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Summary

In recent years the need of an augmented spacecraft autonomy has considerably
increased along with the renewed interest in Lunar missions.
Low-Thrust Cislunar trajectory optimization is typically achieved leveraging classi-
cal optimal control methods. These methods can be time expensive, challenging
for mission analysts and they often require nontrivial computational effort, due to
the non-linear nature of the three body dynamics problem.
The aim of the thesis is to develop a neural network (NN) to re-compute the optimal
control history of a transfer maneuver autonomously on board, in shorter time and
with low computational effort.
The main core of the work logic is the collection of different datasets of optimal
transfer maneuvers between typical lunar orbits. A classical optimal control prob-
lem (OCP) with a minimum control energy cost function is built to provide optimal
solutions. Using an indirect method the OCP is reduced to a Two Point Boundary
Value Problem, with initial and final states fixed on the orbits, that is solved by the
Matlab bvp4c solver. A state’s discretization on both orbits is taken into account
to consider different transfers. Moreover in order to cover different kind of mission
plans, both time fixed and free transfer time formulations are studied.
As is common knowledge one of the main drawbacks of an indirect approach is
the sensitivity on the initial guesses. Therefore the implementation of an indirect
method on board could be unfeasible if a real time trajectory planning is needed,
because the solver may could not converge rapidly to an optimal solution without
reasonable initial guesses.
As a typical approach in the literature, during the data collection, random initial
guesses are assigned several times and the same OCP is solved iteratively, saving
the minimum energy solution. The initial random guesses that lead the method to
converge are then slightly perturbated in order to check if the solution corresponds
with a suitable local minimum, considering the well-known inability to find a global
minimum in this chaotic dynamics. This latter solution is then used as initial guess
for a similar OCP, as in a continuation method, to expedite the data collection.
Finally, the neural network can be trained on this data in order to map a rela-
tionship between an input vector, made of initial states and final states, and an
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output vector characterized by initial costates and the transfer time in the free
time problem. The NN can work as a function call on board, it can be used as
a fast tool to provide adequate initial guesses to bvp4c, reducing drastically the
computational time of the method and making possible to plan an orbital transfer
without ground station involvement.
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Introduction

The idea of the thesis comes from the recent need for augmenting spacecraft onboard
autonomy capabilities. Planning a maneuver between periodic orbits in a Three
Body Dynamics environment is a demanding activity even on ground.
Therefore, trying to compute an optimal maneuver live on board is surely chal-
lenging. A lot of ongoing research is going on in these last years in order to
provide feasible solutions. In [1] and [2] for example, a Reinforcement learning
(RL) approach is investigated. Since the scientific community is still divided upon
the reliability of RL in such applications, in this thesis we are going to explore the
possibility to exploit feedforward neural networks as a possible on board solution
to re-compute the optimal control. The idea is to map a relationship to find initial
costates, or adjoints, in order to leverage the Pontryagin’s minimum principle and
dynamics equations to rebuild the optimal trajectory and its controls. This neural
networks prediction is then propagated and given to the Two Point Boundary Value
Problem (TPBVP) solver as initial solution, in order to improve the convergence
in brief time and making possible to compute a transfer in real time applications.
The structure of the thesis is the following:

• Chapter 1: is an overview of the Cislunar environment from an astro-
dynamical point of view. Thus, a particular focus is given to the Circular
Restricted Three Body Problem (CR3BP). A second order controlled differ-
ential system is obtained in order to have a physical model to describe the
motion of a small mass (e.g. a spacecraft) subject to the gravitational pools
of larger masses. In the second part of the chapter, typical periodic orbits
(i.e. Lyapunovs, Distant Retrograde Orbits and Halos) are studied along with
their peculiar characteristics.

• Chapter 2: is a survey of Trajectory optimization methods and techniques.
Firstly, important concepts of the classical optimal control theory are recalled,
with the definition of the Optimal Control Problem (OCP). This problem is
reduced to a TPBVP thanks to an indirect method formulation that leverages
Pontryagin’s minimum principle to find the optimal control vector. Since the
problem does not have closed analytical solution, the most common numerical
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Introduction

techniques are presented in the second part of the chapter (i.e. single shooting,
multiple shooting, collocation).

• Chapter 3: in the first part the foundation of Neural Networks is pointed
out. Then, some important advice on data collection and data split, that
must be followed in order to avoid typical problems (e.g. over-fitting) and
enhance the learning process, are given to the reader. Finally, at the end of
the chapter is explained how neural networks can be implemented in Matlab’s
environment leveraging the Deep Learning Toolbox ®.

• Chapter 4: the first trajectory optimization problem considered in the
thesis is a Lyapunov L1 - Lyapunov L2 transfer. As first step, a time-
fixed formulation is studied in order to familiarize with the optimal transfer
maneuvers and the initial and final orbits. Then, a free time formulation is
implemented. The data collection algorithms, the neural networks performance
and the final results are described for both the formulations. As final section
of the chapter, a promising forward-backward technique to solve the error
propagation is discussed.

• Chapter 5: the second trajectory optimization problem considered in this
work is a DRO-Halo transfer, thus a three-dimensional maneuver. In this
case we take into account just the free time formulation which is the more
plausible in a typical mission. As in the previous chapter, data collection, net
performance and final results are presented. At the end of the chapter the
forward-backward method is discussed.

2
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Chapter 1

Cislunar environment

For millennia humanity has gazed in awe at the Moon. Prior to the space race in
the 1960s, however, we could only look up to our neighbour satellite with telescopes.
Aiming at the Moon was the most natural step in the early age of space era.
The NASA’s Apollo program broke new ground in space exploration, enabling
missions beyond our planet boundaries for the first time. Nowadays the Moon is
the only celestial body in which we left our footprint.
Although plenty of missions have been conducted in order to study our satellite,
we have never walked again the Lunar surface in 50 years. After the space race
the main space agencies all over the globe shifted their focus on Low Earth Orbits
(LEO) missions, due to the grown of both political and economical interests.

Figure 1.1: View of the Moon - NASA
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Cislunar environment

Despite this, the scientific community’s enthusiasm in studying the Moon has
not waned. A total of 382 kg of lunar soil, rock, and core samples were returned
to Earth by astronauts between 1969 and 1972. Recently [3], using samples from
Apollo 11, 12 and 17 researchers showed the growth of terrestrial plant in diverse
Lunar regoliths. The study of this challenging growth also helps biologists to better
understand the behaviour of terrestrial plants in hostile and extreme environmental
conditions on Earth. On the other hand in order to establish a permanent presence
on the Moon, is crucial to understand how in-situ resources could be exploited
to support life in an extraterrestrial habitat. As a matter of fact is well known
that, in recent years, NASA is making a comeback, once again aiming at the Moon,
leading the Artemis program in conjunction with ESA, JAXA and CSA.
Accordingly with the increasing economical and scientific interest on the Lunar
realm [4] a deeper knowledge of Cislunar Space Situational Awareness (CSSA), Cis-
lunar Domain Awareness (CDA), and Cislunar Space Traffic Management (CSTM)
is highly needed.

In order to achieve CSSA, CDA, CSTM and for the purpose of this thesis, an
excursus on Cislunar1 dynamical environment is essential. Typically when dealing
with common missions near the Earth (e.g. LEO, MEO, GEO), the gravitational
effect of the Moon is neglected. That is because the Lunar sphere of influence2 is
small compared to the Earth one. For this reason a satellite orbiting the vicinity
of the Earth just feels the gravitational effect of our planet (i.e. the Two Body
Problem (2BP), based on Newton’s Gravitational Theory can be used to model
the physics of the problem with high accuracy).
Aside from the near-Lunar region, the dynamical environment in the Cislunar
realm is different, with small accelerations that are not always directed towards a
single central gravitational body. The force environment in the Cislunar space is
illustrated in Fig.(1.2). in order to provide a comparison to the near-Earth region.
[7] Besides the regions in the vicinity of the Earth and the Moon, with a cutoff of
0.009 m/s2 in the middle region one can see the variety of accelerations that is far
from being completely flat.

1Cislunar space from the Latin preposition Cis (“on this side of”) and Lunar, indicates the
space contained within the Moon’s orbit. Practically it can be seen as the sphere obtained
rotating this orbit around the Earth. Despite this, typically when discussing Cislunar topics,
we need to consider a larger volume of space. In multi-year transfer trajectories some transfers
between Earth and Cislunar space extend well beyond the Moon, to distances in excess of 1.5
million kilometers (35 GEO; GRAIL, THEMIS/ARTEMIS). [5]

2In celestial mechanics is useful to determine the region where the gravitational influence of a
particular body prevails over the influence of other bodies. From this need comes the concept of
the sphere of influence (SOI). [6]
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Cislunar environment

Figure 1.2: Acceleration due to combined effect of Earth, Solar, Lunar and Jupiter
gravity and Solar radiation pressure for a specific spacecraft, expressed in m

s2 . [7]

From this brief introduction is clear that Cislunar dynamics differs from the classical
Keplerian Theory (i.e. 2BP). Adding the gravitational effect of a third object (i.e.
the Moon) to a classical system, leads to significant and challenging variation.
The main differences between the 2BP and the Three Body Problem (3BP) can be
summarized as follows:

• Trajectories are no longer circular, elliptical, etc;

• Trajectories are no longer planar;

• Trajectories are no longer easy to geometrically describe.

In addition trajectories in a 3BP evolve over time, and this leads to difficulties
regarding the choice of the reference frame. There are two main options: [5]

• 3BP trajectories are visualized in the inertial frame;

• 3BP trajectories are visualized in a rotating non-inertial frame that moves
with both Earth and Moon as they rotate about their center of mass.

The latter one is the most widely used and it lays the foundation for the Circular
Restricted Three Body Problem (CR3BP).

7



Cislunar environment

1.1 Circular Restricted Three Body Problem
For centuries mathematicians and physicists have been fascinated by the 3BP.
The problem can be stated as follows: "Three particles move in space under their
mutual gravitational attraction; given their initial conditions, determine their
subsequent motion". [8]
Newton was the first to try to determine the differential equations but the problem
remained relatively unsolved until 1890, when Poincare made innovative studies.
Although the 18 first order differential equation can be reduced to 6 through use
of conservation equations and calculus [9], the problem has still not been solved
because of the lack of conservation quantities for further simplification.

From that came the need for a more restricted model that would eventually
predict the physics of the problem, at least for limited cases.
In the CR3BP two bodies revolve around their common center of mass in circular
orbits under the influence of their mutual gravitational attraction. [10] The purpose
of the problem is to figure out how a third body (i.e. a spacecraft attracted by
the previous two without influencing their motion) moves as it is affected by the
gravitational pulls of both larger masses, that are typically defined as primaries.
Therefore the main difference between 3BP and CR3BP is that in the latter the
third body has a mass much smaller in comparison to other two bodies and also
the restricted problem requires circular orbits for the primaries.
Despite the assumptions of the CR3BP seem unfeasible, there are different exam-
ples in our solar system that can fit the model (i.e. Sun-Earth-Moon, Sun-Earth-
spacecraft, Jupiter-Jupiter’s moon-spacecraft, Earth-Moon-spacecraft,...).

