

1

POLITECNICO DI TORINO

Department of Management and Production Engineering

Master of Science Thesis

Improving SCRUM Project Duration Forecasting
through Learning Curve Theory

Supervisors: Candidate:
Prof. Alberto De Marco Elisa Alfieri
Dott. Filippo Maria Ottaviani

Academic year 2021-2022

2

3

Abstract

My thesis focuses on the Project Management applied in the Software industry. I will

go throw the history of Project Management from the traditional methodologies to

the more recent ones applied in software development, focusing my attention on the

SCRUM framework. More attention will be paid to the main different techniques to

manage and predict the costs and the duration of a software. In particular: the

Earned Value Model, the Burndown charter and the Putnam model. In this thesis, I

am reporting the direct application of the Scrum methodology during my curricular

internship in an IT company in Sophia Antipolis, France. The internship research

focuses on data collected in 6 months of work, in which I was part of an Agile team

having the purpose of developing an internal project for the company. The product

delivered is a web application used by Business Managers and Human Resources

of the company to manage consultants. Our team was composed by only inters and

we were simulating a real Scrum team with the occasion to turn all the roles of this

methodologies. Although I worked for the whole duration also as developer, I will not

detail the development of the project, but I will focus my attention on the data I have

collected in these months and the application of the Scrum theory in a real working

environment. Thanks to these data it was possible to study the projects performance

in an Agile setting. I apply the different techniques listed before to monitor and

forecast duration and cost on the project I was working on. In particular, I will monitor

the project throw the burndown charter and the Earned value model and I will obtain

a graphical and mathematical forecast of performance. The data I have collected

from the internship will be useful also to criticize the Putnam resource allocation

model and propose a Revised theory. The Putnam model is seen as pioneering work

in the field of software process modelling. Nevertheless, a hypothesis made by

Putnam has been investigated and in this thesis, I am proposing a variation of the

model. The main difference focuses on the concept of the Productivity. While

Putnam considers it as constant in his equation, I will suppose that it is increasing

during time following the learning curve. This variation implies a different progress of

the project in terms of time and effort. In the Conclusion, the forecast obtained with

EMV, Burndown charter, Putnam and the Revised model has been compared with

the result data of the project at the end of the internship in order to investigate which

model better estimate the duration in a SCRUM environment.

4

5

Index

Abstract.. 3

1. Introduction: Project Management approaches ... 7

1.1 Introduction to Project Management ... 7

1.1.1 Project definition .. 8

1.1.2 Project Life cycle .. 9

1.1.2.1 Characteristics of Life Cycles .. 11

1.1.3 Project Performance dimensions .. 14

1.2 Traditional project management .. 16

1.2.1 Critical path method .. 17

1.2.2 Critical chain project management (CCPM) .. 19

1.2.3 PERT ... 23

1.2.4 Waterfall method .. 25

1.3 The shift towards new management approaches ... 30

1.3.1 Software project management... 31

1.3.1.1 Life cycle of a software .. 31

1.3.2 Waterfall in software project... 35

1.3.2.1 The evolution of the traditional waterfall approach over the past years ... 36

1.3.3 Agile methodology ... 37

1.3.3.1 Principles behind the Agile Manifesto.. 38

1.3.3.2 Methodologies in the Agile industry ... 42

1.4 SCRUM .. 45

1.4.1 SCRUM values... 46

1.4.2 SCRUM Roles .. 47

1.4.2.1 Scrum Master .. 48

1.4.2.2 Product Owner... 48

1.4.2.3 Developers ... 49

1.4.3 Scrum artifacts ... 50

1.4.3.1 Product Backlog .. 50

1.4.3.2 Sprint Backlog ... 51

1.4.3.3 Potentially Releasable Product Increment .. 52

1.4.4 Scrum Events ... 53

1.4.4.1 Backlog Refinement meeting .. 53

1.4.4.2 Sprint planning .. 54

6

1.4.4.3 Sprint review .. 55

1.4.4.4 Daily scrum .. 55

1.4.4.5 Sprint retrospective ... 56

2. Methodology: Techniques for the analysis .. 57

2.1 Earned value ... 58

2.1.1 Earned Value “forecasting” parameters ... 63

2.1.1.1 Cost estimates at completion .. 63

2.1.1.2 Time estimates at completion ... 64

2.2 Alternative to the Earned value method: Earned schedule 65

2.3 Burn Down charter ... 67

2.3.1 Burnup charter ... 68

2.4 Putnam model .. 69

3. Analysis and results of a Scrum Project .. 75

3.1 Overview of the project ... 75

3.2 Initialization and implementation ... 78

3.2.1 Vision board .. 78

3.2.1.1 Functionalities .. 79

3.2.1.2 Costumer Journey... 80

3.2.1.3 Story mapping ... 80

3.2.2 Implementation of the Scrum methodology in an IT company 81

3.3 Monitoring .. 84

3.3.1 Burndown charter .. 84

3.3.1.1 Burndown charter forecast .. 88

3.3.2 Earned value .. 90

3.3.2.1 Earned Value Method forecast: TEAC and CEAC 94

3.3.2.2 Earned schedule ... 95

3.3.3 The Putnam model and a revised model ... 96

4. Conclusion .. 101

Bibliography ... 108

Sitography ... 109

7

1. Introduction: Project Management approaches

1.1 Introduction to Project Management

A Project is undertaken to achieve planned objectives, which could be defined in

terms of outputs or benefits. It has a defined beginning and end in time, a defined

scope and resources with specific set of operations designed to accomplish a

singular goal. The project manager is the person in charge of achieving the project

objectives. Project management is the application of knowledge, skills, tools, and

techniques to project activities to meet the project requirements. It is often closely

associated with engineering projects, which typically have a complex set of

components that have to be completed and assembled in order to create a

functioning product.

The key to successful project management is to focus on the 4p:

1) People

Identifying the roles people play in almost any given project is the first step to a

successful project. People are the primary resource on every project, and a well-

managed team can greatly increase the chances of success. Some of the different

roles people play in project management includes project manager, project team

members, sponsors, stakeholders, business analysts and information technology

developers.

2) Product
As the name implies, this is the deliverable of the project. The project manager

should define the product scope to ensure a successful outcome, control “scope

creep”; as well as technical hurdles that he or she may encounter.

With that said, the product does not necessarily need to be restricted to software;

project management can be applied to all industries with software development

being one of the key elements. The product of a project can also be something that

is intangible; such as moving a company to a new headquarters or setting up a new

company as a registered legal entity to commence trading activities on day one.

3) Process

The third P of project management is Process. Project managers and team members

should have a methodology and plan that outlines their approach. Without a clearly

8

defined process, team members will not know what to do and when to carry out

project activities. However, this problem can be avoided through comprehensive

early stage process planning. Using the right process will increase the project

execution success rate that meets its original goals and objectives.

4) Project
The fourth and final P of project management is Project. This is where the project

manager’s roles and responsibilities come into play. He or she must guide team

members to achieve the project’s goals and objectives. The project manager must

delegate tasks, help team members when needed, and ultimately strive to

accomplish all requirements set forth in the project scope.

1.1.1 Project definition

Project in general refers to a new endeavor with specific objective and varies so

widely that it is very difficult to precisely define it. Some of the commonly quoted

definitions are as follows. Project is a temporary endeavor undertaken to create a

unique product or service or result.

(AMERICAN National Standard ANSI/PMI99-001-2004)

Project is a unique process, consist of a set of coordinated and controlled activities

with start and finish dates, undertaken to achieve an objective confirming to specific

requirements, including the constraints of time cost and resource.

(ISO10006)

It is important to note that, regardless of the organization and sector of reference, a

project is characterized by some distinctive elements:

- Unique in nature

- Have definite objectives (goals) to achieve.

- Requires set of resources.

- Have a specific time frame for completion with a definite start and finish.

- Involves risk and uncertainty.

- Requires cross-functional teams and interdisciplinary approach.

9

The specificity of the objective determines the exceptional nature of the project

compared to ordinary activities and therefore the absence of previous experience.

The non-recurring nature of the project implies the definition of a start date, the end

of the project is established by the achievement of the objective, by the exhaustion

of resources, by the dissolution of the project group or by the closing of the "window

of opportunity", in fact the time limitation also manifests itself in the need to carry out

the activities within precise time windows not dictated by the availability of resources,

but linked to the object of the project. A project is usually deemed to be a success if

it achieves the objectives according to their acceptance criteria, within an agreed

timescale and budget.

1.1.2 Project Life cycle

The project manager and the team have one common goal: to carry out the work of

the project for the purpose of meeting the project's objectives. Every project has

beginnings, a middle period during which activities move the project toward

completion, and an ending (either successful or unsuccessful). A standard project

typically has the following four major phases: initiation, planning, implementation,

and closure. Taken together, these phases represent the path a project takes from

the beginning to its end and are generally referred to as the project life cycle.

- Initiation phase

During the first of these phases, the initiation phase, the project objective or need is

identified; this can be a business problem or opportunity. An appropriate response

to the need is documented in a business case with recommended solution options.

A feasibility study is conducted to investigate whether each option addresses the

project objectives, and a final recommended solution is determined. Issues of

feasibility ("can we do the project?") and justification ("should we do the project?")

are addressed. Once the recommended solution is approved, a project is initiated to

deliver the approved solution and a project manager is appointed. The major

deliverables and the participating work groups are identified and the project team

begins to take shape. Approval is then sought by the project manager to move on

the detailed planning phase.

10

- Planning phase

The next phase, the planning phase, is where the project solution is further

developed in as much detail as possible and you plan the steps necessary to meet

the project's objective. In this step, the team identifies all of the work to be done. The

project's tasks and resource requirements are identified, along with the strategy for

producing them. This is also referred to as scope management. A project plan is

created outlining the activities, tasks, dependencies and timeframes. The project

manager coordinates the preparation of a project budget; by providing cost estimates

for the labor, equipment and materials costs. The budget is used to monitor and

control cost expenditures during project implementation. Once the project team has

identified the work, prepared the schedule and estimated the costs, the three

fundamental components of the planning process are complete. This is an excellent

time to identify and try to deal with anything that might pose a threat to the successful

completion of the project. This is called risk management. In risk management, "high-

threat" potential problems are identified along with the action that is to be taken on

each high threat potential problem, either to reduce the probability that the problem

will occur or to reduce the impact on the project if it does occur. This is also a good

time to identify all project stakeholders, and to establish a communication plan

describing the information needed and the delivery method to be used to keep the

stakeholders informed. Finally, you will want to document a quality plan; providing

quality targets, assurance, and control measures along with an acceptance plan;

listing the criteria to be met to gain customer acceptance. At this point, the project

would have been planned in detail and is ready to be executed.

- Implementation phase

During the third phase, the implementation phase, the project plan is put into motion

and performs the work of the project. It is important to maintain control and

communicate as needed during implementation. Progress is continuously monitored

and appropriate adjustments are made and recorded as variances from the original

plan. In any project a project manager will spend most of their time in this step.

During project implementation, people are carrying out the tasks and progress

information is being reported through regular team meetings. The project manager

11

uses this information to maintain control over the direction of the project by

measuring the performance of the project activities comparing the results with the

project plan and takes corrective action as needed. The first course of action should

always be to bring the project back on course, i.e., to return it to the original plan. If

that cannot happen, the team should record variations from the original plan and

record and publish modifications to the plan. Throughout this step, project sponsors

and other key stakeholders should be kept informed of project status according to

the agreed upon frequency and format. The plan should be updated and published

on a regular basis. Status reports should always emphasize the anticipated end point

in terms of cost, schedule and quality of deliverables. Each project deliverable

produced should be reviewed for quality and measured against the acceptance

criteria. Once all of the deliverables have been produced and the customer has

accepted the final solution, the project is ready for closure.

- Closing phase

During the final closure, or completion phase, the emphasis is on releasing the final

deliverables to the customer, handing over project documentation to the business,

terminating supplier contracts, releasing project resources and communicating the

closure of the project to all stakeholders. The last remaining step is to conduct

lessons learned studies; to examine what went well and what didn't. Through this

type of analysis, the wisdom of experience is transferred back to the project

organization, which will help future project teams.

1.1.2.1 Characteristics of Life Cycles

There are some common characteristics of project life cycles that can influence how

an organization approaches complex or high-risk projects.

- Cost and staffing curve.

In general, costs and staffing for a predictive project life cycle are low during the

earlier Process Groups—Initiating and the first pass at Planning—because few team

members are on board and the project is using fewer resources. Costs increase

quickly during the later Process Groups of Executing and Monitoring and Controlling,

12

when most of the project work is being done. Costs begin to decrease at the end of

Executing and Monitoring and Controlling as deliverables are completed and

resources are released. Costs decrease more quickly during the final Process

Group, Closing.

The life cycle of a project from start to completion follows either a “S” shaped path

or a “J “ shaped path (Figure 1 and Figure 2). In “S” shape path the progress is slow

at the starting and terminal phase and is fast in the implementation phase. At the

beginning detailed sectoral planning and coordination among various implementing

agencies etc. makes progress slow and similarly towards termination, creating

institutional arrangement for transfer and maintenance of assets to the stakeholders

progresses slowly.

Figure 1. Project life path – “S” shape

In “J” type cycle path the progress in beginning is slow and as the time moves on the

progress of the project improves at fast rate. Example, in a developing an energy

plantation. In this the land preparation progresses slowly and as soon as the land

and seedling are transplantation is undertaken. This is shown in Figure 2.

13

Figure 2. Project life cycle path - “J” Shape

- Risk/uncertainty curve.

In general, uncertainty about a project’s ability to meet its objectives decreases

during the project life cycle. As the project proceeds, decisions are made, knowledge

and experience increase, and steps can be taken to manage risk more effectively.

For example, a predictive project aiming at producing a new type of manufacturing

equipment has more risk during Initiating and Planning, because the sponsor and

the project team don’t know how or if the objectives can actually be achieved in

proposed designs and if the designs can be translated into production within scope,

budget, and time frames. Once a project is accepted by the customer, no further risk

exists. On an agile/hybrid project, as phases are completed and their deliverables

are accepted, the level of risk and uncertainty gradually is reduced.

- Cost of changes curve.

For a predictive project, the least expensive time to change scope or product

characteristics is early on, before work has been done and resources spent. As the

project work progresses, the ability to make changes without significantly affecting

cost and schedule (and possibly other measures such as quality and project team

motivation and engagement) decreases. Changing course may mean that

investments made as a result of earlier decisions have been wasted. Work based on

a mistake or incorporating a flawed element has to be redone. Changes may have a

“ripple effect” on work that has already been completed. A team working on new

14

manufacturing equipment could handle this issue by proving their design concepts

through a prototype test before proceeding to building the equipment. (Prototyping

is an example of an agile mindset.) This would decrease the risk of later changes to

project baselines. Agile, by design, works to keep the cost of changes lower

throughout a project so that changes can be accommodated even late in the project.

The relationship between the anticipated curves for risk and the cost of changes is

illustrated Figure 3.

Figure 3. Influence of risks and cost of changes over time

1.1.3 Project Performance dimensions

In the mid 1980s Dr. Martin Barnes created the Triangle of objectives shown in

Figure 1. Called also the "Scope Triangle" or the "Iron Triangle" this shows the trade-

offs inherent in any project. The triangle demonstrates that scope cost and time are

interrelated. The constant effort to balance these three factors impacts on the quality

of the project. High-quality projects deliver the requested product, service or result

within the established scope, within the set time and within the limits of the defined

budget. Time is the available time to deliver the project, cost represents the amount

of money or resources available and scope represents the fit-to-purpose that the

project must achieve to be a success.

The variation of even one of the three factors of the triple constraint implies that at

least one other factor is affected. For example, if the scope is enlarged, project would

require more time for completion and the costs would also go up. If time is reduced

15

the scope and cost would also reduce. Similarly, any change in cost would be

reflected in scope and time. Successful completion of the project would require

accomplishment of specified goals within scheduled time and budget. In recent years

a forth dimension, stakeholder satisfaction, is added to the project. However, the

other school of management argues that this dimension is an inherent part of the

scope of the project that defines the specifications to which the project is required to

be implemented. Therefore, the performance of a project is measured by the degree

to which these three parameters (scope, time and cost) are achieved.

Mathematically: Performance = f (Scope, Cost, Time)

Figure 4. Representation of the Triangle of objectives

Interest increases when two of the points are fixed. Normally this occurs when costs

are fixed and there is a definite deadline for delivery, in this case you can just cut

functionality, as long as the core requirements remain. Additional functionality can

always go into "the next release”, but the core functionality has to be always high

prioritized. Project managers are also responsible for managing projects also taking

into account project risks, i.e. uncertain events or conditions which, if they occur,

have a positive or negative effect on at least one of the project objectives.

A phenomenon known as "scope creep" can be linked to the triangle too. Scope

creep is the almost unstoppable tendency a project has to accumulate new

functionality. Some scope creep is inevitable since, early on, your project will be

poorly defined and will need to evolve. A large amount of scope creep however can

be disastrous. This is represented by the quality of the project.

16

More requirements fulfilled means a better-quality product and in this situation the

Project Manager has three options:

1. Add time - delay the project to give you more time to add the functionality

2. Add cost - recruit, hire or acquire more people to do the extra work

3. Cut quality - trade off some non-essential requirements for the new

requirements

1.2 Traditional project management

Project management is applied in today’s business world to a variety of different

projects. Principles established in the 1950's have prescribed that the methods and

procedures should be applied to every project in a uniform way. Such uniform

implementation should ensure robustness and applicability to a wide range of

projects, from the simple and small projects to most complex and large ones. The

basic idea behind that traditional, rational and normative approach is that projects

are relatively simple, predictable and linear with clearly defined boundaries which all

makes it easy to plan in detail and follow that plan without many changes. The

ultimate goal of the traditional project management approach is optimization and

efficiency in following initial detailed project plan, or, having said in usual way, to

finalize project within planned time, budget, and scope.

