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Abstract This paper investigates damage identifi-

cation techniques based on the difference of modal

frequencies, shapes and curvatures in the damaged and

undamaged states of the structure. The sensitivity of

the identification algorithm with respect to damage

parameters is discussed and the minimum number of

measured quantities to identify the damage is assessed.

It is shown that modal curvatures can be effectively

used to pre-localise the damage and to add a penalty

term in the objective function which weighs the

difference between natural frequencies and modal

displacements. Such a term improves the local

convexity of the objective function and enhances the

convergence rate of the minimization algorithm. The

procedure is validated against the results of the

experiments on a parabolic arch carried out by the

authors. The advantages of such an approach com-

pared to techniques solely based on frequencies are

that the ill-conditioning of the inverse problem is

reduced and a more accurate estimate of the damage

parameters is achieved.

Keywords Damage detection � Damage

localization � Inverse problems � Arch dynamics �
Modal quantities

1 Introduction

Over the last few decades, many authors have

investigated structural health monitoring techniques

based on measurement of the modal response (see, for

instance [1], for a comprehensive review). This

increasing interest has been backed up by the fast

technological advances, which have made available a

number of low-cost and reliable sensors suitable to

monitor the state of large civil constructions including

buildings, bridges and aqueducts [2–4]. Owing to the

easiness and robustness of measuring frequencies

compared to other modal quantities, the use of their

changes has been one of the first approaches used in

damage detection [5–9]. However, frequencies suffer

the well-known limitation of having a low sensitivity

with respect to local variations of the mechanical

characteristics [10] which could lead to significant

errors in the identified parameters. Moreover, damage
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detection techniques based on eigenfrequencies lead

to a class of inverse problems which are often ill-

conditioned and sometimes undetermined. Suitable so-

lutions to inverse problems for frequency-based

damage detection mostly dealt with straight [11–13]

rather than curved beams [14, 15].

To overcome these limitations, many researchers

have focused their efforts on measuring and using the

changes on modal shapes and curvatures [16, 17, and

references therein]. The use of modal curvatures in

damage detection procedures dates back to the seminal

work of Pandey et al. [18]. Since then, many authors

have used modal curvatures for the problem of damage

localization and assessment in beams [16, 19–21] and

beam-like structures [22, 23]. From the theoretical

point of view, modal curvatures are effective observ-

able quantities as, for narrow damages, they are

localized in the region of the damage. Broader

damages cause the modal curvature difference to have

several peaks outside the damaged region that could

result in a false damage localization [17]. Effective

damage identification has been obtained by various

filtering techniques including spline interpolation

[24], wavelet transforms [25] or modified Laplace

operator [26]. However, in those papers, a high

number of measurement points is used to obtain

reliable values of modal curvatures.

In this work, we propose an updated identification

procedure following the approach in [6] and [27]: the

identification of the damage is obtained through the

minimization of an objective function measuring the

differences between numerical and experimental nat-

ural frequencies as well as modal shapes and curva-

tures in the damaged and undamaged states. Despite

being adopted in many identification techniques, the

use of modal curvatures could be problematic as their

evaluation requires a large number of measurement

points. However, even with a limited number of

points, their changes can give an important contribu-

tion in damage localization when used with other

modal quantities and help in achieving a more robust

estimate of the damage parameters.

This identification technique is illustrated with

reference to parabolic arches, which have received far

less attention than beams. The arch is studied by using

a finite element model in both the direct and the

inverse problems. The sensitivity of the modal prop-

erties with respect to the damage parameters are

assessed and it is shown that more pieces of

information are necessary to uniquely determine the

position and the intensity of the damage compared to

straight beams.

The paper is organized as follows: in Sect. 2 amodel

for the cracked arch is described and used in Sect. 3 to

assess the effects of damage on the modal response. In

Sect. 4 the inverse problem is studied and the condi-

tioning of the problem is discussed. In Sect. 5, the

proposed technique is validated against the results of

the experiments carried out by the authors on a steel

parabolic arch. Finally, conclusions are drawn in

Sect. 6.

