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ABSTRACT 

Detection of driver aggressiveness is a significant method which helps to ensure safe 

driving. Aggressive driving behavior is the cause every year of a vast number of 

traffic accidents. The traffic accidents which result from this type of conduct are 

cause of mortality, severe damage and high economical cost. 

The goal of this thesis is to design an algorithm for aggressive driving detection, 

capable of recognizing the driver’s behavior. The proposed method is based on 

sensor features to characterize related driving sessions and to decide whether the 

session involves aggressive driving behavior.   

Driving simulators are being increasingly used in recent years by automotive 

manufacturers and researchers. There are several advantages with using this 

system, including the increased safety enhanced repeatability, helping researchers 

significantly reduce time and cost. They play a key role in studies of the driver’s 

behavior in unstable vehicle conditions and maneuvers. It is exactly this instrument 

that is employed to collect kinematic data of the vehicle (such as speed, acceleration 

and heading of the vehicle) in different scenarios. Features are extracted from every 

observation, which are then labeled by means of unsupervised learning and used to 

train a pattern recognition neural network. The algorithm is then tested in real-time 

in the driving simulator. 
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1 INTRODUCTION 

Driver aggressiveness is one of the major contributing factors to fatal traffic 

accidents. “An individual commits a combination of moving traffic offenses so as to 

endanger other persons or property” is the definition of aggressive driving provided 

by the National Highway Traffic Safety Administration (NHTSA) [1]. The American 

Automobile Association (AAA) conducted a study in 2009 reporting that 56 percent 

of fatal crashes from 2003 to 2007 were caused by aggressive driving and speeding 

was the most critical behavior. This study was based on data collected by NHTSA’s 

Fatal Accident Reporting System. Speeding was also the principal driving behavior 

related to fatal crashes in 2019 (17.2 percent) [2]. Aggressive driving behavior is a 

psychological concept that does not have a quantitative measure. However, 

according to NHTSA [2] aggressive driving is characterized by the following 

behaviors: 

• “Following improperly 

• Improper or erratic lane changing 

• Illegal driving on road shoulder, in ditch, or on sidewalk or median 

• Passing where prohibited 

• Operating the vehicle in an erratic, reckless, careless, or negligent manner or 

suddenly changing speeds 

• Failure to yield right of way 

• Failure to obey traffic signs, traffic control devices, or traffic officers, failure 

to observe safety zone traffic laws 

• Failure to observe warnings or instructions on vehicle displaying them 

• Failure to signal 

• Driving too fast for conditions or in excess of posted speed limit 

• Racing 

• Making an improper turn” 
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Detection of driver aggressiveness can be an important method to increase the 

safety on the road. 

1.1 Thesis’ goal 

The main goal of this thesis is to develop an algorithm capable of recognizing the 

behavior of the driver, distinguishing between a normal and an aggressive style. 

Vehicle data are collected by means of a driving simulator, features are extracted 

through statistical functions and a dataset is created. An unsupervised learning 

algorithm called I-DBSCAN is adopted to divide the still unlabeled observations in 

two classes: normal and aggressive behavior. A pattern recognition algorithm is 

then trained and employed to classify the behavior in real time. 

1.2 Hardware and software components 

SCANeR Studio is the chosen software capable of running the driving simulations 

and it is paired with a Logitech G920 steering wheel (Figure 1.1) which provides the 

driving inputs and can render the steering feel through the force feedback. SCANeR 

communicates with Matlab and Simulink by means of an API to collect the vehicle 

data. SCANeR Studio is a software which allows users to configure, prepare and run 

simulations or analyze results. It is capable of integrating 3D graphics, AD/ADAS 

systems and physics based sensors with the vehicle dynamics model.  
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Figure 1.1: Driving setup for simulation 

 

Figure 1.2: SCANeR modules architecture 

The SCANeR Studio environment is populated by several modules which use a 

common communication protocol (Figure 1.2) [3]. The modules employed in this 

thesis will be (a) the simulation module, fundamental part to launch the entire 

driving simulation; (b) the acquisition module used to drive the interactive vehicle 

managing input driver commands; (c) the dynamics model module which defines 
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the behavior of vehicles in 3 dimensions; (d) visual, sound and simulation 3D view 

modules for image and sound generation to provide a more faithful simulation; (e) 

the scenario module used to control the simulation; and (f) the traffic module which 

controls the behavior of the autonomous vehicle employed to populate the scenario.  

The dataset is handled and labeled with Matlab, software also used for the training 

of the neural network. 

1.3 State of the art of aggressive driving detection 

The detection of aggressive driving behaviors can be divided in three main 

categories: (a) anomaly detection based approaches; (b) threshold based 

approaches; and (c) machine learning classifier based approaches [4]. 

1.3.1 Anomaly detection based methods 

These types of approaches build a profile of the driver’s normal behavior and detect 

the aggressive behavior as a deviation from the normal profile.  

1) Discrete Wavelet Transform: DWT is a technique which, given a time signal, 

divides it in time series described by coefficients representing the evolution 

in time of a signal [5]. For this approach the DWT used is the Daubechies 

wavelet to detect aggressive driving [6] [7]. This method is based on the idea 

that accelerometer signals of aggressive driving behaviors can be 

decomposed in a normal acceleration signal and some noise applied to it, 

which represents abrupt changes in acceleration. After the signal is 

decomposed, the original signal is reconstructed removing the normal signal 

and keeping only the component. If the distance between the original signal 

and the reconstructed one is greater than a certain threshold, it is marked as 

aggressive driving. 

