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Analysis of masonry arches and vaults
Thomas E Boothby
Pennsylvania State University, USA

Summary
A growing interest in the preservation of historic
structures has created a need for methods for the
analysis of load-bearing unreinforced masonry
structures, such as arches, vaults, and buttresses.
Although the plasticity methods, first applied to
medieval structures in detail by Heyman, provide
a useful and intuitive approach to the understanding
of the behaviour of masonry arches and vaults, their
usefulness in performing actual assessments of such
structures has limitations. The constitutive laws of
the materials used in masonry structures are not
always amenable to accurate treatment by the
rigid`plastic simplification, and the complexity of

many vaulted masonry structures makes the
application of these methods difficult. Moreover,
empirical studies have shown that these structures
may be subject to three-dimensional effects that are
not entirely addressed by the application of plastic
or elastic analysis in two dimensions. Progress has
been made recently in the development of
constitutive laws for ancient masonry structures
and in the application of these to the analysis of
unreinforced masonry structural systems. Various
formulations of three-dimensional finite element
analysis, including discrete element methods, and
plasticity methods have also proven useful.
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Introduction and scope

A growing interest in the stabilization, preservation,
and repair of heritage and historic structures has
created a need for accurate and efficient methods for
the analysis of load-bearing unreinforced masonry
structures. The principal components of these
structures, whether medieval church buildings or
nineteenth-century bridges, are masonry arches,
vaults, and buttresses. Although these structures have
endured for hundreds of years and despite the fact
that they are one of the earliest types of structures to be
subjected to scientific structural analysis, they are
often considered difficult to analyse or to assess
accurately. This attitude is due only in part to the
usual uncertainties in assessing built structures: the
presence of unknown or uncertain material properties,
the difficulty of obtaining measurements, and the
difficulty of assessing the conditions or construction
without the ability to inspect the interior of the
structure. The complexities of analysis are also due to
the complexity of the system of which these elements
are a part: a medieval cathedral is a convoluted
assembly of piers, vaults, arches, and buttresses that
all work together, and for which the load paths are not
always obvious.

This paper reviews, from a very personal point of
view, recent developments in the analysis of masonry
arches and vaults. I have chosen to limit the scope of
this paper in two ways. First, this review, with only
occasional exceptions, is limited to papers published
in refereed journals and to doctoral dissertations.
Without having time to review critically every paper
that has come across my desk, I find it necessary to
confine the scope of this discussion to work that has
already been peer-reviewed. Second, beyond the
initial discussion of some of the papers that opened up
this area of research, I am confining this review
primarily to papers that have appeared in print from
1990 onwards. Certain earlier developments will be
mentioned, but because the scope of this journal is
a review of recent progress, this limitation is
appropriate. Finally, it is inevitable that I have
overlooked significant papers that lie within the scope
that I have outlined. Where this has happened,
I apologize to these authors for the incompleteness of
my research, and invite them to correspond with me,
so that we may attempt to set the record straight.

The initial papers on the topic of masonry arch and
vault analysis in the late twentieth century were
motivated by their authors’ interest in Gothic
architecture, and in explaining, using the vocabulary
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Fig. 1 A complex system of medieval vaulted masonry, Santa Maria Novella, Florence, Italy

of a modern engineer, the functioning of the elements
of a Gothic cathedral: arches, roof vaults, piers, and
buttresses. The principal papers, which are discussed
in the next section, are disarming in their simplicity
and clarity, and extraordinary in their ability to put an
ancient art into the context of the most modern type of
limit analysis, referencing directly the plastic theory of
structures.

Within a decade, the combined effect of an
increasing interest in and public awareness of the
preservation of engineering heritage, an explosive
growth in road and rail transportation demands, and
the understanding of the very large number of
masonry arch bridges in the existing road and rail
infrastructure created a very real and practical need
for assessment and repair methods for masonry arch
bridges. This has resulted in the adoption of some of
the literature meant to improve understanding of the
arch as used in medieval construction to the
development of tools for the assessment of the present
population of masonry arch bridges.

