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Most finite element models of actual projects developed using general finite element software are rigid or hinge
connected. These models are inconsistent with the actual situations of most actual projects that are semirigid
jointed. The double element method was adopted to estimate the influence of joint stiffness on the mechanical
behavior of suspend-dome structures. First, the accuracy of this method was validated. This approach was
adopted to analyze the influence of joint stiffness on the mechanical behavior of the overall structure. Buckling,
modal, and dynamic response analyses were conducted. The effect of joint stiffness on the buckling capacity of
suspend-dome and single-layer latticed shell was derived and compared. The influence of joint stiffness on the
characteristics of natural vibration was also determined. Finally, seismic response analysis was conducted to es-
timate the influence of joint stiffness on structural dynamic response. Results indicate that rigid connected finite
element models may be unreliable to calculate dynamic response during the design phase.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Suspend-dome is a new style of space-reticulated structure, which is
formed by combining a single-layer reticulated shell and cable-strut
system. Compared with traditional single-layer reticulated shell struc-
tures, suspend-domes exhibit a more uniform spatial stiffness distribu-
tion, has less thrust on supports, and shows a stronger spanning
capacity [1].

Researchers examined the performance of the suspend-dome struc-
ture from the experimental and numerical viewpoints [2,3,4,5,6]. Cur-
rent research demonstrate that the buckling capacity of the pin-
connected suspend-dome is lower compared with that of the rigidly
connected suspend-dome [7]. However, the influence of joint stiffness
has not been quantitatively verified.

The upper latticed shells usually consist of thousands of components
that are connected by joints. The stiffness of connections was deter-
mined to be one of the factors that significantly affect the behavior of
space structures, and these effects were investigated numerically and
experimentally [8,9]. In the actual design process, the joints are as-
sumed to be either pinned or rigid joints. This assumption may result
in a significant deviation from the actual condition. Lattice shells with
semirigid joints can provide a good solution for space structures. Thus,
including joint stiffness in the numerical model is necessary.
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Predicting the mechanical behavior of joints is the first step in ana-
lyzing spatial structures with semirigid joints. Many studies were con-
ducted to analyze the mechanical behavior of joints in space
structures [10]. Lopez et al. [11,12], Ma et al. [13], Fan et al. [14], and
Kato et al. [15] verified that the rigidity of joints is an important factor
that influences the behavior of a single-layer latticed dome. Fan [8,16,
17,18] systematically conducted experimental and numerical analyses
to investigate the influence of joint stiffness on the mechanical behavior
of latticed shells. Finite element method and experimentation were the
main approaches to examine semirigid joints [19].

However, the studies mainly discuss the joints itself or simple struc-
tures, such as steel frames [20,21,22,23,24,25]. The axial direction,
length, and cross section of the spatial latticed structures, which consist
of thousands of components, significantly vary. Establishing numerical
models that consider the influence of joint stiffness is time-consuming
and tedious. A few of these numerical reticulated shell models were
used because they are complex and relevant studies are limited. A con-
venient and efficient method that integrates joint stiffness in numerical
models of spatial latticed structures has not yet been developed. In this
study, double element method was adopted to investigate the influence
of joint stiffness on the mechanical behavior of the suspend-dome.

2. Double element method
Research on the stiffness of joints and their effects on the behavior of

structures has been an area of interest to engineers and scientists in re-
cent years, and many applicable conclusions have been achieved.
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Fig. 1. Numerical model considering joint stiffness.

However, no applicable method that considers joint stiffness in a gener-
al finite element software has been developed. A simplified method in-
tegrating joint stiffness was proposed in this study.

This method assumes that every component of a latticed shell is
composed of two elements, namely, beam element with only bending
stiffness and beam element without bending stiffness.

The rotation angle of the beam under action of moment M, as shown
in Fig. 2, can be calculated using Eq. (1) for a beam with a constant cross

section. The bending stiffness of the beam can be represented by Eq. (2).

