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ABSTRACT 

Fuel consumption optimization is a critical field of research within the automotive 

industry to meet consumer expectations and regulatory requirements. A reduction in 

fuel consumption can be achieved by reducing the energy consumed by the vehicle. 

Several subsystems contribute to the overall energy consumption of the vehicle, in-

cluding the air conditioning (A/C) system. The loads within the A/C system are 

mainly contributed by the compressor, condenser fan, and underhood aerodynamic 

drag, which are the components targeted for overall vehicle energy use reduction in 

this research. It is essential to reduce the energy use of these components, as it will 

reduce the overall vehicle energy use and improve the vehicle’s fuel economy. There 

is ongoing competition within the automotive industry for manufacturers to achieve 

the best possible fuel economy. This research explores a new avenue for A/C system 

control by considering the condenser fan power and the power consumption due to 

vehicle drag (regulated by the condenser fan and active grille shutters (AGS)) to 

reduce the energy consumption of the A/C system and improving the overall vehicle 

fuel economy. The control approach used in this paper is model predictive control 

(MPC), which uses a model of the vehicle A/C system to make predictions about the 

behaviour of the real system. The industrial partner provided a model of the A/C 

system that is further improved and validated for this work. The controller is de-

signed in Simulink, where the compressor clutch signal, condenser fan speed, and 

AGS open fraction are considered as inputs. The controller is then connected to GT-

Suite (which contains the actual vehicle plant model) to form a software-in-the-loop 

(SiL) simulation environment, where the controller sends actuator inputs to GT-

Suite, and the vehicle response is sent back to the controller in Simulink. 
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CHAPTER 1  

INTRODUCTION 

This thesis is written in a manuscript style, meaning the major chapters within this paper 

each represent a published, or planned to be published work. In this research, a mathemat-

ical model for the A/C system of a conventional gasoline vehicle is extended from previous 

works. A model predictive controller (MPC) is developed and utilizes the extended A/C 

system model as the internal prediction model. The outcome of this work is to assess the 

benefit, if any, to including additional actuating inputs, namely the active grille shutters 

(AGS), to the A/C system control scheme. The power consumption and temperature track-

ing performance of the MPC will be compared with the previous baseline controls ap-

proach. 

1.1 Objective and High-Level Approach 

In short, the problem to be solved includes the following objectives: 

Objective 1. Developing and validating an extended model of the A/C system in 

MATLAB/Simulink 

Objective 2. Developing an MPC that regulates the temperature of the air sent to the 

vehicle’s cabin by controlling the compressor clutch, fan angular speed, and AGS po-

sition in the A/C system to reduce the overall vehicle power consumption by consider-

ing the power consumed by the compressor, fan, and vehicle drag 

1.2 Thesis Outline and Overview of Contributions 

This thesis is divided into two major chapters: 

• Chapter 2: Nonlinear modelling of an air conditioning system with considera-

tion to underhood aerodynamic drag and overall power consumption 

This chapter describes a mathematical modelling method for an A/C system con-

sidering additional actuating inputs for the intention of control scheme implemen-

tation. A nonlinear model is provided by the industrial partner and is extended to 

consider a model of the aerodynamic vehicle drag caused by vehicle driving speed, 

AGS angle, and condenser fan rotational speed. The model is presented and vali-

dated against a high-fidelity virtual model of the vehicle. The resulting nonlinear 

model created will be used for the MPC controller development in Chapter 3. 
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• Chapter 3: Developing a compressor, fan, and active grille shutter model pre-

dictive control strategy for air conditioner duty cycles to improve overall ve-

hicle power consumption 

In this chapter, an MPC algorithm is developed to control an A/C system by ma-

nipulating three actuating inputs: the compressor clutch, condenser fan rotational 

speed, and the AGS angle. The MPC scheme makes use of the nonlinear model 

derived in Chapter 2 as an internal plant model. The objective of the controller is 

to maintain satisfactory setpoint tracking for the air temperature entering the vehi-

cle cabin while attempting to reduce the overall power consumed by the actuating 

components, as well as vehicle aerodynamic drag. 

 

  Finally, Chapter 4 contains concluding remarks and potential avenues for future 

work that can be conducted to further advance the contributions of this paper in the field 

of A/C system modelling and control design. 
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CHAPTER 2 

NONLINEAR MODELLING OF AN AUTOMOTIVE AIR CONDITIONING SYS-

TEM WITH CONSIDERATION TO UNDERHOOD AERODYNAMIC DRAG 

AND OVERALL POWER CONSUMPTION 

2.1 Introduction 

Automotive air conditioning (A/C) systems are often modeled mathematically to demon-

strate the performance and behavior of their components as the system attempts to cool the 

vehicle’s cabin. State-of-the-art models for A/C systems consider the compressor and con-

denser fan as controllable actuators to maintain cabin comfort. In work published to date, 

the consideration of the active grill shutters (AGS) as a controllable actuator is not present 

[1]–[3]. The AGS impacts the cooling performance of the A/C system, as it provides an 

additional mechanism to control airflow through the condenser at a given vehicle speed in 

addition to the fan rotational speed [4], [5]. The amount of underhood flow also affects 

vehicle drag, which can be accounted for via the power consumption of the A/C system 

[6], [7]. Many mathematical models of A/C systems are developed with the intention of 

control implementation, with the reduction of energy consumption considered a primary 

objective [8]. Most models used by controllers in academic literature only consider the 

compressor and condenser fan as controllable actuators since those have a high power con-

sumption [9], [10]. The model presented in this paper builds upon the state-of-the-art by 

introducing the AGS as a controllable actuator to regulate the front-end airflow and con-

siders the underhood vehicle airflow drag effects on the power consumption of the vehicle. 

This paper thus presents a holistic model for the automotive A/C system power consump-

tion. 

The novelty of this work is in extending an A/C system model completeness by considering 

front-end air flow cooling effects and power consumption comprising of: 

1. Improving the completeness of the vehicle A/C nonlinear model by adding the im-

pact of the AGS on the determination of the underhood air flow 

2. Developing a holistic model for the A/C system power consumption by considering 

underhood aerodynamic drag effects 
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3. Creating a fan power consumption model that captures the impact of changing ro-

tational speed and volumetric air flow rate 

The remaining sections of this paper are organized as follows. Section 2.2 outlines the 

details of the system being modeled, the underlying mathematical model used to develop 

the extended model formulated in this work, and the new advancements to previous mod-

eling work done in the literature [11]. Section 2.3 includes the validation of the nonlinear 

(NL) model with the higher-fidelity vehicle energy management (VEM) model, an analysis 

of the holistic power consumption model, a demonstration of the nonlinear model’s ability 

to react to imposed step inputs, and a discussion of the results. 

In this paper, several models are referenced throughout. In order to maintain clarity and 

consistency, a short summary and comparison of the two models is introduced in Table 1. 

Table 1: Model summary and comparison 

2.2 Materials and Methods 

2.2.1 Description of A/C System Model 

Figure 1 depicts a simplified block diagram of the A/C system, showcasing the connection 

of components, the flow of air and refrigerant, and the mathematical variables discussed in 

the underlying mathematical model of the system in section 2.2.4. 

The four main components along the A/C system’s refrigerant loop are the compressor, 

condenser, expansion valve, and evaporator. To develop a complete model of the A/C sys-

tem, component models must capture the behavior of these four components. This paper 

Model Name VEM NL 
Brief Model 
Description 

High-fidelity vehicle dynamics model 
created using Gamma Technologies 
(GT) Suite [1] representing the real 
physical vehicle. 

Nonlinear model 
implemented in Simulink 
based on equations (2) and 
(4). 

 
Pros 

 
Holistic model of entire vehicle, 
including all subsystems such as 
powertrain, A/C, cabin, electrical, etc. 

 
Can accurately capture 
trends 

 
Cons 

 
High computational cost and slow 
runtime due to model complexity 

 
Unable to run as a 
standalone model since it 
requires inputs in the form 
of time-series data from 
VEM model output 
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describes such a model for implementing a controller for reducing energy consumption in 

future work. The controller will regulate the system to send the correct air temperature to 

the cabin while minimizing the power consumption of the A/C system. The heat exchanger 

(HEX) pressures are the minimum quantities needed to fully describe the behavior of this 

system and are chosen as the state variables. The model thus is formed as: 

�̇�𝑐 = 𝑓1(𝑝𝑐, 𝜋𝑐, 𝑁, 𝑋, �̇�𝑟𝑒𝑓 , 𝑇𝑎𝑖𝑟,𝑖𝑛,𝑐, ℎ𝑖𝑛, 𝑣) 

�̇�𝑒 = 𝑓2(𝑝𝑐, 𝑝𝑒 , 𝜋𝑐, �̇�𝑟𝑒𝑓, 𝑄𝑒 , 𝑇𝑎𝑖𝑟,𝑖𝑛,𝑒) 
(1) 

where 𝑝𝑐 and 𝑝𝑒 are the refrigerant pressures in the condenser and evaporator, 𝜋𝑐 is the 

compressor clutch engagement (on/off), 𝑁 is the rotational speed of the condenser fan, 𝑋 

is the open-fraction of the AGS, �̇�𝑟𝑒𝑓 is the refrigerant mass flow rate, 𝑄𝑒 is the volume 

flow rate of the air from the blower fan, 𝑇𝑎𝑖𝑟,𝑖𝑛,𝑐 and 𝑇𝑎𝑖𝑟,𝑖𝑛,𝑒 are the inlet air temperatures 

to the condenser and evaporator, ℎ𝑖𝑛 is the inlet enthalpy to the condenser, and 𝑣 is the 

vehicle speed. Models for 𝑓1 and 𝑓2 based on the behavior of the refrigerant are described 

in section 2.2.4. Since the intended usage of the model is within a control scheme to reach 

the target cabin temperature with minimum energy consumption, we also develop models 

of the energy consumption of the overall A/C system, including additional drag due to 

underhood flow, in section 2.2.7. The inclusion of the impact of the AGS on underhood 

airflow and of the increase in power consumption associated with drag caused by that 

underhood flow are the key advancements over the state-of-the-art presented in this paper. 
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Figure 1: Simple A/C system diagram 

2.2.2 Reference System 

The controller will use the mathematical model to predict the behavior of a physical A/C 

system and send controlled inputs (compressor clutch, condenser fan rotational speed, and 

AGS open-fraction) to a high-fidelity VEM model developed by the industrial partner. This 

VEM model will act as a substitute for an actual physical vehicle for controller 

development; the output from the VEM model is treated as the output from the physical 

vehicle. Thus, the nonlinear models in this paper are validated against the VEM model. 

2.2.3 Compressor 

The VEM model provided by the industrial partner contains a virtual model of the 

compressor present in the physical vehicle. The VEM model uses the current baseline 

production controls to determine the compressor displacement, then provides a mass flow 

rate and outlet enthalpy value at each time step throughout the drive cycle. The control 

scheme intended to use our model controls the on/off command for the compressor clutch. 

Thus, modeling the compressor mass flow rate is unnecessary as it already exists in the 

VEM model and can be provided as input to the model. As an extension to the work 
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presented in this paper, the mass flow rate could be modeled from the first principles to 

eliminate the need for a VEM model connection. However, in the case of this paper, the 

VEM model is used since the intention of this model is for usage in control architecture 

development. 