1.1.1 Equations of motion
Now we are going to consider a spacecraft in the Cislunar environment. The vector
differential equation for the spacecraft’s motion is written in an inertial frame I
according to Newton’s Second Law: [11]

msc
d2R⃗

dτ 2 = −Gm⊕msc
R⃗1

R3
1

−Gm$msc
R⃗2

R3
2

+ T⃗ (1.1)

where: msc is the mass of the spacecraft, m⊕ is the Earth’s mass and m$ the
mass of the Moon. In addition R⃗ is the spacecraft vector position, R⃗1 is the vector
Earth-spacecraft and R⃗2 the Moon-spacecraft vector, T⃗ is the thrust vector, G is
the Gravitational costant and dτ is the time unit.
At this point usually the first step to obtain the CR3BP formulation is a standard
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1.1 – Circular Restricted Three Body Problem

nondimensionalization. As already stated the mass of the spacecraft is negligible.
Different characteristic can be written as in Tab.(1.1):

Characteristics Formula
Mass m∗ = m⊕ +m$

Length l∗ = R⊕→$

Time τ ∗ =
√

l∗3

Gm∗

Table 1.1: The three main characteristics of the CR3BP

where R⊕→$ (sometimes defined as R12) is the Earth-Moon distance and the
characteristics time is computed from Kepler’s third law in order to make the
non-dimensional gravitational constant G∗ equal to 1.
New non-dimensional quantities can be defined as:

r⃗ = R⃗

l∗
, r⃗i = R⃗i

l∗
{i} ∈ {1,2} µ = m$

m∗ and t = τ

τ ∗ (1.2)

In addition T⃗ is normalized as:
T⃗ = Tmaxu⃗ |u⃗| ≤ 1 (1.3)

where Tmax is the maximum thrust and u⃗ is the control vector.
Dividing now Eq.(1.1) by the mass msc and using Eq.(1.2) and Eq.(1.3) to

simplify we get:
d2r⃗

dt2
= −(1 − µ)

r3
1

r⃗1 − µ

r3
2
r⃗2 +

(
l∗2

m∗G

)
Tmax

msc

u⃗ (1.4)

In the last term we can regroup:

ε =
(
l∗2

m∗G

)
Tmax

msc

(1.5)

where
(

l∗2

m∗G

)
is simply a normalization constant and so ε is the Tmax

msc
ratio in

dimensionless units.
At this point the goal, as already mentioned, is to rewrite Eq.(1.4) in a rotating

frame R. The angular velocity of this latter frame is the velocity of rotation of the
two primaries (that are fixed in this frame) around their center of mass, which is
also the origin of the frame as in Fig.(1.3).
Both the Earth and the Moon lie in the x axis with coordinates respectively of
(−µ,0,0) and (1 − µ,0,0). The Eq.(1.4) can be rewritten as:(

d2r⃗

dt2

)
I

=
(
d2r⃗

dt2

)
R

+ 2ω⃗ ×
(
dr⃗

dt

)
R

+ ω⃗ × ω⃗ × r⃗ (1.6)

9



Cislunar environment

where ω⃗ (normalized equal to 1) is the angular velocity of R w.r.t. the inertial
frame I. Now the first term of the right-hand side of Eq.(1.6) can be expanded

Figure 1.3: CR3BP typical reference frame [12]

recalling:
r⃗ = xx⃗+ yy⃗ + zz⃗(
dr⃗

dt

)
R

= ẋx⃗+ ẏy⃗ + żz⃗(
d2r⃗

dt2

)
R

= ẍx⃗+ ÿy⃗ + z̈z⃗

(1.7)

From Eq.(1.6) with Eq.(1.7) we obtain:(
d2r⃗

dt2

)
I

= (ẍ− 2ẏ − x)x⃗+ (ÿ + 2ẋ− y)y⃗ + z̈z⃗ (1.8)

Finally manipulating Eq.(1.4) and Eq.(1.8) we get the second order controlled
differential system:

ẍ = 2ẏ + x− 1−µ
r3

1
(x+ µ) − µ

r3
2
(x− 1 + µ) + εu1

ÿ = −2ẋ+ y − 1−µ
r3

1
y − µ

r3
2
y + εu2

z̈ = −1−µ
r3

1
z − µ

r3
2
z + εu3

(1.9)

where
r⃗1 = (x+ µ)x⃗+ yy⃗ + zz⃗

r⃗2 = (x− 1 + µ)x⃗+ yy⃗ + zz⃗
(1.10)
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1.1 – Circular Restricted Three Body Problem

1.1.2 Lagrange Points
In the system (1.9) u⃗ is the control vector (u1, u2, u3) in the rotating frame R and
so when ε = 0 we have an uncontrolled free CR3BP.
Although this latter system has no closed analytical form, we can use it to find the
location of special equilibrium points. The Lagrange points, also called Libration
points, named from Joseph-Louis Lagrange’s studies, are locations in space where
the spacecraft (msc) would have zero velocity and zero acceleration. [13]
The spacecraft in these points would appear permanently at rest relative to both
the primaries in the reference frame Fig.(1.3) and would appear in circular motion
around primaries in the inertial frame I.
To determine the Lagrange points locations we must force the following conditions
in the system (1.9):

ẋ = ẏ = ż = 0 and ẍ = ÿ = z̈ = 0 (1.11)
This yields to: 

0 = x− 1−µ
r3

1
(x+ µ) − µ

r3
2
(x− 1 + µ)

0 = y − 1−µ
r3

1
y − µ

r3
2
y

0 = −1−µ
r3

1
z − µ

r3
2
z

(1.12)

From the third equation: (
1 − µ

r3
1

+ µ

r3
2

)
z = 0 (1.13)

we can state that z = 0, since the term between round brackets can not be equal to
zero for µ definition. Therefore the first conclusion is that these equilibrium points
lie in the orbital plane. In addition from the second equation of (1.12):

0 =
(

1 − 1 − µ

r3
1

− µ

r3
2

)
y (1.14)

assuming y /= 0, we obtain:

1
r3

2
= 1
µ

(
1 − 1 − µ

r3
1

)
(1.15)

We can also manipulate the first equation of (1.12) rewriting that as:

0 = x

(
1 − 1 − µ

r3
1

− µ

r3
2

)
+ µ

(
1
r3

2
− µ

r3
2

− 1 − µ

r3
1

)
(1.16)
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Substituting Eq.(1.15) in Eq.(1.16) the dependency on x vanishes and we get:

1
r3

1
= 1 (1.17)

From Eq.(1.17) into Eq.(1.15) we obtain:

1
r3

1
= 1
r3

2
= 1 ⇒ r1 = r2 = 1 (1.18)

Recalling Eq.(1.10) with z = 0 and Eq.(1.18) and expliciting the norm of both
vectors we have:

1 = (x+ µ)2 + y2

1 = (x− 1 + µ)2 + y2 (1.19)

Equating the right-hand sides of these latter two equations leads to:

x = 1
2 − µ ⇒ y = ±

√
3

2 (1.20)

These are the coordinates of the first two Lagrangian points, L4 and L5. Recalling
that the distance between the Earth and the Moon, l∗ = R⊕→$, is the characteristic
length of the system (i.e. the Earth-Moon distance is equal to 1 in the non-
dimensional normalized frame Fig.(1.3)), and Eq.(1.18), the two primaries and
these two Lagrange points lie at the vertices of equilateral triangles, as illustrated
in Fig.(1.4).

Figure 1.4: Lagrange points in the Earth-Moon system [14]
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1.1 – Circular Restricted Three Body Problem

In order to find the others points (L1, L2, L3) we have to consider the other case
of study in Eq.(1.14), i.e. y = 0, and also z = 0 that still remains valid. Computing
the magnitude of Eq.(1.10) we obtain:

|r1| = |x+ µ|
|r2| = |x+ µ− 1|

(1.21)

and substituting these into the first equation of (1.12) leads to:

0 = x− 1 − µ

(x+ µ)2 − µ

(x+ µ− 1)2 (1.22)

The roots for this latter equation can be computed numerically, after the selection
of the parameter µ. In the Earth-Moon system this leads to the numerical results
reported in Fig.(1.5).

Figure 1.5: Graph for equation (1.22) for Earth-Moon data [13]

Studying the stability of Lagrangian points [15] it turns out that L1, L2 and L3
are unstable. If a spacecraft is placed in these regions, an hypothetical perturbation
could make it drifts away from the starting point. Despite these points are unstable
and require station-keeping, different interesting orbits exist in their neighbourhood
as explained in Sec.(1.2). Plenty of missions leverage these points [16], e.g. SOHO is
now based at the L1 point of the Earth-Sun system, which provides an uninterrupted
view of the sun. L2 has been leveraged by JWST for its peculiarities. This is
indeed a great location for astronomy since a spacecraft can connect with Earth
easily, maintaining the Sun, Earth, and Moon behind itself for solar power (with
sufficient shielding), and providing a clear view of deep space.
On the other hand L4 and L5 are stable, a spacecraft nudged out of position
near these points would return to its starting point. In the Earth-Moon system,
indeed, these latter points are destabilized by the influence of the sun’s gravity and
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station-keeping maneuvers are required.
Usually objects orbiting at the L4 and L5 points are known as Trojans, after the
three massive asteroids Agamemnon, Achilles, and Hector, which can be found in
the Jupiter-Sun system’s L4 and L5 points.

1.1.3 Jacobi Constant
Introducing the potential function:

Vµ(x, y, z) = −1 − µ

r1
− µ

r2
− 1

2
(
x2 + y2

)
(1.23)

the system (1.9) can be rewritten as:
ẍ− 2ẏ + Vµx = εu1
ÿ + 2ẋ+ Vµy = εu2
z̈ + Vµz = εu3

(1.24)

where Vµx = ∂Vµ

∂x
, Vµy = ∂Vµ

∂y
and Vµz = ∂Vµ

∂z
.

Now multiplying the first equation by ẋ, the second by ẏ, the third by ż and forcing
ε = 0, to deal with an uncontrolled system, we get:

ẍẋ− 2ẏẋ+ Vµxẋ = 0
ÿẏ + 2ẋẏ + Vµy ẏ = 0
z̈ż + Vµz ż = 0

(1.25)

Summing the left and right sides of these equations and rearranging terms we
obtain:

1
2
d

dt
(ẋ2 + ẏ2 + ż2) + d

dt
(Vµ) = 0 (1.26)

or:
d

dt

(
V 2

2 + Vµ

)
= 0 (1.27)

that leads to the Jacobi constant:

2C = V 2 + 2Vµ (1.28)

where V 2 is the kinetic energy per unit mass and in Vµ, Eq.(1.23), the first two
terms are the gravitational potential energies of the primaries, while the last term3

−1
2(x2 + y2) may be interpreted as the potential energy of the centrifugal force per

3Note that this term in a dimensional non-normalized formulation would be preceded by ω2,
that here it is equal to 1
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1.1 – Circular Restricted Three Body Problem

unit mass induced by the rotation of the reference frame.
The constant C is well-known in astrodynamics and it is called Jacobi constant.
This term can be interpreted as the total energy of the secondary particle relative
to the rotating frame. C is a constant of motion of the secondary mass just as
angular momentum and energy in a classical 2BP.
Since V 2 is always greater than or equal to zero, recalling Eq.(1.28) we can state:

2C − 2Vµ ≥ 0 (1.29)

with Eq.(1.23):

2C + 2(1 − µ)
r1

+ 2µ
r2

+
(
x2 + y2

)
≥ 0 (1.30)

A secondary body, i.e. a spacecraft in our case, is not allowed to run a trajectory
that does not respect this disequality constraint.
The boundaries between allowed and forbidden regions, that a spacecraft is not
allowed to cross, can be found setting Eq.(1.30) equal to zero:

2C + 2(1 − µ)
r1

+ 2µ
r2

+
(
x2 + y2

)
= 0 (1.31)

