow, as the mass changes with a rate
that depends on the external pressure pext applied on the cell, the target area A0,
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Figure 4.1: Representation of cells membranes through vertices (the red dots) in
the PalaCell2D vertex model (taken from Conradin et al., 2021 [65]).

the mass growth rates during proliferation ν and relax νrelax, the simulation time
step dt and the pressure threshold pmax above which the proliferation is stopped:

dm =

νA(1− pext

pmax
) if proliferating

−νrelax(A− A0)(1− pext

pmax
)dt otherwise

(4.2)

The external pressure pext depends on both the pressure resulting from the contact
with other cells and the external force Fext, which can be either local (interaction
with a wall) or global (other external constraints). The proposed framework
validation relies on the simulation of two well-characterized tissue behaviors: the
proliferation of cells in an unbounded domain, and in a domain where it is controlled
through an external force. In the second case, a probability is used to control the
switch from the relax state to the proliferation state, through a parameter aprolif

that re-scales the probability:

pswitch =

aprolif (1− pext

pmax
) if pext <= pmax

0 otherwise
(4.3)

In the experiment proposed in [65], Fext models a deformable capsule that acts on
the cells vertices, depending on the distance from the capsule center and on the
capsule radius.

The simulations consider iteratively the vertices positions for each cell and
their exerted forces. They are controlled through a configuration file that contains
parameters related to simulation, physical and numerical constraints. In addition,
the configuration file allows to specify the name of an input file, used to restore
the simulation from a previous state, and that of an output file that saves the
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simulation’s current state after a specified number of iterations. These interactions
are summarized in Figure 4.2.

Figure 4.2: PalaCell2D interactions with configuration, input and output files.

The configuration file is an .xml file (see Appendix E for its detailed structure).
Both input and output files are .vtp files from the Visualization Toolkit VTK [66],
which models the cells as arrays of points. These files can be used to retrieve
information about the simulation state, and they can be converted to images thanks
to the VTK library.

For the experiments proposed in this Thesis work, the PalaCell2D simulator
source code has been modified to consider another parameter, initialPos, which
is the position of the first cell that is generated in the simulation space. This
parameter is written in the configuration file and it is used by the simulator at the
beginning of the simulation. Among all the parameters in the configuration file,
the following ones are needed to control the simulation in the experiments:

• initialVTK, the name of the input .vtp file from which to restore the simu-
lation (string), if missing the simulation will start from the beginning;

• finalVTK, the name of the output .vtp file that will be generated (string);

• numIter, the number of simulation iterations (integer);

• stopAt, the iteration number at which the simulation will be interrupted
(integer);

• initialPos, the position of the initial cell (two value x and y, integer);

• compressionAxis, the axis on which the external force is applied (either ’x’
or ’y’, string);

• comprForce, the amplitude of the applied external force (float).
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This Thesis work included building an environment to interact with the
PalaCell2D simulator (see Section 3). The environment implements the functions
provided by the interface, and another function, configure, which is used by the
other functions of the environment to create the configuration file needed by the
simulator ad hoc:

1 de f c o n f i g u r e ( s e l f , f i l e_path , num_iter , ax i s , compr_force ,
i n i t i a l_path , i n i t i a l _ p o s i t i o n , f ina l_path ) :

2 #f i l e_path i s the name o f the f i n a l . xml f i l e
3 #num_iter w i l l be s e t to the numIter parameter
4 #ax i s w i l l be s e t to the compress ionAxis parameter
5 #compr_force w i l l be s e t to the comprForce parameter
6 #i n i t i a l _ p a t h w i l l be s e t to the init ia lVTK parameter
7 #i n i t i a l _ p o s i t i o n w i l l be s e t to the i n i t i a l P o s parameter
8 #fina l_path w i l l be s e t to the finalVTK parameter
9

The parameters for the environment that are common to all experiments are:

• width and height: the width and height in pixels of the observations that
will be given to the model, default is 300;

• iters: the number of iterations of each simulation step, default is 20;

• max_iterations: the maximum number of iterations of the simulation, default
is 4200;

• mode: the specific experiment to run, default is ’prolif’.

In order to read PalaCell2D output files, the following step was to build specific
functions inside an helper file ‘vtkInterface.py’:

• read_cell_num reads the number of cells in the simulation space from the
specified simulation output file;

1 de f read_cell_num ( f i l ename ) :
2 #f i l ename i s the name o f the . vtp f i l e , without the extens i on

• create_png_from_vtk reads the specified simulation output file and produces
a .png image of the simulation space, which is centered on the cells population,
not on the simulation space;

1 de f create_png_from_vtk ( f i l ename ) :
2 #f i l ename i s the name o f the . vtp f i l e , without the extens i on
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• create_decentered_pil_image reads the specified simulation output file and
returns an image of the simulation space, centered on the the simulation space;

1 de f create_decentered_pi l_image ( f i l ename ) :
2 #f i l ename i s the name o f the . vtp f i l e , without the extens i on

• add_target adds a circular target, at the specified coordinates and with the
specified radius, to the provided image;

1 de f add_target ( array , target_center , target_radius , width =400 ,
he ight =400) :

2 #array i s the numpy array conta in ing the RGB p i x e l va lue s
3 #target_center i s a couple o f i n t e g e r s r e p r e s e n t i n g the

t a r g e t x , y coo rd ina t e s
4 #target_rad ius i s the rad iu s o f the c i r c u l a r t a r g e t
5 #width , he ight are the dimensions o f the array

• count_target_points reads the specified simulation output files and returns
the number of vertices inside and outside the specified target.

1 de f count_target_points ( f i l ename , target_center , ta rge t_rad ius ) :
2 #f i l ename i s the name o f the . vtp f i l e , without the extens i on
3 # target_center i s a couple o f i n t e g e r s r e p r e s e n t i n g the

t a r g e t x , y coo rd ina t e s
4 #target_rad ius i s the rad iu s o f the c i r c u l a r t a r g e t

4.2 Experiments
This Section illustrates the experimental designs to validate the proposed framework.
The general validation strategy aims at showing how the proposed OvS methodology
and the implemented framework are able to computationally generate biofabrication
protocols with increased performance for the defined applications, supporting the
effective optimization of the stimuli provided to the cells during simulations towards
defined objectives. The validation strategy aims at showing that the model is
actually learning from the environment, by improving the final number of cells
during the advancement of the learning process. Validation of the proposed
framework includes two objectives, corresponding to two sets of experiments:
the optimization of the number of cells (section 4.2.1) and of their geometrical
conformation (section 4.2.2), respectively, at the end of a simulation. The capability
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of a biofabrication protocol to get to the objective is measured by the evaluation of
objective-specific metrics, as detailed in the following paragraphs, that describe
the experiments and and discuss the results obtained.

4.2.1 Optimization of the final number of cells
This experiment aims to show that the proposed methodology and framework
support the effective optimization of stimuli provided to the cells during simulations,
towards the maximization of the final number of cells obtained. In this case,
performance evaluation considers, as metrics for validation, the mean and variance
of the final number of cells across simulations. This metrics are evaluated at
intervals corresponding to a fixed number of epochs in the learning process, starting
from the first up to the last ones. This allows to understand whether the model is
learning. In fact, it allows to pinpoint which actions are leading to an increment of
the number of cells, which corresponds to an increase of the mean, and to verify
whether the learning model is actually exploiting these action, which implies a
decrease of the variance over time.

The simulated space in the PalaCell2D environment is a 400x400x1 grid. The
framework operates the simulator to execute two main phases:

• Initialization: before the simulation starts, a single cell is located at the
center of the simulated space;

• Simulation: at each simulation step, the parameters compressionAxis and
comprForce are set to correspond to the values defined by the actions provided
by the learning model;

• Stop: simulation continues until the number of learning epochs defined by
the numIter parameter is complete.

At initialization, during the execution of reset, the parameter initialPos
is set to 200 200 and the parameter numIter is set to 0 so that after the initial
cell placing the simulation has not started yet. During simulation, the numIter
parameter is set to 20, that is, each learning process has 20 epochs. For each epoch
in the learning process, a number of 20 simulation steps is performed, so that the
total number of simulation steps in a simulation are 3400.

