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A B S T R A C T

In this paper, an alternative analytical and numerical formulation is presented for the solution of a system of
static and kinematic ordinary differential equations for curved beams. The formulation is represented here as
being useful in the structural evaluation of arch structures and it is propaedeutic to be used in optimization
frameworks. Using a finite-difference method, this approach enables the evaluation of the best solution sets
accounting for (1) various arch shapes (i.e. circular, quadratic and quartic polynomial forms); (2) different
loading combinations; (3) cross-sections varying along the arch span; and (4) different global radius of arch
curvature. The presented original approach based on finite-difference, produces solutions with a good precision
in a reasonable computational time. This method is applied to 4 different arch case studies with varying rise,
cross-section, loading and boundary conditions. Results show good agreement with those obtained using a
numerical finite element approach. The presented approach is useful for the (preliminary) design of arches, a
common and efficient structural typology for road and railway bridges and large span roofs. As far as buckling
verifications are concerned, the comparisons in terms of maximum acting axial force and critical axial force
computed is reported in order to consider the effect of instability phenomena coming to trace for each arch
configuration the feasible domain.
1. Introduction

Since antiquity arches have been used as efficient load bearing
structures. Today long-span arches supporting rail and road decks
or roofs are selected by structural designers and architects for their
stability, efficiency, high loading capacity and their architectural and
urban form-making potentialities according to variable curvature and
stiffness (Jasińska and Kropiowska, 2018). One of the first key-concept
for arch structures is represented by the fact that efficiency of the arch
structure is strongly related to its shape: it is difficult to find another
type of structure where the connection between geometry and internal
loading is so pronounced. The selection of the best arch geometry is
key in reducing the structural volume (Marano et al., 2014; Allen and
Zalewski, 2009; Wang and Wang, 2015; Bertetto and Marano, 2022;
Melchiorre et al., 2021) because effective arch shape allows for the pre-
dominance of axial internal actions with low or no eccentricity under a
wide range of loading combinations. For a thorough literature review
on the history of the study of arches, the reader is referred to Heyman
and Jacques (1998) and Kurrer (2008). In particular, a wide range of
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analytical studies has been published on the topic of elastic arch bridge,
masonry structures and elastic restrained arches (Bresse, 1854; Win-
kler, 1858; McCullough and Thayer, 1931; Heyman, 1969; Ochsendorf,
2006; Alexakis and Makris, 2015; Pi et al., 2007; Aita et al., 2015; Hu
et al., 2018). It can be noted that, many researchers have focused on
the behavior of masonry arches while other employed linear analysis
of elastic arches to find arch geometries without moments (Lewis,
2016) and closed-form solutions to funicular arches (Wang and Wang,
2015). Other studies accounted for the effects related to geometric
and material non-linearity on the general and buckling behavior of
these kind of structures (Pi et al., 2007; Aita et al., 2015; Hu et al.,
2018). As far as the arch shape is concerned, a recent work presented
closed-form formulations for the analysis of the reactions of segmental,
catenary and parabolic arches and internal forces of symmetric linear
elastic segmental arches subjected to self-weight (Glisic, 2019). It was
also shown that under self-weight and a uniformly distributed load,
the catenary arch shape with a constant cross-section exhibits lower
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internal stresses in comparison with a parabolic arch (Manuello, 2020).
Other studies have looked at the optimal shape of isostatic arches under
uniform vertical loads (Trentadue et al., 2018; Farshad, 1976; Kimura
et al., 2020) or those subjected to a range of loading and constraint
conditions (Farshad, 1976; Hu et al., 2010; Osserman, 2010; Michiels
and Adriaenssens, 2018; Halpern and Adriaenssens, 2015a; Marmo,
2021). At the same time, other recent works focus on arch form find-
ing (Michiels and Adriaenssens, 2018) and shape optimization (Eliáš
et al., 2013; Habbal, 1998; Pouraminian and Ghaemian, 2015; Kumarci
et al., 2009; Park et al., 2016; Halpern and Adriaenssens, 2015b; Bruno
et al., 2016). Besides addressing the arch geometry, the variation (or
even optimization) of the cross-section along the arch is another avenue
to further achieve design efficiency (Marano et al., 2014; Szefer and
Mikulski, 1984).

Numerical analysis of arches can be performed by using the fi-
nite element method. An approximate way to account for the curved
geometry is that of employing a series of linear beam elements that
approximate the arch’s curved geometry by linear segments. Such a
modeling approach implies that the transverse loads are in equilibrium
with shear variations only (Carpinteri, 2013). Conversely, for curved
beams, both shear and axial forces contribute to balance the applied
loads. As a result, the employment of straight beam elements may
produce significant inaccuracies in the determination of internal forces.
In arches, this produces a visible oscillation of the shear force about
the actual solution. One of the possible solutions to the problem could
involve increasing the number of finite elements that constitute the
model. More accurate solutions can be obtained by employing curved
beam finite elements (Tufekci et al., 2017; Litewka and Rakowski,
1997; Benedetti and Tralli, 1989; Ibrahimbegović, 1995; Nascimbene,
2013). Alternative approaches rely on the isogeometric analysis (Bauer
et al., 2016), where both the beam shape and the displacement field
are described by NURBS functions.

In this paper, starting from the set of differential equations holding
for plane linear elastic curved beams, a unique sixth order differen-
tial equation is derived by employing simplifying assumptions. This
equation, together with the relevant boundary conditions, is used to
evaluate displacements, internal forces and Cauchy stresses for elas-
tic arches having variable curvature and tapered cross-section. The
proposed lean approach is then validated by comparison with finite
element solutions and is used to perform a series of parametric analyses
useful to derive, in an efficient, preliminary way, practical indications
for the conceptual design of elastic arches.

Recently, many researchers have developed similar models for the
study of the arches, for example Sonavane (2014) applied basic princi-
ples of the flexibility method in the analysis and design of symmetrical
circular arches under different loading conditions. El Zareef et al.
(2019) studied an analytical model of curved elements with constant
cross-section. In this paper, the sixth order differential equation is re-
trieved with the aim of maintaining the solution as general as possible.
This means that it can applied to a wide range of arch structures with
different shapes and variable cross-sections.