2.2.4 Heat Exchangers 

The two HEXs in the A/C system are the condenser and evaporator, where the refrigerant 

undergoes phase changes between liquid and vapor states. The mathematical models of 

these two HEXs must capture this change in thermodynamic state. The underlying HEX 

mathematical equations were derived from first principles and provided by the industrial 

partner based on work described in [2]. The work in [2] [2]provides a simplified method 

to obtain a mathematical model for the HEX pressure by assuming a two-phase flow (liquid 

and gaseous) and approximating the thermodynamic states at the inlet and outlet of each 

HEX by relating it to the saturated liquid and vapor conditions. At the condenser outlet, 

the refrigerant is a saturated liquid. At the evaporator inlet, the refrigerant is assumed to 

have the same enthalpy as the refrigerant at the condenser outlet. The pressure at the inlet 

and outlet of the evaporator are equal, with a 10°C superheat at the evaporator outlet 

maintained by the expansion valve. This will be further discussed in section 2.2.5. The full 

derivation of the nonlinear pressure equations is available in [2], which results in the final 

forms: 

�̇�𝑐 =
[𝑄

𝑐
𝜌

𝑎
𝑐𝑝,𝑎𝑖𝑟(𝑇𝑎𝑖𝑟,𝑖𝑛 − 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡) + 𝜋𝑐�̇�𝑟𝑒𝑓

(ℎ𝑖𝑛 − ℎ𝑜𝑢𝑡)]

𝑉 [(1 − �̅�)
𝜕(𝜌

𝑙
ℎ𝑙)

𝜕𝑝
+ �̅�

𝜕(𝜌
𝑔
ℎ𝑔)

𝜕𝑝
+ (𝜌

𝑔
ℎ𝑔 − 𝜌

𝑙
ℎ𝑙)

𝜕�̅�

𝜕𝑝
− 1 +

𝑚𝐻𝑐𝐻

𝑉
(
𝜕𝑇𝑤𝑎𝑙𝑙

𝜕𝑝
)]

 

�̇�𝑒 =
[𝑄

𝑒
𝜌

𝑎
𝑐𝑝,𝑎𝑖𝑟(𝑇𝑎𝑖𝑟,𝑖𝑛 − 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡) + 𝜋𝑐�̇�𝑟𝑒𝑓

(ℎ𝑖𝑛 − ℎ𝑜𝑢𝑡)]

𝑉 [(1 − �̅�)
𝜕(𝜌

𝑙
ℎ𝑙)

𝜕𝑝
+ �̅�

𝜕(𝜌
𝑔
ℎ𝑔)

𝜕𝑝
+ (𝜌

𝑔
ℎ𝑔 − 𝜌

𝑙
ℎ𝑙)

𝜕�̅�

𝜕𝑝
− 1 +

𝑚𝐻𝑐𝐻

𝑉
(
𝜕𝑇𝑤𝑎𝑙𝑙

𝜕𝑝
)]

 

(2) 

where 𝑄𝑐 is the volume flow rate of the air through the condenser, 𝜌𝑎 is the air density, 

ℎ𝑜𝑢𝑡 is the outlet refrigerant enthalpy, 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡 is the outlet air temperature, 𝜌𝑙 , ℎ𝑙 , 𝜌𝑔, ℎ𝑔 

are the densities and enthalpies for the refrigerant calculated at saturated liquid and vapor 

states, 𝑐𝐻  is the specific heat of the HEX material, 𝑐𝑝,𝑎𝑖𝑟  is the specific heat of air at 

constant pressure, 𝛾 is the mean void fraction of the refrigerant, 𝑉 is the volume of the 
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HEX, 𝑚𝐻 is the material mass of the HEX, and 𝑇𝑤𝑎𝑙𝑙 is the wall temperature of the HEX. 

The constant values for the HEX and fluid properties are detailed in Appendix A. The 

derivation of polynomial models for the refrigerant thermodynamic properties is detailed 

in section 2.2.6. 

The second main aspect of this NL model is the temperature of the air leaving the 

evaporator, which is sent to the cabin for cooling. The air temperature depends on the 

temperature difference between the refrigerant temperature and air temperature passing 

through the evaporator, as well as the Nusselt number. A general model for the temperature 

of the air exiting a heat exchanger (condenser/evaporator) is given by: 

𝑇𝑎𝑖𝑟,𝑜𝑢𝑡,𝑐 = 𝑓1(𝑇𝑟𝑒𝑓, 𝑇𝑎𝑖𝑟,𝑖𝑛, 𝑁𝑇𝑈) 

𝑇𝑎𝑖𝑟,𝑜𝑢𝑡,𝑒 = 𝑓2(𝑇𝑟𝑒𝑓 , 𝑇𝑎𝑖𝑟,𝑖𝑛, 𝑁𝑇𝑈) 
(3) 

where 𝑇𝑟𝑒𝑓 is the HEX refrigerant temperature and 𝑁𝑇𝑈 is the number of transfer units of 

the air. The final model of the air temperature in [2] is: 

𝑇𝑎𝑖𝑟,𝑜𝑢𝑡,𝑐 = 𝑇𝑟𝑒𝑓,𝑐 + (𝑇𝑎𝑖𝑟,𝑖𝑛,𝑐 − 𝑇𝑟𝑒𝑓,𝑐)
(−𝑁𝑇𝑈𝑐)(𝐾𝑐𝑎)

 

𝑇𝑎𝑖𝑟,𝑜𝑢𝑡,𝑒 = 𝑇𝑟𝑒𝑓,𝑒 + (𝑇𝑎𝑖𝑟,𝑖𝑛,𝑒 − 𝑇𝑟𝑒𝑓,𝑒)
(−𝑁𝑇𝑈𝑒)(𝐾𝑒𝑎)

 

𝑁𝑇𝑈 =
𝛼𝐴𝑠[1 − 𝐹𝑓𝑖𝑛(1 − 𝜂𝐹𝐴)]

�̇�𝑎𝑐𝑝,𝑎𝑖𝑟
 

(4) 

where 𝛼 is the convective heat transfer coefficient of the air, 𝐴𝑠 is the external surface area 

of the HEX, 𝐹𝑓𝑖𝑛 is the fraction of air-to-structure surface area on the fins, 𝜂𝐹𝐴 is the air-

side fin efficiency, �̇�𝑎 is the mass flow rate of the air, and 𝐾𝑐𝑎 and 𝐾𝑒𝑎 act as multipliers 

on the Nusselt number. As stated earlier, the derivation of polynomial models for the 

refrigerant thermodynamic properties, such as 𝑇𝑟𝑒𝑓,𝑐  and 𝑇𝑟𝑒𝑓,𝑒 , are detailed in section 

2.2.6. 

The industrial partner provided computational fluid dynamics (CFD) data related 

to the specific vehicle of interest for this project, which included air flow rate values 

measured at various combinations of vehicle speed, fan rotational speed, and AGS open-

fraction. A multiple linear regression method was used to create a model for the condenser 

air flow rate function based on this data. 

A second-order regression model is the simplest model order that makes sense 

physically. A linear model would have three terms: one for the AGS open-fraction, fan 
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rotational speed, and vehicle speed. When the fan speed and vehicle speed are zero, the 

linear AGS term will cause a nonzero flow rate to be predicted by the model, which does 

not make sense physically, so the model does not include a linear AGS term. Thus, a 

second-order model with cross terms is the simplest model able to include the effect of all 

three inputs affecting the airflow. The second-order model provided a good fit to the data, 

with an 𝑅2 value of 0.9981. Model orders higher than two were created and tested, but 

none provided a significant improvement to the goodness of fit to the data; thus, a model 

order of two was used. 

The model takes the form: 

𝑄𝑐 = 0.07722�̂� + 0.01057𝑣 + 4.913 × 10−5𝑣2 + 0.2039𝑋�̂� + 0.002671𝑋𝑣 (5) 

where 𝑄𝑐 is the volume flow rate of the air in 𝑚3 𝑠⁄ , �̂� is the normalized rotational speed 

of the condenser fan between zero and one, 𝑋 is the open-fraction of the AGS between zero 

and one, and the vehicle speed, 𝑣, is in 𝑚 𝑠⁄ . 

2.2.5 Expansion Valve 

As mentioned previously, the thermodynamic states at the inlet and outlet of the HEXs are 

approximated based on the saturated liquid and vapor states. A similar assumption was 

introduced in [2] for modeling the expansion valve. The expansion valve regulates the 

refrigerant superheat temperature at the exit of the evaporator using a sensing bulb to 

maintain a constant superheat of 10°C to the refrigerant at the evaporator exit. This means 

the refrigerant conditions at the evaporator exit can be related to the saturated conditions 

of the refrigerant pressure level inside the evaporator. The modeling approach used in [2] 

also assumes that the enthalpy at the inlet of the evaporator is equal to the enthalpy at the 

outlet of the condenser, meaning there is no heat loss across the expansion valve. 

2.2.6 Refrigerant Temperature 

In this paper, to model the thermodynamic properties of the refrigerant, a linear least-

squares regression method was used to fit continuous curves to discrete refrigerant property 

data from [3]. The range of pressure data used for the curve fitting is equal to the standard 

operating range of each HEX, as defined by the industrial partner. An example of one of 

the resulting polynomial models is: 
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𝑇𝑟𝑒𝑓,𝑐 = 8.4 ∙ 10−9𝑝𝑐
3 − 4.9 ∙ 10−5𝑝𝑐

2 + 0.12𝑝𝑐 − 34.9 (6) 

where 𝑇𝑟𝑒𝑓,𝑐  is the temperature of the refrigerant leaving the condenser and 𝑝𝑐  is the 

condenser refrigerant pressure. The full list of fitted curves are presented in Appendix A in 

equations (44)-(47). As mentioned earlier, this modeling work is intended for controller 

development. In this case, these polynomial curves must retain their accuracy when 

linearized for use in linear control approaches. When conducting curve fitting to a data set, 

the possibility of large oscillations occurring at either side of a discrete data point increases 

as the order of the polynomial increases. This is called Runge’s phenomenon [4]. To ensure 

that this problem does not arise for this model, the first derivative was compared with the 

numerical first differences between data points. Using polynomial functions instead of 

lookup tables results in less effort during the linearization of the model to compute the 

derivatives. This is owed to the fact that the derivatives of lookup tables may be unavailable 

for discrete datasets. After replacing the lookup tables with the polynomial equations, the 

root mean squared error (RMSE) for the system output had only a 0.1°C increase. The 

RMSE definition used for this purpose is formed as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 − 𝑥𝑚𝑜𝑑𝑒𝑙,𝑖)

𝑛𝑝𝑜𝑖𝑛𝑡𝑠

𝑖=1

2

𝑛𝑝𝑜𝑖𝑛𝑡𝑠
 (7) 

where 𝑥𝑎𝑐𝑡𝑢𝑎𝑙,𝑖 is the variable value from the data, 𝑥𝑚𝑜𝑑𝑒𝑙,𝑖 is the variable value from the 

model, and 𝑛𝑝𝑜𝑖𝑛𝑡𝑠 is the total number of data points. To assess the impact of this change, 

the RMSE was normalized by the range of the data set, resulting in a normalized RMSE of 

0.19%. 

2.2.7 Power Consumption 

The control design that will use this model will be utilized to reduce the power consumption 

of the A/C system. Thus, a model of the power-consuming aspects must be defined as well, 

that being the compressor, condenser fan, and power consumption due to aerodynamic drag 

associated with the underhood airflow. The compressor’s power consumption is modeled 

from first principles using well-established thermodynamic and mechanical relationships 

from [5]. For brevity, the final form of the equation is given as: 
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�̇�𝑐𝑜𝑚𝑝 =
�̇�𝑟𝑒𝑓(ℎ𝑜𝑢𝑡 − ℎ𝑖𝑛)

𝜂𝑐𝑜𝑚𝑝
 (8) 

where �̇�𝑟𝑒𝑓 is the mass flow rate of the refrigerant, ℎ𝑖𝑛 and ℎ𝑜𝑢𝑡 are the enthalpies of the 

refrigerant at the inlet and outlet of the compressor, and 𝜂𝑐𝑜𝑚𝑝 is the ratio of isentropic 

efficiency to volumetric efficiency of the compressor. 

The power consumption of the condenser fan is computed based on the underhood 

air flow and work done by the fan. From the Euler turbine equation, this is: 

�̇�𝑓𝑎𝑛 = 𝜌𝑎𝑄𝑐Δℎ𝑡 (9) 

where �̇�𝑓𝑎𝑛 is the power consumption of the fan and 𝛥ℎ𝑡 is the stagnation enthalpy change 

across the fan. The enthalpy change across the fan is not explicitly known, but data has 

been provided by the industrial partner for the fan pressure rise and adiabatic efficiency. 

