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A B S T R A C T

The aim of this work is to investigate the stability of negative triangularity,
magnetically confined plasmas. The work is carried out at Consorzio RFX and
within the framework of EUROfusion Tokamak Exploitation Work Package.

The chief reason behind this investigation is the recent rise in the interest
surrounding negative triangularity plasmas, seeing that they seem to be more
stable and lead to power losses lower than positive triangularity while requiring
less net auxiliary power to reach an acceptable confinement.

The stability properties of different plasmas are explored starting from the
RFX-mod shaped tokamak results and exploring projections to negative triangu-
larity. Recent discharges of the TCV experiment are then analyzed, comparing
stability properties between negative and positive triangularity plasmas. This
comparative analysis is carried out by means of two different codes, namely
CHEASE and MARS-F; the first being an equilibrium code which solves the
Grad-Shafranov equation in weak form, and the second one a linear resistive-
MHD code which solves the linear stability of a plasma.

Results obtained by numerical modeling of real plasma discharges showed that
triangularity can indeed play a role in stabilizing the resistive modes both for
low-q0 and high-q0 plasmas, while it does not significantly affect the structure
and dynamics of ideal modes.
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1
I N T R O D U C T I O N

The primary natural resources used to produce energy fall into three main
categories: fossil fuels, nuclear fuels, and sunlight, which is the driver for most
renewables. A common issue of all sources of energy is their efficiency of
utilization, which directly impacts fuel reserves and/or cost.
Most of the world’s energy, including electricity, is derived from fossil fuels,
which produce greenhouse gases. If greenhouse gases emissions are to be curbed
in the future in order to meet the commitments made by all the parties during
the COP26 while coping with the energy demand increase, new energy capacity
will have to be met by a combination of nuclear, hydroelectric, renewable
sources.
The primary use of nuclear power is the large-scale generation of base load
electricity by fission nuclear reactors. Notwithstanding the pubic concern about
the use of nuclear energy, analyses and studies carried out since nuclear energy
was established show that it is considerably safer than other energy sources and
will likely be one of the main practical solutions for the future production of
CO2 free electricity.
Fusion is a form of nuclear energy. Its main application is the production of
electricity in large base load power plants. The main advantages of fusion power
are environmental impact and safety. Considering the environmental impact,
fusion reactions produce no CO2 or other greenhouse emissions. Also, they
do not emit any other harmful chemicals into the atmosphere. The biggest
environmental issue in the context of an hypothetical fusion reactor is that
one byproduct is a high-energy neutron. However, these neutrons are captured
in the blanket, hence they pose no threat to the public. Nonetheless, induced
radioactivity can occur within the structural materials as neutrons pass through
it on their way to the blanket; yet, this radioactive structural material has a
short half-life so that the storage time required once it is removed is also short,
on the order of 100 years, far less than the storage time required for long-lived
nuclear waste. The potential advantages of fusion are indeed impressive from
this point of view.

Thermonuclear fusion happens when a gas is sufficiently hot for the thermal
motion of the nuclei to become so fast that they may overcome the repulsive
Coulomb barrier and come close enough for the attractive nuclear forces to
bring about the fusion reactions. This highly heated, ionized gas takes the name
of plasma. A plasma is often presented as a completely ionized gas, consisting of
freely moving positively charged ions, or nuclei, and negatively charged electrons.
A more precise definition was given by Chen [1]: a plasma is a quasi-neutral
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20 introduction

gas of charged and neutral particles which exhibits collective behavior. Fusion
reactions involve light elements, mainly hydrogen (H) and its isotopes deuterium
(D) and tritium (T); the last two are expected to be the main fuel for fusion
reactors, due to the higher reaction rate at achievable temperatures.
Two methods of plasma confinement are currently being pursued: magnetic
confinement and inertial confinement. The latter will not be considered in the
present work. This thesis is set instead in the magnetic confinement framework,
where a hot plasma is confined by means of external magnetic fields.

This thesis deals with some of the major issues connected to the achievement
of a stable configuration for negative triangularity (NTR) tokamak plasmas,
investigating the possible ideal kinks and instability modes through the use
of computational codes. Over the span of around 30 years, the interest in
this configuration raised considerably as a consequence of a modern reactors
research line where not only the magnetic confinement but power exhaust and
plasma stability as well are recognized as major issues. Experimental results
seem to indicate that NTR plasmas keep L-mode edge characteristics for higher
heating power with respect to positive triangularity (PTR) plasmas, leading to a
significant mitigation of type-I ELMs bursts. Nevertheless, negative triangularity
changes the plasma stability properties, which will be analyzed in this work.

The MHD theory which describes the behavior of a plasma is briefly presentedChapter 2
in Chapter 2.
In section 2.1 the MHD equilibrium equations are obtained. Section 2.2 is
dedicated to the equilibrium theory for a tokamak configuration and to the
description of the most important figures of merit for plasma equilibrium.
Section 2.3 addresses the problem of linear stability. The different instabilities
are finally discussed in section 2.4.

Chapter 3 describes the features of negative triangularity plasmas. In sectionChapter 3
3.1 a brief introduction to plasma confinement is provided, while section 3.2
exclusively focuses on NTR, featuring a summary of the experimental evidences
obtained in the last three decades. Short presentations on the Tokamak à
configuration variable (TCV) and on the RFX-mod machine conclude this
chapter.

In Chapter 4 the results of the analyses carried out on real plasma dischargesChapter 4
of TCV and RFX-mod in tokamak configurations are presented and discussed.
The analyses are performed by means of numerical codes for equilibrium solution
(CHEASE) and linear resistive stability (MARS-F).
A summary of the work is provided in Chapter 5.
Appendices feature a broader description of the codes and the modeling frame-
work used for the analyses, the workflows and the resistivity implementation in
MARS-F.



2
M H D E Q U I L I B R I U M A N D S TA B I L I T Y

According to plasma physics textbooks, such as Goedbloed [2], a fusion plasma
is a fully ionized gas where charged particles are subject to long range Coulomb
interactions, this making the plasma a very good conductor. The needed amount
of ionization, i.e. the ratio of ionized particles over the neutral ones, is described
by the Saha equation, which gives an expression for the amount of ionization of
a gas in thermal equilibrium:

ni
nn

=

A
2πmekB
h2

B3/2
T 3/2

ni
e

− Ui
kBT

whereme is the mass of an electron, h is the Planck’s constant, kB is Boltzmann’s
constant and Ui the ionization energy (typical value is 13.6eV for hydrogen).
Considering typical values for those constants and hydrogen in a tokamak
machine, with expected temperature T ≃ 108 K and densities n = ne =

ni ≃ 1020m−3, one finds that Ui ≪ kBT , hence e− Ui
kBT ≃ 1 and ni

nn
≃ 1013 ≫

1. Thermonuclear fusion plasmas have typical densities and temperatures of
respective order n ∼ 1020 m−3 and T ∼ 10keV = 116MK.
The condition for controlled fusion reactions, instead, is expressed by the Lawson
criterion, also referred to as triple product:

nTτ ≥ 3 · 1021m−3 s keV (3.5 · 1028m−3 s K)

being τ = τE the energy confinement time.

The reason for good plasma conductivity lies in its microscopic behavior:
high temperature and low density cause Coulomb collisions to be very rare
and thus resistance to be very low. However, describing plasma starting from
a microscopic approach would require enormous efforts in both mathematical
and computational terms.
The chapter is structured as follows: section 2.1 introduces the standard single-
fluid model for the description of a plasma, namely the MHD model. An
analysis of some of the terms appearing in the equations will also be provided.
In section 2.2 the derivation of the Grad-Shafranov equation is illustrated.
Finally, some figures of merit for plasma equilibrium description are discussed.
Section 2.3 is devoted to the introduction of the stability theory applied to
MHD equations, with a mathematical representation by means of the equation
of motion involving the plasma displacement vector field, followed by a brief
examination of another one by means of variational quadratic forms. Section
2.4 concludes this chapter with a discussion of the major plasma instabilities.
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22 mhd equilibrium and stability

2.1 plasma description

2.1.1 MHD model
Magneto-hydro-

dynamics In a sufficiently collisional plasma both electrons and ions move at the same
average velocity and have the same temperature, and can therefore be treated
as a single fluid. In other words, the separate identities of the ions and electrons
do not appear. Equations 1, 2 and 3 are namely the mass conservation, total
momentum and energy equation for a plasma

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0 (1)

ρ

A
∂v⃗

∂t
+ v⃗ · ∇⃗v⃗

B
= ȷ⃗× B⃗ − ∇⃗p (2)

D

Dt

A
p

ργ

B
= 0 where

D

Dt
=

∂

∂t
+ v⃗ · ∇⃗ (3)

Due to the ȷ⃗× B⃗ term appearing in the system of PDEs, a coupling to the
magnetic field becomes necessary. This coupling calls upon Maxwell’s equations.
The current density ȷ⃗ is given, under the good hypothesis of small displacement
current, by Ampère’s law (equation 4), while the rate of change of B⃗ is given
by Faraday’s law (equation 5)

µ0ȷ⃗ = ∇⃗ × B⃗ (4)

∂B⃗

∂t
= −∇⃗ × E⃗ (5)

It is now necessary to express the electric field in terms of the other variables.
If the plasma is supposed to be perfectly conducting, in the local frame of the
moving fluid no electric field can be sustained. This condition is expressed by
the ideal Ohm’s law

E⃗ + v⃗ × B⃗ = 0 (6)

Equations 1-6, together with the solenoidal condition for B⃗, ∇⃗ · B⃗ = 0 constitute
the ideal MHD model.
It is interesting to point out that, if the electric field is made explicit from
equation 6 and plugged into equation 5, a relation between B⃗ and v⃗ is obtained

∂B⃗

∂t
= ∇⃗ ×

1
v⃗ × B⃗

2
(7)



2.1 plasma description 23

This relation implies that the magnetic field lines move with the plasma velocity
v⃗. Since plasma infinitesimal volume elements do not split into two (otherwise
v⃗ would have to be discontinuous), a magnetic field line that moves with the
plasma cannot be broken.
If instead the plasma is considered to be a non-perfect conductor with resistivity Resistive

plasmaη, Ohm’s law becomes

E⃗ + v⃗ × B⃗ = ηȷ⃗ (8)

and substituting now equation 8 into equation 5, the obtained result is similar
to the induction law 7, but with a new term due to resistivity appears

∂B⃗

∂t
= ∇⃗ ×

1
v⃗ × B⃗

2
− ∇⃗ × (ηȷ⃗) (9)

Equation 9 implies that the magnetic field lines again move with the plasma
velocity but, in addition to this motion, the magnetic field changes in time due
to a new term ∇⃗ × (ηȷ⃗). The tearing of a field line requires the tearing of a fluid
element and this is not a physically allowable motion. It is for this reason that
even a small resistivity can have a large impact on plasma stability. Resistivity
allows magnetic field lines to diffuse through the plasma so that the frozen-in
topological constraint expressed by equation 7 is removed. A measure of the
diffusivity of the plasma can be obtained by substituting Ampère’s law 4 into
equation 9

∂B⃗

∂t
= ∇⃗ ×

1
v⃗ × B⃗

2
− ∇⃗ ×

A
η

1
µ0

∇⃗ × B⃗

B
(10)

Considering the relation

∇⃗ ×
A
η

µ0
∇⃗ × B⃗

B
=

η

µ0
∇⃗
1
∇⃗ · B⃗

2
− η

µ0
∇2B⃗ = − η

µ0
∇2B⃗

under the hypothesis of uniform η
µ0

and exploiting the fact that the magnetic
field is solenoidal. It is therefore possible to rewrite the above equation, defining
the magnetic diffusivity Dη = η/µ0[m2/s], as

∂B⃗

∂t
= ∇⃗ ×

1
v⃗ × B⃗

2
+Dη∇2B⃗ (11)

It is clear from equation 11 that the magnetic field moves with velocity equal to
the plasma velocity v⃗, and it diffuses with a diffusion coefficient Dη. The fact
that the magnetic field diffuses implies that magnetic field lines can be broken.
In general, the resistive form of Ohm’s law is only needed in regions of high
current concentration, which are usually extremely thin. Still, such current sheets
do actually occur and play an important role in models for the aforementioned
disruptive phenomena.
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2.1.2 Spitzer’s resistivity model and Lundquist number

More accurate calculations involving kinetic plasma models, as discussed in [3],
show that the actual resistive Ohm’s law is of the form

E⃗ + v⃗ × B⃗ = η∥ȷ⃗∥ + η⊥ȷ⃗⊥

where subscripts ∥ and ⊥ refer to the directions parallel and perpendicular to
the magnetic field.
The resistivity is therefore anisotropic, and the more accurate value of the
parallel resistivity is reduced by a factor of about 1/2: η∥ = 0.51η.
Spitzer [4] discussed the formula for the resistivity coming from classical models