Traditional project management involves very disciplined and deliberate planning

and control methods. With this approach, distinct project life cycle phases are easily

recognizable. Tasks are completed one after another in an orderly sequence,

requiring a significant part of the project to be planned up front. For example, in a

construction project, the team needs to determine requirements, design and plan for

the entire building, and not just incremental components, in order to understand the

full scope of the effort. Traditional project management assumes that events

affecting the project are predictable and that tools and activities are well understood.

In addition, with traditional project management, once a phase is complete, it is

assumed that it will not be revisited. The strengths of this approach are that it lays

out the steps for development and stresses the importance of requirements. The

17

limitations are that projects rarely follow the sequential flow, and clients usually find

it difficult to completely state all requirements early in the project.

1.2.1 Critical path method

Critical Path Methods (CPM), which is a subcategory in the traditional project

management is based on the idea that in order to achieve a task, the previous task

should have been done already. The past is the critical one if any postponement in

a given task in the that sequence of activities will results in a delay of the project. It

was created in the late 50’s, EI DuPont de Nemours Company, an American

chemical company, was seriously falling behind its schedule, and they needed

something that would get them back on track. They came up with a solution to divide

their project into thousands of tasks, measure the time each task will take, and how

assess critical they are to the entire process. They called this technique Critical Path

Method (CPM). CPM was first tested in 1958 in a project to construct a new chemical

plant and has ever been one of the most frequently used techniques of project

management. Any project can have one or more critical paths and, knowing the

critical paths, allow managers to set priorities and allocate resources more efficiently.

This process helps determine the most important tasks to perform and prioritize them

accordingly. Such methodology supports rescheduling, in favor of optimizing

performance of the team, with the objective of getting the jobs done on time.

Figure 5. CPM process

18

A critical path method includes the following steps:

1. Identifying activities

By using the project scope, you can break the work structure into a list of activities

and identify them by name and coding; all activities must have duration and target

date.

2. Determining sequence of activities

This is the most important step as it gives a clear view of the connection between

the activities and helps you establish dependencies as some activities will depend

on the completion of others.

3. Creating a network of activities

Once you determined how activities depend on each other you can create the

network diagram, or critical path analysis chart; it allows you to use arrows to connect

the activities based on their dependence.

4. Determining completion time for each activity

By estimating how much time each activity will take will help the Project Manager to

determine the time needed to complete the entire project.

5. Finding the critical path

A network of activities will help you create the longest sequence of activities on the

path or the critical path using these parameters:

• Early Start ES; earliest time to start a certain activity providing that the

preceding one is completed.

• Early Finish EF; earliest time necessary to finish activity

• Late Finish LF; latest time necessary to finish the project without delays

• Late Start LS; latest start date when the project can start without project

delays

19

If there is a delay in any task on the critical path, the whole project will have to be

delayed. The critical path is the path where there can be no delays. Naturally, not all

the project activities are equally important, in fact, while some have a huge impact

on the critical path and are therefore critical, others don’t make much difference to

the project if they are delayed.

The critical path method helps us determine which activities are “critical and which

have “total float”. However, if any of the floating activities get seriously delayed, they

can become critical and delay the entire project.

1.2.2 Critical chain project management (CCPM)

Critical chain project management is another subcategory in the traditional,

sequential methodologies. Dr. Eliyahu M. Goldratt developed the concept of CCPM

in 1997. CCPM relates very closely to one of Dr. Goldratt's other theories—the theory

of constraints. The theory of constraints helps you identify key bottlenecks or limiting

factors standing in the way of your project's completion. The idea of this latter is that

every project has one main constraint and this constraint has the ability to disrupt

the entire project by breaking the weakest chain. In the Critical Chain Project

Management (CCPM) the key project constraints are the finite resources such as

people, equipment, and physical space. The goal of CCM is to eliminate project

schedule delays due to uncertainties, overestimation of task duration, and wasted

internal buffers. It is very similar to the critical path method, both focus on schedule

development and estimation and furthermore, like CPM, you must finish a task

before starting the other. No multitasking is accepted. Its objective is to prioritize

organization and efficiency of the project by having enough resources, that why

every task should properly be finished before entering a next phase.

There are also few differences between the two methods, the main points of

inequality are:

• The critical path (CPM) focuses on managing tasks, whereas the critical chain

concentrates on managing the resources and buffer.

• The critical path method (CPM) is more of an estimation than the critical chain,

as it assumes that every resource will be available when needed. On the

https://en.wikipedia.org/wiki/Critical_chain_project_management

20

contrary, the critical chain takes that limited resource and uses the readily

resources to plan out a realistic schedule.

• In critical chain method (CPM), the buffer (added extra time) is for the whole

project, whereas in critical path is for the individual activities.

• Therefore, there are delays of schedule in critical chain on non-critical

activities whereas in critical path the project members can immediately start

on non-critical activities.

• In the critical path, work increases if an activity has extra time, which isn’t the

case in a critical chain with the real-time length and buffer for every activity

• In critical path, the float or slack (added extra time) to each activity of the

project were misused and lead to delays in projects.

A critical chain project network strives to keep resources levelled and requires that

they be flexible in start times. This method accepts the inherent uncertainty of

estimates, but instead of letting everyone give themselves their own contingency to

safeguard their individual estimates, the method rids the individual estimates of their

local contingencies.

CCPM applies three types of buffers:

- Project buffer is placed in between the last task and the project’s final date,

particularly after the last task and before the end date. It is basically used as

the plan B for the critical chain. That’s where the delays can be found.

- Feeding buffers prevent non-critical chain tasks from delaying the start of

critical chain tasks.

- Resource buffers are more specific feeding buffers and are placed to

guarantee resource availability for each task on the critical chain.

Figure 6. Types of buffers

21

1. Identify the critical chain

First of all, there is the need to identify the most important tasks, as well as the tasks

that will take the longest to complete. These tasks will become your critical path. To

help you identify your critical path, we recommend creating a work breakdown

structure. This structure breaks down large projects into smaller, more manageable

pieces. In CCPM, a work breakdown structure can help you determine where you

will need the most resources. Additionally, it will show which tasks are going to take

the most time. For a successful CCPM process, begin your project with the most

important tasks first and then work in descending order.

2. Determine Resource Constraints to Create the Critical Chain

Critical Chain Project Management focuses on resources — so consider any

constraints you might experience as you assign employees, workstations, materials,

etc. to tasks. To create your Critical Chain, you will need to determine the set of

activities that, if delayed, will extend the end date of the project by looking at resource

availability. This path, along with the resource constraints it contains, is the Critical

Chain. All tasks not in the critical chain are part of a feeding chain.

3. Eliminate Multitasking

When employees switch between different tasks, productivity drops, and task

durations increase. And, ultimately, team morale decreases as the team members

try to keep the project moving forward. The Critical Chain Project Management

process keeps employees focused on fewer items at a time, which allows teams to

execute projects faster. Moreover, In critical chain methodology, it’s important to

keep your team focused on individual tasks as the practice will lead to more

productive, harmonious, collaborative, and innovative behaviors. All these factors

contribute to timely task completion and efficiency. For successful CCPM, you want

to ensure your team has enough on their plate to stay focused, but not enough that

they will have to multitask in order to get things done.

https://www.lucidchart.com/blog/how-to-create-a-work-breakdown-structure-and-why-you-should
https://www.lucidchart.com/blog/how-to-create-a-work-breakdown-structure-and-why-you-should

22

4. Create 50/50-time estimates

Successful critical chain processes cut the estimated time needed for projects in half.

The idea isn’t to stress out the team members; it’s to avoid wasted time and push

them toward a more efficient timeline. Sometimes employees procrastinate, waiting

until the last possible moment to start or even stretching out a task to fill time. By

cutting the time needed for a task in half, you create a sense of urgency in your team.

This practice will push them to stay focused and finish their tasks on time.

5. Insert Buffers

After you cut the estimated time needed by 50%, that 50% is then used as a buffer.

It acts as a shock absorber for the project should a task take longer than anticipated

to complete. One study showed that implementing project buffers with the CCPM

process leads to employees finishing projects 25% faster. To use buffers the PM

needs to decide where buffers should be inserted along the Critical Chain and which

type of buffer to use. There is the need also to determine the appropriate size of

buffer. A general rule of thumb is that the bigger the risk or uncertainty an activity

entails, the bigger the buffer should be.

6. Create a Detailed Project Model

The use of the Critical Chain methodology likely implies to take on a large and

complicate project. To ensure timely project completion, create a detailed project

model that your entire team can use. The model allows your team to see how well

the project is progressing. The project model should include time estimates, task

descriptions, assigned resources, time buffers, and finish dates.

7. Oversee the Project

Continue to monitor the project, check for completed milestones to ensure the project

remains on track. Manage buffers and gain the information necessary for controlling

the plan and take recovery actions if needed.

23

1.2.3 PERT

PERT Method (Program Evaluation and Review Technique) was first developed by

the US Navy SPO (Special Projects Office) in 1967 during the Polaris missile

development program then it was applied to the other industries. PERT stands for

program evaluation and review technique. It is a statistical technique used for getting

highly accurate time estimates for complex projects. It focuses on events and

milestones, and the PERT chart emphasizes this by making those the nodes in the

wireframe. Unlike other methods, it is an event-oriented technique that uses three-

point estimation approach for each task. Any task filled with uncertainties can have

a wide range of estimates in which the task actually will get completed. Uncertainties

include both favorable conditions (opportunities) as well as unfavorable conditions

(threats). The 3 points of the estimate are: Optimistic, Most Likely, Pessimistic. The

optimistic time estimate is the best-case scenario, the case in which every person in

the project finished his part perfectly and there is no need for extra parts and no time

hang up anywhere in the process. In the most likely scenario is the average

completion time for a project. Not everything goes according to plan on the project,

but it is not the worst-case scenario either. For the most part, everyone completes

her part of the project on time, even if there was the occasional slow down. The worst

case scenario for project completion is when a project was derailed due to factors

outside of your control.

PERT calculates a weighted average as the PERT estimate by using the formula:

𝑃𝐸𝑅𝑇 =
𝑂 + 4𝑀 + 𝑃

6

That means that we are weighting the most likely estimate by a factor of four (4) and

then determining the average of the weighted most likely time, the best-case

scenario and the worst-case scenario. We use a weighted average calculation

because statistically we find that the largest portion of a randomly occurring

population of data will be found close to the mean as can be seen from the following

bell curve, also called a normal distribution curve. This bell curve in Figure 7, shows

us that if we divide the data into 6 equal portions, then by far the majority of the

instances will be found in the 2 portions next to and on both sides of the middle line

(mean) while the probability of the occurrence falling in either the optimistic or

24

pessimistic block is much lower. We divide the graph into 6 equal blocks by

calculating the standard deviation also called the sigma (identified by the sigma

symbol “ϭ”). By using the simple formula Sigma = (Pessimistic – Optimistic) / 6 we

divide the graph in 6 equal blocks. From this we can see that the PERT estimating

formula using (Optimistic + (4 X Most Likely) + Pessimistic)/6 is based on this natural

distribution. This also gives us a tool with which we can quantify the probability of

how the data will be distributed. Statistically we know that:

• 68% of the data will be found in one standard deviation from the mean in other

words between the mean minus one standard deviation and the mean plus

one standard deviation. We can also say that there is a 68% probability that

the activity will be completed within one standard deviation from the mean.

• We also see that 95% of the data will be found within two standard deviations

or, put another way, that we can say with 95% certainty that the activity will

be completed withing the two sigma range.

• At three sigma there is a 99,7% probability.

Figure 7. Normal distribution

25

Both CPM and PERT are complementary tools, and they are developed at roughly

the same time. The two scheduling methods use a common approach for designing

the network and for ascertaining its critical path. They are used in the successful

completion of a project and hence used in conjunction with each other. Nevertheless,

the truth is that CPM is different from PERT in a way that the latter concentrates on

time while the former stresses on the time-cost trade-off. In the same manner, there

are many differences between PERT and CPM, the main are reported:

- PERT is a probability model, it is that technique of project management

which is used to manage uncertain (i.e., time is not known) activities of any

project. On the other hand, CPM is a deterministic model, and it is that

technique of project management which is used to manage only certain (i.e.,

time is known) activities of any project.

- PERT is an event-oriented technique which means that network is

constructed on the basis of event. CPM is an activity-oriented technique

which means that network is constructed on the basis of activities.

- In PERT there is no chance of crashing as there is no certainty of time, while

in CPM there may be crashing because of certain time bound.

- PERT is suitable for high precision time estimation of projects that are

unpredictable and whose activities are non-repetitive, and CPM is more

suitable for projects that are predictable and whose activities are repetitive.

Time estimation for such projects is made under reasonable forms.

1.2.4 Waterfall method

The Waterfall model was first presented in 1970 by American computer scientist

Winston W. Royce—though he didn’t actually use that term to describe it—in his

article titled, "Managing the development of large software systems.” The first

mention of “Waterfall” is often attributed to a paper written by T.E. Bell and T.A.

Thayer in 1976. Since then, the Waterfall approach has made an impact on many

projects and project managers. It’s still widely used across industries and has even

inspired formalized education around project management. The Waterfall method is

a traditional project management methodology that takes a well-defined project idea

to completion through a sequential series of linear steps, tasks, and hand-offs. This

https://www.teamgantt.com/guide-to-project-management/project-management-methodologies

26

straightforward and somewhat rigid method uses early planning and estimation to

define and document project requirements prior to executing on the work. The

Waterfall methodology centers around a visual timeline—or Gantt chart—of your

project. This makes it easy to see how long every task should take, who should be

working on it, and what order work should be done in. Waterfall project management

follows a linear process designed to deliver project quality and cost-efficiency. Each

phase of the Waterfall process happens in sequential order, meaning one step must

finish before the next one begins. You start at point A, finish that step, move on to

step B, and continue that way until your project’s complete. The Waterfall lifecycle

doesn’t allow for a ton of iteration unless it’s planned. So, if you’re working with a

client, be very clear about how much time is scoped for feedback and iteration on

your deliverables. Those steps will be built directly into your project plan. If a client

wants to change the direction of your Waterfall project midstream, you’ll face

challenges with your project scope, budget, and deadline. That’s because the

Waterfall method is grouped by phases and tasks that depend wholly on previous

tasks and decisions. The minute you go off track with the plan, things start to fall

apart.

The Waterfall development process can be broken down into 6 key phases that are

shown in Figure 8.

Figure 8. Waterfall Process

https://www.teamgantt.com/what-is-a-gantt-chart
https://www.teamgantt.com/guide-to-project-management/taming-scope-creep

27

• Phase 1: Requirements gathering and documentation

The first step of any Waterfall project is to question and analyze business needs and

understand project goals with a focus on documenting project requirements. This

phase is critical to project success because it fully explains what’s needed—in

detail—to complete the project both at a high level and as it relates to each

requirement, which will be tracked throughout the project.

• Phase 2: Planning and design

The second phase of the Waterfall lifecycle builds on the first step by creating an

overall plan for what’s being built. After all, you’ve got to know what you’re designing

before setting out to design it. In this Waterfall phase, the goal is to come away with

a foundational design document everyone agrees on that act as a true north for your

project. Once that plan’s complete, you can hand it to a designer who will bring the

plan to life. That said, it’s important to remember to keep an eye on your project

requirements and documentation so the design work can be handed over in the next

phase to begin implementation.

• Phase 3: Build and development

This is where the real work begins. The project team starts building the actual

product/ service. This is where the documentation you’ve created in the previous 2

steps proves critical, as it will guide your team to implement the design work. The

project team may decide to conduct preliminary testing at this stage to ease the pain

of rework or fixes in the testing phase. This is also the most time-consuming part of

the process. Depending on the nature of the project, the implementation can be

anything from writing source code to pouring the foundation. At this point, the team

has an excellent understanding of project requirements.

• Phase 4: Testing

Once the deliverables are ready, the project team can start looking for bugs and

other issues that may plague end users. This is usually the responsibility of the

testing team. The verification phase ensures that the product/service works

https://www.teamgantt.com/blog/documenting-project-requirements
https://www.teamgantt.com/art-science-of-leading-projects/documenting-project-requirements
https://www.teamgantt.com/art-science-of-leading-projects/documenting-project-requirements

28

according to initial requirements. The testing step carries the most risk in a Waterfall

project because you just don’t know what issues or defects will pop up and how

they’ll impact the timeline. Due diligence during the Requirements and Design helps

the project team save time they’d have to spend fixing things after deployment. The

better the documentation and project requirements, the shorter the testing phase

gets. Testing usually concludes with a test report. Adding a buffer into your testing

schedule can help ensure your team has adequate time to make fixes. The project

is close to completion, so the team need to do everything to perfect it in the testing

phase before it launches. Here are just a few activities testing might include:

• Review and check of the project requirements and goals

• Design review to ensure the integrity of the look and feel

• Review of usability

• Phase 5: Deployment

At this point, requirements have been met, the product is fully tested and approved,

and everyone is confident your product is 100% ready to release. Depending on the

type of product you’re launching, you’ll have a plan to ensure your deployment is

smooth and drama-free. Be sure to discuss what the deployment or launch will look

like far in advance of actually doing it. Working out the details early will enable you

to approach your release day with a checklist and some confidence. It may feel like

time to celebrate, but you’re not done yet.

• Phase 6: Support and maintenance

In the final phase, the product/service goes live. Once the product is operational and

in the hands of users, the project enters a maintenance phase. The team actively

works on any outstanding issues missed during testing and pushes updates

according to client feedback. The maintenance stage can last until the product or

service is retired. The team may focus on corrective (issues and bugs), adaptive

(new features), perfective (user requests), and preventive maintenance. The

maintenance phase makes up a substantial part of the project lifecycle.

29

Waterfall project management has its roots in non-software industries like

manufacturing and construction, where the system arose out of necessity. In these

fields, project phases must happen sequentially. You can’t put up drywall if you

haven’t framed a house. Likewise, it’s impossible to revisit a phase. There’s no good

way to un-pour a concrete foundation. A project’s requirements must be clear

upfront, and everyone involved in a project must be well aware of those

requirements. Each team member should also understand what their role will be in

the project and what that role entails. All of this information must be thoroughly

documented and then distributed to everyone on the project. It is useful to outline

this information as a flowchart so the team can quickly understand and reference

requirements as needed. Team members will refer to the documentation you provide

throughout the process. When followed properly, this document makes clear

precisely what is expected, thus guiding the creation of the product. It will also

provide project milestones that will make it simple to determine progress.