For a given value of the Jacobi constant the zero velocity curves can be found. Note
that C can assume only negative values at the zero velocity curves, since the other
three terms in Eq.(1.31) are always positive. Large negative values of C suggest
that the spacecraft is far away from the CoM of the system (i.e. large (x2 + y2)
value) or is close to the Earth or the Moon (i.e. small values of r1 or r2).
In Fig.(1.6) forbidden regions are illustrated for increasing values of Jacobi’s con-
stant. For a low value of C0 (a) a spacecraft cannot reach the Moon or escape
the Earth-Moon system. Using the L1, L2 and L3 coordinates in Eq.(1.31) leads
to greater value of C1, C2 and C3. The spacecraft is able to reach respectively
L1 (b) ,L2 (c) and L3 (d) arriving at these points with zero velocity. C2 depicts
the minimal energy required for a spacecraft to leave the Earth–Moon system via
a short corridor around the moon, as shown in (c). As C increases, the tunnel
becomes wider, and at C3, escape in the opposite direction from the moon becomes
conceivable.
L4 and L5 are surrounded by the last remnants of the restricted zones (e). With
a higher Jacobi constant, an Earth-launched spacecraft can reach the entire
Earth–Moon system and beyond (f).
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Figure 1.6: Forbidden regions (shaded) within the Earth–Moon system for increasing
values of Jacobi’s constant (km2/s2). [13]
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1.2 Periodic orbits
The CR3BP is characterized by an infinite number of periodic solutions. Generally
orbits and transfer maneuvers with similar features are collected into families.
In this thesis we are going to consider the most useful orbits that are typically
used in a three body mission planning. Periodic orbits in the CR3BP have been
widely investigated and some examples of common families include Lyapunov and
Halo orbits around the collinear libration points, and families of orbits around
the Moon, such as Distant Retrograde Orbits (DROs). The L1 and L2 libration
points lie approximately 58000 km and 64000 km from the center of the Moon and
consequently orbits around these points are often leveraged for trajectory design
involving lunar proximity operations. [17]

1.2.1 Lyapunov Orbits
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Figure 1.7: L1 and L2 Lyapunov orbits for different C levels.

Lyapunov orbits are typically planar orbits around all the five lagrangian points.
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In this thesis we are going to consider just the Lyapunovs around L1 and L2.
Transfers between these two kind of orbits will be investigated due to the growing
interest that Artemis mission has brought in the last years. Connecting these two
Lyapunovs orbits, indeed, one could assure continuous observation of both lunar
sides. In Fig.(1.7) orbits with different C levels are illustrated (Earth and Moon
size not in scale).
Despite just few of the infinite possible solutions are reported, it can easily seen
that in some region L1 and L2 Lyapunov orbits merge into each other.
The CR3BP dynamics is highly chaotic and both these Lagrangian points are
unstable as explained in the section before. Nevertheless this instability makes
transfers between different natural orbits easier. With a small maneuver, in fact, a
spacecraft can exit its unstable orbit and join an unstable or stable natural path,
usually referred as manifold, [18] in order to make a transfer to a different periodic
natural orbit minimizing the fuel cost as depicted in Fig.(1.8).
A lot of ongoing research is trying to find transfer trajectories that trade fuel cost
against transfer time leveraging natural manifold. [19]
During mission design we usually look for the lower possible mission’s cost, i.e. fuel
minimization, but sometimes space missions require to follow a tight timeline and
from this comes the need to find transfer maneuvers that do not attempt to heavily
leverage dynamics at the expense of a greater fuel consumption but a remarkable
time advantage.
Although in this thesis we are going to follow this last path, trying to not leverage
the dynamics directly with the invariant manifolds, we will discuss considerable
results obtained in this kind of transfer that will lead inevitably and indirectly to
follow natural dynamics when trying to minimize the control energy cost function.

Figure 1.8: Heteroclinic connection and heteroclinic chain between L1 and L2 Lyapunov
orbits, C = 3.11295. [17]
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1.2.2 Distant Retrograde Orbits
DROs are highly stable Moon-centered planar orbits characterized by retrograde
motion, a spacecraft would travel this orbit in the opposite direction to the one
in which the moon orbits the planet. The term "distant" refers to the fact that
the majority of these orbits pass far away from the Moon and Lagrangian points,
covering a large region of the Cislunar realm.
In Fig.(1.9) few DROs with different C levels are reported.
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Figure 1.9: DROs for different C levels.

One feature that makes these orbits desirable in a Cislunar mission design is
the already mentioned high Lyapunov stability. A spacecraft that would eventually
encounter any perturbation along the orbit would return to its initial position after
a certain time, and it would not drift away like in previous Lyapunovs.
Although DROs have been proposed in different conceptual mission design, like in a
first concept for Jupiter Icy Moons Orbiter, the only orbiters that used them, to the
author knowledge in 2022, are the chinese Chang’e 5 [20] and the Orion spacecraft
of Artemis 1 mission. In addition in the NASA Lunar Gateway technical report
[21] is highlighted that: "the Gateway shall be capable of performing a single round
trip transfer to Distant Retrograde Orbit (DRO) and back within 11 months".
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1.2.3 Halo Orbits
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Figure 1.10: Halo orbits around L1 for different C levels.

Halo orbits are periodic three dimensional orbits around one of the three
collineare Lagrange points (L1, L2, L3). In Fig.(1.10) a family of L1 Halo or-
bits is illustrated.
In 1966 Robert W. Farquhar was the first to use the name Halo [22] and the first
to propose the use of this kind of orbit to solve one of the major problem in Apollo
missions design, the lack of direct communication from the Earth to the back side
of the Moon. This problem still be considerable nowadays. A spacecraft in an Halo
orbit, indeed, would be in continuous view of both the far side of the Moon and
the Earth. While Farquhar used analytical expression to represent Halos, in 1984
Kathleen Howell was able to compute a larger precise set of Halos numerically. [23]
Despite the Halo orbit solves the communication problem of lunar missions they
still have the same drawback of all the libration points orbits, the instability.
This leads to the need to perform station keeping maneuvers in order to main-
tain the initial nominal orbit. In Fig.(1.11) different Lunar Gateway’s orbits are
depicted.
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Figure 1.11: Infographic depicting NRHO, Gateway’s unique near-rectilinear halo
orbit.[24]

From the infographic it can be seen as both Halos and DROs have been taken
into account in the Gateway’s mission design. Precisely an Halo Orbit is usually
referred as Near-Rectilinear Halo Orbit (NRHO) when its inclination is high and
approximately polar. The mission leverages the best from both the last two kind of
orbits we have discussed. Science and communications tasks are achieved thanks
to the (NRHO) that could also orbit the vicinity of the Moon with its low perilune
altitude. On the other hand a Distant Retrograde Orbit, that is stable, is the perfect
choice to accomplish all engineering duties without the need for fuel expensive
station keeping maneuvers.
Other than in Cislunar missions, an Halo orbit has been also leveraged in recent
times from JWST that in January 2022 entered its Halo design orbit around the
Sun-Earth L2 point. [25]
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Chapter 2

Trajectory optimization

Optimization problems have always been a major challenge in all engineering fields.
In particular space engineering has been a fertile land, along with the development of
numerical methods, to enhance the invention of innovative optimization algorithms,
methods and techniques. The spacecraft trajectory optimization problem can be
described as the process of designing a trajectory that satisfies some criteria, such as
the initial and terminal conditions, while minimizing (or maximizing) a particular
cost function. In 1998 Betts made the first sincere effort to categorize techniques for
spacecraft trajectory optimization [26], dividing the methods in two main families:
the direct and the indirect methods, that will be discussed in this chapter.
As reported in [27] four steps can be used to break down the process of optimizing
the trajectory of a spacecraft. As usual a model is required to describe the physics

Figure 2.1: General scheme of spacecraft trajectory optimization process [27]
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of the process and in our case the CR3BP is the better choice as discussed in the
previous chapter. The objective is highly affected by mission goals and requirements.
Typically in orbital mechanics optimization problems we must have to minimize
the transfer time or the fuel cost (i.e. minimize the propellant). Depending on the
mission constraints, different cost function can be taken into account as objective
of the optimization process. The approach step concerns the type of methods and
techniques which are dedicated to solving the trajectory design problem. Here we
can found both analytical approaches, based on the classical optimal control theory
or numerical approaches related to space transfers. Finally the solution can be a
closed form analytical solution, if the analytical approach has been used, otherwise
it can be found leveraging numerical techniques and algorithms.
As already mentioned, dealing with Cislunar trajectory optimization we must face
the nonlinearity of the dynamics and so typically trajectory optimization problems
don’t have closed analytical solutions.
In addition one of the main challenges in our case is the use of a continuous model.
In comparison with impulsive models, mathematical models based on this idea are
more accurate but also more complex because the trajectory is handled while taking
into account non-zero inputs (i.e. u⃗(t) /= 0 in the dynamics). The comparison is
the same as high-thrust and low-thrust trajectory design. As illustrated in the

Figure 2.2: Characteristics of typical propulsion systems [27]

Fig.(2.2) high thrust chemical engines have low Isp and this leads to a greater
fuel consumption. On the other hand low thrust providers, such as Resistojet,
Arcjet, Ion thrusters and Hall thrusters have a remarkable Isp that promises a
decrease of the fuel consumption at the expense of a greater transfer time. The
majority of the Cislunar missions leverage low thrust engines due to the important
mission time. A notable drawback of the low thrust approach is the need to model
the actuators dynamics. Nowadays thruster are indeed built as ON/OFF devices,
leading to several discontinuities on the control that can make numerical techniques
challenging. Usually smoothing functions are used to solve this numerical problem,
[28] but we are not going to take into account this issue in the thesis.
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2.1 Optimal Control Problem
Optimal control theory is an outcome of the calculus of variations. [29]
The OCP can be defined in different ways. We can state the problem as: [30]
Minimize the Lagrange performance index:

J = ϕ [x0, xf , t0, tf ] +
∫ tf

t0
L[x(t), u(t), t]dt (2.1)

subject to the system dynamics constraints:

ẋ(t) = f [x(t), u(t), t] (2.2)

where x = {x1, . . . , xn}T is the state vector and u = {u1, . . . , um}T is the control
vector. In addition the boundary conditions are written as:

ψ(x0, xf , t0, tf ) = 0 (2.3)

Inequality path constraints can also be added to the formulation if needed, in this
work we are going to consider only equality constraints. In Eq.(2.1) is reported the
Bolza formulation of the OCP. Here we are going to adopt the Lagrange formulation
(ϕ = 0), this leads to a new Lagrange performance index:

J =
∫ tf

t0
u2dt (2.4)

that usually is referred as minimum control energy cost function.
Please note that the specific impulse Isp and the spacecraft mass are assumed
constant. We choose to start from a minimum energy solution because the fuel
mass objective cost function leads to instantaneous ON/OFF thrust switching
which is challenging for numerical solution methods.