The goal of the optimization process is to learn the optimal protocol to maximize
the number of cells at the end of a simulation. In other words, the goal of the
learning process is to find the values of the compressionAxis and comprForce
parameters at every step that allow the simulator to reach the maximum number
of cells at the simulation end. Thus, in the learning process, the reward value
computed at each iteration is the increment of cells with respect to the previous
iteration.
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To keep track of the training results the following data is being saved:

• the highest number of cells obtained since the first epoch, which is the envi-
ronment performance index;

• the number of cells obtained at the end of each epoch.

As detailed in Section 3, the proposed Thesis work organizes experiments based
on combinations of relevant hyperparameters. Inside the training_manager, two
lists of relevant hyperparameters for the learning process are defined:

• three values of learning rate (lr): 0.001, 0.0001 and 0.00001;
• two values of discount rate (gamma): 0.95 and 0.99.

Figure 4.3: Final number of cells for each epoch.

Figure 4.4: Final number of cells during simulations for each learning epoch.
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In total, experiments considered six environments, created by combining the two
lists, and six different training processes. Each different training process runs for 70
epochs, and data is saved every 5 epochs, in order to help the easy recapitulation
of the process if a restart was needed.

Figures 4.3 and 4.4 show the trends of the obtained cell number at the end
of each epoch for each combination of lr and gamma values. Comparing the last
phase of the training processes, the worst performance is obtained with lr=0.0001
and gamma=0.95, while the best performance is obtained with lr=0.0001 and
gamma=0.99.

Figure 4.5: Mean of the final number of cells in simulations over six windows of
20 learning epochs.

Figure 4.6: Variance of the final number of cells in simulations over six windows
of 20 learning epochs.

To better evaluate the results, the mean and variance of the final number of
cells are considered in six windows of 20 epochs, respectively at epochs: 0-20, 10-30,
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20-40, 30-50, 40-60, 50-70. In this way it is possible to understand whether the
training is still in an exploration phase (trying different solutions to learn more)
or in the exploitation phase (using as much as possible the knowledge of the best
obtained results). In the first case the mean increases in the successive windows,
while the variance remains high, in the second case the mean remains almost stable
between windows while the variance decreases. Figures 4.5 and 4.6 support the
evaluation of this.

The best case is confirmed to be lr=0.0001 and gamma=0.99, where the mean
value increases more than in the other settings. In particular, it starts with a lower
variance with respect to the other settings, meaning that it already starts in a
more stable situation where it exploits its knowledge, and then furhter improves
its performance during the last epochs, where the mean increases and the variance
lowers. On the other hand, the other settings have a mean that grows a little
during the last epochs, proving to indulge more in exploration during the first
ones, passing to exploitation only at the end. On the contrary, the particular
case of lr=0.001 and gamma=0.99 exhibits a decreasing mean and an increasing
variance over time, meaning that it is not learning at all. These results show that a
systematic exploration of the hyperparameters space is really useful to improve the
performance, as different combinations lead to different behaviors of the training
process.

lr
0.001 0.0001 0.00001

gamma 0.95 269 267 267
0.99 268 268 268

Table 4.1: Highest number of cells obtained for each training setting.
A final evaluation is given by the best obtained performance for every setting,

which can be observed in table 4.1. The best performance is given by the setting
lr=0.001 and gamma=0.95. The protocol obtained through the learning process
based on this setting devises the application of very low compression force stimuli
on the cells along the entireity of the simulation, which is consistent with the
inverse relationship between compression force at a cell and the probability it
proliferates (see Appendix E). Figure 4.8 details the values of the parameters
comprForce and compressionAxis at each simulation step within the optimal
generated protocol. Is it possible to observe that the protocol keeps a constant
stimulation of comprForce=0.005 over the sole X axis (compressionAxis=’X’).
For assessing the impact of the optimization process over the generated protocols,
4.7 and 4.8 show the structure of generated protocols at epochs 0 and 16 respectively.
It can be seen that, at the beginning of the learning process, the learning model
tries random values as exploration, and at the end it uses a value that on average
works better than the others.
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Figure 4.7: Values of parameters comprForce and compressionAxis at each
iteration for epoch 0.

Figure 4.8: Values of parameters comprForce and compressionAxis at each
iteration for epoch 16.

Although the best overall performance is obtained through the setting lr=0.001
and gamma=0.95, the goal is to obtain a model that can be reliable in generating an
optimal protocol, so the case lr=0.0001 and gamma=0.99 is considered the most
successful one as it is the more stable one in the terms of mean and variance. This
is relevant for protocol generation, since it makes it the best setting for which the
generation of the protocol can be easily interpreted even continuing the learning
process. In fact, the training can’t be carried on until convergence, and these
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results serve as a confirmation of the framework potentiality to generate a stable
result, supporting the assumption that if the training continued for more epochs
this trend would be confirmed.

As a further trial, a new set of hyperparameters is investigated: the value of
the numIter parameter. Starting from the best setting of the last experiment
(lr=0.0001 and gamma=0.99), the numIter parameter is set to the values 40 and
50 in order to understand how changing its value affects the simulations. In Figure
4.9 the trends of the obtained cells at the end of each epoch is shown. The best
performance is obtained with the case iters=50, which is clearly predominant
on the other two, showing that incrementing the number of simulator iterations
executed during each environment step can improve the performance.

Figure 4.9: Final number of cells for each epoch.

For confirmation, in figures 4.10 and 4.11 the mean and variance are shown for
six windows of 20 epochs, going from epoch 0 to 50 every 10 epochs. It can be seen
that the setting with iters=50 has the best mean in all windows, with a decreasing
variance. In general, both new settings iters=40 and iters=50 learn well at the
beginning, exploiting soon what they learn, and then they start exploring again at
the end of the experiment, contrary to the original case iters=20 which is slower,
as it explores for almost the entire experiment, starting exploiting what it learns
only at the end.

The best obtained performance for every setting can be observed in table 4.2.
The best one is given by the setting iters=50, at epoch 11. In figures 4.12 and
4.13 the values of the generated protocols for both epoch 0 and 11 are shown
for comparison. Also here the learning model at the beginning is exploring with
random values, while later it remains in an interval of values for which the simulation
behaves better.
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Figure 4.10: Mean value of the six windows.

Figure 4.11: Variance of the six windows.

iters 20 40 50
final cells 268 272 276

Table 4.2: Highest number of cells obtained for each training setting.
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Figure 4.12: Values of parameter comprForce and compressionAxis at each
iteration for epoch 0.

Figure 4.13: Values of parameter comprForce and compressionAxis at each
iteration for epoch 11.
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4.2.2 Optimization of the starting position
The goal of the experiment is to show that the framework is able to learn the best
position where to put the first cell at the beginning of the simulation, in order to
maximize the number of cells within a defined circular target space, and minimize
the number of cells outside. The validation strategy aims at showing that the
starting position indicated by the learning model becomes closer to the target space
over time. The validation metrics are the mean and the variance of the ratio of
cells inside the target space with respect to the total number of cells at the end
of the simulation, evaluated in intervals of a fixes number of epochs which are
considered starting from the first epochs up to the last ones. In this way, it can
be shown if the model is learning to approach the target space (increasing mean
over time) and if it is exploiting the best learnt positions (decreasing variance over
time). The considered target space is located at the position x=200, y=250 with
a radius of 80. Moreover, after locating the starting cell, the same setting of the
previous experiment is replicated, so to control the proliferation of cells as well, for
filling the target space.

This requires two learning models to work together during the training process.
Since tensorflow creates a single global session for training, in order to train
two separate models at the same time these need to be run in two separated
subprocesses. Thus, during the environment creation (the main environment) a
second environment is created. This second environment has the same settings as
the one from the previous experiment, except the maximum number of iterations,
which is numIter=2500, a value that is sufficient to fill the target. A second training
subprocess (inner training process) is run with it. In order to synchronize the
two subprocesses, an helper training class is created, with the same structure of
the one already presented in Section 3.3, but with a pipe in addition that is used
to communicate with the first subprocess. During the training process the two
environments performs the following steps:

• during its execution, reset creates an observation of the empty space including
the indication of the target space;

• during its execution, step creates a simulation configuration file with the same
values as in the previous experiment, except for the initialPos parameter,
which in this case is set to the position indicated by the learning model as
action;

• the pipe mediates the sending of the path of the configuration file to the inner
training process;

• the inner training process receives the name of the configuration file through
the pipe and uses it as starting configuration file, then runs the inner training
process;

49



Results

• when it reaches a final state, the inner training process sends the name of the
final output file to the main environment through the pipe;

• the main environment reads the final output file to count cells inside and
outside the target space, and to produce an observation.