The significant influence of the stiffness of joints on the mechanical
performance of lattice shells has been validated [16], particularly for
buckling behavior. In a numerical model, the joints of latticed shells
were assumed to be a rigid or simple joint. In fact, almost all joints in
structures exhibit some degree of semirigid behavior. For these kinds
of structures, the stiffness of action of joints can be substituted by spring
element [18], as indicated in Fig. 1(a). The rotation angle of this system
under the action of moment M can be calculated through Eq. (3). The
bending stiffness of the beam can be represented by Eq. (4), through
which it can be concluded that, when the joint stiffness k was equivalent
to Eq. (2), it is sufficiently large.

Lopez [21] proposed the use of an elasto-plastic cylinder located be-
tween the tube and the balls to simulate the bolt, which is time-
consuming and work-intensive to establish the numerical models of lat-

—

| M

i

Fig. 2. Beam under the action of moment.
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ticed shells because of the large amount of components. This study pro-
posed the double element method to consider joint stiffness, as shown
in Fig. 1(b). That is, each component of latticed shells is composed of
two elements, namely, beam element with bending stiffness of the com-
ponent and beam element without bending stiffness.
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where 6 is the rotation angle of the beam, I is the moment of inertia of
the members, E = 206 GPa represents Young's modulus, and K is the
bending stiffness of the spring element.

We assume that aindicates the overall bending stiffness factor of the
beam element and 3 indicates the bending stiffness factor that only con-
siders the joint bending stiffness, as shown in Egs. (5) and (6). Eq. (7)
denotes the relationship between cvand 3. Fig. 3 indicates the curves be-
tween « and . The overall bending stiffness factor tends to 1 with the
increase in 3.
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Fig. 4. Two-member structure with semirigid joint.
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Fig. 5. Comparison of the results derived by beam element and double element.

The general finite element software ANSYS was adopted to obtain
the load versus displacement curves of structures. The two-member
structure was first established by ordinary beam element (BEAM4) in
ANSYS [26].

Only the bending stiffness was assigned a real constant for a beam
element with bending stiffness in the double element. For the beam el-
ement without bending stiffness in the double element, the BEAM4 ele-
ment in ANSYS was also employed. However, the value of bending
stiffness was low. Thus, the beam element can be assumed to be a link
element.

The two elements share the same nodes at both ends. Thus, the dis-
placement vector of the two elements is equal to each other. This step
ensures that the two elements coordinate with each other. Thus, the
two elements can be assumed as one element with special functions.
Thus, Eq. (8) is equal to Eq. (9) plus Eq. (10). The beam element in the
double element only includes bending stiffness and can be adjusted eas-
ily to consider the influence of joint stiffness.

A two-member structure was adopted to validate the effectiveness
of the proposed double element method, (See Fig. 4.). The cross-
section area A = 0.0048 m? and moment of inertia I =
6.28 x 10~ m* were inputted as real constants. The structure was
established by the double element method. This structure is the link el-
ement with area A = 0.0048 m? and beam element with I =
6.28 x 10~ m*. The area of the beam was set at a small value. Thus,
its axial strength can be ignored.

Fig. 5 shows the results derived by beam element and double ele-
ment. The results derived by double element are consistent with that
obtained by beam element. Fig. 6 shows the load versus displacement
curves with different bending stiffness factors. These results indicate
that joint stiffness significantly affects the critical load of the two-
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Fig. 6. Load versus displacement curves with different bending stiffness factors.
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Fig. 7. Flowchart of the simplified double element method.

member structure. The results also demonstrate that joint stiffness can
be considered by adjusting beam bending stiffness factor o