2.1.1 Direct Vs Indirect optimization
Generally speaking, the optimal control problem can be expressed as either an
indirect or direct optimization problem. In direct methods the control is an
optimization variable and the optimality is achieved by satisfying the Karush Kuhn
Tucker (KKT) conditions. [31] On the other hand in indirect methods Pontryagin’s
minimum principle is used to derive first-order optimality conditions, which are
then used to find the control vector. Unless the problem is trivial we always need
to transcript the OCP into a nonlinear programming problem (NLP). The NLP is
solved using classical Newton’s based methods that try to iteratively solve a series
of approximate linear problems.
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In direct formulation there are fewer constraints than optimization variables and
the sub problems are always undetermined.
Let consider a trajectory discretized into N nodes. The state vector is composed by
3 positions and 3 velocities while the control vector is a three-dimensional vector.
Thus, in every node we have 9 parameters for a total of 9N variables to optimize
in the problem. Since we have to force state continuity between each pair of nodes,
we have 6(N − 1) dynamics constraints and 12 constraints considering the initial
and final states. At this point we can evaluate the DoF of the problem as:

DoFdirect = 9N − 6(N − 1) − 12 = 3N − 6 (2.5)

When N = 2 we have Lambert’s problem, otherwise when N > 2 we have infinite
possible solutions. On the other hand in the indirect formulation each node has 12
parameters (6 for the state and 6 for the adjoints or costates that are state dual
variables defined within the formulation). Thus there are 12N variables to optimize.
As constraint we have 6(N − 1) state dynamics constraints and 6(N − 1) additional
constraints on costates dynamics from the Pontryagin’s minimum principle. Adding
also the 12 constraints on initial and final states we have removed all of the DoF
and we have a single solution that obeys the constraints. However, in the CR3BP,
the problem is highly nonlinear and it is common to find multiple locally optimal
solutions. Finally, every time we free up a constraint (such as the endpoints or
time of flight) the optimizer will use that DoF to minimize the objective function.

2.2 Indirect methods

Recalling the OCP defined in Sec.(2.1) the augmented performance index with the
constraints, Eq.(2.2) and Eq.(2.3), can be written as:

J∗ = ϕ+ µTψ +
∫ tf

t0
[L+ λT (f − ẋ)]dt (2.6)

where µ and λ are two kinds of Lagrange multipliers added to enforce boundary
constraints and system dynamics respectively.
Usually λ are also known as costates variables. The problem is reduced to identify
a stationary point of J∗, imposing ∇J∗ = 0. The set of optimization variables in
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our case is [x, u, λ, µ] and this leads to:

∂J∗

∂λ
= 0 ⇒ ẋ = f(x(t),u(t), t)

∂J∗

∂x
= 0 ⇒ λ̇ = −

(
∂f
∂x

)T

λ−
(
∂L

∂x

)T

∂J∗

∂u
= 0 ⇒

(
∂L

∂u

)T

+
(
∂f
∂u

)T

λ = 0

∂J∗

∂µ
= 0 ⇒ ψ(x0, xf , t0, tf ) = 0

(2.7)

The first two equations represent the dynamics of states and costates respectively.
The boundary conditions are also obtained in the last equation.
Usually to obtain a more compact notation the Hamiltonian is defined as:

H(x,u,λ, t) = L(x(t),u(t), t) + λ(t)T f(x(t),u(t), t) (2.8)

and so the dynamics can be rewritten as:
ẋ = Hλ

λ̇ = −Hx

Hu = 0
(2.9)

also known as Eulero-Lagrange equations or first order optimality conditions.
The OCP is reduced to a Boundary Value Problem (BVP) on a differential-algebraic
system of equations (DAE). In addition, in our case, DAE can be reduced to an
ODE system processing the algebraic control equation deriving from Pontryagin’s
minimum principle (Hu = 0), from whom we can obtain an explicit expression for
u as function of the costates. In our case of fixed x0 and xf constraints can be
written as: {

x(t0) − x0 = 0
x(tf ) − xf = 0

(2.10)

reducing the original problem to a Two Point Boundary Value Problem (TPBVP).
In this work the bvp4c Matlab solver, a finite difference code that implements the
three-stage collocation Lobatto IIIa formula, is used in order to solve it and it will
be discussed in next sections. As first iteration fixed final time transfers are studied
in this thesis. Then, as second step, the final time tf is let free.
If we consider a free final time tf problem, a new free parameter has to be defined
as:

τ = t

tf
(2.11)
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Substituting into the state equations, they become:

dx⃗

dτ
= tf · f⃗ [x⃗(τ), u⃗(τ), τ ] (2.12)

and the cost function becomes:

J = tf

∫ 1

0
u2dτ (2.13)

In this case an additional boundary condition is required:

H (tf ) = −∂Φ
∂tf

= 0 (2.14)

where Φ = ϕ+ µTψ.
The Hamiltonian at the final time tf must be equal to zero because the terminal
cost and the terminal boundary conditions are independent of time.

2.3 Direct methods
Direct methods are based on reducing the OCP into a NLP. The core of the
method is the parameterization of all continuous variables and the transcription
of the differential equations describing the dynamics, into a finite set of equality
constraints. Classical transcription methods are collocation, single and multiple
shooting that will be discussed later. The art behind the direct methods is the way
we set up the optimization problem, because later on the hard work is simply done
behind the scene by the solver.
First of all the parameterization is based on the discretization of the continuous
variables on a mesh settled up on the time domain.
The time is indeed discretized as:

t0 = t1 < t2 < . . . < tN = tf (2.15)

Thus, the states and the controls are discretized over the previous mesh by defining

xk = x (tk) (2.16)

and
uk = u (tk) (2.17)

We obtain the vectors:
x(t) = {x1,x2, . . . ,xN}
u(t) = {u1,u2, . . . ,uN}

(2.18)
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Thus, a new vector of variables can be defined:

X = {tf ,x1,u1, . . . ,xN ,uN} (2.19)

All the optimization variables are concatenated into one vector, and the problem is
reduced to:

minimize : J(X)
subject to : h(X) = 0

(2.20)

2.4 Numerical techniques
As already stated when we deal with an OCP we have an infinite dimension
optimization problem since the variables are functions. This is the reason why the
OCP is reduced into a TPBVP, where we optimize over real numbers rather than
functions. Usually this process is called transcription and the final problem, that
we must solve with numerical techniques, is referred as non-linear programming
problem NLP. The most used NLP solvers in trajectory optimization are directly
based upon the methods presented below.

2.4.1 Single shooting
The single shooting method is the simplest way to solve a boundary value problem
(BVP) by reducing it to an initial value problem. The name of the method comes
from the representative case in Fig.(2.3).

Simulation   

Single Shooting:

Defect
Constraint

Target

• result of simulation
• simulation + defect constraint
 

 

• State Representation → 

• Dynamics Constraint →

 

 

Figure 2.3: Single shooting scheme [32]
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Lets imagine to aim a cannon at a target. Once we shot the cannon ball is ruled
by non linear dynamics (gravity,drag, etc.) in the vertical direction. Thus, we can
simulate the trajectory, which is represented as a single entire segment, and see
the defect constraint, that is the difference between the desired position of the
target and the point reached by the cannon ball. In mathematical terms the idea
behind single shooting method is to write iteratively the final state with a Taylor’s
expansion around the initial conditions:

xf ≈ x∗
f + ∂xf

∂x0
· ∆x0 (2.21)

then we can solve for ∆x0 and update the initial conditions:

∆x0 =
[
∂xf

∂x0

]−1

·
(
xf − x∗

f

)
(2.22)

With all the aforementioned concepts one can deduce that the single shooting
method suits perfectly only simple problems, that can be approximated by linear
functions. Otherwise the method struggles and other techniques are required.

2.4.2 Multiple shooting
The multiple shooting technique is the natural evolution of the previous method.
The idea behind this approach is reported in Fig.(2.4). The trajectory is divided

Simulation   

Multiple Shooting:

Target

• result of simulation
• simulation + defect constraints

• State Representation → 

• Dynamics Constraint →

 

Defect
Constraint

Figure 2.4: Multiple shooting scheme [32]

in N segments in order to obtain portions where the linear assumptions are more
likely to be valid. Of course the solution depends on the number of nodes. A defect
constraint is added between nodes and matching conditions are imposed in order
to obtain a whole solution.
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2.4.3 Collocation
In collocation methods the interval of integration is divided in subintervals by N
nodes, or collocation points, as in Fig.(2.5). The idea is to represent the ordinary
differential equation (i.e. the state and control’s path) using approximate continuous
functions as polinomial splines that obey dynamics at collocation points. These
methods are often leveraged to solve ODE. There are numerous collocation-based
techniques, which can be identified by the node spacing and basis function selection.
For example, a small number of high-order polynomials are used in orthogonal
collocation techniques, which were created for calculating satellite trajectories.
On the other hand in direct collocation, a large number of low-order polynomials
are used to approximate the solution.

Direct Collocation:

Target

• piecewise polynomial
• match dynamics at collocation points

• State Representation → 

• Dynamics Constraint →

 

Piecewise

Polynomial

Figure 2.5: Collocation scheme [32]

Lets consider for example the following ODE:

y′(t) = f(t, y(t)), y (t0) = y0 (2.23)

that must be solved in the interval [t0, t0 + ckh] with ck that represents the colloca-
tion point, 0 ≤ c1 < c2 < . . . < cn ≤ 1. [33]
Using a collocation method a polynomial p of order n will approximate the solution
y satisfying:

p(t0) = y0

p′ (tk) = f (tk, p (tk))
(2.24)

over the collocation points tk = t0 + ckh. Thus we have n+1 conditions, that are
indeed the same number of coefficients of the polynomial p of order n.
The collocation methods can be classified as implicit Runge-Kutta methods, of
course the opposite does not always hold.
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2.5 bvp4c
bvp4c is the finite difference Matlab’s code, used in this thesis, that implements the
three-stage Lobatto IIIa formula, a collocation formula. Recalling that an implicit
Runge-Kutta method can be written as:

yn+1 = yn + h
s∑

i=1
biki (2.25)

with:

ki = f

tn + cih, yn + h
s∑

j=1
aijkj

 , i = 1, . . . , s (2.26)

and recalling also the Butcher tableau which is a useful tool to visualize the
coefficients:

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
... ... ... . . . ...
cs as1 as2 . . . ass

b1 b2 . . . bs

b∗
1 b∗

2 . . . b∗
s

(2.27)

The Lobatto IIIA methods can be divided into a second-order method, repre-
sented by the following tableau:

0 0 0
1 1/2 1/2

1/2 1/2
1 0

(2.28)

that is usually known as trapezoidal rule:

yn+1 = yn + 1
2h (f (tn, yn) + f (tn+1, yn+1)) (2.29)

or the fourth-order method:

0 0 0 0
1/2 5/24 1/3 −1/24
1 1/6 2/3 1/6

1/6 2/3 1/6
−1

2 2 −1
2

(2.30)

This latter one is the collocation formula implemented in bvp4c. The solver
calculates a numerical solution taking into account both the algebraic equations of
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the collocation points in every subintervals and the boundary conditions. Once is
run, the solver must reduce the error on each subintervals, thus the mesh is adapted
iteratively in order to respect the tolerance criteria. The input of the solver are
indeed the initial mesh and the value of the solution at those mesh points. In
Fig.(2.6) the work logic of bvp4c is illustrated.

Figure 2.6: Procedure of three-stage Lobatto IIIa formula [34]
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Chapter 3

Neural Networks

Neural networks (NN) have broken new ground in scientific community in the last
decades, paving the way for the future of automation. Artificial Neural Networks
(ANN) are inspired by biological NN that constitute human brains. [35]
The main elements in ANN are either called nodes or neurons, and they are typically
grouped in layers. Like the synapses in a human brain, each link has the ability to
send a signal to neighboring neurons. Each neuron’s output is calculated using a
non-linear function of the total of its inputs, often called activation function. The
connections between neurons are called edges. Nodes and edges have a weight that
adjusts as the training of the network proceeds. This weight can either increase or
decrease the signal at a connection. Moreover sometimes we need the neuron to
activate just when a threshold value is crossed, and from that comes the need for
biases.
The output yi of a node can be written [36] as:

yi = φi

 ni∑
j=1

wi
jz

i
j + bi

 (3.1)

where ni is the total incoming connections, zi is the input, wi is the weight, bi is
the bias, and φi is the activation function at the i-th node that typically bounds
the output in the range [0,1] or [-1,1]. A representative scheme of the hypothetical
structure of a neural network is illustrated in Fig.(3.1).