Consequently, thorough documentation is a priority in the waterfall project

management methodology. Documentation should take place throughout every

phase of the process, ensuring that everyone involved is on the same page despite

the sequential progression of the project.

Subject matter expert Patrick Rockwell advises on the types of situations in which

using the waterfall method can be beneficial.

"Though less common these days, when your end product's requirements are fixed

yet time and money are variable, choose the waterfall method. I like to imagine a

scientist doing research for a big company—through trial and error, he'll likely restart

his whole process many times and at different stages to get the coveted final result.

Through waterfall project management this behavior is anticipated and even

preferred! This enables members to adjust and re-think their approach time and time

again."

As Patrick mentions, waterfall project management can be problematic if the project

requirements are not perfectly clear, which happens when a user has a general idea

of what they want but can’t nail down specifics. The waterfall system’s linear nature

is not suited to discovery, and the project will likely suffer without more specific

https://taskreports.com/

30

requirements. Late-stage testing makes any revision a serious undertaking. In fact,

strict adherents to the waterfall system would argue that a need for revision means

the product requirements were not clear, and therefore the project must return to

stage one. This can be a serious problem in many industries, such as the ever-

changing world of software. Because of its inability to adapt to change, the waterfall

methodology is best suited to short projects that are well-defined from the beginning.

If you are certain that the project requirements are static, then waterfall project

management provides a straightforward way to push a project through a clearly

defined process. It’s simple to manage and easy to track.

1.3 The shift towards new management approaches

Even though traditional approach to project management emphasizes robustness as

one of its advantages, prescribing that the same methods and techniques could be

applied to all projects uniformly, it is increasingly mentioned as one of the crucial

disadvantages of such approach. Today, increasing number of authors stress the

fact that “one size does not fit all”. Projects, same as business environments in

general, become progressively complex, with higher number of tasks and complex

interrelations, while traditional project management approach is based on mostly

hierarchical and linear task relations and can not properly reflect all complexity and

dynamics of today’s projects. Furthermore, assumption that project is isolated from

its environment causes the second major disadvantage of the traditional. Change in

any form is the reality of today’s business environments and the projects within those

environments. Changes in the initial plan are inevitable due to adjustments to

unpredictable and dynamic changes in the project environment or within the project.

Also, it is sometimes very hard to create complete project plan at the outset of the

project due to inability to clearly define project goals. Williams in 2005 summarizes

those main reasons of inappropriateness of the traditional approach to majority of

today’s projects are structural complexity, uncertainty in goal definition and project

time constraints.

31

1.3.1 Software project management

In this thesis, the field of project management on which I’m focusing and which I was

able to observe during the internship experience, is the Software project

management.

A software is an intangible product consisting of strings of codes that represent

useful information for the management of a process. It can be defined as the set of

computer codes

and procedures, to which annexed documentation, which allow an electronic or

computer system to process data. Before software was born, project management

was fully done through papers. This eventually produced a lot of paper documents

and searching through them for information which was not a pleasant experience.

Once software came available for an affordable cost for the business organizations,

software development companies started developing project management software.

This became quite popular among all the industries and these software were quickly

adopted by the project management community.

1.3.3.2 Life cycle of a software

To talk about the software life cycle we must start by identifying the peculiar

characteristics of this "product". The software, in fact, cannot be compared to the

generic industrial product, as it develops and is not built, and is engineered but not

manufactured.

The life cycle of a described IT project turns out to be different from that relating to

the Project Management of standard projects (i.e., definition, planning, execution,

monitoring and closure). However, they are connected and parallel and it is therefore

necessary to use both for the management of an IT project: this is because the

second includes the phases necessary for the organization of the project and the

guarantee that it proceeds efficiently from the beginning. at the end (Hadaya et al.,

2012).

The life cycle of an IT project outlines the technical work and defines the deliverables

that are required to complete the IT project. Based on the definition provided by the

Project Management Institute (2008), it includes the following steps:

1. Requirements and analysis

2. Architecture

32

3. Design

4. Construction

5. Integration and test

6. Delivery

- Phase 1: Requirements and analysis

The collection of requirements and their analysis make up the first phase required

for the execution of an IT project. The requirements represent the problem that needs

to be solved and the objectives of the project. The analysis is conducted in order to

identify the relationships between the components (i.e., functionality) of the product

or system for which the requirements were collected.

During this phase, the Project Manager works closely with the client and with the

technical experts of the subject matter in the scope of the project, in order to define

the requirements coming from the business and determine how they can be met. It

is also the task of the Project Manager to identify the products or systems that will

be delivered to the customer, the resources needed to carry out the project and the

skills required for its completion.

- Phase 2: Architecture

The architectural definition phase is required for the identification of the elements

that will be included in the product or system that will be delivered to the customer.

The architecture expert reviews the requirements coming from the client and

identifies possible solutions from a technical point of view. The project stakeholders

analyze the proposed options and choose the one they consider the most efficient

and effective solution.

- Phase 3: Design

The design phase of the solution to be provided to the customer consists of two

distinct parts: high-level design and detailed design.

The high-level design is necessary to define how the components of the product or

system that will be supplied will function from a technical point of view, what their

33

interactions will be with the other components of the system and how they will

interact with hardware and software.

The detailed design, on the other hand, is descriptive and provides precise details

for each component of the product or system. It identifies and defines each module

that belongs to each component of the product or system, describing its functionality,

how it will work in detail, and what are the detailed relationships that exist between

different modules.

- Phase 4: Construction

The construction phase of the product or system defined in the design phase is the

actual development activity and coincides with the writing of the code and the

construction of the components by the team of developers.

In this phase, the Project Manager is responsible for the control process of the

project being developed: it coincides with the monitoring and control phase

characteristic of the Project Management life cycle applied to standard projects.

Project control includes a set of activities and processes aimed at identifying and

monitoring the progress and performance of the project and identifying the areas that

require any modification. It can be defined as a continuous process that requires the

Project Manager to observe, gather information and understand the need for change

in case of need.

As defined in the detailed chapter, the control process aims to compare the current

project performances with those planned, in order to understand if the project is

under control. This phase is also necessary for the identification and tracking of any

new project risks and problems.

Another method used to determine if the project is under control is that of project

status reports. The Project Manager schedules regular meetings with the Project

Team in order to gather information on the status of developments from each

separate working group that is involved in the implementation of the project. In this

way, the Project Manager is able to identify any problems that may arise that may

require corrective actions.

34

- Phase 5: Integration and Test

The integration phase consists in the combination of all the modules and

components made in a single product or system functioning in such a way that it can

be tested. The testing phase is crucial for the development of IT projects and is

aimed at determining the quality of the product or system supplied.

Five distinct types of tests can be identified:

1. Unit and function test

2. System test

3. Integration test

4. No regression test (NRT)

5. User Acceptance test (UAT)

- Phase 6: Delivery

The Delivery phase of the developed product or system consists of multiple key tasks

and activities, necessary for the delivery of the application to the end customer to

take place efficiently and successfully.

It is possible to distinguish between two different phases of the same, characterized

by activities carried out by the Project Manager that are distinct from each other:

those necessary before the Go-Live of the application and those required in the Go-

Live phase.

The first are the following:

• Creation of a detailed Deployment Plan, necessary for identifying and

remembering all the critical steps in the delivery of the functionality.

• Review of the Deployment Plan with the members of the project team,

necessary for the identification of any tasks that have been underestimated

or even forgotten, thus avoiding costly mistakes.

• Communication of the key milestones of the plan to the project stakeholders,

which allows the customer to prepare their teams adequately and in time for

the new functionality.

35

• Training of the Support Team, who must be informed about the new

functionality and adequately prepared to provide the necessary support in

case of doubts, questions or problems raised by end users following the go-

live.

The second are the following:

• Go-Live Monitoring, during which the Project Manager has the task of

checking that the application release process takes place easily and

smoothly. Typical activities of this phase are the restarting of the servers, the

upload of the code and the deployment of the mobile applications and are

carried out by the team of developers

• Follow-up with the Support Team, necessary to be made aware of any bugs

and problems arising after the release whose resolution must be prioritized.

1.3.2 Waterfall in software project

Software projects date back as far as the late 1960s. The software industry grew fast

and computer companies saw the potential in software production, which had a low

cost compared to hardware production and circuitry which were more common.

Software companies adopted the already well known waterfall model for its software

projects. It turned out that this linear approach for developing software was less than

optimal (Mens, 2008). The inflexible separation of phases and the fact that

requirements are not always clear at the start of a project, were two major limitations

of this model. The main causes for software project failures were; unrealistic project

goals, poor estimates, badly defined requirements, poor status reporting,

unmanaged risk, poor communication, use of immature technology, high project

complexity, poor development practices, poor management, stakeholder politics and

commercial pressures (Charette, 2005).

36

1.3.3.2 The evolution of the traditional waterfall approach over the past years

In 2004, the third edition of A Guide to the Project Management Body of Knowledge

(PMBOK Guide) described the project life cycle of a typical project to have phases

that ‘are generally sequential and are usually defined by some form of technical

information transfer or technical component handoff’ and software development

projects were specifically included in this description of a traditional waterfall life

cycle. The pressure exerted by the then relatively recent publication of the agile

manifesto on this view is only visible in the acknowledgement that phases can and

often do overlap as an example of ‘fast tracking’.

The rapid adoption of an agile approach to project management in especially the

technology sectors leading up to 2008 saw the PMBOK Guide acknowledge this

requirement of projects in ‘largely undefined, uncertain, or rapidly changing

environments’ to allow for an iterative phase-to-phase relationship in which phases

are planned one at a time, and the next phase is only planned for while work is

progressing on the current phase. One could argue that the PMBOK Guide at this

stage still supported a view that an agile approach could somehow be considered a

variant of the traditional waterfall life cycle.

In 2013, the PMBOK Guide confirmed that the traditional waterfall project life cycle,

referred to as ‘predictive life cycles’ or ‘fully plan-driven’, is relevant and applicable

to all projects where the project scope and the time and cost associated in delivering

that scope are determined and relatively stable at the earliest possible opportunity.

Predictive life cycles (traditional waterfall) are well suited where both the goal of the

project and the solution to the problem addressed by the project are known and clear,

as is the case with most infrastructure and construction projects, for example.

The above notion is further supported by the fact that the 2013 edition of the PMBOK

Guide clearly distinguishes between predictive, iterative and incremental, and

adaptive life cycles. This is an indication that the traditional waterfall approach is now

considered to be a specific type of project life cycle as opposed to being a ‘catch all’

that could not possibly meet the requirements of the entire modern project

environment.

37

Figure 9. The changing view of the project life cycle in different editions of the PMBOK Guide.

1.3.3 Agile methodology

The term Agile is used to refer to a mode of software development that proposes a

less structured approach than the traditional methods implemented up to that point,

iterative and focused on customer satisfaction, delivering working and quality outputs

quickly and frequently. The methodology has been so successful that it has been

adapted to other contexts as well, thus being used for generic project management,

projects that are becoming increasingly "extreme." The current context of high

competition, which manifests itself through a series of actions carried out by various

companies such as price battles, communication campaigns, promotional actions,

new product launches, pre- and post-sales services, has given birth to the Agile

methodology, an approach that aims to become a lever of competitive advantage for

the company, supporting the conquest of new market positions or defending those

acquired over time. The principles of the Agile method, born in software engineering,

are inspired by the Toyota Production System, a method of organizing production

that originated in Japan in the 1950s, a post-war period of severe crisis for the

country. The Toyota Production System has as its pivotal goal the provision of

products and services at a "world class" level of quality, a goal that can be pursued

through the empowerment of employees, whose work is to be differentiated from the

repetitive and alienating work of machines, cost reduction through the elimination of

waste for profit maximization, and flexible production (Just in time) according to

38

market demand. The basic idea of the Toyota Production System is that a product

cannot be better than the process that generated it, therefore, to have satisfied

customers one needs processes of excellence. Quality is a result of the efficiency

and effectiveness of processes. A company that is excellent in processes is one that

produces zero inventory, that is, one that produces only what is required, one that

produces with zero defects, so that there is no waste, and one that produces with

zero downtime, so that productivity is increased and the entire working time is

devoted to the realization of added value for the customer. The driving force behind

the Toyota method is Lean Thinking, an operational strategy that pursues continuous

improvement (Kaizen) of the enterprise; it starts by defining what is of value to the

customer, proceeds by aligning value-creating activities in the right sequence, and

then moves them forward without interruption according to a pull logic, i.e., only the

activities required downstream are carried out, eliminating over- or under-production.

Also emphasized is the idea that production is more efficient when carried out in

small batches.

Based on these concepts, which originated in the automotive industry, a pool of

software development experts in 2001 initiates the famous Agile Manifesto in order

to outline and define the core values and principles of thinking. And so, paralleling

the Toyota philosophy, from the idea of working in small batches, a methodology apt

to provide for small frequent versions of a product is developed. The focus is on

teamwork and staff involvement, and we are inspired by the concept of Kaizen: the

project is to be constantly reviewed aiming at continuous improvement, changing

factors where necessary based on new information or feedback returned by the

system. The final result is the value for the customer; with this methodology, one is

able to constantly readjust to customer needs by means of an iterative process and

reduce the risk of failure.

1.3.3.2 Principles behind the Agile Manifesto

The Agile Manifesto is a document that identifies four key values and 12 principles

that its authors believe software developers should use to guide their work. Formally

called the Manifesto for Agile Software Development, it was produced by 17

developers during an outing on 2001, at The Lodge at Snowbird ski resort in Utah.

39

The developers called themselves the Agile Alliance. They were seeking an

alternative to the existing software development processes that they saw as

complicated, unresponsive and too focused on documentation requirements. The

aim of the four values outlined in the Agile Manifesto is to promote a software

development process that focuses on quality by creating products that meet

consumers' needs and expectations. The 12 principles are intended to create and

support a work environment that is focused on the customer, that aligns to business

objectives and that can respond and pivot quickly as user needs and market forces

change.

The four core values of Agile software development as stated by the Agile Manifesto

are:

1. Individuals and interactions over processes and tools

In the past, a lot of software teams would concentrate on having the best possible

tools or processes with which to build their software. The Agile Manifesto suggests

that while those things are important, the people behind the processes are even

more. Having the right group of individuals on a software team is vital to success,

the best possible tools in the wrong hands are worthless. Perhaps even more

important is how these individuals communicate with each other. The interactions

between team members are what helps them to collaborate and solve any problems

that arise.

2. Working software over comprehensive documentation

Previously, software developers would spend ages creating detailed documentation

even before to start writing one line of code. Even if documentation is not a negative

thing, it comes a point when the team should focus on providing the customers with

working software. The Agile Manifesto places shipping software to your customers

as one of the highest priorities, then the team can gather feedback to help improving

future releases.

https://www.techtarget.com/whatis/definition/software-development
https://www.techtarget.com/searchsoftwarequality/definition/agile-software-development
https://productboard.com/agile-manifesto/
https://productboard.com/blog/3-techniques-to-quickly-discover-what-your-customer-really-needs/
https://productboard.com/blog/3-techniques-to-quickly-discover-what-your-customer-really-needs/

40

3. Customer collaboration over contract negotiation

Contract negotiation refers to any agreements including deadlines, budget

agreements, and scope agreements with internal stakeholders or customers. You

would draw up contracts with your customers who would then detail the finished

product. As a result, there was often a contrast between what the contract said, what

the product did, and what the customer actually required. According to the Agile

Manifesto, the focus should be on continuous development. There is the need to

build a feedback loop with your customers so that the team can constantly ensure

that the product works for them.

4. Responding to change over following a plan

Following a plan means to deal with a static roadmap but the needs and

requirements are always shifting, and priorities are always changing. That static

roadmap will soon grow outdated. That’s why the Agile Manifesto suggests that a

software team should have the ability to pivot and change direction whenever they

need to, with a flexible roadmap that reflects that. A dynamic roadmap can change

from quarter to quarter, sometimes even month to month, and agile teams are able

to keep up with those changes.

The 12 principles articulated in the Agile Manifesto are:

Our highest priority is to satisfy the customer

through early and continuous delivery

of valuable software.

Welcome changing requirements, even late in

development. Agile processes harness change for

the customer's competitive advantage.

Deliver working software frequently, from a

couple of weeks to a couple of months, with a

preference to the shorter timescale.

https://productboard.com/blog/product-customer-feedback-loops/
https://productboard.com/blog/4-roadmap-examples/

41

Business people and developers must work

together daily throughout the project.

Build projects around motivated individuals.

Give them the environment and support they need,

and trust them to get the job done.

The most efficient and effective method of

conveying information to and within a development

team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.

The sponsors, developers, and users should be able

to maintain a constant pace indefinitely.

Continuous attention to technical excellence

and good design enhances agility.

Simplicity--the art of maximizing the amount

of work not done--is essential.

The best architectures, requirements, and designs

emerge from self-organizing teams.

At regular intervals, the team reflects on how

to become more effective, then tunes and adjusts

its behavior accordingly.

While the Agile Manifesto doesn’t rank the principles in any particular order, there

are several key patterns that emerge. The need for continuous feedback is one. The

role of effective communication in product development, another. Finally, the ability

to be flexible and change directions quickly and smoothly.

Perhaps the most important lesson to take from the 12 agile principles is that you

need to remember what you’re there for. As a software development team, your

42

primary goal is to develop and release software. Agile principle 7 says that working

software should be the primary measure of success. Having that as your north star

will ensure all the other agile values and principles will fall into place.

1.3.3.2 Methodologies in the Agile industry

Agile approaches and agile methods are umbrella terms that cover a variety of

frameworks and methods. Figure 10 places agile in context and visualizes it as a

blanket term, referring to any kind of approach, technique, framework, method, or

practice that fulfills the values and principles of the Agile Manifesto. It also shows

agile and the Kanban Method as subsets of lean. This is because they are named

instances of lean thinking that share lean concepts such as: “focus on value,” “small

batch sizes,” and “elimination of waste.”