2) Gaussian Mixture Model: GMM is a model which performs soft clustering, it 

tells the probability of a point belonging to each of the possible clusters, and 

it takes in account the variance of the distribution. A possible application is to 
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compare true values of acceleration with predicted ones, in order to cluster 

driving data detecting aggressive behaviors. The distance of the cluster center 

from each point is computed and compared with a threshold. If it results 

greater, it is likely to indicate an abrupt change of the driver’ behavior [8]. 

3) Partial Least Squares Regression: PLSR is a statistical method which has some 

similarities with principal components regression (PCR). It projects the 

predictors and the actual values to a new space and finds a linear regression 

model. It is employed to find fundamental relations between two set of data. 

In this case the accelerometer data is used to predicts acceleration values. 

Their distance with the actual values is computed and if it is significant the 

behavior is classified as aggressive [8]. 

4) Support Vector Regression: SVR is a regression algorithm which applies 

support vector machine to regression. While the SVM can predict discrete 

labels during classification, SVR is capable of predicting continuous variables. 

The goal of linear regressors is to minimize the error rate, instead SVR uses a 

hyperparameter which tries to keep the error inside a given threshold. It has 

been used for the forecasting and estimation of driving fatigue from 

electroencephalography data [9]. A different approach proposes SVR to detect 

asymmetry in car following behavior [10]. In [8] SVR predicts sensor data 

based on a previous reading and classifies the behavior as aggressive when 

the difference of the predictor from the actual value is greater than a given 

threshold. 

1.3.2 Threshold based methods 

These types of approaches classify driving events as aggressive when the value of 

specific variables exceeds a predefined threshold. 

1) Thresholds on Acceleration Data: the idea of this approach is simple, when 

the value of acceleration read by a sensor overcomes a given threshold once 

or multiple times, the event is labeled as aggressive. The difficult aspect is the 
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identification of the optimal value of the threshold and different ones are 

proposed across the literature. One of the ways of taking advantage of this 

approach is to compute the residual sum of squares (RSS), which is a 

technique that measures the amount of variance in the dataset, of the 

distance between sensors readings at each instant and zero. Given a time 

window, when more than a predefined number of elements’ RSS value 

exceeds a threshold, the entire time window is labeled as aggressive [8]. 

2) Jerk Evaluation: jerk is another variable useful to detect aggressive driving. 

It is the acceleration rate of change, in other words how fast the acceleration 

is changing over time and the aggressive behavior is detected when the jerk 

value becomes larger than a threshold [11]. 

3) Variable Thresholds: in [12] it is proposed to utilize a variable threshold that 

changes its value depending on the driving speed, since a fixed value could 

not provide an accurate result for different driving conditions. 

1.3.3 Machine Learning based methods 

Machine learning approaches take advantage of classifiers to recognize aggressive 

driving behaviors. 

1) Parametric Classifiers: among the most used classification algorithms there 

are: (a) Multilayer Perceptron (MLP); (b) Convolutional Neural Network 

(CNN); (c) Random Forest (RF); and (d) Bayesian Network (BN). A 

parametric classifier is a model that approximates a dataset with a fixed 

number of parameters independent from the size of the training set. An 

example is described in [13] where the author, after extracting features from 

the accelerometer, applied a Random Forest to the dataset and he managed 

to distinguish safe from unsafe driving with an accuracy of 95.5%. In [14] the 

authors trained a CNN with data coming from inertial measurement unit 

(IMU) and GPS that was able to outperform conventional Machine Learning 

algorithms (for example SVM and k-NN). 
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2) Non-parametric Classifiers: some examples of non-parametric machine 

learning algorithms are: (a) Support Vector Machine (SVM); (b) k-Nearest 

Neighbors (k-NN); and k-Star (k*). A non-parametric classifier is a model 

which builds a mapping function that best fits the training data, but without 

losing the capacity to generalize new data. In [15] the authors compared the 

performance of SVM, k-NN, k*, NB, DT, RF and Artificial Neural Network 

applied to the classification of harsh events and this analysis showed a higher 

accuracy of the k* algorithm. 
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2 COLLECTION OF DATA AND FEATURE SELECTION 

The aim of this section is to describe the process of data collection which consists of 

two phases, both carried out in SCANeR Studio: the creation of the scenario and the 

execution of the simulation [3]. 

2.1 Scenario definition 

A scenario is defined as the aggregation of elements: 

• Terrain 

• A set of objects such as vehicles and pedestrians 

• A set of parameters such as initial conditions and record settings 

• A storyboard necessary for managing events such as situations or accidents 

The scenario is created in order to fit the driving experience needed. 

2.1.1 Terrain selection 

The first step is the selection of the terrain. The terrain represents the 3D synthetic 

environment where the simulation is carried out. It is possible to use or modify an 

existing one or to create a new one. To choose the right terrain is important to 

consider: (a) the type of environment: highway, city, country; (b) the road 

infrastructures: traffic lights, roundabouts, crossroads, highways, secondary roads, 

driveroads, barriers, bridges; (c) the 3D objects such as road signals and eventually 

for decoration: trees, buildings, advertising boards. 

For this work was chosen an existing terrain from the provided library. It is called 

Community (Figure 2.1) and it is a complex terrain which includes three 

environments: city, village and country; the city is provided with 78 traffic lights, 

sidewalks and pedestrian crossings. The terrain is compliant with the Physics 

module which handles 3D collisions and physics behavior of simulation objects 

(interactive vehicle, autonomous vehicle, pedestrian, bicycle, infrastructure objects, 



20 

 

crash barriers) and in this case sends feedback to the driver through the steering 

wheel 

 

Characteristics Community 

Km covered by roads 15.9 

Driving side 
RHT 

LHT 

Number of traffic lights 78 

Number of barriers 0 

PHYSICS compliant yes 

Table 2.1: Community characteristics 

 

Figure 2.1: Community orthographic view 
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Figure 2.2: Community top view 

2.1.2 Resources selection 

As explained before, a scenario is an aggregation of elements including resources 

such as vehicles and pedestrians. 