For low-speed incompressible flow of a perfect gas, the stagnation enthalpy change can be 

expressed in terms of the fan pressure rise and efficiency: 

Δℎ𝑡 =
Δ𝑝𝑡

𝜌𝑎𝜂𝑓𝑎𝑛
 (10) 

where 𝛥𝑝𝑡 is the pressure rise required of the fan and 𝜂𝑓𝑎𝑛 is the fan adiabatic efficiency. 

Substituting this expression into equation (9) yields the final form of the fan power 

equation: 

�̇�𝑓𝑎𝑛 =
𝜌𝑎𝑄𝑐Δ𝑝𝑡

𝜌𝑎𝜂𝑓𝑎𝑛
=

𝑄𝑐Δ𝑝𝑡

𝜂𝑓𝑎𝑛
 (11) 

Recall that a model for 𝑄𝑐  has been established and is given by equation (5). Thus, 

analytical expressions are needed for the fan pressure rise and efficiency to complete this 

fan power model. The industrial partner supplied experimental data for the fan pressure 

rise and efficiency at various underhood air flow rates for a fan speed of 2500 rpm. A 

relationship between the underhood air flow rate, fan pressure rise, and efficiency can be 

determined from this data, but it is only valid when the fan speed is at 2500 rpm. For this 

model, the flow is assumed to be incompressible. We neglect the effect of Reynolds 

number variations on efficiency and pressure rise. To enable scaling of the power 

consumption model for any fan rotational speed, the pressure rise and air flow data were 

nondimensionalized to convert the experimental data from dimensional pressure rises and 
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flow rates to nondimensional pressure rise coefficients and flow coefficients. The form of 

these nondimensional parameters are expressed as: 

𝜙 =
𝑈𝑥

𝑈𝑚
=

(
𝑄𝑐

𝐴𝑓𝑎𝑛
)

𝑁𝑟𝑚 (
2𝜋
60)

 

𝜓 =
Δ𝑝𝑡

𝜌𝑎𝑈𝑚
2

 

(12) 

where 𝜙 is the flow coefficient, 𝜓 is the pressure rise coefficient, 𝑈𝑥 and 𝑈𝑚 are the axial 

and midspan blade speeds, 𝐴𝑓𝑎𝑛  is the cross-sectional flow area of the fan, 𝑁  is the 

rotational speed of the fan in rotations per minute, and 𝑟𝑚 is the midspan radius of the fan. 

Two polynomial equations were developed by using a least-squares regression method to 

fit polynomial equations to the nondimensionalized experimental data, shown in Figure 2. 

In Figure 2, the fan efficiency has been normalized by the highest fan efficiency provided 

in the experimental data. 

 

Figure 2: Pressure rise coefficient and normalized fan efficiency data with polynomial fits 

These two polynomials relate the pressure rise coefficient and the efficiency of the fan to 

the flow coefficient of the underhood airflow and are given by: 

𝜓 = −0.897𝜙2 − 0.132𝜙 + 0.3703 (13) 
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𝜂𝑓𝑎𝑛 = −14.82𝜙3 + 8.20𝜙2 − 0.226𝜙 + 0.133 

The pressure rise coefficient and efficiency are found using the expressions above after 

non-dimensionalizing the flow rate. Thereafter, the pressure rise is calculated by 

dimensionalizing the pressure rise coefficient and used with the efficiency and dimensional 

flow rate in equation (11) to calculate the fan power. 

As an extension to the previous modeling work from [2] and [5], a model was 

created to evaluate the power consumption associated with additional drag on the vehicle 

due to underhood airflow, which is set by the vehicle speed, fan rotational speed, and AGS 

open-fraction. The model for this power consumption is: 

∆�̇�𝑑𝑟𝑎𝑔 =
1

2
𝜌𝑎𝐴𝑓𝑟𝑣

3∆𝐶𝑑 (14) 

where, 𝐴𝑓𝑟 is the frontal area of the vehicle, and ∆𝐶𝑑 is the increase in drag coefficient due 

to additional flow through the underhood at a given vehicle speed due to the AGS being 

open and/or the fan being on. 

To create a model for the drag coefficient, the industrial partner supplied 

experimental data for drag coefficient as a function of underhood air volume flow rate at a 

constant vehicle speed of 67 mph. Since the data for the drag coefficient was only available 

for a single vehicle speed, the model for the underhood air volume flow rate in equation 

(5) was normalized by the vehicle speed. The weak impact of vehicle speed on the flow 

rate can be observed by dividing equation (5) by 𝑣 . A linear least squares regression 

method was used to create a polynomial fit for the drag coefficient as a function of 

normalized flow rate from the experimental data: 

𝐶𝑑 = 0.042872 (
𝑄𝑎

𝑣
) + 0.3554 (15) 

where the RMSE is 0.000419. As mentioned earlier, the increase in drag coefficient relative 

to the flow rate achieved when the AGS is closed and the fan is off is computed and used 

in equation (14) to calculate the additional power required due to the increase in drag on 

the underhood of the vehicle. 

2.2.8 Model Implementation 

To implement the NL model in MATLAB/Simulink, drive cycle parameters and initial 

conditions were coded in MATLAB to create a set of input parameters used to simulate the 
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model. The drive cycle parameters include the vehicle speed profile, ambient air 

conditions, etc. The mathematical equations (2) and (4) are implemented in Simulink to 

create a model of the A/C system. A subsystem model for each HEX was created with its 

specific equation outlined in equations (2) and (4), along with the HEX physical properties 

to fully recreate the mathematical expressions shown in equations (2) and (4). The 

thermodynamic state of the refrigerant at the outlet of the condenser model is sent directly 

to the evaporator model to be used as inputs. The VEM model is connected in place of a 

compressor model, and the former sends the compressor outputs to Simulink. The 

MATLAB script initializes the drive cycle conditions, then executes the NL model in 

Simulink and records the results.[2] 

2.2.9 Heat Exchanger Multiplier Parameter Calibration 

As mentioned, there can be significant uncertainty in modeling the convective heat transfer 

and Nusselt number. The Nusselt number was tuned for each HEX by adding a coefficient, 

denoted as 𝐾𝑐𝑎  and 𝐾𝑒𝑎  for the condenser and evaporator, respectively. A grid search 

method was used to find the combination of coefficient values that reduced the RMSE for 

the NL model output, which is the air temperature leaving the evaporator, 𝑇𝑒,𝑎𝑖𝑟,𝑜𝑢𝑡. This 

optimization yielded a minimum normalized RMSE value of 3.4%, with a 𝐾𝑐𝑎 value of 

0.29 and a 𝐾𝑒𝑎 value of 0.55. The normalized RMSE was calculated by dividing the RMSE 

found using equation (7) by the air temperature range. This is an improvement from the 

normalized RMSE of the original model in [2] (with no multipliers) of 5.4%. 

2.3 Results 

The mathematical models outlined in section 2.2 were all implemented in Simulink to 

assess the performance of the A/C system. The calibration data came from VEM model 

data for the SC03 drive cycle, a standard drive cycle used by the Environmental Protection 

Agency (EPA) to assess vehicle fuel economy [7]. To be clear, the NL model implemented 

in Simulink is not able to be simulated as a standalone model. In order to simulate the NL 

model, timeseries profiles for the controlled inputs (𝜋𝑐, �̂�, 𝑋) and external (uncontrolled) 

inputs (�̇�𝑟𝑒𝑓, 𝑄𝑒 , 𝑇𝑎𝑖𝑟,𝑖𝑛,𝑐, 𝑇𝑎𝑖𝑟,𝑖𝑛,𝑒 , ℎ𝑖𝑛,𝑐, 𝑣, ℎ𝑜𝑢𝑡,𝑒) must be provided to the NL model, since 

the NL model does not compute these on its own. The model has been implemented in this 

way due to its intended usage for control development, where it will accept external signals 
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from the VEM model. The comparison between the nonlinear and VEM models for the 

SC03 cycle is shown in Figure 3. The comparison shown in Figure 3 demonstrates that the 

NL model is a good approximation of the behavior of the high-fidelity VEM model 

designed by the industrial partner, which is treated as the benchmark system in this case. 

For neatness, the vehicle speed input has been presented in a normalized form: 

𝑣 =
𝑣

𝑣𝑚𝑎𝑥
 (16) 

 
Figure 3: VEM and NL pressure and temperature comparison for SC03 cycle 

 

The normalized RMSE between the VEM and NL model signals shown in Figure 3 are 

displayed in Table 2. The error between the two models can be explained by 

approximations made in the NL model, such as curve fitting for the refrigerant thermal 

properties and underhood airflow. It can be seen that the evaporator pressure of the NL 

model has more inertia when comparing the transient portions of the response. The stiffness 

of the evaporator pressure of the NL model can be attributed to the multiplier, 𝐾𝑒𝑎 , 
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introduced for the Nusselt number for the convective heat transfer. As the tuning parameter 

is increased, the average agreement with the NL and VEM models improves, but the 

transient behavior slows. For example, when the multiplier value is increased, the NL curve 

is shifted upward and compressed. Future research into this modeling can improve the 

response by investigating other methods to account for uncertainties with convective heat 

transfer modeling. To further assess the NL model, it was also run for a custom drive cycle 

to observe the agreement with the VEM model performance. For this custom drive cycle, 

the condenser fan and AGS actuator inputs were varied to induce transients in the model 

response. For the first half of the cycle, the AGS was held fully open while the fan speed 

ramped from max speed to zero, then back to max speed. For the second half of the cycle, 

the fan speed and AGS open-fraction were varied quasi-randomly to induce more transients 

in the model performance. The comparison between the NL model and the VEM model for 

this custom drive cycle is shown in Figure 4. 

The normalized RMSE between the VEM and NL model signals shown in Figure 

4 are displayed below in Table 2, demonstrating the NL model’s ability to handle transients 

arising from the inputs. It can be observed from Figure 3 and Figure 4 that the spikes in the 

refrigerant mass flowrate yield the greatest local error between the NL and VEM behaviors, 

causing the normalized RMSE to increase. 
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Figure 4: VEM and NL pressure and temperature comparison for custom drive cycle 

Table 2: Normalized RMSE between VEM and NL models for SC03 and custom cycles 

Parameter 𝒑𝒄 [kPa] 𝒑𝒆 [kPa] 𝑻𝒆𝒂𝒐 [C] 
SC03 Cycle 
Normalized RMSE 

4.4% 7.2% 3.8% 

Custom Cycle 
Normalized RMSE 

6.5% 7.8% 4.6% 

 

To further assess the accuracy of the model, the VEM and NL models were simulated using 

a constant vehicle speed profile of 13.4 m/s subject to an imposed fan speed step input from 

2500 rpm to 0 rpm. For the entire cycle, the AGS is fully open, and the clutch is engaged. 

The results are shown in Figure 5. The same scenario was simulated using the opposite 

input step, where the fan speed is imposed from 0 rpm to 2500 rpm, shown in Figure 6. 

The ability of the NL model to correctly capture the settling time of the VEM model when 

subject to a step input from one of the controlled actuators, as well as the dynamics 
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influenced by the refrigerant mass flow rate is demonstrated. The RMSE for Figure 5 and 

Figure 6 are shown in Table 3. 

Table 3: RMSE between VEM and NL models for fan step input simulations 

Parameter 𝒑𝒄 [kPa] 𝒑𝒆 [kPa] 𝑻𝒆𝒂𝒐 [C] 
RMSE for Negative Fan 
Step Input 21.8 20.2 0.876 

RMSE for Positive Fan 
Step Input 44.4 10.8 0.487 

 

 
Figure 5: VEM and NL model comparison for fan speed step input – 2500 rpm to 0 rpm 

The power consumption of the A/C system was assessed for the same driving conditions 

used to obtain the results displayed in Figure 3. To show how the power consumption 

assessment of the A/C system has been developed through this work, three comparisons 

are made: the power consumption of the VEM model, which only measures the compressor 

and fan power; the power consumption of the NL model using the same fan power model 
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present in the VEM model, the power consumption of the NL model using equation (11) 

for the fan power, and the power consumption of the NL model using equations (11) and 

(14), including the additional drag power. This comparison is shown in Figure 7. 