2 Description of the cracked arch

under investigation

A double-hinge parabolic plane arch with the follow-

ing centerline equation is considered:

yðxÞ ¼ 4 f
x

L
1� x

L

� �
ð1Þ

where f ¼ 200 mm is the mid-span height and L ¼
1000 mm is its projection onto a horizontal axis, as

shown in Fig. 1. The size of the rectangular cross

section and the values of Young’s modulus E,

Poisson’s ratio m and mass density m are also reported

in Fig. 1.

It is assumed that the arch has a localized notch

that reduces the height of the cross section from hU to

hD and that the notch width is small enough not to

affect the total structural mass. At a given normalised

abscissa s ¼ x=L, such a damage determines a reduc-

tion in the flexural and axial stiffness, the latter of

which is ignored in the damagemodel for its negligible

influence on the modal characteristics of non-shallow

slender arches, such as the one considered here (see

[28]). Moreover, a refined model of damage account-

ing for changes in axial stiffness would be necessary

only for damages smaller than the ones considered

here [27]. To model the effect of the local damage, a

rotational spring is introduced and its stiffness is

calculated as shortly summarized in the following. The

notch causes a perturbation of the stress state in a zone

whose length LD is greater than the effective width of

the notch itself. The relative rotation /D between the

cross-section sections delimiting the damaged zone

can be written as /D ¼ /U þ D/, where /U is the

rotation between the two limit sections in the
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undamaged case and D/ is the increase in rotation due

to damage. For a small LD, D/ can be expressed as

D/ ¼ M
LD

EIU
b

1� b
ð2Þ

where b ¼ ðEIU � EIDÞ=EIU , with EIU and EID

respectively the flexural rigidities of the undamaged

and damaged cross sections; LD ¼ h=2 is assumed

here. This result is obtained by requiring that the

deformability of a beam with a distributed exponential

decay equals the deformability of a beam with a step

change of stiffness with length LD. In the end, the

equivalent stiffness of the localized spring is

expressed as K ¼ M=D/, with its nondimensional

value k ¼ K=ðEIU=LaÞ expressed by

k ¼ 2La

hU
1� b
b

ð3Þ

where La is the total length of the parabolic arch

measured along its axis. Therefore, the concentrated

damage will be characterized in terms of position s and

intensity k.

3 Sensitivity of the modal quantities

Owing to the arch slenderness and the negligible

shear deformation, one thousand Euler–Bernoulli

beam two-node elements were used in the simula-

tion. Such a high number of elements provides

stable frequencies, varying less than 1 % by

increasing further the number of nodes, and allows

a very accurate description of the curvature.

Damage has been modelled by releasing the

relative rotation of two adjacent nodes and con-

necting them with a rotational spring element. The

model also includes lumped mass elements that

represent the added masses of the accelerometers.

The system does not have close frequencies (Fig. 2)

and the prevailing displacement component of the

first low modes is orthogonal to the axis of the

arch. In contrast to the flexural behaviour of

straight beams, the arch has skew–symmetric odd

modes and symmetric even modes. Figure 3 shows

the relative variation of frequency between the

undamaged and damaged states in terms of damage

normalised location s and intensity k for an arch

and a straight beam with the same cross-section

properties and length L. The structure being

symmetric, the changes in frequencies at two

symmetric locations are the same and only half

of the axis is shown. It is seen that for each

frequency, differences reach their maximum when

the damage is located where the curvature reaches

its higher values (see Fig. 2), while is equal to zero

when the damage is located at a node [14]. This

circumstance can be used to investigate the weak-

ness of inverse procedures for damage characteri-

zation solely based on frequency variations. If xi

represents the i-th frequency of the damaged arch for

given values of k and s, we can represent the values of

the equivalent stiffness kiðsÞ that for every position s

provides the same xi. This function is shown in Fig. 4

for an arch and a beam.