Besides the use of a neural network can have lots of objectives, it has been
demonstrated that NN are an incredible tool for functions approximations [38]
and this is the application that we are going to use in this work. Neural networks
learn thanks to the training phase. When processing samples from a dataset
that each contains a known "input" and "output", neural networks learn (or are
trained) by creating probability-weighted associations between the two that are
then stored inside the data structure of the network itself. The network then
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Figure 3.1: Three-layer feedforward neural network (a), where input layer has p input
nodes, hidden layer has h activation functions, and output layer has q nodes. [36]

Figure 3.2: Examples of activation functions [37]

adjusts its weighted associations according to a learning rule. The power of neural
networks relies on the non linear nature of activation functions. Some common
functions are depicted in Fig.(3.2).
This latter method of proceeding is usually known as supervised learning and
it is essentially the minimization between the desired output yi and the model’s
output ŷi. For this purpose, several cost function can be designed. For instance, in
regression problems, mean squared error is one of the commonly used cost function
and it is written as:

cf (yi, ŷi) = 1
N

N∑
i=1

q∑
j=1

(yij − ŷij)2 (3.2)

where N are the data pairs.
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3.1 Dataset split
One of the key features when we try to build a neural network is the division of
the dataset in training, validation and test sets. If we do not split our data in the
aforementioned groups, and we evaluate the performance of the net on the single
group, thus the training one, we can easily fall back into a biased score. That is the
reason why an held out dataset, the test one, is usually used to give an estimate of
model skill. [39]
Our data should be divided into three separate dataset splits for the training and
testing phases of our model.

3.1.1 Training set
From this data the model learns in order to uncover any hidden characteristics or
patterns. As the neural network design is continually given the same training data
throughout each epoch, the model keeps learning the characteristics of the input.
The training set should comprise a diverse collection of inputs so that the model
may be trained in all circumstances and anticipates any unobserved data sample
that may arise in the future.

3.1.2 Validation set
The validation set is a collection of data, separated from the previous training one,
that is used to validate the net’s performance throughout the learning process.
Since the design of a neural network implies a trial and error method to tune all the
different hyperparameters, it is useful to have a dataset that informs us whether
or not our training is on the correct path. So far we have understood that as the
training of the net proceeds learning from the training set, a different set is used in
order to evaluate the performance of the net at the same time. The major goal of
dividing the dataset into a validation set is to avoid the overfitting of our model
that will be discussed in the following sections.

3.1.3 Test set
After the training is complete, the model is tested using a different set of data
called the test set. In terms of accuracy, precision, and final model performance,
this set offers an objective measure.

In Fig.(3.3) the work logic behind the learning process of a neural network is
reported. At this point, after we pointed out the importance of splitting the dataset,
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Figure 3.3: Work logic behind the dataset split [40]

we must focus on how this division should be performed. For example a machine
learning model needs a bigger validation set if there are more hyperparameters to
modify in order to maximize model performance. The number of hyperparameters
of the neural network functions grows together with the dimension of the data,
making the model increasingly complex. In these cases, a sizable portion of the
data should be maintained as a training set and the remainder as a validation set.
At the end there is not an optimal rule to choose the different percentages for the
three sets because this depends highly from our requirements and needs. However
machine learning model will exhibit large variations in training if a small percentage
is given to training data. On the other hand if test and validation dataset have a
small percentage we clearly lose information on the net’s performance evaluation.

In Fig.(3.4) examples of data split are illustrated. As we can see the training
data represent always the major percentage.
Another important feature to choose is the technique for the data splitting. The
most common methodology is currently the random picking. Essentially the dataset
is firstly shuffled in order to avoid any correlation between the order of collection
of the solutions, then, depending on the percentages of the three sets, data are
randomly picked and divided in training, validation and test data. This latter
approach is the one followed in this thesis.
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Figure 3.4: Some examples of data split [40]

3.2 Over-fitting
The ideal goal for a neural network is to perform well on unseen inputs and not
only on the data that we used to train the net. For this reason we usually say that
the net should be able to generalize new data.
However reaching a good generalization performance by the net is not a trivial
acitivity. This depends, for example, on the data split percentages, the hyperpa-
rameters tuning and also on the dataset nature itself.
The Fig.(3.5) is really interesting and can help us to clarify the aforementioned
concepts.

Three different typical machine learning applications are presented, the regression
problem, the classification problem and the deep learning which is the most
interesting in our case. In each of these problem, after the neural network has been
implemented, we can have:

• Under-fitting: when the model has bad performance on both the training
set and the validation one. This can due, for example, to a poor training
dataset. In the regression problem above the quadratic trend of the data is
approximated by a linear one, thus the model is too simple and poor.

• Optimal-fitting: when the model performs well on the training set and can
also generalize with good performance new data. In the regression problem
above, a quadratic function suits better the data in comparison with the linear
one of the previous case. In the deep learning problem the trends of training

39



Neural Networks

Figure 3.5: Overfitting visualization [41]

and validation sets reach a smaller error even if the training one is slightly
better;

• Over-fitting: when the model learns every detail of the training dataset and
it is excessively complex. This leads to capture also the noise of the training
data. Thus, the training error is very small while the validation one is larger
because the model cannot generalize well.

There are different ways to handle both under and over-fitting as reported in [41].
A good path to avoid the under-fitting is to increase the model complexity. An
underfitted model is excessively simple, it is not able to capture the pattern of the
data and this leads to poor performance.
We have different options to increase the model complexity in order to encourage
the net to learn:

• increase the number of neurons and/or hidden layers of the net;

• increase the number of hyperparameters;

• change the optimizer.

40



3.3 – Neural networks in Matlab

If significant improvements can not be observed at the end of this process, one
should consider to increase the training epochs.
On the other hand the over-fitting can be avoided in several ways that are reported
in the above quoted literature reference. In this thesis every time we dealt with
over-fitting problems we solved them getting more representative data. Increasing
the dataset dimension adding diverse data can help the net to generalize.
In contrast with the under-fitting case we can also decrease the complexity of the
net in the following ways:

• decrease the number of neurons and/or hidden layers of the net;

• decrease the number of hyperparameters;

• change the optimizer.

3.3 Neural networks in Matlab
In this thesis the Matlab’s Deep Learning Toolbox ® is leveraged to build different
neural networks as we are going to discuss in the following chapters.
The number of neurons, hidden layers, dataset split percentages and way of division,
activation functions, optimizer and hyperparameters can be change from both the
main or from the graphic interface that the toolbox supplies.
As the net’s structure is defined along with all the aforementioned parameters,
the training phase can start. At this point a graphic interface similar to the one
reported in Fig.(3.6) is displayed. On top of the figure the structure that we built
is displayed in a scheme. From this graphic we can also supervise the training of
the net, the epochs, the time and performance. In this thesis, as already stated the
performance are evaluated through the mean squared error.
The train of the net stops as the maximum epochs is reached or when some stopping
criteria on the hyperparameters are encountered, thus for example when the net
begins to overfit. In addition the user can also stop the training if needed.
At the end or during the training phase, we can click on performance to open a
graphic plot similar to the one presented in Fig.(3.7). From this latter we can notice
the trends of training, validation and test data throughout the training phase.
All the consideration about under and over-fitting can be done looking at this
graph. As already explained in the previous section, a good neural network should
minimize the gap between the trends of training, validation and test data in order
to generalize unseen inputs, reaching at the same time a low mean squared error
value.
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Figure 3.6: Visualization of Matlab’s NN interface [42]
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Figure 3.7: Example of a performance plot
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3.3.1 Levenberg-Marquardt algorithm
The Levenberg-Marquardt (LM) is an iterative algorithm used to solve non linear
least squares problems. The method is a mixture between a classical Gauss-Newton
algorithm and the method of gradient descent. The main difference in comparison
with these methods is that the LM is more robust.
In our application the performance function Eq.(3.2) is a sum of squares so the
Hessian matrix can be written approximately as:

H = JTJ (3.3)

and the gradient as:
g = JT e (3.4)

where e is the vector errors and J is the Jacobian matrix that includes the derivatives
of e w.r.t. weight and biases. At this point J can be found using a backpropagation
technique. This methodology to approximate the Hessian matrix is way more faster
and less complex.
This approximation is used in the LM algorithm as in a Newton like update:

xk+1 = xk −
[
JT J + µI

]−1
JT e (3.5)

Depending on the value of µ we can have:

• µ = 0 → Newton’s method with an approximate value of H;

• µ is large → Gradient’s descent with a small step size;

Since Newton’s approach is quicker and precise when used in close proximity to
an error minimum, the goal is to pass as soon as possible to Newton’s method.
The optimal choice for the damping parameter µ has been supported by a number
of more or less heuristic considerations. When, from one step to another, the
performance function decrease, the value of µ is decreased. On the other hand
when a step fails, leading to an increase of the performance function, then the value
of µ is increased.
Finally, we can state that the power of the Levenberg-Marquardt algorithm lies
in the possibility to update the damping parameter µ between the value of Gauss
Newton’s method and gradient descent depending on the situation. [43]
For example, if the initial guess is similar to the optimal solution then the Newton’s
method would lead to faster convergence w.r.t the Levenberg-Marquardt. On the
other hand, when initial guess is far away to the optimal solution, the LM behaves
firstly like a steepest descent approach moving toward the optimal solution area,
then the minimum is found with small value of the damping parameter. [44]
This method is helpful since it suits perfectly our need to solve a system of nonlinear
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equations.
However, we must remind that, as every optimization algorithm, the LM is designed
to find a local minimum rather than a global one.
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Chapter 4

Lyapunov L1 - Lyapunov L2

In this chapter several transfer maneuvers between two Lyapunovs are investigated.
Plenty of CR3BP orbits are gathered for different C-levels and can be found at [45].
From this dataset a Lyapunov around L1 is selected as initial orbit while a Lyapunov
around L2 with similar C-level is chosen as final orbit. These kidneys-shaped orbits
are propagated for a period and illustrated in Fig.(4.1).
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Figure 4.1: Lyapunovs considered
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The characteristics of both these orbits are reported in Tab.(4.1).

Orbit Jacobi Constant (LU2/TU2) Period (days)
Lyapunov L1 3.096 13.97
Lyapunov L2 3.029 18.20

Table 4.1: Characteristics of the Lyapunovs considered

In order to familiarize with the problem as first step a time fixed formulation is
considered. A spacecraft, indeed, may need to undertake an unforeseen transfer
maneuver between two orbits at some point during its journey, for both engineering
and scientific purposes, with strict timeline requirements.
On the other hand, another usual mission requirement is the need to perform a
transfer with the minimum control energy cost, regardless the transfer time. From
this latter consideration comes the need to study also a free time formulation.
In both the formulations the states boundary conditions (i.e. initial points and final
points) are fixed. Some discretizations on both the orbits are taken into account
to collect different transfer maneuvers and are further explained in the following
sections.
As expected one of the major challenge dealing with CR3BP non-linearity is the
wide variety of possible transfers between the same two points. In Sec.(1.2) we
already mentioned the existence of families of orbits. At this point the engineer’s
know-how is an essential feature to collect data with reasonable criteria. As a
matter of fact, the neural network may have trouble in the learning process if
transfers between similar points are gathered as completely unrelated trajectories.
One example that can clarify this latter consideration is the distinction between
Inner and Outer orbits1. In the Fig.(4.2) two couple of points are considered and
both kind of transfer trajectories are obtained through the time fixed formulation.
It can be easily seen the significant difference in terms of geometry and transfer
time, thus if we decide to collect for example an inner orbit between two points, we
are encouraged to do the same for a similar transfer, preventing an important noise
in the data. In this thesis we decided to focus on Inner orbits that have a significant
application in plenty of Lunar missions. Nevertheless one should consider to collect
Outer orbits depending on the mission plan.

