
POLITECNICO DI TORINO
Master’s Degree in Mathematical Engineering

Master’s Degree Thesis

Portfolio Management: A Deep
Reinforcement Learning Approach

Supervisors

Prof. Paolo BRANDIMARTE

Prof. Edoardo FADDA

Prof. Carlo SGARRA

Candidate

Yi Yu Ivan CHEN

November 2022

Summary

Portfolio management is the task of constantly redistributing the wealth of an
investor into different financial products known as assets in order to maximize the
overall profit during the trading period while maintaining an acceptable level of risk.
Traditionally, this problem has been heavily studied using a static approach, leading
to the creation of what is known as the Modern Portfolio Theory by economist H.
Markowitz in 1952. However, more recent developments in the field of optimization
of dynamical systems, especially via reinforcement learning, have sparked a growing
interest in applying these new techniques to the portfolio optimization task.

In this thesis, we represent the trading environment as a discrete-time stochastic
dynamical system and apply deep learning based reinforcement learning algorithms
to train an agent to learn a trading strategy that optimizes a given objective. In
particular, we assume that the agent has information only on the daily open, high,
low and close prices and the trading volumes and, using these values, the trading
agent has to decide, at the end of every trading day, what portfolio to build for
the next day, keeping into account that all transactions are penalized due to the
presence of a transaction cost equal to a small percentage of the total transaction
value.

Regarding the reinforcement learning algorithms employed, we focused only on
actor-critic methods using LSTM-based architectures to represent the value and
policy functions. These techniques are further improved via a pre-training step by
initializing the networks weights using the optimal weights obtained by training a
network with the same structure to forecast portfolio returns.

Multiple experiments done using real market data consisting of a small set of
stocks chosen from those included in the S&P500 index show the validity of applying
the reinforcement learning framework to the task of portfolio optimization.

ii

Acknowledgements

To everybody that has been with me during this hard and amazing adventure.

iii

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Research Question . 1
1.2 Thesis structure . 1

I Theoretical Background 3

2 Portfolio Management 4
2.1 Assets and Portfolios . 4
2.2 Asset prices and returns . 5

2.2.1 Simple returns . 7
2.2.2 Log Returns . 8

2.3 Performance Metrics . 9
2.3.1 Final Portfolio Value . 9
2.3.2 Standard Deviation of Portfolio Returns 10
2.3.3 Sharpe Ratio . 10
2.3.4 Value at Risk . 11
2.3.5 Maximum Drawdown . 11

2.4 Modern Portfolio Theory . 12
2.4.1 Mathematical Formulation 13
2.4.2 Efficient Frontier . 14
2.4.3 Multi-Stage Optimization 15

3 Reinforcement Learning 16
3.1 Framework Definition . 16

3.1.1 Rewards, Policies and Value Functions 18
3.2 Markov Decision Processes . 19

v

3.2.1 Bellman Equation . 20
3.3 Dynamic Programming . 22

3.3.1 Policy Iteration . 23
3.3.2 Value Iteration . 23

3.4 Model-Free Learning . 24
3.4.1 Exploration-Exploitation Trade-Off 25
3.4.2 Episodic vs Continuous Tasks 25

3.5 Deep Learning . 26
3.5.1 Neural Networks . 26
3.5.2 Training . 30

3.6 Deep Learning Approach to Reinforcement Learning 31
3.6.1 Actor-Critic Methods . 32

II Contribution 39

4 Methodology 40
4.1 Assumptions . 40
4.2 Framework definition . 41

4.2.1 State and Action Spaces . 41
4.2.2 Trading Dynamics . 42
4.2.3 Reward Signals . 44

4.3 Network Architectures . 46
4.3.1 Asset Value Module . 46
4.3.2 Actor and Critic Networks 47
4.3.3 Parameter Sharing . 49
4.3.4 Training . 49

4.4 Pre-Training . 50
4.4.1 Forecasting . 50
4.4.2 Pre-Trained Networks . 51

5 Implementation 52
5.1 Market . 52
5.2 Portfolio . 53
5.3 Agent . 53
5.4 Forecaster . 54
5.5 Pre-Training . 55
5.6 Complete Framework . 55

vi

6 Experiments 57
6.1 Datasets . 57
6.2 Hyperparameter Setup . 58
6.3 Results . 58

6.3.1 DDPG Approach . 58
6.3.2 SAC Approach . 60
6.3.3 Pre-Training Approach . 61
6.3.4 Comparison . 62

7 Conclusion 67
7.1 Contributions . 67
7.2 Future Work . 67

Bibliography 69

vii

List of Tables

6.1 Hyperparameter setup for DDPG algorithim. 59
6.2 Hyperparameter setup for SAC algorithim. 60
6.3 Hyperparameter setup for the forecasting task. 60
6.4 Results obtained on dataset 1. PT stands for pre-training. 66
6.5 Results obtained on dataset 2. PT stands for pre-training. 66

viii

List of Figures

2.1 Closing stock prices of Apple Inc (AAPL), Costco Wholesale Corpo-
ration (COST) and Marriott International Inc (MAR) from start of
2007 to end of 2017 . 7

2.2 Simple returns of Apple Inc (AAPL), Costco Wholesale Corporation
(COST) and Marriott International Inc (MAR) from start of 2007
to end of 2017 . 8

2.3 V @Rq and CV @Rq of a random distribution. The blue area repre-
sents fraction q of the whole area. With respect to their definitions
given in 2.15 and 2.16, q takes the role of 1− α. 12

2.4 Representation of an efficient frontier curve 14

3.1 Interaction between agent and environment. Image taken from [10]. 16
3.2 Example of a feed-forward neural network with a single hidden layer.