Vaults come in various forms, including the barrel
vault, which is an arch made wide enough to form
a roof vault, groined vaults, composed of barrel vaults
intersecting at right angles, and rib vaults,
characteristic of gothic architecture. Fig. 1 shows
a system of Gothic rib vaults, and Fig. 2 shows
a typical masonry arch bridge. Although a masonry
arch bridge is superficially an instance of a barrel
vault, substantial differences exist between the
masonry arch as applied to a bridge and the same
principles applied to vaulting of a medieval building.
The loads on a masonry bridge are dynamic and
concentrated, and the principle of the arch is less
effective in resisting the loads due to a heavy axle than
a distributed gravity load. The primary load on

a masonry roof structure is simply the self-weight of
the material. Thus, Heyman’s[1] postulate, written with
a clear reference to medieval construction, ‘If, on
striking the centering for a flying buttress, that
buttress stands for five minutes, then it will stand for
500 years’ cannot be generalized to any part of a bridge
structure. In the masonry bridge, the concentrated axle
loads are compensated for by using much thicker
voussoirs than in any sort of building, and by adding
a large mass of fill to prestress and stabilize the vault.
The presence of the fill adds complexities to the
masonry arch bridge that are not present in the
building structure. The spandrel walls that retain the
fill on the sides of the bridge function as gravity
retaining walls: soil pressures due to the fill and to
loads superimposed on the fill cause transverse
stresses in the spandrel walls and in the barrel vault of
the arch that are potentially quite destabilizing. The
springing for an arch bridge is very solid, and rarely
more than 1–2 m above the ground line for the bridge,
whereas the spring lines for roof vaults may be up to
20–30 m above the ground, and supported by complex
networks of piers and buttresses. Long-term
movements of the pier tops may be inevitable, and are
of course very important for the overall stability of the
structure, whereas this is hardly an issue when
considering masonry bridges.

The different demands of the bridge and building
structures are reflected in the very different characters
of the papers written on the two topics. Papers focused
on the analysis of masonry bridges tend to be practice
oriented, use significant empirical and experimental
evidence, discuss details of assessment methods, and
offer some practical solutions to assessment and repair
problems. Ultimate strength tests on masonry arch
bridges conducted during the 1980s, and well
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Fig. 2 A typical masonry arch bridge, Griffith Bridge, Dublin, Ireland

summarized by Page[2], are often cited in the arch
bridge literature. These bridge tests are often used to
calibrate proposed models and to test results of
analysis efforts, and are usually designated by the
location of the bridge: Bridgemill, Bargower, and
Preston are noted below.

Papers focused on building vaults tend to be more
general, more conjectural, and have less opportunity
to introduce positive confirming evidence (although
several redundant masonry bridges have been
available for destructive testing, one hardly expects to
see testing of redundant cathedrals). However, the
analysis of masonry building vaults has introduced
more complex constitutive laws, including time-
dependent effects, and more comprehensive three-
dimensional analysis into the discussion of the
analysis of masonry arches and vaults.

Without attempting an exhaustive review of the
literature prior to 1990, I would like to begin this
review with a brief discussion of a few classic papers
that motivated much of the further research on this
topic.

Three classic papers

Pippard, Trantner & Chitty[3] present the results of
a combined experimental and analytical investigation
of model masonry arches. The authors acknowledge
the usual design procedure of the time, motivated by
the understanding that the mortar joints are very weak
in tension, of confining the thrust line to the middle
third of the arch to ensure that compressive stresses
only are present. However, it is noted that larger
eccentricities produce a condition similar to the

development of a plastic hinge, and this property is
exploited in the analysis of arches. In this work, the
arch under dead load is generally considered to be
a two-hinged arch, and the horizontal thrust is chosen
as the redundant quantity and solved for by
Castigliano’s theorem. For a two-hinged arch, the
influence line of concentrated loading on a voussoir is
developed by noting that, under the influence of
a significant concentrated load, the arch will develop
a third hinge and become statically determinate. The
results of careful experiments are compared with the
results of the analysis. The experiments also led to
the observation that, in general, an arch produces
initial settlement at the supports of the arch that tend
to put the structure into a two-hinged configuration.
The combination of experimental observations and
rigorous analysis, in describing a structure for which
approximate analysis methods were widespread, was
very influential. Also of far-reaching importance were
the departures from complete reliance on elastic
analysis, and the use of observations to support the
idea that the structure can support loads producing
high eccentricities of the thrust.