The presented method is propaedeutic to be used in optimization
frameworks and for this reason, the analytical–numerical formulation
in this paper can be a good alternative to the more popular Finite Ele-
ment Method (FEM) or Isogeometric Analysis IGA), since the proposed
method performs the calculation with as less computational effort. For
this reason the problem is solved using the Finite Difference Method
(FDM) that, differently from the FEM and the IGA, does not require
the definition of shape functions. In the presented case, this shape
function would be of a degree higher than 5, with a consequently
high computational effort. Using the FDM, instead, produces results of
higher accuracy as the number of nodes is increased without specific
computational limitations. The FDM is frequently used for the solution
of structural engineering problems, for example Jirásek et al. (2021)
proposed a FDM-based method for the calculation of a two-dimensional
geometrically non-linear beam element, or Shi et al. (2020) that studied
2

Fig. 1. Displacements induced by external forces on an infinitesimal beam segment.

the bridge-embankment transition by combining the discrete element
method (DEM) with the FDM, or Li et al. (2017) with their response
sensitivity analysis for plastic plane problems based on direct differen-
tiation method in which the FDM is used as a reference to validate their
results.

The proposed method is based on an analytical–numerical ap-
proach. Many researchers have developed similar models for the study
of the arches, for example Sonavane (2014) applied basic principles of
the flexibility method in the analysis and design of symmetrical circular
arches under different loading conditions. El Zareef et al. (2019)
studied an analytical model of curved elements with constant cross-
section. In this paper, the sixth order differential equation is retrieved
with the aim of maintaining the solution as general as possible. This
means that it can applied to a wide range of arch structures with
different shapes and variable cross-sections.

The paper is organized as follows. In Section 2 the basic sixth-order
differential equation that describes the mechanics of the arch is derived
from the general equations holding for planar curved beams. Sec-
tions 2.1 and 2.2 address the boundary conditions and the computation
of displacements and internal forces along the arch axis. In Section 3
it is described how the variability of the radius of curvature, of the
cross section inertia and different loading conditions are implemented
within the numerical solving procedure based on the finite difference
method. Moreover, in Section 4 a set of numerical examples that
validate the new approach are presented. This set shows the approach’s
versatility to perform parametric studies on arches. Finally, as far as
buckling verifications are concerned, in the paper the comparisons in
terms of maximum acting axial force and critical axial force computed
by a simplified method is reported in order to consider the effect of
instability phenomena coming to trace for each arch configuration the
feasible domain.

2. Formulation of the problem

The mechanical behavior of arches can be described by employing
the model of curved beams. A plane beam having a curved axis and
variable cross section of inertia 𝐽 (𝑠), 𝑠 being the curvilinear coordinate
defined along the beam axis, is considered. The beam is composed
of homogeneous linear elastic material having Young modulus 𝐸. The
radius of curvature of the beam axis is represented by the function 𝑅(𝑠),
e.g., see Fig. 1.

The strain–displacement relations are (Carpinteri, 2013):

𝜀 = 𝑢(1) + 𝑣
𝑅

𝛾 = 𝑣(1) − 𝑢
𝑅

+ 𝜑 𝜒 = 𝜑(1) (1)

where 𝜀, 𝛾 and 𝜒 are the normal strain, shear strain and elastic
curvature of the beam, while 𝜑, 𝑢 and 𝑣 are the rotation and the
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tangential and normal displacements of the generic beam cross section,
respectively. These quantities are a function of the curvilinear abscissa
𝑠. However this dependence is omitted to simplify notation. Lagrange’s
notation is used for derivatives, hence 𝑢(𝑑) is the 𝑑th order derivative
of the function 𝑢 with respect to the curvilinear abscissa 𝑠.

Neglecting the beam elongation, i.e. setting 𝜀 = 0, the first formula
of (1) gives

𝑣 = −𝑅𝑢(1) (2)

Similarly, neglecting the shear strain, i.e. setting 𝛾 = 0, form the second
formula of (1) one has

𝜑 = −𝑅𝑢(2) − 𝑅(1)𝑢(1) − 1
𝑅

𝑢 (3)

where Eq. (2) has been used to write 𝑣(1) = −𝑅𝑢(2) − 𝑅(1)𝑢(1).
The Eqs. (1), (2) and (3) are used to describe the beam deformation

y the elastic curvature 𝜒 only, that is

𝜒 = −𝑅𝑢(3) − 2𝑅(1)𝑢(2) −
[

𝑅(2) + 1
𝑅

]

𝑢(1) + 𝑅(1)

𝑅2
𝑢 (4)

Equilibrium equations of the beam are (Carpinteri, 2013):

𝑁 (1) + 𝑉
𝑅

+ 𝑃𝑡 = 0 𝑉 (1) − 𝑁
𝑅

+ 𝑃𝑛 = 0 𝑀 (1) + 𝑉 + 𝑚 = 0 (5)

here 𝑁 , 𝑉 and 𝑀 are the axial force, shear force and bending
oment. 𝑃𝑡 and 𝑃𝑛 are the external loads applied along the tangential

nd normal direction, while 𝑚 is the distributed moment.
From the third equation in (5) one has

= −𝑀 (1) − 𝑚 (6)

ubstitution this expression of 𝑉 into (5)2 gives

= 𝑅
(

𝑃𝑛 −𝑀 (2) − 𝑚(1)) (7)

mploying (6) and (7) into (5) yields

𝑀 (3)+𝑅(1)𝑀 (2)+ 1
𝑅
𝑀 (1) = 𝑃𝑡+𝑅(1)𝑃𝑛+𝑅𝑃 (1)

𝑛 − 𝑚
𝑅
−𝑅(1)𝑚(1)−𝑅𝑚(2) (8)

The bending moment 𝑀 can be expressed as a function of the elastic
curvature 𝜒 by employing the beam constitutive equation

𝑀 = 𝐸𝐽𝜒 (9)

where 𝐸𝐽 is the bending stiffness of the beam cross section. The
derivatives of 𝑀 appearing in Eq. (8) are determined by differentiating
the constitutive equation as

𝑀 (1) = 𝐸
(

𝐽 (1)𝜒 + 𝐽𝜒 (1)) (10)

𝑀 (2) = 𝐸
(

𝐽 (2)𝜒 + 2𝐽 (1)𝜒 (1) + 𝐽𝜒 (2)) (11)

𝑀 (3) = 𝐸
(

𝐽 (3)𝜒 + 3𝐽 (2)𝜒 (1) + 3𝐽 (1)𝜒 (2) + 𝐽𝜒 (3)) (12)

where both 𝑅 and 𝐽 are assumed to be a function of 𝑠, while 𝐸 is
assumed to be constant.