Regarding the vehicles we have to differentiate between interactive and 

autonomous vehicle. The former represents in this case the car interacting with the 

driver through the physical input while the latter are the vehicles around the 

subject, driven by the traffic module.  

There are several dynamics models available to model the behavior depending on 

the needs, their complexity level depends on how they are used in the simulation.  

The simple model describes tire, suspension and steering not sufficiently in detail to 

have an appropriate response to subtle things. Different parameters of the vehicle 

can be edited and several configurations are already provided. For its simplicity the 

most common use is the modeling of the autonomous vehicle for traffic, as happens 

in this study. The model characteristics are the following: 

• Bi-axle (2 wheels by axle) 
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• position of the vehicle is computed with 1 road picking 

• terrain following 

• engine 

• transmission 

• braking 

• steering. 

The intermediate model is similar to the simple one but with some key differences: 

• multi-axles (N wheels by axle) 

• position of the vehicle is computed with 4 road picking 

• suspensions 

The simple vehicle dynamic model only manages 2 axles, for this reason to create a 

traffic vehicle with more than 2 axles, the intermediate is necessary. 

Callas is the most complete and accurate dynamic model and enables the user to 

create co-simulations with Matlab and Simulink. It is built with a parametric 

approach and has high correlation with test track data. 

The terrain is populated by the needed resources: one Callas model for interactive 

vehicle and a number of simple and intermediate models depending on the level of 

traffic required for the simulation.  

The chosen Callas model is called ExecutiveCar (Figure 2.3) with the characteristics 

listed in Table 2.2. 
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Figure 2.3: Callas model - ExecutiveCar 

 

 

Engine 

 Aspiration Gasoline 

Max Power (hp / kW) 320 / 240 

At Engine RPM (rpm) 5700 

Max Torque (daN*m) 45 

At Engine RPM (rpm) 5000 

Transmission 

Transmission Type Rear Wheel Drive 

Front Gear Ratio Number 6 

Rear Gear Ratio Number 1 

Dimensions 

Length (mm) 4620 

Width (mm) 1860 

Height (mm) 1450 

Weight (kg) 1834 

Wheelbase (mm) 2810 
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Frame 

Anti-Block Brake system yes 

Active yaw control yes 

Traction control yes 

Front suspension Independent McPherson 

Rear suspension Independent Multilink 

Performances 

Max speed (km/h) 250 

0-100 km/h (s) 6,4 

Table 2.2: ExecutiveCar Technical datasheet 

It is equipped with a Long Range Radar Sensor (Figure 2.4) in order to detect the 

distance to collision and is capable of detecting mobile obstacles (for example cars, 

pedestrians, bicycles, motorbikes). The sensor is positioned in the car front at a 

distance from the ground of 0.6m (Figure 2.5). It is characterized by a maximum 

beam range of 150m, a horizontal FOV ranging from -5° to 5° and a vertical FOV 

ranging from -10° to 10°. 

 

Figure 2.4: Long Range Radar Sensor 
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Figure 2.5: Long Range Radar Sensor positioning 

The traffic tools are used to populate the terrain with autonomous vehicles. There 

are a total of one hundred forty-two vehicles with the distribution expressed in 

Table 2.3, and ten pedestrians. Of the total vehicles 90% is set with a normal 

behavior, 5% with a cautious behavior and 5% with an aggressive behavior. 

 

Vehicle Vehicle distribution (%) 

Cars 65 

Buses  5 

Motorbikes  10 

Bikes  10 

Trucks 5 

Trailer assembly 5 

Table 2.3: Autonomous vehicles distribution 
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2.2 Simulink model 

Identification of the variables which best characterize the driver’s behavior is a 

fundamental step for an effective aggressive driving detection. The chosen variables 

are listed in Table 2.4. 

 

Variables Description Unit 

cdgSpeed_x 
Longitudinal speed of the 

vehicle 
m/s 

cdgAccel_x 
Longitudinal acceleration 

of the vehicle 
m/s2 

cdgAccel_y 
Lateral acceleration of the 

vehicle 
m/s2 

Engine Speed Speed of the engine rad/s 

Accelerator 
Throttle pedal position 

(range: from 0 to 1) 
 

Brake Brake force N 

SteeringWheel Steering wheel angle rad 

SteeringWheelSpeed Steering wheel speed rad/s 

distanceToCollision Distance to collision m 

Table 2.4: Variables collected from interactive vehicle 

A Simulink model is necessary to carry out a co-simulation with Matlab, with the 

objective of collecting the data. For this application there are two types of blocks 

needed: controller and input.  

The controller (Figure 2.6) allows Simulink to be detected as a SCANeR module. 
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Figure 2.6: Controller block 

The input blocks (Figure 2.7)  are used to retrieve data from SCANeR simulation and 

they are in turn divided in two categories: SHM and Network [3]. 

 

Figure 2.7: SHM and Network input blocks 

The SHM blocks allow a high performance communication of several modules with 

the Modelhandler, reading and writing in the shared memory. Modelhandler is the 

module employed to handle the interaction between the road surface and the 

vehicle dynamic model. The SHM blocks necessary for this simulation are three: (a) 

VehicleOutput is necessary to read the data generated by the vehicle; (b) 

CabToModel outputs the inputs of the driver (accelerator and brake pedal); (c) 

CabToSteering reads the steering inputs of the driver (steering angle and steering 

wheel speed). 