These ideas were later refined and developed into
an important tool for masonry arch analysis.
Heyman[1], who was also influential in the
development of plastic design methods for steel
structures, applied the same principles to
unreinforced masonry structures. The following
simplifying assumptions are introduced into this
analysis:

� the masonry units are infinitely rigid;
� the masonry units are infinitely strong;
� the masonry units do not slide at the joints;
� the joints transmit no tension.
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Fig. 3 Heyman’s yield locus, and the hinging condition at a joint in
a masonry arch [1]. Reprinted from International Journal of Solids
and Structures, Heyman, J. The Stone Skeleton. pp. 249d279,
copyright 1966, with permission from Elsevier Science

Fig. 4 A simplified vault, as analysed by Heyman[1]. Reprinted
from International Journal of Solids and Structures, Heyman, J. The
Stone Skeleton. pp. 249d279, copyright 1966, with permission
from Elsevier Science

The assumptions are justified in their application to
medieval stone construction on the grounds that the
compressive stresses in the masonry are very low, and
the deformations of ashlar masonry are very small.
Under these assumptions, one can consider a yield
locus (Fig. 3) in the axial force N and the bending
moment M with an associated flow rule in the
coordinates representing the axial and rotational
displacements. The consequence of these assumptions,
then, is that the bounding theorems of plasticity are
directly applicable to the determination of a collapse
load for a masonry arch and vault.

The theory of engineering plasticity incorporates
two theorems: a lower bound, equilibrium, or safe
theorem; and an upper bound, mechanism, or unsafe
theorem. In the usual statement of these theorems, the
loading is considered proportional, and
parameterized by a load factor. The lower bound
theorem states that if, for a given load factor,
a statically admissible distribution of internal forces
can be found that everywhere satisfies the yield
condition, then the load factor is a lower bound on the
collapse load. According to the upper bound theorem,
a load factor for which the virtual work of the loads is
equal to the virtual work of the internal forces as the
structure works through a kinematically admissible
mechanism } then the load factor is an upper bound
on the collapse load factor. A uniqueness theorem
shows that if both conditions are satisfied by a given
load factor, then this must be the collapse load factor.
Horne[4] provides a summary of these notions. For an
arch, these notions are further simplified by the
understanding that the yield condition can be
represented by a thrust line superimposed on
a drawing of the arch structure, and that the yield
condition is represented by the thrust line being
everywhere inscribed within the arch. The mechanism
condition is also particularly attractive for analysis,
because it is not particularly hard to impose
mechanisms on a given arch and assess the virtual
work. The paper gives further examples of calculation
of the equilibrium condition for various configurations
of buttresses in Gothic cathedrals. The discussion of
vaults relies solely on equilibrium or lower bound

analysis, as it is very difficult to attempt to work out
the kinematics of a vault collapse mechanism.
However, using the membrane equations of
equilibrium, Heyman is able to deduce the stability of
a number of three-dimensional vault configurations
from the equilibrium condition. An example of the
simplified vaults considered by Heyman is shown
in Fig. 4.

Livesley[5] notes that the equilibrium and
mechanism formulations of limit analysis, as applied
by Heyman to the masonry arch and vault, are
amenable to solution by linear programming, where
the objective function is the maximization of the
collapse load factor, subject to constraints furnished by
the first-order equilibrium equations. He reduces the
stresses in the joint of a voussoir to resultants at the
intrados and the extrados. Heyman’s assumptions can
be recovered by constraining both normal forces to
unbounded non-negative values. Under the four
assumptions given above, he is able to reach the
solution of collapse loads and collapse modes by
application of a linear programming algorithm.
Livesley is the first to attempt to relax the assumption
that the blocks do not slide at the joints, but notes the
computational difficulties that this poses owing to the
non-associated flow rule for a joint subject to Coulomb
friction.

Rigid`plastic analysis

Many authors, following the basic assumption set of
the Heyman and the Livesley papers discussed in the
preceding section, have elaborated the theories set out
in these papers. Harvey[6], while embracing the
rigid–plastic theory, discusses the apparent limitations
of its implementation: uncertainties in the material
properties and second order effects, especially those
due to the deformations of the mortar. He adopts
a highly simplified equilibrium approach, allowing
the uncertainties of the analysis to be reflected in the
use of a zone of thrust, which is notionally a volume in
which the actual thrust line of the structure could be
constructed. Smith, Harvey & Vardy[7] note that, in the
context of equilibrium or lower bound analysis, it is
generally a simple matter to locate the first three
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hinges, and the structure can then be analysed as
a statically determinate structure to determine the load
at which the fourth hinge forms. They implement the
zone of thrust concept outlined above, note the loss of
effective cross-section of the arch ring due to
presumed tension cracking, and further discuss the
sensitivity of arch structures to the spreading of the
abutments. Many of the concepts outlined in these two
papers have been implemented in a widely used
computer program for the equilibrium analysis of arch
bridges[8].