Image taken from [16]. 27
3.3 Computational graph of a generic recurrent neural network. The

left part shows the simplified representation, which is unfolded on
the right to show the exact flow of information for a single time-step.
Image taken from [14]. 28

3.4 Diagram of an LSTM cell. Image taken from [19]. 29
3.5 Non-exhaustive taxonomy of modern reinforcement learning algo-

rithms. Image taken from [27]. 32
3.6 Dynamic of actor-critic algorithms. Image taken from [32]. 33

4.1 Dynamics of the portfolio . 42
4.2 Comparison of exact and approximated transaction costs incurred

by a trading agent that performs only random actions. 44
4.3 Asset Value Module architecture. The first fully connected layer

construct a feature map, which are then elaborated by three LSTM
layers. Lastly, two final dense layers combine the output of the last
LSTM layer into a single scalar value. 46

ix

4.4 Diagram of the deterministic actor and critic networks. Note that,
even if in this diagram the two networks are shown to share the initial
part, this is done only for simplicity sake and that the parameters of
the two networks are not actually shared. What is shared, instead,
is the set of parameters of the AVM for each asset, separately for
actor and critic. 47

4.5 Diagram of the stochastic actor network. 48
4.6 Diagram of the forecaster network. 51

5.1 Complete framework of the training and testing process with pre-
training using the forecasting task. 55

6.1 Dynamics of the portfolio weights during the testing period for SAC
with log returns and differential Sharpe ratio as reward signals for
dataset 1. 61

6.2 Dynamics of the portfolio weights during the testing period for SAC
with log returns and differential Sharpe ratio as reward signals for
dataset 2. 61

6.3 Dynamics of the portfolio weights during the testing period for SAC
with log returns and differential Sharpe ratio as reward signals for
dataset 1. 62

6.4 Dynamics of the portfolio weights during the testing period for SAC
with log returns and differential Sharpe ratio as reward signals for
dataset 2. 62

6.5 Results of training the forecaster network on dataset 1. The green
section is in-sample, while the red section is out-of-sample. 63

6.6 Results of training the forecaster network on dataset 2. 63
6.7 Results of training the multivariate ARMA forecaster on dataset 1. 64
6.8 Results of training the multivariate ARMA forecaster on dataset 2. 64
6.9 Dynamics of the portfolio weights for SAC with pre-training and

with log returns and differential Sharpe ratio as reward signals for
dataset 1. 65

6.10 Dynamics of the portfolio weights for SAC with pre-training and
with log returns and differential Sharpe ratio as reward signals for
dataset 1. 65

6.11 Dynamics of the portfolio values for SAC with pre-training and with
log returns and differential Sharpe ratio as reward signals for dataset 2. 65

6.12 Dynamics of the portfolio values for SAC with pre-training and with
log returns and differential Sharpe ratio as reward signals for dataset 2. 65

x

Chapter 1

Introduction

In recent times, there has been a growing interest in the field of artificial intelligence
and in its ability to automate a variety of tasks. In particular, many reinforcement
learning methods have been applied with success to applications involving decision
making in dynamic systems.

1.1 Research Question
In this work, we analyse the dynamic asset allocation problem and how it can be
addressed by state of the art reinforcement learning algorithms, with a focus on
deep learning approaches that approximate the policy of the decision maker with a
neural network. Moreover, the effectiveness of these algorithms will be compared
to more standard approaches.

1.2 Thesis structure
Excluding this introductory chapter, the thesis is divided into two parts: the
Theoretical Background and the Contribution. As the name implies, the first
part focuses on all the financial and machine learning concepts that are needed to
thoroughly understand the main objective of this work, while the second part dives
deeper into the mathematical framework used to describe the trading environment,
its implementation into Python code and the contribution of this thesis to the task
at hand. Both parts are also organized into multiple chapters as follows:

• Chapter 2 - Portfolio Management introduces all the financial concepts
that are needed for understanding the asset allocation problem;

• Chapter 3 - Reinforcement Learning explains the reinforcement learning
framework and its main components. It also contains a description of the

1

Introduction

neural network architectures used in the experiments and how they can be
trained;

• Chapter 4 - Methodology introduces the mathematical framework used
to define the trading environment and all the assumptions that were made
regarding the market;

• Chapter 5 - Implementation contains a description of how the trading
agent and the environment are implemented in Python;

• Chapter 6 - Experiments introduces the datasets used, shows all the
experiments done on them and compares the results obtained;

• Chapter 7 - Conclusion is the final chapter and contains a brief summary
of all the work done and possible future research directions.

2

Part I

Theoretical Background

3

Chapter 2

Portfolio Management

In this chapter an overview of the financial concepts that are used to tackle the
problem of portfolio optimization will be given, with a focus on their mathematical
aspects.