The network blocks allow the communication with different SCANeR modules other 

than the Modelhandler, in this case with the Sensors module necessary to retrieve 

the distance to collision. 
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Each block is characterized by an index representing the desired vehicle (SHM 

blocks) and desired sensor (Network blocks), allowing the retrieval of data from 

different sources simultaneously. 

The signals outputted from each SCANeR block are merged in a bus creator and sent 

to the workspace to be furtherly processed (Figure 2.8). 

 

Figure 2.8: Merging of output signal to be sent to Matlab workspace 

The final model used for simulation is depicted in Figure 2.9. 
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Figure 2.9: Simulink model for data collection 

2.3 Simulation 

The simulation is the fundamental step necessary to collect driving data. Before 

starting to drive the interactive vehicle, the co-simulation has to be launched both 

on SCANeR and Simulink. With the launch of the SCANeR simulation also the needed 

modules have to be started [3]. The modules needed for this simulation are the 

following: 

a) Traffic: it is needed to control autonomous vehicles actions and movements 

and the animated road signs. 

b) WalkerTraffic: it is a dedicated traffic module to control movements and 

actions of pedestrians. 

c) Visual: it is used to show the point of view of the driver displaying: terrain, 

moving vehicles, pedestrians and animated road signs (Figure 2.10). 

d) Dashoboard: it is used to display counters, replicating a real dashboard 

(Figure 2.11). 

e) Sound: it is dedicated to the creation of sounds coming from the 

environment; in the vehicle it is possible to hear accurate vehicle sounds (for 
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example: engine, car horn, indicators sirens) coming from the interactive 

vehicle and the traffic vehicles. 

f) Acquisition: It acquires inputs coming from the driver through the keyboard 

or steering wheel and consequently generate inputs for the vehicle model. 

g) Physics: it gives to the driver feedbacks of collisions and physics behaviors. 

h) ModelHandler: it manages the interaction of the interactive vehicle model 

with the road surface. 

i) Sensors: it simulates different sensors with detection features (radar, 

ultrasonic, camera, light sensor). 

j) Simulink: it allows the co-simulation with Simulink through SCANeR API. 

 

Figure 2.10: Visual module 
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Figure 2.11: Dashboard module 

Once the co-simulation is started, the interactive vehicle has to be driven freely 

around the terrain, trying to maintain a behavior as close as possible to the real 

world. If the driver commits some errors, for example hitting other vehicles or going 

off-road. The simulation is stopped and the data relative to that event are erased. 

While driving it is possible that the driver will behave in an aggressive way for 

limited periods, this are the events that will be detected as outliers by the I-DBSCAN. 

A total of thirty minutes of data have been collected which result in more than one 

thousand three hundred of 5 seconds observations. 

Some examples of collected data are depicted in Figure 2.12. The image shows the 

lateral acceleration, accelerator pedal and steering angle signals. 
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Figure 2.12: Collected signals of lateral acceleration, accelerator pedal and steering 
angle 
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2.4 Data processing and feature selection 

The first step once the simulation is complete, is to format the data collected. It is 

necessary to divide each observation into monitoring periods (MP) of the same 

length which in this case is 5 seconds and occur at 1 second intervals. Since the 

sample rate of the simulation is 10 Hz, every MP contains 50 time steps (Figure 

2.13). Each MP is now a 50x9 matrix, however the pattern recognition neural 

network needs a one-dimensional vector as input. For this reason, it is necessary to 

calculate features which characterize each period. To compute these features, the 

statistical functions shown in Table 2.5 have been applied to every signal of the 

dataset. In this way every MP is represented by 90 features. 

 

 

Figure 2.13: Converting time steps into monitoring periods 
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# Function Description 

1 Mean Mean of a signal 

2 Min Minimum value of a signal 

3 Max Maximum value of a signal 

4 Variance Square of the standard deviation of a signal 

5 STD Standard deviation of a signal 

6 RMS Root mean square 

7 Q1 25th percentile 

8 Q2 50th percentile 

9 Q3 75th percentile 

10 Peak Amplitude 
Difference between the maximum and minimum value of 
the signal 

Table 2.5: Selected features 
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3 LABELING OF THE DATASET WITH ITERATIVE DBSCAN 

Looking at the literature, since there is not a unique definition of aggressive driving, 

it is difficult to measure and accurately quantify this behavior.  

This thesis follows an approach which employs unsupervised learning to label 

aggressive driving behavior and uses I-DBSCAN to achieve this goal [16]. The 

objective of this approach is to find a small subset of observations, which represents 

“abnormal driving behaviors”. They can in turn be identified as potential aggressive 

behaviors. 

3.1 Creation of elementary driving behaviors 

The first step is the creation of subsets of the dataset which are indicated as 

“elementary”. This approach is based on the logic that the behaviors of a driver can 

be grouped into fundamental maneuvers (accelerating on a straight, making a right 

or left turn, merging, etc.) and each one is characterized by a data profile. Even with 

a similar data profile, the risky behavior will outlie the profile of an average 

behavior. These subsets are called elementary driving behaviors (EDB) and to 

establish them the k-means algorithm has been utilized. 

3.1.1 K-means clustering 

K-means is a type of unsupervised learning which clusters the data into a known 

number of groups, denoted as “k”. The objective of this algorithm is to find the point 

of the cluster which minimizes the variance within the cluster; these points are 

called centroids.  