The curves kiðsÞ would intersect at the abscissa

where damage is actually located, providing the

solution to the inverse problem. In the case of the

simply supported beam (Fig. 4b), the curves corre-

sponding to the first and the second frequencies (with

label 1 and 2 in the figure) intersect at one point which

corresponds to the solution of the inverse problem

with only two frequencies. On the contrary, the same

pair of curves for the arch has more than one

intersection, making the solution of the inverse

L=1000 mm

x

y
f=200 mm

hU
hD

b

E = 2 105 N/mm2

v = 0.3
m = 7.849 10-9 kg/mm3

b = 40 mm
hU = 8 mm

K

Fig. 1 Geometric and mechanic properties of the arch under investigation. The crack is modeled as a rotational spring
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problem with only two frequencies undetermined. As

such, at least three frequencies are needed to uniquely

determine the two damage parameters of the arch.

Moreover, the presence of close intersections in

Fig. 4a warns against possible errors arising in the

presence of experimental noise which suggests that a

higher number of modal quantities should be used to

achieve a more robust evaluation of damage.

ω1=50.2 Hz ω2=121.8 Hz

ω3=222.3 Hz ω4=347.7 Hz

Fig. 2 The first four mode

shapes and corresponding

frequencies of the

undamaged arch obtained by

FE analsys

s
0

1

2

3

4

5

  %

s
0

1

2

3

4

5

2/
  % 2

k = 20

50
100

200 

50

100
200

0

1

2

3

4

5

1
  % 1

0

1

2

3
4

5

2/
  % 2

k = 20

50

100

200 

50

100

200

k = 20

k = 20

ba

dc

5.005.00

Fig. 3 Relative frequency

variations as a function of

the damage parameters k and

s for the first two modes of a

beam (a, b) and an arch (c,
d) with the same cross

section properties and

length. Due to the symmetry

of the results only half span

is reported
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Fig. 4 Curves kiðsÞ for the first fivemodes of the arch (a) and threemodes of the beam (b); s ¼ 0:30, k ¼ 20. Due to the symmetry of the

problem only half structure is shown
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In this respect, Fig. 5 shows the changes in

the displacement normal components of the first and

second modes, normalized with respect to the modal

mass, for two damage locations. For increasing

damage intensity, the differences increase at the

damage location; however, the same figure shows that

there are multiple peaks outside the damaged region

that could not give a clear indication of damage

position. A more accurate localisation can be achieved

by using the modal curvature difference. Figure 6

shows the modal curvatures variations, where a sharp

peak in the modal curvatures differences is located in

a b

c d

Fig. 5 Change of the first (a, c) and second (b, d) transverse modal displacement between the damaged and undamaged states, for

different k and damage locations s ¼ 0:5 (a, b) and s ¼ 0:71 (c, d) indicated by red dashed lines. (Color figure online)

Fig. 6 Change of the first modal curvature for damage located at s ¼ 0:5 (a) and s ¼ 0:7 (b)
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correspondence of the damage. This result indeed

confirms what has been already observed by a number

of authors for straight beams [16, 17, 20, 21, 29, 30].

However, for broader damages, the modal curvature

difference exhibits significant oscillations outside the

damage region and therefore fails to provide a clear

indication of the damage position [17, 29]. A much

clearer localisation could be obtained by properly

filtering the modal curvature difference with the

procedure introduced in [17] for Euler–Bernoulli

beams. However, when using modal curvature differ-

ences for damage detection, one has to face the

problem of measuring a highly localised quantity,

which in general requires a large number of sensors.

Another issue lies in the assessment of the damage

intensity that can not be easily related to the modal

curvature difference (see, for instance [31]). For this

reason, modal curvatures are herein used only for the

localization and this additional information is consid-

ered in the inverse problem together with the other

modal quantities.

4 Inverse problem

The solution of the inverse problem is based on the

comparison between the response in the undamaged

and damaged states. An optimal estimate of the

parameters k and s is obtained by minimizing an

objective function which is built as the sum of

differences between selected response quantities. In

this section, the response quantities obtained by

numerically solving the direct problem for assigned

values of the damage parameters k and s are assumed

as pseudo-experimental data to investigate the accu-

racy of the optimization procedure in noise-free

problems. The same algorithm will be applied to the

experimental data in the next section.