2.1 Assets and Portfolios
The word asset is a very generic term that refer to any kind of resource that holds
an economical value, such as cash, company stocks, bonds, etc. In this thesis all
experiments are done using only cash as the risk-free asset and stocks as the risky
assets, although the results also hold for all other kinds of assets, as no restricting
assumptions were made regarding the properties of the assets.

A portfolio is a collection of assets and, assuming that it contains M of them, it
can be identified as a vector wt of length M , where each component refers to how
much is invested in a given asset at a given time t:

wt =
è
w1,t, w2,t, . . . , wM,t

é⊺
∈ RM (2.1)

The actual meaning of the portfolio weights, however, depends on the formulation
used, as they may refer to either the number of shares the portfolio owner has or
to the fraction of the total portfolio value the given stocks represent. In this thesis,
the second interpretation is used and, as such, a second variable vt is needed to
represent the value of the whole portfolio over time. The complete mathematical
representation of a portfolio at time step t is, therefore, given by:

3
vt, wt

4
s.t.

MØ
i=1

wi,t = 1 ∀t and wi,t ≥ 0 ∀i, t (2.2)

where the second constraint that limits the weights to only non negative value is
due to the added assumption that the trader cannot make short sales.

4

Portfolio Management

Short selling, also known as shorting [8], refers to the process of selling an asset
that is not owned, which is done by borrowing the asset from someone else, selling
it immediately and, after some time, buying it back and returning it to the lender
with interest with the hope that the borrowed asset lost value during this set of
transactions so as to generate a profit for the investor. Denying the ability to
perform short selling means that portfolio managers can only either buy assets
or sell what they currently own. In financial terms, this is known as a long only
portfolio.

In this work, this simplifying assumption was made to avoid situations in which
the optimal portfolio weights might explode to infinity and also because, due to
the asymmetrical effects of shorting in which investors can gain at most 100% of
the shorted amount but can lose an unbounded amount of money, it can lead to
extremely risky investment strategies.

2.2 Asset prices and returns

Assets are dynamic in nature, as their prices and trade volume change over time
with high frequency due to a variety of factors. For this reason they can be modeled
as discrete time series where the time-step t used can vary depending on the task at
hand. Indeed, some applications, such as day trading and high-frequency trading
require intraday data, which means that the asset prices’ movements are recorded
every hour or even minute, while others focus on a much longer time window and,
therefore, only require the daily prices and volumes of the assets.

In this thesis, the focus is on the second type of applications and, in particular,
uses the daily open, high, low, close and volume (OHLCV) data of all stocks taken
into consideration, which, for a generic time-step t, can be denoted as:

p⃗t =
è
popen

t phigh
t plow

t pclose
t pvol

t

é
=

popen
1,t phigh

1,t plow
1,t pclose

1,t pvol
1,t

popen
2,t phigh

2,t plow
2,t pclose

2,t pvol
2,t

...

popen
M,t phigh

M,t plow
M,t pclose

M,t pvol
M,t

∈ RM×5

+

(2.3)
Similarly, if the focus is on the past W days of data points for a given asset i,

the following two-dimensional matrix can be used:

5

Portfolio Management

p⃗i,t−W +1:t =

popen
i,t−W +1 phigh

i,t−W +1 plow
i,t−W +1 pclose

i,t−W +1 pvol
i,t−W +1

popen
i,t−W +2 phigh

i,t−W +2 plow
i,t−W +2 pclose

i,t−W +2 pvol
i,t−W +2

...

popen
i,t phigh

i,t plow
i,t pclose

i,t pvol
i,t

∈ RW ×5

+ (2.4)

which means that, to include all the M assets considered, a three-dimensional
matrix p⃗t−W +1:t ∈ RM×W ×5

+ , which will be referred to as asset data matrix, is
needed:

popen
M,t−W +1 . . . pvol

M,t−W +1

popen
M,t−W +2 . . . pvol

M,t−W +2

...
popen

M,t
. . . pvol

M,t

popen
i,t−W +1 . . . pvol

i,t−W +1

popen
i,t−W +2 . . . pvol

i,t−W +2

...
popen

i,t
. . . pvol

i,t

popen
1,t−W +1 . . . pvol

1,t−W +1

popen
1,t−W +2 . . . pvol

1,t−W +2

...
popen

1,t
. . . pvol

1,t

ass
ets

(2.5)

Remark The reason why it is important to introduce the notation used for the
values observed in a given time window will become clear in the section that will
explain the reinforcement learning framework used to solve the problem of portfolio
optimization.

To obtain the value of a portfolio using asset prices at time t, assuming that
the market has just closed, a simple scalar product is needed:

vt =
MØ

i=1
wi,tp

close
i,t = w⊺

t pclose
t ∈ R+ (2.6)

Regardless of the application, however, working directly with prices is usually not
recommended, as not only are they not stationary time-series but different assets

6

Portfolio Management

can also have a significant difference in their values, which makes comparing them
very difficult. Figure 2.1, which shows the daily closing prices of three different
stocks, highlights these two issues.

Figure 2.1: Closing stock prices of Apple Inc (AAPL), Costco Wholesale Corpo-
ration (COST) and Marriott International Inc (MAR) from start of 2007 to end of
2017

For these reasons, using asset returns, which measure the actual profitability
of the portfolio caused by the change in price of its components over time, is the
standard approach.

