
1

POLITECNICO DI TORINO

Department of Mechanical and Aerospace Engineering

M. Sc. Thesis
in Automotive Engineering

Aggressive driving detection through
Iterative DBSCAN labeling and
supervised pattern recognition

Tutor

Prof. Eng. Angelo Bonfitto
Candidate

Alessandro Mauro Danusso

2

3

TABLE OF CONTENTS

ABSTRACT ... 5

1 INTRODUCTION .. 12

1.1 Thesis’ goal ... 13

1.2 Hardware and software components .. 13

1.3 State of the art of aggressive driving detection ... 15

1.3.1 Anomaly detection based methods .. 15

1.3.2 Threshold based methods ... 16

1.3.3 Machine Learning based methods .. 17

2 COLLECTION OF DATA AND FEATURE SELECTION ... 19

2.1 Scenario definition .. 19

2.1.1 Terrain selection ... 19

2.1.2 Resources selection .. 21

2.2 Simulink model ... 26

2.3 Simulation ... 29

2.4 Data processing and feature selection ... 33

3 LABELING OF THE DATASET WITH ITERATIVE DBSCAN 35

3.1 Creation of elementary driving behaviors ... 35

3.1.1 K-means clustering ... 35

3.2 Iterative DBSCAN ... 37

4 CLASSIFICATION ALGORITHM FOR PATTERN RECOGNITION 45

4.1 Statistical classification ... 45

4.2 Bayesian regularized neural network ... 46

4

4.3 Training and results of the neural network .. 49

5 TESTING OF THE CLASSIFIER IN A REAL-TIME SIMULATION 58

6 CONCLUSIONS AND FUTURE WORK ... 63

5

LIST OF FIGURES

Figure 1.1: Driving setup for simulation .. 14

Figure 1.2: SCANeR modules architecture .. 14

Figure 2.1: Community orthographic view ... 20

Figure 2.2: Community top view ... 21

Figure 2.3: Callas model - ExecutiveCar ... 23

Figure 2.4: Long Range Radar Sensor ... 24

Figure 2.5: Long Range Radar Sensor positioning ... 25

Figure 2.6: Controller block .. 27

Figure 2.7: SHM and Network input blocks .. 27

Figure 2.8: Merging of output signal to be sent to Matlab workspace 28

Figure 2.9: Simulink model for data collection .. 29

Figure 2.10: Visual module .. 30

Figure 2.11: Dashboard module .. 31

Figure 2.12: Collected signals of lateral acceleration, accelerator pedal and steering

angle ... 32

Figure 2.13: Converting time steps into monitoring periods ... 33

Figure 3.1: K-means clustering results ... 37

Figure 3.2: Illustration of the DBSCAN cluster model ... 38

Figure 3.3: K-dist plot examples .. 41

Figure 3.4: EDB with 86% of points belonging to normal profile 43

Figure 3.5: EDB with 92% of points belonging to normal profile 43

Figure 4.1: Neural network architecture ... 47

Figure 4.2: Neural Network model ... 50

Figure 4.3: Neural Network training performance plot ... 52

Figure 4.4: Neural Network confusion matrices ... 53

Figure 4.5: Neural Network error histogram ... 54

Figure 4.6: Neural Network regression plots ... 55

Figure 4.7: Neural Network ROC plots .. 56

file:///D:/Documents/Tesi/Thesis%20-%20Aggressive%20detection.docx%23_Toc120209456
file:///D:/Documents/Tesi/Thesis%20-%20Aggressive%20detection.docx%23_Toc120209456
file:///D:/Documents/Tesi/Thesis%20-%20Aggressive%20detection.docx%23_Toc120209460
file:///D:/Documents/Tesi/Thesis%20-%20Aggressive%20detection.docx%23_Toc120209466
file:///D:/Documents/Tesi/Thesis%20-%20Aggressive%20detection.docx%23_Toc120209468
file:///D:/Documents/Tesi/Thesis%20-%20Aggressive%20detection.docx%23_Toc120209469

6

Figure 4.8: Progression of Neural Network training parameters 57

Figure 5.1: Simulink model for sliding window and feature calculation 59

Figure 5.2: Neural Network Simulink model .. 60

Figure 5.3: Simulink model for real-time classification ... 60

Figure 5.4: Comparison between Neural Network output and assertion block signal

 .. 61

Figure 5.5: Comparison between lateral acceleration signal and assertion block

signal .. 62

Figure 5.6: Comparison between brake force signal and assertion block signal 62

7

LIST OF TABLES

Table 2.1: Community characteristics ... 20

Table 2.2: ExecutiveCar Technical datasheet ... 24

Table 2.3: Autonomous vehicles distribution .. 25

Table 2.4: Variables collected from interactive vehicle ... 26

Table 2.5: Selected features .. 34

Table 3.1: Statistical indicators of consistent labeling ... 44

Table 4.1: patternnet function inputs ... 50

Table 4.2: Neural Network training results .. 51

8

LIST OF ALGORITHMS

Algorithm 1: K-means clustering pseudocode ... 36

Algorithm 2: DBSCAN pseudocode ... 39

9

LIST OF SYMBOLS

Symbol

Meaning

AAA American Automobile Association

AD/ADAS Autonomous Driving / Advanced Driver Assistance Systems

API Application Programming Interface

AUC Area Under the Curve

BN Bayesian Network

CNN Convolutional Neural Network

DWT Discrete Wavelet Transform

EDB Elementary Driving Behavior

F

Function corresponding to the Bayesian Regularization

objective

FOV Field Of View

GMM Gaussian Mixture Model

I-DBSCAN

Iterative Density-Based Spatial Clustering of Applications

with Noise

IMU Inertial Measurement Unit

k Number of clusters of k-means

k* k-Star

k-NN k-Nearest Neighbors

L Buffer overlap

M0 Output buffer size

minPts Minimum number of neighbors for DBSCAN

MLP Multilayer Perceptron

MP Monitoring Periods

MSE Mean Squared Error

NHTSA National Highway Traffic Safety Administration

NN Neural network

normPercent Minimum percentage of data composing the normal driving

cluster

p(x│ωi) Class-conditional probability density function of x

p(ωi) A priori probability

p(ωi│x) A posteriori probability

PCA Principal Component Analysis

PCR Principal Components Regression

PLSR Partial Least Squares Regression

10

Q1 25th percentile

Q2 50th percentile

Q3 75th percentile

RF Random Forest

RMS Root Means Squares

RMSE Root Mean Squared Error

RMSW Root means square of weights w

ROC Receiver Operating Characteristic

RSS Residual Sum of Squares

SHM Shared Memory

STD Standard Deviation

SVM Support Vector Machine

SVR Support Vector Regression

Tsi Input sample period

w Weights of the neural network

x Observation vector

Y Output of the neural network

Yp Expected target output

γ Parameter of F

ε Radius of neighborhood for DBSCAN

Λ Loss matrix

λ Parameter of F

λij Cost of assigning an object x to a class ωi

ωi Classes

11

ABSTRACT

Detection of driver aggressiveness is a significant method which helps to ensure safe

driving. Aggressive driving behavior is the cause every year of a vast number of

traffic accidents. The traffic accidents which result from this type of conduct are

cause of mortality, severe damage and high economical cost.