Gilbert & Melbourne[9], like Livesley[5], pose the
problem of masonry arch stability as the mathematical
procedure of maximizing the applied load subject to
the constraints posed by restrictions on
interpenetration of adjacent blocks. They adopt
Heyman’s assumptions, with the exception that they
permit sliding between adjacent blocks, incorporating
friction into the equilibrium equations under the
assumption of normality, which Drucker[10] noted
produces an upper bound solution. In this
implementation, the program is linearized and the
system is solved by the simplex algorithm. This
solution is implemented to produce very realistic
failures of multi-ring brick arches, including the
stiffening effect of spandrel walls.

Boothby & Brown[11] pose the problem of arch
stability as a mathematical program, under Heyman’s
assumptions. In this case, the objective function
is to minimize the potential energy (the system is
shown to be conservative) of the voussoirs in an arch
subject to kinematic constraints. They are able to
identify the upper and lower bound theorems with
fundamental stability criteria, refuting Vilnay
& Cheung’s[12] assertion that a separate stability
analysis is required in rigid–plastic analysis of
masonry arches.

The attractiveness of the mechanism method for
masonry arch analysis is not carried through to
masonry domes and vaults. The mechanisms appear
generally too complex to be visualized and for the
kinematics to be formulated. Oppenheim,
Gunaratnam & Allen[13] did consider both equilibrium
and mechanism analysis of axisymmetrically loaded
masonry domes, by considering the kinematics of
a lune, or wedge incorporating the apex, of the dome,
but this work has not been extended to other vault
shapes, or arbitrary loading. O’Dwyer[14] presents the
equilibrium solution of simplified masonry vaults by
considering equilibrium on a lattice of bars
incorporated within the thickness of the masonry.
Beginning from an initial lattice based on qualitative
analysis of the load paths, he applies linear
programming, in the manner of Livesley[5] without the
refinement of allowing sliding between blocks, to the
solution of the maximum load factor for
a concentrated load applied to the vault. As is typical
for linear programming problems, a number of the bar
forces are non-basic variables in the solution, that is,

equal to zero. As a result, the remaining non-zero bar
forces give some sense of the load paths for the
resistance of a concentrated load applied to the vault.

Smars[15], in a recent doctoral dissertation, applies
both standard and non-standard plasticity (associated
and non-associated flow rule) to the analysis of Gothic
masonry vaults in Brabant, a province of Belgium. He
conducts an exhaustive review of the merits of using
various formulations of non-standard plasticity, and
the characteristics of the vaulting in the buildings
under study. His analysis of vaults is a computerized
implementation of the scheme from Wolfe[16],
discussed below in the section entitled Finite Element
Analysis.

Lucchesi et al.[17] present a strictly mathematical
approach to the rigid–plastic analysis of masonry
vaults, and present a closed-form example solution to
a specific instance of a vault consisting of a quadrant of
a torus.

COMMENTARY ON RIGID-PLASTIC ANALYSIS

The rigid–plastic analysis is a compelling treatment of
the stability of masonry arches and vaults, and has
advanced modern understanding of ancient
construction techniques considerably. It is particularly
useful in its appeal to physical intuition; the
equilibrium method addresses the way that structures
can redistribute internal forces to resist external
loading, and the mechanism method appeals to the
understanding of the way that a structure is expected
to collapse. However, the assumptions made in
invoking rigid–plastic analysis limit the ability to
address apparent phenomena in the behaviour of
actual arch and vault structures. Although the
assumption of rigidity is fundamentally justified for
the units in ashlar masonry, the mortars used in
ancient masonry construction are deformable and
have been found to exhibit significant deformation
over time. Masonry units do fracture, and differences
in properties between facing and core masonry
present legitimate analytical difficulties. Neither the
equilibrium method nor the mechanism method lend
themselves comfortably to application to the analysis
of structures with complex three-dimensional
geometry, such as cathedral vaults or skew bridges.
The limitations of rigid–plastic analysis can be
addressed either by further investigations in the
framework of engineering plasticity, or by computer
tools for the investigation of complex geometry and
constitutive laws. Both of these approaches have been
initiated in the study of the analysis of masonry arches
and vaults.

Classical analysis methods

Rigid–plastic analysis has not been universally
embraced as the preferred means for the analysis of

STRUCTURAL MASONRY250

Copyright ^ 2001 John Wiley & Sons, Ltd. Prog. Struct. Engng Mater. 2001; 3:246}256

 15282716, 2001, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pse.84 by Politecnico D

i T
orino Sist. B

ibl D
el Polit D

i T
orino, W

iley O
nline L

ibrary on [22/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

Fig. 5 Stress distribution at a cracked mortar joint, according to
McNeely, Archer & Smith [19]. Courtesy of National Research
Council, Canada

masonry arches and vaults. Further work on two-
dimensional methods of masonry arch bridge
assessment, and two- and occasionally three-
dimensional analysis of masonry vaults has been
pursued through elastic analysis.