The expression of 𝜒 and its derivatives can be obtained from (4) and
can be expressed as a combination of the 𝑅 and 𝑢 and their derivatives.
Factoring out the derivatives of 𝑢, the generic expression of the 𝑑th
order derivative of 𝜒 , 𝑑 = 0, … , 3, is

𝜒 (𝑑) = 𝑎𝑑𝑢
(6) + 𝑏𝑑𝑢

(5) + 𝑐𝑑𝑢
(4) + 𝑑𝑑𝑢

(3) + 𝑒𝑑𝑢
(2) + 𝑓𝑑𝑢

(1) + 𝑔𝑑𝑢 (13)

where 𝜒 (0) = 𝜒 is the 0-th order derivative of 𝜒 . Functions 𝑎𝑑 , … , 𝑔𝑑
are expressed in terms of 𝑅 and its derivatives; their expressions are
given in Table 1.

Employing Eqs. (10)–(13) into (8) a sixth order differential equation
in terms of 𝑢 is obtained. It reads

𝑎𝑢(6) + 𝑏𝑢(5) + 𝑐𝑢(4) + 𝑑𝑢(3) + 𝑒𝑢(2) + 𝑓𝑢(1) + 𝑔𝑢 + ℎ = 0 (14)

where the functions 𝑎, … , 𝑔 are expressed in terms of the functions
defined in Table 1, 𝑅, 𝐽 and their derivatives. In particular, indicating
3

𝑁

by 𝐶 the generic function of the set {𝑎, … , 𝑔} and by 𝐶𝑑 , 𝑑 = 0, … , 3,
the corresponding functions in Table 1, the generic expression for
𝑎, … , 𝑔 is

𝐶 =
(

𝑅𝐽 (3) + 𝑅(1)𝐽 (2) + 1
𝑅
𝐽 (1)

)

𝐶0 +
(

3𝑅𝐽 (2) + 2𝑅(1)𝐽 (1) + 1
𝑅
𝐽
)

𝐶1+

+
(

3𝑅𝐽 (1) + 𝑅(1)𝐽 (1))𝐶2 + 𝑅𝐽 𝐶3

(15)

Finally, the function ℎ used in Eq. (14) is

ℎ = 1
𝐸

(

𝑃𝑡 + 𝑅(1)𝑃𝑛 + 𝑅𝑃 (1)
𝑛 − 𝑚

𝑅
− 𝑅(1)𝑚(1) − 𝑅𝑚(2)

)

(16)

2.1. Boundary conditions

Eq. (14) describes the behavior of a planar curved beam having a
cross section whose inertia 𝐽 is functionally variable along the beam
axis. It has been obtained by neglecting axial and shear deformations,
i.e. it is set 𝜀 = 0 and 𝛾 = 0, hence this model accounts for bend-
ing deformation only. These assumptions have been used to obtain
a differential equation that is expressed uniquely as a function of
the tangential displacement 𝑢. In order to solve this equation, proper
boundary conditions need to be considered and expressed as a function
of the values of 𝑢 and/or its derivatives at the two extremities of
the beam. These conditions are used to model restraints at the arch
springers, that either correspond to a full restrain or a hinge (Fig. 2).

For a fully restrained arch it is set

𝑢(0) = 𝑢(𝐿𝑎𝑟𝑐ℎ) = 0

𝑣(0) = 𝑣(𝐿𝑎𝑟𝑐ℎ) = 0

𝜑(0) = 𝜑(𝐿𝑎𝑟𝑐ℎ) = 0

(17)

Using Eqs. (2) and (3), the boundary conditions (17)2 and (17)3 are
rewritten as a function of the values of 𝑢(1) and 𝑢(2) as
𝑢(1)(0) = 𝑢(1)(𝐿𝑎𝑟𝑐ℎ) = 0

𝑢(2)(0) = 𝑢(2)(𝐿𝑎𝑟𝑐ℎ) = 0
(18)

For a hinged arch, boundary conditions are

𝑢(0) = 𝑢(𝐿𝑎𝑟𝑐ℎ) = 0

𝑣(0) = 𝑣(𝐿𝑎𝑟𝑐ℎ) = 0

𝑀(0) = 𝑀(𝐿𝑎𝑟𝑐ℎ) = 0

(19)

ikewise the case of a fully restrained arch, the boundary condi-
ions (19)2 is rewritten as (19)1. Furthermore, combining (4) and (9),
he conditions (19)3 are rewritten as

(0)𝑢(3)(0) + 2𝑅(1)(0)𝑢(2)(0) = 0

(𝐿𝑎𝑟𝑐ℎ)𝑢(3)(𝐿𝑎𝑟𝑐ℎ) + 2𝑅(1)(𝐿𝑎𝑟𝑐ℎ)𝑢(2)(𝐿𝑎𝑟𝑐ℎ) = 0
(20)

.2. Evaluation of displacements and internal forces

The solution of the differential Eq. (14) and the boundary conditions
escribed in Section 2.1 allow to compute the values of 𝑢 along the
ntire length of the arch. The numerical solution strategy is addressed
n next section. However, once 𝑢 is determined, the remaining displace-
ent components and the internal forces can be retrieved. Actually,

ormula (2) is used to evaluate the radial displacement and (3) to
etermine the cross-section rotation.