The goal of this thesis is to design an algorithm for aggressive driving detection,

capable of recognizing the driver’s behavior. The proposed method is based on

sensor features to characterize related driving sessions and to decide whether the

session involves aggressive driving behavior.

Driving simulators are being increasingly used in recent years by automotive

manufacturers and researchers. There are several advantages with using this

system, including the increased safety enhanced repeatability, helping researchers

significantly reduce time and cost. They play a key role in studies of the driver’s

behavior in unstable vehicle conditions and maneuvers. It is exactly this instrument

that is employed to collect kinematic data of the vehicle (such as speed, acceleration

and heading of the vehicle) in different scenarios. Features are extracted from every

observation, which are then labeled by means of unsupervised learning and used to

train a pattern recognition neural network. The algorithm is then tested in real-time

in the driving simulator.

12

1 INTRODUCTION

Driver aggressiveness is one of the major contributing factors to fatal traffic

accidents. “An individual commits a combination of moving traffic offenses so as to

endanger other persons or property” is the definition of aggressive driving provided

by the National Highway Traffic Safety Administration (NHTSA) [1]. The American

Automobile Association (AAA) conducted a study in 2009 reporting that 56 percent

of fatal crashes from 2003 to 2007 were caused by aggressive driving and speeding

was the most critical behavior. This study was based on data collected by NHTSA’s

Fatal Accident Reporting System. Speeding was also the principal driving behavior

related to fatal crashes in 2019 (17.2 percent) [2]. Aggressive driving behavior is a

psychological concept that does not have a quantitative measure. However,

according to NHTSA [2] aggressive driving is characterized by the following

behaviors:

• “Following improperly

• Improper or erratic lane changing

• Illegal driving on road shoulder, in ditch, or on sidewalk or median

• Passing where prohibited

• Operating the vehicle in an erratic, reckless, careless, or negligent manner or

suddenly changing speeds

• Failure to yield right of way

• Failure to obey traffic signs, traffic control devices, or traffic officers, failure

to observe safety zone traffic laws

• Failure to observe warnings or instructions on vehicle displaying them

• Failure to signal

• Driving too fast for conditions or in excess of posted speed limit

• Racing

• Making an improper turn”

13

Detection of driver aggressiveness can be an important method to increase the

safety on the road.

1.1 Thesis’ goal

The main goal of this thesis is to develop an algorithm capable of recognizing the

behavior of the driver, distinguishing between a normal and an aggressive style.

Vehicle data are collected by means of a driving simulator, features are extracted

through statistical functions and a dataset is created. An unsupervised learning

algorithm called I-DBSCAN is adopted to divide the still unlabeled observations in

two classes: normal and aggressive behavior. A pattern recognition algorithm is

then trained and employed to classify the behavior in real time.

1.2 Hardware and software components

SCANeR Studio is the chosen software capable of running the driving simulations

and it is paired with a Logitech G920 steering wheel (Figure 1.1) which provides the

driving inputs and can render the steering feel through the force feedback. SCANeR

communicates with Matlab and Simulink by means of an API to collect the vehicle

data. SCANeR Studio is a software which allows users to configure, prepare and run

simulations or analyze results. It is capable of integrating 3D graphics, AD/ADAS

systems and physics based sensors with the vehicle dynamics model.

14

Figure 1.1: Driving setup for simulation

Figure 1.2: SCANeR modules architecture

The SCANeR Studio environment is populated by several modules which use a

common communication protocol (Figure 1.2) [3]. The modules employed in this

thesis will be (a) the simulation module, fundamental part to launch the entire

driving simulation; (b) the acquisition module used to drive the interactive vehicle

managing input driver commands; (c) the dynamics model module which defines

15

the behavior of vehicles in 3 dimensions; (d) visual, sound and simulation 3D view

modules for image and sound generation to provide a more faithful simulation; (e)

the scenario module used to control the simulation; and (f) the traffic module which

controls the behavior of the autonomous vehicle employed to populate the scenario.

The dataset is handled and labeled with Matlab, software also used for the training

of the neural network.

1.3 State of the art of aggressive driving detection

The detection of aggressive driving behaviors can be divided in three main

categories: (a) anomaly detection based approaches; (b) threshold based

approaches; and (c) machine learning classifier based approaches [4].

1.3.1 Anomaly detection based methods

These types of approaches build a profile of the driver’s normal behavior and detect

the aggressive behavior as a deviation from the normal profile.

1) Discrete Wavelet Transform: DWT is a technique which, given a time signal,

divides it in time series described by coefficients representing the evolution

in time of a signal [5]. For this approach the DWT used is the Daubechies

wavelet to detect aggressive driving [6] [7]. This method is based on the idea

that accelerometer signals of aggressive driving behaviors can be

decomposed in a normal acceleration signal and some noise applied to it,

which represents abrupt changes in acceleration. After the signal is

decomposed, the original signal is reconstructed removing the normal signal

and keeping only the component. If the distance between the original signal

and the reconstructed one is greater than a certain threshold, it is marked as

aggressive driving.

2) Gaussian Mixture Model: GMM is a model which performs soft clustering, it

tells the probability of a point belonging to each of the possible clusters, and

it takes in account the variance of the distribution. A possible application is to

16

compare true values of acceleration with predicted ones, in order to cluster

driving data detecting aggressive behaviors. The distance of the cluster center

from each point is computed and compared with a threshold. If it results

greater, it is likely to indicate an abrupt change of the driver’ behavior [8].

3) Partial Least Squares Regression: PLSR is a statistical method which has some

similarities with principal components regression (PCR). It projects the

predictors and the actual values to a new space and finds a linear regression

model. It is employed to find fundamental relations between two set of data.

In this case the accelerometer data is used to predicts acceleration values.

Their distance with the actual values is computed and if it is significant the

behavior is classified as aggressive [8].

4) Support Vector Regression: SVR is a regression algorithm which applies

support vector machine to regression. While the SVM can predict discrete

labels during classification, SVR is capable of predicting continuous variables.

The goal of linear regressors is to minimize the error rate, instead SVR uses a

hyperparameter which tries to keep the error inside a given threshold. It has

been used for the forecasting and estimation of driving fatigue from

electroencephalography data [9]. A different approach proposes SVR to detect

asymmetry in car following behavior [10]. In [8] SVR predicts sensor data

based on a previous reading and classifies the behavior as aggressive when

the difference of the predictor from the actual value is greater than a given

threshold.

1.3.2 Threshold based methods

These types of approaches classify driving events as aggressive when the value of

specific variables exceeds a predefined threshold.

1) Thresholds on Acceleration Data: the idea of this approach is simple, when

the value of acceleration read by a sensor overcomes a given threshold once

or multiple times, the event is labeled as aggressive. The difficult aspect is the

17

identification of the optimal value of the threshold and different ones are

proposed across the literature. One of the ways of taking advantage of this

approach is to compute the residual sum of squares (RSS), which is a

technique that measures the amount of variance in the dataset, of the

distance between sensors readings at each instant and zero. Given a time

window, when more than a predefined number of elements’ RSS value

exceeds a threshold, the entire time window is labeled as aggressive [8].