From Figure 7, it can be seen that the VEM and NL - Baseline models have a good 

agreement for the total power consumed, which comes from the compressor and fan in 

these cases. When the new fan power model from equation (11) is used instead of the VEM 

fan power model, there is a slight increase in the total power. One of the main takeaways 

from this figure is that the power consumption associated with additional aerodynamic 

underhood drag is very small. This means that when additional cooling is required, opening 

the AGS will provide extra cooling at a small cost compared to other actuators, such as the 

fan and compressor.  

The energy consumptions computed in each model are compared in Table 4. When the 

new fan power model in equation (11) is added to the NL model, the total energy 

consumption is increased from 1284.2 kJ to 1336.6 kJ. This demonstrates that the baseline 

fan power model was underpredicting the fan power consumption. The additional power 

consumed due to aerodynamic drag provides only a small increase in the total energy 

consumption computed, increasing it from 1336.6 kJ to 1353.2 kJ. Since the additional 

energy consumed due to the opening of the AGS is small, the addition of the AGS as a 

controllable actuator provides a useful tradeoff to save energy elsewhere in the A/C system. 

When the AGS open fraction increases, the amount of flow entering the condenser 

increases, providing additional cooling to the system. When this happens, the compressor 

cooling effort can be reduced, saving energy usage of the compressor. 
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Figure 6: VEM and NL model comparison for fan speed step input – 0 rpm to 2500 rpm 

 
Figure 7: Total power consumption comparison for the SC03 drive cycle 
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Table 4: Energy consumption comparison for SC03 cycle 

Model Name VEM NL – 
Baseline 

NL – New 
Fan Power 

Model 

NL – New Fan and 
Drag Power Models 

Compressor 
Energy [kJ] 

1.11 ∙ 103 
(86.1%) 

1.10 ∙ 103 
(86.1%) 

1.10 ∙ 103 
(82.7%) 

1.10 ∙ 103 
(81.7%) 

Fan Energy [kJ] 179 
(13.9%) 

179 
(13.9%) 

231 
(17.3%) 

231 
(17.1%) 

Drag Energy [kJ] N/A N/A N/A 16.7 
(1.2%) 

Total Energy [kJ] 1.29 ∙ 103 1.28 ∙ 103 1.34 ∙ 103 1.35 ∙ 103 
Percentage 
Change [%] N/A -0.200 3.87 5.16 

 

To gain insight into the individual contributions each component has on the total power 

consumption in the NL model, the compressor, condenser fan, and additional drag power 

are presented individually in Figure 8. 

 
Figure 8: Compressor, condenser fan, and drag power consumption of NL model for SC03 cycle 

 

The compressor power consumption is driven by the mass flowrate of the refrigerant, 

which has a very strong impact on the compressor power, as can be seen. The impact of 
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the volumetric airflow rate on the fan and additional drag power can also be seen. For the 

SC03 cycle shown in Figure 8, the fan speed and AGS positions are at their maximum 

physical values, that being 2500 rpm and fully open. Thus, any changes in the front-end 

airflow is caused by the vehicle speed, meaning the variations in the fan power and 

additional drag power observed in the figure are due to the change in vehicle speed. 

Figure 9 depicts the combinations of AGS position and fan speed inputs to maintain 

a constant underhood flow rate of 450 cfm and the power consumption associated with the 

fan and drag. At this driving condition, the power consumed by the fan is clearly much 

greater than the power consumed due to additional underhood drag. The same analysis was 

conducted for conditions where the drag power was more significant, specifically when the 

vehicle speed is much higher. For these scenarios, the same findings were observed, where 

the fan power dominates the additional drag power. Figure 9 demonstrates that the same 

underhood air flowrate can be achieved using various combinations of AGS and fan inputs, 

but the power consumed is not constant. By opening the AGS, allowing more air to flow 

through the front-end of the vehicle, the fan can reduce its rotational speed to achieve the 

same cooling flow, but at a reduced power consumption. This will be useful for control 

implementation where cooling performance and power consumption reduction is of 

interest. 

 
Figure 9: AGS position, fan speed, and power for 450 cfm air flow at 13.4 m/s vehicle speed 
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2.4 Conclusion 

In this paper, we have considered the AGS as a controllable actuator to regulate the 

underhood airflow and power consumption due to the underhood drag. The modeling work 

described in [2] was extended by developing a model for the airflow through the vehicle’s 

front end to allow the AGS actuation to be considered in the model. Models were created 

for the refrigerant thermodynamic properties, as well as the power consumption of the 

compressor, condenser fan, and underhood aerodynamic drag. The NL model was tuned to 

improve the agreement with various driving conditions, including the SC03 drive cycle and 

a custom drive cycle with strong transients in the controlled inputs. The NL model was 

validated against the behavior of a high-fidelity VEM model. The results showed that the 

overall performance of the system improved by reducing the error for the condenser 

pressure, evaporator pressure, and evaporator air temperature by 32.8%, 2.1%, and 2.6% 

respectively. It was found that the power consumption associated with additional drag on 

the vehicle due to underhood airflow is a very small contribution to the overall power 

consumed by the A/C system, only 1.2% for the SC03 cycle. This means that considering 

the AGS as a controllable actuator can be useful in terms of reducing the overall power 

consumption. By opening the AGS, additional cooling occurs due to the allowance of 

increased air flow through the vehicle’s front-end, but only at a small power consumption 

cost. The cooling provided by the AGS air flow can reduce the cooling load on other 

actuators such as the fan. The outcomes of this work will be used in a controller design in 

future work where the compressor clutch, fan rotational speed, and AGS open-fraction will 

be controlled to reduce the overall energy consumption of the A/C system. 
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CHAPTER 3 

DEVELOPING A COMPRESSOR, FAN, AND ACTIVE GRILLE SHUTTER 

MODEL PREDICTIVE CONTROL STRATEGY FOR AIR CONDITIONER 

DUTY CYCLES TO IMPROVE OVERALL VEHICLE POWER CONSUMPTION 

3.1 Introduction 

Every vehicle on the road is equipped with an A/C system that is used to regulate the tem-

perature of the air travelling from the underhood of the vehicle to the vehicle cabin in order 

to maintain passenger comfort. It is a critical task to design a controller for the A/C system 

because without a controller, the operation of the A/C system, namely the circulating re-

frigerant, would solely depend on the operation of the engine of the vehicle, since the com-

pressor is coupled to the engine. This means that the operation of the A/C system (and thus 

the control of the temperature of the air sent to the cabin) would be independent from what 

the passengers within the cabin request. The only way to increase the cooling effect would 

be to increase the speed of the vehicle, which is unsafe. 

One of the earliest controller types employed for A/C system control was on/off 

controllers. This control technique was most commonly applied to the compressor clutch 

to engage and disengage the cooling loop to maintain the cabin temperature within a spe-

cific range [8]. These controllers are very simple to design and implement but do not ac-

count for energy-saving and can cause compressor wear due to frequent on/off cycling [9]. 

Feedback controllers were also used for A/C system control. Feedback controllers, such as 

proportional integral controllers, have demonstrated improvements in reducing the me-

chanical wear of the compressor by continuously controlling the variable displacement of 

the compressor [10]. Studies have shown difficulty with gain tuning for feedback control-

lers due to system nonlinearity and lack of consideration for energy use reduction since 

they only considered the evaporator coefficient of performance (COP) maximization [11]. 

A sliding-mode controller (SMC) developed by [12] reduced the chattering phenomenon 

of the compressor by controlling the compressor speed but did not consider the power con-

sumption of the A/C system since the only output considered was the evaporator superheat 

temperature. Other SMCs have been shown to control the A/C system dynamics using lin-

earized plant models but did not consider the power consumption of any components [13]. 

More recent developments in SMC applications to automotive A/C systems show potential 
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for energy savings of the compressor and fans, but these control methods still lack any 

consideration of vehicle drag and AGS control [14]. 

In recent years, MPC applications for A/C systems have seen more research interest 

in the academic sector. MPC is an exciting prospect for A/C system control. MPC makes 

predictions about the future behaviour of the system and corrects for deviations between 

the predicted and actual response since the optimal control sequence is updated at each 

time step [15]. MPC also lends itself well to A/C system control due to its ability to con-

sider constraints on inputs, states, and outputs directly into the control problem formulation 

and is enforced by the controller [16]. Some of the earliest MPC formulations to A/C sys-

tems were seen for industrial refrigeration systems, primarily for supermarkets [17], [18]. 

These applications demonstrated that MPC techniques could be effectively used for A/C 

system control, but the main goal of these applications was to control the temperature of 

the goods within the storage facility, not energy consumption management [19]. 

More recently, MPC applications have been applied to automotive A/C systems. 

Most of the current literature on automotive A/C system control is investigated for hybrid 

electric vehicles (HEVs) and battery electric vehicles (BEVs) [20]. [21] proposed an MPC 

algorithm that minimizes the tracking error of the discharge air cooling power (cabin cool-

ing requirement) and minimizes the energy consumption of the A/C system. However, this 

study considers the compressor power consumption to be the overall system energy con-

sumption and did not consider radiator fan power or AGS control effects. [22] proposed a 

linearized MPC problem for a BEV to track the cabin temperature accurately. This nonlin-

ear problem was reformulated into a linear quadratic cost function with linear constraints; 

this can lead to linearization error, but the question becomes, are we able to tolerate this 

error if it allows the problem to become much simpler and less computationally expensive 

(real-time application may be more feasible). [23] proposed a nonlinear MPC control for 

BEV/HEV to minimize power consumption. This approach demonstrated a 9% energy sav-

ings and accounted for power consumed by the blower (for the evaporator) but did not 

consider the AGS at all in the analysis. None of the MPC approaches have been applied to 

conventional vehicles in the literature reviewed for this research. Due to the several simi-

larities existing between the A/C systems for electric and conventional vehicles, some of 
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the approaches and methodology used in these papers can be translated into gasoline vehi-

cle applications. In most HEV and BEV studies, one of the primary design goals is the 

thermal management of the battery, which is something that is not needed for a conven-

tional vehicle. Thus, since the intention of this work is for a conventional vehicle, the main 

focus can be on the thermal management of the cabin and overall vehicle power savings, 

without having to consider any sort of battery thermal management. 

Several linear approximation MPCs have been formulated in the past, with the most 

popular being adaptive and gain-scheduled model predictive controllers [24] and [25]. 

These controller types will be discussed in more detail in section 3.2, but adaptive MPC is 

more promising for this application due to its effectiveness for control designs where the 

structure of the optimization problem (number of states and constraints) remains the same 

across different operating points. 

The consideration of AGS control to reduce the overall vehicle power consumption 

and regulate the underhood airflow for cabin cooling has not been considered in any of the 

literature reviewed for this research. The A S has a significant impact on the vehicle’s 

thermal management. By opening the AGS, the refrigerant temperatures will decrease due 

to the additional airflow allowed into the underhood of the vehicle, which also decreases 

the cabin temperatures. This allows other components, such as the compressor, to reduce 

its working load and still satisfy the cooling requirements of the vehicle [26]. Although 

studies have shown that opening the AGS benefits underhood cooling, it comes at a cost. 