As a first step, we consider an objective function

which depends only on the first M frequency differ-

ences, i.e.,

Gf ðk; sÞ ¼
XM
i¼1

Dxiðk; sÞ
xU

i

� Dxei

xU
ei

� �2

ð4Þ

which is the sum of the squares of the differences

between the numerical Dxiðk; sÞ and experimental

Dxei frequency variations between the undamaged

and the damaged states, normalized with respect to the

frequencies of the undamaged arch, xU
i and xU

ei .

Equation (4) is a common choice in the literature as

frequencies are readily available from the experimen-

tal data and require a minimum number of measure-

ment points. Since the Dxiðk; sÞ are not observable in
closed-form, they are evaluated at discrete values of k

and s, which enables to calculate the function (4) on a

grid. The optimal damage parameters �k and �s are

estimated by successively seeking two distinct min-

ima. First, for each possible damage position s of the

grid, the minimum of the function (4) with respect to k

is sought. This leads to the following function:

eGf ðsÞ ¼ min
k

Gf ðk; sÞ: ð5Þ

The solution to the inverse problem is then given by

the minimum of eGf ðsÞ over s.
Let us consider the case of a notch located at �s ¼

0:3 with �k ¼ 20. The related function eGf ðsÞ is shown
in Fig. 7 extending the summation to two, three and

five modes. As inferred from Fig. 4a, if only two

frequencies are used, a flat area in the neighborhood of

the solution appears in the diagram, as a consequence

of the multiple intersections of curves k1ðsÞ and k2ðsÞ
nearby s ¼ 0:30. Although stiffness is correctly iden-

tified, location of damage is not. If three frequencies

are used, the objective function has its global

minimum at the location of damage although some

other local minima appear, which are points where

kiðsÞ curves cross twice. If more than three frequencies

are used, a stronger global minimum is attained

together with other less pronounced local minima. A

drawback of the objective function (5) based on

0 0.1 0.2 0.3 0.4 0.5
s

0

0.001

0.002

0.003

0.004

~ G
f(s

) 

M=2
M=3
M=5

Fig. 7 Objective functions based on the differences between

damaged and undamaged frequencies with 2 (M ¼ 2, dashed), 3

(M ¼ 3, continuous thin) and 5 modes (M ¼ 5, continuous

thick) for a damage located at s ¼ 0:3
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frequencies only is that it does not allow distinction

between symmetric damage locations. Moreover, in

the presence of experimental errors, the global min-

imum may become less pronounced and in some cases

even overtaken by the local minima. For this reason a

modified form of the objective function (4) shall be

considered to incorporate additional information of a

suitable function weighing the modal curvature dif-

ferences. In this respect, a barrier function b(s) can be

added to (4), namely

Gfbðs; kÞ ¼ Gf ðs; kÞ þ k bðsÞ ð6Þ

where k is a scale factor and b(s) is a convex function

which is zero if s falls within the region in which the

modal curvature differences localizes the damage and

1 outside this region; solutions that fall outside are

penalised in the minimisation process although they

are still achievable. A suitable form of the barrier

function b is shown in the next section with reference

to the experimental data. The introduction of such a

regularising term improves the local convexity of the

objective function and makes the global minimum

stronger; moreover, it removes the indeterminacy due

to the symmetry of the structure. In a full-updating

procedure, this would make the convergence of the

minimization algorithm faster and less prone to

experimental errors.