2.2.1 Simple returns
The most common definition of return is the simple return rt, which represents the
percentage change in the price of the asset from time-step t− 1 to time-step t and
is, therefore, defined by the formula:

ri,t = pi,t − pi,t−1

pi,t−1
= pi,t

pi,t−1
− 1 ∈ R (2.7)

where pi,t refers, in our case, to the closing price of day t of a single asset i.
Although this formula was introduced specifically for closing prices, the same

transformation can be applied to open, high, low prices and trading volumes with
the same meaning of relative change compared to their respective value the previous
day. As a consequence, the simple return matrix can be defined by applying
the simple return formula (2.7) on the asset data matrix defined in (2.5):

7

Portfolio Management

r⃗t−W +2:t = p⃗t−W +2:t

p⃗t−W +1:t−1
− 1 ∈ RM×(W −1)×5 (2.8)

where all operations are applied element-wise.
Figure 2.2 shows that simple returns indeed do not have the problems that

prices have, as their values are all centered around 0 despite their prices having
different price ranges.

Remark In case the objective is to calculate the return of a portfolio of assets,
the formula can be easily obtained from equation 2.7 by replacing the asset value
pt with the portfolio value vt.

Figure 2.2: Simple returns of Apple Inc (AAPL), Costco Wholesale Corporation
(COST) and Marriott International Inc (MAR) from start of 2007 to end of 2017

2.2.2 Log Returns
Despite the preference of simple returns over asset prices, this measure suffers from
its asymmetric behaviour. To explain what this lack of symmetry means, a simple
example can be given: given an asset that is now valued 100$, if it manages to
achieve a simple return of 0.1 (10%) and then of −0.1 the day after, it would mean
that its price increased to 110$ and then decreased to 99$, which is not the starting
value despite the fact that the returns were both 0.1 in absolute value.

For this reason, the log return was introduced as a symmetric measure of change:

8

Portfolio Management

ρi,t = ln(pi,t

pi,t−1
) = ln(pi,t)− ln(pi,t−1) = ln(1 + ri,t) (2.9)

Indeed, using the same example as before and replacing simple returns with
log returns, it is clear that the two movements cancel each other out, bringing the
value asset to its original value of 100$.

In the same way the simple return matrix was defined in equation (2.8), the log
return matrix can be defined as:

ρ⃗t−W +2:t = ln(1 + r⃗t−W +2:t) = ln(p⃗t−W +2:t)− ln(p⃗t−W +1:t−1) ∈ RM×(W −1)×5 (2.10)

2.3 Performance Metrics
In order to determine whether a trading strategy is successful or not, a set of
evaluation criteria that analyzes the value of the portfolio during the whole trading
period needs to be defined.

For this section we will assume that the trading period goes from time-step 1 to
time-step T and that the vector:

v1:T =
è
v1, v2, . . . , vT

é⊺
∈ RT (2.11)

represents the complete trajectory of the value of the portfolio during this period,
with v1 and vT being respectively its first and last values.

2.3.1 Final Portfolio Value
The easiest way to evaluate the performance of a portfolio is simply to check its
value at the end of the trading period used for the experiment and compare it to
its initial value without considering how well it performed and the risks it was
exposed to during the trading process.

It can be noted that the portfolio value at any time-step t can also be expressed
as a function of all the returns realized until then as follows:

vt = v1

tÙ
t′=2

1
1 + rt′

2
= v1 exp

1 tØ
t′=2

ρt′

2
∀t (2.12)

where rt and ρt are respectively the simple return and log return of the portfolio at
time-step t obtained, assuming that empty products equal to 1 and empty sums
equal to 0 in order for the formula to also work for t = 1.

9

Portfolio Management

2.3.2 Standard Deviation of Portfolio Returns
In order to take into consideration the risks involved, metrics should account for the
volatility of the investments and the most direct way of doing so is by calculating
the standard deviation of the rate of return of the portfolio using the vector of
portfolio prices to obtain the samples needed to calculate the statistics. Using this
metric, an asset is more preferable compared to another if the distribution of its
returns has a lower standard deviation.

Standard deviation, however, should not be used as a standalone measure of
performance, as minimizing it would only lead to investing everything into a risk-free
asset and disregarding everything else. For this reason, a metric that balances the
two main objectives of any investor of maximizing expected gains and minimizing
risks is needed.

2.3.3 Sharpe Ratio
The Sharpe ratio, developed by economist W. Sharpe in 1966 [2], is a criterion
that satisfies the aforementioned property. Indeed, it is defined as the ratio of
the expected excess return with respect to a risk-free investment to its standard
deviation:

SR = E[rp]− rfñ
V ar(rp)

(2.13)

where the expectation and volatility are calculated from the returns realized by
the portfolio during trading and rf is the risk-free rate of return.

This means that a portfolio strategy has a better performance the higher the
Sharpe ratio is, as it means that the expected gain is large with respect to the
amount of risk taken.

Sortino Ratio

Using standard deviation as a measure of risk, however, can be a double-edged
sword as it does not differentiate between positive and negative variations. For
this reason the Sortino ratio, which improves upon the Sharpe ratio by using a
different denominator, was introduced [3]. Indeed, it replaces the total standard
deviation of portfolio returns with the downside deviation, which is a measure
of downside risk as it is given by the standard deviation of only negative returns.
The formula for the Sortino ratio is therefore:

SortinoR = E[rp]− rf

σd

(2.14)

10

Portfolio Management

where the numerator is the same of the Sharpe ratio and σd is the downside
deviation.