Figure 10. Relation between Lean, Agile and Kanban

One way to think about the relationship between lean, agile, and the Kanban Method

is to consider agile and the Kanban Method as descendants of lean thinking. In other

words, lean thinking is a superset, sharing attributes with agile and Kanban. This

shared heritage is very similar and focuses on delivering value, respect for people,

minimizing waste, being transparent, adapting to change, and continuously

improving. The Kanban Method is inspired by the original lean-manufacturing system

and it was adapted to the software development. Kanban is a popular framework

used to implement agile and DevOps software development. Work items are

represented visually on a Kanban board, allowing team members to see the state of

43

every piece of work at any time. As we can see in Figure 10, there are several

methodologies through which we can implement Agile Projects. I will not go in details

about all the techniques because our focus will be just in the Scrum method. Here I

have discussed just three of them which are most widely used in the Industry. The

agile methods are focused on different aspects of the software development life

cycle. Some focus on the practices (extreme programming, pair programming), while

others focus on managing the software projects (the scrum approach).

• Extreme Programming (XP)

XP is the most successful method of developing agile software because of its focus

on customer satisfaction. XP requires maximum customer interaction to develop the

software. It divides the entire software development life cycle into several number of

short development cycles. It welcomes and incorporates changes or requirements

from the customers at any phase of the development life cycle.

Figure 11. Method of Developing Agile Processes using Extreme Programming

The above diagram shows the complete method of developing agile process using

XP method. Extreme programming starts with collecting user requirements.

Depending upon these requirements the whole development process is divided into

several small number of cycles. The next phase is iteration planning i.e. deciding the

number of cycles, prioritizing the requirements and estimating the amount of effort

required to implement each cycle. Now each iteration is developed using pair

programming. During the development phase new user requirements may come and

the iteration plan should be adjusted according to that. Next step is to test the latest

44

developed version for bugs, if detected; the bugs will be removed in the next iteration.

After every acceptance testing project tracing should be done in which feedback is

taken from the project that how much job has already been done.

• Scrum

Scrum is another popular method of agile development through which productivity

becomes very high. It is basically based on incremental software development

process. In scrum method the entire development cycle is divided into a series of

iteration where each iteration is called as a sprint.

Figure 12. Method of Developing Agile Processes using Scrum

The method starts with collecting user requirements but it is not expected that all the

requirements should come out from the user at the beginning. User can change their

mind at any time during development; they can add new features, remove or update

some existing features. Next phase is to prioritize the requirements and the list is

known as product backlog. A proper planning for sprint should be done i.e. how many

sprints are needed to develop the software, duration of the sprint, and what are the

requirements from the product backlog should be implemented in each sprint. This

particular list is known as sprint backlog. During each sprint one sprint meeting is

held every day to take the feedback of how much work has been done. After each

sprint review is taken to determine whether all the requirements for that particular

sprint have already been implemented or not and to decide the requirements should

45

be implemented at the next sprint. After each sprint we get a working increment of

the software.

• Feature Driven Development (FDD)

FDD is one of the agile development methods. The key advantage of this method is

to design the domain of the software to be produced before development.

Figure 13. Method of Developing Agile Processes using FDD Graph

The method starts with collecting the requirements from the users and building up

the overall model of the project. The model gives the clear idea about the scope of

the software. Next step is to make a list of features which are the client-valued

functions. For example, ‘authenticate the password’, ‘calculate the salary for each

employee’, ‘calculate the income tax for each employee’. Now several groups of

features are made based on their domains i.e. related features are combined into a

single group. Next step is to make a plan for developing the features. Each group of

features is assigned to a development team which is headed by one chief

programmer. Last step is modelling iteration in which first UML modelling is done for

each feature and then developing that particular feature. This step continues unless

all the features get implemented successfully.

1.4 SCRUM

In 1995, Ken Schwaber started formalizing the rules of Scrum and compiled his

findings into a book, “Agile Software Development with Scrum” (Sutherland &

Schwaber, 2007). As aforementioned, Scrum is counted as a member of the Agile

model which was modified to be more flexible and adaptable method that can be

46

applied to different business situations (Bomber, 2007). Scrum is a simple process

in software development that focuses on the quality of the team, designed

techniques, and methods of maintenance (Weerasak, 2007). In addition, Scrum

focuses on people rather than on the development process. This method

emphasizes on communication, collaboration, and rapid exchange of information

between team members. Due to its ability to increase the rate of success in software

development, Scrum is one of the most widely used processes in Agile software

development (Nuevo, 2011). Scrum is one of the most use Agile frameworks

followed to complete challenging projects wherein there are dynamic changes in the

requirements by using one or more cross-functional, that are self-organizing teams

of about 7 +/- 2 people on each team. It has risen from being a method used by a

number of enthusiasts at the Easel Corporation in 1993, to one of the world’s most

popular and well-known frameworks for development of software. The continued

expansion of the global rollout of Scrum is testimony to the fact that Scrum delivers

on its promise. Its inspect and adapt approach to continuous quality improvement

can do serious damage to outmoded business practices. By focusing on building

communities of stakeholders, encouraging a better life for developers, and delivering

extreme business value to customers Scrum can release creativity and team spirit

in practitioners and make the world a better place to live and work. Scrum has

emerged from a rough structure for iterative, incremental development to a refined,

well-structured, straightforward framework for complex product development.

1.4.1 SCRUM values

In July 2016, the Scrum Values were added to The Scrum Guide. Successful use of

Scrum depends on people becoming more proficient in living five values:

1) Commitment; People personally commit to achieving the goals of the Scrum

Team

2) Focus; Everyone focuses on the work of the Sprint and the goals of the

Scrum Team

3) Openness; The Scrum Team and its stakeholders agree to be open about all

the work and the challenges with performing the work

4) Respect; Scrum Team members respect each other to be capable,

independent people

47

5) Courage; Scrum Team members have courage to do the right thing and work

on tough problems

The Scrum Team commits to achieve its goals and to support each other. Their

primary focus is on the work of the Sprint to make the best possible progress toward

these goals. The Scrum Team and its stakeholders are open about the work and the

challenges. Scrum Team members respect each other to be capable, independent

people, and are respected as such by the people with whom they work. The Scrum

Team members have the courage to do the right thing, to work on tough problems.

These values give direction to the Scrum Team with regard to their work, actions,

and behavior. The decisions that are made, the steps taken, and the way Scrum is

used should reinforce these values, not diminish or undermine them. The Scrum

Team members learn and explore the values as they work with the Scrum events

and artifacts. When these values are embodied by the Scrum Team and the people

they work with, the empirical Scrum pillars of transparency, inspection, and

adaptation come to life building trust.

1.4.2 SCRUM Roles

The fundamental unit of Scrum is a small team of people, a Scrum Team. The Scrum

Team consists of one Scrum Master, one Product Owner, and Developers. Within a

Scrum Team, there are no sub-teams or hierarchies. It is a cohesive unit of

professionals focused on one objective at a time, the Product Goal. Scrum Teams

are cross-functional, meaning the members have all the skills necessary to create

value each Sprint. They are also self-managing, meaning they internally decide who

does what, when, and how. The Scrum Team is small enough to remain nimble and

large enough to complete significant work within a Sprint, typically 10 or fewer

people. If Scrum Teams become too large, they should consider reorganizing into

multiple cohesive Scrum Teams, each focused on the same product. Therefore, they

should share the same Product Goal, Product Backlog, and Product Owner. The

Scrum Team is responsible for all product-related activities from stakeholder

collaboration, verification, maintenance, operation, experimentation, research and

development, and anything else that might be required. They are structured and

empowered by the organization to manage their own work. Working in Sprints at a

48

sustainable pace improves the Scrum Team’s focus and consistency. The entire

Scrum Team is accountable for creating a valuable, useful Increment every Sprint.

1.4.2.1 Scrum Master

The Scrum Master is the team role responsible for ensuring the team lives agile

values and principles and follows the processes and practices that the team agreed

they would use.

The responsibilities of this role include:

• Clearing obstacles

• Establishing an environment where the team can be effective

• Addressing team dynamics

• Ensuring a good relationship between the team and product owner as well

as others outside the team

• Protecting the team from outside interruptions and distractions.

The scrum master role was created as part of the Scrum framework. The name was

initially intended to indicate someone who is an expert at Scrum and can therefore

coach others. The general benefit expected from having a scrum master on a team

is providing a self-organizing team with ongoing access to someone who has used

agile, and Scrum in particular, in another setting and can help the team figure out

the best way to apply it in their situation. Another expected benefit is that the scrum

master is someone that can address distractions, disruptions, and obstacles so that

the remainder of the team is free to focus on the work of producing output that will

generate the desired outcome.

1.4.2.2 Product Owner

The product owner is a role on a product development team responsible for

managing the product backlog in order to achieve the desired outcome that a product

development team seeks to accomplish.

Key activities to accomplish this include:

• Developing and explicitly communicating the Product Goal

• Creating and clearly communicating Product Backlog items

https://www.agilealliance.org/glossary/product-owner/
https://www.agilealliance.org/glossary/scrum/

49

• Ordering Product Backlog items

• Ensuring that the Product Backlog is transparent, visible and understood

The product owner role was created as part of the Scrum framework in order to

address challenges that product development teams had with multiple, conflicting

direction, or no direction at all with respect to what to build. Many infer that a product

owner is someone who can spend a considerable amount of time with the product

development team providing clarification on product backlog items, and making

decisions about which product backlog items to do and regarding the specifics of

those particular product backlog items.

The Scrum framework was originally created to address issues that product

development teams faced. The product owner role was established in order to

provide that single source of information for a product development team about the

product they are trying to build.

This single point of information keeps the team focused and reduces churn resulting

from waiting for answers, or conflicting priorities.

Product owners also represent a single point of responsibility, leading to the epitaph

“single, wringable neck” which is a benefit for the team and those outside the team

when looking to easily identify the responsible party, but may not be as beneficial for

the product owners specifically.

1.4.2.3 Developers

The developers are the people in the Scrum Team that are committed to creating

any aspect of a usable Increment each Sprint. The specific skills needed by the

Developers are often broad and will vary with the domain of work. However, the

Developers are always accountable for:

• Creating a plan for the Sprint, the Sprint Backlog

• Instilling quality by adhering to a Definition of Done

• Adapting their plan each day toward the Sprint Goal

• Holding each other accountable as professionals

50

1.4.3 Scrum artifacts

Scrum provide three Artifacts show in Figure 14 that are meant to be used along the

development process. They represent work or value to provide transparency and

opportunities for inspection and adaptation. They are specifically designed to

maximize transparency of key information so that everybody has the same

understanding of the artifact.

Figure 14. Scrum Artifacts

1.4.3.1 Product Backlog

A product backlog lists and prioritizes the task-level details required to execute the

strategic plan set forth in the roadmap. The backlog should communicate what’s next

on the development team’s to-do list as they execute on the roadmap’s big-picture

vision. It is the single source of requirements for any changes to be made to the

product. The Product Owner is responsible for the Product Backlog, including its

content, availability, and ordering. The product backlog is the only authoritative

source for the things a team works on. This means that nothing is done that is not in

the product backlog. Conversely, having a product backlog item on a product

backlog does not guarantee that it will be delivered. It represents an option the team

has to deliver a specific result rather than a commitment. Items in the product

backlog take a variety of formats, with user stories being the most common. The

team using the product backlog determines which format they have chosen to use

and considers the backlog items as a reminder of what aspects of a solution they

could work on. Items in the product backlog vary in size and extent of detail based

https://www.productplan.com/learn/product-management-frameworks/

51

largely on how quickly a team will work on them. The ones a team will work on soon

should be small in size and contain enough detail for the team to start working on.

Items in the product backlog that are not intended for the job can be quite large and

have few details. The sequence of product backlog items on a product backlog

changes as a team gains a better understanding of the outcome and identified

solution. This reordering of existing product backlog items, the continual addition and

removal of product backlog items, and continual refinement of product backlog items

give a product backlog its dynamic characteristic. A product backlog can be an

effective way for a team to communicate what they are working on and what they

intend to work on next. Story maps and information radiators can provide a clear

picture of your backlog for the team and stakeholders.

Figure 15. Sprint Backlog

1.4.3.2 Sprint Backlog

The sprint backlog is a list of activities identified by the Scrum team to complete

during the current sprint. During the sprint planning meeting, the team selects a

number of items from the product backlog, usually in the form of a user story, and

identifies the activities needed to complete each user story. The Sprint Backlog

clarifies the work required by the development team to achieve the Sprint goals.

While the Product Owner owns the Product Backlog, the development team is

consulted when deciding 1) the goal of the sprint and 2) the specific Product Backlog

items that will help achieve that goal. Sprint Backlog is a sufficiently specific plan to

52

make progress changes understandable in daily meetings. The development team

will modify the Sprint Backlog throughout the Sprint, and the Sprint Backlog will

gradually emerge in the Sprint process, such as the development team working

according to plan and knowing more about the work needed to accomplish the Sprint

goals. When a new job comes up, the development team needs to add it to the Sprint

to-do list. As tasks proceed or are completed, the estimated remaining workload for

each task needs to be updated. If a part of the plan loses the meaning of

development, it can be removed. Within Sprint, only the development team can

modify the Sprint Backlog. The Sprint Backlog is highly visible, a real-time reflection

of the team’s plans to complete work within the current Sprint, and it belongs only to

the development team.

Figure 16. Sprint Backlog

1.4.3.3 Potentially Releasable Product Increment

An Increment is a concrete stepping stone toward the Product Goal. Each Increment

is additive to all prior Increments and thoroughly verified, ensuring that all Increments

work together. In order to provide value, the Increment must be usable. At the end

of Sprint, the new increment must be "done", which means it must be available and

meet the standard of the scrum team's definition of done. The Agile definition of done

is a collection of criteria that must be completed for a project to be considered “done.”

It is essentially a checklist used by Scrum teams to create a shared understanding

of what is required to make a product releasable. The Definition of Done promotes

https://www.visual-paradigm.com/scrum/daily-scrum-meeting-quick-guide/
https://www.scrum.org/resources/blog/done-understanding-definition-done

53

transparency by providing everyone a unified understanding of the work completed

during the Increment. Increments are viewable and completed product components

that support empiricism at the end of Sprint. Whether or not the Product Owner

decides to release it, the product increment must be available and able to meet the

business requirements to accomplish the delivery plan. Product increments are

additive, which means that they build on previous iterations of the product. By the

end of several sprints, the Scrum team will have delivered multiple product

increments, each improving on the next in the endless quest to meet user needs.

1.4.4 Scrum Events

Scrum defines several events (also called ceremonies) serving a specific purpose

that occur inside each sprint. These events are designed to reduce the need for

other events and they are all timeboxed, which means that they have a maximum

length. The 5 ceremonies are summarized in the Figure 17.

Figure 17. Scrum events: Backlog Refinement, Sprint Backlog, Sprint Planning, Sprint Review,

Sprint Retrospective

1.4.4.1 Backlog Refinement meeting

The purpose of the backlog refinement meeting is to decompose the highest priority

items in the product backlog into user stories which are suitable for inclusion in the

https://manifesto.co.uk/agile-concepts-product-backlog/

54

next sprint. The backlog refinement meeting (or backlog management meeting, or

backlog grooming session) usually takes place at the beginning of the current sprint,

before the sprint planning. The benefits of having a separate backlog management

meeting are threefold: it reduces the need for a long sprint planning meeting and

which can tax even the longest of attention spans and it also gives the team a chance

to reflect on the backlog items before committing to the sprint backlog and sprint

goal. The team is given a chance to ask the questions that would normally arise

during sprint planning. These questions do not need to be fully resolved in a backlog

refinement meeting. Rather, the product owner needs only to address them just

enough so that the team feels confident that the story can be adequately discussed

during the coming planning meeting.

1.4.4.2 Sprint planning

In this event the Product Owner, Scrum Master and Developers are present. Their

goal is to decide which Product Backlog items to develop within the time limit. It also

provides how to organize to achieve this. In practice, the Product Owner presents to

the rest of the team what will be the goal of the Sprint that is starting and the

members are invited to clarify all elements of the Sprint backlog together. Through

discussion with the Product Owner, the Developers select items from the Product

Backlog to include in the current Sprint. They break down the Items into technical

and operational tasks and they foresee the duration of the tasks taking into account

in the estimation the phases of testing and documentation. The Product Owner

proposes how the product could increase its value and utility in the current Sprint.

The whole Scrum Team then collaborates to define a Sprint Goal that communicates

why the Sprint is valuable to stakeholders. The Sprint Goal must be finalized prior to

the end of Sprint Planning. Indeed, each Sprint can be seen as a project in itself, in

which at the end, the team must be able to present a potentially deliverable product.

The duration of Sprint Planning cannot exceed 8 hours for a Sprint of 4 weeks or a

calendar month. For shorter Sprints, the meeting time can be scaled proportionally.

It is possible to summarize this meeting in 3 questions:

- What is the specific objective of the Sprint that is starting?

- Which priority items of the Product Backlog can be converted into a potentially

shippable increment before the end of the event?

https://manifesto.co.uk/scrum-sprint-planning/
https://manifesto.co.uk/agile-concepts-user-stories/
https://www.scrum.org/resources/what-is-a-scrum-developer

55

- How should the team organize itself to convert the selected elements into a

potentially shippable increment?

1.4.4.3 Sprint review

A sprint review is an informal meeting held at the end of a sprint, during which the

team shows what was accomplished, while the stakeholders provide feedback.

Based on this information, attendees collaborate on what to do next and the Product

Backlog may also be adjusted to meet new opportunities. The attendees of a sprint

review usually include the product owner and product manager, the Scrum Master,

the development team, the management, various business stakeholders, and

anyone else involved in the product management process. The main purpose of a

sprint review is to inspect the outcome of the sprint, collect feedback from all the

stakeholders, and adapt the backlog going forward. In a sprint review is always

shown the work done, usually with a demo session and it help to create

transparency, foster collaboration, and generate valuable insights. A sprint review

may last up to 4 hours in 4-week-sprints. The general rule is that the sprint review

should take no more than one hour per week of sprint duration.