The action space of the model is defined, for both starting position coordinates,
between 90 and 310. Starting from the goal of obtaining a precise target shape, the
considered reward is the difference between the number of cells inside and outside
the target space, divided by the number of obtained cells. To keep track of the
results, the training saves the following data:

• the highest fraction of cells inside the target space with respect to total number
of cells, which is the environment performance index;

• for each epoch, the fraction of cells inside the target space with respect to
total number of cells.

Inside the training manager, two lists of hyperparameters are defined:

• two values of learning rate (lr): 0.001, 0.0001;
• two values of discount rate gamma: 0.95, 0.99.

In total, four environments are being created by combining the two lists,
obtaining four different training processes. Each different training process runs for
70 epochs, and data is saved every 5 epochs.

Figure 4.14: Fraction of cells inside the target area for each epoch.

The results trend can be observed in Figure 4.14. Until epoch 20 the target
space is still not being reached, but afterwards all the processes show better results,
meaning that in the first part of the learning the space is explored until a position
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Figure 4.15: Mean value of the six windows.

Figure 4.16: Variance of the six windows.

near the target space is found. In particular, later all the processes seem to remain
around the target space, and at the last 15 epochs the target space is filled even
more. Again the mean and variance of these values are considered in windows of
20 epochs, starting from epoch 0 up to epoch 50 every 10 epochs (so six windows
in total). This evaluation can be observed in Figures 4.15 and 4.16. The best case
is the setting lr=0.001 and gamma=0.99 as it reaches the best results with almost
the same variance as the others. In general, all the settings become more stable
over time, as the mean increases, but the variance is still growing meaning that
the training process is still exploring the solution space.
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Figure 4.17: Values of both coordinates X and Y of the starting cell position for
each epoch.

Figure 4.17 shows the values of both starting cell coordinates x and y for each
epoch. Each couple of values corresponds to the generated protocol for the relative
epoch. Until epoch 20 the network remains at (90, 90), due to the fact that when
the models gives values outside the action space the actual action provided to the
environment is set to the lower bound for the specific axis, if the original action is
lower, or to the upper bound if the original action is higher. After epoch 20, the
network starts to alternate between 90 and 310 on both coordinates for the same
reason, meaning that it is starting to try different values inside the action space,
but still it is trying to explore the space, so more training is still necessary.

The best obtained performance for each setting can be observed in table 4.3. The
best performance is given by the setting lr=0.0001 and gamma=0.99, where the
obtained protocol is the application of the parameter initialPos=262.56 224.76,
at epoch 37.

lr
0.001 0.0001

gamma 0.95 20.68 12.95
0.99 42.48 49.56

Table 4.3: Highest fraction of cells inside the target space with respect to total
number of cells for each training setting.

As in the previous experiment, the best overall case is considered the one that
reaches more stability, which is the setting lr=0.001 and gamma=0.99. In figures
4.18 and 4.19 the values of the generated protocols for both epoch 0 and 37 are
shown for comparison: also in this experiment the model tries random values for
exploration, but then converges to the application of a very low compression force
stimuli.
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Figure 4.18: Values of parameter comprForce and compressionAxis at each
iteration for epoch 0.

Figure 4.19: Values of parameter comprForce and compressionAxis at each
iteration for epoch 37.

Since this experiment is faster, this work extended it to 70 additional epochs,
leveraging the capability of the training process to restart from the checkpoint files
obtained after the last epoch. This yielded a training process of 140 epochs while
requiring almost the same total experimental time as the first experiment, which
lasted 70 epochs only. Figure 4.20 shows the results. All shown processes seem to
be exploring more around the target, in particular for the settings lr=0.001 and
gamma=0.99, and lr=0.0001 and gamma=0.95 between epoch70 and 110. Then, all
the four processes seem to be exploring more toward the target. To better evaluate
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Figure 4.20: Fraction of cells inside the target space with respect to total number
of cells for each epoch.

the trends, the mean and the variance in the windows are again analyzed (figures
4.21 and 4.22). All the processes show to behave similarly, with the case lr=0.001
and gamma=0.99 that is confirmed to be the best setting for the experiment. In
these 70 epochs, the mean continues increasing with a small variance, than drop
suddenly with an increasing variance, adding to the previous observation that the
process is still exploring the solution space. This can be seen also at the end of
the experiment at which the mean is starting again to grow while the variance is
starting to decrease, resulting in more exploitation. Figure 4.23 shows the values
for both starting position coordinates for each epoch of the best setting.

The best obtained performance for every setting can be observed in table 4.4.
Among those, the best performance corresponds to the setting lr=0.0001 and
gamma=0.99, generating a protocol that consists in the application of the parameter
initialPos=193.52 310.0, at epoch 135. In figures 4.24 and 4.25 the values
of the generated protocols for both epochs 0 and 135 are shown for comparison,
confirming the same results of the best performance in the first 70 epochs.

lr
0.001 0.0001

gamma 0.95 20.68 52.78
0.99 49.96 54.72

Table 4.4: Highest fraction of cells inside the target space with respect to total
number of cells for each training setting.
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Figure 4.21: Mean value of the six windows for epochs 70-140.

Figure 4.22: Variance of the six windows for epochs 70-140.
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Figure 4.23: Values of both coordinates x and y of the starting cell position for
epochs 70-140.

Figure 4.24: Values of parameter comprForce and compressionAxis at each
iteration for epoch 0.

Figure 4.25: Values of parameter comprForce and compressionAxis at each
iteration for epoch 135.
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4.2.3 Computational performance
The reproduced experiments runs relied on an AMD Ryzen 9 5950X 16-Core 2.2GHz
processor with 64GB ram. The execution environment leveraged Singularity [67],
a container platform that allows to run an environment with necessary packages
already installed, without having to install them on the server. The container can
support even OSes different from the one installed on the server. A container can
be created through a ‘definition file’, in which must be specified the commands to
execute pre-installations, or scripts at the container launch. Then, the container
can be executed at any time on any server that supports singularity, through the
platform itself. The container definition file can be found in Appendix F.

For the first experiment, a singularly ran training process takes between about
1800 and 2000 seconds to complete an epoch, while running more training processes
in parallel takes between about 2000 and 2100 seconds to complete an epoch for
each. The speeding up in both the worst case and best case scenarios is:

1800 ∗ 6
2100 <= sp <= 2000 ∗ 6

2000 → 5.14 <= sp <= 6

For the second experiment, a singularly ran training process takes between
about 1500 and 1600 seconds to complete an epoch, while running more training
processes in parallel takes between about 1680 and 1730 seconds to complete an
epoch for each, obtaining a speeding up in both the worst case and best case
scenarios of:

1500 ∗ 4
1730 <= sp <= 1600 ∗ 4

1680 → 3.47 <= sp <= 3.81

These results show that the parallelization capability of the single-agent variant
of A2C proposed in this thesis project (see Section 3) allows to perform experiments
in an efficient way, as respectively six and four processes are being finalized
simultaneously within a comparable time span as a single one.
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Chapter 5

Conclusions

This work presents a framework for learning how to generate optimal biofabrication
protocols through Optimization via Simulation, which relies on a reinforcement
learning approach for the optimization part, which is the Advantage Actor-Critic
algorithm. The framework is made to be easily adaptable to any simulator in
the future thanks to an interface, and to the specific use case implemented by
the user. Moreover, the framework allows to run more parallel training processes
in order to find the best hyperparameter settings within computational times
comparable to those of a single experiment. To show the framework capabilities,
the proliferation of epithelial cells oriented to tissue morphogenesis is proposed
as use case, through a specific simulator. Two experiments have been proposed:
the generation of protocols for maximizing the final number of obtained cells, and
for obtaining a defined target shape with cells at the end of a simulation. The
first one relies on the optimization of the number of obtained cells, the second one
on the optimization of both proliferation and the starting cell position choice in
order to fill a specific target space. The results show that the framework is able to
explore the solution space defined by the user, which can be easily implemented
and modified, and that the ability of running multiple parallel training processes is
useful in speeding up the training by trying different hyperparameter settings at the
same time, which is crucial for a learning algorithm. For each experimental setting,
the framework provides an optimal biofabrication protocol, whose relevance to the
real-world application is based on the expressiveness and prediction capabilities of
the simulative model it leverages. Considering this, results show that the framework
is capable to impact the structure of generated protocols through the learning
process, implying the underlying learning model is learning how to optimize the
process. Future works could improve the implemented optimization component,
both on the learning algorithm and on the neural network model sides, aiming
to obtain a reinforcement learning model that works better with images as data
provided as input. In particular, the learning algorithm could be improved by