To obtain a more accurate estimate of these two

values, an additional term in the objective function is

here considered with the idea of weighing also the

changes in the modal displacements. It is known from

the literature that any objective function based on

modal displacement differences has a global minimum

at the damage location but also a number of local

minima which hence worsen the conditioning of the

inverse problem. However, we remark that the pres-

ence of the pre-localisation term b(s) partially solves

this issue by privileging solutions that fall within the

region where the objective function is convex. A

suitable term weighing the modal displacement dif-

ference is added in the objective function, i.e.,

Gfmbðk; sÞ ¼
XM
i¼1

Dxiðk; sÞ
xU

i

�Dxei

xU
ei

� �2

þ
XN;P

i;j¼1

aj
Dvi;jðk; sÞ

�vUi;j

�����

������
Dvei;j
�vUei;j

�����

�����

 !2

þkbðsÞ

ð7Þ

where Dvi;jðk; sÞ and Dvei;j are respectively the

numerical and experimental changes of the normal

components of j-th modal vectors between the

undamaged and the damaged states at the i-th

measurement point. The constants aj are suit-

able weight coefficients. N is the number of modes

included in the sum and P is the number of measure-

ment points. In (7) �vUei;j ¼ maxf0:1; vUei;jg is used to

avoid division by a small number, as 0.1 is a threshold

comparable to the smallest measured vector compo-

nent. Note that the number of modesM in the first sum

can be different from the number of modes considered

in the second sum Nweighing the modal displacement

difference; this allow the different accurateness in the

frequencies and modal displacement estimate to be

accounted for. An example of the effects of the modal

displacement on the convexity of the objective

function is shown in Fig. 8 where the function (5) is

compared to (7) with k ¼ 0. It is seen that the use of

modal shapes in this case eliminates the indeterminacy

caused by the symmetry of the structure.

5 Experimental validation

Experiments were carried out by the authors on a

prototype double-hinged parabolic arch with mid-span

height and length 200 and 1000 mm, respectively

[27]. The structure was excited by means of an

instrumented hammer and the response read by seven

accelerometers equally spaced along the arch and

positioned as indicated in Fig. 9. The accelerometers

used were mod. PCB-353B04 with a frequency range

0 0.2 0.4 0.6 0.8 1

s

~
lo

g 
G

(s
)

~
Gf M=5
~
Gfm M=5, N=1

Fig. 8 Objective function obtained comparing the variation of

frequencies (5) (thin) and the variation of frequencies and the

first mode in seven measurement points (7) (with k ¼ 0) (thick).

The actual damage is located at s ¼ 0:3
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of 1–7000 Hz, a dynamic range of �500 g and a

sensitivity of 10 mV/g. Each test was repeated ten

times. The results presented in this section are the

average values over all the measurements.

The damage consisted of an asymmetric notch at

the normalised abscissa s ¼ 0:71 measured from the

left end-side of the arch; four damage intensities were

considered, corresponding to an increasing height of

the notch (Table 1). The Frequency Response Func-

tion (FRF) for the intact arch at each measurements

point when the excitation was applied at the

accelerometer #2 is shown in Fig. 10, up to 600 Hz. At

eachmeasurement point, five peaks are seen in the FRFs,

which correspond to the first five modes; the corre-

sponding eigenfrequencies and eigenmodes have been

extracted by means of a multimode method using a

nonlinear least-squares approach (see for instance [32]).

Table 2 reports the eigenfrequencies in both

undamaged and damaged states and the corresponding

variations. The ratio of standard deviation to the mean,

is very low, of the order of 1/100 Hz for all repetitions.

Themodes presenting the highest ratio are those which

have a node in the vicinity of the measurement or

excitation points. A slight increment of this ratio is

observed when damage increases.

The prelocalisation of damage, which is needed to

construct the barrier function b(s), can be obtained

through the modal curvature difference. In particular,

the following function here called localization index

based on the comparison between the damaged and

undamaged modal curvatures has been effectively

used in the literature [24, 31]:

damage
s = 0.71

Fig. 9 Schematic

representation of the

prototype pinned parabolic

arch used for the

experiments with length

1000 mm and mid-span

height 200 mm

instrumented by 7

accelerometers

Table 1 Geometrical and mechanical characteristics of the

notches

hU � hD (mm) d ¼ hD=hU k

D1 1 0.125 557

D2 2 0.250 200

D3 3 0.375 89

D4 4 0.500 39

0
200

400
600

800

2

6
7

2000

4000

6000

8000

10000

5
3

1

|Hi2( )|

channel
4

 [Hz]