1Usually Inner orbits are classified as orbits in the vicinity of the Moon while Outer orbits are
the ones that extend well beyond the Near lunar region.
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Figure 4.2: Examples of Inner orbits (left) and Outer orbits (right) obtained from the
time-fixed formulation
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4.1 Time fixed formulation
In this formulation multiple time fixed minimum energy problems are solved using
the indirect method. Since initial states, final states and transfer time are defined,
the goal of the net in this case is to map the following relationship:

[x0, xf , tf ]T → [λ0]T (4.1)

where:
x0 = [x0, y0, z0, ẋ0, ẏ0, ż0]
xf = [xf , yf , zf , ẋf , ẏf , żf ]
λ0 = [λ10 , λ20 , λ30 , λ40 , λ50 , λ60 ]

(4.2)

Thus the input of the net is a I13x1 while the output is a O6x1. Once the data are
gathered and the neural network trained, the methodology followed in this work to
simulate a real-time on-board application is the propagation of both the states and
costates dynamics from (2.9). From the costates one can also rebuild the control
history leveraging the Pontryagin’s minimum principle, trying to reproduce the
optimal trajectory calculated offline.

4.1.1 Data collection
First of all we define an appropriate time span. From a literature review on typical
lunar mission we found reasonable to set an interval from 3 to 14 days for inner
transfers. The time span is then divided in 300 nodes. In order to consider a wide
variety of transfers, the initial orbit is also discretized in 100 nodes (i.e. initial
states) while the final orbit is discretized in 3 nodes (i.e. final states). Thus, at
the end of the data collection process we have 90000 optimal trajectories to train
the net. Whenever we attempt to solve a TPBVP we have to provide good initial
guesses (i.e. x0 and λ0) to the solver. Since initial point is fixed in the space,
this problem reduces to find suitable initial costates. Due to the lack of physical
meaning of these dual-variables this is a non-trivial activity. A lot of on going
research on this field is going on in these last decades. Indirect methods have a
narrow convergence compared to direct methods. One approach to find good initial
guesses for the indirect method could be to provide the solution of a direct method,
which is less sensitive to the initial guesses. However direct methods do not have
costates (or adjoints) in their formulations. Thus the main problem in this latter
methodology is the compatibility between the two methods. In addition commercial
solvers for direct methods, such as Matlab’s fmincon are computationally and time
expensive just for a single transfer maneuver. Thus, the most prevalent approach
in CR3BP literature dealing with indirect methods, is to provide random generated
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initial costates to the solver. The work logic behind the algorithm for the data
collection in the fixed time formulation is reported in Alg.(1).

Algorithm 1 Data collection for time fixed formulation
1: for i=linspace(1,length(LyapL1),100) do
2: for j=linspace(1,length(LyapL2),3)) do
3: ▷ Pick the first transfer time
4: ▷ Solve TPBVP 500 times with random initial guesses
5: ▷ Collect the solution with the minimum energy value
6: for k=linspace(3,14,300) do
7: ▷ Solve TPBVP using the previous solution as initial guess
8: end for
9: end for

10: ▷ Clean data removing outliers
11: end for

The most useful expedient in the algorithm is the one at the point 7. In order
to expedite the data collection, within the inner loop on the time span, we found
effective to provide the previous solution as initial guess. This methodology operates
as a numerical continuation method. Essentially the TPBVP that we solve at the
(k + 1)th step is a slight perturbation of the one that we solved at the kth step.
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Figure 4.3: 360 of the 90000 orbits collected in the fixed time formulation
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It goes without saying that this method gets more accurate as the mesh is
more dense. In this case it is useful to implement this approach in the inner
loop, on the 300 nodes of the time span. Following this procedures leads to
remarkable advantages. First of all we save computational time and effort, but
more importantly we gather the 90000 transfer trajectories with criteria, preventing
the aforementioned problems of different families. At the end of the algorithm the
respective initial states, costates, transfer time and final states (4.2) are collected
for the neural network.

4.1.2 Neural Network performance
Using the Matlab’s Deep Learning Toolbox ® a feedforward Neural Network is
implemented. Prior to the learning phase, all the inputs are normalized in the
range [-1,1] because of their high variance. This step is done for every NN of the
thesis. The performance of the net are evaluated through the mean squared error
(mse) and also with the relative error on the initial costates. As already discussed
in Chapter 3 we can operate on different parameters to obtain high performance
by the net. After several trial and error, adjusting the number of hidden layers
and neurons, based on the net’s response, we get the final structure of the net that
is illustrated in Fig.(4.4).

Input Layer ∈ �¹³ Hidden Layer ∈ �¹� Hidden Layer ∈ �¹� Hidden Layer ∈ �¹� Output Layer ∈ ℝ⁶

Figure 4.4: Scheme of the neural network for the fixed-time formulation
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The network’s structure can be summarized as follows:

• Architecture: 3 hidden layers with 18 neurons each;

• Activation functions: tanh for the hidden layers, linear for the output layer;

• Optimizer: Levenberg-Marquardt;

• Batch division: 70% training, 15% validation, 15% test;

• Results: MSE ∼ 2.37e-05; 94% of the test data has a relative error ≤ 5%

• Training time: 30 min.

In Fig.(4.5) the performance of the net are reported as a mse graph in function
of time epochs. Train, validation and test data all follow the same path and at
the end of the training their trajectories overlay each other. This trend highlights
the quality of the net that can also generalize new data with small error since the
test data goes along with the train one except in the last epochs, when indeed the
network is forced to stop.

Figure 4.5: NN trained on 90000 transfers beetween 2 Lyapunovs
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4.1.3 Results
Once the neural network is trained we can measure its performance.
Let’s consider for example a real time application on board, summarized by the
following work logic:

1. Requirement: The spacecraft must perform a transfer between an initial
point on the Lyapunov around L1 and a final point on the Lyapunov around
L2 with a precise transfer time and minimizing the control energy, thus we
know [x0, xf , tf ]T ;

2. NN recall: the net will predict the initial costates vector [λ0]T with an error
depending on the NN performance obtained on ground;

3. NN prediction propagation: in order to re-build the optimal control history
and the transfer trajectory we can leverage the dynamics equations (2.9) and
propagate them forward.

This latter procedure works fine whenever the error on the NN prediction is small.
In Fig.(4.6) both transfer trajectory and control history of a 7 days maneuver are
reported. In this case the error on the initial costates is 0.1361% and this leads to
strong perfomance. From the plots we can see that the NN prediction goes along
with the optimal trajectory path except in the last section.
The controls’plot is also indicative of the remarkable performance, since both the
path of optimal and NN prediction overlay each other.
However the goal of the thesis is to reproduce the optimal control history calculated
offline on ground, trying to follow the optimal path all along the transfer rather
than to minimize just the error on the final state. This is the first reason that
suggest the need for a 4th step on the work logic presented above. In addition to
this consideration, we must evaluate also the performance of the net when the error
on the initial costates is greater.
In Fig.(4.7) the error on the prediction of the net is 2.9072%. In this case the net’s
output gathers error in the propagation and this leads to a considerable mismatch
through the second half of the transfer orbit that can be noticed also in the control’s
plot.

4. Recall the TPBVP solver: using the propagation of the neural network’s
prediction as initial guess for the on board solver considerably decreases the
computational time and effort to solve the TPBVP. We can see the results of
this latter approach in Fig.(4.8) for the case of an error of 2.9072% on the λ0
prediction. The transfer maneuver obtained from both NN and bvp4c recalls,
that is plotted with a red solid line, overlays with the optimal one (i.e. the
red-dashed line) and this highlights that the results are promising.
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Figure 4.6: Transfer maneuver and control, propagation performed with an error of
0.1361% on the initial costates
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Figure 4.7: Transfer maneuver and control, propagation performed with an error of
2.9072% on the initial costates
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Figure 4.8: Transfer maneuver and control, propagation performed with an error of
2.9072% on the initial costates
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The time required to rearrange the guess and to run bvp4c in this latter case is
approximately of 0.3 seconds on an Intel ® CoreTM i7-7700HQ CPU @ 2.80GHz. Of
course the on-board solver will be quite different from bvp4c but the idea behind the
procedure is the same. In Fig.(4.9) transfers with different errors on λ0 prediction
are illustrated. The two on the top converge to the optimal trajectory while the
two on the bottom fail. Sometimes indeed when the transfer time is large and the
error on the initial costates is important, the NN’s propagation highly diverges
from the optimal solution and consequently bvp4c struggles to follow the optimal
trajectory. A different approach with both forward and backward propagation to
mitigate this error is discussed in the time free formulation.
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Figure 4.9: Transfer maneuvers for different errors on initial costates
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4.2 Free time formulation
In this section multiple time free minimum energy problems are solved using always
an indirect method. Since the transfer time is no longer a fixed parameter, but we
need it to propagate the costates as seen in the previous section, the net has to
map a different relationship:

[x0, xf ]T → [λ0, tf ]T (4.3)

This time the input of the net is a I12x1 while the output is a O7x1.
A new free parameter is defined as:

τ = t

tf
⇒ τ ∈ [0,1] (4.4)

Substituting into the state equations and the cost function we get:

dx⃗

dτ
= tf · f⃗ [x⃗(τ), u⃗(τ), τ ] J = tf

∫ 1

0
u2dτ (4.5)

In this case an additional boundary condition is required:

H (tf ) = −∂Φ
∂tf

= 0 (4.6)

usually referred as transversality condition, where Φ = ϕ+ µTψ.
The Hamiltonian at the final time tf must be equal to zero because the terminal
cost and the terminal boundary conditions are independent of time. [46]

4.2.1 Data collection
In order to train a NN a dataset is needed. Initial states and final states are fixed
as in the previous formulation but the main difference is that this time we have a
single optimal maneuver between two points rather than a series of transfers with
different transfer times. As a matter of fact in this formulation the solver will try
to find the optimal trajectory that minimizes the energy regardless the transfer
time. Of course the distinction between inner and outer orbits is still an important
issue that will be considered in the algorithm.
Since we have an univocal orbit between two points we decided to select a more
dense mesh in terms of initial and final states to collect several trajectories. Thus,
50 points are considered in the initial Lyapunov orbit while all the available points
in the final orbit are selected (i.e. states available from the propagation of the
data at [45]). At the end of the data collection process we are going to have 32000
transfer trajectories to train the net. In Alg.(2) the steps followed in order to build
the dataset are presented.
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Algorithm 2 Data collection for free time formulation
1: ▷ Solve TPBVP between the first pair of states 500 times with random initial

guesses
2: ▷ Save solution with minimum energy and its random initial guesses
3: ▷ Perturb slightly these initial guesses
4: ▷ Check if the solution still be a local minimum
5: if solution is not a local minimum then
6: ▷ Increase the number of random iterations and return to 1
7: end if
8: for i=linspace(1,length(LyapL1),50) do
9: ▷ Using the solution of point 2 as initial guess