58



Conclusions

trying different variants of A2C and A3C and considering their advantages and
drawbacks. On the other hand, the neural network model could be improved both
in its heads’ structure and in the chosen backbone, as different backbones could
learn the visual information in different ways, and a new backbone can be easily
be implemented as long as its output size will be the same of the current ReLU
backbone. Finally, further research should target how to choose better reward
values for simulators in the biofabrication context.
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Appendix A

ANN model

model.py
1 ’ ’ ’
2 Cred i t s : Alberto Castr ignan ò , s281689 , P o l i t e c n i c o d i Torino
3 ’ ’ ’
4 import t en so r f l ow as t f
5 import t en so r f l ow_probab i l i t y as t fp
6

7 ’ ’ ’
8 Basic r e s i d u a l b lock .
9 ’ f i l t e r s ’ i s the number o f f i l t e r s app l i ed in the convo lu t i ona l l a y e r

.
10 ’ conv1x1 ’ a l low to add a 1x1 convo lu t i ona l b lock in s t ead o f a s imple

sk ip connect ion
11 ’ ’ ’
12 c l a s s Res idualBlock ( t f . keras . Model ) :
13 de f __init__( s e l f , f i l t e r s , k e rne l_s i z e =3, s t r i d e s =1, conv1x1=

False ) :
14 super ( ) . __init__ ( )
15 s e l f . conv1 = t f . keras . l a y e r s . Conv2D( f i l t e r s , padding=" same " ,

k e rne l_s i z e=kerne l_s i ze , s t r i d e s=s t r i d e s , k e r n e l _ i n i t i a l i z e r = "
glorot_uni form " )

16 s e l f . conv2 = t f . keras . l a y e r s . Conv2D( f i l t e r s , padding=" same " ,
k e rne l_s i z e=kerne l_s i ze , k e r n e l _ i n i t i a l i z e r = " glorot_uni form " )

17 i f conv1x1 :
18 s e l f . conv1x1 = t f . keras . l a y e r s . Conv2D( f i l t e r s , k e rne l_s i z e =1,

s t r i d e s=s t r i d e s , k e r n e l _ i n i t i a l i z e r = " glorot_uni form " )
19 e l s e :
20 s e l f . conv1x1 = None
21 s e l f . bn1 = t f . keras . l a y e r s . BatchNormalizat ion ( )
22 s e l f . bn2 = t f . keras . l a y e r s . BatchNormalizat ion ( )
23

24 de f c a l l ( s e l f , x ) :
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25 out = s e l f . conv1 ( x )
26 out = s e l f . bn1 ( out )
27 out = t f . keras . a c t i v a t i o n s . r e l u ( out )
28 out = s e l f . conv2 ( out )
29 out = s e l f . bn2 ( out )
30 i f s e l f . conv1x1 :
31 out = t f . keras . l a y e r s . Add( ) ( [ out , s e l f . conv1x1 ( x ) ] )
32 e l s e :
33 out = t f . keras . l a y e r s . Add( ) ( [ out , x ] )
34 re turn t f . keras . a c t i v a t i o n s . r e l u ( out )
35

36 ’ ’ ’
37 The Resnet b lock : each i s composed o f an a r b i t r a r y number o f r e s i d u a l

b locks
38 " f i l t e r s " i s the number o f f i l t e r s o f c onvo lu t i ona l l a y e r s in each

r e s i d u a l b lock
39 ( in t h i s implementation , you can ’ t obta in a r e sn e t b lock made o f

r e s i d u a l b locks with a d i f f e r e n t number o f f i l t e r s )
40 " blocks_number " i s the number o f r e s i d u a l b locks composing the r e sn e t

b lock .
41 ’ ’ ’
42 c l a s s ResnetBlock ( t f . ke ras . l a y e r s . Layer ) :
43 de f __init__( s e l f , f i l t e r s , blocks_number , downsample=True , ∗∗

kwargs ) :
44 super ( ResnetBlock , s e l f ) . __init__(∗∗ kwargs )
45 s e l f . r e s i dua l_b lock s = [ ]
46 f o r i in range ( blocks_number ) :
47 i f i == 0 and downsample :
48 s e l f . r e s i dua l_b lock s . append ( Res idualBlock ( f i l t e r s , s t r i d e s

=2, conv1x1=True ) )
49 e l s e :
50 s e l f . r e s i dua l_b lock s . append ( Res idualBlock ( f i l t e r s ) )
51

52 de f c a l l ( s e l f , x ) :
53 f o r l in s e l f . r e s i dua l_b lock s . l a y e r s :
54 x = l ( x )
55 re turn x
56

57 ’ ’ ’
58 ResNet18 : accept s an arb i t r a ry −s i z e d image , outputs a ’ l a t e n t ’− s i z e d

f u l l y connected l a y e r with r e l u a c t i v a t i o n s .
59 Trad i t i ona l l y , i t should output a number o f softmax a c t i v a t i o n s

corre spond ing to the number o f b inary c l a s s e s , g iven a
c l a s s i f i c a t i o n task .

60 Here , the l a s t l a y e r i s a dense so that we can get a l a t e n t
r e p r e s e n t a t i o n o f the input image , and e l abo ra t e i t fu r the r , thus
us ing the ResNet18 as a backbone .

61 ’ ’ ’
62 c l a s s ResNet18 ( t f . ke ras . Model ) :
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63 de f __init__( s e l f , l a t e n t =1000) : #l a t e n t can be an hyperparameter
64 super ( ResNet18 , s e l f ) . __init__ ( )
65 s e l f . block_a = t f . keras . Sequent i a l ( [ t f . keras . l a y e r s . Conv2D(32 ,

k e rne l_s i z e =7, s t r i d e s =2,padding=" same " , k e r n e l _ i n i t i a l i z e r = "
glorot_uni form " ) ,

66 t f . keras . l a y e r s .
BatchNormalizat ion ( ) ,

67 t f . keras . l a y e r s . MaxPool2D(
poo l_s i ze =3, s t r i d e s =2, padding=" same " ) ] )

68 s e l f . block_b = ResnetBlock (32 , 2 , downsample=False )
69 s e l f . block_c = ResnetBlock (64 , 2)
70 s e l f . block_d = ResnetBlock (128 , 2)
71 s e l f . block_e = ResnetBlock (256 , 2)
72 s e l f . dense = t f . keras . l a y e r s . Dense ( l a t ent , a c t i v a t i o n=’ r e l u ’ ,

k e r n e l _ i n i t i a l i z e r = " glorot_uni form " )
73

74 de f c a l l ( s e l f , x ) :
75 out = s e l f . block_a ( x )
76 out = s e l f . block_b ( out )
77 out = s e l f . block_c ( out )
78 out = s e l f . block_d ( out )
79 out = s e l f . block_e ( out )
80 out = t f . keras . l a y e r s . GlobalAveragePooling2D ( ) ( out )
81 out = s e l f . dense ( out )
82 re turn out
83

84 ’ ’ ’
85 The Actor part : i t can be composed o f mu l t ip l e d i s c r e t e or cont inue

ac t i on l a y e r s . Each share a f u l l y connected l a y e r .
86 Di s c r e t e a c t i o n s : r ep r e s ent ed with a f u l l y connected l a y e r with

softmax a c t i v a t i o n s , r e p r e s e n t i n g the p r o b a b i l i t y o f doing an
ac t i on . I t s output s i z e i s the number o f a c t i o n s that can be made .

87 Continue a c t i o n s : r ep r e s en ted with two f u l l y connected layer , which
output dimensions are the number o f cont inuous a c t i o n s that can be
made .

88 One l a y e r r e p r e s e n t s the mean , the other the
var iance , that w i l l be used to sample a value in the normal
d i s t r i b u t i o n .