2.3.4 Value at Risk
Value at Risk (V @R) is another asymmetric risk measure [4]. Given a value
α ∈ (0,1) and the distribution of returns r, the 1− α V@R is defined as its 1− α
quantile:

P
1
r ≤ V @R1−α

2
= 1− α (2.15)

which represents, in simpler terms, the 100 (1− α) % worst case scenario.
To obtain this value from the realizations of daily returns during a trading

period of T days, it is sufficient to order them in ascending order and take the
element in position αT .

Conditional Value at Risk

Value at risk, however, does not take into consideration what actually happens
when the worst case scenario occurs. For this reason, the conditional value at
risk (CV @R) can be a better alternative [4], as it is defined as the expected value
of the distribution conditional on the value being smaller (or bigger depending on
the distribution) than the value at risk:

CV @R1−α = E
è
r | r < V @R1−α

é
(2.16)

which represents the expected outcome in case something worse than the 100 (1− α) %
worst case scenario happens.

2.3.5 Maximum Drawdown
Last but not least, another useful performance metric is the Drawdown (DDt),
which is the decline of the portfolio value from when it reached a peak up to the
current time-step t, represented as a percentage of the value at the peak:

DDt =
3maxt′∈(0,t) vt′ − vt

maxt′∈(0,t) vt′

4+
(2.17)

where vt is the portfolio value at time-step t. For example, if a portfolio peaked at
1000$ in value and then dropped to 900$, its drawdown would be equal to 10%.

The maximum drawdown (MDDt) [5], instead, is the maximum value of
the drawdown obtained during the whole trading period up to time-step t:

11

Portfolio Management

Figure 2.3: V @Rq and CV @Rq of a random distribution. The blue area
represents fraction q of the whole area. With respect to their definitions given in
2.15 and 2.16, q takes the role of 1− α.

MDDt = max
τ∈(0,t)

DDτ = max
τ∈(0,t)

3maxt′∈(0,τ) vt′ − vτ

maxt′∈(0,τ) vt′

4+
(2.18)

2.4 Modern Portfolio Theory
Up until now, the basic concepts of asset and portfolio and the metrics used to
evaluate them were introduced. This section will give an overview of the Modern
Portfolio Theory, which is essential for the mathematical formulation of static
portfolio management, and will motivate the use of Reinforcement Learning to
address its dynamic version.

Modern Portfolio Theory (MPT), conceived by economist H. Markowitz in 1952
in a work for which he was later awarded the Nobel Price in Economics, introduces
the Markowitz model, also called mean-variance model, to solve the problem of
selecting the most optimal portfolio that maximizes the expected return of the
resulting portfolio while minimizing the level of risk [1].

This model works under the following main assumptions:

• the portfolio risk is given by the volatility of its returns;

• investors are risk averse and rational;

which means that, between two portfolios with the same expected return, the one
with lower volatility is preferable and that, given the same volatility, the better
portfolio is the one with higher expected return.

12

Portfolio Management

2.4.1 Mathematical Formulation
In mathematical terms, the model can be formulated as the following quadratic
optimization problem:

max
w

µ⊺w − 1
2γw⊺Ew

s.t.
MØ

i=1
wi = 1

wi ≥ 0 ∀i

(2.19)

where γ > 0 is a risk-aversion coefficient, M is the number of assets in the trading
universe, w is the vector of portfolio weights, µ is the vector of expected returns
of the assets and E is the covariance matrix of asset returns.

Regarding the two constraints, the first one is used to make sure that the
percentages sum up to 1, while the second one is due to the assumption we made
about not being able to short assets.

As the coefficient of risk-aversion can be difficult to interpret, there are two
alternative formulation of the optimization problem that do not make use of such
a value. The first one maximizes the expected return while enforcing a target
variance of return:

max
w

µ⊺w

s.t. w⊺Ew ≤ σ2
target

MØ
i=1

wi = 1

wi ≥ 0 ∀i

(2.20)

while the second one does the opposite by minimizing the portfolio variance while
enforcing a target expected return:

min
w

w⊺Ew

s.t. µ⊺w ≥ µtarget

MØ
i=1

wi = 1

wi ≥ 0 ∀i

(2.21)

Indeed, hyperparameters like σtarget and µtarget are much more interpretable
compared to the risk-aversion coefficient γ despite fulfilling the same role of repre-
senting the trade-off between expected gain and risk level: high values of µtarget and

13

Portfolio Management

σtarget or low values of γ are used by greedy investors, while the opposite situation
is for investors who want to avoid taking risks as much as possible.

2.4.2 Efficient Frontier
Solving the aforementioned optimization problems with different values for the
hyperparameters will result in a set of portfolios, each with their own expected
return and volatility. Displaying them on a risk-return plot will create a curve that
is known in modern portfolio theory as the efficient frontier [6]. All portfolios that
lay on this curve are said to be optimal since, according to this framework, there
does not exist a single portfolio with the same standard deviation of return as any
of them but with a higher expected return, which means that all other non optimal
portfolios, including those composed by a single asset, lay below the frontier.