η =
meν

nee2

since in a fully ionized gas there is some uncertainty as to the appropriate value
of ν to use. A rough estimate is obtained by using ν = νe electron collision
frequency. Spitzer et al. [4] [5] found that, for singly charged ions, the resistivitySpitzer

resistivity is well described by the formula

η∥ = 0.51e
2m1/2

e ln Λ
3ε2

0(2π)3/2 T−3/2
e = 1.65 · 10−9 ln Λ T−3/2

e Ωm Te in keV (12)

They also found a relation between the perpendicular and the parallel resistivity

η∥ = η⊥F (Z)

For Z=1, for example, it is found that η∥ = η⊥/1.96.
Equation 12 can be generalized: for a collisional plasma composed of a single
specie of ions of charge Z, the plasma resistivity is approximately given by the
formula

η∥(Z) = N(Z)Zη∥(1) (13)

where η∥(1) is the resistivity given by equation 12. Calculations of values of
N(Z) were carried out by Spitzer and Härm and are tabulated [5]. Thus, the
resistivity decreases with temperature η ∼ 1/T 3/2 as the plasma is heated,
implying a corresponding decrease in heating efficiency. Resistivity allows a
wider range of possible instabilities than ideal MHD. However, these instabilities
have much slower growth rates and usually do not lead to a macroscopic loss
of plasma, but instead to enhanced transport losses. Furthermore, even in the
absence of resistive instabilities, resistivity still represents the only dissipation
term in the momentum equation. This dissipation gives rise to particle diffusion
and magnetic field diffusion, representing two main transport losses. Here too,
the phenomena occur on much slower time scales than the characteristic MHD
time scale.
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It is possible to characterize the strength of the resistive term using the charac-
teristic time of the magnetic field diffusion

τη =
L2

η

where L is the characteristic length of the system.
The importance of the resistivity in the plasma is measured by comparing this
characteristic time with the Alfvén time

τA =
L

vA

where

vA =
B

√
ρµ0

This comparison gives the Lundquist number S, which is a particular case of Lundquist number
the magnetic Reynols number when the typical velocity scale of the system is
the Alfvén velocity vA

S =
τη
τA

=
BL

η

ó
µ0
ρ

(14)

In this work the effect of the variation of Lundquist number (therefore the
variation of the resistivity) on plasma stability will be considered.

2.2 tokamak configuration equilibrium

2.2.1 The Grad-Shafranov equation

Up to now, no hypotheses were made about the geometry where the MHD
equations should be solved. For the purposes of this work, the set of coordinates
which will be considered is the toroidal one for a tokamak machine: being R
the major radius, ϕ the toroidal angle and Z the vertical coordinate, in order to
have a right-handed coordinate system rotating counterclockwise, the set has to
be (R, ϕ, Z). Given such coordinates, the magnetic field B⃗ can be written as:

B⃗ = Bϕêϕ + B⃗p = Bϕêϕ +BRêR +BZ êZ

where B⃗p is the poloidal field, lying on the (R,Z) plane.

When dealing with a static, axisymmetric equilibrium, that is an equilibrium
presenting no variation in time and independent upon the toroidal angle ϕ, the
requirements are:

∂∗
∂t

=
∂∗
∂ϕ

= 0 v⃗ = 0
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therefore, equations 1-3 reduce to

ȷ⃗× B⃗ = ∇⃗p (15)

which is the fundamental condition for a tokamak equilibrium: there must be
internal balance between the pressure of the plasma and the forces due to the
magnetic field. In an axisymmetric equilibrium, the magnetic surfaces will form
a set of nested toroids rotating around the center of the tokamak, as shown in
figure 1.

Figure 1: Magnetic surfaces forming nested toroids [5].

In order to study such a configuration, it is useful to introduce the poloidal
flux function ψ within each magnetic surface. This function is constant on a
given magnetic surface, and is defined as

ψ =
Ú
B⃗p · dS⃗ψ (16)

The definition of the poloidal surface element over which the integral is carried
out is presented in figure 2. The poloidal flux function here defined is associated
with a unit angle in ϕ. In some books its definition is slightly different, such as
in Freidberg’s book [6], and it is simply larger by a factor 2π.
From this definition it follows that, in a toroidal coordinate system

BR = − 1
R

∂ψ

∂Z

BZ =
1
R

∂ψ

∂R

In this sense, the poloidal flux acts as a stream function for the poloidal magnetic
field. In a more compact notation, it is possible to write

B⃗p =
1
R

∇⃗ψ × êϕ (17)

The very same can be done for the current density ȷ⃗, defining a current flux
function f and obtaining the relation

ȷ⃗p =
1
R

∇⃗f × êϕ (18)
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Figure 2: Poloidal and toroidal surface elements dSψ and dSϕ [2].

For a static, axisymmetric equilibrium, an expression for f using Ampère’s law
can be provided

∇⃗ × B⃗ = µ0ȷ⃗ =⇒

ȷR = − 1
µ0

∂Bϕ

∂Z

ȷZ = 1
µ0

1
R
∂(RBϕ)
∂R

(19)

and the only way to let those quantities be equal to 18 is setting

f =
RBϕ
µ0

(20)

Now the expressions for B⃗ and ȷ⃗ can be substituted in the momentum equation
2. Before doing that, an interesting step to carry out is decomposing equation
2 into two components along B⃗ and ȷ⃗. Considering the projection on B⃗, and
recalling that ȷ⃗× B⃗ is a quantity orthogonal to both ȷ⃗ and B⃗

B⃗ · ȷ⃗× B⃗ = B⃗ · ∇⃗p =⇒ B⃗ · ∇⃗p = 0

which can be rewritten, using equation 17, as

êϕ · ∇⃗ψ × ∇⃗p = 0 (21)

Equation 21 has the general solution

p = p(ψ) (22)
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Thus, there is no pressure gradient along the magnetic field lines, and the
magnetic surfaces are surfaces of constant pressure. It is important to notice
that the use of ψ leads to having the pressure dependent upon a single variable,
even though the geometry is two dimensional.
The same considerations can be made for ȷ⃗, showing that the pressure is constant
not only on the magnetic surfaces but also along the current lines

ȷ⃗ · ȷ⃗× B⃗ = ȷ⃗ · ∇⃗p =⇒ ȷ⃗ · ∇⃗p = 0

which can be rewritten, using equation 18, as

êϕ · ∇⃗ψ × ∇⃗
A
RBϕ
µ0

B
= êϕ · ∇⃗ψ × ∇⃗f = 0 (23)

hence, equation 23 shows that f is a free function too, depending only on ψ

f = f(ψ) (24)

Equation 2 can be rewritten as

ȷ⃗p × êϕBϕ + ȷϕêϕ × B⃗p = ∇⃗p (25)

and substituting equations 17 and 18 into 25

∇⃗p = −
Bϕ
R

∇⃗f +
ȷϕ
R

∇⃗ψ (26)

Using now the results obtained from equations 22 and 24, it is possible to write
an equation where the only unknowns are ȷϕ and ψ.
First of all, due to the previous results, it is possible to write

∇⃗f(ψ) = df

dψ
∇⃗ψ ∇⃗p(ψ) = dp

dψ
∇⃗ψ

From equation 20 an expression for Bϕ can be obtained

Bϕ = f
µ0
R

(27)

and ȷϕ is made explicit from equation 26

ȷϕ = R
dp

dψ
+
µ0
R
f
df

dψ
(28)

The final step consists in exploiting the previously neglected last component of
Ampère’s law, in equation 19

µ0ȷϕ =
∂BR
∂Z

− ∂BZ
∂R

= − 1
R

∂2ψ

∂Z2 − ∂

∂R

A
1
R

∂ψ

∂R

B
(29)
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Finally, the combination of equations 29 and 28 (changing signs and multiplying
by µ0 and R) provides the Grad-Shafranov equation

R
∂

∂R

A
1
R

∂ψ

∂R

B
+
∂2ψ

∂Z2 = −µ0R
2 dp

dψ
− µ0

2f(ψ)
df

dψ
(30)

or in an alternative form

R
∂

∂R

A
1
R

∂ψ

∂R

B
+
∂2ψ

∂Z2 = −µ0R
2p′(ψ) − µ0

2f(ψ)f ′(ψ) (31)

Equation 30 is typically solved by means of numerical codes. An example of
output of such codes is shown in figure 3: the aforementioned nested toroids
formed by magnetic surfaces are found to be level surfaces of the solutions of
the Grad- Shafranov equation.

Figure 3: Profiles for toroidal field, pressure and current obtained by solving the
Grad-Shafranov equation (on the right). The magnetic surfaces show the
typical D-shape (on the left) [5].
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2.2.2 Figures of merit for plasma description

Among the different figures of merit for a fusion relevant plasma, two stand out.
The first one is the safety factor q. Its values, especially the rational ones, play
a role in determining plasma stability. Its values represent a physical behavior
of the magnetic field lines, namely the variation in angle ∆ϕ required to the
field line to return to its starting position on the poloidal plane

q =
∆ϕ
2π

For a large aspect ratio tokamak with circular cross section, a good approxima-
tion for the safety factor is

q =
rBϕ
RBp

where r is the minor radius of the given flux surface which q is evaluated at.
From this relation, it is clear that q will present its minimum at, or close to, the
magnetic axis, and increasing while moving outward. For plasmas which present
a limiter, the former relation persists for non-circular plasmas [5]. Nonetheless,
precise values can be evaluated by numerical solution of the equilibrium. Other-
wise, should the plasma present a separatrix or divertor configuration, the q
profile is modified, due to the contributions close to the X-point.

The second fundamental parameter that ought to be mentioned is the β factor.
Defined as the ratio of kinetic to magnetic pressure

β =
p

B2/2µ0
,

it evaluates the efficiency of confinement of plasma pressure by the magnetic
field. The achievable value of β is often limited by plasma instabilities. Different
betas are used to describe a reactor plasma; among them the two most utilized
are the toroidal beta βT , defined as the ratio of the kinetic pressure to the
toroidal magnetic field pressure:

βT =
⟨p⟩

B2
ϕ/2µ0

and the normalized beta βN obtained by normalizing βT with respect to the
plasma current itself (Bϕ being the toroidal magnetic field):

βN = βT
aBϕ
I
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2.3 mhd stability

2.3.1 Ideal MHD stability
MHD stability

The idea behind linear stability is to study the behavior of a dynamic system (in
this case: the plasma) with respect to small (i.e. infinitesimal) perturbations.
Considering a generic quantity A (it might be a scalar or a vector quantity), it
can be linearized around its equilibrium value [6]

A = A(r⃗, t) = A0(r⃗) +A1(r⃗, t) (32)

with the main assumption

∥A1∥
∥A0∥

≪ 1 (33)

It is fundamental to notice that, while the equilibrium value depends only on
space, the perturbed quantity also depends upon time.
With this idea, all the quantities figuring in the ideal MHD equations are
linearized. The only quantity which presents a slightly different linearized form
from the others is the velocity: since its equilibrium value is zero (hp. static
equilibrium), its linearized form is simply

v⃗(r⃗, t) = v⃗1(r⃗, t) (34)

By substitution in the MHD set of equations (mass, momentum, energy and
Maxwell’s), the linearized set can be obtained.
As an example, the momentum equation would have the following form

(ρ0 + ρ1)

A
∂v⃗1
∂t

+ v⃗1 · ∇⃗v⃗1

B
= (ȷ⃗0 + ȷ⃗1) × (B⃗0 + B⃗1) − ∇⃗(p0 + p1) (35)

From this one, performing multiplications and retaining only the first order
terms

ρ0
∂v⃗1
∂t

= ȷ⃗1 × B⃗0 + ȷ⃗0 × B⃗1 − ∇⃗p1 (36)

To avoid the issue of the time integration, a lagrangian displacement vector
ξ⃗(r⃗, t) of a plasma element from its equilibrium position can be introduced. The
fluid velocity v⃗(r⃗, t) then becomes the lagrangian derivative of the displacement

v⃗ =
∂ξ⃗

∂t
+ v⃗ · ∇⃗ξ⃗ ≈ v⃗1 =

∂ξ⃗

∂t
=⇒ ∂v⃗1

∂t
=
∂2ξ⃗

∂t2
(37)

since the ∇⃗ξ⃗ term is a second order one.
By exploiting the displacement quantity in the linearized MHD equations, after
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time integration and after making the quantities p1, ρ1, B⃗1, ȷ⃗1 explicit, a useful
expression of the momentum equation can be obtained

ρ0
∂2ξ⃗

∂t2
= ∇⃗(ξ⃗ · ∇⃗p0 + Γp0∇⃗ · ξ⃗) + ȷ⃗0 × [∇⃗ × (ξ⃗ × B⃗0)]+

1
µ0

∇⃗ × [∇⃗ × (ξ⃗ × B⃗0)] × B⃗0

(38)

or, in a more compact form

ρ0
∂2ξ⃗

∂t2
= F (ξ⃗) (39)

The term F (ξ⃗) is called force operator; Γ is the adiabatic index.
The quantity ∇⃗ × (ξ⃗ × B⃗0) is the perturbed field B⃗1, and ȷ⃗0 can be written,
from Ampère’s law, as ∇⃗ × B⃗0. Those redefinitions lead to an alternative form
of the force operator

F (ξ⃗) = ∇⃗(ξ⃗ · ∇⃗p0 + Γp0∇⃗ · ξ⃗) + (∇⃗ × B⃗0)× B⃗1 +
1
µ0

(∇⃗ × B⃗1)× B⃗0 (40)

In equation 38, each one of the terms of the force operator has a physical
meaning

• ∇⃗(ξ⃗ · ∇⃗p0) represents a force due to the equilibrium pressure gradient;
this may cause instabilities;

• ∇⃗(Γp0∇⃗ · ξ⃗) represents an isotropic force due to the plasma compressibility;
it is associated with stable plasma perturbations;

• ȷ⃗0 × B⃗1 represents a force due to the equilibrium current; this term may
also lead to instabilities;

• 1
µ0
(∇⃗ × B⃗1) × B⃗0 = − 1

µ0
B⃗0 × (∇⃗ × B⃗1) represents a force orthogonal to

B⃗, due to field line bending.