Bridle & Hughes[18] present a method for masonry
arch analysis, specifically adapted to bridge
structures, invoking Castigliano’s theorem to solve for
redundant quantities. Since they propose to account
for the loss of cross-section when cracking develops
(presumably for any tension within the arch ring), the
arch ring has to be divided into elements and solved
iteratively under increments of loading. They note that
a very large portion of the arch volume has become
ineffective at the onset of failure, and caution the
possibility of buckling as a result of the substantially
reduced stiffness. They are able to compare their
deflection results favourably with the test at
Bridgemill, but note that the choice of modulus of
elasticity is somewhat arbitrary.

McNeely, Archer & Smith[19] introduce
a combination of effects into a classical analysis of
masonry arch bridges in general, with reference to
a particular case study located in Ottawa, Canada. In
addition to the loss of stiffness considered by Bridle
& Hughes, they also introduce a realistic non-linear
stress–strain law for aged lime mortar which, owing to
the effect of water seepage through the mortar, is often
effectively a confined wet sand material. The
parabolic, stiffening stress–strain law for mortar is
converted to a moment–curvature relationship for
cracked and uncracked sections, (Fig. 5) and the
reduced stiffness of the mortar joint is used to reduce
the stiffness of the masonry cross-section in proportion
to the relative volumes of mortar and masonry units.
The authors also incorporate second-order effects by
updating the geometry of the cross-section at each
equilibrium iteration. A significant difference in the
ultimate load, both for a prototype bridge geometry,
and for an actual bridge requiring assessment, is
found for each of the refinements introduced:
incorporation of second-order effects and
modifications of stiffness due to the compliance of the
mortar joints.

The work of Robert Mark[20,21], although most of the
published work dates from the 1980s, has to be

mentioned in the context of the analysis of masonry
vaults. Mark conducted a very large series of
experiments on two-dimensional scale models of the
cross-sections of Gothic churches, using transmission
photoelasticity techniques. This technique assumes
a strictly linearly elastic material behaviour, with no
allowance for reduced stiffness due to cracking. Most
of the inferences are made as the result of the
appearance of fictitious tensile stresses at certain
points of the models. Although the quantitative
conclusions are few – the technique is not amenable to
comparison with sophisticated analytical results
– conclusions about the competence of certain types of
medieval construction, the effect of wind loads on
Gothic buildings, and the success of particularly
daring structures, such as the choir of Bourges
cathedral, have contributed much to the dialogue
between engineers and architectural historians on the
topic of medieval construction.

Constitutive laws

Recent research on general constitutive laws for
unreinforced masonry to be implemented into finite
element codes is applicable to specific instances of
masonry arches and vaults. It is beyond the scope of
this paper to review all of these developments, but two
in particular merit our attention: the development of
homogenization procedures for unreinforced masonry
and the implementation of discrete element methods.
In the homogenization methods, the periodicity of
masonry is recognized, and the properties of the two
materials, units and mortar, are incorporated into
a single element. The general features of this element
are a general elastic–plastic constitutive law, with
significantly lower strength in tension than in
compression. This can addressed by a cohesive
model[22], provided with a compression cap, or with
a Drucker–Prager model[23], also provided with
a compression cap.

Constitutive laws applicable to two-dimensional
masonry arch analysis have been considered by Taylor
& Mallinder[24,25] and by Mallinder[26]. In the earlier
paper by Taylor & Mallinder[24], a simplified parabolic
stress–strain law is developed for unreinforced
masonry and, using limit states principles in much the
same way as they are applied to reinforced concrete
beam-columns, an interaction diagram is constructed,
based on the assumption of ultimate strain
distributions in the cross-section at various
eccentricities. The later paper[25] implements this
scheme, plus further empirical evidence, into the
analysis of a masonry arch. By parameterizing the
masonry stress–strain law to a parabolic shape:
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Fig. 6 Taylor & Mallinder’s brittle hinge [25]. Courtesy of
Institution of Structural Engineers, London

where �m and �m are the peak stress and the strain
associated with this stress, and parameter k"0
represents an infinitely strong, fully rigid material,
while an infinite value of k represents a linearly elastic
material. Practical values of k are found to be
approximately[3–8]. This analysis can be immediately
adapted to upper and lower bound analysis of arches,
by imposing a lower bound condition that
combinations of axial force and moment must be in the
safe region of an interaction diagram generated from
the stress–strain law, and the calculation of virtual
work in the mechanism condition must take account of
the shift in hinge location from the intrados or the
extrados of the arch. Fig. 6 illustrates some of the main
ideas of this paper.