1.4.4.4 Daily scrum

A daily scrum meeting, daily stand-up meeting or “DSM” for short, is one of the

“official” rituals organized on a recurring basis as part of an agile project

management process. It is called ‘’stand-up’ because it should take more than 15

minutes. It is then up to the Scrum Master to enforce this deadline. The objective of

this daily meeting is to make it possible to know the progress of the team in order to

achieve the achievement of one or more objectives determined during the sprint

planning. It is essentially a ritual dedicated to development teams, accompanied by

the Scrum Master. Stakeholders can come but only as observers. The objective is

not so much to establish a rigid organization as to allow maximum velocity of the

team on each sprint in order to achieve the achievement of the sprint

objectives. The presence of the PO is optional. Each member of the team specks

answering 3 basic questions: What did I do yesterday? What am I going to do today?

What are the existing blocking points that prevent me from moving forward?

https://www.scrum.org/resources/what-is-a-product-backlog
https://www.scrum.org/resources/what-is-a-product-backlog
https://creativetech-fr.devoteam.com/2019/08/01/le-scrum-master-un-role-essentiel/

56

The first question may be useful to Testers and the Product Owner because it will

allow them to know the progress of one or more user stories and to determine which

ones are testable. The second one gives to the stakeholders the real time

progression of the development and for the team is useful to know on what the other

members are working in to be more aligned. The third question is fundamental

because it allows the whole team to have a transverse vision on all the contentious

points adjoining a specific user story or the overall project, and this in complete

transparency.

1.4.4.5 Sprint retrospective

This meeting takes place after the review with the clients, once the sprint is

concluded. During each Sprint Retrospective, the Scrum Team plans ways to

increase product quality by improving work processes or adapting the definition of

"Done" if appropriate and not in conflict with product or organizational standards. To

do this, the Scrum Team discusses what went well during the Sprint, what problems

it encountered, and what could be improved. In doing this, they examine how the last

Sprint went with regard to individuals, interactions, processes, tools and their

standard. The main purpose of the Sprint Retrospective is to increase quality and

effectiveness, for this purpose the Scrum Team identifies the most useful changes

to be made. The most impactful improvements are addressed as soon as possible

and can also be added to the Sprint Backlog for the next Sprint. It is set for a

maximum of three hours for a one-month Sprint. For shorter Sprints, the event is

generally shorter. By the end of the Sprint Retrospective, the Scrum Team should

have identified the improvements it will implement in the next Sprint. The

implementation of these improvements in the next Sprint is the adaptation to the

inspection of the Scrum Team itself.

https://creativetech-fr.devoteam.com/2020/10/12/tests-utilisateur-ux-le-tour-de-la-question/
https://creativetech-fr.devoteam.com/2020/12/02/le-product-ower-chef-d-orchestre-du-produit/

57

2. Methodology: Techniques for the analysis

In order to analyze the project performance and foresee the duration and the costs I

have used several methods that are explained in this chapter. First of all, I unfold the

Earned Value, a traditional waterfall-related method that is also adopted over the

past years in the software product development. The method, relying largely on

baselined task-driven plans with fixed and well-defined scope, assume linear

progression on task execution and completion that pave the way to the devising of

schedule and cost performance indices that can be used for forecasting and making

decisions on project controls. Studying Scrum projects, the efficiency of this method

was doubted because it contrasts with the Agile theory. Another model is presented

to be more suitable, the Burndown charter. The Burndown charter is born in the Agile

environment to gather information about both the work the team have completed on

a project and the work that is yet to be done within a given time period. This method

doesn’t provide mathematical calculation for the forecast of time and cost as the

EMV but from the visualization of the chart we can have an idea about the speed of

the team and this helps to foresee the future progress and the optimal tasks the team

will be able to do in the next iteration. Moreover, this kind of tool is more adaptable

in an Agile environment where the scope often changes. The last method that is

taking into consideration is the Putnam model. Putnam studied software project by

collecting project data and fitting a curve to the data. He hypothesized an equation

able to predict the effort and time required to finish a software project of a specified

size. Plotting effort as a function of time yields the Time-Effort Curve. It is one of the

earliest of these types of models developed and is among the most widely used. This

seems to be very efficient to foresee project duration and cost but in the next chapter

I will go throw a limitation of the model and I will propose a theory that underline the

importance to take into consideration this limited factor.

58

2.1 Earned value

The Earned Value method has been developed as a tool facilitating project progress

control. It is used for determining a project’s status and the scale of current variances

from the plan. To implement earned value management, the PM must first make a

detailed plan of both time and budget, then make a corresponding detailed valuation

of the work on the project before it starts. As the project progresses, the PM must

assess at predetermined reporting periods how much value should have been

achieved according to the plan, how much value has been produced and how much

money has been spent. These three assessments form the basis for all earned value

analysis techniques. The method has been recognized as a useful tool by many

practitioners and government agencies and has become a standard in project

management. It proved to be versatile enough to be applied to any type of a project,

ranging from defense schemes worth millions and extending on many years to minor

IT projects. The analysis can be conducted on any level of work breakdown structure

and used by both clients and contractors. The purpose is to detect any deviation as

soon as possible, so that there is enough time to assess if the deviation is dangerous

for the project and, if necessary, to take corrective actions.

To analyze the functioning and limits of this methodology, however, it is necessary

to deepen the concepts and definitions that constitute its foundations.

The variables on which the EVM analysis is based are:

- BC, budget cost

- WS, Work Scheduled

- AC, Actual cost

- WP, Work Performed

Starting from these variables and parameters, the following indicators are calculated:

- Planned Value (PV, BCWS) – The authorized budget assigned to the

scheduled work to be accomplished for a schedule activity or work breakdown

structure component.

It is calculated as the product of the amount of work scheduled for the period

and the cost of the resources involved.

59

𝐵𝐶𝑊𝑆 = 𝐵𝑢𝑑𝑔𝑒𝑡 𝑐𝑜𝑠𝑡 ∗ 𝑊𝑜𝑟𝑘 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

The total planned cost of the whole project (BAC) equals BCWS at the

planned finish.

- Actual Cost (AC, ACWP) – Total costs actually incurred and recorded in

accomplishing work performed for a schedule activity or work breakdown

structure component.

This is given by the product of current cost and work actually performed.

𝐴𝐶𝑊𝑃 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑠𝑡 ∗ 𝑊𝑜𝑟𝑘 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑

- Earned Value (EV, BCWP) – The value of work performed expressed in terms

of the budget assigned to that work for a schedule activity or work breakdown

structure component.

It is calculated as the product of the budget initially planned and the work

carried out up to the moment in question.

𝐵𝐶𝑊𝑃 = 𝐵𝑢𝑑𝑔𝑒𝑡 𝑐𝑜𝑠𝑡 ∗ 𝑊𝑜𝑟𝑘 𝑝𝑒𝑟𝑓𝑜𝑚𝑒𝑑

From the analysis of the variables just described, it is possible to calculate the

following performance indicators:

- Schedule Variance (SV) – A measure of schedule performance on a project.

It is the algebraic difference between the earned value (EV) and the planned

value (PV).

𝑆𝑉 = 𝐵𝐶𝑊𝑃 – 𝐵𝐶𝑊𝑆

SV tells the PM if the actual progress achieved is ahead of or behind the baseline

schedule. A negative value is a symptom of delay with respect to the schedule.

Instead SV greater than 0 indicates that it is ahead of the initial plan.

60

- Cost Variance (CV) – A measure of cost performance on a project. It is the

algebraic difference between earned value (EV) and actual costs (AC).

𝐶𝑉 = 𝐸𝑉 – 𝐴𝐶

CV indicates whether actual project expenditures are exceeding the planned amount

for the corresponding value achieved. In other words, if it has been spent more or

less than planned to achieve a defined level of progress. A positive value indicates

a favorable condition and a negative value indicates an unfavorable condition.

- Cost Performance Index (CPI) – A measure of cost efficiency on a project. It

is the ratio of earned value (EV) to actual costs (AC).

𝐶𝑃𝐼 =
𝐸𝑉

𝐴𝐶

CV tells the PM if costs are being expended efficiently. In other words, if they are

getting more, less or the planned value for actual amounts spent. A value equal to

or greater than one indicates a favorable condition and a value less than one

indicates an unfavorable condition.

- Schedule Performance Index (SPI) – A measure of schedule efficiency on a

project. It is the ratio of earned value (EV) to planned value (PV).

𝑆𝑃𝐼 =
𝐸𝑉

𝑃𝑉

SV tells the PM if effort is being expended efficiently. In other words, if they are we

getting more, less or the planned value for effort (time) expended. An SPI equal to

or greater than one indicates we are ahead the time schedule and a value of less

than one indicates a delay.

The trend of earned value, planned value and actual cost are often reported

cumulatively as a function of time periods. In this way you can see the progress

trends immediately. Physiologically, a project whose life cycle tends to be waterfall

61

presents this S-shaped trend, therefore increasing in a very accentuated way in the

intermediate phases of the project, while less marked at the start and towards the

end. Planned (Scheduled), Actual and Earned Value S-curves can have six possible

arrangements, as in the chart presented in Figure 19.

An example of this trend is shown below, in Figure 18.

Figure 18. Project progress and S curves

One must look at the position of the EV S-curve as the reference curve line: whether

the AV or the PV above the EV curve indicates the project is over budget or is behind

schedule. The best case-scenario is the one where both the AV and the BV curves

are below the EV: in this case both the cost and the duration are better than

scheduled. The more the distance of the AV and BV curve lines from the PV one,

the larger the loss or gain of value and schedule. Close reasoning can be conducted

for Cost and Schedule performance indexes: aggregate indexes can be obtained for

the overall project by weighted sum of activity performance indexes. The best case-

scenario is when both the aggregate CPI and aggregate SPI for a project are more

than 1.

62

Figure 19. Possible arrangements of S-curves indicating planned value (PV), actual cost (AV) and
earned value (EV). For example, A1 indicates both cost overruns and schedule delay, with more

serious problems on cost than on schedule. A2 is a similar situation, where schedule delay is more
significant than extra cost

Starting from the indices listed above and considering the project parameters, it is

possible to calculate the project time and cost estimates, ie the time at completion

(TEAC) and the cost at completion (CEAC).

63

2.1.1 Earned Value “forecasting” parameters

2.1.1.1 Cost estimates at completion

Cost estimate at completion (CEAC or EAC) defines the final estimate of the total

costs of a project. The Project management discipline recognizes several

approaches to the calculation of this forecast:

- Traditional estimation approach:

The first original approach states that future remaining cost will be in line with the

budget (i.e. the total Budget at Completion minus the budgeted cost of work

performed). This means:

CEAC = ACWP + (BAC - BCWP) = BAC – (BCWP - ACWP) = BAC – CV

This approach is rather optimistic, assuming that cost overruns are old problems and

will not incur in the future. A better way for calculating EAC is a revised estimate

approach.

- Revise estimate approach:

CEAC = ACWP +
(BAC – BCWP)

𝐶𝑃𝐼
 = 𝐵𝐴𝐶

𝐶𝑃𝐼

This principle assumes that the project future will, at least, reflect the past

performance, if no corrective actions are undertaken. Therefore, starting from the

total cost allocated to the budget, the BAC, a Cost Index lower than one, ie if you are

incurring costs higher than those estimated, will lead to a CEAC higher than the BAC.

Conversely, a CI greater than one will cause the cost on completion to be lower than

the budgeted one.

- Pessimistic approach

𝐶𝐸𝐴𝐶 =
𝐵𝐴𝐶

𝑆𝑃𝐼∗ 𝐶𝑃𝐼
 = 𝐵𝐴𝐶

𝐶𝑅

64

This last approach considers, in addition to the influence of a possible delay or

advance on the final cost of the project, also the effect of a possible loss or gain from

the point of view of costs (therefore the possible variation of the actual costs with

respect to those budgeted). This approach is defined as pessimistic because when

the two SPI and CPI indices show similar trends (at the same time they are both

greater or less than 1), the effect on the CEAC is amplified. Conversely, the effect of

these levers tends to counterbalance when they present opposite trends. In practice,

when the SPI is less than 1, this estimate is precautionary; conversely, when the SPI

is greater than 1, its contribution tends to be reasonably neglected.

2.1.1.2 Time estimates at completion

Similarly to the deductible assumptions on the cost just presented (CEAC), it is

possible to make similar forecasts on the completion times of the project. It is defined

Time estimate at completion (TEAC or AC)

The two approaches to calculating this estimate are as follows:

- Traditional estimation approach:

𝑇𝐸𝐴𝐶 = 𝐴𝑇 + (𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑃) ∗
𝑃𝐷 − 𝑇

𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑆

Where PD (Planned duration) is the estimated completion time in the preliminary

phase of the project. The parameter T, on the other hand, indicates the moment in

which the analysis is carried out. As with the calculation of the CEAC, the traditional

approach is limiting in fact, it assumes that the work rate, from moment T until the

end of the project, is constant and equal to that estimated in the budget a priori.

Note that: if BCWP = BCWS, then TEAC will be exactly equal to PD.

- Revised estimation approach

𝑇𝐸𝐴𝐶 = 𝐴𝑇 + (𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑃) ∗
𝑃𝐷 − 𝑇

𝐵𝐴𝐶 − 𝐵𝐶𝑊𝑆
∗

1

𝑆𝑃𝐼

65

This approach inserts the SI (or SPI) index into the calculation of the completion

time. If the schedule index is less than 1, therefore the project is progressing in a

situation of inefficiency, the expected time for completion will lengthen.

Note that: if BCWP = BCWS, this is always true at time 0, then the TEAC will be

equal to BAC.

2.2 Alternative to the Earned value method: Earned schedule

The Earned Schedule methodology, whose authorship is attributable to Walter Lipke,

was born recently, in 2003, and represents an extension of the theory and practice

of Earned Value Management. Integrated since 2005 in the standards dictated by

the PMI, it allows to elaborate more meaningful considerations on completion times.

The notion of Earned Schedule (ES) overcomes some limitations inherent to the

Earned Value method: it measures the schedule progress in time units instead of

dollar amounts and eliminates the defect of the SPI to tend to unity as the project

closes to completion, regardless of any early or late progress. The value of the ES

is obtained by projecting to actual time AT the EV curve onto the PV curve line

assuming that the current EV should actually have been earned at that projected

point in time. A graphical representation of the Earned schedule is in Figure 16.

Therefore, the ES is defined as:

𝐸𝑆 = 𝐶 +
𝐸𝑉 − 𝑃𝑉(c)

𝑃𝑉(c) + 1 − 𝑃𝑉(c)

Where C and the associated subscript c denote the number of time units for which

the EV exceeds the PV. As a consequence, time-based SV(t) and SPI(t) can be

defined as:

𝑆𝑉 (𝑡) = 𝐸𝑆 − 𝐴𝑇

Where, positive SV (t) indicates an advance with respect to the initially scheduled

plan, vice versa SV (t) less than 0 indicates a delay. This index, calculated in this

66

perspective in which it is a function of time, results in returning more confident

considerations than the schedule variance calculated with the traditional method of

EV, in which, precisely, it is calculated with the unit of measurement of the value (SV

($)).

𝑆𝑃𝐼 (𝑡) =
𝐸𝑆

𝐴𝑇

TEAC is therefore calculated as:

𝑇𝐸𝐴𝐶 = 𝐴𝑇 +
(𝑃𝐷 − 𝐸𝑆)

𝑆𝑃𝐼 (𝑡)

𝑇𝐸𝐴𝐶 = 𝑇 +
𝑃𝐷 − 𝐶 +

𝐸𝑉 − 𝑃𝑉(𝑐)
𝑃𝑉 (𝑐 + 1) − 𝑃𝑉(𝑐)

𝐶 +
𝐸𝑉 − 𝑃𝑉(𝐶)

𝑃𝑉 (𝑐 + 1) − 𝑃𝑉(𝑐)
𝐴𝑇

Figure 20. Graphical representation of the Earned Schedule

67

2.3 Burn Down charter

For agile project progress visualization, the burn down chart was introduced, which

can be a powerful tool for any project. At a Sprint-level, the burndown presents the

easiest way to track and report status, i.e., whether your Sprint is on or off-track, and

what are the chances of meeting the Sprint goals. The burndown chart can provide

near real time updates on Sprint progress. At the beginning of a Sprint, the Scrum

team perform Sprint Planning and agree to take on development work worth a certain

number of Story points. This forms the basis for the Sprint Burndown chart. The total

story points agreed at the beginning of the sprint make up the y-axis, and the

individual dates in the Sprint make up x-axis. There are two lines represented in the

Burndown charter: one represents the ideal progress rate, the other the team

progress rate. Of course, not all sprints are made equal. So actual Sprint Burndown

may not look as the ideal progress. For instance, Scrum teams are prone to

overestimate their ability to deliver during their first development Sprint on a new

project. Or if they are a newly formed team. Or if they are learning to work Scrum. In

such cases, it’s quite possible that the team fall behind schedule and the burndown

chart helps bring issues to the surface. The ideal progress bar serves as a guide

for the Scrum team by showing them where they need to be. The team progress rate

expresses the number of story-points (or tasks) completed per iteration. Only tasks

completed at the end of the iteration are counted.

Figure 21. Example of Burndown charter in a Scrum project

After a few sprints, the speed of a Scrum team will most likely be predictable and

allow for a fairly accurate estimate of how many points it produces during a sprint.

https://scrum-league.org/tribune/les-roles-dans-scrum/

68

The sprint velocity is a metric that helps the team to achieve the ideal Sprint

burndown. It represents the average number of story points a team can take on for

a Sprint. This number is based on observing how many story points were delivered

during the previous Sprints, and simply calculating the average story points delivered

per sprint. When you know your team’s velocity, it is then going to be easy to manage

how much work they can commit to at the beginning of a Sprint.