2.3.2 Normal modes

Separating the variable for the quantity ξ⃗ and writing the solution in the form
of normal modes

ξ⃗(r⃗, t) = ξ̂(r⃗)e−iλt (41)

where λ = γ + iω.This leads to the following form of equation 39

ρ0
∂2ξ⃗

∂t2
= −ρ0λ

2ξ̂ = F (ξ̂) (42)
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Equation 42 represents the stability problem as an eigenvalue problem. In Eigenvalue
problemgeneral, the eigenvalue λ is a complex quantity. A property of the force operator

is its self-adjointness for ideal MHD; as a consequence, the eigenvalues λ2 are
forced to be purely real. Hence, considering only its real part γ:

• if γ2 > 0 then the perturbations are stable oscillations;

• if γ2 < 0 then γ is purely imaginary; it follows that the argument of the
exponential becomes real and leads to an exponential growth; therefore it
is unstable.

2.4 plasma instabilities

The strongest tokamak instabilities arise from [5]:

• ∇⃗p (pressure gradients)

• current gradients (in particular, the radial gradient of the equilibrium
toroidal current density)

The resulting instabilities are divided in:

• ideal modes: this implies that instabilities can arise even if the plasma
were perfectly conducting (i.e. plasma resistivity η = 0)

• resistive modes, due to finite resistivity of the plasma

In genera, both ideal and resistive instabilities might present an infinite spectrum
of modes, each one characterized by its toroidal and poloidal mode numbers
n,m. Conversely, considering a discrete set of modes, in the case of a circular,
large aspect-ratio tokamak, these modes take the form e−i(nϕ−mθ). The resonant
surfaces, for which the stability presents a minimum, are the ones on which
m = nq, q being the safety factor. For low mode numbers, the modes are not
localized [5], while for m,n → ∞ the modes are localized enough to consider
stability a magnetic surface property.

The macroscopic deformations which often appear in tokamaks are:

1. external kink (XK): it is an ideal instability which is in general current-
driven at low-β, while in tokamaks at high-β also pressure gradients can
contribute to this instability. The XK acts on the LCFS, modifying its
shape and possibly leading to disruptions

2. internal kink (IK): it is a current-driven instability with mode number
m = 1 which affects the plasma if the minimum value of the safety factor
is less than unity (qmin < 1). Also the pressure can have an effect on the
IK [7]. An internal kink leads to an alteration of the eigenfunction which
remains inside the confined plasma, therefore acting on the core of the
plasma while not modifying the last closed flux surface.
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3. tearing mode (TM): a tearing modes is an instability related to the
formation and development of magnetic islands. Experimentally, these
modes can be stabilized with increasing pressure in tokamak configurations,
as it will be discussed later

Wesson [5] proposed a shape of the current density of the form

ȷ = ȷ0
1
1 − (r/a)2

2ν
by which it is possible to obtain a class of analytical results for a large aspect-
ratio device with circular plasma cross section. By exploiting this current profile
it is possible to evaluate the ratio q(r = a)/q0 = ν + 1 (a being the plasma
radius). Internal kinks are characterized by the resonant surface q = 1, thus
these instabilities arise only if that resonant surface is present. Consequently,
the requested q > 1 is a sufficient condition for stability of the IK. The stability
diagram of kink modes with internal kinks is presented in figure 4. In particular,
for the aforementioned current shape, requesting q > 1 is the same as requesting
q0 > 1, where q0 is the value of the safety factor at the magnetic axis. This
request is almost confirmed by experiments, where the minimum value of the
safety factor profile qmin occurs close to the magnetic axis, and the difference
between qmin and q0 is relatively small.

Figure 4: Stability diagram for kink modes, with internal kinks [5].

Potentially, kink modes are the strongest instabilities, leading to the kinking
of the magnetic surfaces and of the plasma boundary. The so-called external
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kink (XK) proves to be a major issue in achieving proper fusion plasmas. More
precisely the XK is an obstacle to the high βT values desired for fusion purposes.
As far as the tokamak configuration is concerned, both the aforementioned law
and the Troyon scaling law are found to be valid. This criterion introduces a
limit on the maximum achievable β to prevent the onset of a pressure driven
instability. Troyon’s law states that the maximum βT scales as the total plasma
current: Troyon

scaling law
βTroyonN = 2.8 (43)

Boundary condition of no external resistive wall is taken. Nonetheless, it was
noticed that two parameters, elongation and triangularity, can strongly affect
the Troyon limit for D-shaped plasmas [8]. Any resistive wall surrounding the
plasma would have no effect on stability thresholds. In fact it has been proven
that the resistivity of the external wall does not stabilize the external kink but
only reduces its growth rate by a factor of the order of τW−1, where τW is the
flux diffusion time scale through the wall.
Tearing modes are driven by the radial gradient of the equilibrium toroidal
current density: these modes lead to a tearing and a consequent rejoining of
the magnetic field lines, which are a consequence of the finite resistivity of
the plasma. Figure 5 shows a stability regime diagram for a circular, straight
tokamak. In this scheme, tearing and kink modes are compared considering the
aforementioned current density shape for both.

Figure 5: Stability diagram for m = 2 tearing and kink modes for a circular tokamak
[5].
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The toroidal curvature effects, which are not taken into account in the stability
regime of figure 5, have a strong influence on the stability of resistive modes,
due to the fact that the resistivity is small. Also the pressure effect is not
considered, while in real plasmas it contributes to the stability of TM: Glasser
et al. [9] and Bondeson et al. [10] showed either analytically and numerically
that the tearing mode is stabilized by favourable average curvature when β and
S = 1/η are sufficiently large.

The next chapter features a series of selected works regarding the comparison of
negative and positive triangularity plasmas, in order to sustain the advantages of
NTR plasma shape from different points of view, in the light of reactor-relevant
plasmas.



3
N E G AT I V E T R I A N G U L A R I T Y P L A S M A S

3.1 brief introduction to plasma confinement

Qualitatively, two distinct modes of operation for tokamak experiments are
feasible. These are, namely, the L-mode, referring to lower grade confinement,
and the H-mode [11], referring to higher grade confinement. Practically, the
energy confinement time τE for the H-mode is about a factor of 2 higher than
the one of L-mode.
The amount of external heating power supplied and the way in which the plasma
makes contact with the first material surface shall be investigated thoroughly, in
order to determine which operation regime prevails. The reason for the L-to-H
transition has not yet been fully understood on a physical level. The prevailing
belief is that at high auxiliary power levels strongly sheared flow velocities
develop near the plasma edge that act to stabilize micro-turbulence. However,
the theories are far from complete.
In terms of contact of the plasma with the first material surface, it is possible
to use two concepts for the plasma-wall interface, known as the limiter and
the divertor. The idea behind the limiter is that as the plasma slowly diffuses Limiter
across the last closed flux surface (LCFS), both particles and energy are rapidly
deposited on the limiter surface due to the enormously higher parallel transport,
while simultaneously isolating the first wall from the plasma. The limiter has the
advantage of a simpler, more compact construction, though its close proximity
to the plasma almost always increases the number of impurities diffusing into
the plasma.
Conversely, the divertor is more efficient in isolating the plasma from impurities Divertor
due to its remote location, but tends to focus the heat load onto a narrow area
of the target plates. Plasma experimentalists believe that impurity isolation
is the dominant issue. Nonetheless, a combination of high external power and
divertor geometry is desirable for accessing H-mode operation [3].

H-mode profiles typically develop pedestals in the edge density and edge tem-
perature, resulting in an increase in the edge pressure. The narrow transition
layer between the plasma edge and the actual first material surface thus has
the appearance of an edge pedestal in pressure. The ability of the plasma to
support a substantial edge pressure suggests the formation of an edge “transport
barrier” that prevents the rapid loss of energy. This transport barrier leads to an
increase in the average density and a higher central temperature, both of which
correspond to an improvement in the energy confinement time τE . However,

37
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H-mode operation also has some potential disadvantages. If the buildup of edge
density goes unchecked, eventually the Greenwald density limit [12]

nG[1020m−3] ≤ Ip[MA]

πa2[m2]

may be violated, leading to a disruption.
Before this limit is reached, localized edge instabilities are excited inside the
plasma. These are known as ELMs (Edge Localized Modes), driven by the
large edge pressure and current gradients associated with H-mode operation.
When the edge pressure gradient becomes too high a burst of ELMs is triggered,
thereby relieving the excess pressure, reducing plasma density and temperature
in the outer zone (in ITER, the energy lost in this process is expected to reach
peaks of ∼ 21MJ , leading to scaled amplitudes not acceptable in the future
DEMO reactor). Such an energy reduction, together with temperature fall,
leads to a reduction of the H-mode transport barrier.

The situation is further complicated by the fact that there are different types of
ELMs whose positive and negative contributions to tokamak operation might
vary. For example, type-I ELMs are short in duration, well-spaced in time but
very intense in magnitude. This is clearly shown in figure 6.

Figure 6: Dα radiation emission showing type-I ELM activity during H-mode opera-
tion with NBI in ASDEX [11] (Picture taken from [5]).
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3.2 overview of experimental results

3.2.1 Effects of triangularity on energy confinement time

H-mode negative triangularity plasmas present lower edge stability thresholds,
with a rising increased frequency of type-I ELMs. However, experiments indicate
the possibility to keep L-mode edge confinement characteristics in negative
triangularity configuration with heating power higher than the one required in
positive triangularity; nevertheless plasma properties are drastically changed in
such a configuration. More precisely, shape and confinement mode have been Plasma

propertiesnoticed to influence the transport properties of the plasma. In particular the
plasma shape is characterized by two parameters, namely elongation κ and
triangularity δ. These two influence the energy confinement time both for L-
and H-mode. This is well described for a ohmically heated, L-mode plasma by
the empirical law ITER89-P [13]:

τ ITER89−P
E ∝ κ0.5 (44)

A slightly modified scaling law for L-mode discharges was proposed by ITER
research group [14]:

τ ITER−98−L
E ∝ κ0.64 (45)

Still, both formulae consider the energy confinement time to be independent on
the triangularity. A study carried out by Moret et al. [15] showed that for an
ohmic, L-mode plasma the energy confinement time (quantified in this study
by the electron energy confinement time τEe) improves slightly with elongation
and strongly degrades for positive triangularities. An eventual plasma current
dependence was removed through current scans. Furthermore, internal sawtooth
disruptions were noticed to be larger at positive triangularities and almost
vanishing at negative ones.
Nonetheless, the ohmic heating is not the only (neither the most favored) heating
method. Different studies focused on the influence of plasma shape on τE were Not-purely

ohmic
plasmas

carried out for electron cyclotron heating (ECH), eventually coupled with
neutral beam injection (NBI). In these studies, the TCV tokamak features were
exploited, seeing as it is capable to operate with edge elongation 0.9 < κ < 2.8
and edge triangularity −0.7 < δ < 1 [16] [17]. The main result obtained is that,
when the plasma is not purely ohmically heated, but a considerable fraction of
power is provided by ECH/NBI, its energy confinement time is dependent on
triangularity.
Experimental evidences led to a scaling law for plasma current of the form
Ip ∝ (κ2 + 1)/2. Thus, the interest in highly elongated plasma raised due to
the fact that energy confinement time is usually linearly proportional to plasma
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current; also, a vertically elongated plasma allows higher values of β, hence
higher values of plasma pressure [18]. For a fixed elongation of κ = 1.5 in
a plasma where the ECH exceeded the ohmic heating by up to one order of
magnitude, τEe was noticed to decrease with power and triangularity [19] as:

τEe ∝ IαI
p κ1.4(1−αI )(1 + δ)−0.35 (46)

This relation is compared to ITER-98-L (equation 45) in figure 7. The benefi-
cial effect of negative triangularity is evident. Moreover, Camenen et al. [20]
noticed that electron heat transport was halved at negative triangularities with
respect to positive ones for comparable plasma conditions, as shown in figure 8.
Furthermore, negative triangularity tokamaks can be capable of doubling the
energy confinement time in TEM (trapped electron modes)-dominated, L-mode
regime.