Fig. 10 Frequency

response functions of the

intact arch for an excitation

at accelerometer #2
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LIi ¼
XM
m¼1

ðwU
m;iÞ

2 � ðwD
m;iÞ

2
h i( )2

; ð8Þ

where wU
m;i and wD

m;i are the m-th modal curvatures at

nodes i in the undamaged and damaged states,

respectively. To provide an accurate estimate of the

curvature, the modal displacements have been inter-

polated by a cubic spline. The corresponding index (8)

calculated with the first three modes in the four

damage scenarios is shown in Fig. 11 together with the

corresponding barrier function. For all damage inten-

sities, the damage region estimated by LI contains the

actual damage location represented by a red dashed

line in the figure which confirms the validity of the

method. The barrier function b(s) is chosen to be a

tapered cosine function with expression

where s0 is the center of the damaged region and a
determines its width.

The results of the identification problem carried out

by minimising the function (6) based on the eigenfre-

quency variations are reported in Table 3 for all the

damage configurations examined in terms of damage

position s and intensity k or alternatively in terms of the

relative stiffness variation and damage height (see

Eq. (3)). The results of the problem show that estimate

of the damage intensity and position are achieved with

different accuracies. On the one hand in fact, damage is

located in a remarkably accurate manner for damage

cases D1, D3 andD4whereas a small error occurs for D2

(below 1.5 %). On the other hand, the equivalent spring

stiffness is overestimated in all cases but D4 (-5.00 %);

the error monotonically decreases up to 6.59 % for D3

and not surprisingly, the largest errors regard the weakest

damage D1. This low accuracy in determining the

damage intensity with the solely use of frequency

variations has been already pointed out in the literature

(see, e.g. [27]). To overcome this limitation the

additional information coming from the mode shape

variations could be used in the objective function.

The first two experimental mode displacement

differences are shown in Fig. 12a, b together with the

corresponding modal curvature differences (c and d).

bðsÞ ¼

0 � 1

2
� s� s0 �

1

2
& aþ 2ðs� s0Þ� 0

& a� 2ðs� s0Þ� 0

1

16
1þ sinðp

a
ðs� s0ÞÞ

� �4 1

2
& aþ 2ðs� s0Þ\0

1

16
1� sinðp

a
ðs� s0ÞÞ

� �4 1

2
& aþ 2ðs� s0Þ� 0 & a� 2ðs� s0Þ\0

1 js� s0j[
1

2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð9Þ

Table 2 Experimental natural frequencies of the undamaged (U) and damaged (D) arch (Hz) and corresponding variations

xe1 jDxe1j
xU

e1

ð%Þ xe2 jDxe2j
xU

e2

ð%Þ xe3 jDxe3j
xU

e3

ð%Þ xe4 jDxe4j
xU

e4

ð%Þ xe5 jDxe5j
xU

e5

ð%Þ

U 50.40 118.94 224.80 346.33 508.55

D1 50.34 0.12 118.92 0.02 224.63 0.08 346.08 0.07 508.28 0.05

D2 50.18 0.44 118.92 0.02 224.62 0.08 345.02 0.38 507.89 0.13

D3 49.91 0.97 118.91 0.03 223.96 0.37 343.20 0.90 507.05 0.29

D4 49.23 2.32 118.91 0.03 222.05 1.22 339.48 1.98 505.18 0.66

Meccanica (2016) 51:2847–2859 2855

123



It is seen from the figure that multiple peaks appear in the

difference when considering modal displacements,

whereas a more localised information can be extracted

from themodal curvature difference. In the case of mode

shapes, these peaks, whose intensity monotonically

increases with the damage intensity, are located in a

region close to, but not correspondent, with the actual

damage position (represented by a dashed red line). As

already pointed out, such a circumstance makes the

solely use of eigenmode difference in the damage

localization problematic and potentially leading to false

indications. However, their use in the objective function

together with the eigenfrequencies variation can lead to a

more accurate evaluation of the damage parameters.