For each cluster we choose, from all the points that should belong to that cluster, the 

centroid which minimizes the Euclidian distance between the cluster center and the 

remaining points of the cluster. This point is the mean of the cluster. 
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Algorithm 1: K-means clustering pseudocode 

At the start k centroids are randomly initialized and each data point is assigned to 

the centroid which minimizes the Euclidian distance. Then the centers are updated 

by computing the mean of each cluster. This procedure is iterated until convergence 

of the centroids [17].  

In this study case the dataset has been divided by speed and change in steering 

angle. K-means is run with 3 as the number of clusters (k), using only the average 

longitudinal speed in order to generate three distinct subsets representing low, 

medium and high speed (Figure 3.1). The same process has been carried out in 

previous studies [18] [19]. 
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Figure 3.1: K-means clustering results 

Subsequently the subsets are furtherly divided into five groups based on the change 

in steering angle. The first is the characterized by a change in steering angle smaller 

than 10 degrees (0.17 rad), representing the vehicle going on a straight. Following 

that there are slight left and right curves with a change in steering angle between 10 

and 45 degrees (0.17 and 0.79 rad), and lastly the curves with a change in steering 

angle greater than 45 degrees (0.17 rad).  

The entire dataset contained 1320 observations, 594 of which representing low 

speed, 460 representing medium speed and 266 representing high speed 

observations, furtherly divided depending on the change of steering angle during 

the period. 

3.2 Iterative DBSCAN 

Once the EDB have been created, the following step consists in identifying the 

potentially risky driving behaviors utilizing the density-based spatial clustering of 

applications with noise (DBSCAN) in an iterative way [16].  

DBSCAN is based on a model which uses a minimum density level estimation. It 

creates clusters bases on a minimum number of neighbors, called “minPts” that are 
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enclosed within a radius ε. Objects are considered “core points” when they have 

more than minPts neighbors within a neighborhood of radius ε. With this idea 

DBSCAN tries to find areas with higher density which satisfies this threshold of 

minimum density and considers those with lower density as noise. If a point is found 

within a radius ε of a core point, it is considered to be part of the same cluster of the 

core point. If this point does not have similarly at least minPts neighbors within a 

radius ε, it is considered a non-core point or “border point”. The remaining points 

are considered noise. 

 

Figure 3.2: Illustration of the DBSCAN cluster model 

In the example of Figure 3.2 A and the red points are core points, and since B and C 

are found within a radius ε from a core point, they are considered border points. 

These points belong to the same cluster and are deemed density reachable. Since N 

is not density reachable, it is labeled as noise. 

The DBSCAN algorithm follows the previous model, linearly scanning the database 

for new points to process. When border points are found, they are considered noise 

and whenever a core point is discovered its neighbors are added to the cluster [20].  
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Algorithm 2: DBSCAN pseudocode 

When working with high-dimensional dataset the clustering algorithms perform 

worse as the dimensionality increases and this phenomenon is called “curse of 

dimensionality”. For this reason, depending on the number of variables of the 

dataset it is possible to run a principal component analysis (PCA) as preliminary 

step to reduce dimensionality [21]. 

The steps of each iteration of the I-DBSCAN are the following [16]:  

1. identifying DBSCAN inputs minPts and ε.  

2. defining normPercent as minimum percentage of data composing the 

normal driving cluster, running DBSCAN on the dataset and ensuring that 

the percentage of normal driving observation is greater than normPercent.  

3. extracting the normal cluster, any additional cluster and the noise.  

4. deciding whether the procedure is complete or repeat the cycle only on the 

normal driving cluster. 
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For this case study, the Principal Component Analysis is used, since the dataset has 

a high number of features and the number of observations comprising a few EDB is 

low. Running the PCA it has been found over 90% of the variation of the variables 

was explained by 4 components.  

The first step is the choosing of the input parameters. After the results of the 

Principal Component Analysis, the minPts parameter has been set to 8 as twice the 

dataset reduced dimensionality [22]. A way of choosing the ε parameter is by 

employing the “elbow” method. This method gives some insights on the density 

distribution of the dataset. For a given k, which in this case is set to minPts, the 

distance of each point to its k-th nearest neighbor is computed and a plot is 

constructed sorting the points in descending order depending on their k-distance 

value. This graph is called sorted k-dist (Figure 3.3) graph and the ε parameter can 

be chosen by identifying the “elbow” or “valley” of this plot. This procedure is 

repeated for every EDB since the characteristics of the database are different and 

consequently the k-dist graph is changing. The ε values found ranged from 516 – 

2466. 
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The second step consists in running DBSCAN on each EDB. The normPercent value 

is set to a default value of 90%. If there is not a cluster containing at least 

Figure 3.3: K-dist plot examples 
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normPercent points, three options are available: (1) ε is increased which causes the 

number of clusters identified to decrease; (2) normPercent is decreased; (3) 

returning to the creation of elementary driving behaviors and ensuring that the data 

represents each EDB.  

For the third step a new dataset is created from the normal cluster and this is the 

dataset that will be used if a new iteration of I-DBSCAN is run. 