Figure 7: Fit to the ITER-98-L (equation 45) mode scaling law of TCV experimental
results. Since triangularity does not appear in ITER-98-L, it is explicitly
indicated by the symbols: red squares, δ < 0; green triangles, 0 < δ < 0.3;
blue hexagons, δ > 0.3). Negative delta appears favourable [19].

For ohmic plasmas, the collisionality is higher and independent from triangular-
ity, while it diminishes when the plasma is heated with electron cyclotron and
decreases with decreasing triangularity. This leads to a reduction of electron
heat transport and therefore to an improvement in energy confinement for low
collisionality plasmas.
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Figure 8: Electron heat flux for different triangularities (ρ being the normalized
plasma radius) [20].

These results, as well as the conjectured dependence of sawtooth instability
upon the geometrical factor [15], were numerically reproduced by means of
gyrokinetic simulations [21] with a satisfactory quantitative agreement for non-
linear simulations. Nonetheless, even if the beneficial effect of NTR was observed
in ECH plasma, sawtooth were observed when the power deposition was moved
towards the q = 1 rational surface and it was noticed that their crash amplitude
was strongly triangularity-dependent for δ > 0.2, while in the case of NTR it
was smaller and decreased with increasing power.
Experiments were performed on DIII-D to validate and extend the results
obtained on TCV [8]. Two heating phases were considered: pure ECH and ECH
coupled with NBI. In both cases, reversing triangularity led to an increase of
plasma stored energy. It was also observed that L- to H-mode transition power
threshold was higher for NTR discharges. These discharges presented pedestal
pressure profiles typical of L-mode, which did not trigger ELMs at all.
Figure 9 presents a comparison between experimental energy confinement time
and ITER-89P scaling law. This figure could also be compared to figure 7 for
TCV experimental results.
The deviation from the scaling law (red triangles in figure 9) of experimental
results (blue ones) can be interpreted as a rough verification of the H-mode
grade confinement. In fact the nearly constant slope indicates τE to be inde-
pendent upon heating power. This feature is typically observed only in high
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Figure 9: Fit to the ITER-89P (equation 44) mode scaling law of DIII-D experimental
results. Blue triangles represents negative triangularity discharges of DIII-
D, red squares the power scaling law ITER-89P. A least square fit (95%
confidence) is provided. Errorbars come from a Monte Carlo analysis [8].

performance, H-mode plasmas [22].
Gyro-kinetic simulations showed that TEM are the dominant instability in
these experiments too, for both the heating schemes. Also in this case, NTR
plasmas presented weakened TEM growth rates, as a confirmation of results
obtained by Marinoni [21] with Te > Ti. These results for DIII-D, high beta
plasma discharges confirmed what observed at TCV for the low beta cases.

3.2.2 Effects of triangularity on ELMs mitigation and kink stabilization

Concerning ELM mitigation, Pochelon et al. [16] investigated the ELM behav-
ior for H-mode, highly collisional plasma discharges in negative triangularity
configuration, in order to understand whether the advantageous effects of NTR
for L-mode could be drawn out to H-mode. Results showed that NTR increased
the frequency of type-I ELMs while their energy loss decreased. However, ELMs
energy losses are reduced at the cost of a pedestal height reduction; therefore the
core confinement is improved while edge confinement is weakened. Merle et al.
[23] already demonstrated that tokamaks in negative triangularity configuration
present a four times smaller pedestal height if compared to positive configura-
tions in H-mode regime. Improved pedestal (and scrape-off layer) radiation for
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sustaining a L-mode edge without ELMs is considered a key concept.
Minimization of ELMs energy bursts is required for ITER and their total elimi-
nation is necessary for DEMO and commercial-scale fusion reactors. For this
reason, the power-handling assessment became the main way of thinking for
reactor design. Kikuchi et al. [24] pointed out that TEM could be one of the
most important instabilities for ECH plasmas leading to type-I ELMs.

NTR plasmas present favorable features for ELMs behavior; moreover, negative
triangularity tokamaks can be configured with optimized pressure gradient
profiles, such as the one suggested by Kikuchi (figure 2a in [24]). This way, Negative

triangularity
reactor

plasmas could be stable for βN > 3 at moderate elongations, even in the absence
of a magnetic well [25]. Nonetheless, low limit for βN might pose a serious issue
in NTR configuration, since it is given by the onset of unstable, low-n ideal XK
due to the absence of a magnetic well for elongated cross sections.
Ren et al. [26] and Medvedev et al. [25] carried out numerical studies on two
plasma discharges with different triangularities (one with strongly NTR, the
other one with strongly PTR). The results showed that an ideal wall would
only partly stabilize the XK for the NTR plasma, while its effect would be
broader for a PTR one. This is due to the intrinsically different structure of the
eigenmode: in the case of NTR, this instability is less "external" with respect
to its positive counterpart, and the plasma displacement near the X-point(s)
does not extend itself up to the plasma edge; this causes the NTR plasma to
be less subject to wall stabilization. Moreover, the ideal wall beta limit is much
larger for positive triangularity, and a closer wall would be required to achieve a
similar value in NTR, posing the problem of heat flux impinging upon it [26]. It
must be pointed out that toroidal flow might stabilize the XK, yet data showed
its stabilizing effect to be similar for both configurations. In this study, kinetic
effects were not taken into account, and their contributions could act on kink
stabilization.
However, from an engineering point of view the space available near the X-
point(s) for the NTR would lead to a more flexible divertor design, thus to a
better heat exhaust handling, which is a crucial problem for conventional PTR
configurations. Other means of XK stabilization can also be considered, such as
the magnetic coils meant to be used for ELMs suppression. These coils might
be used for feedback control, nonetheless they will probably be less accessible
for reactor-scale devices. Therefore, "passive" XK control and stabilization are
preferable [26].
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3.2.3 Reactor-relevant discharges in negative triangularity

Recently, new experiments were carried out both on DIII-D [27] and on TCV
[28].
The experiments on DIII-D were focused on exploring the feasibility of NTR
L-mode discharges in SN diverted configurations. Among all the discharges,
only one showed a transition to H-mode. Figure 10 features the total stored
energy scaling law for NTR discharges of DIII-D. The agreement with previous
experimental results, presented in figure 9, is clear to see.

Figure 10: Total stored energy as a function of net auxiliary power for NTR discharges
on DIII-D [27]. γ indicates a best fit estimate of the power degradation,
corresponding to a power degradation of confinement equal to γ − 1.

The main difference is that in [8] the power degradation was almost zero (cor-
relation was linear, hence γ ≃ 1). A possible explanation could be the greater
value of δ in these experiments, which resulted in a confinement degradation.
Another proposed explanation concerns the higher purity of plasmas in the
experiments: impurities in plasmas have a stabilizing effect on ITG (ion tem-
perature gradient) modes; moreover, the NBI heating was lower in this case,
therefore modifying the electron-to-ion power ratio.
While it is clear that NTR stabilizes a TEM-dominated plasma [21], it is not
yet clear to what extent NTR is capable to stabilize plasmas where ITG modes
are dominant over TEM. Therefore, when the dominant ion-scale mode is ITG,
as in the diverted discharges, the confinement scaling might as well differ from
that in TEM dominated regimes. Furthermore, ELMs-free scenarios in future
reactors should exhaust impurities and ashes in an efficient way. The impurity
retention was less problematic in this case: particle-to-energy confinement time
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ratio was measured to be of the order of unity for L-mode discharges, while in
H-mode regimes this ratio typically ranges from 2 to 4.

TCV experimental campaign was devoted to characterize L-to-H transition
power threshold as a function of plasma parameters.
Out of several hundreds of discharges with various power levels obtained with
ECH coupled with NBI, only a few of them transitioned to H-mode.
A study of two symmetric diverted plasma discharges, one in NTR and one in
PTR, was also carried out. The PTR discharge was representative of the ITER
baseline scenario. This study has now confirmed that the energy confinement
time remains better in fully NTR diverted configuration with respect to an
equivalent PTR diverted plasma. The NTR case showed a smoother (though
higher) pressure profile and sustained at twice the βN for ITER with roughly
one third the power supply, as presented in figure 11. However, it must be
stated that in this work no diverted, high-βN stationary plasmas have been
obtained with auxiliary heating, being it NBI or ECH. Almost all the discharges
presented a neoclassical (m,n) = (2, 1) tearing mode disruptive instability.

Figure 11: Pressure profile for ITER-like H-mode (red) and negative-triangularity
L-mode (blue) (ρ being the normalized plasma radius) [28].

This work analyzes real plasma discharges in NTR configuration compared to
their PTR counterparts. The next chapter features the numerical modeling
and linear stability analysis of these discharges. The discharges come from
experiments carried out on the TCV and RFX-mod machines in tokamak con-
figuration; therefore, a brief description of the machines is hereunder provided.
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3.3 tcv

TCV (fr.: Tokamak à configuration variable) is a Swiss research fusion reactor
characterized primarily by extreme flexibility in plasma shaping and positioning.
The main aim of TCV is to investigate effects of plasma shape on tokamak
physics. This device has different heating systems: during most of the device’s
lifetime, its primary auxiliary heating source has been electron-cyclotron reso-
nance heating (ECRH) with peak power up to 2.7MW for a ∼ 1m3 plasma;
since 2015, neutral beam injection heating (NBI) has been employed too on
TCV with a beam of maximum ∼ 1MW power [29] [30]. TCV is employed
in many different research programs, from scenarios in support of ITER up
to advanced tokamak scenarios. The experimental campaigns are assisted by
a continuous program of diagnostic. A system of 16 independently-powered
shaping poloidal-field coils provide the shaping versatility of the device.
The main operating parameters of TCV are resumed in table 1. It is clear that
its strongest feature is the possibility to exploit a wide range of triangularities,
in order to investigate stability of both positive and negative ones.

TCV device operating parameters
Major radius R 0.88 [m]
Minor radius a 0.25 [m]

Max vacuum toroidal magnetic field Bϕ 1.54 [T]
Max plasma current Ip 1.0 [MA]
Triangularity range δ -0.7/+1.0
Elongation range κ 0.9/2.8

Max ohmic heating Pohm,max 1.0 [MW]
Max NBI heating PNBI,max 1.3(D)/1.15(H) [MW]

Average pulse duration τ 2 [s] (up to 4s)
Electron density ne ∼ 1 · 1019[m−3]

Electron temperature Te up to 15 [keV]
Ion temperature Ti up to 2.5 [keV]

Table 1: TCV operating parameters provided by [29], [30] and [17].
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3.4 rfx-mod

RFX-mod (Reversed Field eXperiment) located in Padova (IT) was the biggest
RFP (reversed field pinch) device active. The RFX-mod experiment was a device
capable of operating both in RFP and in tokamak configurations. The main
features of the device were plasma shape control, which was possible thanks
to the PF coils power supply flexibility [31] [32], and the control capability of
MHD instabilities thanks to the feedback system made of 192 independently
driven active coils. It was operated to investigate a wide range of experimental
conditions such as RFP, tokamak and the so-called "ultra-low-q" configurations.
In RFP configuration, RFX-mod was devoted to enhance the understanding of
the confinement properties at high current (up to 2MA) [33]. Some enhance-
ments for the RFX-mod device (which will become RFX-mod2 after upgrading)
have been proposed and are, at present, in the final design phase.
The main operating parameters of RFX-mod are resumed in table 2.

RFX-mod device operating parameters
Major radius R 2.0 [m]
Minor radius a 0.459 [m]

Plasma volume Vplasma 10 [m3]

Max toroidal magnetic field Bϕ 0.7 [T]
Max plasma current Ip 2.0 [MA]

Max pulse duration (RFP) τRFP 0.5 [s]
Max pulse duration (tokamak) τtokamak 1 [s]

Max electron density ne ∼ 8 · 1018[m−3]

Max plasma temperature Tplasma 1.72 [keV]

Table 2: RFX-mod operating parameters provided by [31], [32] and [33].
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N U M E R I C A L M O D E L I N G R E S U LT S

The equilibrium code CHEASE together with the linear-resistive stability code
MARS-F have been used in order to carry out the stability analysis of plasma
discharges. Both the codes are integrated in the OMFIT framework. A brief
description of the codes can be found in Appendix A. The results of the
numerical analyses are presented hereunder. The results of ideal stability are
reported for each discharge, followed by the results of resistive stability.