2.3.1 Burnup charter

Essentially, a Burn-up chart seems to be an inverted Burn-down chart. However, a

Burn-up chart offers a piece of very crucial information that a Burn-down chart

doesn't offer, which we will shortly get to that in a moment. Both the axes in a Burn-

up & Burn-down chart are the same. The only difference is that - the Burn-up chart

showcases the amount of work that is completed along the way, instead of showing

the remaining amount of work. The main focus of a Burn-up chart is to show how

much work the team has completed throughout the product life cycle. The Burn-up

chart also shows the ideal Burn-up rate, similar to the Burn-down chart. But, there's

one vital piece of data that the Burn-down chart doesn't show and the Burn-up chart

does show, i.e. Burn-up charts show a scope line that simply tracks the time at which

tasks are removed or added. If a certain product tends to have a fixed scope, then

it's always a better choice to use Burn-down charts, to keep things less complicated

for the viewer. However, if the scope of a product is ever-changing and there's a

need to showcase progress at every step to the stakeholders, then it's better to go

ahead with a Burn-up chart.

Figure 22. Example of Burn Up charter in a Scrum project

69

2.4 Putnam model

The Putnam model can be used to predict and manage software development

projects. It is a management tool that takes, as input, easily obtained manpower data

and produces cost and schedule estimates. The original paper by Lawrence H.

Putnam published in 1978 is seen as pioneering work in the field of software process

modelling. Created by Lawrence Putnam, Sr. the Putnam model describes the time

and effort required to finish a software project of specified size. SLIM (Software Life

cycle Management) is the name given by Putnam to the proprietary suite of tools his

company QSM, Inc. has developed based on his model. It is one of the earliest of

these types of models developed, and is among the most widely used.

Traditional methods develop to work in an Agile environment are essentially static.

On contrary, the Putnam model reflects a dynamic software Life-Cycle Model

Approach. It will be instructive to examine the data that led to the formulation of the

life-cycle model. The data are aggregate manpower as a function of time devoted to

the development and maintenance of large-scale business type applications.

Putnam noticed the software staffing profiles followed the well-known Norden-

Rayleigh distribution. Norden took the Rayleigh distributions and observed that it

provides a good approximation of the manpower curve for various hardware

development processes, so he plotted the Norden’s curve in Figure 23 that

represents the manpower as a function of time.

Norden’s proposed an equation to represent the Rayleigh curve:

𝐸𝑓𝑓𝑜𝑟𝑡 =
𝐴

𝑡
∗ 𝑡𝑑 ∗ 𝑒

−
𝑡2

2𝑡𝑑
2

Where:

- E is the effort required at time t

- A is the area under the curve

- Td is the time at which the curves attain maximum value; td is the time the

curve reaches a maximum. Empirically this is very close to the time a

system becomes operational and it will be assumed hereafter than t-Pmax =

td = development time for a system.

70

Figure 23. Expected manpower behavior of a software system as a function of time

 The manpower included in the graph is for the entire project from requirements

specification through planning, design, modelling, release, and product support. The

40:60 rule says the effort requires to develop the product (design and code) is equal

to 40% of the total budget while the effort requires to maintain the product

(modification and upgrades) is equal 60%. Knowing that the peak occurs after about

40 percent of the schedule gives the first good prediction of the project completion

date from the left graph in Figure 18. It is more difficult to project a completion date

from the cumulative data. The area under the curve represents the total number of

man years expended. When multiplied by the average cost per man year, the area

under the curve represents the cost of the job. By manipulating the time of the peak

and the size of the peak, different costs are obtained.

The first assumption of the Putnam model is that all software projects follow the

Rayleigh-Norden curve. Only a small number of engineers are required at the

beginning of a plan to carry out planning and specification tasks and as the project

progresses and more detailed work are necessary the number of engineers reaches

a peak. After implementation and unit testing, the number of project staff falls.

Putnam agreed with the base observations of Norden and revised it. He further

proposed another simpler model.

71

The software equation:

𝐵
4
3 ∗ 𝑆𝑖𝑧𝑒

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
= 𝐸𝑓𝑓𝑜𝑟𝑡

1
3 ∗ 𝑇𝑖𝑚𝑒

4
3

- Size is the product size (whatever size estimate is used by your organization

is appropriate). Putnam uses ESLOC (Effective Source Lines of Code)

throughout his books.

- B is a scaling factor and is a function of the project size.

- Productivity is the Process Productivity, the ability of a particular software

organization to produce software of a given size at a particular defect rate.

- Effort is the total effort applied to the project in person-years.

- Time is the total schedule of the project in years.

The software equation in terms of Effort becomes:

𝐸𝑓𝑓𝑜𝑟𝑡 = [
𝑆𝑖𝑧𝑒

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑇𝑖𝑚𝑒4/3
]

3

∗ 𝐵

From this equation we can easily see that the effort will not be linear during time, it

depends on the life cycle of the project. A constant level of manpower throughout

the project duration would lead to:

- Wastage of effort

- Increase the time and effort to develop the project

- Some phase would be overstaffed and understaffed

- Increase the cost of development

The Putnam-Norden-Rayleigh (PNR) Curve, Figure 24, provides an indication of the

relationship between effort applied and delivery time for a software project. The base

concept is that putting more people on a project does not decrease time linearly, the

curve obtain is the one in Figure. The implication is that delaying project delivery can

reduce costs significantly. The curve indicates a minimum value td that indicates the

least cost for delivery (i.e., the delivery time that will result in the least effort

consumed). As we move left of td, so as we accelerate delivery, the curve rises

72

nonlinearity. A level of effort Ed will be required to achieve a nominal delivery time td,

that is optimal in terms of schedule and available resources. Although it is possible

to accelerate delivery, curve rises very sharply to the left of td. If we attempt further

compression of time the project moves into the ‘impossible region’ and the risk of

failure becomes very high. In this region the project delivery time cannot be

compressed more beyond 0.75 td. The PNR curve also indicates a lowest cost

delivery option, to. A small compression in delivery schedule can result in substantial

penalty on human effort and hence project development cost.

Figure 24. Putnam-Norden-Rayleigh (PMR) Curve

There is a common management myth that if the project is late from its delivery dates

then by increasing more people in the development team can complete the project

on time. It does not work in the software development environment because

increasing more people in the final phases will delay the project even further. The

main reason are as follows:

- new people need time to synchronize with the existing team

- new people need training work on the project

- there will be no or little work on the project because trainers are the team

members working on the current project.

In the SW development environment projects schedule are flexible i.e., can be

reduced or extended. It is possible to compress a desired project completion date by

adding resources to some extent and it is possible to extend a competition date by

73

reducing the number of resources. Most software organizations, regardless of

maturity level can easily collect size, effort and duration (time) for past projects.

Process Productivity, being exponential in nature is typically converted to a linear

productivity index an organization can use to track their own changes in productivity

and apply in future effort estimates.

Relevant for the Revise project that I will propose in the internship project application

is the Putnam theory for the Productivity variable. In his model the productivity is the

average productivity that remains constant for the whole duration of the project.

Putnam takes in consideration another variable that is the Difficulty of the project.

This latter is in relation with the average productivity following this equation:

𝑃𝑅 = 𝐶𝑛 ∗ 𝐷−
2
3

So, the productivity for different projects will be the same only if the difficulty is the

same. This does not seem reasonable to expect very frequently since the difficulty

is a measure of the software work to be done, i.e., K/td =D which is a function of the

number of files, the number of reports, and the number of programs the system has.

Thus, planning a new project based on using the same productivity a previous project

had, is fallacious unless the difficulty is the same in the Putnam theory. This

important limitation of the Putnam model implies that the team works with a constant

learning curve. The revise model will highlight the importance to take into

consideration this variable. In the learning theory there is a proportion between the

performance on a task and the number of attempts or time required to complete it.

This can be represented on the continuous line in the graph below in Figure 25, while

the dotted line shows a linear increase in the learning process.

74

Figure 25. Learning curve

In case the team works following a learning curve the productivity increases until a
max of 100%. As a consequence, in the software equation the denominator will
increase and the effort will decrease during the project.

75

3. Analysis and results of a Scrum Project

I attended six months internship in an IT company in Sophia Antipolis, Cote D’Azur,

France. In this experience the company made us simulate a Scrum team working for

an internal project. Although in this internship I worked for the whole duration also

as Developer I will not detail the development of the application, but I will just briefly

introduce it. I will focus on how the agile framework is implemented in a IT company

and I will analyze the data collected during my experience studying the project

performance. In particular, I will monitor my project throw the burndown charter and

the Earned value model. These two methods suggest unlike decisions to take in the

project due to a different forecasting of performance. The data I have collected from

the internship will be useful also to criticize the Putnam resource allocation model

and propose a Revised theory. The Putnam model, as I have already explained in

the chapter before, is very used in IT companies and it bases his focus on the

software estimation of time and effort. Nevertheless, a Putnam hypothesis was

investigated and here I’m proposing a variation of this model. The main difference

from the two models is in one variable that for the old model is constant while in the

Revise one is increasing during time following the learning curve. The importance of

take in consideration the learning curve is pointed up also speaking about the Burn

Down charter, in fact I will show that a Project Manager can make errors in prevision

if he/she considers it constant, and this can comport delay in the schedule, bad

partition of the effort and wrong allocation of resources. The forecast obtained with

EMV, Burndown charter, Putnam and the Revised model has been compared with

the result data of the project at the end of the internship in order to investigate which

model better estimate performance.

3.1 Overview of the project

The project consists in the development of a web-application mainly used for

Business Manager and HR. Its main purpose is to ease the collaboration between

the two in order to have a flawless and interactive way to handle the scouting, hiring

and career follow-up of consultants. This project is called MiamiV2. The application

already exists but it wasn’t very appreciated by the clients because hard to use and

with a lot of features missing. The client asked also to implement in the old version

76

the “Alten Grains”, a way to remunerate consultants for their activities. The product

is a completely new web application, creates from scratch starting from the analysis

of the needs of the clients. For this reason, they didn’t allow us to see the old version

of the project. The product has been realized using exclusively native Cloud

Technologies (Microsoft Azure, AKS, Redis Stream, ServiceBus, FaaS, …). During

the development phase we have tested real world project management

methodologies and see which ones are best suited for the development team. The

main real goal for the company, apart to deliver a product, was to train us, as interns,

to work in a real Scrum environment. In particular, at the beginning, we spent a lot

of time analyzing all the roles, the ceremonies and the philosophy of the Agile

framework. To succeed to this goal, we were personally involved in all the roles that

take part in the development of a modern application. For the whole duration of the

Project, usually every two iterations, we have turned the Scrum roles. I was the one

with a more functional path of studies, for this reason I kept the role of the Product

Owner for the majority of time. In the meanwhile, I had always worked as frontend

developer.

To be ready to start the Project we read the paper of specifications to identify the

customer needs, which are the different roles in the company and what they can see

on it. The main initial requirement from the costumer (ALTEN) was a user-friendly

website that employees can easily use. One important feature is the multi-tenancy,

Miami V2 must be developed as a single cloud-native SaaS solution. Multiple

business unit should be able to use Miami V2 without interferences between them.

Initially we were involved in several meetings and workshop with roles with different

responsibilities in the company with the aim to answer all our questions and so to

better understand the functionalities that the website will have. Something that has

taken up a lot of our time at the beginning were the lessons done in order to explain:

- The Agile manifesto and the Scrum framework

- The role of the Quality Assurance and how to test the software

- Architectures

- Cloud infrastructure creation

- Story mapping

- backlog and sizing (in Jira)

- How to organize and incur a workshop

77

The two screenshots below are the layout of two pages of the developed project

‘Miami V2’. I entered in the web page as ‘Business Manager’, so these are filtered

by his visibility. In the Figure 26 is displayed the dashboard with reactive and

moveable widgets. Every person has a dashboard as entering page but the BM

differently from others has widgets related to the statistics of Grains and details about

consultants. In the Consultant page in the menu is possible to see all their

information, the project in which they are working on and the history of their

performance. In the Figure 27 we can see the ‘Alten Grains’ page. All the requests

made by consultant to the BM are listed. The BM can accept, deny or not reply at

them. In this last case they are displayed in the ‘pending’ requests.

Figure 26. Screenshot of the Dashboard of Miami V2

78

Figure 27. Screenshot of a page of Miami V2

3.2 Initialization and implementation

After having read all the specifications of the client we had an initial ‘Sprint 0’ in order

to transform these requirements in functional and technical diagrams.

We created the C4 model, the vision board, the functionalities, the costumer journey

and the story mapping. The C4 model is a simple way to communicate software

architecture at different levels of abstraction, the four “C” stay for: Context,

Container, Components, Code. This type of models is useful for the technical staff

of the team, the developers. As I previously said, I will focus more on the functional

diagrams respect to the technical one.

3.2.1 Vision board

Regarding the functional side we fill the vision board to have a clear image of the

product. A vision statement is a written declaration clarifying your business’s

meaning and purpose for stakeholders, especially employees. It describes the

desired long-term results of your company’s efforts. The target group is the final

users that will use our application and the needs are the reason why they will use it.

In the product we wrote the main features the product is going to fulfil. The value is

the benefit added in the development of the project. In our case, an old application

79

with the same goal already exists but it is not used much by employee because it’s

not “user friendly”. Therefore, as we can see from the Figure 28 one aim is to make

it easier to use. Another added value from the application, as I have already said, is

the Alten Grains feature.

Figure 28. Vision Board

3.2.1.1 Functionalities

Thanks to the ‘functionalities’ diagram we have a general overview of what a user

can do as soon as he logs in. To have a better vision of our application we analyze

each Persona indicating each functionality he is able to do. The main function, so

the main reason why the user wants to use our platform, is positioned in the center

and circled in this graph.

80

Figure 29. Functional diagram of MiamiV2

3.2.1.2 Costumer Journey

The costumer journey is a graph that allows to represent the succession of actions

of each user. This leads the team to propose some idea of how they want to design

the application. Starting from the login each user will have a similar dashboard but

the pages he is allow to see and the functionalities he will be able to use are different

due to the different goal they are using the app. For space problem I do not report

the graph here. For the big dimensions a image of the Costumer journey is not

shown.

3.2.1.3 Story mapping

For both the goal of the application so, the Alten Grains (shown in the Figure 5) and

MiamiV2 we develop a user mapping. In the green post-it are shown the people that

are interested in the pink post-it, that specific functionality. With “Everybody” we

mean that each user is going to use that function. In the yellow post-it we wrote Who,

How and Why they should use that function. In the story mapping the standard

sentence "AS …I CAN …. SO THAT …” is used to write the user requirements. The

last part regarding the why (so that) sometimes is not important if the aim is easy to

predict, and for this reason sometime is left out. The user stories may be organized

81

within hierarchies, we use a prioritization from P1 to P3 to understand from where

we should start.

Figure 30. Story Mapping of 'Alten Grains'

3.2.2 Implementation of the Scrum methodology in an IT company

The main objective of this project is to understand how the agile methodology works.

For this reason, each member of the team has worked autonomously in a transparent

environment, respecting all the ceremonies of this framework.

Our Sprint 1 started the March 28 and every sprint lasts two weeks, for a total of ten

days of work on each. The resources allocated on the project were not constant for

the whole time. In particular, from the iteration 1 to the iteration 4, nine people worked

for this project. Starting from the sprint 5 four resources were assigned in a different

project, for the back office. In the sprint 6 a new inter enjoyed the team and the

project has continued with six resources until the end of it.

Each morning the team meets for the stand-up meeting. This event has a duration

of 15 minutes regardless of the people who were to speak. Often the time is not

82

adhered to precisely as additional issues are often discussed even though it is not

the right meeting to do so. It is very important, therefore, to have defined timelines.

Figure 31. Trend of the Stand-up meeting

As we can see from the graph in Figure 31, the team does not keep the duration of

the stand-up meeting constant and this can be attributed from not having a true

scrum master, as he is who has to make sure that the duration of this meeting is

met. Moreover, we can see that the trend is decreasing, at first the team did not know

how to deal with this ceremony and took more time than necessary to explain what

they had done the previous day and what they should do on the current day. Over

time we realized that the importance of this event is to focus on the main events

without going into the details of the tasks addressed. Reducing a meeting that is

addressed every day implies a not insignificant increase in time spent on the project.

Not relevant was the decrease in the number of people on the team because

although there were fewer members the responsibilities and tasks performed by

each one increased and consequently increased the amount of time each person

spent explaining what he or she did the previous day and what he or she will do on

the current day.

With the presence of an experienced Scrum Master we probably would have had a

constant meeting duration of 15 minutes, as we can see though, very often this time

0:00

0:02

0:05

0:08

0:11

0:14

0:17

0:20

0:23

1 2 3 4 5 6 7 8 9 10 11 12

Stand-up duration

83

was excessive. During the retrospective meeting, in the company I’m working now,

we discuss often about how to make the stand-up meeting more efficient. In fact this

is meeting is usually criticized and is very common to find companies working in full

Agile but not conducting this event every day, but on alternate days. Also, since the

agile philosophy is very focused in transparency usually the teams work in an open

space environment, which facilitates communication, and a very complete view of

the product backlog indicating what tasks everyone is doing is also had through a

common dashboard. To track and manage our project we use the tool Jira.

The morning of the last day of the iteration was dedicated to the Sprint Review with

stakeholders. This meeting is an hour and a half long and was divided into three

parts. Initially, the scrum master discusses the tasks that were completed in the

current sprint and what could not be completed, explaining the reasons why. Next,

what was done is shown by the product owner through a demo. At this time, it is very

important to gather the customer's opinions and show the various implementation

options. In conclusion the goals that the team wants to achieve in the next sprint are

shown.

After the review the team meet for the Retrospective. In this meeting the team

exposes general feedbacks about how the Sprint has gone. Each person had to

reflect on the problems and the positive things of the sprint just finished both on a

personal and group level. No technical comments are addressed.

In the afternoon we carry out the Sprint Planning. After receiving customer feedbacks

the team with the help of the Product Owner decides which tasks to carry out in the

next sprint. The Product owner first of this event is in charge to prioritize the tasks

and writing the user stories in a way that are easily understood by everyone. In order

to decide what it will be developed in the next sprint the team has to re-size each

task considering the difficulty on implementing it. To size the tasks we use the ‘Poker

planning’. Each estimator is holding a deck of Planning Poker cards with values that

follow the Fibonacci sequence from 1 to 13 as maximums. The values represent the

number of story points, so how much time the team thinks they will spend on it. In

this way the members can compare if the estimate values are very different and as

a result, better understand the task. The final size is the average of the estimate

values.