3. Finite element model

A suspend-dome structure was designed to analyze the influence of
joint stiffness on the mechanical behavior of suspend-dome structures.
The roof of the building is spherical with a diameter of 108 m and a
vector height of 25.5 m, as shown in Fig. 8(a). For the suspend-dome,
the Lamella-Kiewit composite single-layer lattice shell with a span of
108 m was adopted. Seven rings of cable-strut systems were arranged
under the single-layer Ilattice shell with steel pipes of
@203 mm x 6 mm, 219 mm x 7 mm, ©245 mm x 7 mm,
@273 mm x 8 mm, and ¢©299 mm x 8 mm as the principal members
of the single-layer shell. In the lower suspend-dome, steel pipes of
@219 mm x 7 mm were used as vertical struts. Steel bars with a diam-
eter of 80 mm were utilized as the radial bars. Steel cables of
@7 mm x 121 mm functioned as four outer hoop cables. Steel cables
of 7 mm x 73 mm were used as the three inner hoop cables. The
pre-stresses in the hoop cables were uniformly set to 127, 420, 390,
530, 810, 1242, and 2060 kN. The steel pipes measuring
©1000 mm x 16 mm and ¢1500 mm x 24 mm were used as the princi-
pal members of the upper arches, whereas steel pipes of
©325 mm x 8 mm, ¢377 mm x 10 mm, and ¢426 mm x 10 mm were
used as the principal members of the strut between the suspend-
dome and the arches. The elastic moduli of the steel (Q345) and the
cable were 2.06 x 10° and 1.8 x 10° N/mm?, respectively. The boundary
conditions were assumed as simply supported. Two rings of bearings
were set in this structure, as shown in Fig. 8(b): one is located at the out-
most ring and the other is located at the fourth outmost ring. The bear-
ing is free in the radial direction, the vertical direction is fixed, and the
hoop direction is elastically restrained with a stiffness coefficient of
2.8 x 10° kN/m.

The finite element model of the analyzed structures was established
in the general finite element software ANSYS. The hoop cables, steel
bars, and bearings were modeled by Link10, Link8, and Combin39, re-
spectively. Each component of the upper latticed shell was simulated
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Fig. 8. Schematic diagram of the suspend-dome structure.

by BEAM188 and BEAM4. The BEAM188 element was pin jointed by re-
leasing the “Endrelease” command.

The upper latticed shell structure was established by BEAM188 ele-
ment, and the cross sections were assigned according to the actual situ-
ation. The beam element was copied without changing the coordinate,
and the element type was changed to BEAM4 to function the role of a
beam element with no axial strength, as indicated in Fig. 1(b). Only
the bending stiffness of BEAM4 was assigned a real constant. The rota-
tional degrees about the x- and y-directions of BEAM188 were released
by the “Endrelease” command. The flowchart of the double element is
shown in Fig. 7. Establishing the numerical model is efficient. The finite
element model of the suspend-dome structure is presented in Fig. 8.

4. Static analyses: linear and nonlinear buckling

In this section, the effects of connection rigidity on the buckling ca-
pacity of the suspend-dome system were investigated. First, eigenvalue
buckling analysis was conducted. Then, nonlinear buckling analysis was
conducted for the suspend-dome and the single-layer latticed shell. Fi-
nally, the results were compared. The single-layer latticed shell indi-
cates the upper latticed shell of the suspend-dome.
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i e B .555556 1
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Fig. 9. Buckling mode of rigid joint structures.

4.1. Linear buckling analysis

The Eigenvalue buckling analysis predicts the theoretical buckling
capacity (the bifurcation load) of an ideal linear elastic structure. How-
ever, imperfections and nonlinearities prevent most real-world struc-
tures from achieving the theoretical elastic buckling capacity.
Nevertheless, the Eigenvalue buckling analysis provides an upper
bound for the critical load, along with the buckling mode, which pro-
vides engineers valuable information about the buckling behavior of
the system. The results of the Eigenvalue buckling analysis of the
suspend-dome and the corresponding single-layer dome under differ-
ent conditions are analyzed.

Buckling analysis only considered the dead load, including weight of
the components and roof dead load, which is 0.14 kN/m?.