4.1 towards high performance ntr plasmas in tcv

The first pair of plasma discharges analyzed is the #69273 at t = 1.70s (NTR)
- #69511 at t = 1.50s (PTR). These discharges have been realized on the TCV
machine keeping almost the same plasma current Ip and heating power Ph.
The aim of having a couple of plasmas with similar parameters, yet different
triangularity, is to investigate the influence of negative triangularity on stability
and confinement compared to a positive counterpart.
Global MHD stability of these plasmas is investigated with parametric numeri-
cal studies, to confirm the experimental evidence suggesting that most of the
disruptive shots terminate below the eventual β limit.
The parameters of these plasma discharges are listed in table 3, while their
equilibrium configurations are presented in figures 12 and 13, respectively.

Discharge #69273 #69511
Triangularity δ -0.26 +0.35

Snapshot time instant t (s) 1.70 1.50
Type Limiter Limiter

Average electron density < ne > (1019m−3) 4.6 3.4
Plasma current Ip (kA) 226 228

NBI heating power Ph (MW ) 1.02 1.03
βN 2.02 1.25

Elongation κ 1.26 1.34

Table 3: Plasma parameters of #69273-#69511 discharges (provided by [34]).

The value of q at the magnetic axis (q0) is below unity for both the equilibria.
This is consistent with experimental MHD spectra (from Mirnov coils) showing
the so-called sawtooth activity, as shown in figures 14 and 15. From the point of
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Figure 12: Equilibrium of #69273, negative triangularity discharge (EQDSK file).

Figure 13: Equilibrium of #69511, positive triangularity discharge (EQDSK file).

view of ideal MHD, sawtoothing is reflected in the current-driven (m,n) = (1, 1)
internal kink. This has been removed with the procedure described below, in
order to focus on n = 1, m > 1 modes. It is worth noting that this operation
might affect important dynamics in the results, as will be briefly discussed later
in the work.
In general, the PTR discharge presents a higher q profile with respect to the
NTR case. In particular, the PTR case presents such a q profile that the rational
value q = 4 is exceeded, while the NTR case reaches the value q ≈ 3.6 as its
maximum. This lower q(a) value can contribute to a somewhat weaker global
stability for the NTR equilibrium.
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Figure 14: Spectrogram of odd-n
modes for shot #69273.

Figure 15: Spectrogram of odd-n
modes for shot #69511.

4.1.1 Ideal stability

Figure 16 shows the profiles of safety factor q for both the discharges. In order to
isolate possible tearing modes, safety factor profile q was numerically modified
to make it larger than unity at every radius. In order to do this, the original
current profile is interpolated with a target current profile numerically produced
in such a way as to obtain a desired value of q0 > 1. This modification is not
uncommon: such an analysis with modified q profile was carried out by Marinoni
et al. [8]. The modified q profiles are presented in figure 17.

Figure 16: Safety factor q profiles of
the #69273 - #69511 dis-
charges.

Figure 17: Modified safety factor q

profiles for the #69273 -
#69511 discharges.

The removal of the internal kink by raising q0 above unity allowed to study the
stability of pressure driven external kink modes. A scan in pressure is performed
in order to determine the stability of the XK mode (referred to as no-wall limit).
In a pressure scan, a set of equilibria is produced by exploiting the CHEASE
feature of re-scaling the pressure and for each one the stability analysis is carried
out, until the stability threshold is found. The growth rates obtained are plotted
against the normalized beta. A workflow of this procedure can be found in
Appendix B. The results obtained for the pressure scan can be appreciated in
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figure 18, where the normalized growth rate of the n = 1 ideal kink is plotted
against normalized beta. No significant differences emerge from this analysis:
for both the discharges, the no-wall limit is around βNo−wallN ≈ 2.3; therefore
triangularity does not influence the stability threshold of the ideal XK. For
both these shots the experimental βN values reported in table 3 are below the
calculated stability limit. The edge value of q was held in high regard while
performing pressure scans. Indeed, while increasing the equilibrium pressure,
the other features are kept as constant as possible by imposing the total plasma
current to be constant. This can be done within reasonable limits since the q
profile will also change in the process. If, for example, qedge varies and exceeds
a rational value, an additional rational surface is "numerically brought" into the
plasma, and this could enhance the equilibrium stability, voiding the analysis.

Figure 18: Growth rates of ideal (plasma resistivity η = 0) XK mode with varying
plasma pressure of the #69273 - #69511 discharges.

4.1.2 Resistive stability

Resistive instabilities have been analyzed for #69273 - #69511 equilibria both
with the original q profile and with its modified profile, in order to investigate
and compare the stability of the TM. The Spitzer model has been implemented
for plasma resistivity. A detailed description of the resistivity profile implemen-
tation in the MARS-F code is provided in Appendix C.

The analysis of TM is performed with the MARS-F code, where plasma re-
sistivity is scanned, from high to small values. The growth rates obtained are
plotted against the Lundquist number (on magnetic axis) S = 1/η, which is
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used as a proxy to vary the whole resistivity profile. The results of the analysis
for equilibria with q0 < 1 are presented in figure 19. The growth rate remains
almost constant for all the values of resistivity considered, thus suggesting
that the instability found in the numerical analysis is not a TM, but rather
an ideal mode (its growth rate is independent upon resistivity). In general,
the growth rate of a TM should vary with varying resistivity (similarly to
fig.1 in [35]). The nature of these modes can be understood by considering
the eigenfunctions from MARS-F solutions, shown in figures 20, in terms of
plasma displacement. These eigenfunctions are typical of internal kink insta-
bilities (these do not cause the displacement of the plasma’s outer surface,
as the name suggests) since the dominant component is the m = 1 and it’s
located in the first rational surface. The three eigenfunctions considered are
referred to the circled points in figure 19. In this case only the eigenfunctions
for the NTR case are presented since the ones for PTR are essentially the
same, thus suggesting that the triangularity does not influences these modes.

Figure 19: #69273 - #69511 growth rates scaling as function of the Lundquist number
S for the original equilibria. The eigenfunctions related to the green dots
are shown in figure 20.
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(a) (b)

(c)

Figure 20: Plasma radial displacement eigenfunctions referred to the green dots in
figure 19.

For the modified q equilibria, in the limit of β → 0, both equilibria present an
n = 1 unstable mode. In figure 21 the growth rate values obtained in the scan
of TM for the NTR equilibrium are plotted against the S values. The classical
scaling for the TM in the so-called "zero-β" limit is γτA ∼ η3/5 and it is here
rather aptly recovered.
By looking at the spatial structure and poloidal components of the mode
eigenfunction, it is clear that at very high resistivities (S ∼ 105 − 106) the
the behavior is dominated by the m = 2 harmonic located mainly at the first
rational surface q = 2 (this can be found in figure 22); while at higher Lundquist
numbers the main component becomes the m = 4 harmonic located at the
second rational surface q = 3.



4.1 towards high performance ntr plasmas in tcv 55

Figure 21: Growth rate of n = 1 tearing mode scaling with Lundquist number S of
the #69273 (NTR) discharge for β → 0 limit.

(a)

Figure 22: Radial displacement eigenfunc-
tions for η ∼ 10−6. Only the
first 6 harmonics are shown.

Almost the same considerations can
be drawn for the PTR equilibrium
(here the figure is not reported for
the sake of conciseness), with the ma-
jor difference that the growth rate is
smaller with respect to the NTR case.
This could be due to the fact that
the PTR equilibrium presented an ad-
ditional rational surface (the surface
q = 4) which provided more stabil-
ity to the mode; yet, none of them
showed a completely stabilized behav-
ior for the range of resistivity scanned.
It should be noted that this analysis
neglects the effects of pressure, which
are usually stabilizing for the classical
tearing mode [9]. This extra physical
effect will be introduced in the follow-
ing sections.

Figure 23 shows a comparison of the growth rates profiles. The experimental
Lundquist numbers were almost the same for the two discharges, while the
growth rate for the positive triangularity equilibrium present a lower value
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with respect to its negative triangularity counterpart at each value of plasma
resistivity considered in the scan.

Figure 23: Comparison of growth rates of n = 1 TM for the #69273 - #69511 pair
(β → 0 limit).

When retaining equilibrium pressure, the linear resistive MHD simulations
predict an unstable mode in the negative triangularity equilibrium, as presented
in figure 24. This mode follows classical tearing mode scalings at lower resis-
tivities, while at higher ones it follows the resistive internal kink scaling law
γτA ∼ S−1/3 as described by Guo and Ma [36].
On the contrary, the mode is predicted to be stable at the experimental value
of S for the PTR case, as shown in figure 25. Possible explanations can be
found in physics that is not captured by the model, such as specific mode
couplings or neoclassical effects (i.e. what is seen in experiments might be
a NTM). Furthermore, equilibrium manipulations carried out to study these
modes might themselves influence the results and explain deviations from
experimental evidence in the PTR case.
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Figure 24: Growth rates of n = 1 tearing
mode for #69273 discharge
at experimental pressure. The
two different scaling laws fol-
lowed by this mode are re-
ported.

Figure 25: Growth rates of n = 1 tear-
ing mode for #69511 dis-
charge at experimental pres-
sure. Dashed lines represent
the experimental Lundquist
number.

To conclude this section, the results obtained in the analysis of the two equilibria
with q > 1 are summarized in table 4.

#69273 #69511
Triangularity type NTR PTR

Experimental Lundquist number S 6.6 · 106 6.4 · 106

q0 1.11 1.11
qedge 3.30 4.28

βNo−wallN 2.31 2.34
Zero-β TM stabilized No No
Exp. β TM stabilized No Yes 1, η ∼ 1 · 10−6Ωm

Table 4: Summary table for the results obtained for #69273 and #69511 equilibria.
"Exp. β" stands for experimental β (therefore experimental pressure).

1 The mode is predicted to be stable by the numerical model, but experimentally the equilibrium
is unstable. This could be due to neoclassical effects.
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4.2 stability of scenarios with elevated q profile

Recent experimental campaigns investigated the MHD phenomenology and
dynamics in negative triangularity with elevated safety factor. The interest in
these plasmas is connected to the development of hybrid scenarios and to the
study of internal transport barriers.
What follows is the stability analysis of four of these recent discharges. Table 5
lists the plasma parameters.

Discharge #73994 #73995 #73996 #73998
< ne > (1019m−3) 2 2 2.2 2.5-3

Ip (kA) 155 155 155 155
PNBI (MW ) 0 0 0.2 0.4
PECRH (MW ) 2 2 2 2

βN 0.69 0.97÷0.79 2 1.02 1.31

Table 5: Plasma parameters of #73994 - #73995 - #73996 - #73998 discharges
(provided by [37]).

4.2.1 Ideal stability: no-wall limit

In the ideal MHD framework, discharges #73994, #73995 and #73996 were
predicted to present almost the same stability thresholds for XK, being they
similar in discharge parameters and safety factor profile, presented in figure
26. Due to the fact that all the plasma discharges presented a qedge value very
close to the rational value q = 5, while performing the pressure scan this
value has been kept fixed in order not to create an additional rational surface.
The analysis provides the stability thresholds for ideal XK within the range
2.2 < βNo−wallN < 2.5 (as shown in figure 27).

2 This equilibrium is considered at two different time instants, therefore two different values
for the normalized beta are reported. The first refers to the snapshot at t = 0.8s, the second
to the snapshot at t = 1.3s
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Figure 26: Safety factor q profiles of the #73994 - #73996 - #73998 plasma discharges.

Figure 27: Growth rates of ideal XK mode with varying plasma pressure of the
#73994 - #73996 - #73998 plasma discharges.
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4.2.2 Tearing mode analysis

The analysis of the tearing mode considers the #73994 and #73995 discharges. In
particular, in discharge #73995 the plasma vertical position was varied between
Z = 10cm and Z = 0. Two snapshots are modeled for this discharge, in order
to investigate the effect of this sweep, considering the equilibria respectively at
t = 0.8s and t = 1.3s. #73994 is taken at t = 1.3s.
Figures 28 and 29 feature the q-profiles of the discharges. All the profiles
present a q value at magnetic axis higher than unity and three rational surfaces
(q = 2, 3, 4).

Figure 28: Safety factor q profiles of
the #73994 plasma.

Figure 29: Safety factor q profiles of
the #73995 plasma.