Different approaches to the deformation
characteristics of masonry arch assemblies, for
masonry arches jointed with lime masonry, is
proposed by Boothby[27] and by Rosson, S+yland
& Boothby[28]. Motivated by experimental results
showing that lime mortar exhibits a hardening
elastic-plastic response with a very small elastic range,
Boothby develops an approximate piecewise linear
yield surface for the mortar, and determines collapse
loads for masonry arches under this failure criterion.
He notes that the post-yielding behaviour of most
systems is hardening, and that visible deformations
will precede the failure of an arch jointed with lime
mortar. Rosson, S+yland & Boothby note that the joints
allow the arch to shake down under a pattern of
repeated loading. After the initial permanent
deformations under loading, the structure becomes
effectively elastic.

Finite element implementations

The simple graphical or semi-graphical method
proposed by Heyman and his followers for arch

structures becomes unwieldy, at best, for three-
dimensional structures such as vaults. Although it is
possible to apply strictly graphical lower bound
methods to the analysis of vaults, as shown in Fig. 7,
which comes from an early-twentieth-century
textbook on graphic statics[16], this is probably too
tedious for any modern engineer to accept as a basis
for analysis or design, although it is strikingly similar
to the computer-based method used by Smars[15].
Heyman, in the analysis of vaults, appeals directly to
equations of equilibrium from the membrane theory of
shells to find equilibrium surfaces contained within
the body of the vault structure. Although this is
certainly a useful procedure for proving the generality
of lower bound analysis, in application, the attempt to
find membrane surfaces in equilibrium, contained
within the vault, is probably too reliant on heuristics
for widespread application to problems such as
analysis of rib vaults, or skew arch bridges. It is more
straightforward, given the widespread distribution of
general-purpose finite element computer programs
incorporating three-dimensional analysis and various
refined non-linear constitutive laws, to turn to these
procedures for the solution of complex three-
dimensional analysis problems. Most of the
experiments with finite element analysis from the
1990s pre-date the wide distribution of three-
dimensional general purpose programs that can be
adapted to the analysis of masonry structures. In large
part, these papers relate to the development of
purpose-built finite element routines for the two-
dimensional solution of masonry arch assessment
problems.

Choo, Coutie & Gong[29] account for the loss of
stiffness in cracked or crushed masonry by adopting
a no-tension, trapezoidal stress–strain law for the
masonry. Using beam elements with stiffness
parameters at each end, adjusted for the state of nodal
axial force and bending moment, they construct an
iterative, incremental finite element routine, similar to
the stiffness method routines[18,19] described earlier in
this paper. They introduce the further refinement of
considering the distribution of axle loads through the
fill, and arrive at a satisfactory replication of the bridge
tests at Bridgemill, Bargower and Preston.

Loo & Yang[30] consider the combined nonlinear
stress–strain properties of mortar and brick masonry
units to develop a simplified approach to the failure of
masonry in cracking or crushing, and the post-failure
behaviour. They settle on a von Mises failure criterion
in compression, with a parabolic stress–strain law and
a complete loss of normal and shear stiffness in the
principal stress direction after reaching a failure strain.
They propose a Coulomb–Mohr failure criterion, with
a tension cut-off in tension and shear, and strain-
softening behaviour after tension failure, primarily to
achieve numerical stability. They incorporate this
constitutive law into a nonlinear two-dimensional
finite element scheme. The fill is modelled as dead
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Fig. 7 Wolfe’s graphical analysis of a square-bayed rib vault, by the equilibrium method [16]

weight applied to the back of the arch barrel. Their
results are not compared with any bridge tests or
case studies of actual bridges, but they find arch
bridges to be very sensitive to support movements,
and that significant cracking precedes failure of arch
bridges.

Ng, Fairfield & Sibbald[31] apply a commercial two-
dimensional nonlinear finite element code to the
analysis of some of the arch bridges in the ultimate
strength testing program from the previous decade.
The masonry is modelled as a von Mises material, with
differing tensile and compressive strength, while
a Coulomb–Mohr failure criterion is applied to the fill.
Plane stress conditions were assumed for the masonry,
and plane strain for the fill. The authors vary a number
of the parameters of interest: masonry compressive
and tensile strength; masonry modulus of elasticity;
and load dispersal angle through the fill, and capture
the collapse loads of bridges within the range of
parameters. They discover that the collapse load is

particularly sensitive to the tensile and compressive
strength of the masonry, and insensitive to the elastic
modulus of the masonry.