The final step consists in determining if I-DBSCAN can be terminated or another 

iteration has to be performed. If the normPercent threshold is not exceeded even 

after an adjustment of the parameters, I-DBSCAN should be terminated and the 

creation of the EDB has to be performed once again. For this application, after 

adjusting the parameters, the DBSCAN was run. At the end of the first iteration, since 

multiple EDB had a percentage of normal driving below normPercent (Figure 3.4), 

a new iteration was run with an adjusted threshold of 80%. After the second 

iteration, the normPercent threshold was exceeded, therefore the algorithm is 

terminated. Two classes result from this operation, the first representing the normal 

driving behavior and the second, corresponding to the noise, representing the 

aggressive driving behavior. The two classes are now labeled either as 0 or 1, 0 

corresponding to the normal behavior class and 1 corresponding to the aggressive 

behavior class.  
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Figure 3.4: EDB with 86% of points belonging to normal profile 

 

Figure 3.5: EDB with 92% of points belonging to normal profile 

To test the consistency of these results, the average speed, longitudinal acceleration 

and lateral acceleration have been computed (Table 3.1). It is possible to notice that 

the values relative to the normal profile are smaller than the noise values, which 

correspond to a potential aggressive behavior. This result alone is not sufficient to 

prove the effectiveness of this clustering, therefore the average maximum and 

minimum value the previous variables is calculated. The absolute values 
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corresponding to the potential aggressive behavior are again greater than the 

normal values. Another important indicator is the standard deviation (expressed in 

parentheses in Table 3.1) that denotes an increase in variability of the noise values 

with respect to the normal ones. This proves that the normal profile is characterized 

by more homogeneous observations as opposed to the noise, which is characterized 

by more variability. 

 

 Normal Potential Aggressive 

Average Speed (m/s) 
15.66 

(6.47) 

18.73 

(7.50) 

Average Longitudinal 
Acceleration (m/s2) 

0.060 

(1.08) 

0.44 

(2.03) 

Average Lateral 
Acceleration (m/s2) 

0.008 

(1.21) 

0.11 

(2.10) 

Max Speed (m/s) 
20.51 

(6.19) 

21.20 

(7.68) 

Max Longitudinal 
Acceleration (m/s2) 

1.79 

(1.36) 

3.43 

(2.37) 

Max Lateral Acceleration 
(m/s2) 

0.70 

(1.17) 

1.99 

(2.85) 

Min Speed (m/s) 
10.85 

(6.62) 

15.99 

(7.30) 

Min Longitudinal 
Acceleration (m/s2) 

-0.64 

(1.49) 

-3.21 

(3.23) 

Min Lateral Acceleration 
(m/s2) 

-0.65 

(1.86) 

-1.83 

(3.09) 

Table 3.1: Statistical indicators of consistent labeling 



45 

 

4 CLASSIFICATION ALGORITHM FOR PATTERN 

RECOGNITION 

This study requires a pattern recognition approach which in this case involves a 

supervised learning algorithm, considering that the class labels are already 

available. Supervised learning can be divided in three categories: statistical, 

structural and syntactic, but for this application the statistical pattern recognition is 

applied. 

4.1 Statistical classification 

A classifier is a pattern recognition algorithm which, given a dataset of observations 

described by a set of features as input, assigns to each of these objects a class label. 

To perform, this algorithm has to be trained beforehand with a labeled dataset 

where each observation is already characterized by a class label. In this way the 

classifier is able to learn the patterns defining each class and consequently to assign 

a class to an unlabeled object. 

The Bayes decision theory is a principle at the foundation of statistical pattern 

recognition. The dataset is made of objects belonging to “c” different classes which 

are called 𝜔𝑖 with i = 1, 2, …, c, and each class occurs with the a priori probability 

p(𝜔𝑖). Given an “observation vector” x, the goal is to assign an object of the dataset 

to a class 𝜔𝑖 . The a posteriori probability that the object x belongs to the class 𝜔𝑖 is 

computed as 

𝑝(𝜔𝑖|𝐱) =  
𝑝(𝐱|𝜔𝑖) 𝑝(𝜔𝑖)

𝑝(𝒙)
 

(1) 

expressed as function of the a priori probability and 𝑝(𝐱|𝜔𝑖), the class-conditional 

probability density function of x. This is known as the Bayes’ rule for minimum error 
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since it assigns the object to a class with the greater a posteriori probability and 

consequently with the lower probability of making an error.  

There is also a rule which minimizes the expected loss or risk which is measured by 

the cost of assigning an object x to a class 𝜔𝑖 when x belongs to 𝜔𝑗  (λij). These costs 

are the components of a loss matrix Λ = [λij]. The Bayes’ decision rule for minimum 

risk is expressed by the equation: 

𝑟∗ = ∫ min
𝑖=1,…,𝑐

∑ 𝜆𝑗𝑖

𝑐

𝑗=1𝒙

 𝑝(𝜔𝑖|𝐱) 𝑝(𝒙) 𝑑𝒙 

(2) 

where 𝑟∗ is the Bayes’ risk. 

In some cases, it is difficult to obtain the expected risk or the a posteriori probability, 

therefore for each class, a new function is evaluated and it has the name of 

discriminant function. One example are the neural networks which try to find the 

best discrimination boundary between classes, instead of estimating the probability 

density function [23] [24]. 

4.2 Bayesian regularized neural network 

The chosen neural network is a fully connected feed-forward network which 

contains three layers: one input layer, one hidden layer and one output layer as 

shown in Figure 4.1. The input layer has 90 neurons such as the length of the input 

vector containing the observation features. It is observed the computation time 

increases significantly for a hidden layer with a large number of nodes, while the 

accuracy of the neural network is not improving significantly, therefore 10 is the 

chosen number of nodes for the hidden layer. The output layer has dimension 1 

since the neural network outputs a single value. 
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Figure 4.1: Neural network architecture 

A problem of neural networks is the risk of overfitting, with this term is indicated 

the behavior of the NN of not generalizing well the training dataset, therefore the 

neural network will perform well on the training data and poorly with the test data. 