89 The normal d i s t r i b u t i o n i t s e l f w i l l be used to
compute the l o s s f o r that ac t i on .

90 This approach corresponds to us ing a s i n g l e
m u l t i v a r i a t e normal d i s t r i b u t i o n with cova r i ance s=0 ( d iagona l
matrix )

91 ’ ’ ’
92 c l a s s PolicyHead ( t f . ke ras . Model ) :
93 de f __init__( s e l f , num_continue=0, num_discrete=0, range_continue=

None , dim_discrete=None , hidden =256) : #hidden i s an hyperparameter
94 super ( ) . __init__ ( )

62



ANN model

95 s e l f . dense1 = t f . keras . l a y e r s . Dense ( hidden , a c t i v a t i o n=" r e l u " ,
k e r n e l _ i n i t i a l i z e r = " glorot_uni form " )

96 i f num_continue >0:
97 s e l f . num_continue = num_continue
98 s e l f . range_continue = range_continue
99 s e l f . mu_dense = t f . keras . l a y e r s . Dense ( num_continue , None ,

k e r n e l _ i n i t i a l i z e r = " glorot_uni form " )
100 s e l f . sigma_dense = t f . keras . l a y e r s . Dense ( num_continue , None ,

k e r n e l _ i n i t i a l i z e r = " glorot_uni form " )
101 e l s e :
102 s e l f . mu_dense = None
103 s e l f . sigma = None
104 i f num_discrete >0:
105 s e l f . d i s c r e t e _ a c t i o n s = [ ]
106 f o r i in range ( num_discrete ) :
107 s e l f . d i s c r e t e _ a c t i o n s . append ( t f . ke ras . l a y e r s . Dense (

dim_discrete [ i ] , a c t i v a t i o n=" softmax " , k e r n e l _ i n i t i a l i z e r = "
glorot_uni form " ) )

108 e l s e :
109 s e l f . d i s c r e t e _ a c t i o n s = None
110

111 de f c a l l ( s e l f , x ) :
112 out = s e l f . dense1 ( x )
113 i f s e l f . mu_dense :
114 mu = s e l f . mu_dense ( out )
115 sigma = s e l f . sigma_dense ( out )
116 sigma = t f . keras . a c t i v a t i o n s . s o f t p l u s ( sigma )+1e−5
117 sigma = t f . cl ip_by_value ( sigma , 1e −2, 1 e3 )
118 cont inue_act ions = [ ]
119 norm_functions = [ ]
120 f o r i in range ( s e l f . num_continue ) :
121 norm = t fp . d i s t r i b u t i o n s . Normal (mu [ 0 ] [ i ] , sigma [ 0 ] [ i ] )
122 ac t i on = t f . squeeze (norm . sample (1 ) , ax i s =0)
123 norm_functions . append (norm)
124 cont inue_act ions . append ( ac t i on )
125 e l s e :
126 norm_functions = None
127 cont inue_act ions = None
128 i f s e l f . d i s c r e t e _ a c t i o n s :
129 d i s c r e t e _ a c t i o n s = [ ]
130 f o r dense in s e l f . d i s c r e t e _ a c t i o n s :
131 out = t f . cl ip_by_value ( dense ( out ) ,1 e −2,1 e3 )
132 d i s c r e t e _ a c t i o n s . append ( out )
133 e l s e :
134 d i s c r e t e _ a c t i o n s = None
135

136 re turn d i s c r e t e_ac t i on s , cont inue_act ions , norm_functions
137

138 ’ ’ ’
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139 The C r i t i c part : i t i s composed o f two f u l l y connected laye r s , the
f i r s t with r e l u a c t i v a t i o n s .

140 The second l a y e r i s taken as i t i s , in order to output a value
r e p r e s e n t i n g the Q−value o f the s t a t e .

141 ’ ’ ’
142 c l a s s ValueHead ( t f . keras . Model ) :
143 de f __init__( s e l f , hidden =256) : #hidden i s an hyperparameter
144 super ( ) . __init__ ( )
145 s e l f . dense1 = t f . keras . l a y e r s . Dense ( hidden , a c t i v a t i o n=" r e l u " ,

k e r n e l _ i n i t i a l i z e r = " glorot_uni form " )
146 s e l f . dense2 = t f . keras . l a y e r s . Dense (1 , None , k e r n e l _ i n i t i a l i z e r =

" glorot_uni form " )
147

148 de f c a l l ( s e l f , x ) :
149 out = s e l f . dense1 ( x )
150 out = s e l f . dense2 ( out )
151 re turn out
152

153 ’ ’ ’
154 The ActorCrit network : backbone can be chosen ( resnet , encoder , or a

s i n g l e f u l l y connected l a y e r ) .
155 ’ ’ ’
156 c l a s s Ac to rCr i t i c ( t f . keras . Model ) :
157 de f __init__( s e l f , l a t e n t =1000 , backbone=" r e sn e t " , num_continue=0,

num_discrete=0, range_continue=None , dim_discrete=None ,
hidden_actor =256 , h idden_cr i t i c =256) :

158 super ( ) . __init__ ( )
159 s e l f . backbone = ResNet18 ( l a t e n t )
160 s e l f . a c to r = PolicyHead ( num_continue , num_discrete ,

range_continue , dim_discrete , hidden_actor )
161 s e l f . c r i t i c = ValueHead ( h idden_cr i t i c )
162

163 de f c a l l ( s e l f , x ) :
164 repr = s e l f . backbone ( x )
165 d i s c r e t e_ac t i on s , cont inue_act ions , norm_functions = s e l f . a c to r (

repr )
166 value = s e l f . c r i t i c ( repr )
167 re turn d i s c r e t e_ac t i on s , cont inue_act ions , norm_functions , va lue

tensorflow version 2.9.1
tensorflow_probability version 0.17.0
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Appendix B

Environment Blueprint

EnvironmentBlueprint.py
1 ’ ’ ’
2 Cred i t s : Alberto Castr ignan ò , s281689 , P o l i t e c n i c o d i Torino
3 ’ ’ ’
4 c l a s s EnvironmentName ( ) :
5 ’ ’ ’
6 − width and he ight w i l l be nece s sa ry to generate images f o r the

neura l network
7 − l r w i l l be used f o r the neura l network
8 − gamma i s the gamma parameter in the a2c a lgor i thm
9 − preload_ parameters must be s e t toge the r to r e s t o r e a

prev ious cond i t ion , each with i t s f i l ename
10 ( pre load_observat ions = True i s the only except ion but f o r

now i s not implemented )
11 N.B. x and y must be mul t ip l e o f 200( check i f t h i s number i s

coherent with the one in t r a i n . py )
12 − output_dir w i l l be the name where data mentioned above w i l l

be saved
13 ’ ’ ’
14 de f __init__( s e l f , width =300 , he ight =300 , l r =0.001 , gamma=0.99 ,
15 preload_model_weights=None , p r e l oad_lo s s e s=None ,

pre load_observat ions=None , preload_performance=None ,
16 preload_data_to_save=None , output_dir=" output_dir_name " ) :
17 s e l f . num_continue = 0 #change with number o f needed cont inue
18 s e l f . num_discrete = 0 #change with number o f needed d i s c r e t e

a c t i o n s
19 s e l f . range_continue = None #put here a l i s t o f bounds f o r the

cont inue a c t i o n s
20 s e l f . d im_discrete = None #put here a l i s t o f s i z e s f o r the

d i s c r e t e a c t i o n s
21 s e l f . epochs = 300 #put here number o f epochs to run
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22 s e l f . i t e r a t i o n s = 1001 #put here number o f max i t e r a t i o n s f o r
a s i n g l e epoch

23 s e l f . width = width
24 s e l f . he ight = he ight
25 s e l f . channe l s = 3 #f o r RGB images
26 s e l f . l r = l r
27 s e l f . gamma = gamma
28 s e l f . preload_model_weights = preload_model_weights
29 s e l f . p re load_observat ions = pre load_observat ions
30 s e l f . p r e l oad_lo s s e s = pre l oad_lo s s e s
31 s e l f . preload_performance = preload_performance
32 s e l f . preload_data_to_save = preload_data_to_save
33 s e l f . output_dir = output_dir
34

35 de f r e s e t ( s e l f ) :
36 obse rvat i on = None #must be a numpy array that compl ies with

the shape (1 , s e l f . width , s e l f . he ight , s e l f . channe l s )
37 re turn obse rvat i on
38

39 de f render ( s e l f ) :
40 image = None #must be a PIL . Image ob j e c t
41 re turn image
42