Molins & Roca[32] discuss some of the shortcomings
of stiffness-based finite element approaches, as used
by the authors described above: the use of a perfectly
brittle constitutive law, as appropriate for masonry in
tension, and in compression beyond the failure strain,
leads to numerical instability, and the prescribed
displacement interpolation causes damage to be
spread far beyond the initial location, in contradiction
to experimental observations, in which damage is very
localized. To overcome these problems, they propose
the use of a flexibility model, implemented into a finite
element code. Using this method, they model
a prototype arch bridge, the Bridgemill bridge from
the UK testing project, and a complex three-
dimensional choir vault. They are able to reproduce
localized damage that does not spread far beyond the
location of the original cracking.
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Fanning, Boothby & Roberts[33] create routine three-
dimensional models of masonry arch bridges using
a commercial finite element code. The masonry is
modelled by a solid element developed specifically for
reinforced concrete–by reducing the reinforcement
ratio, and inputting appropriate tensile and
compressive strengths, this element can simulate the
cracking and crushing encountered in a masonry
bridge. The fill is modelled as a nearly cohesionless
Drucker–Prager material, and contact elements are
used at the interface between masonry and fill. The
results are found to match very well to the results of
field tests under service loads. Moreover, the
development of longitudinal cracks in nearly all the
models, and in the prototype structures as well, shows
the importance of incorporating transverse effects into
masonry arch bridge analysis.

An emerging trend in the implementation of finite
element analysis for assessment of masonry arches is
the recent trend towards the use of discrete element
methods. In these methods, individual voussoirs, or
combinations of voussoirs can be discretized into finite
elements joined by contact surfaces, which are
themselves nonlinear finite elements. At each
iteration, the contact surfaces are used to detect
interpenetration of adjacent elements, and to update
the stiffness at the interface to resist interpenetration in
the following iteration. The discrete element method
has been incorporated into specific computer
programs, while earlier computer programs have
incorporated contact surface elements, using many of
the features of the discrete element method. This
method seems particularly applicable to masonry
arch and vault analysis because adjacent voussoirs
are not strongly physically joined by the jointing
material, but resist interpenetration and sliding across
the contact surface. Similarly, the fill in an arch
bridge, or the surcharge (material placed behind the
vault to add weight and stiffness) in a vaulted
structure share similar contact properties with the arch
or vault.

Toi & Yoshida[34] propose a particular type of
discrete element model, in which the rigid body
modes of each of the blocks are incorporated into
a single rigid element, whose elastic and interface
properties are discretized as springs connecting the
blocks. They apply this method to a number of two-
dimensional problems, including an arch investigated
by Livesley.

Gebara & Pan[35] apply a discrete element analysis
specifically developed for masonry arches, and look at
a number of two-dimensional problems by this
method: support settlement; concentrated load
applied to an arch; collapse of an arch due to shaking
of the base. Their solutions show an unusual
preponderance of sliding failures.

Although much of the work described in this section
has been rendered obsolete by the availability of more
powerful general purpose routines, many of the

lessons learned in the development of these programs
can be applied to the implementation of three-
dimensional analysis. Both the compressive strength
and tensile strength of the masonry and the failure
criterion are of great significance in capturing the
behaviour of masonry arches and vaults in service
conditions and especially at loads close to failure. The
deformability of older mortars, and their influence on
the overall deformability of the masonry warrant
particular attention. Failure modes other than four
hinges forming for arches, or yield lines for vaults
must be considered, including local punching of the
arch barrel, buckling of the arch barrel, due to
geometric changes, shortening of the arch barrel, and
loss of effective cross-section of the arch barrel. As
three-dimensional analysis schemes are implemented,
many other failure modes will be noted, especially for
arch bridges: failures due to transverse bending of the
arch barrel, or due to sliding and overturning of the
spandrel walls, or a combination of these effects.

Empirical and case studies

A number of available studies attempt to correlate the
results of rigid–plastic analysis with the results of
testing of experimental specimens constructed under
controlled conditions. Royles & Hendry[36] constructed
24 model arch bridges, as plain masonry arch vaults,
vaults with fill, vaults with fill and spandrel masonry,
and vaults with fill, spandrel masonry and wingwalls.
The structures were loaded with line loads that
simulated, as closely as practicable, the effect of
a two-dimensional analysis. They found high
variability among nominally identical specimens, and
a very large restraining and strengthening effect due
to the presence of fill and spandrel walls. They found
fair agreement between the results of a mechanism
analysis and the actual collapse loads for specimens
with a plain vault and for specimens with fill. The
effect of the fill was only taken into account as
additional dead load and as a means of dispersing the
load applied to the arch.