There are two ways to avoid overfitting: (1) the extension of the dataset and (2) the 

use of regularization. The latter is the easiest to use and the less time consuming, 

therefore it is one of the most used methods for improving the algorithm’s 

performance and avoid overfitting. 

In a simple neural network, the sequence of training is the following: 

• Using an optimal state to initialize the vector of the weights 

• Each object of the training dataset is run through the network 

• At each iteration a loss function is computed as the squared difference 

between the expected output and the actual output 
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• Backpropagation is employed to modify the weights at each iteration in order 

to minimize the cost function, which is the average of the loss functions 

computed on all the training data 

In this study the Bayesian regularization training algorithm is used in order to 

optimize the weight and bias values, updating them according to Levenberg-

Marquardt optimization [25]. This aims to minimize the root mean squared error 

(RMSE) which is expressed as: 

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑[𝑌𝑝(𝑗) − 𝑌(𝑗)]

2
𝑚

𝑗=1

 

(3) 

with m is the number of predictions, Yp is the expected target output and Y is the 

output of the neural network. 

The root means square of the n number of weights w can be written as: 

𝑅𝑀𝑆𝑊 = √
1

𝑛
∑ 𝑤𝑗

2

𝑛

𝑗=1

 

(4) 

 

The function which expresses the Levenberg-Marquardt optimization can be 

computed as: 
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𝑓(𝑥) =
1

2
∑[𝑓𝑗(𝑥)]

2
𝑛

𝑗=1

 

(5) 

The function corresponding to the Bayesian Regularization objective can be 

expressed as: 

𝐹 = 𝛾𝑅𝑀𝑆𝑊 + 𝜆𝑅𝑀𝑆𝐸  

(6) 

Where 𝛾 and 𝜆 are parameters of the function. 

The steps carried out by the Bayesian Regularization optimization are the following: 

1. Before the first training step, the network weights, 𝛾 and 𝜆 have to be 

initialized. After the first iteration, these values will be obtained from the 

previous iteration. 

2. The Levenberg-Marquardt optimization function (equation 5) is used in 

order to minimize the Bayesian Regularization objective equation F 

(equation 6). 

3. Estimation of 𝛾 and 𝜆. 

4. Iteration of the previous steps until convergence of the network. 

4.3 Training and results of the neural network 

The training of the neural network has been carried out in Matlab. The data have 

first been divided into two datasets: (a) a training dataset containing 80% of the 

data, (b) a testing dataset containing the remaining 20% of the dataset. The division 

function choses the indices for the two partitions randomly. 

To build the neural network the Matlab function patternnet which requires the input 

arguments listed in Table 4.1. 
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Input Input argument Description 

hiddenSizes 10 
Size of the hidden layers of the 

network, expressed as a row vector 

trainFcn ‘trainbr’ 

Network training function, in this 

case Bayesian regularization 

backpropagation 

performFcn ‘mse’ 
Mean squared normalized error 

performance function 

Table 4.1: patternnet function inputs 

 

Figure 4.2: Neural Network model 
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The dataset and the classes are fed separately to the neural network which is then 

trained. The training stopped at epoch 79 and gave the results listed in Table 4.2. 

 

Unit Initial value Stopped value 

Epoch 0 79 

Performance (MSE) 0.758 0.00223 

Gradient 0.89 0.00092 

Mu 0.005 500 

Effective # Parameter 921 93.2 

Sum Squared Param… 36.9 83.9 

Table 4.2: Neural Network training results 
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Figure 4.3: Neural Network training performance plot 

It is now necessary to verify the if the results achieved by the training algorithm are 

satisfactory. The plot in Figure 4.3 represents the performance of the neural 

network, measured in term of mean squared error. It shows a rapid decrease for 

both training and test set as the neural network was trained, reaching a minimum 

at the last epoch. Unlike other training algorithms, the Bayesian regularization 

backpropagation does not need a validation set. The reason is that the use of 

validation is itself of form of regularization but, as the name suggests, this algorithm 

applies its own form of regularization.  

There are other plots and parameters necessary to evaluate the training 

performance of the neural network, one of them is the confusion matrix (Figure 4.4) 
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A confusion matrix is an n x n matrix, where n is the number of target classes, which 

compares the results of the classification predicted by the neural network with the 

actual target values. The cells of the diagonal contain the percentage of the cases 

correctly classified and the off-diagonal cells contain the cases not correctly 

classified. 

It can be noticed that the training confusion matrix has reached an accuracy of 

nearly 100%. It means that the weights of the neural network are perfectly 

Figure 4.4: Neural Network confusion matrices 
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calibrated to classify the training data, but this is not a certainty that it will classify 

new data with the same accuracy. As a matter of fact, the test confusion matrix 

shows that the accuracy reached for new data is smaller with a tendency to 

misclassify the class 0 (normal driving behavior), maintaining however an 

acceptable accuracy. 

The next useful plot is represented by the error histogram (Figure 4.5). It shows the 

distribution of the errors committed by the neural network on the testing instances. 

It has a normal distribution with the majority of errors near zero. 

 

 

Figure 4.5: Neural Network error histogram 
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The regression plot (Figure 4.6) is another indicator of how well the trained neural 

network has fit the data, where the outputs of the neural network and the 

corresponding targets are plotted. The most important parameter computed with 

this analysis is the correlation coefficient R and indicates how strong the linear 

relationship between outputs and targets is. The closer its value is to 0, the weaker 

the correlation is. The closer its value is to 1, the stronger the correlation is. This 

relationship can be graphically seen by how close the fit line is to the diagonal 

dashed line. 