84

The stand-up meeting, the review, the sprint planning and the retrospective were

regularly done in each sprint while the refinement was usually planned when the

team needed it.

3.3 Monitoring

During sprint 6, almost in the half of the internship, I monitored the project in order

to understand its progress, predict its end and suggest any decisions in case of

delay. In this part I’m monitoring throw two techniques already explained: The

Burndown chart and the Earned Value. The Burndown charter graphically shows

where we are compared to the schedule and thanks to the velocity of the team,

directly proportional to the learning curve, we are able to predict the future progress

of the project and its deadline. I applied the mathematical formulation of the Earned

Value method to monitor and to predict the project time and duration. We will see

through this chapter that these two methods will lead to different scenarios.

3.3.1 Burndown charter

Agile teams use this simple, visual tool to determine the work they have completed

on a project and the work that is yet to be done within a given time period, or as

Scrum teams call it, a Sprint.

In order to study the progress of the project from its initial, March 28, up to the

monitoring date, June 15, I took into consideration the "theoretical points" and the

"actual points" in 6 iterations. The "theoretical points" are the points that the team

planned to make in each sprint while the "actual points" are the points that have

actually been completed, which is equivalent to the tasks in 'Done' in the Sprint

Backlog plus the percentage completed tasks in 'In progress'.

In these six sprints the team was scheduled to perform a total of 185 points, which

are equivalent to the "theoretical points", instead only 125 "actual points" have been

completed, which show a delay in the scheduling.

The speed was obtained by dividing the points done by the actual duration of each

sprint, which is equivalent to 10 days. In order to complete all the tasks planned, the

team should had worked with an optimal speed of 3.08 (AVERAGE

85

(3.5,2.3,3.3,2.9,2.7,3.8))in these 6 sprints, so 60 days in total, but it managed to

sustain an average speed of 2.2 (AVERAGE(0.9,1.1,2.3,2.5,2.5,3.2)).

Iteration

1
Iteration

2
Iteration

3
Iteration

4
Iteration

5
Iteration

6
Theoretical

points 35 23 33 29 27 38
Actual
points 9 11 23 25 25 32

Theoretical
velocity 3.5 2.3 3.3 2.9 2.7 3.8
Actual
velocity 0.9 1.1 2.3 2.5 2.5 3.2

Table 1. Data monitored in the six Sprints

Through this information I was able to design the Burndown charter. The "Optimal"

line was found subtracting at each iteration the points that had to be carried out with

an optimal speed, while the "Effective" curve was found by subtracting the points

that were actually completed. From the graph it can be easily seen that the actual

curve shows a delay in the project compared to the theoretical one. The reason of

the delay is not understandable just from the graph but throw the data of the

advancement of tasks and the velocity progress we can have an idea.

Figure 32. Burndown charter until Sprint 6

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6

P
o

in
ts

Time

Burndown charter

Optimal

Effective

86

For the comparison with the other models and for the forecasting I will use the

Burndown charter. Here below in Figure 33 the Burnup charter is reported in order

to point up that with the data collected is possible to plot both the graphs.

Figure 33. Burnup charter until Sprint 6

We can identify 3 major reasons that cause this delay:

• High optimism in the first sprint due to inexperience in sizing and lack of

knowledge of an average team speed. This led the team to accumulate

unfinished tasks.

• In the assignment of sprint tasks, especially in the first period, the team's

learning curve was not considered. The team is initially composed of 9 interns,

with no experience behind them, different courses of study and different

knowledge of the technologies used. For this reason, it is very important to

consider in the sizing that the team is not working at 100% of its knowledge

and that therefore part of its time will be dedicated to the "Strike". Different

initial knowledge leads the resources to position in different learning curves

shown in the Figure 34.

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

A
xi

s
Ti

tl
e

Axis Title

BurnUp Charter

Optimal

Foresee Effective

87

- The curve 1 in the case the resource does not have high IT knowledge.

- The curve 2 in the case the resource has a path of IT studies but

without knowing the technologies used

- The curve 3 in the case the resource has an IT path and a discrete

knowledge of technologies.

The curve in blue is the average learning curve of team and it depends on the

number of resources. In this case a new resource arrived in sprint 4 while in sprint 5

a part of the team was assigned to another project for this reason the learning curve

decreases.

Figure 34. Learning curve of each group and average learning curve of the team

• The third factor that had not been taken into account in the sizing is the actual

time of work, ie the time that really adds value to the project. Especially in the

initial phase, the team was engaged in various lessons on technologies

(which positively have influenced the learning curve), on the Agile

methodology, and on the company's philosophies.

As a demonstration of what has been said, I have repeated the calculations

considering the team's learning curve and the time that actually gave an added value

to the project, that is the theoretical time minus the time due to the various

40%

50%

60%

70%

80%

90%

100%

110%

1 2 3 4 5 6

Le
ar

n
in

g

Time

Learning curve

1

2

3

Average learning curve of
the team

88

ceremonies and the strike time. With these considerations we can see from the Table

2 that the points actually made and those the team has planned in the sprit planning

are much more aligned. It is, therefore, very important for future planning to take into

account the team's learning curve and actual working time.

Table 2. Monitoring considering the real working time and the Learning curve

3.3.1.1 Burndown charter forecast

The Burndown charter gives us an idea of how the project is performing in the

moment of monitoring. To get more information on which could be the progress of

the project in the next sprints we need to make predictions. The end date of our

project is 26/08, so the project must be completed in exactly 6 months of internship

since sprint 1 started on 28/03. Taking into consideration the data I have found in

the monitoring, I foresee the behavior of the project drawing a forecast curve in the

Burndown charter, from Sprint 7 until its end.

In order to plot the curve, some data have been hypothesized thanks to historical

data. The future speed of the team has been considered as the average of the speed

in the last three iterations. Moreover, the speed was multiplied by the delta of

learning curve gained in each sprint because it is directly correlated to the knowledge

of the team. To take in consideration only the time the team is working to add value

to the project one day was removed considering all the meetings of the Scrum and

in alternating iteration another day was considered off for possible future lessons

and events. From these data was possible to obtain the "Points able to do",

multiplying the foresee velocity by the time that is actually expected to work. The

learning curve of the team will reach the 100% just from the Sprint twelve and after

this moment the speed will be constant for future Sprints.

t 1 2 3 4 5 6

Average learning curve of the team 65.0% 72.5% 76.8% 80.0% 94.6% 91.3%

Points able to do 13.9 13.0 25.3 23.2 25.5 34.7

Points really done 9.0 11.0 23.0 25.0 25.0 32.0

89

Table 3. Forecast of the next Sprints

Thanks to these forecasts, it was possible to design the Burndown charter of the

entire project in order to see if the team will be able to catch up the delay. According

to these estimations, the project will be concluded at the beginning in the Sprint 12,

instead of the end of Sprint 11, the deadline is therefore set for 9 September 2022.

Thanks to the increase in speed in carrying out the tasks, the previously accumulated

delay is largely recovered despite this does not imply to completely finish the project

on the deadline, but an iteration later. In this case the team in the twelfth Sprint

should develop just seven points, so the delay can be completely recovered just

increasing a bit the speed in the last iterations. Considering that the values have

been estimated and that the delay is not alarming, the risk has been considered

'Accept' and no actions have been taken.

Figure 35. Forecast of the Burndown charter for the next Sprints

t 7 8 9 10 11 12

Average learning curve of the team 93.7% 95.8% 96.7% 98.0% 99.7% 100.0%

Average speed 2.98 3.05 3.07 3.12 3.17 3.18

Point able to do 26.86 24.40 27.67 24.93 28.51 25.43

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
o

in
ts

Time

Forecast of the Burndown charter

Optimal

Foresee Effective

90

3.3.2 Earned value

The Earned Value is one of the most diffuse method to measure and forecast the

project cost and time performance, comparing if the costs and work done are in line

with what was planned. Compared with the burndown charter here we can have a

detailer view of the delay.

The model is based on some input variables, which are explained below and which

are represented in the Table 4:

- Budget cost; it is the cost that was planned at the beginning of the project

which is equivalent to the cost of the interns plus the cost of the project

managers in charge of following our internship. In this case it was assumed

to be constant, not having additional information on planned costs. The sum

of the total planned cost is called BAC, budget at completion.

- Work Schedule: it is the work that was planned to be done at the beginning

of the project. Since the project consists of 290 tasks, it was considered that

in order to complete all of them all it was necessary to finish at least 9% of the

total for each sprint.

- Actual cost; it is the cost that in reality has been spent up to the monitoring

date. Initially it is in line with the planned cost but from the fourth sprint it

changes as there is a decrease in the resources allocated to the project

compared to what was planned.

- Work performed; this is the work that has actually been done up to the

monitoring date. In particular they are the tasks that the team has completed

in each sprint with respect to the total.

91

Sprint

N. of

resources

Budget

cost

Actual

cost

Work

schedule

Work

performed

1 9 5409.1 5409.1 9% 5%

2 9 5409.1 5409.1 9% 5%

3 9 5409.1 5409.1 9% 9%

4 8.75 5409.1 5284.1 9% 10%

5 5 5409.1 3409.1 9% 10%

6 6 5409.1 3909.1 9% 12%

7 6 5409.1

9%

8 6 5409.1

9%

9 6 5409.1

9%

10 6 5409.1

9%

11 6 5409.1

9%

Table 4. Input data of the EV

Thanks to these variables and parameters is possible to calculate the indicators of

project cost and time performance that are explained and reported in the Table 5:

- BCWS, also called PV (Present value), it was calculated as the product

between the amount of work planned in each sprint (Work schedule) and the

planned cost of the resources involved (budget cost).

- ACWP, also called AC (Actual cost), it was calculated as the product between

the work actually performed (Work performed) and the cost actually incurred

(Actual cost).

- BCWP, also called EV (Earned value), it was calculated as the product

between the work actually performed (Work performed) and the planned cost

of the resources involved (Budget cost)

92

Sprint BCWS ACWP BCWP
0 0 0 0
1 491.7 167.9 167.9
2 491.7 205.2 205.2
3 491.7 429.0 429.0
4 491.7 455.5 466.3
5 491.7 293.9 466.3
6 491.7 431.3 596.9

Table 5. EVM variables

From these indicators is possible to obtain the cost variance and the schedule

variance. We can see from the Figure 36 that the cost variance is positive, the project

is running under budget. The budget cost of work performed is higher than the actual

cost of work performed so the difference between them is higher than zero, we are

saving money. The schedule variance instead is negative, the project is behind

schedule. The difference between the budget cost of work performed and the budget

cost of work scheduled is lower than zero so, we are late. The information to be late

in the project was already pointed up by the Burndown charter so, we need now to

calculate other indicators to investigate more on the causes.

Figure 36. Graphical representation of the EV

93

Despite we are late, the curve of the BCWP is increasing and could reach the BCWS.

To have a clearer value of the delay I calculated the SI, schedule index, as BCWP

divided by BCWS in each sprint. If this value is higher than one we are beyond the

schedule, instead if it is lower than one we are behind the schedule. In the Table 6

we can see that the velocity of the team is quickly increasing so, the team is

recovering the delay.

t 1 2 3 4 5 6

SI (€) 0.34 0.42 0.87 0.95 0.95 1.21

Table 6. Schedule index in monetary terms

In any case the total SI (€) for the whole project since the beginning until now is

obtained as:

SI (€) =
BCWP

BCWS
 = 0.79

So, the project is behind schedule of 1-0.79 = 0.21 €.

To have a clearer overview of the project performance I calculate the Cost index.

CI (€) =
BCWP

ACWP
= 1.18

This value is higher than one so we are saving money. The initial planned budget is

more than what we are needing for the completion of the project and exactly is 18%

more.

94

3.3.2.1 Earned Value Method forecast: TEAC and CEAC

The TEAC is calculated as:

TEAC = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛

𝑆𝑃𝐼
=

110

0,79
= 139.2.

So, the team will spend 139.2 days to finish the project, instead of 110 days. I use

the Revise formula to take in consideration that the team will have consequences of

the delay accumulated.

These 40 days of difference imply a delay that is not indifferent. In fact, in this case

the project will be concluded in the Sprint 14. The Earned Value is not as intuitive as

the Burndown charter to give an idea about the progress and velocity of the team in

the next sprint. To design the forecast trend, I foresee the work that will be performed

in the future Sprints with the Moving Average method from Sprint 0 until Sprint 6. I

used this method because take into consideration the cumulated delay until the

beginning as the revised model to calculate the TEAC. The 100% of the work

schedule will be completed in the Sprint 14 as we can see in the Figure 37.

Figure 37. Forecasting of the future Sprints progress throw EVM

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
o

in
ts

Time

Work performed_f

95

The CEAC is found as:

CEAC = 𝐵𝐴𝐶

𝐶𝑃𝐼
 = 59.500 €

1.18
 = 50.601 €

Also in this case it is calculated with the revised method. The foresee final budget

will be lower compared to the initial BAC of 59.500 €, we are saving money. The

graph of the forecasting for the future costs is not very relevant because the

Burndown charter doesn’t say nothing about cost prevision and our goal is to

compare this latter with the EVM and understand which one is more accurate.

We can integrate the cost and the schedule index calculating the CR, the Control

Ratio. If this value is drastically lower than 1, we should take decisions to rake off

the project. In our case is equal to 0.9. In this situation we could use the over budget

to hire a new resource and so to crash the project.

Despite this any decision to crash or revise the project was done, for the reasons

listed below:

- The Burndown charter shows that the team can catch up

- A new inter enjoyed the team in the last sprint

- The CPI is positive and the SPI is quickly increasing

3.3.2.2 Earned schedule

The schedule index SI has a monetary value even if it is a value of schedule

performance and this can be confusing. For this reason, I calculated the ES, earned

schedule. In fact, in contrast to the cost-based indicators from EVM, the ES schedule

performance indicators are time-based, making the index easier to comprehend.

I calculated the ES (t) when the project is six months completed throw this formula:

𝐸𝑆 (𝑡) = 𝑐 +
𝐵𝐶𝑊𝑃(𝑡) − 𝐵𝐶𝑊𝑆 (𝑡 − 1)

𝐵𝐶𝑊𝑆 (𝑡) − 𝐵𝐶𝑊𝑆 (𝑡 − 1)
= 5 +

2331.5 − 2458.7

2950.4 − 2458.7
= 4.74

The constant c is the number of completed time increments for which the EV is higher

than the PV, and in this case is equal to 5. From this result we can see that the team

96

for the tasks complete should be in the Sprint 5.74 compared to the Sprint 6, where

it was planned to be.

I calculated the SV, schedule variance as:

SV = ES (t) – time planned = 4.7 – 6 = -1.3

This mean that the project is lagging behind schedule, with -0.3 delay.

Calculating again the SI, but in temporary terms, I found that it is equal to:

SI (t) = ES (t)

Schedule time
 = 0.8

Was possible to observe that the ES was around 4.75-4.85 also in the Figure 36

above. Nevertheless, the ES gives as a clearer idea of the progress we can see that

some limitations are still present. For this reason, I will apply the Putnam model, a

model that was created to monitor software project.

3.3.3 The Putnam model and a revised model

The Putnam model is an empirical software effort estimation model. It describes the

time and effort required to finish a software project of specified size. Thanks to this

model is possible to predict project completion times and manpower requirements

as the project evolves. There are numerous factors that affect efforts and time to

develop a software. These factors include complexity of software and experience of

the development team. In this part of the analyses, I propose the use of a model that

take in consideration this latter and I will compare it with the Putnam model and

afterwards with the actual results.

The dependent variable is usually software effort, where the independent variables

include software size and some non-functional requirements.

The formula that allows to calculate the effort is here reported:

𝐸 = [
𝑆𝑖𝑧𝑒

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑇𝑖𝑚𝑒
4
3

]

3

∗ 𝐵

97

- Size; The model is estimated at the planning time and for this reason,

consistent with what was said earlier, it was considered that in order to

complete the 290 task points the team can work with a linear trend. The team

then, in each sprint must finish 9% of the tasks to finish on time.

- Time, is the time in which the project should be finished. I consider the 11

sprint as the final deadline with milestones every ten days of work,

corresponding to the sprint.

- B is a scaling factor and is a function of the project size.

- Productivity; in the Putnam model the dependence of the productivity on the

time is essentially absent. The productivity is considered a constant which is

somehow a measure of the state of technology being applied to the project

and it can be increased by applying better technology. The constant seems

to relate to the overall information throughput capacity of the system and it

seems to be more heavily dependent on machine throughput than other

factors. Typically, this constant is: Ck = 2 for poor development environment,

Ck= 8 for good software development environment and Ck = 11 for an

excellent environment. To make the comparison with the next theoretical

model I consider it as a percentual and in particular, equal to 100% in each

sprint. With this consideration the productivity is independent to the time, this

mean that the team is not following a learning curve.

Plotting effort as a function of time yields the Time-Effort Curve in Figure 38. The

points along the curve represent the estimated total effort to complete the project at

some time. The curve as the shape of a bell curve moved more on the right. This

type of curve is called the Rayleigh distribution. Cumulating the Effort value we can

see that the effort follows a S- curve. So, the effort is low in the first phase, while in

the middle phases of the life cycle of the project the curve becomes drastically

steeper, reaching a pick. As time passes and the project is in its last phases the

effort decreases.

One of the distinguishing features of the Putnam model is that total effort decreases

as the time to complete the project is extended. Putnam says that only a small

number of engineers are required at the beginning of a plan to carry out planning

98

and specification tasks. As the project progresses and more detailed work is

necessary, the number of engineers reaches a max, that in our case is in the Sprint

4. After implementation and unit testing, the number of project staff falls.

As the theory says, the peak occurs around 40 percent of the project and from it the

delivery date can be found quite accurately. Coherently, we have the peak in the

Sprint 4 that corresponds to the 36.36% of the duration of the project.