2) Jerk Evaluation: jerk is another variable useful to detect aggressive driving.

It is the acceleration rate of change, in other words how fast the acceleration

is changing over time and the aggressive behavior is detected when the jerk

value becomes larger than a threshold [11].

3) Variable Thresholds: in [12] it is proposed to utilize a variable threshold that

changes its value depending on the driving speed, since a fixed value could

not provide an accurate result for different driving conditions.

1.3.3 Machine Learning based methods

Machine learning approaches take advantage of classifiers to recognize aggressive

driving behaviors.

1) Parametric Classifiers: among the most used classification algorithms there

are: (a) Multilayer Perceptron (MLP); (b) Convolutional Neural Network

(CNN); (c) Random Forest (RF); and (d) Bayesian Network (BN). A

parametric classifier is a model that approximates a dataset with a fixed

number of parameters independent from the size of the training set. An

example is described in [13] where the author, after extracting features from

the accelerometer, applied a Random Forest to the dataset and he managed

to distinguish safe from unsafe driving with an accuracy of 95.5%. In [14] the

authors trained a CNN with data coming from inertial measurement unit

(IMU) and GPS that was able to outperform conventional Machine Learning

algorithms (for example SVM and k-NN).

18

2) Non-parametric Classifiers: some examples of non-parametric machine

learning algorithms are: (a) Support Vector Machine (SVM); (b) k-Nearest

Neighbors (k-NN); and k-Star (k*). A non-parametric classifier is a model

which builds a mapping function that best fits the training data, but without

losing the capacity to generalize new data. In [15] the authors compared the

performance of SVM, k-NN, k*, NB, DT, RF and Artificial Neural Network

applied to the classification of harsh events and this analysis showed a higher

accuracy of the k* algorithm.

19

2 COLLECTION OF DATA AND FEATURE SELECTION

The aim of this section is to describe the process of data collection which consists of

two phases, both carried out in SCANeR Studio: the creation of the scenario and the

execution of the simulation [3].

2.1 Scenario definition

A scenario is defined as the aggregation of elements:

• Terrain

• A set of objects such as vehicles and pedestrians

• A set of parameters such as initial conditions and record settings

• A storyboard necessary for managing events such as situations or accidents

The scenario is created in order to fit the driving experience needed.

2.1.1 Terrain selection

The first step is the selection of the terrain. The terrain represents the 3D synthetic

environment where the simulation is carried out. It is possible to use or modify an

existing one or to create a new one. To choose the right terrain is important to

consider: (a) the type of environment: highway, city, country; (b) the road

infrastructures: traffic lights, roundabouts, crossroads, highways, secondary roads,

driveroads, barriers, bridges; (c) the 3D objects such as road signals and eventually

for decoration: trees, buildings, advertising boards.

For this work was chosen an existing terrain from the provided library. It is called

Community (Figure 2.1) and it is a complex terrain which includes three

environments: city, village and country; the city is provided with 78 traffic lights,

sidewalks and pedestrian crossings. The terrain is compliant with the Physics

module which handles 3D collisions and physics behavior of simulation objects

(interactive vehicle, autonomous vehicle, pedestrian, bicycle, infrastructure objects,

20

crash barriers) and in this case sends feedback to the driver through the steering

wheel

Characteristics Community

Km covered by roads 15.9

Driving side
RHT

LHT

Number of traffic lights 78

Number of barriers 0

PHYSICS compliant yes

Table 2.1: Community characteristics

Figure 2.1: Community orthographic view

21

Figure 2.2: Community top view

2.1.2 Resources selection

As explained before, a scenario is an aggregation of elements including resources

such as vehicles and pedestrians.

Regarding the vehicles we have to differentiate between interactive and

autonomous vehicle. The former represents in this case the car interacting with the

driver through the physical input while the latter are the vehicles around the

subject, driven by the traffic module.

There are several dynamics models available to model the behavior depending on

the needs, their complexity level depends on how they are used in the simulation.

The simple model describes tire, suspension and steering not sufficiently in detail to

have an appropriate response to subtle things. Different parameters of the vehicle

can be edited and several configurations are already provided. For its simplicity the

most common use is the modeling of the autonomous vehicle for traffic, as happens

in this study. The model characteristics are the following:

• Bi-axle (2 wheels by axle)

22

• position of the vehicle is computed with 1 road picking

• terrain following

• engine

• transmission

• braking

• steering.

The intermediate model is similar to the simple one but with some key differences:

• multi-axles (N wheels by axle)

• position of the vehicle is computed with 4 road picking

• suspensions

The simple vehicle dynamic model only manages 2 axles, for this reason to create a

traffic vehicle with more than 2 axles, the intermediate is necessary.

Callas is the most complete and accurate dynamic model and enables the user to

create co-simulations with Matlab and Simulink. It is built with a parametric

approach and has high correlation with test track data.

The terrain is populated by the needed resources: one Callas model for interactive

vehicle and a number of simple and intermediate models depending on the level of

traffic required for the simulation.

The chosen Callas model is called ExecutiveCar (Figure 2.3) with the characteristics

listed in Table 2.2.

23

Figure 2.3: Callas model - ExecutiveCar

Engine

 Aspiration Gasoline

Max Power (hp / kW) 320 / 240

At Engine RPM (rpm) 5700

Max Torque (daN*m) 45

At Engine RPM (rpm) 5000

Transmission

Transmission Type Rear Wheel Drive

Front Gear Ratio Number 6

Rear Gear Ratio Number 1

Dimensions

Length (mm) 4620

Width (mm) 1860

Height (mm) 1450

Weight (kg) 1834

Wheelbase (mm) 2810

24

Frame

Anti-Block Brake system yes

Active yaw control yes

Traction control yes

Front suspension Independent McPherson

Rear suspension Independent Multilink

Performances

Max speed (km/h) 250

0-100 km/h (s) 6,4

Table 2.2: ExecutiveCar Technical datasheet

It is equipped with a Long Range Radar Sensor (Figure 2.4) in order to detect the

distance to collision and is capable of detecting mobile obstacles (for example cars,

pedestrians, bicycles, motorbikes). The sensor is positioned in the car front at a

distance from the ground of 0.6m (Figure 2.5). It is characterized by a maximum

beam range of 150m, a horizontal FOV ranging from -5° to 5° and a vertical FOV

ranging from -10° to 10°.

Figure 2.4: Long Range Radar Sensor

25

Figure 2.5: Long Range Radar Sensor positioning

The traffic tools are used to populate the terrain with autonomous vehicles. There

are a total of one hundred forty-two vehicles with the distribution expressed in

Table 2.3, and ten pedestrians. Of the total vehicles 90% is set with a normal

behavior, 5% with a cautious behavior and 5% with an aggressive behavior.