Figure 2.4: Representation of an efficient frontier curve

Optimizing the Sharpe ratio

Nevertheless, the formulations proposed in (2.19), (2.20) and (2.21) still require a
hyperparameter to be set in order to obtain a single optimal portfolio. For this
reason, a hyperparameterless formulation of the problem can be beneficial, which
can be obtained by using the Sharpe ratio as the objective function to maximize:

max
w

µ⊺w − rf

w⊺Ew

s.t.
MØ

i=1
wi = 1

wi ≥ 0 ∀i

(2.22)

This formulation results in a single optimal most commonly known as the
tangency portfolio [7], due to it being the point of tangency on the efficient frontier

14

Portfolio Management

defined by the straight line that passes through the point (0, rf), which corresponds
to a portfolio made up of only the risk free asset.

2.4.3 Multi-Stage Optimization
The mean-variance model introduced by Markowitz, however, is static and, as such,
it is not applicable to the problem of dynamic portfolio management, in which
the optimal weights might change at every time-step. One possible fix, which was
proposed in [14], would be to include the transaction costs, which are assumed to
be equal to a fraction of the whole transaction value, into the objective function,
leading to the following formulation:

max
w

µ⊺w − rf − β∥w −w0∥1

w⊺Ew

s.t.
MØ

i=1
wi = 1

wi ≥ 0 ∀i

(2.23)

where w0 is the vector of portfolio weights of the previous time-step and β is
the transaction cost expressed as a percentage of the transaction value.

Remark Although β∥w−w0∥1 is not the exact formula for the transaction cost,
it is an excellent approximation. More details will be given in chapter 4.

This new formulation, however, can lead to myopic solutions as it does not
take into consideration the long term effect of its actions. For this reason, a
reinforcement learning approach is preferable, since its main objective is to maximize
a given objective in the long run. Nevertheless, the adapted Markowitz model with
transaction costs can still be used as a comparison.

15

Chapter 3

Reinforcement Learning

Reinforcement Learning (RL) is a machine learning paradigm that is funda-
mentally different from other types of machine learning like supervised learning,
as the learning is not achieved by observing i.i.d. observations, but by continu-
ously choosing an action to perform in order to interact with the environment and
observing how it responds to the stimulus.

This chapter will introduce the reinforcement learning framework and its main
components. Furthermore, an overview of the deep learning approach to the RL
problem will be given, as all algorithms employed in this work revolve around the
use and training of neural networks.

3.1 Framework Definition
Figure 3.1 shows the configuration of a simple reinforcement learning system: at
every time-step t the agent, also called the decision maker, observes the state
st of the environment and interacts with it by applying an action at. The
environment then reacts to the action made by the agent by emitting a reward
signal rt+1 and a new state st+1, which will be observed by the agent and so on.

Figure 3.1: Interaction between agent and environment. Image taken from [10].

16

Reinforcement Learning

Action Space

As mentioned before, actions are the signals emitted by the agent at every time-step
in order to interact with the environment. The set of all admissible actions is called
the action space A and can be either discrete or continuous depending on the
application.

Environment State

Actions performed by the agents are chosen according to the observations received
from the environment. The set of all observations is called observation space,
which, however, does not necessarily coincide with the environment space, which
refers to the set of actual states of the system. This is the case, for example, for
trading agents that can only observe the current prices of the assets in the market.

In this case, the environment is said to be partially observable and, therefore,
in order to perform the optimal actions, the agent is forced to build its own
representation of the state of the environment by relying only on past observations,
actions and reward signals. On the other hand, the environment is said to be fully
observable.

Reward Signal

The reward signal is a scalar value rt+1 ∈ R that the agent receives after applying
action at during the previous time-step, which indicates the quality of the action
with respect to the current state of the environment. Assuming that this action
made the environment transition from state st to st+1, the reward is a function of
these three values:

rt+1 = rt+1 (st, at, st+1) ∀t (3.1)

The objective of the agent is to maximize the cumulative reward received,
which means that the focus is on the long-run effects of the actions, rather than
their immediate results. This is due to the reward hypothesis, which all of
reinforcement learning is based on, that states:

All goals and purposes can be thought of as the maximization of the expected value
of the cumulative sum of a received scalar signal called reward.

This hypothesis is based on the fact that, for an agent to choose an optimal
action, all possible choices must be able to be compared against each other, which
means that they must be able to be expressed as a scalar value, just like a reward
signal. For this reason, it is imperative that an appropriate reward signal is chosen
for the given tasks on which the RL framework is applied [9].

17

Reinforcement Learning

3.1.1 Rewards, Policies and Value Functions
In order for the agent to understand what is the best action to perform at any
given moment using only reward signals, some key concepts used in reinforcement
learning need to be defined first.

Future Discounted Reward

Given the series of reward signals r1, r2, . . . , rt, . . . and a discount factor γ ∈ [0, 1],
the future discounted reward at time-step t is defined as:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞Ø

i=0
γirt+i+1 (3.2)

which represents the present value of the total reward the agent will receive starting
from time-step t if it were to apply the actions that produced those reward signals.

The coefficient γ is used to imply the preference of receiving a reward sooner
rather than later and determines the present value of future rewards: values of γ
close to 1 signify a farsighted agent that takes the future into account very strongly,
while smaller values are representative of a myopic agent that cares more about
immediate gains.