Fig. 9 shows the buckling mode when the components were rigidly
connected. The figure clearly indicates that buckling occurs at the cen-
tral part of the structure. The upper latticed shell was divided into differ-
ent parts, as shown in Fig. 10, to investigate the influence of the stiffness
of joints located in different parts of the structure. The joint stiffness
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Fig. 10. Stiffness factor of each part of the overall structure.
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Fig. 11. Curves of buckling load to stiffness factor.

factor of each part was adjusted separately from 0.1 to 1 in steps of 0.1,
which indicate pin jointed and rigid joint structures. Buckling critical
load factor was extracted and compared, as shown in Fig. 11.

The results shown in Fig. 11 indicate that the changing tendency of
the buckling capacity of the suspend-dome to the stiffness factor is al-
most the same as that of the upper single-layer latticed shell. The Eigen-
value buckling analysis can only consider the initial structural stiffness.
Thus, the influence of the cable-strut system cannot be fully integrated.
Joint stiffness located in different parts of the structure variably affect
buckling capacity. When the joint stiffness of one part was adjusted,
the other different parts remain rigidly connected. The joint stiffness
factors were changed from 0.1 to 1, which can be assumed to be pin
jointed and rigid joint. The upper components of the structure influence
buckling capacity more than the lower components. Buckling often oc-
curs at the upper part of the structure. 18 influenced buckling capacity
when it decreased to 0.3 and 0.4 for the suspend-dome structure and
single-layer latticed shell. ®11 immediately influenced buckling capaci-
ty when it was changed.

The upper latticed shell was divided into hoop components and the
other components, as shown in Fig. 12, to investigate the influence of
the joint stiffness of the hoop components on structural buckling capac-
ity. Fig. 12(a) shows the symbol of the stiffness factor of each of the cir-
cle hoop components.

Fig. 13 shows the changing tendency of the buckling capacity, along
with the stiffness factor of each circle hoop component. The results indi-
cate that all of the joint stiffness values of the hoop components has

a) Hoop components

almost no influence on buckling capacity. The effect of hoop compo-
nents located at the upper part of the structure is greater than that of
the lower hoop components. The joint stiffness of the hoop components
of the lower 11 circles does not affect structural buckling capacity.

Fig. 14 shows the influence of all hoop components and the other
components on buckling capacity. When the joint stiffness factor of
the hoop components changes from 1 to 0.1, the load factor changes
from 33.2 to 24.9. The reduction factor is 75%. The load factor changes
from 33.2 to 11.3 for the other components, and the reduction factor
is 34%. These results indicate that the influence of the hoop components
is lesser than that of the other components.

4.2. Nonlinear buckling analysis

The Eigenvalue buckling analysis predicts the theoretical buckling
capacity (the bifurcation load) of an ideal linear elastic structure,
which is almost nonexistent in an actual project. Nonlinear buckling
analysis was conducted to investigate buckling behavior more thor-
oughly. The arc-length method [27,28] is employed to obtain the total
load-displacement equilibrium path.

The arc-length method is adopted during the entire numerical
simulation. The arc-length method is suitable for nonlinear static
equilibrium solutions of unstable problems. Applications of the arc-
length method involve the tracing of a complex path in the load-
displacement response into the buckling/post-buckling regimes.
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Fig. 12. Components of the upper latticed shell.
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Fig. 13. Influence of the stiffness factor of the hoop components.

The arc-length method was activated by the “ARCLEN” command in
ANSYS finite element code, and the minimum and maximum multi-
pliers for the arc-length radius were set. The reference arc-length radius
is calculated from the load or displacement increment of the first itera-
tion of the first substep, as follows:

Reference Arc—Length Radius
= Total Load (or Displacement)/NSBSTP, (8)

where NSBSTP is the number of substeps specified on the NSUBST com-
mand. The factors MAXARC and MINARC are employed to define the
limits of the arc-length radius by adopting the following formulas:

Lower Limit = MINARC x (Reference Arc—Length Radius), (9)

Upper Limit = MAXARC x (Reference Arc—Length Radius). (10)

Anew arc-length radius is first calculated based on the arc-length ra-
dius of the previous substep and the solution behavior. Then, the newly
calculated arc-length radius is further modified so that it falls between
the range of the upper and lower limits. If the solution does not con-
verge even when the lower limit of the arc-length radius is used, then
the solution will be terminated.