[27] demonstrated that as the AGS is opened, the drag force of the underhood vehicle air-

flow increases due to an increase in drag coefficient, concluding that the AGS has a signif-

icant impact on the fuel economy and power consumption of the vehicle. By controlling 

the condenser fan and AGS along with the compressor, it is expected that the energy used 

by the system can be further reduced. For example, by controlling the AGS angle, flow 

through the vehicle’s front-end can be regulated and allow the fan to turn off completely 

to save power since the required airflow is supplied through the AGS. However, the drag 

changes associated with opening the AGS must also be factored in, as reducing A/C system 

energy use at the expense of higher fuel consumption to overcome drag would not be a 

desirable outcome. Thus, this paper extends previous work on model predictive control of 

automotive A/C systems by introducing the AGS as a new actuator into the control problem 
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and will also investigate the benefit to overall vehicle power consumption. The specifica-

tion of the control problem extended by this work can be seen in Figure 10, where the 

blocks highlighted in red are the control interests in this paper. 

 

Figure 10: Visual tree of control problem of an A/C system 

The novelty of this chapter is in developing a model predictive control algorithm for gas-

oline vehicles that considers the control of the AGS to regulate the underhood airflow and 

reduce the overall vehicle power consumption. 

The remaining sections of this paper are organized as follows. Section 3.2 details 

high-level information related to MPC control formulations and discrete state-space system 

model forms. Section 3.3 includes a description of the linear problem formulation and con-

trol aspects such as the system states, inputs, outputs, physical limitations, and discretiza-

tion. Section 3.4 outlines the quadratic programming formulation, which is the optimiza-

tion technique used to solve the problem set up by section 3.3. Section 3.5 discusses the 

findings and implications of the MPC simulation results, as well as a discussion of the 

analysis. Section 3.6 concludes the chapter with some reflection, shortcomings, and ave-

nues for future research. 
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3.2 MPC Description and Discrete State-Space General Form 

MPC is a feedback control formulation that uses a mathematical model of a real system to 

make predictions about the system’s future behaviour when influenced by a set of con-

trolled actuating inputs. A simple block diagram of an MPC is shown in Figure 11 and the 

configuration of an MPC with a real system is shown in Figure 12. 

 

Figure 11: MPC block diagram 

 

Figure 12: MPC linked with real system plant 

The mathematical model of the A/C system for a conventional gasoline vehicle developed 

in Chapter 2 will be used by the MPC algorithm to predict the behaviour of the real system, 

taking the place of the model block in Figure 11 and Figure 12. At each timestep, an optimal 

sequence of control actions is computed by the MPC algorithm by running forecasts of the 

prediction model’s behaviour in order to minimize the value of an objective function de-

fined by the designer. An example of an objective function would be the error between a 

reference output trajectory and actual output trajectory for setpoint tracking, such as track-

ing an air temperature to a desired value. Once the optimal input sequence is computed, 

only the immediate next control action is sent to the real system and the response of the 
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system is fed back to the MPC. This behaviour adds robustness to the control because the 

MPC recomputes another optimal control sequence at each time step, whereas similar con-

trol approaches such as a linear quadratic regulator (LQR) computes an optimal control 

sequence offline for the entire simulation/cycle. At each time step, the MPC algorithm is 

reinitialized at the current operating condition of the system, that being the system state. If 

the behaviour of the real system is different than that predicted by the system model, this 

reinitialization compensates for those modelling errors and disturbances. At every subse-

quent timestep, a new optimal control sequence is computed, and this optimization window 

is shifted forward in time, one timestep each time. This is why MPC techniques are com-

monly referred to as receding horizon control [28]. 

As discussed in the literature review section, several linear approximation model 

predictive controllers have been formulated in the past, with the most popular being adap-

tive and gain-scheduled model predictive controllers [24], [25]. Figure 13 and Figure 14 

depict block diagrams of these two MPC types. 

 

Figure 13: Adaptive MPC block diagram 

 

Figure 14: Gain-scheduled MPC block diagram 
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 oth   C types operate by finding multiple linearized models across the system’s several 

operating points, but an adaptive model predictive controller type is better suited for this 

application. This is because the structure of the optimization problem (number of states 

and constraints) remains the same across different operating points, whereas gain-sched-

uled model predictive controllers are used when the number of states and constraints 

change between operating points. In the adaptive MPC, a linear model of the system is 

computed on the fly as the operating conditions are changing, and the internal prediction 

model is updated with each new linearized model. As the operating conditions are chang-

ing, only the model of the system is being updated, and the MPC algorithm stays the same. 

MPC strategies commonly use discrete state-space formulations for the mathematical mod-

elling of the system of interest. The standard form of a discrete state-space system is written 

as: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐸𝑣𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝐹𝑣𝑘 
(17) 

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹 are matrices describing the linearized system dynamics, 𝑥𝑘 is 

the state vector at timestep 𝑘, 𝑢𝑘 is the controlled input vector at timestep 𝑘, 𝑣𝑘 is the un-

controlled input vector at timestep 𝑘 treated as an external disturbance, and 𝑦𝑘 is the output 

vector at timestep 𝑘. As mentioned, the MPC computes an optimal input sequence using 

an optimizer and prediction model with the general form shown in (17). When looking at 

(17), it can be seen that when each control action is determined by the optimizer and sent 

to the discrete state-space model, the system state at the next timestep is calculated and the 

output at the current timestep is also determined. A forecast of future system state and 

output trajectories are computed using this discrete-time state-space prediction model. 

As mentioned previously, the controller is designed in Simulink and is connected to 

the VEM model to create an SiL simulation environment. To achieve this, the controller 

code is compiled in Simulink to generate a C-code file that is executable by the VEM model 

in GT-Suite. The C-code file is embedded within the VEM model so that when the VEM 

model sends or receives signals from the controller, it is able to do so by executing the C-

code file instead of requiring an external connection to Simulink. 
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3.3 Full Description of System Modelling, States, Inputs, and Outputs 

As mentioned, the goal of this research is to develop an MPC that can reduce the energy 

consumption of the A/C system of a conventional gasoline vehicle. The cabin cooling effort 

of the A/C system is controlled using several actuators, three of which are the compressor 

clutch, condenser fan, and active grille shutters. These three controllable actuators, as well 

as other parameters, are displayed in a diagram of the A/C system shown in Figure 1. The 

compressor clutch connects the compressor to the engine, enabling the compressor to op-

erate and increase the pressure of the refrigerant leaving through the discharge port. The 

condenser fan and AGS regulate the flow of the ambient air stream entering the front-end 

of the vehicle, which passes through the condenser to exchange heat with the refrigerant. 

To define the aspects of the prediction model described by (17), the system of nonlinear 

equations described by (2) and (4) must be linearized. An additional equation is introduced 

to gather the individual power consumptions into one term, that being the total power con-

sumption. The total power consumption of the A/C system is thus described by: 

�̇�𝑡𝑜𝑡𝑎𝑙 = �̇�𝑐𝑜𝑚𝑝 + �̇�𝑓𝑎𝑛 + Δ�̇�𝑑𝑟𝑎𝑔 (18) 

These equations are linearized on the fly using the adaptive MPC approach described ear-

lier, allowing the trim state to always be the current working state of the VEM model (real 

system). This allows the controller to be initialized at the current system state at each time 

step, allowing accuracy to be held throughout the simulation, since the controller will al-

ways be working in the vicinity of the trim state. To compute the linearization, the Jacobian 

matrices of the nonlinear model are evaluated at the current trim state, yielding the numeric 

values of the linearized system matrices. 

The state vector 𝑥 is described by (19): 

𝑥 = [
𝑝𝑐

𝑝𝑒
] = [

𝑥1

𝑥2
] (19) 

where 𝑝𝑐 and 𝑝𝑒 are the condenser and evaporator refrigerant pressures. The input vector 

𝑢 is described by (20): 

𝑢 = [

𝜋𝑐

�̂�
𝑋

] = [

𝑢1

𝑢2

𝑢3

] (20) 

where 𝜋𝑐 is a continuous compressor clutch signal, �̂� is the normalized rotational speed of 

the condenser fan between zero and one, 𝑋 is the open-fraction of the AGS between zero 
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and one. An important aspect of this input vector must be mentioned. For the real system, 

the compressor clutch acts as a discrete signal (a value of zero for disengaged or one for 

engaged). Since state-space models assume continuous variables, the compressor clutch 

input is determined as a continuous signal but is rounded to either zero or one when sent to 

the real system to ensure agreement with the physical behaviour of the system’s actuators. 

This simplification is necessary, but it is a shortcoming in this work since the intended 

action of the controller is being overridden. A suggestion for future advancement of this 

research would be to exchange the discrete clutch actuation control with the continuous 

displacement control of a variable displacement compressor. The measured disturbance 

(uncontrolled) input vector 𝑣 is described by (21): 

𝑣 =

[
 
 
 
 
 
 
 

�̇�𝑟𝑒𝑓

𝑄𝑒

𝑇𝑎𝑖𝑟,𝑖𝑛,𝑐

𝑇𝑎𝑖𝑟,𝑖𝑛,𝑒

ℎ𝑖𝑛,𝑐

𝑣
ℎ𝑖𝑛,𝑐𝑜𝑚𝑝]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7]
 
 
 
 
 
 

 (21) 

where �̇�𝑟𝑒𝑓 is the mass flow rate of the refrigerant set by the compressor in GT-Suite, 𝑄𝑒 

is the volume flow rate of the air set by the evaporator blower model in GT-Suite, 𝑇𝑎𝑖𝑟,𝑖𝑛,𝑐 

and 𝑇𝑎𝑖𝑟,𝑖𝑛,𝑒 are the air temperatures entering the condenser and evaporator, ℎ𝑖𝑛,𝑐 is the in-

let enthalpy for the condenser, 𝑣 is the vehicle speed, and ℎ𝑖𝑛,𝑐𝑜𝑚𝑝 is the inlet enthalpy for 

the compressor. All the measured disturbances are treated as uncontrolled inputs that are 

sent from the VEM model to the MPC. The output vector, 𝑦, is described by (22): 

𝑦 = [
𝑇𝑎𝑖𝑟,𝑜𝑢𝑡,𝑒

�̇�𝑡𝑜𝑡𝑎𝑙
] = [

𝑦1

𝑦2
] (22) 

where 𝑇𝑎𝑖𝑟,𝑜𝑢𝑡,𝑒 is the temperature of the air leaving the evaporator (entering the cabin), 

and �̇�𝑡𝑜𝑡𝑎𝑙 is the total power consumption of the compressor, �̇�𝑐𝑜𝑚𝑝, fan, �̇�𝑓𝑎𝑛, and addi-

tional power consumed due to underhood vehicle drag, Δ�̇�𝑑𝑟𝑎𝑔. The evaporator outlet air 

temperature is chosen as one of the outputs for the model because the goal of the controller 

is to control the actuators to maintain this air temperature close to a reference value, thus 

regulating the cabin cooling performance. The other output, �̇�𝑡𝑜𝑡𝑎𝑙, is chosen because the 
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second goal of this controller is to minimize the power consumption of the A/C system 

while satisfying the cooling objective. 

Now that the underlying equations, states, inputs, and outputs have been clearly 

defined, the process of linearizing and discretizing the nonlinear equations described by 

(2), (4), and (18) can be discussed. The numerical values of the state-space matrices are 

computed using a successive linearization approach [29]. Successive linearization is a very 

popular approach adopted for adaptive MPC designs found in literature [30]. The concept 

of this approach is simple. At the beginning of each control iteration, the Jacobian matrices 

are evaluated at the current operating conditions of the complex system model, that being 

the current values for the system states, controlled inputs, and uncontrolled inputs. This 

will update the numerical values of the state-space matrix entries. By re-evaluating the 

state-space model at the current operating conditions, this will ensure that the trim state is 

close to the current operating point. The intention of this is to reduce the linearization error 

caused by deviations from the trim state. Thus, the working condition of the complex sys-

tem model will be treated as the trim state. 