The elastic curvature 𝜒 is also computed from 𝑢 by employing
ormula (4). It is used to compute the bending moment from formula
9). Also the shear and the axial force can be computed as a function
f 𝜒 by employing (9), (6) and (7), obtaining

= 𝐸
(

𝐽 (1)𝜒 + 𝐽𝜒 (1)) + 𝑚 (21)

[ ( (2) (1) (1) (2)) (1)]
= 𝑅 𝑃𝑛 − 𝐸 𝐽 𝜒 + 2𝐽 𝜒 + 𝐽𝜒 − 𝑚 (22)
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Table 1
Functions used to express 𝜒 and its derivatives by Eq. (13).

𝑎0 = 0 𝑏0 = 0

𝑎1 = 0 𝑏1 = 0

𝑎2 = 0 𝑏2 = 𝑅

𝑎3 = 𝑅 𝑏3 = 5𝑅(1)

𝑐0 = 0 𝑑0 = 𝑅

𝑐1 = 𝑅 𝑑1 = 3𝑅(1)

𝑐2 = 4𝑅(1) 𝑑2 = 6𝑅(2) + 1
𝑅

𝑐3 = 10𝑅(2) + 1
𝑅

𝑑3 = 10𝑅(3) − 4𝑅(1) 1
𝑅2

𝑒0 = 2𝑅(1) 𝑓0 = 𝑅(2) + 1
𝑅

𝑒1 = 3𝑅(2) + 1
𝑅

𝑓1 = 𝑅(3) − 2𝑅(1) 1
𝑅2

𝑒2 = 4𝑅(3) − 3𝑅(1) 1
𝑅2

𝑓2 = 𝑅(4) − 3𝑅(2) 1
𝑅2

+ 6(𝑅(1))2 1
𝑅3

𝑒3 = 5𝑅(4) − 6𝑅(2) 1
𝑅2

+ 12(𝑅(1))2 1
𝑅3

𝑓3 = 𝑅(5) − 4𝑅(3) 1
𝑅2

+ 24𝑅(1)𝑅(2) 1
𝑅3

− 24(𝑅(1))3 1
𝑅4

𝑔0 = −𝑅(1) 1
𝑅2

𝑔2 = −𝑅(2) 1
𝑅2

+ 2(𝑅(1))2 1
𝑅3

𝑔2 = −𝑅(3) 1
𝑅2

+ 6𝑅(1)𝑅(2) 1
𝑅3

− 6(𝑅(1))3 1
𝑅4

𝑔3 = −𝑅(4) 1
𝑅2

+ 8𝑅(1)𝑅(3) 1
𝑅3

+ 6(𝑅(2))2 1
𝑅3

− 36(𝑅(1))2𝑅(2) 1
𝑅4

+ 24(𝑅(1))4 1
𝑅5
Fig. 2. Boundary conditions.
3. Numerical implementation of the solving procedure

The ordinary differential Eq. (14) and the boundary conditions de-
scribed in Section 2.1 represent a typical sixth order boundary problem.
This system of equations can be effectively solved by employing a
standard implementation of the finite difference method (FDM).

The motivation for using FDM to the studied problem is the high
degree (6th) of the differential Eq. (14) that, in addition, has non-
constant coefficients due to the variability of the radius of curvature
and of the cross section inertia. If solved by the FEM or IGA, the differ-
ential equation needs to be rewritten in weak form and will contain the
3rd derivative of the unknown function, 𝑢. This means that the shape
functions (of either the FEM or IGA discretization) are required to be
at least of class 𝐶3 (3 times differentiable with continuous derivatives).
This is an ultimate condition to make the method well stated and
corresponds to constant elastic curvature over each element, which will
produce very inaccurate results. Even in the simplest case of constant
radius of curvature, constant cross section and null distributed loads,
the curvature will be a 2nd order polynomial since it is computed as
the 3rd derivative of the tangential displacement 𝑢, see, e.g. Eq. (4),
4

which, in turn, is the solution of a 6th order homogeneous differential
equation, i.e. Eq. (14), and will be of degree 5. Hence, to formulate
an acceptably accurate FEM or IGA formulation, applicable to beams
of variable curvature and inertia, shape functions are required to be
of higher degree with substantial higher computational effort. On the
other hand, FDM does not require the definition of any shape function
and produces results of higher accuracy as the number of nodes is
increased without specific computational limitations.

As usual, the FDM employs the discrete versions of the differential
equation and boundary conditions, in which derivatives are computed
as a function of the values that each considered quantity attains at a
series of 𝑁 nodes positioned along the arch axis. Hence, in order to
properly employ this method, the functions that describe the radius
of curvature of the arch, namely 𝑅(𝑠), and the inertia of the cross
section, that is 𝐽 (𝑠), and the tangential and radial loads, 𝑃𝑡 and 𝑃𝑡,
are considered as given. Since these functions are employed within the
FDM, their values need to be computed at the nodes of the discretized
arch axis and, if needed, their derivatives are determined numerically
by means of usual formulas pertaining to the FDM.
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Fig. 3. Limit values for the angles 𝛼 = arctan(𝑆) at the arch springers.

In this section, a procedure is described for assigning the radius of
curvature 𝑅(𝑠), the cross-section inertia 𝐽 (𝑠) and the loading functions
𝑃𝑡 and 𝑃𝑡.

3.1. Radius of curvature

Although the solution approach presented in this paper is applicable
to arches of arbitrary geometry, hereafter the cases of circular and
polynomial arches are considered for brevity. These geometries are
defined in a global reference system of axes 𝑥 (horizontal) and 𝑦
(vertical).