In this study, geometric nonlinearity was considered by the
“NLGEOM,0ON” command. The arc-length radius should not be exces-
sively large or small to avoid the “drift back” problem. In this study,
the number of substeps was set to 500. The MAXARC and MINARC
were set to 5 and 0.001, respectively.

Dome structures are sensitive to geometric imperfection, which is
unavoidable during fabrication. In the fundamental mode imperfection
method, the imperfection distribution is assumed to be consistent with
the first buckling mode. Generally, the buckling capacity that is calculat-
ed by the fundamental mode imperfection method is the lowest among
all the other modes and is, therefore, the most critical. In this study, non-
linear elastic analysis is conducted to derive the buckling capacities of
the domes with L/300 [29] maximum nodal imperfections, where L in-
dicates the span of the domes.

Fig. 15 shows the curves of vertical load factor and displacement at
node 1 when stiffness factor « was given a different value. The results
indicate that the buckling capacity of the suspend-dome is significantly
higher than that of the single-layer latticed shell whatever the value of
the stiffness factor. The high efficiency of suspend-dome structures
was reflected. The buckling capacity of the suspend-dome and single-
layer latticed shell is positively correlated with the joint stiffness factor.
Geometrical imperfection will reduce buckling capacity whatever the
value of the stiffness factor for suspend-dome structures. Joint stiffness

significantly affects the buckling capacity of suspend-dome structures.
The rigidly jointed model will overestimate structural buckling capacity.
Thus, joint stiffness should be considered in calculating the structural
buckling capacity for suspend-dome structures.

Meanwhile, the results shown in Fig. 15(a), (b) and (c) reveal that
the structures with imperfections seem to be more rigid than the ele-
ments without imperfections. This outcome is caused by the location
of node 1 and the structural deformation under load before buckling oc-
curs. Geometric imperfection was applied according to the buckling
mode shown in Fig. 9. Thus, nonlinear buckling analysis was first con-
ducted. The displacement of node 1 was calculated based on the de-
formed structure. Thus, the structures with imperfections may seem
more rigid.

Fig. 16(a) shows the changing tendency of the critical load factor of
the suspend-dome along with the stiffness factor. Geometrical imper-
fection reduces the critical load factor in almost the same degree
when stiffness factor a is greater than 0.3. The changing tendency indi-
cates that the critical load factor is sensitive to geometrical imperfection
when stiffness factor «is less than 0.3. This condition shows that the pin
jointed structures are almost nonexistent in an actual project. Thus,
joint stiffness has no effect on geometrical imperfection. The influence
factor of geometrical imperfection on the buckling capacity of the
suspend-dome in this study can be set to 0.7.

Fig. 16(b) shows the changing tendency of buckling capacity along
with the stiffness factor. The results demonstrate that geometrical im-
perfection has almost no influence on the buckling capacity of the
single-layer latticed shell when the joint stiffness of the structure is
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Fig. 14. Influence of the hoop components and the other components.
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Fig. 15. Curves of vertical load factor and displacement at node 1.

sufficiently small. The influence factor of the geometrical imperfection
on the buckling capacity of the single-layer latticed shell can be set to
0.38.