The continuous-time linear state-space model form must be discretized to form a 

discrete-time linear state-space model. Typically, MPC algorithms are designed in discrete-

time. An overwhelming amount of MPC designs have been developed using discrete-time 

approaches, and a much smaller amount of continuous-time MPCs are present in the liter-

ature. In this work, a discrete-time MPC has been chosen due to the nature of the commu-

nication between the MPC and the real system. The VEM model only communicates in 

discrete time steps, so to maintain consistency, the MPC has been designed in discrete-time 

as well. The discrete-time model was approximated from the continuous-time model using 

the forward Euler method, simply by multiplying the matrices by a constant time step of 

one second, as shown below [31]: 
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𝐴 = 𝐼 + 𝐴𝑐 ∗ 𝑇𝑠 

𝐵 = 𝐵𝑐 ∗ 𝑇𝑠 

𝐶 = 𝐶𝑐 ∗ 𝑇𝑠 

𝐷 = 𝐷𝑐 ∗ 𝑇𝑠 

𝐸 = 𝐸𝑐 ∗ 𝑇𝑠 

𝐹 = 𝐹𝑐 ∗ 𝑇𝑠 

(23) 

Where 𝐴𝑐, 𝐵𝑐. 𝐶𝑐. 𝐷𝑐, 𝐸𝑐, and 𝐹𝑐 are the continuous-time state-space matrices, 𝑇𝑠 is a con-

stant time step, and 𝐼 is an identity matrix. Normally, continuous-time state-space models 

are converted to discrete-time using  ATLA ’s built-in functions. However, due to limi-

tations with functions supported by code generation in Simulink, the forward Euler approx-

imation was adopted in this case. The discrete-time state-space matrices in this work are 

shown in (24). However, due to the nature of adaptive MPC, these system matrices are 

changing at each global time step, so the matrices in (24) are an example of state-space 

matrices at one specific operating condition. 

𝐴 = [
−0.0879 0
0.00224 −0.154

] 

𝐵 = [
39.4 −53.3 −40.9

−16.8 0 0
] 

𝐶 = [
0 0.104
0 0

] 

𝐷 = [
0 0 0

0.992 0.331 0.0189
] 

𝐸 = [
2000.03 0 3.29 0 0.237 −0.914 0
−850.5 62.8 0 1.18 0 0 0

] 

𝐹 = [
0 0 0 0 0 0 0

50.3 0 0 0 0.0214 −2.94𝑒−5 −0.0214
] 

(24) 

Using a time step of one second leaves only the 𝐴 matrix changed, due to the addition of 

the identity matrix. The time step value used here is the same time step used in the optimal 

control iterative calculations, as well as the same time step used for communication be-

tween the VEM model and the MPC. A time step of one second was chosen as the value 

for this parameter. To validate the chosen time step, the time responses of the air tempera-

ture output were evaluated for a unit step from each of the three controlled inputs. The 

fastest time constant was found to be approximately 10.9 seconds, which was for the clutch 

unit step input. It is a common best practice for a discretization time step to be at least ten 
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times smaller than the fastest time constant of the system. Since the fastest time constant 

is 10.9 seconds, a discretization time step of one is satisfactory based on this best practice. 

3.4 Quadratic Programming Formulation 

Quadratic programming (QP) is an optimization process used to solve mathematical prob-

lems containing quadratic functions. This is the optimization technique used to determine 

the optimal input sequence needed to satisfy the objectives outlined for this research, which 

are temperature tracking and power consumption reduction. The optimal solution to a quad-

ratic programming problem is found by minimizing the following objective function, 𝐽: 

𝐽 = min [
1

2
𝑋𝑞𝑝

𝑇 𝐻𝑋𝑞𝑝 + 𝑓𝑇𝑋𝑞𝑝] (25) 

where 𝑋𝑞𝑝 is a vector containing the control objectives shown in (26), 𝐻 is a diagonal ma-

trix containing relative weightings for each control objective in the quadratic term of the 

cost function, and 𝑓 is a vector containing relative weightings for each control objective in 

the linear term of the cost function. Clearly, there is a quadratic term (1
2
𝑋𝑞𝑝

𝑇 𝐻𝑋𝑞𝑝) and a 

linear term (𝑓𝑇𝑋𝑞𝑝) in the objective function. Adding the quadratic term is the difference 

between linear and quadratic problems. In this cost function, the elements of the vector 𝑋𝑞𝑝 

are minimized to achieve the smallest possible value for the objective function. The 𝑋𝑞𝑝 

vector is specific to a particular control problem being solved and can vary depending on 

what the objectives of the control are. For example, in state-space control, there are outputs, 

states, and inputs. For this control type, the controller is typically designed to track refer-

ence values for the states and outputs of the system, while also considering the magnitude 

and rate of change of the controlled input values. In this case, the elements of 𝑋𝑞𝑝 are as 

follows: 

𝑋𝑞𝑝 = [

𝑦𝑘 − 𝑦𝑘,𝑠

𝑥𝑘 − 𝑥𝑘,𝑠

𝑢𝑘

∆𝑢𝑘

] (26) 

This description of 𝑋𝑞𝑝 is for a discrete time case, since the approach used for the controller 

design discussed in subsequent sections is also discrete time, due to the nature of the con-

troller type. The first term, 𝑦𝑘 − 𝑦𝑘,𝑠, denotes the deviation between the current output 

value and the desired output reference value at time step 𝑘. The second term, 𝑥𝑘 − 𝑥𝑘,𝑠, 
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denotes the deviation between the current state value and the desired state reference value 

at time step 𝑘. The third term, 𝑢𝑘, denotes the magnitude of the controlled actuator inputs. 

This term is included to reduce the actuator effort in the control scheme. The fourth term, 

∆𝑢𝑘, is added to 𝑋𝑞𝑝 to reduce the rate of change of the controlled actuator inputs from one 

control action to the next if chattering behaviour is a concern for the system of interest. 

Chattering behaviour is described as high-frequency oscillations of a controlled input, 

which can impact the durability of the controlled actuators. For this paper, all four of these 

elements are considered in the QP formulation. The elements along the diagonal of the 𝐻 

matrix can be used to change to relative importance of each control objective, even remov-

ing one completely from the problem by setting it’s corresponding 𝐻 matrix element to 

zero. 

In order for the QP solver in MATLAB to know what the elements of the 𝑋𝑞𝑝 vector 

are, the elements of the 𝑋𝑞𝑝 vector must appear explicitly in the system of equations, the 

discrete state-space model in this case. The 𝑋𝑞𝑝 vector can be defined mathematically by 

reorganizing the state-space formulation described by (17) to explicitly include the ele-

ments of (26). Firstly, the model in (17) is rewritten as: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵∆𝑢𝑘 + 𝐵𝑢𝑘−1 

𝑢𝑘 = 𝑢𝑘−1 + ∆𝑢𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷∆𝑢𝑘 + 𝐷𝑢𝑘−1 

(27) 

where ∆𝑢𝑘 ≜ 𝑢𝑘 − 𝑢𝑘−1. Rewriting the model in this form incorporates the rate of change 

of the controller inputs into the state-space model. The next step is to rewrite the state-

space model in terms of setpoint deviations. This model is shown in (28): 

𝑥𝑘+1 − 𝑥𝑘+1,𝑠 = 𝐴(𝑥𝑘 − 𝑥𝑘,𝑠) + 𝐴𝑥𝑘,𝑠 + 𝐵∆𝑢𝑘 + 𝐵𝑢𝑘−1 − 𝑥𝑘+1,𝑠 

𝑢𝑘 = 𝑢𝑘−1 + ∆𝑢𝑘 

𝑦𝑘 − 𝑦𝑘,𝑠 = 𝐶(𝑥𝑘 − 𝑥𝑘,𝑠) + 𝐶𝑥𝑘,𝑠 + 𝐷∆𝑢𝑘 + 𝐷𝑢𝑘−1 − 𝑦𝑘,𝑠 

(28) 

where the subscript 𝑠 denotes a setpoint. Based on the formulation above, setpoints must 

be set for the states and outputs. The setpoints for the states are set as the trim state to 

ensure the heat exchanger pressures remain within typical operating conditions. As will be 

discussed later, the weighting for the state error will be given a small importance relative 

to the main control objectives for this work, such as the error for the air temperature sent 
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to the cabin. The setpoint for the air temperature sent to the cabin is 4°C, which is set by 

the industrial partner. Since the power consumption must be reduced, the setpoint for the 

power is set as zero. 

To simplify the presentation of the equations shown in (28), the following variable 

definitions are introduced: 

𝑥𝑘
′ = [

𝑥𝑘 − 𝑥𝑘,𝑠

𝑢𝑘−1
] 

𝐴′ = [
𝐴 𝐵

0𝑛𝑢×𝑛𝑥
𝐼𝑛𝑢×𝑛𝑢

] 

𝐵′ = [
𝐵

𝐼𝑛𝑢×𝑛𝑢

] 

𝑥𝑘,𝑠
′ = [

𝑥𝑘,𝑠

0𝑛𝑢×1
] 

𝑦𝑘
′ = 𝑦𝑘 − 𝑦𝑘,𝑠 

𝐶′ = [𝐶 𝐷] 

(29) 

resulting in the final form equations shown in (30): 

𝑥𝑘+1
′ = 𝐴′𝑥𝑘

′ + 𝐵′∆𝑢𝑘 − 𝑥𝑘+1,𝑠
′ + 𝐴′𝑥𝑘,𝑠

′

𝑦𝑘
′ = 𝐶′𝑥𝑘

′ + 𝐷∆𝑢𝑘 − 𝑦𝑘,𝑠 + 𝐶′𝑥𝑘,𝑠
′  (30) 

Now it can be seen that the four elements of 𝑋𝑞𝑝 appear explicitly in the state-space model. 

To be clear, the model shown in (30) is not the internal prediction model used to determine 

the system behaviour when acted upon by the optimal input sequence computed by the 

MPC. The model in (30) is created to allow the QP solver to understand what must be 

minimized, that being the elements of 𝑋𝑞𝑝. In QP problems, the elements of the 𝑋𝑞𝑝 vector 

are defined by rearranging the system equations to form an equality constraint of the form 

𝐴𝑥 = 𝑏. The elements in the 𝐴 matrix on the left-hand side of the equality are multiplied 

by the elements of 𝑥, which is 𝑋𝑞𝑝 in this case. This means terms on the left-hand side of 

the equality must be the terms in (30) that contain elements of 𝑋𝑞𝑝. The elements in the 𝑏 

vector on the right-hand side of the equality are the remaining terms, which turn out to be 

setpoint deviations. 