43 de f adapt_actions ( s e l f , d i s c r e t e _ a c t i o n s=None , cont inue_act ions=
None ) :

44 #the t r a i n i n g proce s s w i l l prov ide t h i s func t i on two t e n s o r s :
45 #d i s c r e t e _ a c t i o n s w i l l conta in a l i s t o f s i z e ( num_discrete

, 1 )
46 #cont inue_act ions w i l l conta in a l i s t o f s i z e ( num_continue

, 1 )
47 #here you can put toge the r them in a way that w i l l comply

with how the step func t i on accept s the a c t i o n s
48 re turn None
49

50 de f save_performance ( s e l f , va lue s ) :
51 #use t h i s func t i on to save some performance indexes from

va lue s or from environment
52 #t r a i n . py w i l l c a l l t h i s f unc t i on at every epoch , so any

check to dec ide i f save or not i t ’ s up to who wr i t e s the func t i on
body

53 #values i s a l i s t that conta in s in order : f i r s t Q−value ,
epoch e lapsed time , l o s s , epoch number

54 re turn
55 de f load_performance ( s e l f , va lue s ) :
56 #a f t e r l oad ing from f i l e the performance , pass i t s content to

t h i s func t i on
57 #then load the saved performance indexes in the r e s p e c t i v e

vars
58 re turn
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59 de f check_performance ( s e l f , va lue s ) :
60 #use t h i s func t i on to dec ide whether to add data to save to

f i l e ( r e turn True ) or not ( re turn Fal se )
61 #values has the same s t r u c t u r e o f the one in save_performance

func t i on
62 re turn Fal se
63 de f get_performance ( s e l f ) :
64 #use t h i s func t i on to re turn saved performance indexes
65 re turn None
66

67 de f _get_info ( s e l f ) : #i n f o s that can be pr in ted during t ra in ing ,
must re turn a s t r i n g

68 re turn None
69

70 de f data_to_save ( s e l f ) : #return data that can be saved in a numpy
f i l e

71 re turn None
72 de f load_data_to_save ( s e l f , data ) : #loads prev ious saved data
73 re turn
74

75 de f s tep ( s e l f , a c t i on ) :
76 #act i on w i l l be s t ruc tu r ed in the way de f ined in

adapt_actions
77 obse rvat i on = None #must be a numpy array that compl ies with

the shape (1 , s e l f . width , s e l f . he ight , s e l f . channe l s )
78 reward = 1 #depends on the environment
79 done = False #whether the environment has reached a f i n a l

s t a t e or not
80 re turn observat ion , reward , done , None
81 #l a s t th ing returned can be u s e f u l i n f o s . u n t i l now i n f o s use

has not been implemented

pygame version 2.1.2
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Training process

train.py
1 ’ ’ ’
2 Cred i t s : Alberto Castr ignan ò , s281689 , P o l i t e c n i c o d i Torino
3 ’ ’ ’
4

5 import numpy as np
6 import time
7 import t en so r f l ow as t f
8 import os
9 import checks

10 from model import Acto rCr i t i c
11

12 c l a s s Train :
13 de f __init__( s e l f , env , l r , gamma, id ) :
14 s e l f . env = env
15 s e l f . l r = l r
16 s e l f . gamma = gamma
17 s e l f . l o s s e s = [ ]
18 s e l f . l o s s = 0
19 s e l f . epoch = 0
20 s e l f . id = id
21

22 de f ge t_in fo s ( s e l f ) :
23 s t r i n g s = [ " " ]
24 s t r i n g s . append ( " t r a i n id : "+s t r ( s e l f . id ) )
25 s t r i n g s . append ( " l o s s e s : "+s t r ( s e l f . l o s s ) )
26 s t r i n g s . append ( " epoch : "+s t r ( s e l f . epoch ) )
27 s t r i n g s . append ( " env i n f o s : "+s e l f . env . _get_info ( ) )
28 s t r i n g s . append ( " " )
29 f o r s in s t r i n g s :
30 pr in t ( s )
31 re turn s t r i n g s
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32

33 de f t r a i n ( s e l f , save_every =10, verbose=True , recv=None ,
start ing_epoch =0) :

34 l r = s e l f . l r
35 gamma = s e l f . gamma
36 t f . get_logger ( ) . s e tLeve l ( ’ERROR’ )
37 os . env i ron [ ’TF_CPP_MIN_LOG_LEVEL’ ] = ’ 3 ’
38 num_continue = s e l f . env . num_continue
39 num_discrete = s e l f . env . num_discrete
40 range_continue = s e l f . env . range_continue
41 dim_discrete = s e l f . env . dim_discrete
42 model = Acto rCr i t i c ( num_continue=num_continue , num_discrete=

num_discrete , range_continue=range_continue , dim_discrete=
dim_discrete )

43 s e l f . model = model
44 #check f o r env i n t e g r i t y
45 checks . check_env ( s e l f . env )
46 ’ ’ ’ setup the environment ’ ’ ’
47 num_continue = s e l f . env . num_continue
48 num_discrete = s e l f . env . num_discrete
49 s e l f . env . save_performance ( [ ] )
50 ’ ’ ’
51 setup t r a i n i n g
52 ’ ’ ’
53 GAMMA = gamma
54 opt imize r = t f . keras . op t im i z e r s .Adam( l ea rn ing_rate=l r )
55 epochs = s e l f . env . epochs
56 i t e r a t i o n s = s e l f . env . i t e r a t i o n s
57 output_dir = s e l f . env . output_dir+"_"+s t r ( l r )+"_"+s t r (gamma)
58 i f not os . path . e x i s t s ( " out/ "+output_dir ) :
59 os . makedirs ( " out/ "+output_dir )
60

61 s e l f . model . bu i ld ( ( 1 , s e l f . env . width , s e l f . env . height , s e l f . env .
channe l s ) )

62 s e l f . model . summary ( )
63 i f s e l f . env . preload_model_weights :
64 model . load_weights ( s e l f . env . preload_model_weights )
65 i f s e l f . env . p r e l oad_lo s s e s :
66 s e l f . l o s s e s = np . load ( s e l f . env . p r e l oad_lo s s e s+" . npy " ) .

t o l i s t ( )
67 s e l f . l o s s e s . append (0 )
68 i f s e l f . env . preload_performance :
69 performance_indexes = np . load ( s e l f . env .

preload_performance+" . npy " , a l l ow_pick l e=True )
70 s e l f . env . load_performance ( performance_indexes )
71 i f s e l f . env . preload_data_to_save :
72 s e l f . env . load_data_to_save (np . load ( s e l f . env .

preload_data_to_save+" . npy " , a l l ow_pick l e=True ) . item ( ) )
73
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74 pr in t ( "GO: " , s e l f . id )
75 i f start ing_epoch >0:
76 start ing_epoch = start ing_epoch+1
77 f o r j in range ( start ing_epoch , epochs ) :
78 i f r ecv !=None and recv . p o l l ( ) :
79 msg = recv . recv ( )
80 i f msg==’ i n f o ’ :
81 s e l f . g e t_in fo s ( )
82 elapsed_time = time . time ( )
83 s e l f . epoch = j
84 with t f . GradientTape ( ) as tape :
85 done = False
86 rewards = [ ]
87 va lue s = [ ]
88 log_probs = [ ]
89 discrete_log_probs = [ ]
90 obse rvat i on = s e l f . env . r e s e t ( )
91 obse rvat i on = obse rvat i on /255
92 obse rvat i on = t f . convert_to_tensor ( obse rvat i on )
93 f o r i t e r in range ( i t e r a t i o n s ) :
94 i f r ecv !=None and recv . p o l l ( ) :
95 msg = recv . recv ( )
96 i f msg==’ i n f o ’ :
97 s e l f . g e t_in fo s ( )
98 ’ ’ ’
99 obta in a c t i o n s and generate l og probs

100 ’ ’ ’
101 d i s c r e t e_ac t i on s , cont inue_act ions , normals ,

va lue = s e l f . model ( obse rvat i on )
102 va lue s . append ( value [ 0 ] [ 0 ] )
103

104 #d i s c r e t e a c t i o n s
105 d_acts = [ ]
106 i f d i s c r e t e _ a c t i o n s :
107 f o r da in d i s c r e t e _ a c t i o n s :
108 probs = da [ 0 ] . numpy( ) . astype ( ’ f l o a t 6 4 ’ )
109 ac t i on = np . random . cho i c e ( l en ( da [ 0 ] ) ,

s i z e =1, p=(probs /sum( probs ) ) ) #obta in a random act i on based on the
p r o b a b i l i t y g iven by each d i s c r e t e ac t i on