Vehicle Vehicle distribution (%)

Cars 65

Buses 5

Motorbikes 10

Bikes 10

Trucks 5

Trailer assembly 5

Table 2.3: Autonomous vehicles distribution

26

2.2 Simulink model

Identification of the variables which best characterize the driver’s behavior is a

fundamental step for an effective aggressive driving detection. The chosen variables

are listed in Table 2.4.

Variables Description Unit

cdgSpeed_x
Longitudinal speed of the

vehicle
m/s

cdgAccel_x
Longitudinal acceleration

of the vehicle
m/s2

cdgAccel_y
Lateral acceleration of the

vehicle
m/s2

Engine Speed Speed of the engine rad/s

Accelerator
Throttle pedal position

(range: from 0 to 1)

Brake Brake force N

SteeringWheel Steering wheel angle rad

SteeringWheelSpeed Steering wheel speed rad/s

distanceToCollision Distance to collision m

Table 2.4: Variables collected from interactive vehicle

A Simulink model is necessary to carry out a co-simulation with Matlab, with the

objective of collecting the data. For this application there are two types of blocks

needed: controller and input.

The controller (Figure 2.6) allows Simulink to be detected as a SCANeR module.

27

Figure 2.6: Controller block

The input blocks (Figure 2.7) are used to retrieve data from SCANeR simulation and

they are in turn divided in two categories: SHM and Network [3].

Figure 2.7: SHM and Network input blocks

The SHM blocks allow a high performance communication of several modules with

the Modelhandler, reading and writing in the shared memory. Modelhandler is the

module employed to handle the interaction between the road surface and the

vehicle dynamic model. The SHM blocks necessary for this simulation are three: (a)

VehicleOutput is necessary to read the data generated by the vehicle; (b)

CabToModel outputs the inputs of the driver (accelerator and brake pedal); (c)

CabToSteering reads the steering inputs of the driver (steering angle and steering

wheel speed).

The network blocks allow the communication with different SCANeR modules other

than the Modelhandler, in this case with the Sensors module necessary to retrieve

the distance to collision.

28

Each block is characterized by an index representing the desired vehicle (SHM

blocks) and desired sensor (Network blocks), allowing the retrieval of data from

different sources simultaneously.

The signals outputted from each SCANeR block are merged in a bus creator and sent

to the workspace to be furtherly processed (Figure 2.8).

Figure 2.8: Merging of output signal to be sent to Matlab workspace

The final model used for simulation is depicted in Figure 2.9.

29

Figure 2.9: Simulink model for data collection

2.3 Simulation

The simulation is the fundamental step necessary to collect driving data. Before

starting to drive the interactive vehicle, the co-simulation has to be launched both

on SCANeR and Simulink. With the launch of the SCANeR simulation also the needed

modules have to be started [3]. The modules needed for this simulation are the

following:

a) Traffic: it is needed to control autonomous vehicles actions and movements

and the animated road signs.

b) WalkerTraffic: it is a dedicated traffic module to control movements and

actions of pedestrians.

c) Visual: it is used to show the point of view of the driver displaying: terrain,

moving vehicles, pedestrians and animated road signs (Figure 2.10).

d) Dashoboard: it is used to display counters, replicating a real dashboard

(Figure 2.11).

e) Sound: it is dedicated to the creation of sounds coming from the

environment; in the vehicle it is possible to hear accurate vehicle sounds (for

30

example: engine, car horn, indicators sirens) coming from the interactive

vehicle and the traffic vehicles.

f) Acquisition: It acquires inputs coming from the driver through the keyboard

or steering wheel and consequently generate inputs for the vehicle model.

g) Physics: it gives to the driver feedbacks of collisions and physics behaviors.

h) ModelHandler: it manages the interaction of the interactive vehicle model

with the road surface.

i) Sensors: it simulates different sensors with detection features (radar,

ultrasonic, camera, light sensor).

j) Simulink: it allows the co-simulation with Simulink through SCANeR API.

Figure 2.10: Visual module

31

Figure 2.11: Dashboard module

Once the co-simulation is started, the interactive vehicle has to be driven freely

around the terrain, trying to maintain a behavior as close as possible to the real

world. If the driver commits some errors, for example hitting other vehicles or going

off-road. The simulation is stopped and the data relative to that event are erased.

While driving it is possible that the driver will behave in an aggressive way for

limited periods, this are the events that will be detected as outliers by the I-DBSCAN.

A total of thirty minutes of data have been collected which result in more than one

thousand three hundred of 5 seconds observations.

Some examples of collected data are depicted in Figure 2.12. The image shows the

lateral acceleration, accelerator pedal and steering angle signals.

32

Figure 2.12: Collected signals of lateral acceleration, accelerator pedal and steering
angle

33

2.4 Data processing and feature selection

The first step once the simulation is complete, is to format the data collected. It is

necessary to divide each observation into monitoring periods (MP) of the same

length which in this case is 5 seconds and occur at 1 second intervals. Since the

sample rate of the simulation is 10 Hz, every MP contains 50 time steps (Figure

2.13). Each MP is now a 50x9 matrix, however the pattern recognition neural

network needs a one-dimensional vector as input. For this reason, it is necessary to

calculate features which characterize each period. To compute these features, the

statistical functions shown in Table 2.5 have been applied to every signal of the

dataset. In this way every MP is represented by 90 features.

Figure 2.13: Converting time steps into monitoring periods

34

Function Description

1 Mean Mean of a signal

2 Min Minimum value of a signal

3 Max Maximum value of a signal

4 Variance Square of the standard deviation of a signal

5 STD Standard deviation of a signal

6 RMS Root mean square

7 Q1 25th percentile

8 Q2 50th percentile

9 Q3 75th percentile

10 Peak Amplitude
Difference between the maximum and minimum value of
the signal

Table 2.5: Selected features

35

3 LABELING OF THE DATASET WITH ITERATIVE DBSCAN

Looking at the literature, since there is not a unique definition of aggressive driving,

it is difficult to measure and accurately quantify this behavior.

This thesis follows an approach which employs unsupervised learning to label

aggressive driving behavior and uses I-DBSCAN to achieve this goal [16]. The

objective of this approach is to find a small subset of observations, which represents

“abnormal driving behaviors”. They can in turn be identified as potential aggressive

behaviors.

3.1 Creation of elementary driving behaviors

The first step is the creation of subsets of the dataset which are indicated as

“elementary”. This approach is based on the logic that the behaviors of a driver can

be grouped into fundamental maneuvers (accelerating on a straight, making a right

or left turn, merging, etc.) and each one is characterized by a data profile. Even with

a similar data profile, the risky behavior will outlie the profile of an average

behavior. These subsets are called elementary driving behaviors (EDB) and to

establish them the k-means algorithm has been utilized.

3.1.1 K-means clustering

K-means is a type of unsupervised learning which clusters the data into a known

number of groups, denoted as “k”. The objective of this algorithm is to find the point

of the cluster which minimizes the variance within the cluster; these points are

called centroids.

For each cluster we choose, from all the points that should belong to that cluster, the

centroid which minimizes the Euclidian distance between the cluster center and the

remaining points of the cluster. This point is the mean of the cluster.