Policy

A policy π is a function that represents the behaviour of the agent by mapping
environment states st to actions at. Depending on the situation, this function can
be:

• deterministic: at = π (st);

• stochastic: at ∼ π (· | st).

which means that the action can either be the output of a standard function or
sampled from a distribution conditioned on the current environment state.

Value Function

The state-value function for a given policy π of a state s, denoted vπ (s), is the
expected future discounted reward of an agent if the environment is in state s and
the agent starts following the policy π from then on. Formally, it is given by:

vπ (s) .= Eπ [Gt | st = s]

= Eπ

è ∞Ø
i=0

γirt+i+1 | st = s
é
∀s

(3.3)

18

Reinforcement Learning

Q Value

Similarly to the state-value function that maps states to their value under a given
policy, there exists a function that maps state-action pairs to their value. This
function is called action-value function, or more colloquially Q value, for the
policy π, and is given by the formula:

qπ (s, a) .= Eπ [Gt | st = s, at = a]

= Eπ

è ∞Ø
i=0

γirt+i+1 | st = s, at = a
é
∀s, a

(3.4)

Informally, qπ (s, a) represents the value of state s if the agent were to perform
action a and then follow the policy π.

3.2 Markov Decision Processes
Basic reinforcement learning problems can be formulated as Markov decision
processes (MDC), which are discrete-time stochastic dynamical systems that
work under the assumptions that there is perfect knowledge about the reward
function and the transition probabilities between environment states, and that
the Markov property holds for all states.

State Transition Probabilities

Given the set of states S and set of actions A, assuming that both of them
are finite in size, the state transition probabilities can be represented by a
three-dimensional matrix P ∈ [0, 1]|S|×|A|×|S| where:

P (s, a, s′) = P [st+1 = s′ | st = s, at = a] ∀t, s ∈ S, a ∈ A, s′ ∈ S (3.5)

Reward Function

As the system is stochastic, the reward function Rt at time-step t is defined as
the expected value of the reward signal rt+1 if the environment is currently in state
s and the agent performs action a, that is:

Rt (s, a) .= E [rt+1 | st = s, at = a] ∀t, s ∈ S, a ∈ A (3.6)

Using the assumption that the state and action spaces are finite, the expectation
can be expressed in simpler terms using the state transition probabilities:

19

Reinforcement Learning

Rt (s, a) =
Ø
s′∈S

P [st+1 = s′ | st = s, at = a] · rt+1 ∀t, s ∈ S, a ∈ A (3.7)

where rt+1 = rt+1 (st, at, st+1) is the reward signal that the agent will receive if the
environment were to transition from state s to state s′ due to the effect of action
at.

Markov Property

A state st+1 is said to satisfy the Markov Property if and only if the transition
to this state only depends on the current state st and the action at performed and
not also on the previous ones, which means that the following condition must be
satisfied:

P [st+1 | st, at, st−1, at−1, . . . , s1, a1] = P [st+1 | st, at] ∀t (3.8)

Remark The validity of the Markov property heavily depends on what is con-
sidered as the state of the environment. Indeed, if, for example, we consider as a
dynamical system the Fibonacci sequence:

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 ∀n > 1

(3.9)

then it is clear that this system is not Markovian if the current state is defined
only by the current value Fn, while it satisfies the Markov property if the state is
defined by the pair of current value and previous value (Fn, Fn−1).

For this reason it is important to properly define what the environment state is,
especially for more complex systems.

Having introduced all the components of a MDP, it can now easily be defined as
the tuple ⟨S, A, P, R, γ⟩.

3.2.1 Bellman Equation

By applying the Markov property to the definitions of future discounted reward
and of value function, it is possible to notice a recursive relationship:

20

Reinforcement Learning

vπ (s) = Eπ

è ∞Ø
i=0

γirt+i+1 | st = s
é

= Eπ

è
rt+1 +

∞Ø
i=1

γirt+i+1 | st = s
é

= Eπ

è
rt+1 + γ

∞Ø
i=0

γirt+i+2 | st = s
é

= Eπ

è
rt+1 + γGt+1 | st = s

é
= Eπ

è
rt+1 + γvπ (st+1) | st = s

é

(3.10)

which implies that, for a Markovian system, the state-value function of any state
s ∈ S can be decomposed into the immediate reward rt+1 and the discounted value
of the successor state st+1. This equality is known as Bellman equation.

Using the same reasoning, the action-value function of any state-action pair
(s, a) can also be decomposed into the same two components:

qπ (s, a) = Eπ [rt+1 + γvπ (st+1) | st = s, at = a]
= Eπ

è
rt+1 + γqπ (st+1, at+1) | st = s, at = a

é (3.11)

Remark Most of the steps of the proof to obtain the Bellman equation were
skipped. If the reader is interested, the complete proof can be found in [10].