The axis of a circular arch can be defined by the equation of a
circumference through three points. In particular, given the arch span
𝐿 and rise 𝐹 , the arch axis is given as:

𝑦𝑐𝑖𝑟𝑐 (𝑥) =

√

𝐿2

4
− 𝑥2 + 1

4

(

𝐿2

4𝐹
− 𝐹

)2
− 1

2

(

𝐿2

4𝐹
− 𝐹

)

(23)

If, instead, the axis of the arch is parabolic, its geometry is simply
given as:

𝑦𝑝𝑎𝑟(𝑥) = −4𝐹
𝐿2

𝑥2 + 𝐹 (24)

that represent the specific instance of a polynomial arch. A generic 𝑛th
order polynomial arch has an axis described by the function:

𝑦𝑛−𝑝𝑜𝑙𝑦(𝑥) = 𝑝𝑛𝑥
𝑛 + 𝑝𝑛−1𝑥

𝑛−1 +⋯ + 𝑝1𝑥 + 𝑝0 (25)

where 𝑝𝑖, 𝑖 = 0, … , 𝑛 are the real coefficients of the polynomial. Their
values are assigned in such a way that the polynomial curve that defines
the arch axis fulfills some geometric conditions.

These geometric conditions are used to control the actual shape of
the arch. For example, for a fourth order polynomial arch (𝑛 = 4), the
five parameters 𝑝0, … , 𝑝4 need to be defined. Symmetry of the arch
implies 𝑝1 = 𝑝3 = 0, while the remaining coefficients are determined
by setting the arch span 𝐿, the arch rise 𝐹 and the slope 𝑆 at the left
springer of the arch. Notice that because of symmetry, the slope at the
right springer is −𝑆. Accordingly, one has

𝑦4−𝑝𝑜𝑙𝑦(𝑥) =
(

−4 𝑆
𝐿3

+ 16 𝐹
𝐿4

)

𝑥4 +
(𝑆
𝐿

− 8𝐹
𝐿2

)

𝑥2 + 𝐹 (26)

However, not all values of 𝑆 define a concave shape and two limit
values of 𝑆 need to be defined in order to obtain a concave arch, see,
e.g., Fig. 3. Such limit values, namely 𝑆min and 𝑆max, can be determined
by imposing a negative curvature at the springers and at the midspan,
that is:

𝑦(2)4−𝑝𝑜𝑙𝑦(−𝐿∕2) < 0 ⇒ 𝑆min =
16
5

𝐹
𝐿

𝑦(2)4−𝑝𝑜𝑙𝑦(0) < 0 ⇒ 𝑆max = 8𝐹
𝐿

(27)

The theoretical slope limits determined by formulas (27) need to be
narrowed to avoid numerical instabilities. Such an issue is due to very
high values of 𝑅 at the arch springers or at mid-span when 𝑆 is very
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close to either one of such limits. Hence, such limits are substituted by
𝑆min = 3.5𝐹∕𝐿 and 𝑆max = 5𝐹∕𝐿 in practical applications.

Once the geometry of the arch axis is defined, e.g. by the generic
function 𝑦(𝑥), its radius of curvature can be computed as (Gray et al.,
2017):

𝑅̂(𝑥) = −

√

1 +
(

𝑦(1)
)2

𝑦(1)
(28)

Notice that above formula defines the radius of curvature as a function
of 𝑥. Hence the symbol 𝑅̂. It can be rewritten as a function of the arc-
length 𝑠 by setting 𝑅(𝑠) = 𝑅̂(𝑥(𝑠)). To this end, an explicit expression of
the function 𝑥(𝑠) is needed. This function is the inverse of the arc-length
function 𝑠(𝑥), defined as

𝑠(𝑥) = ∫

𝑥

−𝐿∕2

√

1 +
[

𝑦(1)
]2𝑑𝑥 (29)

for planar curves. However, the analytical expression of 𝑠(𝑥) is difficult
to determine and the analytical evaluation of its inverse is unpractical.
However, recalling that the boundary problem is solved by the FDM,
only the nodal values of 𝑅, and hence of 𝑥(𝑠), are necessary.

In particular, the arch axis is modeled as a polygon of 𝑁 vertices
of coordinates (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑁 , see, e.g., Fig. 4. Hence, being
𝑥𝑖 < 𝑥𝑖+1, a generic side of the polygon, that is (𝑥𝑖−1, 𝑦𝑖−1) − (𝑥𝑖, 𝑦𝑖),
𝑖 = 2, … , 𝑁 , has length

𝛥𝑠𝑖 =
√

(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 =
√

(𝛥𝑥𝑖)2 + (𝛥𝑦𝑖)2 (30)

Accordingly, the arc-length associated to the generic point of abscissa
𝑥𝑖 is numerically approximated by

𝑠(𝑥𝑖) ≈
𝑖

∑

𝑗=2
𝛥𝑠𝑗 = 𝑠𝑖 (31)

holding for 𝑖 = 2, … , 𝑁 , while 𝑠(𝑥1) = 0.
The pairs of values (𝑥𝑖, 𝑠𝑖) are used to numerically represent the

function 𝑥(𝑠), so that the values attained by 𝑅(𝑠) at the nodes can be
computed as

𝑅𝑖 = 𝑅(𝑠𝑖) = 𝑅̂(𝑥(𝑠𝑖)) = −

√

1 +
[

𝑦(1)(𝑥(𝑠𝑖))
]2

𝑦(1)(𝑥(𝑠𝑖))
(32)

where 𝑦(1) is obtained by differentiating the function that describes the
arch axis.

3.2. Inertia of the cross section

The function 𝐽 (𝑠) expresses the value of the cross sections’ moment
of inertia along the curvilinear abscissa 𝑠. To this end, it is useful to
compute 𝐽 (𝑠) as a function of the characteristic size 𝑟(𝑠) of the arch
cross section. As shown in Fig. 5(a), 𝑟(𝑠) represents either the length of
the side of a square section or the radius of a circular section. In case
the section is rectangular, 𝑟1(𝑠) is the height of the rectangle, while the
width is determined by assuming the aspect ratio 𝑟2∕𝑟1 constant along
the arch. For hollow sections, thickness is kept constant along the arch.