In this respect, in Fig. 13 the objective function (7),

built by considering the first five eigenfrequencies and

only the first mode shape, is shown for damage

configurations D1 and D4. Adding the modal compo-

nents enables one to obtain a well defined unique

minimum, although several other local minima can

Fig. 11 Localization index calculated through (8) by using the first three modes (grey circled line). The black line shows the

corresponding barrier function defined in (9) whereas the actual damage position is indicated by a red dashed line. (Color figure online)

Table 3 Damage parameters identified by considering the first five eigenfrequency variations in the objective function (6) and (7) for

the four damage cases examined

Gfb Gfmb

k ek (%) s es (%) k ek (%) s es (%)

D1 648 16.3 0.71 0.0 542 -2.69 0.72 1.4

D2 237 18.5 0.72 1.4 197 -1.50 0.72 1.4

D3 97 8.99 0.71 0.0 90 1.10 0.72 1.4

D4 38 -2.50 0.71 0.0 38 -2.50 0.71 0.0

The relative errors are computed with respect to the model value in Table 1
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still be observed. Table 3 summarises the identifica-

tion results in terms of damage position and equivalent

spring stiffness. For all damage cases, the intensity is

underestimated (except for D3), but the corresponding

overall error decreases. Here also, the largest errors

regard the weakest damage D1, for which the error on

the stiffness greatly decreases with respect to the case

with five frequencies: the equivalent stiffness was

estimated with an error of 16.3 % that by means of the

new functional has been reduced to �2.69 %. A

similar trend is seen for all damage scenarios but the

more severe one D4 for which the position is still

accurately identified (es ¼ 0:0%), yet the addition of

the modal shape does not contribute to an improved

intensity estimate. The damage position is identified

with a mean error of 1.4 % which is larger than the
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Fig. 12 First a and second b experimental modal displacement difference between the damaged and undamaged system for the four

damage scenarios considered. First c, and second d experimental modal curvature differences. (Color figure online)
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Fig. 13 Objective functions

obtained for D1 and D4

considering the variation of

frequencies (thin) and the

variation of the first mode in

seven measurement points

(thick). (Color figure online)
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case of the objective function solely based on the

frequency variations. In this case, the second close

minimum provides better stiffness and notch depth but

its position slightly moves towards the right pinned

end of the arch.

6 Conclusions

The identification of position and severity of dam-

age based on the observation of dynamic response

quantities is an inverse problem, which presents

different sources of indeterminacy and ill condi-

tioning. In this paper we have investigated the role

of natural frequencies, mode shapes and curvatures

in providing a unique solution using a two-param-

eter objective function that minimizes the difference

between numerical and experimental response

quantities. The system under investigation is a

double-hinged parabolic arch with localised damage

of a notch type. Different damage intensities

have been considered.

Differently from simply supported straight beams,

if only the change of natural frequencies is considered,

at least the first three frequencies are needed to

uniquely determine the two damage parameters k and

s, for the considered arch. One of the major sources of

indeterminacy is due to the fact that the change of

natural frequencies is not sufficient to discern between

symmetric damage locations. This can be removed by

adding to the objective function the change of modal

components or the change of modal curvatures. In this

regard, it has been shown that the change of modal

curvatures between the undamaged and damaged

states is extremely localized and very difficult to be

used for the estimate of damage parameters. Never-

theless, it can be used to build a penalty function which

enhances the contribution of selected parts of the

objective function, in particular those nearby the

locations where the change of curvature is larger. The

penalty function not only does indicate which half of

the structure is damaged, but also helps in improving

the convexity of the objective function, limiting its

oscillations and the related local minima that, in the

presence of experimental errors, can lead to an

incorrect estimate. The increased robustness of the

estimate has been assessed based on experimental

investigations on the arch under study, showing

satisfactory effectiveness of the procedure described,

apart from the case of very weak damage. The study

also shows that discrepancies between the model and

the real structure have an influence on the parameter

estimates, and therefore both the quality of the

experimental data and an accurate modelling are

fundamental if reliable results are to be obtained.
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