36

Algorithm 1: K-means clustering pseudocode

At the start k centroids are randomly initialized and each data point is assigned to

the centroid which minimizes the Euclidian distance. Then the centers are updated

by computing the mean of each cluster. This procedure is iterated until convergence

of the centroids [17].

In this study case the dataset has been divided by speed and change in steering

angle. K-means is run with 3 as the number of clusters (k), using only the average

longitudinal speed in order to generate three distinct subsets representing low,

medium and high speed (Figure 3.1). The same process has been carried out in

previous studies [18] [19].

37

Figure 3.1: K-means clustering results

Subsequently the subsets are furtherly divided into five groups based on the change

in steering angle. The first is the characterized by a change in steering angle smaller

than 10 degrees (0.17 rad), representing the vehicle going on a straight. Following

that there are slight left and right curves with a change in steering angle between 10

and 45 degrees (0.17 and 0.79 rad), and lastly the curves with a change in steering

angle greater than 45 degrees (0.17 rad).

The entire dataset contained 1320 observations, 594 of which representing low

speed, 460 representing medium speed and 266 representing high speed

observations, furtherly divided depending on the change of steering angle during

the period.

3.2 Iterative DBSCAN

Once the EDB have been created, the following step consists in identifying the

potentially risky driving behaviors utilizing the density-based spatial clustering of

applications with noise (DBSCAN) in an iterative way [16].

DBSCAN is based on a model which uses a minimum density level estimation. It

creates clusters bases on a minimum number of neighbors, called “minPts” that are

38

enclosed within a radius ε. Objects are considered “core points” when they have

more than minPts neighbors within a neighborhood of radius ε. With this idea

DBSCAN tries to find areas with higher density which satisfies this threshold of

minimum density and considers those with lower density as noise. If a point is found

within a radius ε of a core point, it is considered to be part of the same cluster of the

core point. If this point does not have similarly at least minPts neighbors within a

radius ε, it is considered a non-core point or “border point”. The remaining points

are considered noise.

Figure 3.2: Illustration of the DBSCAN cluster model

In the example of Figure 3.2 A and the red points are core points, and since B and C

are found within a radius ε from a core point, they are considered border points.

These points belong to the same cluster and are deemed density reachable. Since N

is not density reachable, it is labeled as noise.

The DBSCAN algorithm follows the previous model, linearly scanning the database

for new points to process. When border points are found, they are considered noise

and whenever a core point is discovered its neighbors are added to the cluster [20].

39

Algorithm 2: DBSCAN pseudocode

When working with high-dimensional dataset the clustering algorithms perform

worse as the dimensionality increases and this phenomenon is called “curse of

dimensionality”. For this reason, depending on the number of variables of the

dataset it is possible to run a principal component analysis (PCA) as preliminary

step to reduce dimensionality [21].

The steps of each iteration of the I-DBSCAN are the following [16]:

1. identifying DBSCAN inputs minPts and ε.

2. defining normPercent as minimum percentage of data composing the

normal driving cluster, running DBSCAN on the dataset and ensuring that

the percentage of normal driving observation is greater than normPercent.

3. extracting the normal cluster, any additional cluster and the noise.

4. deciding whether the procedure is complete or repeat the cycle only on the

normal driving cluster.

40

For this case study, the Principal Component Analysis is used, since the dataset has

a high number of features and the number of observations comprising a few EDB is

low. Running the PCA it has been found over 90% of the variation of the variables

was explained by 4 components.

The first step is the choosing of the input parameters. After the results of the

Principal Component Analysis, the minPts parameter has been set to 8 as twice the

dataset reduced dimensionality [22]. A way of choosing the ε parameter is by

employing the “elbow” method. This method gives some insights on the density

distribution of the dataset. For a given k, which in this case is set to minPts, the

distance of each point to its k-th nearest neighbor is computed and a plot is

constructed sorting the points in descending order depending on their k-distance

value. This graph is called sorted k-dist (Figure 3.3) graph and the ε parameter can

be chosen by identifying the “elbow” or “valley” of this plot. This procedure is

repeated for every EDB since the characteristics of the database are different and

consequently the k-dist graph is changing. The ε values found ranged from 516 –

2466.

41

The second step consists in running DBSCAN on each EDB. The normPercent value

is set to a default value of 90%. If there is not a cluster containing at least

Figure 3.3: K-dist plot examples

42

normPercent points, three options are available: (1) ε is increased which causes the

number of clusters identified to decrease; (2) normPercent is decreased; (3)

returning to the creation of elementary driving behaviors and ensuring that the data

represents each EDB.

For the third step a new dataset is created from the normal cluster and this is the

dataset that will be used if a new iteration of I-DBSCAN is run.

The final step consists in determining if I-DBSCAN can be terminated or another

iteration has to be performed. If the normPercent threshold is not exceeded even

after an adjustment of the parameters, I-DBSCAN should be terminated and the

creation of the EDB has to be performed once again. For this application, after

adjusting the parameters, the DBSCAN was run. At the end of the first iteration, since

multiple EDB had a percentage of normal driving below normPercent (Figure 3.4),

a new iteration was run with an adjusted threshold of 80%. After the second

iteration, the normPercent threshold was exceeded, therefore the algorithm is

terminated. Two classes result from this operation, the first representing the normal

driving behavior and the second, corresponding to the noise, representing the

aggressive driving behavior. The two classes are now labeled either as 0 or 1, 0

corresponding to the normal behavior class and 1 corresponding to the aggressive

behavior class.

43

Figure 3.4: EDB with 86% of points belonging to normal profile

Figure 3.5: EDB with 92% of points belonging to normal profile

To test the consistency of these results, the average speed, longitudinal acceleration

and lateral acceleration have been computed (Table 3.1). It is possible to notice that

the values relative to the normal profile are smaller than the noise values, which

correspond to a potential aggressive behavior. This result alone is not sufficient to

prove the effectiveness of this clustering, therefore the average maximum and

minimum value the previous variables is calculated. The absolute values

44

corresponding to the potential aggressive behavior are again greater than the

normal values. Another important indicator is the standard deviation (expressed in

parentheses in Table 3.1) that denotes an increase in variability of the noise values

with respect to the normal ones. This proves that the normal profile is characterized

by more homogeneous observations as opposed to the noise, which is characterized

by more variability.

 Normal Potential Aggressive

Average Speed (m/s)
15.66

(6.47)

18.73

(7.50)

Average Longitudinal
Acceleration (m/s2)

0.060

(1.08)

0.44

(2.03)

Average Lateral
Acceleration (m/s2)

0.008

(1.21)

0.11

(2.10)

Max Speed (m/s)
20.51

(6.19)

21.20

(7.68)

Max Longitudinal
Acceleration (m/s2)

1.79

(1.36)

3.43

(2.37)

Max Lateral Acceleration
(m/s2)

0.70

(1.17)

1.99

(2.85)

Min Speed (m/s)
10.85

(6.62)

15.99

(7.30)

Min Longitudinal
Acceleration (m/s2)

-0.64

(1.49)

-3.21

(3.23)

Min Lateral Acceleration
(m/s2)

-0.65

(1.86)

-1.83

(3.09)

Table 3.1: Statistical indicators of consistent labeling

45

4 CLASSIFICATION ALGORITHM FOR PATTERN

RECOGNITION

This study requires a pattern recognition approach which in this case involves a

supervised learning algorithm, considering that the class labels are already

available. Supervised learning can be divided in three categories: statistical,

structural and syntactic, but for this application the statistical pattern recognition is

applied.