For the numerical examples reported below, 𝑟(𝑠) attains the values
𝑟𝑏𝑎𝑠𝑒 at the springers and 𝑟𝑚𝑖𝑑 at the crown and is either expressed as a
linear or a quadratic function of 𝑠, see, e.g., Fig. 5(b). Hence, indicating
by 𝜂 = 𝑟𝑚𝑖𝑑∕𝑟𝑏𝑎𝑠𝑒 the reduction factor, in the first case it is

𝑟𝑙𝑖𝑛(𝑠) =
2𝑟𝑏𝑎𝑠𝑒(1 − 𝜂)

𝐿𝑎𝑟𝑐ℎ

|

|

|

|

𝑠 −
𝐿𝑎𝑟𝑐ℎ
2

|

|

|

|

+ 𝜂 𝑟𝑏𝑎𝑠𝑒 (33)

while in the latter

𝑟𝑞𝑢𝑎𝑑 (𝑠) = −
4𝑟𝑏𝑎𝑠𝑒(1 − 𝜂)

𝐿2
𝑎𝑟𝑐ℎ

𝑠2 +
4𝑟𝑏𝑎𝑠𝑒(1 − 𝜂)

𝐿𝑎𝑟𝑐ℎ
𝑠 + 𝑟𝑏𝑎𝑠𝑒 (34)

where 𝐿𝑎𝑟𝑐ℎ is the length of the arch. It is computed by using formula
(31) with 𝑖 = 𝑁 .

Notice that in case of a linear variation of 𝑟 along the arch, the func-
tion 𝐽 (𝑠) presents a cusp point at the mid-span. This causes numerical
instability that can be avoided by approximating 𝐽 (𝑠) by means of a
4-th order polynomial interpolation (Fig. 5(c)).
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Fig. 4. Discretization of the arch (a), function s(x) (b) and x(s) (c).

3.3. Loading

Fig. 6 shows some examples of loading configuration that can be
applied to the arch axis. External loads are accounted for within the
sixth order differential Eq. (14) by the terms 𝑃𝑡 and 𝑃𝑛 in (16). These
two functions represent the load applied along the tangential and the
normal direction of the curved arch axis and are intended as forces per
unit arc-length.

Loads given in the global reference system, i.e. with components 𝑃𝑥
and 𝑃𝑦, are transformed into the local reference by the transformation
formulas
𝑃𝑛(𝑠) = −𝑃𝑥(𝑠) sin 𝛼(𝑠) + 𝑃𝑦(𝑠) cos 𝛼(𝑠)

𝑃𝑡(𝑠) = 𝑃𝑥(𝑠) cos 𝛼(𝑠) + 𝑃𝑦(𝑠) sin 𝛼(𝑠)
(35)

where 𝛼(𝑠) = arctan
(

𝑦(1)(𝑥)
)

. If loads are assigned as forces per unit
projected length, i.e. measured along 𝑥, then the loading function needs
to be transformed as forces per unit arc-length as

𝑃(⋅)(𝑠𝑖) =
̂𝑃(⋅)(𝑥(𝑠𝑖))

√

1 +
[

𝑦(1)(𝑥(𝑠𝑖))
]2

(36)

where it has been used 𝑥(𝑠𝑖) to represent the node abscissas of the
discretized arch axis as it has been done for the radius of curvature.
6

Fig. 5. Definition of the dimension r(s) on the cross sections (a). Function describing
the variation of the characteristic dimension of the section 𝑟(𝑠) (b). Function describing
the variation of the inertia 𝐽 (𝑠) (c).

4. Numerical examples

Described approach has been implemented in MATLAB (2019)
where an ad hoc implementation of the finite difference method has
been coded. Validation of this implementation has been done by
comparing computed results with those obtained from a finite element
analysis of the same problems performed in the commercial software
MidasGEN (0000). A selected example of such a validation is reported
in Section 4.1.

Additional parametric analyses have been performed on selected
case studies in order to have design indications for an optimal concep-
tual design of arches. These analyses are reported in Section 4.2.

4.1. Validation

In order to verify the correctness of proposed approach, a series of
case studies have been analyzed by varying the axis and cross-section
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Fig. 6. Some examples of loading configurations.
Fig. 7. Internal actions: Axial force (a), Bending Moment (b), Shear force (c).
geometry, boundary and loading conditions. Among the several ana-
lyzed cases, we report hereafter a selected case study made interesting
for the variability of the cross section and the non symmetric load
case. Also this is the case in which we registered the higher difference
between our results and those obtained by the finite element method.

Figs. 7–9 refer to a parabolic arch having span 𝐿 = 100 m and rise
𝐹 = 30 m. It is characterized by a hollow circular cross section having
radius 𝑟 quadratically varying between 𝑟𝑏𝑎𝑠𝑒 = 0.5 m at the springers and
𝑟𝑚𝑖𝑑 = 0.25 at the crown, while its thickness 𝑡 = 0.1 m is kept constant
along the entire arch. The arch is fully restrained at both extremities
7

and is subjected to a vertical load 𝑃𝑦 = −50 kN/m uniformly distributed
along the arch axis and applied to the left half of the arch.

Results are compared in terms of internal forces (Fig. 7), normal
stresses (Fig. 8), displacements and rotations with respect to the global
coordinate system (𝑥, 𝑦) (Fig. 9). Notice the very good agreement
between results obtained from proposed method and those computed
from Midas.

It is worth noticing that proposed formulation accounts only for
bending deformation of the arch, while axial and shear strain are
neglected by the proposed model. In order to verify that axial defor-
mations 𝜀 plays a negligible role in the structural response of elastic
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Fig. 8. Normal stresses.
Fig. 9. Displacement in the global coordinate system (𝑥, 𝑦): Displacement in the 𝑥-direction (a), Displacement in the 𝑦 direction (b), Rotations (c).
arches, we compare the elastic strain energy relevant to the solutions
obtained by both the finite element method and the proposed approach.