110 discrete_log_prob = t f . math . l og ( da [ 0 ] [
a c t i on [ 0 ] ] ) #log o f p r o b a b i l i t y o f g iven ac t i on

111 discrete_log_probs . append (
discrete_log_prob )

112 d_acts . append ( ac t i on [ 0 ] )
113 #cont inue a c t i o n s
114 i f cont inue_act ions :
115 temp_cont = [ ]
116 f o r ( i , nd ) in enumerate ( normals ) :
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117 log_prob = nd . log_prob ( cont inue_act ions [ i
] ) #log o f p r o b a b i l i t y o f g iven ac t i on

118 log_probs . append ( log_prob )
119 temp_cont . append ( t f . cl ip_by_value (

cont inue_act ions [ i ] , s e l f . env . range_continue [ i ] [ 0 ] , s e l f . env .
range_continue [ i ] [ 1 ] ) )

120 cont inue_act ions = t f . convert_to_tensor (
temp_cont )

121 ’ ’ ’
122 act on the environment
123 ’ ’ ’
124 observat ion , reward , done , i n f o = s e l f . env . s tep (

s e l f . env . adapt_actions ( d_acts , cont inue_act ions ) )
125 rewards . append ( reward )
126 obse rvat i on = obse rvat i on /255
127 obse rvat i on = t f . convert_to_tensor ( obse rvat i on )
128 i f done :
129 break
130 ’ ’ ’
131 compute l o s s and backpropagte
132 ’ ’ ’
133 #compute Q−va lue s
134 Qval = 0
135 Qvals = np . z e r o s _ l i k e ( va lue s )
136 f o r t in r eve r s ed ( range ( l en ( rewards ) ) ) :
137 Qval = rewards [ t ] + GAMMA ∗ Qval
138 Qvals [ t ] = Qval
139 ##transform values , Qvals i n to keras t e n s o r s
140 Qvals = t f . convert_to_tensor ( Qvals )
141 va lue s = t f . convert_to_tensor ( va lue s )
142 #compute advantage
143 advantage = Qvals − va lue s
144 #compute ac to r l o s s
145 i f num_continue >0:
146 log_probs = t f . convert_to_tensor ( log_probs )
147 actor_cont inue_loss = 0
148 f o r i in range ( num_continue ) :
149 temp_log_probs = [− log_probs [ j ] f o r j in

range ( l en ( log_probs ) ) i f ( j+i )%num_continue==0]
150 actor_cont inue_loss += t f . math . reduce_mean (

temp_log_probs∗ advantage )
151 i f num_discrete >0:
152 discrete_log_probs = t f . convert_to_tensor (

d i screte_log_probs )
153 ac to r_d i s c r e t e_ lo s s = t f . math . reduce_mean([ −

discrete_log_probs [ i ] ∗ advantage [ i n t ( i /num_discrete ) ] f o r i in
range ( l en ( d i screte_log_probs ) ) ] )

154 #compute c r i t i c l o s s and sum up everyth ing
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155 c r i t i c _ l o s s = 0 .5 ∗ t f . math . reduce_mean ( advantage ∗∗2)
##MEAN SQUARE ERROR

156 ac_loss = c r i t i c _ l o s s
157 i f num_continue >0:
158 ac_loss += actor_cont inue_loss
159 i f num_discrete >0:
160 ac_loss += ac to r_d i s c r e t e_ lo s s
161 ac_loss = t f . convert_to_tensor ( ac_loss )
162 #compute g rad i en t s and backpropagate
163 grads = tape . g rad i en t ( ac_loss , s e l f . model .

t r a i n a b l e _ v a r i a b l e s )
164 opt imize r . apply_gradients ( z ip ( grads , s e l f . model .

t r a i n a b l e _ v a r i a b l e s ) )
165 ’ ’ ’
166 pr in t epoch s t a t s and save weights , s co re s ,

ob s e rva t i on s
167 ’ ’ ’
168 pr in t ( " t r a i n id : " , s e l f . id )
169 pr in t ( " epoch : " , j , " , l o s s : " , ac_loss . numpy( ) , " l r

: " , l r , " gamma: " , gamma)
170 pr in t ( " Elapsed epoch time : " , s t r ( time . time ( )−

elapsed_time ) )
171 s e l f . l o s s e s . append ( ac_loss )
172 i f s e l f . env . check_performance ( [ Qvals [ 0 ] . numpy( ) , time .

time ( )−elapsed_time , ac_loss , j ] ) :
173 s e l f . model . save_weights ( " out/ "+output_dir+" /

model_at_epoch_ "+s t r ( j )+" ( bes t ) . h5 " )
174 np . save ( " out/ "+output_dir+" /

data_to_save_at_epoch_ "+s t r ( j )+" ( best ) " , s e l f . env . data_to_save ( ) )
175 s e l f . env . save_performance ( [ Qvals [ 0 ] . numpy( ) , time . time

( )−elapsed_time , ac_loss , j ] )
176 i f verbose :
177 pr in t ( l en ( [ i f o r i in grads i f i==None ] ) )
178 ’ ’ ’
179 save weights , s co re s , ob s e rva t i on s
180 ’ ’ ’
181 i f j%save_every==0:
182 s e l f . model . save_weights ( " out/ "+output_dir+" /

model_at_epoch_ "+s t r ( j )+" . h5 " )
183 np . save ( " out/ "+output_dir+" /data_to_save_at_epoch_ "+

s t r ( j ) , s e l f . env . data_to_save ( ) )
184 np . save ( " out/ "+output_dir+" /performance_at_epoch_ "+

s t r ( j ) , s e l f . env . get_performance ( ) )
185 np . save ( " out/ "+output_dir+" / losses_at_epoch_ "+s t r ( j ) ,

s e l f . l o s s e s )
186 s e l f . model . save_weights ( " out/ "+output_dir+" / last_model . h5 " )
187 #np . save ( " out/"+output_dir+"/ f u l l _ s c o r e s " , s e l f . s c o r e s )
188 np . save ( " out/ "+output_dir+" / f u l l _ l o s s e s " , s e l f . l o s s e s )
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189 np . save ( " out/ "+output_dir+" / last_data_to_save " , s e l f . env .
data_to_save ( ) )

190 np . save ( " out/ "+output_dir+" / last_performance " , s e l f . env .
get_performance ( ) )

numpy version 1.20.1
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Appendix D

Train manager

train_manager.py
1 ’ ’ ’
2 Cred i t s : Alberto Castr ignan ò , s281689 , P o l i t e c n i c o d i Torino
3 ’ ’ ’
4 import time
5 from t r a i n import Train
6 import i t e r t o o l s
7 from mul t i p ro c e s s i ng import Process
8 from mul t i p ro c e s s i ng import Pipe
9

10 l r _ l i s t = [ 0 . 0 0 1 , 0 . 0 0 0 1 ]
11 gamma_list = [ 0 . 9 9 , 0 . 9 5 ]
12