Figures 30 and 31 present the results of the analyses for the zero-β limit tearing
mode. The Spitzer model has been utilized fors these analyses as well.
The scaling S−3/5 is almost perfectly recovered, with a slight modification at
high η values where the growth rates bend towards the resistive (m,n) = (1, 1)
IK scaling (this is reported as an example in the left-hand plot of figure 30); and
with a perfect overlapping of the curves at lower resistivities. By looking at the
components of the mode eigenfunctions, it is clear that at very high resistivities
(S ∼ 105 − 106) the behavior is dominated by a main m = 2 harmonic located
at the q = 2 rational surface (this is legible from the rigth-hand plot of figure
30). This is in agreement with what would be expected for a (m,n) = (2, 1)
tearing mode. On the contrary, at lower resistivities the dominant harmonic
turns out to be the m = 4. From a numerical point of view, the eigenfunction
is in a "layer" around the rational surface (the resistive layer); in this layer the
effect of resistivity is important, therefore it has to be properly solved by the
usage of a fine space discretization in the radial direction. The mesh needs to
be capable of resolving the layers at smallest resistivities too, which are the
"narrower" ones.
In the considered range of resistivities, the TM is not stabilized.
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Figure 30: [Left] Growth rate of n = 1 tearing mode scaling with Lundquist number
S of the #73994 at t = 1.3s discharge (β → 0 limit). [Right] First six
harmonics of radial displacement eigenfunctions for η = 5 · 10−6. The
dominance of the m = 2 harmonic can be clearly observed.

Figure 31: Growth rate of n = 1 tearing mode scaling with Lundquist number S of
the #73995 discharges (β → 0 limit). [Left] t = 0.8s. [Right] t = 1.3s.

The TM growth rates of the three equilibria presented above are collected in
figure 32 with the aim of comparing them. γτA for discharges #73994 and
#73995 at first time snapshot are essentially the same; while moving from
t = 0.8s to t = 1.3s the whole curve moves towards slightly higher growth
rate values [38]. This could be due to the sweep of plasma vertical position
performed during the discharge. However, the fact that the equilibrium is less
stable at t = 1.3s is confirmed by the analysis of the TM at experimental
pressure presented below.
The stabilization effect at high Lundquist number is recovered when full equi-
librium pressure is retained. This stabilizing contribution, often referred to as
the Glasser-Greene-Johnson (GGJ) effect, is driven by pressure and toroidal
curvature [9].
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Figure 32: Comparison of growth rates of n = 1 tearing mode for #73994 and #73995
discharges at first snapshot for zero-β limit.

Stabilization of the mode occurs at S > 1 · 107 for the first time snapshot
and at S > 2 · 107 for the second. This result is shown in figure 33: the TM
of both the time snapshots for #73995 equilibria are collected together. It is
interesting to notice the shift of the curve towards higher Lundquist numbers
while moving from t = 0.8s to t = 1.3s. This figure makes clear the loss
of stability of the plasma at the second time instant. The reported behavior
matches the experiment when looking at the first case, where the corresponding
experimental Lundquist number is above the predicted stability threshold. The
second snapshot, on the other hand, almost overlaps the experimental number:
this result could be improved by tuning numerical resolution and/or using
experimental data as input. Nevertheless the model successfully captures the
behavior of the mode which is more unstable at t = 1.3s with respect to the
earlier time point.
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Figure 33: Comparison of growth rates of n = 1 tearing mode for #73995 discharge
between t = 0.8s and t = 1.3s, both including the effect of pressure.
Dashed lines represent the experimental Lundquist numbers of the plasma
discharges.

(a)

Figure 34: Spectrogram of odd-n modes for
shot #73995 [38].

The fact that the curve "shifts" to-
wards a more unstable mode is justi-
fied by the analysis of the spectrogram
presented in figure 34. As reported,
a mode with odd toroidal number is
triggered during the sweep discussed
above.
Finally it is also interesting to no-
tice, in figure 35, the fact that for
S = 2 · 107 (which is a value above
the Lundquist number value for the
stability of #73995 at t = 0.8s) the
growth rate decreases with increasing
values of βN , up to mode stabilization
around the experimental normalized
beta (blue curve). This trend has al-
ready been obtained in other numerical simulations as well, such as the ones
carried out by Hao [39]. On the contrary, for lower values of S (i.e. higher
resistivities) the mode undergoes an initial stabilization (red and green curve)
with increasing pressure, while becoming more unstable while beta keeps on
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raising. This could be due either to the transition to another mode or to a
toroidal coupling with other harmonics coming into the eigenfunction while beta
increases. It is worth noting that plasma shape (and therefore triangularity)
has an effect on toroidal coupling.

Figure 35: Growth rates of TM with varying plasma pressure of the #73995 at
t = 0.8s plasma discharge with different plasma resistivities.
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4.3 comparison between h-mode and l-mode plasmas

From discharge #39722 of RFX-mod the corresponding "mirrored" equilibria
have been obtained by numerical modeling [40]. The discharge is taken at
two different time instants: at the first snapshot the confinement is L-mode,
while the second snapshot features an H-mode confinement. For all these four
equilibria, a circular wall (representing the RFX-mod2 copper stabilizing shell)
was added, in order to perform analyses imposing an "ideal wall" boundary
condition (i.e. a very high value of the wall flux diffusion time scale τW was
imposed). This was implemented to obtain results for the ideal case in view of
future studies of the real plasma-wall distance effect on stability.

4.3.1 H-mode plasmas

The first pair of equilibria is shown in figures 36 and 37; these two presented
high-q0 and H-mode confinement.

Figure 36: NTR H-mode 37992 RFX-
mod equilibrium (EQDSK
file).

Figure 37: PTR H-mode 37992 RFX-
mod equilibrium (EQDSK
file).

A closer view of the q profile for those two equilibria is presented in figure
38. Both present a safety factor value at the magnetic axis greater than unity;
therefore no ideal internal kink was expected to appear. A steep increase of the
profile occurred near the q95 value (q95 = q(ρ = 0.95)). It is interesting to notice
that, even if in general the q-profile for the negative triangularity equilibrium is
higher, near the LCFS the positive triangularity q increases enough to outreach
the negative one, presenting at last a higher value of the qedge. Table 6 lists the
most relevant values of the safety factor.
In the analysis of the resistive instabilities, the experimental profile of electron
temperature was not available for these plasmas, therefore the Spitzer model
was not implemented. In order to obtain useful results in view of RFX-mod2
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NTR PTR
q0 1.66 1.48
q95 3.28 2.98
qedge 4.47 4.99

Table 6: q values for RFX-mod H-mode equilibria.

Figure 38: Safety factor q profiles of the RFX-mod H-mode plasmas.

plasmas, a resistivity constant along the plasma radius was utilized (see Ap-
pendix C and [41] for a more specific description).

In the limit of β → 0, both equilibria present a n = 1 unstable TM mode which
almost perfectly recovers the scaling S−3/5, as shown in figure 39. In this case
the equilibria show the same growth rates for this mode, therefore for the zero-β
limit, the stability appears to be independent upon triangularity.
The NTR equilibrium presents an m = 2 dominant component of the mode at
low Lundquist numbers, while the behavior of the mode is dominated by the
m = 4 with a m = 2 harmonic on the rational surfaces q = 2 and q = 4 at
higher Lundquist numbers (S > 106). Instead, the PTR case shows a mixing of
m = 2, 3, 4 harmonics on the rational surfaces q = 2 and q = 3 for almost all
the scanned points. In both these cases, the TM is not stabilized.
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Figure 39: Comparison of growth rates of n = 1 TM for the RFX-mod H-mode
plasmas (β → 0 limit).

Figure 40: Eigenfunctions representa-
tive of the TM at S =

5 · 106 for the NTR equilib-
rium (β → 0 limit).

Figure 41: Eigenfunctions representa-
tive of the TM at S =

5 · 106 for the PTR equilib-
rium (β → 0 limit).



68 numerical modeling results

On the contrary, at the experimental pressure the growth rate of the most
unstable TM for the NTR equilibrium is smaller than its positive counterpart
and it stabilizes at higher values of resistivity, as clearly legible from figure 42.
Also in this case, the GGJ effect can be considered the leading contribution to
the stabilization of the mode.
Both the equilibria present a dominant m = 2 harmonic component around the
q = 2 rational surface for all the scanned points. Since the rational surfaces are
the same for them, plasma shape can be assumed to play a role in stabilizing
the mode.

Figure 42: Comparison of growth rates of n = 1 TM for the RFX-mod H-mode
plasmas at experimental pressure. Dashed lines represent a stabilization
of the mode with null growth rate.

The effect of pressure can be appreciated in figures 43 and 44: at higher resis-
tivities (corresponding to the first point of resistivity scan) the mode becomes
unstable with increasing pressure for both triangularities, while at lower re-
sistivities the stabilizing effect of pressure is clear, especially for the negative
triangularity case. In particular, moving from the zero-β limit to small values
of β (i.e. small values of the pressure), γτA presents an initial steep decrease,
then it keeps reducing with increasing pressure. This behavior has been already
described and obtained in other numerical studies with similar modeling codes
(see as an example figure 2 in [39]).
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Figure 43: Growth rates of most un-
stable n = 1 resistive mode
(η = 10−5Ωm) with vary-
ing plasma pressure, from
zero to half the experimen-
tal pressure.

Figure 44: Growth rates of most un-
stable n = 1 resistive
mode (η = 2 · 10−7Ωm)
with varying plasma pres-
sure, from zero to half the
experimental pressure.

Figures 45 and 46 depict the stabilizing effect of the pressure on the n = 1
tearing mode.

Figure 45: Comparison of growth rates of n = 1 TM for the RFX-mod H-mode NTR
plasmas at β → 0 limit and experimental pressure.
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Figure 46: Comparison of growth rates of n = 1 TM for the RFX-mod H-mode PTR
plasmas at β → 0 limit and experimental pressure.

4.3.2 L-mode plasmas

The second couple of equilibria feature a q0 < 1 and L-mode grade confinement;
the equilibria are shown in figures 47 and 48.

Figure 47: NTR L-mode 37992 RFX-
mod equilibrium (EQDSK
file).

Figure 48: PTR L-mode 37992 RFX-
mod equilibrium (EQDSK
file).
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Figure 49 presents the q profile for these two equilibria. This case as well shows
that the positive triangularity q-profile increases near the LCFS enough to
outreach its negative counterpart. Table 7 lists the most relevant values of the
safety factor.

NTR PTR
q0 0.70 0.68
q95 3.10 3.01
qedge 4.85 5.25

Table 7: q values for RFX-mod L-mode equilibria.

Figure 49: Safety factor q profiles of the RFX-mod L-mode plasmas.

Since in these equilibria the safety factors assume values smaller than one at the
magnetic axis, the presence of an ideal IK was expected for both. Its stability
with varying pressure is analyzed in a pressure scan imposing no resistivity to
the plasma and disregarding the presence of the wall; the results are presented
in figure 50. The growth rate of this mode is almost similar and it gets stable
at β ≃ 0.3.
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Figure 50: Growth rates of ideal IK mode with varying plasma pressure for the L-
mode RFX-mod plasmas.

In the limit of β → 0, the n = 1 unstable TM mode is shown in figure 51.
This figure shows that both the equilibria present almost the same growth
rate for this mode, hence the stability appears to be again independent upon
triangularity. Nonetheless, it is noticeable that the L-mode plasmas present a
growth rate for this mode smaller than their H-mode counterparts (figure 39
seen above).
The main difference with respect to the H-mode equilibria is that the curves
"bend" at lower resistivities. This behavior could be due to the numerical mod-
eling and it is still under investigation. Both the TM behaviors are dominated
by the m = 4 component located at rational surfaces q = 2 and q = 3 at all
the points; hence this bending effect can be considered to be independent upon
triangularity and eigenstate. This effect has already been seen in other stability
analyses and it is still under investigation.
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Figure 51: Comparison of growth rates of n = 1 TM for the RFX-mod L-mode
plasmas (β → 0 limit).

To conclude this section, the results obtained for the two pairs of equilibria are
summarized in table 8. The choice of not performing the analysis for the TM in
L-mode plasmas was driven by the lack of experimental results as a validation
of the analysis.

H-mode L-mode
Triangularity type NTR PTR NTR PTR

δ -0.35 0.43 -0.35 0.38
βP 0.89 0.92 0.71 0.72

Ip(kA) 62.42 62.42 61.05 61.05
Zero-β TM stabilized No No No No
Exp. β TM stabilized Yes, η ∼ 5 · 10−8Ωm Yes, η ∼ 1 · 10−8Ωm * *

IK stabilizing βN not present not present ∼ 0.3 ∼ 0.3

Table 8: Summary table for the results obtained for 39722 and mirrored equilibria
(plasma parameters are provided by [32]). "Exp. β" stands for experimental
β while stars distinguishes a not performed analysis.