4.1 Statistical classification

A classifier is a pattern recognition algorithm which, given a dataset of observations

described by a set of features as input, assigns to each of these objects a class label.

To perform, this algorithm has to be trained beforehand with a labeled dataset

where each observation is already characterized by a class label. In this way the

classifier is able to learn the patterns defining each class and consequently to assign

a class to an unlabeled object.

The Bayes decision theory is a principle at the foundation of statistical pattern

recognition. The dataset is made of objects belonging to “c” different classes which

are called 𝜔𝑖 with i = 1, 2, …, c, and each class occurs with the a priori probability

p(𝜔𝑖). Given an “observation vector” x, the goal is to assign an object of the dataset

to a class 𝜔𝑖 . The a posteriori probability that the object x belongs to the class 𝜔𝑖 is

computed as

𝑝(𝜔𝑖|𝐱) =
𝑝(𝐱|𝜔𝑖) 𝑝(𝜔𝑖)

𝑝(𝒙)

(1)

expressed as function of the a priori probability and 𝑝(𝐱|𝜔𝑖), the class-conditional

probability density function of x. This is known as the Bayes’ rule for minimum error

46

since it assigns the object to a class with the greater a posteriori probability and

consequently with the lower probability of making an error.

There is also a rule which minimizes the expected loss or risk which is measured by

the cost of assigning an object x to a class 𝜔𝑖 when x belongs to 𝜔𝑗 (λij). These costs

are the components of a loss matrix Λ = [λij]. The Bayes’ decision rule for minimum

risk is expressed by the equation:

𝑟∗ = ∫ min
𝑖=1,…,𝑐

∑ 𝜆𝑗𝑖

𝑐

𝑗=1𝒙

 𝑝(𝜔𝑖|𝐱) 𝑝(𝒙) 𝑑𝒙

(2)

where 𝑟∗ is the Bayes’ risk.

In some cases, it is difficult to obtain the expected risk or the a posteriori probability,

therefore for each class, a new function is evaluated and it has the name of

discriminant function. One example are the neural networks which try to find the

best discrimination boundary between classes, instead of estimating the probability

density function [23] [24].

4.2 Bayesian regularized neural network

The chosen neural network is a fully connected feed-forward network which

contains three layers: one input layer, one hidden layer and one output layer as

shown in Figure 4.1. The input layer has 90 neurons such as the length of the input

vector containing the observation features. It is observed the computation time

increases significantly for a hidden layer with a large number of nodes, while the

accuracy of the neural network is not improving significantly, therefore 10 is the

chosen number of nodes for the hidden layer. The output layer has dimension 1

since the neural network outputs a single value.

47

Figure 4.1: Neural network architecture

A problem of neural networks is the risk of overfitting, with this term is indicated

the behavior of the NN of not generalizing well the training dataset, therefore the

neural network will perform well on the training data and poorly with the test data.

There are two ways to avoid overfitting: (1) the extension of the dataset and (2) the

use of regularization. The latter is the easiest to use and the less time consuming,

therefore it is one of the most used methods for improving the algorithm’s

performance and avoid overfitting.

In a simple neural network, the sequence of training is the following:

• Using an optimal state to initialize the vector of the weights

• Each object of the training dataset is run through the network

• At each iteration a loss function is computed as the squared difference

between the expected output and the actual output

48

• Backpropagation is employed to modify the weights at each iteration in order

to minimize the cost function, which is the average of the loss functions

computed on all the training data

In this study the Bayesian regularization training algorithm is used in order to

optimize the weight and bias values, updating them according to Levenberg-

Marquardt optimization [25]. This aims to minimize the root mean squared error

(RMSE) which is expressed as:

𝑅𝑀𝑆𝐸 = √
1

𝑚
∑[𝑌𝑝(𝑗) − 𝑌(𝑗)]

2
𝑚

𝑗=1

(3)

with m is the number of predictions, Yp is the expected target output and Y is the

output of the neural network.

The root means square of the n number of weights w can be written as:

𝑅𝑀𝑆𝑊 = √
1

𝑛
∑ 𝑤𝑗

2

𝑛

𝑗=1

(4)

The function which expresses the Levenberg-Marquardt optimization can be

computed as:

49

𝑓(𝑥) =
1

2
∑[𝑓𝑗(𝑥)]

2
𝑛

𝑗=1

(5)

The function corresponding to the Bayesian Regularization objective can be

expressed as:

𝐹 = 𝛾𝑅𝑀𝑆𝑊 + 𝜆𝑅𝑀𝑆𝐸

(6)

Where 𝛾 and 𝜆 are parameters of the function.

The steps carried out by the Bayesian Regularization optimization are the following:

1. Before the first training step, the network weights, 𝛾 and 𝜆 have to be

initialized. After the first iteration, these values will be obtained from the

previous iteration.

2. The Levenberg-Marquardt optimization function (equation 5) is used in

order to minimize the Bayesian Regularization objective equation F

(equation 6).

3. Estimation of 𝛾 and 𝜆.

4. Iteration of the previous steps until convergence of the network.

4.3 Training and results of the neural network

The training of the neural network has been carried out in Matlab. The data have

first been divided into two datasets: (a) a training dataset containing 80% of the

data, (b) a testing dataset containing the remaining 20% of the dataset. The division

function choses the indices for the two partitions randomly.

To build the neural network the Matlab function patternnet which requires the input

arguments listed in Table 4.1.

50

Input Input argument Description

hiddenSizes 10
Size of the hidden layers of the

network, expressed as a row vector

trainFcn ‘trainbr’

Network training function, in this

case Bayesian regularization

backpropagation

performFcn ‘mse’
Mean squared normalized error

performance function

Table 4.1: patternnet function inputs

Figure 4.2: Neural Network model

51

The dataset and the classes are fed separately to the neural network which is then

trained. The training stopped at epoch 79 and gave the results listed in Table 4.2.

Unit Initial value Stopped value

Epoch 0 79

Performance (MSE) 0.758 0.00223

Gradient 0.89 0.00092

Mu 0.005 500

Effective # Parameter 921 93.2

Sum Squared Param… 36.9 83.9

Table 4.2: Neural Network training results

52

Figure 4.3: Neural Network training performance plot

It is now necessary to verify the if the results achieved by the training algorithm are

satisfactory. The plot in Figure 4.3 represents the performance of the neural

network, measured in term of mean squared error. It shows a rapid decrease for

both training and test set as the neural network was trained, reaching a minimum

at the last epoch. Unlike other training algorithms, the Bayesian regularization

backpropagation does not need a validation set. The reason is that the use of

validation is itself of form of regularization but, as the name suggests, this algorithm

applies its own form of regularization.