10: ▷ Solve TPBVP between i-th state and LyapL2 first point
11: for j=2:length(LyapL2) do
12: ▷ Solve TPBVP using the previous solution as initial guess
13: ▷ Collect the solution
14: end for
15: end for

The procedure is quite different compared to Alg.(1). This time as first step,
prior to enter the loops for the data collection, we search for an optimal solution
between the first pair of states, using always randomized initial guesses and iterating
the process 500 times, saving the minimum energy solution. Then, the random
initial guesses that led to this latter optimal solution are slightly perturbated, and
several TPBVP are solved in order to check if the solution represents effectively
a local minimum. From Fig.(4.10) we can see how with 200 perturbations in the
±1% range, the guess used remains a good local minima in comparison with the
chaos of other solutions.
If this check fails the algorithm returns to point 1, increasing the number of random
iterations. On the other hand if the solution represents a local minimum we
can consider it as optimal and we are encouraged to use it as initial guess for a
similar TPBVP. As a matter of fact a continuation method is leveraged also in this
formulation. We already stated that the mesh of the second orbit is composed by
all the possible final states from the Nasa’s dataset [45]. Thus, the best choice is to
use the continuation method on the inner loop, where initial state is the same, the
mesh is more dense and we solve a TPBVP for every final point of the Lyapunov
L2 orbit, using the previous solution as initial guess. The continuation method
presented has to be reset at every iteration i of the outer loop (i.e. when the point
of initial orbit’s mesh changes) otherwise the algorithm would eventually lead to
unlikely large transfer times.
In Fig.(4.11) the family of the orbits gathered is illustrated. A clear difference in
comparison with the data collection of the time fixed formulation, Fig.(4.3), is the
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Figure 4.10: Energy distribution for a slight perturbation of optimal initial guess
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Figure 4.11: 360 of the 32000 orbits collected in the free time formulation
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well-ordered pattern of the time free formulation.
When the time is a free variable, the optimizer can look for a trajectory with a
shorter or longer total flight time that minimizes the cost function. Since our cost
function is the control energy, which is related to the minimum fuel function, it
is obvious that with this formulation the solver is put on the path to converge to
solutions that highly leverage natural dynamics.
Although manifolds and heteroclinic connections have not been investigated directly
in the formulation, the family obtained in the figure, and the results presented in
the following sections, suggest that natural path are implicit solutions when we do
not constrain the transfer time.

4.2.2 Neural networks performance
After the data collection another neural network is built with the Matlab’s Deep
Learning Toolbox ®. As already stated the input of the net is a I12x1 (i.e. initial
and final states) while the output is a O7x1 (i.e. initial costates and transfer time).
In Fig.(4.12) the network’s architecture is illustrated. Note that the color of the
edges which is correlated to their value (negative edges in blue, positive edges in
red, default edges in black) is given just as an example of what we should expect
within a NN.

Figure 4.12: Illustrative scheme of the net.
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The network’s structure can be summarized as follows:

• Architecture: 3 hidden layers with 15 neurons each;

• Activation functions: tanh for the hidden layers, linear for the output layer;

• Optimizer: Levenberg-Marquardt;

• Batch division: 70% training, 15% validation, 15% test;

• Results: MSE ∼ 9.53e-08; 100% of the test data has a relative error ≤ 1%

• Training time: 50 min.

Once again the performance of the net are evaluated with the mse and the relative
error on the output [λ0, tf ]. In this case the net reached slightly better accuracy,
with the 100% of the test data that has a relative error ≤ 1%.
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Figure 4.13: NN trained on 32000 transfers beetween 2 Lyapunovs

Certainly this behaviour is due to the considerations on the pattern of the data
collected, explained in the previous section. A more homogeneity of the solutions
gathered, indeed, bring the net to overcome the performance of the network of the
time fixed formulation, which was trained on a more chaotic dataset.
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4.2.3 Results
The nature of trajectories obtained through the indirect formulation is highly
dependent on the mission requirements and the cost function. Let’s take for
example a transfer maneuver between two points of the Lyapunovs, calculated with
the time free formulation Fig.(4.14). It is obvious that in a fixed time formulation
a transfer trajectory between the same two points would lead to a solution with
different shape and geometry, similar to the ones presented in Fig.(4.9).
Furthermore in the time fixed formulation, when we need to perform the transfer
in a short time, (i.e. Inner orbits) the thrusters are usually switched on all along
the maneuver. On the other hand in the free time formulation usually we can have
sections where thrusters are switched off and the spacecraft leverages natural path.
These latter sections are usually referred as coasting phases 2 and can be noticed
in Fig.(4.14). The level of thrust decreases as the spacecraft inserts in the natural
path and drifts to the final point driven by the CR3BP dynamics.
In this first example the transfer time is 21 days and the error on the NN prediction
is 0.010%. The on-board work logic used is the same of the previous formulation:

1. Requirement: The spacecraft must perform a transfer between an initial
point on the Lyapunov around L1 and a final point on the Lyapunov around
L2 without any particular constraint on the transfer time, but minimizing the
control energy, thus we know [x0, xf ]T ;

2. NN recall: the net will predict the vector [λ0, tf ]T with an error depending
on the NN performance obtained on ground;

3. NN prediction propagation: in order to re-build the optimal control history
and the transfer trajectory we can leverage the dynamics equations (2.9) and
propagate them forward;

4. Recall the TPBVP solver: the on board solver can be run leveraging as
initial guesses the propagation of net’s prediction.

In Fig.(4.15) different transfers are illustrated. All the maneuvers converge to
the optimal ones and the final trajectory, once again represented by a red solid line,
completely overlays the optimal one. From this figure we can also see that this

2Note that in this work the thrusters dynamics is not taken into account.
Usually thrusters are ON/OFF devices, they can be either switched on at maximum thrust or
be completely switched off. This implies discontinuity in the controls and the use of switching
functions that are challenging for numerical methods.
In this thesis the controls are continuous functions, thus we can just refer to coasting phases when
the level of thrust is approximately zero.
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Figure 4.14: 21 days transfer maneuver and control, propagation performed with an
error of 0.010% on the NN prediction
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Figure 4.15: Transfer maneuvers for different errors of the NN prediction

approach leads to convergence a wide variety of maneuver even though the
propagation highly diverges from the optimal one and the error on the final state
is remarkable. Nevertheless in some cases the TPBVP solver struggles to follow
the optimal trajectory even with this last methodology, as in Fig.(4.16).
This latter behaviour may could due to the high sensitivity of that particular
solution to initial guesses and to the numerical error propagation of the NN’s
prediction. For this reason a different approach must be investigated in order to
improve convergence also for these particular cases.
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Figure 4.16: 21 days transfer maneuver and control, propagation performed with an
error of 0.011% on the NN prediction
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4.3 Forward-Backward propagation
So far both the neural networks built had to map a relationship to obtain initial
costates (and transfer time in the free time formulation). At this point it is clear
that one of the major drawbacks of this approach is the growth of the error of
the net’s prediction once it is propagated forward. A possible solution to improve
convergence is to include also final costates in the output of the net.
The net should map the following relationship:

[x0, xf ]T → [λ0, λf , tf ]T (4.7)

The idea behind this approach is schematized in Fig.(4.17).
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Figure 4.17: On board work logic for a NN that maps both initial and final costates.
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The main goal of this approach is to mitigate the error propagation that
occurs once the initial costates are propagated forward. If the net predicts with
adequate accuracy both initial and final costates, we can propagate them forward
and backward respectively, decreasing the error propagation. From the author
experience most of the time the two propagations intersect each other, thus we can
split them in the intersection point and create a single curve. In general we cut off
the propagations where their distance is minimum. Although with this approach
we can face some discontinuities, the solver runs smoothly and converges to optimal
solutions even if we do not conjoin forward and backward propagation.
Neverthless, future works could investigate this latter aspect, with, for example,
the application of spline functions.

4.3.1 Neural network performance
A neural network is built in the same Matlab’s environment. This time the input
of the net is a I12x1 (i.e. initial and final states) while the output is a O13x1 (i.e.
initial costates, final costates, transfer time).
In the Fig.(4.18) the net’s architecture is illustrated.

Input Layer ∈ �¹² Hidden Layer ∈ �¹� Hidden Layer ∈ �¹� Hidden Layer ∈ �¹� Output Layer ∈ �¹³

Figure 4.18: Illustrative scheme of the net.
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The network’s structure can be summarized as follows:

• Architecture: 3 hidden layers with 14 neurons each;

• Activation functions: tanh for the hidden layers, linear for the output layer;

• Optimizer: Levenberg-Marquardt;

• Batch division: 70% training, 15% validation, 15% test;

• Results: MSE ∼ 3.89e-06; 99% of the test data has a relative error ≤ 1%

• Training time: 1h 10 min.
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Figure 4.19: NN trained on 32000 transfers beetween 2 Lyapunovs

4.3.2 Results
We can consider the transfer failed in Fig.(4.16) as a representative case to test
this method. A transfer maneuver between the same two points is considered.
The results are illustrated in Fig.(4.22). On top of the figure forward and backward
propagations are depicted and as we can see they follow the optimal trajectory.

70



4.3 – Forward-Backward propagation

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
y
 [

n
d

]

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

x [nd]

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

y
 [

n
d

]

Initial point

Final point

Optimal

NN Forward prop.

NN Backward prop.

NN+bvp4c

Minimum distance

Figure 4.20: 21 days transfer maneuver with Forward propagation on top, For-
ward+Backward propagation on bottom.
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The two propagations are split approximately in the middle, where indeed their
distance is minimum. The resulting curve is given to the TPBVP solver as initial
guess, leading to convergence as it can be seen on the bottom of the figure. The
elapsed time to operate forward and backward propagations, to rearrange the initial
guess and to run the solver, thus the time needed to execute the work logic of
Fig.(4.17), is approximately of 1.12 seconds on an Intel ® CoreTM i7-7700HQ CPU
@ 2.80GHz.
In Fig.(4.21) the controls are reported.
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Figure 4.21: 21 days transfer maneuver controls with Forward+Backward propagation.

As we can see the controls path follows the optimal one with a minimal error.
Sometimes following the "classical" methodology of forward propagation it can
occur that the trajectory computed by the solver matches the final state but its
path does not follow the optimal one along the maneuver, such as on the top of
Fig.(4.22). As already stated the goal of this work is to reproduce entirely the
optimal control path computed on ground when a transfer maneuver is required live
on board. Applying the forward-backward methodology, illustrated on the bottom
of the same figure, we can clearly see as all the trajectories (i.e. both propagations,
optimal, and the one computed by the solver) overlay each other, matching also
the final state at the end. The thrust vector is important at the beginning of the
maneuver and it decreases its module as the spacecraft enters a natural path.
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Figure 4.22: 18 days transfer maneuver Forward propagation on top, For-
ward+Backward propagation on bottom.
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Figure 4.23: Examples of transfer maneuvers with Forward propagation on top, For-
ward+Backward propagation on bottom.