Melbourne & Gilbert[37] and Melbourne, Gilbert
& Wagstaff[38] looked at multi-ring brick arch bridges,
and multi-span brick arch bridges. These structures
were built with spandrel walls and fill, and loaded
with a transverse line load–all structures in these
studies failed by rigid body mechanisms. However
a rigid block analysis, described above[9],
underestimated the actual collapse load of all the
specimens. Substantial slip between adjacent rings
was observed in the multi-ring arches. The multi-span
arches failed at substantially lower loads than
equivalent single-span arches.

Hughes & Pritchard[39] conducted in situ
measurements of dead and live load stresses in an arch
bridge. They compared these measurements with the
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predictions made by the tapered beam element model
described by Bridle & Hughes[18]. They found that the
dead load stresses were suggestive of the development
of abutment spreading subsequent to the initial
construction of the bridge and the development of
hinges at the abutments. Live load stresses could be
predicted reasonably well, except in cases where the
stresses were measured close to a crack in the
masonry. Espion et al.[40] report dead load flat-jack
measurements at the abutments of a monumental
72-m span arch in Luxembourg, and find reasonable
agreement with the results of an elastic analysis
conducted by the original designer of the bridge.

Conclusions

The rigid block theory should be accepted as primarily
a means to understanding the fundamental behaviour
of masonry arches and, by extension, vaults. However,
the actual analysis of these structures does require
more sophistication. The arguments that that elastic
analysis makes too many questionable assumptions,
that uniqueness is irrelevant, and that the approximate
results found from plastic analysis are more relevant
to a real understanding of the structures have validity.
However, it should be noted that the analysis methods
for dealing with uncertainty, and for dealing with
variable loading environments are very well
established, both in the context of elasticity and
plasticity.

Two-dimensional finite element analysis should no
longer be considered a legitimate means of research
investigation of any structures other than wall arches.
Three-dimensional programs are so widely
distributed, and have such convenient interfaces, that
it no longer makes sense to reduce what is known to be
a complex three-dimensional system to two
dimensions. For implementation in practice, on the
other hand, two-dimensional analysis makes very
good sense, as steel and concrete bridges are analysed
as two-dimensional structures, and the complications
and uncertainties in parameter estimation make
three-dimensional analysis unfit for mainstream
structural engineering practice.

The properties of the mortar have to be incorporated
into any further analysis effort in masonry arches and
vaults, either through a homogenization procedure, by
the use of interface elements, or by simply considering
the units to be relatively undeformable, and
concentrating the deformations in the mortar joints,
where appropriate. This applies particularly to the
analysis of any old or ancient structures in which lime
mortars, or high-lime-content mortars are used. The
papers that took the trouble of considering the effects
of deformations in the mortar have invariably found
these effects to be significant, arguably of greater
significance than effects of the strength or stiffness of

the units. It has been shown that it is not necessary to
abandon a limit states approach in order to introduce
this refinement, but again, it is clear that a direct
application of Heyman’s assumptions, invaluable as
these analyses are in interpreting arch and vault
behaviour, does not result in realistic assessments of
any real structure.

Possible areas for authentic progress include the
development of a graphical method equivalent
in power and scope to thrust line analysis for
two-dimensional structures, such as walls subject to
in-plane loading and buttress systems, or
three-dimensional structures such as vaults. Means of
approaching and analysing skew arches, which again
are complex three-dimensional systems, have not been
developed to the extent warranted by the large
incidence of these structures. Hodgson[41] has applied
mechanism analysis to these structures, but he
concludes that more comprehensive constitutive
models are required when the hinges are inclined
relative to the abutments.

The application and validity of the discrete element
method is currently being investigated in many
quarters for its applicability to the analysis of vaulted
masonry structures. It is reasonable to inquire whether
the increased sophistication of these methods will
yield results that are useful in the assessment of such
structures.

Although rigid–plastic analysis does not admit
movements of the springings of a roof vault at the top
of the piers, this phenomenon is observable in nearly
every medieval building at the top of the nave piers,
due to either inadequate buttressing, or simply to the
long-term loads imposed on the pier tops. This effect is
a cause of great concern in the preservation of roof
vaults. The explanation of this condition requires
a detailed look at the properties of the materials used
in these buildings, and the development of
constitutive laws that replicate these actions and their
overall effect on the structure.
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