There are other plots and parameters necessary to evaluate the training

performance of the neural network, one of them is the confusion matrix (Figure 4.4)

53

A confusion matrix is an n x n matrix, where n is the number of target classes, which

compares the results of the classification predicted by the neural network with the

actual target values. The cells of the diagonal contain the percentage of the cases

correctly classified and the off-diagonal cells contain the cases not correctly

classified.

It can be noticed that the training confusion matrix has reached an accuracy of

nearly 100%. It means that the weights of the neural network are perfectly

Figure 4.4: Neural Network confusion matrices

54

calibrated to classify the training data, but this is not a certainty that it will classify

new data with the same accuracy. As a matter of fact, the test confusion matrix

shows that the accuracy reached for new data is smaller with a tendency to

misclassify the class 0 (normal driving behavior), maintaining however an

acceptable accuracy.

The next useful plot is represented by the error histogram (Figure 4.5). It shows the

distribution of the errors committed by the neural network on the testing instances.

It has a normal distribution with the majority of errors near zero.

Figure 4.5: Neural Network error histogram

55

The regression plot (Figure 4.6) is another indicator of how well the trained neural

network has fit the data, where the outputs of the neural network and the

corresponding targets are plotted. The most important parameter computed with

this analysis is the correlation coefficient R and indicates how strong the linear

relationship between outputs and targets is. The closer its value is to 0, the weaker

the correlation is. The closer its value is to 1, the stronger the correlation is. This

relationship can be graphically seen by how close the fit line is to the diagonal

dashed line.

Figure 4.6: Neural Network regression plots

56

The ROC (Receiver Operating Characteristic) curve (Figure 4.7) is a plot with false

positives rate on the X-axis and true negatives rate on the Y-axis for every

classification threshold. The area under the curve (AUC) measures the capacity of

discrimination. the more the AUC is close to 1, the more accurate the classification

is.

Figure 4.7: Neural Network ROC plots

57

The last plots (Figure 4.8) represent the progression of the training algorithm

parameters during the training. In conclusion the performance results after the

neural network training show an acceptable accuracy, therefore it can now be tested

in real-time in the driving simulator.

Figure 4.8: Progression of Neural Network training parameters

58

5 TESTING OF THE CLASSIFIER IN A REAL-TIME

SIMULATION

The final test consists in a co-simulation with SCANeR and Simulink. The interactive

vehicle is driven in SCANeR and the data is collected with Simulink in the same way

as the first simulation.

To be analyzed by the neural network, the input must be in the same form of the

training data, therefore the signals coming from SCANeR have to be divided into 5

seconds MP and the features have to be computed for every period. To achieve this

objective a technique called sliding window is employed. The Simulink block used is

the buffer block, where the output buffer size (M0) and the buffer overlap (L) are set

to 50 and 40 respectively. The buffer L samples from the previous output, it adds M0

– L new samples from the input signal and propagates it as the new output. The

resulting output frame period is computed with the equation

𝑂𝑢𝑡𝑝𝑢𝑡 𝐹𝑟𝑎𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑 = (𝑀0 − 𝐿) 𝑇𝑠𝑖

with Tsi as the input sample period. Since in this case the sample period is 0.1s, the

resulting output frame period will be 1s. This means that every second a new frame

will be outputted, which includes 40 timesteps from the previous frame and 10 new

timesteps.

Every signal corresponding to a different variable coming from the vehicle, is

connected to a buffer. From each output frame coming from the buffer, the statistical

features are computed (Figure 5.1). The resulting features of every variable are

joined together to create a vector.

59

Figure 5.1: Simulink model for sliding window and feature calculation

The resulting vector of size 90 is fed to the trained pattern recognition neural

network (Figure 5.2). The NN outputs a value ranging between 0 and 1 which is

connected to a switch and if it exceeds a threshold of 0.85, the assertion block will

display a message and a red signal explaining that an aggressive behavior has been

detected.

60

Figure 5.2: Neural Network Simulink model

Figure 5.3: Simulink model for real-time classification

For this simulation the same scenario as the one for data collection is kept.

61

The SCANeR modules are started, the Simulink and SCANeR simulations are run and

the interactive vehicle can now be driven freely.

Utilizing Simulink’s data inspector is possible to display the output of the neural

network and the assertion signal (Figure 5.4). Comparing the data of longitudinal

acceleration with the results from the NN (Figure 5.5), it can be noted that for the

highest peaks of this variable the neural network recognizes an aggressive behavior.

Another confirmation of the NN effectiveness comes from the comparison of its

output with the brake force (Figure 5.6), it classifies hard braking as aggressive

behavior.

Figure 5.4: Comparison between Neural Network output and assertion block signal

62

Figure 5.5: Comparison between lateral acceleration signal and assertion block
signal

Figure 5.6: Comparison between brake force signal and assertion block signal

63

6 CONCLUSIONS AND FUTURE WORK

The aim of this thesis was to drive freely an interactive vehicle in a custom scenario

using the driving simulator SCANeR. Timeseries of nine chosen kinematic variables

are collected with Matlab/Simulink and a dataset is created. In order to train a

pattern recognition algorithm to classify normal and aggressive behavior, the

dataset is divided into 5 seconds windows with 4 seconds of overlap and for every

window, ten statistical features are computed. Every 5 seconds observation is now

characterized by ninety values and needs to be labeled. For the labeling the Iterative

DBSCAN approach is adopted. The observations have to be divided into elementary

driving behaviors and subsequently assigned to one of two classes, the first

representing the normal profile characterizing an EDB and the second representing

the outlier observations considered as aggressive driving. The labeled dataset is

used to train a pattern recognition neural network with Bayesian regularization

backpropagation in Matlab environment. The trained neural network is finally

tested in real-time with SCANeR driving simulator and Simulink.

For what concerns the dataset labeling with unsupervised learning, the collected

statistical indicators confirm the consistency of the results. The average and

maximum speed and acceleration are significantly greater for the potential

aggressive behavior with respect to the normal one. Another indicator is the

standard deviation that explains the variability of the data. As expected, the

variability is greater for the aggressive driving since it represents a more

heterogeneous category than the normal profile which is a unified cluster.

The final results coming from the testing in real-time of the neural network show an

acceptable accuracy in recognizing an aggressive behavior. Comparing the NN

output and variable signals such as brake force and acceleration points out the

64

relationship between aggressive driving events and peaks of acceleration and

braking force.

Despite the achieved results, there are different aspects of this work that could be

further explored or improved, for example, a more advanced driving setup can be

utilized in the phase of data collection in order to best replicate real driving

conditions. Another improvement relative to the same phase would be an increased

amount of data collected and an employment of different drivers to train the

algorithm on different driving profiles. A comparison between different classifier

could also be conducted in order to analyze the performance of different algorithms.

65

REFERENCES

[1] National Highway Traffic Safety Administration, «Aggressive Driving

Enforcement: Evaluation of Two Demonstration Programs,» March 2004.

[2] AAA Foundation for Traffic Safety, «Aggressive Driving: Research Update,»
April, 2009.

[3] AVSimulation, «SCANeR™studio’s documentation».