Some other examples of this methodology are illustrated in Fig.(4.23).
On top of the figure two different failed trajectories are reported. On the bottom
both the corrected maneuver are illustrated.
Clearly the the error of the NN prediction is computed on [λ0, tf ]T for the top
cases, while for the bottom ones on [λ0, λf , tf ]T .
We can conclude that the result of this forward-backward approach are promising
even though a better investigation is required. The main problem is the discontinuity
that we have to face when we split the two propagations. If these latters gather a
significant error the discontinuity could be too large and the solver may could fail
to find an optimal solution. With this method our goal is to provide an estimated
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4.3 – Forward-Backward propagation

solution of the trajectory to the solver, in order to lead it to convergence in shorter
time.
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Chapter 5

DRO - Halo

In this chapter several transfer maneuvers between a Distant Retrograde Orbit
(DRO) and a Halo Orbit are investigated. The two orbits considered are taken
from [45] and propagated for a period. In Fig.(5.1) both the orbits are illustrated.
The main characteristics of the orbits considered are reported in Tab.(5.1).

-0.05

0

0.05

0.1

0.15

z
 [
n
d

]

0.4

0.2

y [nd]

0

-0.2

-0.4

x [nd]

1.21.110.90.8

Initial orbit

Final orbit

Moon

Figure 5.1: DRO and Halo considered
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DRO - Halo

Orbit Jacobi Constant (LU2/TU2) Period (days)
DRO 2.875 21

HALO 3.035 13

Table 5.1: Characteristics of the DRO and Halo considered

The DRO lies in the plane that contains both the Lagrangian points and the
Moon. On the other hand the Halo Orbit has an important inclination.
Recalling Fig.(1.10), we can also state that this particular Halo is almost polar,
thus we can also refer to it as a Near Rectilinear Halo Orbit (NRHO). The main
reason to study a maneuver between this orbit is to test the feasibility of our
methodology in a more complex transfer geometry, which is not more planar but
tridimensional. In Fig.(5.5) an optimal transfer maneuver between the orbits is
illustrated. Once again we consider only Inner orbits, that have a lower transfer
time. For this reason and for the remarkable plane changed required, the thrusters
are ON for almost the entire maneuver, there is a lack of coasting phases.
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Figure 5.2: Example of a 19 day transfer maneuver between the orbits
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5.1 – Free time formulation

5.1 Free time formulation
In this chapter we are going to consider just the time free formulation that is more
plausible during a mission plan. Multiple time free minimum energy problems are
solved using the same formulation of Sec.(4.2).

5.1.1 Data collection
For the data collection, initial and final states are once again fixed. The initial
DRO orbit is discretized in 50 points while the final Halo in every single point
obtained from the propagation at [45]. Thus, we have 30000 transfer trajectories
to train the net. In Fig.(5.3) 200 of the 30000 transfer maneuvers are depicted.
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Figure 5.3: 200 of the 30000 orbits collected in the free time formulation for DRO-Halo

The pattern is clearly disorganized in comparison with the one followed for the
Lyapunovs. This is because the continuation method to expedite data collection,
that is the same of Alg.(2), sometimes struggles to find optimal solutions.
In these latter cases the algorithm is restarted and several iterations with randomized
initial guesses are performed. Then, when an optimal solution that obeys constraints
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DRO - Halo

is found, the continuation method is executed starting from this latter solution.

5.1.2 Neural network performance
A neural network is built in Matlab, the input of the net is a I12x1 (i.e. initial and
final states) while the output is a O7x1 (i.e. initial costates and transfer time). Thus,
we do not take into account the forward backward propagation at the moment.
The network’s structure can be summarized as follows:

• Architecture: 3 hidden layers with 17 neurons each;

• Activation functions: tanh for the hidden layers, linear for the output layer;

• Optimizer: Levenberg-Marquardt;

• Batch division: 70% training, 15% validation, 15% test;

• Results: MSE ∼ 9.34e-04; 97% of the test data has a relative error ≤ 5%

• Training time: 45 min.
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Figure 5.4: NN trained on 30000 transfers beetween a DRO and a Halo

As we can see from the Fig.(5.4) the learning process is stopped as the validation
data starts to overfit. This latter behaviour can be recognized from the wavy trend
in the final epochs.
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5.1 – Free time formulation

5.1.3 Results
Once the neural network is trained we can test its performance simulating the
possible on board application as:

1. Requirement: The spacecraft must perform a transfer between an initial
point on the DRO to a final point on the Halo without any particular constraint
on the transfer time, but minimizing the control energy, thus we know [x0, xf ]T ;

2. NN recall: the net will predict the vector [λ0, tf ]T with an error depending
on the NN performance obtained on ground;

3. NN prediction propagation: in order to re-build the optimal control history
and the transfer trajectory we can leverage the dynamics equations (2.9) and
propagate them forward;

4. Recall the TPBVP solver: the on board solver can be run leveraging as
initial guesses the propagation of net’s prediction.

In Fig.(5.5) a 13 days transfer between the orbits is illustrated.
Propagating the NN prediction that has an error of 0.5%, the optimal trajectory is
retraced for almost the entire transfer, even though the final point is not matched.
By the way this prediction is a perfect initial guess for the TPBVP solver, in
fact recalling bvp4c leads to convergence to the optimal solution and to the final
state matching. In Fig.(5.6) a longer transfer maneuver of 18 days is reported.
The results are once again promising. Although the propagation of the prediction
diverges from the optimal path and, in addition, the maneuver passes in the vicinity
of the Moon that is a critical zone with high non linearity of the dynamics, the
solver converges to the optimal solution.
In Fig.(5.7) and Fig.(5.8) two other maneuvers are presented. Please note that in
all these plots the thrust vector is not illustrated just for a better clarity of the
figures. Regarding the controls plots, in all the four cases presented the control
history is reproduced correctly from the solver and it follows the optimal solution
computed on ground. A careful reader may have noted at this point the main
difference in comparison with the previous time free Lypaunovs maneuvers. As
already anticipated the thrusters are ON all along the maneuver, there is a lack of
coasting phases and the spacecraft does not leverage natural path. Furthermore
from the classical Two-Body Problem theory we know that a plane change is one of
the most expensive maneuver to accomplish. Even though we are dealing with 3BP
dynamics this latter consideration remains valid since the maneuver is performed
in the vicinity of the Moon. Thus, it is clear that if we keep out Outer orbits
from the data collection, we are going to achieve expensive maneuvers to fulfil the
constraints.
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Figure 5.5: 13 days transfer maneuver and control, propagation performed with an
error of 0.5% on the NN prediction
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5.1 – Free time formulation

Figure 5.6: 18 days transfer maneuver and control, propagation performed with an
error of 0.2% on the NN prediction
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DRO - Halo

Figure 5.7: 12.6 days transfer maneuver and control, propagation performed with an
error of 0.4% on the NN prediction
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5.1 – Free time formulation

Figure 5.8: 24 days transfer maneuver and control, propagation performed with an
error of 0.8% on the NN prediction
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5.2 Forward-Backward propagation
As in the previous chapter, certainly in some transfers the error propagation on
the NN prediction is remarkable and the TPBVP solver struggles to follow the
optimal trajectory. This is the case of Fig.(5.10). As for the Lyapunovs, we tried
to implement the forward backward propagation as a possible solutions to improve
convergence in such cases. Thus, in this section the neural network’s performance
and the results are presented.

5.2.1 Neural network performance
A neural network is trained in the same Matlab’s environment. The input of the
net is a I12x1 (i.e. initial and final states) while the output is a O13x1 (i.e. initial
costates, final costates and transfer time).
The network’s structure can be summarized as follows:

• Architecture: 3 hidden layers with 15 neurons each;

• Activation functions: tanh for the hidden layers, linear for the output layer;

• Optimizer: Levenberg-Marquardt;

• Batch division: 70% training, 15% validation, 15% test;

• Results: MSE ∼ 8.820e-04; 95% of the test data has a relative error ≤ 5%

• Training time: 1h.

Since the net has to map a more difficult relationship the training time is longer.
In Fig.(5.9) the performance of the net in terms of mse are reported. As in the
previous NN the most important aspect in this graph is the trend between train,
validation and test curves. In this case the curves overlay each others, suggesting
that the net is validated and can also generalize new data.
All of three trends reach an horizontal asymptote at 8.820e-04. From the author
experience, if we seek for better performance of the net we should consider to
re-collect new data rather than adjusting the net’s parameters and architecture.
We can push forward with changing the net’s architecture, number of neurons and
layers, activation functions and optimizer but at the end we can not improve the
net’s capabilities significantly. One of the most easiest yet most important concept
that this thesis wants to point out is indeed the high correlation between net’s
performance and the methodology that we use to gather trajectories.
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Figure 5.9: NN trained on 30000 transfers beetween a DRO and a Halo

5.2.2 Results
Lets consider now Fig.(5.10) that is obtained from the classical forward propagation.
The NN prediction (i.e. initial costates and transfer time) that is illustrated as a
grey dashed line, overlays the optimal path (i.e. red dashed line) at the beginning
of the transfer and then diverges considerably. The error of the net’s prediction
is 0.7%, thus it is comparable to the cases of the previous sections, but the error
propagation and the sensitivity of that particular TPBVP make the solver to
diverge from optimal solution even though the final state is reached.
In Fig.(5.11) the same maneuver obtained through the forward-backward methodol-
ogy is illustrated. Both the propagations can be noted in the image. The elimination
of the discontinuity is not investigated in this thesis since the solver can manage
to converge in any case and also because this methodology is presented just as
possible solution and should be investigated in future works.
Anyway the results from this method are encouraging since the solver converges to
the optimal solution. This can be noted both on the trajectory geometry and in
the controls plot where optimal trend is reproduced with a small error.
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Figure 5.10: 25 days transfer maneuver and control, propagation performed with an
error of 0.7% on the NN prediction
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Figure 5.11: 25 days transfer maneuver and control, propagation performed with an
error of 1.7% on the NN prediction
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Conclusions

Trajectory optimization in Three Body dynamics is highly challenging. Since the
neural networks performance depend upon the data collection, the know-how of
the engineer is an important skill to encourage the learning phase of the net.
We can divide the results between the ability to gather optimal transfer solution
and the performance of the net itself, that are necessarily related.
From the data collection point of view, the method of random initial guesses, to
find the first optimal maneuver, is the most common in literature. In addition we
must accept the inability to find a global minimum inside this dynamics regime
that exhibits high sensitivity to initial conditions and possible chaotic behaviours.
Thus, we can just check if the solution represents a feasible local minimum, slightly
perturbating the initial guesses that led to convergence.
Moreover, the continuation method implemented to expedite the data collection
perfectly suits the Lyapunov L1 - Lyapunov L2 transfer. This is due to the planar
geometry of the transfer and also to the presence of natural path between the
orbits. On the other hand the method struggles in the DRO-Halo transfer which is
threedimensional and more challenging. In this latter case, when the continuation
method fails, we restart the algorithm with several iterations to find the minimum
energy trajectory with random initial guesses. Of course in future works the
collection process of this latter case could be further investigated.
Concerning the neural networks performance promising results are achieved for its
prediction. In this thesis we did not take into account time series NN because we
wanted to enhance the simplicity of the feedforward nets . For this reason, from the
initial costates prediction, the optimal maneuver is re-build with the propagations
of the dynamics. This approach certainly leads to error propagation even when
the error on the net’s prediction is apparently negligible. Thus, the TPBVP solver
is recalled on board giving as initial guess the entire solution obtained from the
propagation of net’s prediction. Finally, the neural networks onboard role is to
provide a good initial solution to the TPBVP solver in order to decrease the
computational time and effort. However, when the error propagation is remarkable
this work logic fails. From this came the need to find another possible solution,
the forward backward propagation. Although this method has encouraging results,
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Conclusions

future works should validate this approach considering also different maneuvers.
Finally, as last step the thrusters ON/OFF dynamics should be implemented and
a minimum fuel formulation can be studied, using minimum energy solutions as
initial guesses.
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