To achieve this form, the model shown in (30) can be rearranged in the following 

form: 
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𝑥𝑘+1
′ − 𝐴′𝑥𝑘

′ − 𝐵′∆𝑢𝑘 = 𝐴′𝑥𝑘,𝑠
′ − 𝑥𝑘+1,𝑠

′

𝑦𝑘
′ − 𝐶′𝑥𝑘

′ − 𝐷∆𝑢𝑘 = −𝑦𝑘,𝑠 + 𝐶′𝑥𝑘,𝑠
′  (31) 

The equations shown in (31) are of the form: 

𝐴𝑒𝑞𝑋𝑞𝑝 = 𝑏𝑒𝑞 (32) 

where 𝑋𝑞𝑝, 𝐴𝑒𝑞, and 𝑏𝑒𝑞 are defined as: 

𝑋𝑞𝑝 =

[
 
 
 
𝑥′𝑘
∆𝑢𝑘

𝑥𝑘+1
′

𝑦𝑘
′ ]

 
 
 

 (33) 

𝐴𝑒𝑞 = [
−𝐴′ −𝐵′ 𝐼𝑛𝑥; 0

−𝐶′ −𝐷′ 0 𝐼𝑛𝑦

] (34) 

𝑏𝑒𝑞 = [
𝐴′𝑥𝑘,𝑠

′ − 𝑥𝑘+1,𝑠
′

−𝑦𝑘,𝑠 + 𝐶′𝑥𝑘,𝑠
′ ] (35) 

The matrices in equations (33)-(35) are for a single control interval. As mentioned earlier, 

MPC run the model forward in time in a series of forecasts to predict the future behaviour 

of the system. The length in which this is done is called the prediction horizon, denoted as 

ℎ, which is the number of control intervals, measured in discrete time steps, the model is 

forecasted ahead in time. The length of the matrices in equations (33)-(35) are dependent 

upon the length of the prediction horizon. The general form of the matrices are: 

𝑋𝑞𝑝 =

[
 
 
 
 
 
 
 
 

∆𝑢0

𝑥1
′

⋮
∆𝑢ℎ−1

𝑥ℎ
′

𝑦1
′

⋮
𝑦ℎ

′ ]
 
 
 
 
 
 
 
 

1×ℎ(𝑛𝑥+2𝑛𝑢+𝑛𝑦)

 (36) 

𝐴𝑒𝑞 =

[
 
 
 
 
 
 
 
−𝐵′ 𝐼𝑛𝑥; 0 0 ⋯ ⋯ ⋯ ⋯ 0

0 −𝐴′ −𝐵′ 𝐼𝑛𝑥; ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ 0 −𝐴′ −𝐵′ 𝐼𝑛𝑥; 0 ⋯ 0

−𝐷 −𝐶′ ⋯ ⋯ ⋯ 0 𝐼𝑛𝑦
⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ 0
0 ⋯ ⋯ ⋯ −𝐷 −𝐶′ ⋯ 0 𝐼𝑛𝑦]

 
 
 
 
 
 
 

ℎ(𝑛𝑥+𝑛𝑢+𝑛𝑦)×ℎ(𝑛𝑥+2𝑛𝑢+𝑛𝑦)

 (37) 
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𝑏𝑒𝑞 =

[
 
 
 
 
 
 
 
 𝐴

′ [
𝑥0

𝑢−1
] − 𝑥1,𝑠

′

𝐴′𝑥1,𝑠
′ − 𝑥2,𝑠

′

⋮
𝐴′𝑥ℎ−1,𝑠

′ − 𝑥ℎ,𝑠
′

−𝑦0,𝑠 + 𝐶′𝑥0,𝑠
′

⋮
−𝑦ℎ,𝑠 + 𝐶′𝑥ℎ,𝑠

′
]
 
 
 
 
 
 
 
 

ℎ(𝑛𝑥+𝑛𝑢+𝑛𝑦)×1

 (38) 

where 𝑛𝑥 is the number of states, 𝑛𝑢 is the number of controlled, 𝑛𝑦 is the number of out-

puts. At each time step, the controller undergoes a number of optimizations (minimizations 

of the 𝑋𝑞𝑝 vector) equal to the length of the prediction horizon. For example, if the predic-

tion horizon is equal to ten discrete time steps, the controller will minimize 𝑋𝑞𝑝 at the initial 

time step, apply the optimal control input to the prediction plant model, measure the re-

sponse from the prediction model, then use the response to calculate the next control input. 

This process is repeated nine more times in this case, with 𝑋𝑞𝑝 being minimized at each 

control step. In this example, if the total simulation time is 100 seconds, the MPC will be 

run 1000 times since it computes ten optimal input actions at each time step. The prediction 

horizon length is a tunable parameter that is defined prior to solving the optimization prob-

lem. If the prediction horizon too short, it will not be able to cover the significant dynamics 

of the system. If a disturbance is applied to the system, it may not be able to react fast 

enough with a prediction horizon that is too short. If the prediction horizon is too long and 

a disturbance occurs, it could cause a large portion of the control prediction to be thrown 

away and recomputed to account for the disturbance. It is also more computationally ex-

pensive to have a large prediction horizon since the matrices become much larger and the 

MPC must compute more control actions over a larger optimization window. 

 A typical recommendation for MPC designs is to have the prediction horizon cover 

a significant portion of the transient open-loop system response, with 10-20 samples within 

that prediction horizon. The fastest time response of the system is roughly 21 seconds. 

Since the time step is one second, this means a prediction horizon of 21 samples would 

cover the entire transient portion of the open-loop system response. Due to a time-limita-

tion on this work, the prediction horizon length was made to be 10 samples, since longer 

prediction horizons would warrant a significantly longer simulation time, which was not 

feasible given the timeline of this work. In future work for this project, longer prediction 
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horizons can be analyzed to investigate the tradeoff between computation time and model 

response. 

The robustness of MPC can be clearly understood by this receding horizon behav-

iour. When the controller sends the immediate next control action to the complex system 

model, the expected response may differ from the actual response due to several factors 

such as linearization error or unmeasured disturbances. Instead of this error compounding 

over time, the controller can make corrections since an entirely new control sequence is 

computed at each time step. Although, this makes MPC very computationally expensive 

since a new optimal control problem is solved at each time step. 

Constraints can be set on the optimization. The controlled inputs have physical lim-

itations based on their range of operation. These are hard constraints that cannot be exceed 

by any means. The states also have constraints, but they are not due to physical limitations. 

The constraints on the states are imposed to prevent problems from arising in the HEXs 

due to excessive pressure or lack of pressure. For the QP algorithm to run successfully, 

constraints must also be present for the outputs as well, but since the outputs do not have 

bounds for this application, they will be treated as infinity. The constraints are shown in 

(39) and are defined by the industrial partner: 

100𝑘𝑃𝑎 ≤ 𝑝𝑒 ≤ 1300𝑘𝑃𝑎 

700𝑘𝑃𝑎 ≤ 𝑝𝑐 ≤ 3000𝑘𝑃𝑎 

𝜋𝑐 = [0,1] 

0 ≤ �̂� ≤ 1 

0 ≤ 𝑋 ≤ 1 

(39) 

Recall that the �̂� is the normalized rotational speed of the condenser fan, meaning a value 

of one indicates the maximum physical rotational speed. The same goes for 𝑋, the open 

fraction of the AGS, where a value of one indicates the fully open position. For quadratic 

programming in MATLAB, the upper and lower bounds for the constraints can be orga-

nized for the entire length of the prediction horizon in the form: 
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𝑙𝑏 =

[
 
 
 
 
 
 
 
 
 
 
𝑙𝑏𝑢 − 𝑢𝑏𝑢

[
𝑙𝑏𝑥 − 𝑥1,𝑠

𝑙𝑏𝑢
]

⋮
𝑙𝑏𝑢 − 𝑢𝑏𝑢

[
𝑙𝑏𝑥 − 𝑥ℎ,𝑠

𝑙𝑏𝑢
]

𝑙𝑏𝑦 − 𝑦1,𝑠

⋮
𝑙𝑏𝑦 − 𝑦ℎ,𝑠 ]

 
 
 
 
 
 
 
 
 
 

ℎ(𝑛𝑥+𝑛𝑢+𝑛𝑦)×1

 (40) 

𝑢𝑏 =

[
 
 
 
 
 
 
 
 
 
 

𝑢𝑏𝑢 − 𝑙𝑏𝑢

[
𝑢𝑏𝑥 − 𝑥1,𝑠

𝑢𝑏𝑢
]

⋮
𝑢𝑏𝑢 − 𝑙𝑏𝑢

[
𝑢𝑏𝑥 − 𝑥ℎ,𝑠

𝑢𝑏𝑢
]

𝑢𝑏𝑦 − 𝑦1,𝑠

⋮
𝑢𝑏𝑦 − 𝑦ℎ,𝑠 ]

 
 
 
 
 
 
 
 
 
 

ℎ(𝑛𝑥+𝑛𝑢+𝑛𝑦)×1

 (41) 

where 𝑙𝑏𝑢  and 𝑢𝑏𝑢  are the lower and upper bounds on the inputs, 𝑙𝑏𝑥  and 𝑢𝑏𝑥  are the 

lower and upper bounds on the states, and 𝑙𝑏𝑦 and 𝑢𝑏𝑦 are the lower and upper bounds on 

the outputs. 

Each element of the 𝑋𝑞𝑝 vector can be weighted individually, providing more sig-

nificance to the prioritization of certain control objectives over the others. The weighting 

matrix for the control objectives within the objective function (output reference tracking, 

state reference tracking, input value magnitude, and rate of change of the input commands) 

is shown below: 

𝐻 =

[
 
 
 
 
 
 
 [

𝑅∆𝑢 0

0 𝑄𝑥
′ ] 0 ⋯ ⋯ ⋯ 0

0 ⋱ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ [
𝑅∆𝑢 0

0 𝑄𝑥
′ ] 0 ⋯ 0

0 ⋯ 0 𝑄𝑦 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮
0 ⋯ ⋯ ⋯ 0 𝑄𝑦]

 
 
 
 
 
 
 

ℎ(𝑛𝑥+2𝑛𝑢+𝑛𝑦)×ℎ(𝑛𝑥+2𝑛𝑢+𝑛𝑦)

 (42) 
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𝑄𝑥
′ = [

𝑄𝑥 0𝑛𝑥×𝑛𝑢

0𝑛𝑢×𝑛𝑥
𝑅𝑢

]
(𝑛𝑥+𝑛𝑢)×(𝑛𝑥+𝑛𝑢)

 

where 𝑅∆𝑢 is the weighting of the rate of change of the inputs, 𝑄𝑥 is the weighting of the 

state reference tracking deviations, 𝑅𝑢 is the weighting of the input magnitudes, and 𝑄𝑦 is 

the weighting of the output reference tracking deviations. 𝑅∆𝑢, 𝑄𝑥, 𝑅𝑢, and 𝑄𝑦 are diagonal 

matrices with the respective weights along the diagonal. For example, this problem has two 

states, so the 𝑄𝑥 matrix is a 2x2 matrix with the value in position (1,1) pertaining to the 

first state deviation and the value in position (2,2) pertaining to the second state deviation. 

The variable names given to the individual weighting parameters are presented in equation 

(43). 

𝑄𝑥 = [
𝐾𝑝𝑐

0

0 𝐾𝑝𝑒

] 

𝑄𝑦 = [
𝐾𝑇𝑎𝑖𝑟

0

0 𝐾�̇�𝑇

] 

𝑅𝑢 = [

𝐾𝜋𝑐
0 0

0 𝐾�̂� 0
0 0 𝐾𝑋

] 

𝑅𝑑𝑢 = [

𝐾Δ𝜋𝑐
0 0

0 𝐾Δ�̂� 0
0 0 𝐾Δ𝑋

] 

(43) 

where 𝐾𝑝𝑐
 is the weighting for the condenser pressure setpoint deviation, 𝐾𝑝𝑒

 is the 

weighting for the evaporator pressure setpoint deviation, 𝐾𝑇𝑎𝑖𝑟
 is the weighting for the air 

temperature setpoint deviation, 𝐾�̇�𝑇
 is the weighting for the total power consumption, 𝐾𝜋𝑐

 

is the weighting for the compressor clutch input absolute value, 𝐾�̂� is the weighting for the 

normalized fan rotational speed input absolute value, 𝐾𝑋  is the weighting for the AGS 

open-fraction input absolute value, 𝐾Δ𝜋𝑐
 is the weighting for the rate of change of the com-

pressor clutch input, 𝐾Δ�̂� is the weighting for the rate of change of the normalized fan 

rotational speed input, and 𝐾Δ𝑋 is the weighting for the rate of change of the AGS open-

fraction input. The specific values for these weights will be discussed in section 3.5. 
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3.5 Results and Discussion 

As mentioned previously, the controller is designed in Simulink and is connected to the 

VEM model to create an SiL simulation environment. To achieve this, the controller code 

is compiled in Simulink to generate a C-code file that is executable by the VEM model in 

GT-Suite. The C-code file is embedded within the VEM model so that when the VEM 

model sends/receives signals to/from the controller, it is able to do so by executing the C-

code file instead of requiring an external connection to Simulink. This allows the MPC to 

be imbedded within the VEM model, meaning once the C-code file is received, the only 

software needed to simulate the controlled system is GT-Suite. 