5
D I S C U S S I O N A N D O U T L O O K

The equilibrium code CHEASE and the linear stability code MARS-F have been
used to carry out the analysis of recent TCV experiments and the modeling of
RFX-mod plasmas, with a projection to RFX-mod2. The goal was to assess
whether or not the plasma shape, in particular triangularity, could affect the
behavior of instabilities.
The results show that triangularity does not significantly affect the structure
and dynamics of ideal modes. Also the stability threshold of pressure-driven
external kinks are found to be similar when modeling comparable equilibria
with positive or negative triangularity. On the contrary, triangularity can indeed
play a role in stabilizing resistive modes with toroidal mode number n = 1,
often identified as tearing modes.

For the high β TCV equilibria, a dedicated modeling strategy has been adopted
to isolate the physics of external kink modes first and tearing modes afterwards.
In particular the q = 1 surface has been removed from the considered equilibria
in order to focus on other instabilities. The investiagated equilibria present
almost the same plasma current and heating power. The positive triangularity
equilibrium turns out to be more stable against tearing modes, and this could
be due to the additional rational surface it exhibits. Both the equilibria present
almost the same β value for XK stabilization. The numerical model recovered
the expected behavior of classical tearing modes for the zero-β limit as function
of resistivity.
The high q equilibria do not have a positive counterpart to be compared with.
These have been extracted from very recent experiments, carried out during
the TCV campaign in Spring 2022, and this thesis work is the first systematic
stability study of the results. The equilibria present values for the no-wall β
limit in the range 2.2 < βNo−wallN < 2.5. Besides, a resistive kink behavior
is found in some of the analyses, in particular towards very high (i.e. ∼ 105)
Lundquist numbers; this kink presents a different scaling law for the growth
rate as a function of the resistivity. In this case too, the model aptly recovered
the behavior of tearing modes in the zero-β limit case, especially at lower
resistivities. Furthermore, MARS-F calculation (when the pressure contribution
is included in the TM analysis) is in good agreement both with the well-known
Glasser-Greene-Johnson [9] stabilizing effect and with evidence of destabilization
of the tearing mode from the first to second time instant considered, as discussed
in [38]. Finally, the analysis of the growth rate of TM with varying pressure
instead of resistivity shows an initial stabilization of the mode which degrades
when pressure keeps increasing; this could be due either to the transition to
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another mode or to toroidal coupling (and in this case it would be affected by
triangularity). Still, the behavior predicted by Hao [39] is once again found.
RFX-mod tokamak plasmas, and possible projections to RFX-mod2, are stud-
ied with two couples of equilibria. The first couple consists of a NTR and a
PTR plasmas with H-mode confinement, while in the second the plasmas are
in L-mode confinement. H-mode equilibria do not present ideal nor resistive
internal kinks. The tearing mode analysis results show that for zero-β limit the
growth rates are almost the same, showing an independence upon triangularity;
on the contrary the negative triangularity equilibrium is more stable when
pressure is re-introduced in the analysis. Both the H-mode equilibria stabilize
at experimental pressure. The L-mode equilibria feature an ideal internal kink
due to the safety factor value below unity at magnetic axis; yet the IK stabilizes
at β ≃ 0.3 for both triangularities. Tearing mode analysis shows again an
independence upon triangularity.

To conclude, the results achieved in this work indicate that triangularity plays a
role in the stability of resistive modes, and possible beneficial effects of negative
triangularity. An interesting quantitative result has been obtained by modeling
the destabilization of n = 1 tearing mode in recent TCV experiments. On
the other hand, no significant effect has been found for ideal modes, which is
consistent with similar recent results with comparable physical models. Also,
the analyses show that negative triangularity plasmas can achieve acceptable β
values for the XK no-wall limit. A possible interpretation of the obtained results
is that negative triangularity does not appear to negatively affect global plasma
stability, at least using the physical models presented in this work. Investigation
of possible effects would therefore require to go beyond ideal and resistive MHD,
including for example drift-kinetic contributions.
A comparison with positive triangularity plasmas with elevated q profile will
be useful to assess the effect of δ on modes that are located on outer rational
surfaces. Also the analysis of L-mode plasmas with different triangularities
(ranging from positive to negative values) exploiting the flexibility of TCV
might be of use to comprehend how the triangularity influences the modes
located inside the inner rational surface.



A P P E N D I X A

chease

The CHEASE code (Cubic Hermite Element Axisymmetric Static Equilibrium,
[42]) solves the Grad-Shafranov equation for toroidal MHD equilibria with
pressure, current profiles and plasma boundaries specified by analytical forms
or sets of experimental data points. CHEASE is a fixed-boundary code: the
plasma boundary is specified by the last closed flux surface.
The Grad-Shafranov equation is solved in variational form. The discretization
uses a bicubic Hermite finite elements with continuous first order derivatives
for the poloidal flux ψ.
The nonlinearity of the problem is handled by Picard iterations. The mapping
to flux coordinates is carried out with a method which conserves the accuracy
of the cubic finite elements.

Figure 52: Flux coordinates in toroidal geometry [42].

In figure 5 the flux coordinates (s(ψ), χ, ϕ) used in CHEASE are presented.
Namely:
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• the s(ψ) coordinate is defined as

s = s(ψ) =

öõõô ψedge − ψ

ψedge − ψ0
(47)

where ψedge is the flux at plasma boundary, and ψ0 is the flux at the
magnetic axis. In CHEASE, equilibrium profiles are given as functions of
s;

• χ is a generalized poloidal angle. It accounts for the boundary curvature,
in order to have a uniform mesh. It is demanded to increase by 2π per
poloidal turn;

• ϕ is the toroidal angle.

There are many different ways of defining the two free functions p′(ψ) and
f(ψ)f ′(ψ), defined in chapter 2. CHEASE can treat three different options
for specifying the current profile. Profiles can be prescribed for each of the
following:

1. ff ′(ψ)

2. the surface averaged current density I∗(s)

3. the surface averaged parallel current density I//(s)

If either one among 2) or 3) is specified, it is possible to evaluate the toroidal
current density ȷϕ and solve the Grad-Shafranov equation by two nested Picard
iterations. For the sake of simplicity, all the passages are not reported here (see
[42]).
The variational form of the Grad-Shafranov equation solved in CHEASE is:Ú

Ω

1
R

∇⃗φ · ∇⃗ψdS +
Ú

Ω
φȷϕdS = 0 (48)

where φ is an arbitrary weighting function from the same vector space of ψ.
Equation 48 is solved numerically in the standard manner of the finite element
method, by expanding ψ in Hermite bicubics on the rectangular grid (σ, θ),
related to the cylindrical coordinates (R,Z) by:

R = Rc + σρs(θ)cos(θ)

Z = Zc + σρs(θ)sin(θ) (49)

with

0 ≤ σ ≤ 1
0 ≤ θ ≤ 2π (50)
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σ is a sort of normalized radius, while (Rc, Zc) is the origin of the polar
coordinates.
The unknowns of the discretized equilibrium problem are the values of the
function ψ, its first derivatives with respect to σ and θ and the mixed second
derivative. The integrals are evaluated numerically using Gaussian quadrature.
In the Picard iterations, the (k+1)-th iteration is computed from the solution
of the k-th iteration:Ú

Ω

1
R

∇⃗φ · ∇⃗ψk+1dS = −
Ú

Ω
φȷϕ(ψk)dS (51)

The Picard iteration is interrupted when:

∥ψk+1 − ψk∥ < ε (52)

where ε is a predefined tolerance.

mars-q

MARS-Q is a modular, linear MHD stability code [43] which can also simulate
plasma response to external fields, drift-kinetic effects on mode stability and
quasi-linear evolution of plasma rotation. This work makes use of the "fluid"
resistive MHD stability core module. This is commonly known as MARS-
F. The MARS-F code calculates eigenmodes in 2D axisymmetric toroidal
equilibria; it is capable of modeling MHD instabilities with low, intermediate
and high toroidal mode numbers. The code solves the following equations for
the perturbed quantities (indicated with the "1" subscript) over an n = 0
equilibrium (perturbations are assumed with single n toroidal periodicity):

γρ0v⃗1 = ȷ⃗1 × B⃗0 + ȷ⃗0 × B⃗1 − ∇⃗p1

γB⃗1 = ∇⃗ × (v⃗1 × B⃗0) − 1
µ0

∇⃗ × (ηȷ⃗1)

µ0ȷ⃗1 = ∇⃗ × B⃗1

γp1 = −Γp0∇⃗ · v⃗1 − v⃗1 · ∇⃗p0

(53)

It is interesting to notice that MARS-F can handle a non-ideal plasma too,
since the ηȷ⃗ term appears in the system of equations.
MARS-F uses the same flux coordinates (s(ψ), χ, ϕ) introduced above. Fur-
thermore, it follows an iterative scheme too, in order to converge to a given
eigenvalue, starting from an initial guess.
The MARS-F code is designed to work with a FE discretization in the radial
direction, and a spectral discretization in the poloidal one.
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omfit

The One Modeling Framework for Integrated Task (OMFIT, [44]) is an in-
tegrated modeling and experimental data analysis software for magnetically
confined thermonuclear fusion experiments. It allows easy data exchange among
different codes [45]; in the case of this work, CHEASE and MARS-F.
OMFIT is a Python, object-based framework with its own data structures. All
the tasks are coded in Python and different tasks nested in different trees can
be called together or call each other, to create a complex workflow. OMFIT
features a top-level GUI. Python classes are also defined within OMFIT: these
are Python scripts loaded when OMFIT is launched and contain the definition
of data types and methods which can be applied to a given object. For example,
the class OMFITchease contains all the methods (such as plot, saving, smooth-
ing, etc.) applied to an OMFITchease object (usually, this is the CHEASE input
or output file).

CHEASE and MARS-F in the OMFIT framework

In the OMFIT framework CHEASE and MARS-F are integrated as modules.
Two different versions of CHEASE have been developed:

• a standard version, which was used in this work to switch among different
coordinate conventions [46] and manipulate equilibria

• a dedicated version developed to prepare the mesh and the input for the
MARS-F code

Input files can be either a CHEASE specific (EXPEQ) or EQDSK (US standard)
files. EXPEQ and EQDSK files are handled in OMFIT by the OMFITchease
and OMFITeqdsk classes respectively. While the EQDSK presents more data,
such as the pressure profile, the safety factor profile (both as a function of a
normalized radius), the EXPEQ file presents the source terms profiles and is,
besides, the type of file suitable to perform the insertion of a wall.
One of the main features of CHEASE is the transformation of the equilibrium.
A single solution of the Grad-Shafranov equation can be rescaled to generate a
whole sequence of equilibria with fixed poloidal beta and internal inductance,
but with different plasma current values, rotational transform and toroidal
beta. In CHEASE these transformations allow the generation of equilibria with
prescribed values of either the total current or of the safety factor at some
arbitrary flux surface ψq.
It must be noted that CHEASE has its own units: some quantities taken as
inputs (for example the total plasma current) should be passed not in SI units,
but with a normalized value. More about this normalization is reported in [42]
and [47]. The CHEASE version developed to interface with MARS internally
uses coordinate conventions (COCOS, [46]) equal to 2.
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omfit workflows

The workflows of the three different types of scans performed to obtain the
results presented in this work are shown below. Figure 53 features the workflow
followed to perform the pressure scan in order to obtain the no-wall limit
betaNo−wallN .

Figure 53: No-wall limit pressure scan workflow.

Figure 54 presents the workflow adopted to perform the pressure scan in order
to evaluate the growth rate as function of pressure for non ideal plasmas.
Finally, figure 55 depicts the workflow for performing a resistivity scan, in order
to obtain the dependence of the growth rate as function of resistivity/Lundquist
number.
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Figure 54: Resistive plasmas pressure scan workflow.

Figure 55: Resistivity scan workflow.



A P P E N D I X C

resistivity implementation in mars-f

While performing the analyses, two different resistivity models have been
adopted: the classical Spitzer model and a radial grid based resistivity profile
generated by MARS-F. The radial grid based model implemented in MARS-F
is the following:

η =
η0

(R0/a)2
1

1 + (σ1 + σ2ψp)ψp

where η0 is the resistivity value at the magnetic axis, which is passed as input
in the MARS-F namelist; this value corresponds to the inverse of the Lundquist
number. R0/a is the plasma aspect ratio. Also σ1 and σ2 are MARS-F input
parameters. In this work, both were set to zero, thus leading to a constant
resistivity profile along the normalized radius.
The Spitzer model implemented in MARS-F is:

η =
η0

(R0/a)2

A
Te
Te,0

B−3/2

where Te,0 is the electron temperature value at magnetic axis. This model
required the electron temperature profile as function of normalized radius to be
taken as input.