Figure 4.6: Neural Network regression plots 
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The ROC (Receiver Operating Characteristic) curve (Figure 4.7) is a plot with false 

positives rate on the X-axis and true negatives rate on the Y-axis for every 

classification threshold. The area under the curve (AUC) measures the capacity of 

discrimination. the more the AUC is close to 1, the more accurate the classification 

is.  

 

Figure 4.7: Neural Network ROC plots 
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The last plots (Figure 4.8) represent the progression of the training algorithm 

parameters during the training. In conclusion the performance results after the 

neural network training show an acceptable accuracy, therefore it can now be tested 

in real-time in the driving simulator. 

 

 

Figure 4.8: Progression of Neural Network training parameters 
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5 TESTING OF THE CLASSIFIER IN A REAL-TIME 

SIMULATION 

The final test consists in a co-simulation with SCANeR and Simulink. The interactive 

vehicle is driven in SCANeR and the data is collected with Simulink in the same way 

as the first simulation.  

To be analyzed by the neural network, the input must be in the same form of the 

training data, therefore the signals coming from SCANeR have to be divided into 5 

seconds MP and the features have to be computed for every period. To achieve this 

objective a technique called sliding window is employed. The Simulink block used is 

the buffer block, where the output buffer size (M0) and the buffer overlap (L) are set 

to 50 and 40 respectively. The buffer L samples from the previous output, it adds M0 

– L new samples from the input signal and propagates it as the new output. The 

resulting output frame period is computed with the equation 

𝑂𝑢𝑡𝑝𝑢𝑡 𝐹𝑟𝑎𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑 = (𝑀0 − 𝐿) 𝑇𝑠𝑖 

with Tsi as the input sample period. Since in this case the sample period is 0.1s, the 

resulting output frame period will be 1s. This means that every second a new frame 

will be outputted, which includes 40 timesteps from the previous frame and 10 new 

timesteps. 

Every signal corresponding to a different variable coming from the vehicle, is 

connected to a buffer. From each output frame coming from the buffer, the statistical 

features are computed (Figure 5.1). The resulting features of every variable are 

joined together to create a vector. 
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Figure 5.1: Simulink model for sliding window and feature calculation 

The resulting vector of size 90 is fed to the trained pattern recognition neural 

network (Figure 5.2). The NN outputs a value ranging between 0 and 1 which is 

connected to a switch and if it exceeds a threshold of 0.85, the assertion block will 

display a message and a red signal explaining that an aggressive behavior has been 

detected. 
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Figure 5.2: Neural Network Simulink model 

 

Figure 5.3: Simulink model for real-time classification 

For this simulation the same scenario as the one for data collection is kept. 
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The SCANeR modules are started, the Simulink and SCANeR simulations are run and 

the interactive vehicle can now be driven freely. 

Utilizing Simulink’s data inspector is possible to display the output of the neural 

network and the assertion signal (Figure 5.4). Comparing the data of longitudinal 

acceleration with the results from the NN (Figure 5.5), it can be noted that for the 

highest peaks of this variable the neural network recognizes an aggressive behavior. 

Another confirmation of the NN effectiveness comes from the comparison of its 

output with the brake force (Figure 5.6), it classifies hard braking as aggressive 

behavior. 

 

Figure 5.4: Comparison between Neural Network output and assertion block signal 
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Figure 5.5: Comparison between lateral acceleration signal and assertion block 
signal 

 

Figure 5.6: Comparison between brake force signal and assertion block signal 
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6 CONCLUSIONS AND FUTURE WORK 

The aim of this thesis was to drive freely an interactive vehicle in a custom scenario 

using the driving simulator SCANeR. Timeseries of nine chosen kinematic variables 

are collected with Matlab/Simulink and a dataset is created. In order to train a 

pattern recognition algorithm to classify normal and aggressive behavior, the 

dataset is divided into 5 seconds windows with 4 seconds of overlap and for every 

window, ten statistical features are computed. Every 5 seconds observation is now 

characterized by ninety values and needs to be labeled. For the labeling the Iterative 

DBSCAN approach is adopted. The observations have to be divided into elementary 

driving behaviors and subsequently assigned to one of two classes, the first 

representing the normal profile characterizing an EDB and the second representing 

the outlier observations considered as aggressive driving. The labeled dataset is 

used to train a pattern recognition neural network with Bayesian regularization 

backpropagation in Matlab environment. The trained neural network is finally 

tested in real-time with SCANeR driving simulator and Simulink. 

For what concerns the dataset labeling with unsupervised learning, the collected 

statistical indicators confirm the consistency of the results. The average and 

maximum speed and acceleration are significantly greater for the potential 

aggressive behavior with respect to the normal one. Another indicator is the 

standard deviation that explains the variability of the data. As expected, the 

variability is greater for the aggressive driving since it represents a more 

heterogeneous category than the normal profile which is a unified cluster. 

The final results coming from the testing in real-time of the neural network show an 

acceptable accuracy in recognizing an aggressive behavior. Comparing the NN 

output and variable signals such as brake force and acceleration points out the 
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relationship between aggressive driving events and peaks of acceleration and 

braking force. 

Despite the achieved results, there are different aspects of this work that could be 

further explored or improved, for example, a more advanced driving setup can be 

utilized in the phase of data collection in order to best replicate real driving 

conditions. Another improvement relative to the same phase would be an increased 

amount of data collected and an employment of different drivers to train the 

algorithm on different driving profiles. A comparison between different classifier 

could also be conducted in order to analyze the performance of different algorithms.  
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