 The main tunable aspects of the MPC controller are the weighting factors set for 

the individual elements of the objective function, defined in equation (33). Although there 

are weighting factors given to all elements of equation (33), some elements are clearly 

more important than others based on the problem definition for this work. The most crucial 

aspects of equation (33) to be minimized are: the air temperature setpoint deviation, the 

instantaneous power consumption, and the clutch actuation frequency. The air temperature 

setpoint deviation must be minimized, as this is the metric that governs the main goal of 

the A/C system, to send the correct air temperature to the cabin. The power consumption 

must be minimized due to the nature of the problem definition requested by the industrial 

partner. Finally, the clutch actuations are an important aspect to consider since the durabil-

ity of the compressor can be a concern if a jittering phenomenon occurs, where the com-

pressor clutch is constantly cycled between engaging and disengaging. Wear and tear on 

the compressor clutch can lead to reliability issues within vehicles and can increase ex-

penses if the compressor requires maintenance more frequently. With these three weight-

ings being identified as the crucial weightings of interest for the MPC tuning, all other 

weightings are set to a value of one, while the other three are varied, to ensure all aspects 

of the objective function are still being considered. 

A preliminary sensitivity assessment was conducted to determine the search space 

ranges for these three weighting values to ensure the entire relevant search space is being 

explored. For the three main weightings, each individual weighting factor was systemati-

cally increased in value while all other weighting factors are held constant at a value of 
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one. For example, the weighting for the rate of change of the clutch engagement was in-

creased until no further significant change was observed in the number of clutch actuations 

in the system. Table 5 shows the sensitivity analysis results. 

Table 5: Weighting sensitivity analysis results 

𝑲𝚫𝝅𝒄
 Weight Value 1 10 100 500 1000 10000 

𝚫𝝅𝒄 Count 152 116 16 2 0 0 
       
𝑲𝑻𝒂𝒊𝒓

 Weight Value 1 10 50 500 5000 50000 
𝑻𝒂𝒊𝒓 RMSE 4.59 4.51 4.47 4.47 4.48 4.46 
       
𝑲�̇�𝑻

 Weight Value 1 10 50 100 1000 10000 
�̇�𝑻  943.1 872.3 798.0 20.3 20.2 20.2 

 

The valid weighting ranges for 𝐾Δ𝜋𝑐
 has been identified as 1 – 1000, since values greater 

than 1000 present no change to the number of clutch actuations. The valid weighting range 

for 𝐾𝑇𝑎𝑖𝑟
 is between 1 – 50, as these values above this range provide no significant change 

to the air temperature RMSE. Finally, the valid weighting range for 𝐾�̇�𝑇
 is chosen to be 

between 1 – 50, since values greater than 50 cause the compressor to shut off completely 

for the entire cycle, meaning the A/C system is unactive and the air temperature RMSE 

reaches extreme, unrealistic values. The effective weighting range for 𝐾Δ𝜋𝑐
 holds values 

much greater than that of 𝐾𝑇𝑎𝑖𝑟
 and 𝐾�̇�𝑇

, since the value of the clutch rate of change can 

only ever be between zero and one, whereas the values of the air temperature RMSE and 

power consumption are greater, namely around 4°C and 4kW. 

A Latin Hypercube Sampling (LHS) approach was used to determine the investi-

gated values for the three main MPC weightings within the defined search spaces [32]. A 

sample space of 200 unique combinations of weighting values were randomly generated in 

MATLAB using LHS to adequately fill the search space defined earlier. The LHS search 

space is shown in Figure 15. 
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Figure 15: LHS sample space search 

The performance of the VEM model with the baseline control scheme is restated here in 

Table 6, where 𝑛Δ𝜋𝑐
 is the number of clutch actuations. These metrics will be referenced 

to the MPC results to compare the improvement of the new control scheme. 

Table 6: Baseline VEM model performance metrics 

Model 𝑻𝒆𝒂𝒐 𝑹𝑴𝑺𝑬 [C] �̇�𝑻 [kJ] 𝒏𝜟𝝅𝒄
 

Baseline VEM 6.27 1262.8 0 
 

The MPC was simulated with the VEM model for each set of 200 weighting combinations 

to assess the behaviour of the system with the new control scheme. As stated earlier, the 

three main metrics of interest are the RMSE for the air temperature setpoint deviation, the 

total energy consumption throughout the entire cycle, and the total number of clutch actu-

ations. The VEM model was simulated for the SC03 drive cycle, and the results are plotted 

in Figure 16. 
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Figure 16: Evaluation of MPC control of VEM model for SC03 drive cycle 

To get a clearer picture of the distribution of the results, the 2-D side profiles of each view 

are plotted in Figure 17 – Figure 19, with the depth being represented by a color bar en-

compassing the values of the third variable in each case. 
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Figure 17: Air temperature RMSE vs total energy profile for MPC results 

 

Figure 18: Total energy vs total clutch actuations profile for MPC results 
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Figure 19: Air temperature RMSE vs total clutch actuations profile for MPC results 

The trade-offs between the three output metrics can be observed through these figures. 

Figure 17 and Figure 18 demonstrate that the number of clutch actuations strongly impacts 

the air temperature RMSE and the total energy consumption of the A/C system. Some 

points of interest (POI) from the MPC results shown in Figure 17 – Figure 19 are gathered 

in Table 7. When the clutch does not actuate in POI 1, the energy consumption is at its 

highest, however, the air temperature RMSE is at its lowest. This scenario is most similar 

to the baseline control since the built-in compressor displacement control is the main driv-

ing force for the refrigerant control. Since the compressor is active during the entire cycle 

in this case, the energy consumption is high, since the compressor is the main energy con-

sumer for the A/C system, as seen in Figure 8. Comparing this POI with the baseline VEM 

control scheme performance, the energy consumption is reduced by 20.9% and the air tem-

perature RMSE is reduced by 34.6%. This demonstrates that by just using MPC control of 

the compressor, fan and, AGS, there is significant improvement to the reference tempera-

ture tracking and energy consumption. 
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An interesting impact can be observed by increasing the compressor clutch actua-

tions by a small margin, from POI 1 to POI 2 and 3, which is done by decreasing the 

weighting value of 𝐾Δ𝜋𝑐
 or increasing the weighting values of 𝐾𝑇𝑎𝑖𝑟

 and 𝐾�̇�𝑇
. By increas-

ing the actuations from zero to two, the energy consumption is decreased by 30.9% com-

pared to the baseline. Similarly from zero to ten actuations, the energy consumption is 

reduced by 34.5% compared to the baseline. However, the RMSE for the air temperature 

is increased from 4.10°C to 4.35°C.  

Figure 19 demonstrates that when the compressor clutch actuations are above 20, 

no significant improvement to the energy consumption is achieved. Although, in this re-

gion, the best air temperature RMSE is found between roughly 95 – 110 clutch actuations. 

Table 7: MPC results comparison to baseline controls performance 

Model 𝑻𝒆𝒂𝒐 𝑹𝑴𝑺𝑬 [C] �̇�𝑻 [kJ] 𝒏𝜟𝝅𝒄
 

Baseline VEM 6.27 1262.8 0 
POI 1 4.10 998.6 0 
POI 2 4.10 872.1 2 
POI 3 4.35 827.6 10 
POI 4 4.46 797.3 20 
POI 5 4.22 797.0 105 
POI 6 4.44 788.2 160 

 

The main outcome of this analysis is to show that there are several interesting operating 

regions for MPC designs depending on the objective importance preferred by the designer. 

Energy consumption reduction is normally of the highest importance for production vehi-

cles, so increasing the compressor clutch actuations shows a clear improvement at the ex-

pense of less clutch durability. By increasing the amount of clutch actuations further, the 

air temperature RMSE can be reduced to roughly 4.2°C. However, if a small sacrifice in 

air temperature RMSE is accepted, namely increasing it to roughly 4.4°C, the clutch dura-

bility can be improved by reducing the actuations from 105 down to 20. 

 Figure 20 shows the air temperature reference tracking for POI 5. It is clear that the 

MPC is able to track to the reference temperature, but due to the discrete nature of the 

clutch, a steady-state response is not able to be achieved in this way. The steep spikes in 

the response are due to the cycling of the clutch on/off. When the clutch is engaged, the 
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temperature slowly declines. Once the temperature falls too far below the setpoint, the 

clutch is disengaged for a short period of time to allow the air temperature to increase 

before engaging the clutch once more. 

 

Figure 20: Air temperature output tracking for POI 5 

3.6 Conclusions and Future Works 

The analysis in this work shows that by switching to MPC control, a significant improve-

ment to the air temperature reference tracking and energy consumption can be achieved. 

By disengaging the compressor when it is not needed, a significant amount of energy sav-

ings is recorded, however, achieving a steady-state solution at the air temperature setpoint 

of 4°C was not achievable by controlling the fan and AGS alone, leading to a cycling be-

haviour of the discrete compressor clutch. By slightly increasing the number of actuations 

made by the compressor clutch, a significant energy benefit is observed, but no further 

energy benefit is observed by increasing the clutch actuations further. However, a positive 

impact on the air temperature RMSE is seen by increasing the clutch actuations from 20 to 

105, at the expense of more wear and tear on the clutch itself. 
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As seen in the results presented, a major shortcoming in this work with regards to the 

air temperature RMSE was the control of a discrete compressor clutch. The continuous 

input action desired by the MPC was being overridden for the clutch signal since the clutch 

is discrete in nature. The control of the clutch lead to a heavily transient response with the 

air temperature sent to the cabin. When the clutch is engaged, the air temperature slowly 

decreases until it is too far below the setpoint, after which the compressor clutch disengages 

and the temperature spikes back up. This causes aggressive actuation of the compressor 

clutch when the weighting for the air temperature reference error is high, and the controller 

will never be able to reach a smooth response. To improve upon this, the displacement of 

the compressor should be controlled instead. By controlling the displacement of the com-

pressor, a smoother response can be achieved since the displacement is a continuous vari-

able, unlike the compressor clutch. This means the control action computed by the MPC 

will not be overridden and the response of the system will be closer to what the controller 

expects. This will also prevent durability issues with the frequent on/off cycling of the 

compressor clutch. 
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APPENDIX A 

Table 8: System property values and units 

System Model Property Numeric Value Units 
𝑐𝑝,𝑎𝑖𝑟 1.005 𝑘𝐽 𝑘𝑔𝐾⁄  
𝜌𝑎 1.204 𝑘𝑔 𝑚3⁄  
𝑉 0.00018 𝑚3 

𝑚𝐻 1.505 𝑘𝑔 
𝑐𝐻 0.910 𝑘𝐽 𝑘𝑔𝐾⁄  
𝐴𝑠 3.022 𝑚2 
𝐹𝑓𝑖𝑛 0.898 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 
𝜂𝐹𝐴 0.974 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠 
𝐴𝑓𝑎𝑛 0.1 𝑚2 
𝑟𝑚 0.0971 𝑚 
𝐴𝑓𝑟 2.592 𝑚2 

𝑐𝑝,𝑎𝑖𝑟 1.005 𝑘𝐽/𝑘𝑔𝐾 

The curve fits created for the refrigerant thermodynamic properties are in section 2.2.6: 

𝑇𝑟𝑒𝑓,𝑐 = 2.06 ∙ 10−8𝑝𝑐
3 − 6.04 ∙ 10−5𝑝𝑐

2 + 0.109𝑝𝑐 − 27.7 (44) 

𝑇𝑟𝑒𝑓,𝑒 = 2.25 ∙ 10−7𝑝𝑒
3 − 3.07 ∙ 10−4𝑝𝑒

2 + 0.235𝑝𝑒 − 39.9 (45) 

ℎ𝑜𝑢𝑡,𝑐 = ℎ𝑖𝑛,𝑒 = 2.39 ∙ 10−8𝑝𝑐
3 − 7.04 ∙ 10−5𝑝𝑐

2 + 0.139𝑝𝑐 + 163 (46) 

ℎ𝑜𝑢𝑡,𝑒 = 1.59 ∙ 10−7𝑝𝑒
3 − 2.20 ∙ 10−4𝑝𝑒

2 + 0.166𝑝𝑒 + 338 (47) 

 