Figure 38. Cumulative and derivative curve of the Effort for the Putnam model

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 1 2 3 4 5 6 7 8 9 10 11

Ef
fo

rt

Time

dE_Putnam%

0%

20%

40%

60%

80%

100%

120%

0 1 2 3 4 5 6 7 8 9 10 11

Ef
fo

rt

Time

E_Putnam%

99

Starting from the Putnam model I tried to hypothesize a theory that follows the base

idea of Putnam. In both theory the effort in time is function of the work load but in the

Putnam model the Productivity is considered constant and, as a consequence,

independent from the learning curve. As I previously said, in the planning phase is

very important to take in consideration that the team is starting with different

experience and learning path. For this reason I suppose the Productivity not as a

constant parameter as in the Putnam model but rather, as a variable increasing with

time. In particular, it is the average learning curve of the team. The other parameters

as the size and the time are kept as in the Putnam model.

The model obtained as we can see in the Figure 39 is not overlapping with the

Putnam curve. The main difference is where the curve becomes steeper and where

the pick is reached. The revise model reflects the hypothesis that I did regarding the

learning curve. In particular, when the learning curve is lower the team needs a major

effort to perform the project. The effort grown function in the revise case is always a

S-curve, but a bit more moved in the left. This because it starts to exponentially steep

in the first phase. Putnam in his model suppose that the effort depends on the project

phases and in specifically the pick is reached in the development phase of the project

itself. The revised model, exhibits a different behavior. The effort will be higher in the

first phases because the team doesn’t know the requirements, doesn’t know well the

teammates and the project can require new knowledge. For this reason, the delta of

productivity it is not constant but it will decrease with time, while the skills improve.

This theory is relevant because we can allocate resources ex ante knowing the effort

required from them. In the revise model several consequences can be deduced:

- It is better that the people with more experience start to work from the

beginning, because it is the moment that requires more effort.

- In the first phases the resources cannot work in parallel with others. They can

work just in one project per time because they will be full absorbed form it.

100

Figure 39. Cumulative and derivative curve of the Effort for the Revise model

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

0 1 2 3 4 5 6 7 8 9 10 11

Ef
fo

rt

Time

dRevise_%

0%

20%

40%

60%

80%

100%

120%

0 1 2 3 4 5 6 7 8 9 10 11

Ef
fo

rt

Time

E_Revise%

101

4. Conclusion

The Earned Value predicted that it would take the team 140 days to complete all

tasks. On the other hand, the Burndown charter had a more positive outlook on the

progress of the project and foresaw that at the time of the deadline the team was

only missing 7 points to complete and that therefore, by increasing the speed a little,

it would catch up with no problems. At the end of the monitoring phase, it was

decided to give greater confidence to the Burndown charter and not to crash or take

other measures to the project.

The figure 40 below shows the two forecast curves, the one obtained with the

Burndown charter and the one obtained with the EVM and the current curve.

Although the EM gives very detailed information regarding a delay/advance in

scheduling and an over/under budget, it is not very intuitive through the data found

by the model to imagine and design a trend of the project's tasks.

Figure 40. Comparison between the Burndown chart and the EVM to monitor Agile projects

0

50

100

150

200

250

300

350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A
ct

iv
it

ie
s

Time

Activities Comparison

Actual

Foresee_Burndown

Foresee_EV

102

We can see from the graph that the Burndown charter is more accurate than the

original model, to not crash the project was a good idea. Although widely used and

very effective, EVM seems to be less suitable in the Agile methodology.

One of the biggest problems with EVM is that it is all based on having detailed

specifications upfront and not having too much change which doesn’t fit with agile

initiatives. In fact, the problem here is that EVM is based on a detailed and accurate

“plan” at the start of the initiative while agile avoids it because it usually represents

waste and throwaway work. The team complete 281 tasks compared to the 290

planned and this is not due to a delay but to the continuous change that occurs in

the Agile methodology. In fact, through reviews with the client and discussions with

the team, some tasks have been removed and some have been added. It is very

difficult in this methodology to respect exactly what was planned.

From one side the Burndown do not provide at-a-glace project cost information and

from the other the Earned Value do not provide an idea of the progress of points

done. In fact, the EVM and burndown chart have a different focus. EVM is more

focused on cost and schedule of the project. It can tell us the cost and budget

overruns which burndown chart cannot. Burndown chart can on the other hand tell

us about the remaining effort and can help in adaptation to meet the schedule.

Burndown charts are part of the agile management philosophy which promotes

frequent inspection and adaptation, teamwork and collaboration.

Quentin Fleming, Joel M. Koppelman in “Earned Value Project Management,

Second Edition” list 3 critical success factors for Earned Value:

- Quality of the project’s baseline plan. Earned Value is compared against the

baseline plan, whether the plan is accurate or not. Therefore, cost ‘over runs’

will occur if the project costs are under-budgeted, and scope creep will occur

if the initial project scope hasn’t been adequately defined.

- Actual Performance against the Approved Baseline Plan. i.e. whether the

actual performance tracks to the baseline plan.

- Management’s Determination to Influence the final results. Final results for a

project based on earned value projections can be modified based on

management’s commitment to take action as soon as deviations from the plan

are observed.

103

Agile projects fail to meet the first two critical success factors. First, the quality of the

original baselined plan is very low from a completeness and scheduling perspective.

We could try to use EV against our continuously evolving plans, but the figures

become meaningless if you keep changing the baselined plan. Each time you do so

the performance indexes and variances change making tracking and forecasting

extremely problematic.

For what regards the Resource allocation model here we are comparing the Putnam

model and the Revised model with the real effort – time curve in Figure 41.

From the beginning of the project, I have collected data regarding the hours spent in

the various meetings and lessons. By subtracting this latter from the total daily

working hours, I was able to find the time the team dedicated to add value to the

project. The speed of the team is related to the learning curve, in fact initially the

team spent much more time understanding the project itself and knowing the working

method of its colleagues than working in the project. For this reason, the tasks that

are initially done are less than those that are done once the project is started and

that, consequently, the learning curve increases. Now we can compare the Putnam

model with the revised model and understand which of the two is more correct based

on which one is closest to the real effort curve.

0%

20%

40%

60%

80%

100%

120%

1 2 3 4 5 6 7 8 9 10 11

E
ff

o
rt

Time

Effort Growth Comaprison

E_Putnam%

E_Revise%

Actual Effort %

104

Figure 41. Effort in Putnam and Revised model compared to the real effort

From the comparison we can conclude that the Revise model is more in accordance

with the actual data collected from the project and in particular seems to have an

opposite behavior compared to the Putnam model. Whatever, the effort in the

Revised model is higher than the Real effort spent. This is clear seeing the curves

progress. In the Revised model the pick was at 30% while in the Actual model it is

at 18%, anyway in both case the maximum effort is in the first sprint.

In the Revised model, the effort was considered as the actual time the team worked

on the project divided by the points that were actually made in that sprint. In the first

iteration, about 52 hours were spent on making only nine points, while in the second

sprint, about the same number of hours were spent on making twelve points. Each

member acquired knowledge as time went on, its learning curve increased and

consequently the effort the team expended in carrying out the tasks decreased

proportionally. Contrary to the Putnam allocation model what our theory suggests is

to focus the attention on the previous phase of the life cycle of a project. So, it is

better to allocate the majority of resources there as the actual data collected show.

In support of my demonstration, I would like to add that using the Putnam model to

monitor int the Sprint 6 would suggest to increase resources but, being in the middle

phase of the project, it would not lead to good performance of this latter for the

0%

5%

10%

15%

20%

25%

30%

35%

0 1 2 3 4 5 6 7 8 9 10 11

Ef
fo

rt

Time

dEffort Comparison

dE_Putnam%

dRevise_%

dE_Actual%

105

reasons I explain in the previous chapter. It would result in postponing the increase

of the learning curve of the team members and consequently delaying the project.

In the case of resource constrained we could gather them in initial phases, especially

if they have experience and they can help the team to speed up the learning curve

of the team.

106

107

Index of figures
Figure 1. Project life path – “S” shape __ 12
Figure 2. Project life cycle path - “J” Shape ___ 13
Figure 3. Influence of risks and cost of changes over time___________________________________ 14
Figure 4. Representation of the Triangle of objectives ______________________________________ 15
Figure 5. CPM process ___ 17
Figure 6. Types of buffers __ 20
Figure 7. Normal distribution __ 24
Figure 8. Waterfall Process ___ 26
Figure 9. The changing view of the project life cycle in different editions of the PMBOK Guide. ___ 37
Figure 10. Relation between Lean, Agile and Kanban ______________________________________ 42
Figure 11. Method of Developing Agile Processes using Extreme Programming _______________ 43
Figure 12. Method of Developing Agile Processes using Scrum ______________________________ 44
Figure 13. Method of Developing Agile Processes using FDD Graph _________________________ 45
Figure 14. Scrum Artifacts __ 50
Figure 15. Sprint Backlog ___ 51
Figure 16. Sprint Backlog ___ 52
Figure 17. Scrum events: Backlog Refinement, Sprint Backlog, Sprint Planning, Sprint Review,
Sprint Retrospective ___ 53
Figure 18. Project progress and S curves ___ 61
Figure 19. Possible arrangements of S-curves indicating planned value (PV), actual cost (AV) and
earned value (EV). For example, A1 indicates both cost overruns and schedule delay, with more
serious problems on cost than on schedule. A2 is a similar situation, where schedule delay is more
significant than extra cost ___ 62
Figure 20. Graphical representation of the Earned Schedule ________________________________ 66
Figure 21. Example of Burndown charter in a Scrum project _________________________________ 67
Figure 22. Example of Burn Up charter in a Scrum project __________________________________ 68
Figure 23. Expected manpower behavior of a software system as a function of time ____________ 70
Figure 24. Putnam-Norden-Rayleigh (PMR) Curve ___ 72
Figure 25. Learning curve __ 74
Figure 26. Screenshot of the Dashboard of Miami V2_______________________________________ 77
Figure 27. Screenshot of a page of Miami V2__ 78
Figure 28. Vision Board __ 79
Figure 29. Functional diagram of MiamiV2 __ 80
Figure 30. Story Mapping of 'Alten Grains' __ 81
Figure 31. Trend of the Stand-up meeting___ 82
Figure 32. Burndown charter until Sprint 6 __ 85
Figure 33. Burnup charter until Sprint 6 ___ 86
Figure 34. Learning curve of each group and average learning curve of the team ______________ 87
Figure 35. Forecast of the Burndown charter for the next Sprints _____________________________ 89
Figure 36. Graphical representation of the EV ___ 92
Figure 37. Forecasting of the future Sprints progress throw EVM_____________________________ 94
Figure 38. Cumulative and derivative curve of the Effort for the Putnam model _________________ 98
Figure 39. Cumulative and derivative curve of the Effort for the Revise model ________________ 100
Figure 40. Comparison between the Burndown chart and the EVM to monitor Agile projects ____ 101
Figure 41. Effort in Putnam and Revised model compared to the real effort ___________________ 104

108

Index of tables
Table 1. Data monitored in the six Sprints___ 85
Table 2. Monitoring considering the real working time and the Learning curve _________________ 88
Table 3. Forecast of the next Sprints ___ 89
Table 4. Input data of the EV __ 91
Table 5. EVM variables___ 92
Table 6. Schedule index in monetary terms ___ 93

Bibliography

- Firend Alan Rasch (2019). Methodologies in Project Management

- Project Management Institute (2021). A Guide to the Project Management

Body of Knowledge (Seventh Edition).

- Project Management Institute (2017). A Guide to the project management

body of knowledge (Sixth Edition).

- Dr. Scott J. Amos, PE (2004). Skills & Knowledge of Cost Engineering (Fifth

Edition).

- Alberto de Marco (2018) - Project Management for Facility Construction

(Second Edition)

- Joydeep Kundu, Tanmoy Kumar Bishoi, Manasija Bhattacharya and Anupam

Chowdhury (2015). Project Management Software – an overview. (First

Edition)

- Project Management Institute (2017). Agile Practice Guide (First Edition).

- Roger D.H. Warburton (1983). Managing and Predicting the Costs of Real-

Time Software.

- Lawrence H. Putnan (1978). A General Empirical Solution to the Macro

Software Sizing and Estimating Problem.

- Famuwagun, Olajide Samuel (2020). Project Management Methodologies

and Bodies of Knowledge in Contemporary Global Projects.

- Izak Wilhelmus van der Merwe (2017) - How relevant are waterfall project

management methodologies in today’s modern project environment?

- Jordan Barlow (2011) - Overview and Guidance on Agile Development in

Large Organizations.

- Ning Jingfeng, Jiang Yan and Yu Honglei (2014) - Research and application

of estimation method for software cost estimation based on Putnam model.

109

Sitography

https://ensembleconsultinggroup.com/wp-content/uploads/2018/07/CCPM-

Executive-Guide.pdf

file:///C:/Users/ealfieri/Downloads/Agile_Processes_and_Methodologies_A_Conce

ptual_Stu.pdf

https://www.certwise.com/wp-content/uploads/2017/03/CW_PMP_Reading-

Sample.pdf

https://cs-633-team-8.github.io/files/Team-8-Content-Standards.pdf

https://scrum-league.org/tribune/autres-notions-scrum/le-burndown-chart/

https://sites.google.com/site/softwareestimation/-slim

https://opentextbc.ca/projectmanagement/chapter/chapter-3-the-project-life-cycle-

phases-project-management/

https://www.certwise.com/wp-content/uploads/2017/03/CW_PMP_Reading-

Sample.pdf

https://www.studypool.com/documents/12114258/a-project-management-primer

https://www.manage.gov.in/studymaterial/PM.pdf

https://pdf.sciencedirectassets.com/277811/1-s2.0-S1877042814X00133/1-s2.0-

https://www.projectsmart.co.uk/agile-project-management/the-blending-of-

traditional-and-agile-project-management.php

https://activecollab.com/blog/project-management/critical-path-method-cpm

https://plaky.com/learn/project-management/critical-path-method/

https://asana.com/resources/critical-chain-project-management

https://www.appvizer.com/magazine/operations/project-management/critical-chain-

vs-critical-path

https://www.lucidchart.com/blog/critical-chain-project-management

https://www.geniuserp.com/blog/what-you-need-to-know-about-critical-chain-

project-management

https://www.projectcubicle.com/pert-method-definition-examples/

https://www.linkedin.com/pulse/what-pert-how-can-we-use-dave-fourie-pmp-

prince2-/

https://keydifferences.com/difference-between-pert-and-cpm.html

110

https://www.teamgantt.com/waterfall-agile-guide/waterfall-methodology

https://assets.website-

files.com/5a690960b80baa0001e05b0f/5beb3841fbcbc1a653052310_Waterfall%2

0Project%20Managment.pdf

https://www.taskade.com/blog/waterfall-project-management-guide/

https://www.ijraset.com/best-journal/project-construction-through-agile-method-

and-analyzing-its-benefit-and-drawback-with-other-existing-methods

https://www.lucidchart.com/blog/waterfall-project-management-methodology

https://hochsolutions.com/2019/03/15/what-are-the-4ps-of-project-management/

https://www.productboard.com/glossary/agile-values/

https://www.atlassian.com/agile/kanban

https://scrumguides.org/scrum-guide.html

https://www.scrum.org/forum/scrum-forum/

https://airfocus.com/product-learn/scrum-framework/

https://www.scruminc.com/definition-of-done/

https://cs-633-team-8.github.io/files/Team-8-Content-Standards.pdf

https://premieragile.com/burn-down-chart-vs-burn-up-chart/

https://www.pmi.org/learning/library/earned-value-management-understand-agile-

6567

	Abstract
	1. Introduction: Project Management approaches
	1.1 Introduction to Project Management
	1.1.1 Project definition
	1.1.2 Project Life cycle
	1.1.2.1 Characteristics of Life Cycles

	1.1.3 Project Performance dimensions

	1.2 Traditional project management
	1.2.1 Critical path method
	1.2.2 Critical chain project management (CCPM)
	1.2.3 PERT
	1.2.4 Waterfall method

	1.3 The shift towards new management approaches
	1.3.1 Software project management
	1.3.3.2 Life cycle of a software

	1.3.2 Waterfall in software project
	1.3.3.2 The evolution of the traditional waterfall approach over the past years

	1.3.3 Agile methodology
	1.3.3.2 Principles behind the Agile Manifesto
	1.3.3.2 Methodologies in the Agile industry

	1.4 SCRUM
	1.4.1 SCRUM values
	1.4.2 SCRUM Roles
	1.4.2.1 Scrum Master
	1.4.2.2 Product Owner
	1.4.2.3 Developers

	1.4.3 Scrum artifacts
	1.4.3.1 Product Backlog
	1.4.3.2 Sprint Backlog
	1.4.3.3 Potentially Releasable Product Increment

	1.4.4 Scrum Events
	1.4.4.1 Backlog Refinement meeting
	1.4.4.2 Sprint planning
	1.4.4.3 Sprint review
	1.4.4.4 Daily scrum
	1.4.4.5 Sprint retrospective

	2. Methodology: Techniques for the analysis
	2.1 Earned value
	2.1.1 Earned Value “forecasting” parameters
	2.1.1.1 Cost estimates at completion
	2.1.1.2 Time estimates at completion

	2.2 Alternative to the Earned value method: Earned schedule
	2.3 Burn Down charter
	2.3.1 Burnup charter

	2.4 Putnam model

	3. Analysis and results of a Scrum Project
	3.1 Overview of the project
	3.2 Initialization and implementation
	3.2.1 Vision board
	3.2.1.1 Functionalities
	3.2.1.2 Costumer Journey
	3.2.1.3 Story mapping

	3.2.2 Implementation of the Scrum methodology in an IT company

	3.3 Monitoring
	3.3.1 Burndown charter
	3.3.1.1 Burndown charter forecast

	3.3.2 Earned value
	3.3.2.1 Earned Value Method forecast: TEAC and CEAC
	3.3.2.2 Earned schedule

	3.3.3 The Putnam model and a revised model

	4. Conclusion
	Bibliography
	Sitography