5. Dynamic analyses: natural vibration and seismic response
5.1. Natural vibration analysis

In this section, the influence of joint stiffness on the natural vibration
of the suspend-dome was investigated. In this part, only the weight of

the components was considered. Fig. 17 shows the changing tendency
of the fundamental frequency to the stiffness factor of the different
parts. “ALL” indicates that the joint stiffness of all the parts of the struc-
ture was adjusted all together. Thus, the natural frequency will not be
influenced when the joint stiffness of each part changed from 0.6 to 1.
The natural frequency starts to change when «11 decreased to 0.5, indi-
cating that the vibration modes changed from overall vibration to local
vibration, which can be observed in Fig. 18(e) and (f).

Fig. 18 shows the first vibration modes under different conditions.
Fig. 18(a) and (b) show the vibration modes when all the component
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Fig. 16. Changing tendency of load factor along with stiffness factor.

stiffness factors were set to 0.3 and 0.8. When stiffness factors were set
to 0.3, the first vibration mode appears to be a local vibration. When the
joint stiffness factor increased to 0.8, the vibration mode changes from
local vibration to overall vibration.

Fig. 18(c) and (d) show the vibration modes when 18 and «17
were set to 0.1. Thus, vibration occurs at a weak location.

For parameter /11, the fundamental frequency of the overall struc-
ture starts to change when it was decreased to 0.5. Fig. 18(e) and
(f) show the buckling mode when a11 was set to 0.5 and 0.6. Thus,
local vibration occurred when a11 was set to 0.5 and overall vibration
happened when it was set to 0.6.

In summary, if joint stiffness factor « ranges from 0.8 to 1, then the
error caused by the natural frequency and mode shape can be generally
disregarded for the suspend-dome analyzed in this study. The mode
shape and natural frequency will deviate from the actual condition
when joint stiffness factor cis less than 0.8 if the rigidly connected finite
element model was adopted as a substitute for semirigid connected
structures. Considering the influence of joint stiffness in calculating
the characteristics of natural vibration is necessary.

5.2. Seismic response analysis

The Imperial Valley seismic wave was adopted to conduct seismic
response analysis. The time history of the seismic wave is shown in
Fig. 19. The peak acceleration in the x-direction was adjusted to
55 cm/s?, and the ratio of the peak value in the x-, y-, and z-directions
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Fig. 17. Curves of fundamental frequency to stiffness factor.

is 1.00:0.85:0.65. The duration of the seismic wave is 14.7 s. The analysis
was conducted in a time step of 0.1 s.

Fig. 20 shows the time history of the displacement at node 1 when
stiffness factor o was given a different value. The largest seismic re-
sponse appears when « was set to 0.6 and approximately twice that
when « was set to 1.0. The minimum seismic response occurs when «
was set to 0.1. When o was set to 0.1, the natural frequency of the over-
all structure is relatively small for the deviation to occur from the main
frequency component of the selected seismic wave, which is the cause
of minimum seismic response. The response reaches the maximum
value in the front part of the seismic wave, which varies from the others.

The joint stiffness generally adopted in actual structures is between
1 and 0.5. Thus, the analysis was added to obtain more detailed results.
The time history of the vertical displacement at node 1 is shown in
Fig. 21(a). The peak value of each case was extracted, as presented in
Fig. 21(b). Thus, joint stiffness significantly affects the seismic response
of suspend-dome structures. The seismic response of semirigidly con-
nected structures is larger than that of rigidly connected structures by
approximately 1.4 times. Substituting rigidly connected models for
semirigid models is unsafe. Almost all actual projects are semirigidly
connected. Joint stiffness should be considered in calculating the seismic
response during the design phase.

5.3. Influence of boundary condition

The influence of boundary condition on structural dynamic response
was investigated. The stiffness of the bearing located at the fourth out-
most ring, as shown in Fig. 8(b), was adjusted to investigate the influ-
ence of boundary condition. The value of bearing stiffness in the hoop
direction differed, and the results in each case were derived.