The elastic strain energy associated to the finite element solution
for considered case study amounts to:

𝐸𝐹𝐸𝑀
𝑒𝑙,𝑇𝑂𝑇 = ∫

𝑠𝑒𝑛𝑑

0

(

1
2
𝑁2

𝐸𝐴
+ 1

2
𝑀2

𝐸𝐽

)

𝑑𝑠 = 4.51𝐸 + 21 (37)

and accounts for both the contribution of elongation and bending.
Notice that the contribution of shear is, however, neglected since
considered finite element results are based on the Euler–Bernoulli beam
model.
8

The elastic strain energy computed for the proposed formulation,
instead, accounts for the bending contribution only, that is:

𝐸𝐹𝐷𝑀
𝑒𝑙,𝑇𝑂𝑇 = ∫

𝑠𝑒𝑛𝑑

0

(

1
2
𝑀2

𝐸𝐽

)

𝑑𝑠 = 4.38𝐸 + 21 (38)

The obtained values show that, for the considered case study, axial
elastic energy is actually negligible: the difference between these two
values is below the 3%.

4.2. Parametric analysis of arches

In this section the results of a series of parametric analysis per-
formed on thousands of arches having different shapes, cross section,
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Fig. 10. Parabolic and circular arch configuration with hollow circular cross-section. Volume as function of 𝐹∕𝐿 and 𝑟𝑏𝑎𝑠𝑒∕𝐿 (a), Maximum Von Mises stress acting as function of
𝐹∕𝐿 and 𝑟𝑏𝑎𝑠𝑒∕𝐿 (b), Buckling verification for circular (c) and parabolic (d) arch shape.
tapering function, loading and boundary conditions are presented. Four
different shapes are considered for the arch axis, i.e. parabolic, circular
and two fourth-order polynomials. These comparisons can be used to
draw interesting design indications regarding the design parameters
that define the arch geometry. To this end, two design parameters
are considered for each case study. They are the rise to span ratio
𝐹∕𝐿 and the ratio between the characteristic size of the base cross
section 𝑟𝑏𝑎𝑠𝑒 and the arch span 𝐿. Mentioned case studies are sub-
jected to the same conditions and their performances are compared
in terms of total volume of structural material and maximum value of
Von Mises stress. In addition, the maximum value of the Von Mises
stress computed for each case study is compared with the material
strength in order to define an admissibility domain for the design
parameters 𝐹∕𝐿 and 𝑟𝑏𝑎𝑠𝑒∕𝐿. Notice that in the presented examples
the safety factors relevant to load and material strength values are not
considered.

Finally, considering that the problem of structural buckling, in some
cases, may be more stringent than the purely tensional problem, we
considered global buckling of arches by implementing the simplified
method proposed by Attard et al. (2014). As stated by the authors,
although approximated, their estimate of the critical axial force is
safe. More refined formulations for global buckling can be included in
proposed formulation as well as an extension of the method to include
nonlinear material response, see, e.g., Melchiorre et al. (2022).
9

4.2.1. Arches loaded by vertical loads uniformly distributed along their
horizontal projection

The first set of analyses regards to arches having a circular hol-
low cross section subjected to the self-weight and to a vertical load
uniformly distributed along 𝑥. Fig. 10(a) shows that for all considered
values of the rise to span ratio 𝐹∕𝐿 and section characteristic size 𝑟𝑏𝑎𝑠𝑒,
the volumes associated to either the circular and parabolic arches are
very similar. On the contrary, a similar comparison made for arches
defined by a fourth order polynomial have a volume that significantly
depends on the value of the slope 𝑆 at springers. This is shown
in Fig. 11(a), where the volumes computed for arches generated by
assuming 𝑆 = 3.5𝐹∕𝐿 and 𝑆 = 5𝐹∕𝐿 are compared.

Figs. 10(b) and 11(b) the same set of arches are compared in terms
of maximum values of Von Mises stress. In these figures we also report
the limit value 𝑓𝑦 representing the yield stress associated to steel S355.

Finally, as far as buckling verifications are concerned, in the graphs
(c) and (d) in Figs. 10 and 11, the comparisons in terms of maximum
acting axial force and critical axial force computed by mentioned
simplified method are shown for each studied arch shape. In these
graphs, the red surface represents the critical limit axial force due
to buckling 𝑁𝑚𝑎𝑥,𝑐𝑟, while the other surfaces represent the maximum
absolute value of the axial force calculated for each arch configuration
|𝑁𝑚𝑎𝑥|.

For a greater clarity of reading, the three-dimensional graphs in
Figs. 10 and 11 have been projected in two dimensions going to
constitute, for each geometry of the axis of the arch, a different graph
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Fig. 11. Quartic polynomial shape arch configuration with hollowed circular cross-section. Volume as function of 𝐹∕𝐿 and 𝑟𝑏𝑎𝑠𝑒∕𝐿 (a), Maximum Von Mises stress acting as
function of 𝐹∕𝐿 and 𝑟𝑏𝑎𝑠𝑒∕𝐿 (b), Buckling verification for quartic arch shape with 𝑆 = 3.5𝐹∕𝐿 (c) and 𝑆 = 5𝐹∕𝐿 (d).
in which it is possible to clearly identify the geometric configurations
able to support the applied loads. In fact, in Fig. 12, the area in red
represents the domain of the unfeasible configurations, while the one in
white encloses all the feasible configurations within the search space.
Finally, in the graphs the objective function is represented by means
of contour lines and the lowest volume configuration is identified by
the point in red. These graphs can be seen as abacuses that allow
the designer, not only to immediately identify the feasible geometric
configuration with less volume, but also to evaluate the volume varia-
tions that would be obtained by deciding to adopt different geometric
configurations. In other words, the designer can choose to vary the
parameters of the radius of the transverse section and the degree of arch
lowering, according to what he considers most appropriate, while hav-
ing control of the volumetric variations of the different configurations
and of which geometries are able to support the applied loads.

In particular, Figs. 12(a) and 12(b) show that the parabolic arch per-
forms better than the circular since in the case of circular shape, under a
constant load along the 𝑥-axis, the unfeasible domain is slightly bigger.
It is also possible to note that, in the research domain considered, the
minimum volume configuration is very similar for both geometries. The
difference is instead evident in the case of very high arches.

In the case of fourth-order polynomial arc shapes, looking at the
Figs. 12(c) and 12(d) it is possible to notice that the configuration
with 𝑆 = 5.0𝐹∕𝐿 performs slightly better when 𝐹∕𝐿 is small, while
for higher 𝐹∕𝐿 both geometries exhibit similar performances for all
characteristic size of the cross section 𝑟𝑏𝑎𝑠𝑒.