[4] V. Gatteschi, A. Cannavò, F. Lamberti, L. Morra e P. Montuschi, «Comparing
algorithms for aggressive driving event detection based on vehicle motion
data,» in IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, pp. 53-68.

[5] M. Hosseinzadeh, «4 - Robust control applications in biomedical engineering:
Control of depth of hypnosis,» in Control Applications for Biomedical
Engineering Systems, Ahmad Taher Azar, 2020, pp. 89-125.

[6] H. R. Eftekhari and M. Ghatee, «Hybrid of discrete wavelet transform and
adaptive neuro fuzzy inference system for overall driving behavior
recognition,» Transp. Res. Part F, Traffic Psychol. Behav., vol. 58, p. 782–796,
2018.

[7] S.-R. G. Christopoulos, S. Kanarachos, and A. Chroneos, «Learning driver
braking behavior using smartphones, neural networks and the sliding
correlation coefficient: Road anomaly case study,,» IEEE Trans. Int. Transp.
Syst., vol. 20, n. 1, pp. 65-74, 2019.

[8] Y. Ma, Z. Zhang, S. Chen, Y. Yu, and K. Tang, «A comparative study of aggressive
driving behavior recognition algorithms based on vehicle motion data,» IEEE
Access, vol. 7, p. 8028–8038, 2018.

[9] Y.-T. Liu, Y.-Y. Lin, S.-L. Wu, C.-H. Chuang, M. Prasad e C.-T. Lin, «EEG-based
Driving Fatigue Prediction System Using Functional-link-based Fuzzy Neural
Network,» in International Joint Conference on Neural Networks (IJCNN), 2014.

[10] D. Wei e H. Liu, «Analysis of Asymmetric Driving Behavior Using a Self-
Learning Approach,» Transportation Research. Part B: Methodological, vol. 47,
pp. 1-14, 2013.

[11] G. Castignani, T. Derrmann, R. Frank, and T. Engel, «Smartphone-based
adaptive driving maneuver detection: A large-scale evaluation study,» IEEE
Trans. Intell. Transp. Syst., vol. 18, n. 9, p. 2330–2339, 2017.

66

[12] L. Eboli, G.Mazzulla, and G. Pungillo, «Combining speed and acceleration to
define car users’ safe or unsafe driving behaviour,» Transp. Res. Part C, Emerg.
Technol., vol. 68, pp. 113-125, 2016.

[13] G. Zylius, «Investigation of route-independent aggressive and safe driving
features obtained from accelerometer signals,» IEEE Intell. Transp. Syst. Mag.,
vol. 9, n. 2, p. 103–113, 2017.

[14] M. U. Ahmed and S. Begum, «Convolutional neural network for driving
maneuver identification based on inertial measurement unit (IMU) and global
positioning system (GPS),» Front. Sustain. Cities, vol. 23, n. 1, p. 34, 2020.

[15] A. Yuksel and S. Atmaca, «Driver’s black box: A system for driver risk
assessment using machine learning and fuzzy logic,,» J. Intell. Transp. Syst.,, vol.
25, n. 5, pp. 482-500, 2021.

[16] C. Marks, A. Jahangiri e S. G. Machiani, «Iterative DBSCAN (I-DBSCAN) to
identify aggressive driving behaviors within unlabeled real-world driving
data,» Proceedings of the 22nd Intelligent Transportation Systems Conference,
2019.

[17] D. Unzueta, «Unsupervised Learning: K-Means Clustering,» 5 April 2022.
[Online]. Available: https://towardsdatascience.com/unsupervised-learning-
k-means-clustering-6fd72393573c.

[18] X. Wang, A. J. Khattak, J. Liu, G. Masghati-Amoli, and S. Son, «What is the level
of volatility in instantaneous driving decisions?,» Transportation Research
Part C: Emerging Technologies, vol. 58, p. 413–427, 2015.

[19] A. Jahangiri, S. G. Machiani, and V. Balali, «Big data exploration to examine
aggressive driving behavior in the era of smart cities,» in Data Analytics For
Smart Cities, Boca Raton, FL, USA, CRC Press, Taylor & Francis Group, 2019, p.
163–182.

[20] J. S. M. E. H. P. K. a. X. X. Erich Schubert, «DBSCAN Revisited, Revisited: Why
and How You Should (Still) Use DBSCAN,» ACM Trans. Database Syst., vol. 42,
n. 3, 2017.

[21] K. Beyer, J. Goldstein, R. Ramakrishnan e U. Shaft, «When Is “Nearest Neighbor”
Meaningful?,» in Database Theory - ICDT'99, Jerusalem, Israel, 1999.

[22] J. Sander, M. Ester, H.-P. Kriegel e X. Xu, «Density-based clustering in spatial
databases:,» in Data Mining and Knowledge Discovery volume 2, 1998, p. 169–
194.

67

[23] L. Kuncheva e C. Whitaker, «Pattern Recognition and Classification,» in Wiley
StatsRef: Statistics Reference Online, 2015, pp. 1-7.

[24] A. R. Webb, K. D. Copsey e G. Cawley, in Statistical Pattern Recognition, John
Wiley & Sons, Incorporated, 2011.

[25] N. A. Khafaf e A. El-Hag, «Bayesian regularization of neural network to predict
leakage current in a salt fog environment,» IEEE Transactions on Dielectrics
and Electrical Insulation, vol. 25, n. 2, pp. 686-693, 2018.

[26] T. Toledo, H. Koutsopoulos e M. Ben-Akiva, «Integrated driving behavior
modeling,» Transp. Res. C Emerg. Technol., pp. 96-112, 15 2007.

68

AKNOWLEDGEMENTS

A conclusione di questo elaborato, desidero menzionare tutte le persone, senza le

quali questo lavoro di tesi non esisterebbe.

Ringrazio il mio relatore Angelo Bonfitto, che in questi mesi di lavoro, ha saputo

guidarmi, con suggerimenti pratici, nelle ricerche e nella stesura dell’elaborato.

Ringrazio di cuore tutta la mia famiglia, mia mamma Giulia, Nino, che è stato per me

come un padre; le mie sorelle Martina; Marisa e Cinzia; mio nipote Nicolò e Stefano;

le nonne Giovanna e Rita. Grazie per avermi sempre sostenuto e per avermi

permesso di portare a termine gli studi universitari.

Vorrei ringraziare la mia fidanzata Giulia, che con il suo continuo amore e supporto

mi ha permesso di compiere questo lungo percorso.

Un ringraziamento particolare va a Shailesh Hegde che ha contribuito con le sue idee

alla riuscita di questo elaborato.

Nella mia vita ho avuto la fortuna di avere accanto una seconda famiglia, quella

composta dai miei amici. Non importa se siamo cresciuti insieme, o ci conosciamo

da poco tempo perché ognuno di loro a modo suo ha avuto un peso determinante

nella mia crescita. E se sono potuto arrivare fin qui, lo devo anche a tutte le

esperienze che abbiamo condiviso. Dunque, il minimo che posso fare è dire grazie.

Ed in fine voglio rivolgere un ultimo ringraziamento al gruppo FKSKK per avermi

supportato e sopportato in questo percorso universitario.