13 de f p a r a l l e l _ t r a i n ( ) :
14 #s e t when load ing prev ious s t a t e
15 start ing_epoch = 0
16 envs = [ ]
17 t r a i n s = [ ]
18 combs = i t e r t o o l s . product ( l r _ l i s t , gamma_list )
19 f o r i , ( l r , gamma) in enumerate ( combs ) :
20 #choose the environment !
21 env = EnvironmentName ( )
22 env . epochs = 101
23 #s e t to load prev ious s t a t e
24 #env . preload_model_weights = " out/"+env . output_dir+"/

model_at_epoch_"+ s t r ( start ing_epoch ) +". h5 "
25 #env . preload_data_to_save = " out/"+env . output_dir+"/

data_to_save_at_epoch_"+ s t r ( start ing_epoch )
26 #env . p r e l oad_lo s s e s = " out/"+env . output_dir+"/

losses_at_epoch_"+ s t r ( start ing_epoch )
27 #env . preload_performance = " out/"+env . output_dir+"/

performance_at_epoch_"+ s t r ( start ing_epoch )
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28 #or e i t h e r :
29 #env . preload_model_weights = " out/"+env . output_dir+"/

last_model . h5 "
30 #env . p r e l oad_lo s s e s = " out/"+env . output_dir+"/ f u l l _ l o s s e s "
31 #env . preload_data_to_save = " out/"+env . output_dir+"/

last_data_to_save "
32 #env . preload_performance = " out/"+env . output_dir+"/

last_performance "
33 envs . append ( env )
34 p r o c e s s e s = [ ]
35 s ender s = [ ]
36 f o r i , ( l r , gamma) in enumerate ( combs ) :
37 recv , send = Pipe ( )
38 t r a i n = Train ( envs [ i ] , l r , gamma, i )
39 proc = Process ( t a r g e t=t r a i n . t ra in , args =[5 , False , recv ,

s tart ing_epoch ] )
40 proc . s t a r t ( )
41 t r a i n s . append ( t r a i n )
42 p r o c e s s e s . append ( proc )
43 s ender s . append ( send )
44 start_time = time . time ( )
45 whi le True :
46 pr in t ( " S e l e c t a number between 0 and " , l en ( t r a i n s ) −1, " to get

i n f o s : " )
47 t ry :
48 ind = input ( )
49 i f ind==" e x i t " :
50 f o r proc in p r o c e s s e s :
51 proc . terminate ( )
52 proc . k i l l ( )
53 e x i t ( )
54 e l i f ind==" time " :
55 pr in t ( s t r ( time . time ( )−start_time ) )
56 e l s e :
57 s ender s [ i n t ( ind ) ] . send ( ’ i n f o ’ )
58 except Exception as e :
59 pr in t ( " i n s e r t a v a l i d index ! " )
60 pr in t ( e )
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Appendix E

PalaCell2D configuration file

compr_example.xml
1 <?xml ve r s i on=" 1 .0 " ?>
2 <parameters>
3 <geometry>
4 <init ia lVTK>output / p ro l i f_0 .001_0.95− _ f i n a l _ c e l l . vtp</

init ia lVTK> <!−− Name o f i n i t i a l vtk f i l e−−>
5 <finalVTK>pro l i f_0 .001_0.95−</finalVTK> <!−− Name o f output vtk

f i l e−−>
6 </geometry>
7 <s imu la t i on>
8 <type>1</ type>
9 <exportStep>20</ exportStep> <!−− Number o f s t ep s every which

the data w i l l be wr i t t en in an output f i l e −−>
10 <i n i t S t e p>0</ i n i t S t e p> <!−− Number o f i n i t i a l s t ep −−>
11 <verbose>0</ verbose> <!−− Verbos i ty l e v e l o f the s imulat ion , 0

means no p r i n t i n g−−>
12 <!−− Whether to wr i t e r e l a t i v e in fo rmat i ons in an output f i l e (

t rue ) or not ( f a l s e ) −−>
13 <expo r tCe l l s>true</ expo r tCe l l s>
14 <exportForces>f a l s e</ exportForces>
15 <expor tF i e ld>f a l s e</ expor tF i e ld>
16 <expor tSpec i e s>f a l s e</ expor tSpec i e s>
17 <exportDBG>f a l s e</exportDBG>
18 <exportCSV>f a l s e</exportCSV>
19 <seed>40</ seed> <!−− Seed o f the no i s e app l i ed on points , 0 i s

no noise , <0 i s random seed−−>
20 <e x i t>i t e r</ e x i t> <!−− Stop the s imu la t i on when reach ing

r e s p e c t i v e l y : i t e r ( numIter ) , time (numTime) , c e l l ( numCell )−−>
21 <numIter>20</numIter>
22 <numTime>7200</numTime>
23 <numCell>300</numCell>
24 <star tAt>0</ star tAt> <!−− Sta r t i ng i t e r a t i o n −−>
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25 <stopAt>20</stopAt> <!−− Fina l i t e r a t i o n −−>
26 <i n i t i a l P o s>0 0</ i n i t i a l P o s> <!−− X,Y coo rd ina t e s o f i n i t i a l

c e l l −−>
27 </ s imu la t i on>
28 <phys i c s>
29 <d i f f u s i v i t y>2 .0</ d i f f u s i v i t y> <!−− Chemical d i f f u s i v i t y −−>
30 <r e a c t i n g C e l l>0</ r e a c t i n g C e l l> <!−− Number o f f i r s t c e l l −−>
31 <react ionRate>0.001</ react ionRate>
32 <di s s i p a t i o n Ra t e>0.0001</ d i s s i p a t i on R a t e>
33 <growthThreshold>0.025</ growthThreshold>
34 <zeta>0 .7</ zeta>
35 <rho0>1.05</ rho0> <!−− Target dens i ty −−>
36 <d0>0 .5</d0>
37 <dmax>1 .0</dmax>
38 <n0>123</n0> <!−− Number o f v e r t i c e s f o r each c e l l−−>
39 <numCells>1</numCells> <!−− Number o f d i f f e r e n t types o f c e l l s

−−>
40 <c e l l type=" d e f a u l t ">
41 <div i s i onThre sho ld>300 .0</ d iv i s i onThre sho ld>
42 <p r e s s u r e S e n s i t i v i t y>2 .5</ p r e s s u r e S e n s i t i v i t y>
43 <nu>0.0025</nu>
44 <nuRelax>0.01</nuRelax>
45 <A0>300.0</A0> <!−− Target area o f c e l l s −−>
46 <k4>0.01</k4> <!−− Spring constant on c e l l s −−>
47 <probToPro l i f>0 .001</ probToPro l i f> <!−− Parameter that

c o n t r o l s p r o b a b i l i t y o f p r o l i f e r a t i o n −−>
48 <maxPressureLevel>0 .05</ maxPressureLevel>
49 <zetaCC>0.4</zetaCC>
50 </ c e l l>
51 <numVertex>3</numVertex> <!−− Number o f d i f f e r e n t types o f

v e r t i c e s −−>
52 <edgeVertex>−1</ edgeVertex>
53 <vertex type=" d e f a u l t ">
54 <k1>0 .2</k1>
55 <k3>0 .2</k3>
56 </ vertex>
57 <vertex type=" 1 ">
58 <k1>0.001</k1>
59 </ vertex>
60 <vertex type=" 2 ">
61 <k3>0 .2</k3>
62 </ vertex>
63 <extern>
64 <compress ionAxis>X</ compress ionAxis><!−− Axis on which

e x t e r n a l compress ion f o r c e i s app l i ed −−>
65 <comprForce>0 .0</comprForce> <!−− External compress ion f o r c e

amplitude −−>
66 <kExtern>0.01</kExtern> <!−− Constra int constant −−>
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67 <cente r>200 200</ cente r> <!−− Center o f the s imulated sphere
−−>

68 <rMin>100</rMin> <!−− min rad iu s o f the s imulated sphere −−>
69 </ extern>
70 </ phys i c s>
71 <numerics>
72 <dx>1 .0</dx> <!−− L a t t i c e r e s o l u t i o n in micometers −−>
73 <dt>1 .0</dt> <!−− Time r e s o l u t i o n in seconds −−>
74 <domain>0 0 400 . 400 .</domain> <!−− Domain s i z e in micrometers

( x0 y0 xmax ymax)−−>
75 </ numerics>
76 </ parameters>
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Singularity definition file

palacell.def
1 Bootstrap : docker
2 From : ubuntu : 2 0 . 0 4
3 Stage : bu i ld
4

5 %f i l e s
6

7 %post
8 apt update
9 apt upgrade −y

10 apt i n s t a l l g i t −y
11 apt i n s t a l l python3−pip −y
12

13 pip3 i n s t a l l numpy
14 pip3 i n s t a l l gym
15 pip3 i n s t a l l t en so r f l ow
16 pip3 i n s t a l l vtk
17 pip3 i n s t a l l t ensor f l ow −p r o b a b i l i t y
18 pip3 i n s t a l l pygame
19

20 ln − f s / usr / share / zone in f o /Europe/Rome / etc / l o c a l t i m e
21 export DEBIAN_FRONTEND=n o n i n t e r a c t i v e
22 echo " export DEBIAN_FRONTEND=n o n i n t e r a c t i v e " >>

$SINGULARITY_ENVIRONMENT
23

24 apt−get update −y
25 apt−get i n s t a l l l ibopenmpi−dev −y
26

27 apt−get i n s t a l l −y python3−opencv
28 pip3 i n s t a l l opencv−python
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