4.2.2. Arches loaded along the radial direction
A similar parametric study is performed on arches having a hollow

square cross section of uniform thickness 𝑡 = 100 mm, whose charac-
teristic size 𝑟𝑏𝑎𝑠𝑒 is kept constant along the arch. This set of arches are
subjected to distributed loads applied along the radial direction and
to the arch’s self-weight. Fig. 13 report the computed arch volume for
all the four considered shapes and the feasible domain considering the
maximum Von Mises stress applied on the studied arch configurations.

It can be seen from the graphs in Fig. 13 that, in this case, since the
load is applied radially, the arc shape characterized by a larger feasible
10
domain is that of circular arc shape. This is an expected result and a
further validation of the feasibility of the proposed method.

4.2.3. Arches loaded on the mid-third of their length
The third case study regards arches with hollow rectangular cross

sections having the characteristic size 𝑟1 quadratically varying between
the springers and the mid-span. This set of arches are loaded by their
self weight and by a uniform load applied at its mid-third, see, e.g., the
last loading condition in Fig. 6. Notice that the length of the loaded
region varies as a function of the total length of the arch and hence
as a function of its rise 𝐹 . For this reason, this particular case study is
particularly significant to verify the versatility of proposed approach.

Figs. 14(a) and 14 show that this set of arches behave similarly o the
case of Section 4.2.1. In particular, parabolic arches perform better than
circular ones in reducing the unfeasible area, due to the tensional and
buckling verifications, and this also allow to reduce the total volume
of employed materials. The best performance is given by quartic arch
with 𝑆 = 3.5𝐹∕𝐿, while the worst is given by the quartic shape with
𝑆 = 5𝐹∕𝐿. This may be due to the fact that the shape of arcs with
low 𝑆 have a parabolic-like shape while arcs with high 𝑆 are more like
circular arches.

4.2.4. Arches loaded over one half their length
The final case study refers to an arch having a solid circular cross

section whose radius varies along the arch’s axis. Notice that solid
circular steel sections are generally avoided in practical applications
and this case study is merely academic. Actually, it has the scope of
further validating the presented approach by showing how it can be
used to model non symmetric loading conditions. Also, it will be shown
how the presented parametric analysis can be used to highlight the
better performances of hollowed sections with respect to solid ones.

The considered arch is loaded by it self-weight and by a vertical load
uniformly distributed over one half of its length. These plots are qualita-
tively similar to the corresponding diagrams reported for previous case
studies. However, a great difference is shown in quantitative terms: the
employment of a solid cross section obviously implies a total volume
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Fig. 12. Summary graphs with volumes and feasible domain for arch configurations
described in Section 4.2.1: Circular shape (a), Parabolic shape (b), Quartic polynomial
shape with 𝑆 = 3.5𝐹∕𝐿 (c), Quartic polynomial shape with 𝑆 = 5𝐹∕𝐿 (d).
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Fig. 13. Summary graphs with volumes and feasible domain for arch configurations
described in Section 4.2.2: Circular shape (a), Parabolic shape (b), Quartic polynomial
shape with 𝑆 = 3.5𝐹∕𝐿 (c), Quartic polynomial shape with 𝑆 = 5𝐹∕𝐿 (d).
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Fig. 14. Summary graphs with volumes and feasible domain for arch configurations
described in Section 4.2.1: Circular shape (a), Parabolic shape (b), Quartic polynomial
shape with 𝑆 = 3.5𝐹∕𝐿 (c), Quartic polynomial shape with 𝑆 = 5𝐹∕𝐿 (d).
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Fig. 15. Summary graphs with volumes and feasible domain for arch configurations
described in Section 4.2.1: Circular shape (a), Parabolic shape (b), Quartic polynomial
shape with 𝑆 = 3.5𝐹∕𝐿 (c), Quartic polynomial shape with 𝑆 = 5𝐹∕𝐿 (d).
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that is even one order of magnitude larger than the one associated with
hollow cross sections.

Fig. 15(a) and 15(b) show that both the parabolic and circular
arches have similar performances in terms of volumes, since the feasible
domain is practically the same. Instead, for polynomial arches, the
performances of shapes having higher slope at supports, i.e. 𝑆 = 5𝐹∕𝐿,
erform better than those having 𝑆 = 3.5𝐹∕𝐿, see, i.e., Fig. 15(c) and
5(d).

. Conclusion

An analytical formulation for the evaluation of displacements, inter-
al forces and Cauchy stresses in arches of different shapes (circular,
uadratic and quartic polynomial), different cross-section, tapering
unction and loading combinations is proposed. Proposed formulation
mploys a sixth order differential equation and proper boundary con-
itions to model the mechanical behavior of the arch. It is solved
ith respect to the main kinematic unknown 𝑢, which represents the

angential component of the displacement of the generic cross section of
he arch. The numerical solution of basic equations is obtained by an ad
oc implementation of the finite difference method approach. Several
umerical examples are reported in order to demonstrate the validity
f our results, which are compared with finite element solutions, and
o show the versatility of the presented approach to solve parametric
nalyses useful to derive practical indications regarding the optimal
onfiguration of arches of variable curvature and tapered cross section.
n particular, results are reported for hollow circular, hollow square,
ollow rectangular and filled circular sections. These shapes are either
ept constant or are tapered according to a linear or a quadratic law
long the arch’s axis. Different loading combinations are considered,
uch as vertical or radial loads uniformly applied along the arch axis
r along its horizontal projection. The cases of arches loaded only
over one portion of their length are also considered. Results of the
arametric analyses are used to give to the designer a tool to compare
ifferent design solutions in terms of maximum Von Mises stresses,
lobal buckling, and structural volume. In this way the designer has
he possibility to identify not only the solution with the lowest cost of
aterial used, but also the opportunity to study and compare different

onfigurations to define the one that best suits the specific project. The
arge number of cases presented in the parametric study shows how
he presented solution method can be widely employed by structural
ngineers and researchers interested in the optimization of this kind of
tructures.
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