The effect of bearing stiffness on structural dynamic response is
shown in Fig. 22. The results indicate that the structural dynamic re-
sponse was significantly influenced by bearing stiffness when the stiff-
ness factor ranged from 0.4 to 0.7. Regardless of the value of the
bearing stiffness, the maximum vertical displacement reaches the min-
imum value when stiffness was set to 0.3 and 0.9. In addition, the dy-
namic response of the semirigidly connected structure is significantly
higher than the pinned or rigid connected structures regardless of the
value of the bearing stiffness.

6. Conclusions
The double element method was adopted in this study to conduct a

detailed analysis of suspend-dome structures. First, the accuracy of this
method was validated. The model was adopted to analyze the influence



22 Z. Chen et al. / Journal of Constructional Steel Research 122 (2016) 14-24

~.004484 ~.002451 ~.498E~ . 001455 .003488
-.003488 -.001495 £ 1

03
.458E-03 00245 .004484

a) Buckling mode when a = 0.3

.329E-03 .658E-03 .988E-03 .001317
.165e-03 .494E-03 .B23E-03 .001152 .001482

b) Buckling mode when a = 0.8

=.004084 -.0022639 -.454E-03 .001361 .003176
- 6 =i 1

00317 00136 .4542-03 .002265 .Co4084

¢) Buckling mode when 18 = 0.1

-.003%22 -.002179 ~-.436E-03 .001307
03051

.003051
-.0l -.001307 .436E-03 .002179 .003822

d) Buckling mode when 17 = 0.1

—
-.009313

-.005174 -.001035
4 -.003104 .001035

.003104 .007244
= 4

00724 00517

e) Buckling mode when 11 = 0.5

.008313

.336E-03 .671E-03 001007 001342
.168E-03 .S03E-03 .B39E-03 .001175 .00151

f) Buckling mode when 11 = 0.6

Fig. 18. Buckling mode with different stiffness factors.

of joint stiffness on the mechanical behavior of the overall structure.
Buckling, modal, and dynamic response analyses were conducted. The
conclusions can be summarized as follows:

(1) The double element method proposed in this study can be effi-
ciently conducted in a general finite element software for the
mechanical analysis of complex latticed shells. The difficulty of
establishing numerical models is avoided.

(2) Joint stiffness of components located in different locations in the
overall structure variably affect the buckling capacity of suspend-

dome structures. The influence of the upper components is larger
than that of the lower components. The influence of hoop com-
ponents is less than that of the other components.

(3) Geometrical imperfection will reduce structural buckling capacity.
However, joint stiffness has almost no influence on this reduction.
Thus, the rigidly connected structural models can be employed to
estimate the influence of geometrical imperfection. However, this
approach will overestimate structural buckling capacity.

(4) The error caused by natural frequency and mode shape can be
neglected if joint stiffness factor o ranges from 0.8 to 1 for the
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suspend-dome analyzed in this study. Mode shape and natural
frequency will deviate from the actual condition when joint stiff-
ness factor aeis less than 0.8 if the rigidly connected finite element
model was adopted as a substitute for semirigid connected struc-
tures. Considering the influence of joint stiffness in calculating the
characteristics of natural vibration is necessary.

Dynamic response analysis of semirigid structures may yield larg-
er results than that by rigidly connected finite element models.
Substituting rigidly connected models for semirigid models is un-
safe. Almost all actual projects are semirigidly connected. The joint
stiffness should be considered in calculating seismic response dur-
ing the design phase.

Although the element number of the numerical model established
by the double element method was larger than the traditional
model, the computational cost was acceptable. Five seconds are
required to conduct linear buckling analysis at one time, 170 s to
conduct nonlinear buckling analysis at one time, and 15 min to
conduct seismic response analysis at one time.

—
wul
~

—
(=]
=

7. Future work

in

A novel numerical method considering joint stiffness was proposed
this study. The influence of joint stiffness on structural mechanical

behavior can be systematically investigated using this method. In addi-
tion to joint stiffness, other factors, such as component axial stiffness
and residual stress, will also influence buckling behavior. These factors
may be investigated in future work.
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