83





B I B L I O G R A P H Y

[1] F. C. Chen. Introduction to Plasma Physics and Controlled Fusion, Vol.I:
Plasma Physics. 2nd edition, 1984.

[2] Hans Peter Goedbloed; Stefaan Poedts; Rony Keppens. Magnetohydrody-
namics of Laboratory and Astrophysical Plasmas. 1st edition, 2019.

[3] Jeffrey P. Freidberg. Plasma Physics and Fusion Energy. Cambridge
University Press, 1st edition, 2007.

[4] Lyman Spitzer Jr. Physics of Fully Ionized Gases. New York, Interscience
Publishers, 2nd edition, 1962.

[5] J. Wesson. Tokamaks. Oxford University Press, 3rd edition, 2004.

[6] Jeffrey P. Freidberg. Ideal Magnetohydrodynamics. Cambridge University
Press, 2nd edition, 2014.

[7] M. N. Bussac; R. Pellat; D. Edery; J. L. Soule. Internal kink modes in
toroidal plasmas with circular cross sections. Physical Review Letters,
35(24):1638, 1975.

[8] A. Marinoni; M. E. Austin et al. H-mode grade confinement in L-mode
edge plasmas at negative triangularity on DIII-D. Physics of Plasmas,
26:042515, 2019.

[9] A. H. Glasser; J. M. Greene; J. L. Johnson. Resistive instabilities in a
tokamak. The Physics of Fluids, 19(4):567–574, 1976.

[10] A. Bondeson; G. Vlad; H. Lütjens. Global, resistive stability analysis in
axisymmetric systems. Controlled Fusion and Plasma Physics, 1990.

[11] ASDEX Team (1989). The H-mode of ASDEX. Nuclear Fusion, 29(11),
1959.

[12] M. Greenwald. Density limits in toroidal plasmas. Plasma Physics and
Controlled Fusion, 44(8), 2002.

[13] P. N. Yushmanov; T. Takizuka; K. S. Riedel; O. J. W. F. Kardaun; J. G.
Cordey; S. M. Kaye; D. E. Post. Scalings for tokamak energy confinement.
Nuclear Fusion, 30(10):1807–1818, 1990.

[14] ITER Global Data Base working group. IAEA-CN-69/ITERP1/7, paper
presented at 17th IAEA conference on fusion energy, 1998.

85



86 bibliography

[15] J.-M. Moret; S. Franke; H. Weisen; M. Anton; R. Behn; B. P. Duval; F.
Hofmann; B.Joye; Y. Martin; C. Nieswand; Z. A. Pietrzyk; W. van Toledo.
Influence of plasma shape on transport in the TCV tokamak. Physics
Review Letters, 79(11):2057–2060, 1997.

[16] A. Pochelon; P. Angelino et al. Recent TCV results - Innovative plasma
shaping to improve plasma properties and insight. Plasma and Fusion
Research, 7:2502148–2502148, 2012.

[17] EuroFusion. TCV Wiki. https://wiki.euro-fusion.org/wiki/WPTE_
TCV, 2022.

[18] F. Troyon; R. Gruber; H. Saurenmann; S. Semenzato; S. Succi. MHD
limits to plasma confinement. Plasma Physics and Controlled Fusion,
26(1A):209–215, 1984.

[19] A. Pochelon; T. P. Goodman et al. Energy confinement and MHD activity
in shaped TCV plasmas with localized electron cyclotron heating. Nuclear
Fusion, 39(11):2057–2060, 1999.

[20] Y. Camenen; A. Pochelon; R. Behn; A. Bottino; A-Bortolon; S. Coda; A.
Karpushov; O. Sauter; G. Zhuang and the TCV team. Impact of plasma
triangularity and collisionality on electron heat transport in TCV L-mode
plasmas. Nuclear Fusion, 47:510–516, 2007.

[21] A. Marinoni; S. Brunner; Y. Camenen; S. Coda; J. P. Graves; X. Lapillonne;
A. Pochelon; O. Sauter; L. Villard and the TCV team. The effect of plasma
triangularity on turbulent transport: modeling TCV experiments by linear
and non-linear gyrokinetic simulations. Plasma Physics and Controlled
Fusion, 51(5):055016, 2009.

[22] M. E. Austin; A. Marinoni; M. L. Walker; M. W. Brookman; J. S. deGrassie;
A. W. Hyatt; G. R. McKee; C. C. Petty; T. L. Rhodes; S. P. Smith; C. Sung;
K. E. Thome; A. D. Turnbull. Achievement of reactor-relevant performance
in negative triangularity shape in the DIII-D tokamak. Physical Review
Letters, 122:115001, 2019.

[23] A. Merle; S. Yu. Medvedev; O. Sauter. Pedestal properties of H-modes
with negative triangularity using EPED-CH model. Plasma Physics and
Controlled Fusion, 59:104001, 2017.

[24] M. Kikuchi; T. Takizuka; S. Yu. Medvedev; T. Ando; D. Chen; J. X. Li;
M. Austin; O. Sauter; L. Villard; A. Merle; M. Fontana; Y. Kishimoto; K.
Imadera. L-mode-edge negative triangularity tokamak reactor. Nuclear
Fusion, 59(5):056017, 2019.

[25] S. Yu. Medvedev; M. Kikuchi; L. Villard; T. Takizuka; P. Diamond; H.
Zushi; K. Nagasaki; X. Duan; Y. Wu; A. A. Ivanov; A. A. Martynov; Yu.

https://wiki.euro-fusion.org/wiki/WPTE_TCV
https://wiki.euro-fusion.org/wiki/WPTE_TCV


bibliography 87

Yu. Poshekhonov; A. Fasoli; O. Sauter. The negative triangularity tokamak:
stability limits and prospects as fusion energy system. Nuclear Fusion,
55(6):063013, 2015.

[26] Jing Ren; Yueqiang Liu; Yue Liu; S. Yu. Medvedev; Zhirui Wang; Guoliang
Xia. A comparative study of ideal kink stability in two reactor-relevant
tokamak plasma configurations with negative and positive triangularity.
Plasma Physics and Controlled Fusion, 58(11):115009, 2016.

[27] A. Marinoni; M. E. Austin et al. Diverted negative triangularity plasmas
on DIII-D: the benefit high confinement without the liability of an edge
pedestal. Nuclear Fusion, 61(11):116010, 2021.

[28] S. Coda; A. Merle; O. Sauter; L. Porte; F. Bagnato; J. Boedo; T. Bolzonella;
O. Février; B. Labit; A. Marinoni; A. Pau; L. Pigatto; U. Sheikh; C. Tsui;
M. Vallar; T. Vu and the TCV team. Enhanced confinement in diverted
negative-triangularity L-mode plasmas in TCV. Plasma Physics and
Controlled Fusion, 64(1):014004, 2021.

[29] F. Hofmann et al. Creation and control of variably shaped plasmas in
TCV. Plasma Physics and Controlled Fusion, 36:B277, 1994.

[30] S. Coda et al. Physics research on the TCV tokamak facility: from con-
ventional to alternative scenarios and beyond. Nuclear Fusion, 59:112023,
2019.

[31] M. Spolaore et al. H-mode achievement and edge features in RFX-mod
tokamak operation. Nuclear Fusion, 57:116039, 2017.

[32] I. Predebon; D. Abate; L. Pigatto. Positive and negative triangularity in
RFX-mod2: a comparative analysis. Nuclear Fusion, 62:066039, 2022.

[33] M. Zuin. Overview of the RFX-mod fusion science activity. Nuclear Fusion,
57:102012, 2017.

[34] EuroFusion. TSVV-02 Wiki. https://wiki.euro-fusion.org/wiki/
TSVV-02, 2022.

[35] R. Iacono; A. Bhattacharjee; C. Ronchi; J. M. Greene; M. H. Hughes.
Stability of tearing modes in finite-beta plasmas. Physics of Plasmas,
1(8):2645–2652, 1994.

[36] W. Guo; J. Ma. Numerical study of flow effect on internal kink mode in
finite beta plasmas. AIP Advances, 10(7), 2020.

[37] EuroFusion. Rt07: Negative Triangularity scenarios as an alternative for
DEMO Wiki. https://wiki.euro-fusion.org/wiki/WPTE_wikipages:
_Experimental_campaign_2021:RT07, 2022.

https://wiki.euro-fusion.org/wiki/TSVV-02
https://wiki.euro-fusion.org/wiki/TSVV-02
https://wiki.euro-fusion.org/wiki/WPTE_wikipages:_Experimental_campaign_2021:RT07
https://wiki.euro-fusion.org/wiki/WPTE_wikipages:_Experimental_campaign_2021:RT07


88 bibliography

[38] L. Pigatto; T. Bolzonella; A. Piras; S. Coda; A. Merle; C. Piron; L. Porte;
O. Sauter; M. Vallard and the TCV team. Global stability and MHD
dynamics in TCV negative triangularity plasmas. 48th EPS Conference
on Plasma Physics. European Physical Society.

[39] G. Z. Hao; Y. Q. Liu; A. K. Wang; Y. Sun; Y. H. Xu; H. D. He; M. Xu;
H. P. Qu; X. D. Peng; J. Q. Xu; S. Y. Cui; X. M. Qiu. Finite toroidal
flow generated by unstable tearing mode in a toroidal plasma. Physics of
Plasmas, 21:122503, 2014.

[40] D. Abate; G. Marchiori; P. Bettini; F. Villone. Modelling of RFX-mod2
tokamak equilibria with demo-like shape conditions and negative triangu-
larity. Plasma Physics and Controlled Fusion, 62:085001, 2020.

[41] Y. Liu. Manual for running MARS-* series. Version 1.6. General Atomics
internal publication, 2010.

[42] H. Lütjens; A. Bondeson; O. Sauter. The CHEASE code for toroidal MHD
equilibria. Computer Physics Communication, 97(3):219–260, 1996.

[43] Y. Q. Liu; A. Bondeson. Feedback stabilization of nonaxisymmetric resistive
wall modes in tokamaks. I. Electromagnetic model. Physics of Plasmas,
7(9), 2000.

[44] OMFIT website. https://www.omfit.io/, 2022.

[45] O. Meneghini; L. Lao. Integrated Modeling of Tokamak Experiments with
OMFIT. Plasma and Fusion Research, 8:2403009, 2013.

[46] O. Sauter; S. Yu. Medvedev. Tokamak Coordinate Conventions: COCOS.
Computer Physics Communications, 184(2):293–302, 2013.

[47] O. Sauter. Normalizations on CHEASE. https://crppwww.epfl.ch/
~sauter/chease/chease_normalization.pdf, 2013.

https://www.omfit.io/
https://crppwww.epfl.ch/~sauter/chease/chease_normalization.pdf
https://crppwww.epfl.ch/~sauter/chease/chease_normalization.pdf


This work has been carried out within the framework of the EUROfusion Con-
sortium, funded by the European Union via the Euratom Research and Training
Programme (Grant Agreement No. 101052200 - EUROfusion). Views and opin-
ions expressed are however those of the author only and do not necessarily
reflect those of the European Union or the European Commission. Neither the
European Union nor the European Commission can be held responsible for
them.
Part of the data analysis was performed using the OMFIT integrated modeling
framework.





D E C L A R AT I O N

This work is my intellectual property.

Torino, Academic Year 2021/2022

Anthony Piras


	Acknowledgments
	Dedication
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	2 MHD Equilibrium and Stability
	2.1 Plasma description 
	2.1.1 MHD model
	2.1.2 Spitzer's resistivity model and Lundquist number 

	2.2 Tokamak configuration equilibrium 
	2.2.1 The Grad-Shafranov equation
	2.2.2 Figures of merit for plasma description

	2.3 MHD stability
	2.3.1 Ideal MHD stability
	2.3.2 Normal modes

	2.4 Plasma instabilities

	3 Negative Triangularity Plasmas
	3.1 Brief introduction to plasma confinement 
	3.2 Overview of experimental results 
	3.2.1 Effects of triangularity on energy confinement time
	3.2.2 Effects of triangularity on ELMs mitigation and kink stabilization
	3.2.3 Reactor-relevant discharges in negative triangularity

	3.3 TCV 
	3.4 RFX-mod 

	4 Numerical modeling results 
	4.1 Towards high performance NTR plasmas in TCV
	4.1.1 Ideal stability
	4.1.2 Resistive stability

	4.2 Stability of scenarios with elevated q profile
	4.2.1 Ideal stability: no-wall limit
	4.2.2 Tearing mode analysis

	4.3 Comparison between H-mode and L-mode plasmas
	4.3.1 H-mode plasmas
	4.3.2 L-mode plasmas


	5 Discussion and outlook 
	 Bibliography
	Declaration