Bellman Optimality Equation

Solving a reinforcement learning task using the MDP framework consists in finding
a policy π which is better than any other admissible policy π′ and this happens if
and only if the state-value function of all states s ∈ S under the policy π is better
than the one under policy π′, that is:

vπ (s) ≥ vπ′ (s) ∀s ∈ S (3.12)

All policies that satisfy this condition are called optimal policies and are
denoted by π∗. They also share the same state-value function v∗, which is called
the optimal state-value function and is defined as:

v∗ (s) .= max
π

vπ (s) ∀s ∈ S (3.13)

Likewise, the optimal action-value function q∗ can also be defined as:

q∗ (s, a) .= max
π

qπ (s, a) ∀s ∈ S, a ∈ A (3.14)

21

Reinforcement Learning

which is connected to the optimal state-value function by the following relationship:

v∗ (s) = max
a∈A

q∗ (s, a) ∀s ∈ S (3.15)

The same reasoning used to find the Bellman equation can also be applied to v∗
and p∗ in order to obtain recursive relationships that do not depend on any specific
policy:

v∗ (s) = max
a∈A

q∗ (s, a)

= max
a∈A

Eπ∗

è ∞Ø
i=0

γirt+i+1 | st = s, at = a
é

= max
a∈A

Eπ∗

è
rt+1 + γGt+1 | st = s, at = a

é
= max

a∈A
E

è
rt+1 + γv∗ (st+1) | st = s, at = a

é
(3.16)

and

q∗ (s, a) = E
è
rt+1 + γ max

a′∈A
q∗ (st+1, a′) | st = s, at = a

é
(3.17)

which hold for all s ∈ S and a ∈ A and s′ ∈ S. These equations are called the
Bellman optimality equations for v∗ and q∗ respectively.

3.3 Dynamic Programming
The appeal of modeling stochastic dynamical systems as Markov decision processes
is the possibility of obtaining an optimal policy by solving them using the Bellman
optimality equations introduced in the previous section. Algorithms that use this
method of computing the optimal solution belong to the dynamic programming
(DP) framework.

From now on, we will assume that the state and action spaces are finite, which
means that the environment dynamics are given by a set of probabilities. This is
due to the fact that, in general, problems with continuous spaces cannot be solved
exactly and approximations are required.

Iterative Policy Evaluation

The first step toward finding an optimal policy is finding the value of all states
under a given policy π. To do so, it is sufficient to apply the iterative policy
evaluation algorithm, which simply consists in assigning a starting value v0 as
an initial approximation of the state-value function and then apply the following
update rule inspired by the Bellman equation:

22

Reinforcement Learning

vk+1 (s) = Eπ

è
rt+1 + γvk (st+1) | st = s

é
∀s ∈ S (3.18)

This algorithm is proved to converge to the exact state-value function vπ for
k → ∞ as it is the fixed point of the Bellman equation. Of course, actual
implementations of this algorithm cannot use an infinite number of iterations
and stop when the difference between vk and vk+1 becomes smaller than a given
threshold for all states. With the state-value function, it becomes trivial to also
evaluate the action-value function qπ for all states due to the relationship found in
(3.11).

3.3.1 Policy Iteration
Policy Iteration is an algorithm that, starting from a given policy π, is able
to iteratively improve upon it by first computing its state-value function and
then finding a better policy π′ by relying on the following policy improvement
theorem, whose proof can be found in [10]:

Let π and π′ be any pair of deterministic policies such that
qπ (s, π′ (s)) ≥ vπ (s) ∀s ∈ S, then it must hold that vπ′ (s) ≥ vπ (s) ∀s ∈ S,

which means that the policy π′ must be at least as good as, if not better than,
policy π. Moreover if there is a strict inequality for the first expression at any

state, then there must also be an inequality for the second expression at that state.

In particular, a new policy that satisfies the condition required by the theorem is
the greedy policy π′ that always chooses the action that maximizes the action-value
function under policy π, that is:

π′ (s) .= arg max
a∈A

qπ (s, a)

= arg max
a∈A

E
è
rt+1 + γvπ (st+1) | st = s, at = a

é
∀s ∈ S

(3.19)

By alternating the evaluation of the current policy and its improvement, the
policy iteration algorithm will keep finding a better policy until it converges to the
optimal policy π∗

3.3.2 Value Iteration
The policy iteration algorithm works by directly updating the policies, which can be
computationally expensive as it has to iterate through all states of the environment
multiple times. One way to avoid this problem is to use only one update step
during the iterative policy evaluation parts of the algorithm, which lead to a new

23

Reinforcement Learning

algorithm called value iteration. As the name implies, this algorithm works only
with state-value functions and can be expressed as a simple update rule:

vk+1 (s) = max
a∈A

E
è
rt+1 + γvk (st+1) | st = s, at = a

é
∀s ∈ S (3.20)

Starting from an arbitrary state-value function v0, this algorithm is shown to
converge to the optimal state-value function v∗, which is then used to find the
optimal policy π∗ by using:

π∗ (s) = arg max
a∈A

E
è
rt+1 + γv∗ (st+1) | st = s, at = a

é
∀s ∈ S (3.21)

3.4 Model-Free Learning
The main problem of dynamic programming and the reason why they are not heavily
used is the MDP assumption that there is perfect knowledge about the dynamics
of the environment, which is not the case for many real-world applications. For
this reason, multiple algorithms that do not make any assumption about complete
knowledge and instead rely only on interacting with the environment by sampling
sequences of states, actions and rewards have been developed.

One of the most important framework used in this context is known as temporal-
difference (TD) learning, which is based on iteratively updating the value q (s, a)
of state-action pairs (s, a) by using the value of another pair (s′, a′) where s′ is the
next state of the environment, obtained after applying action a from state s, hence
the name temporal difference. The way in which the action a′ is chosen identifies
two main algorithms:

• SARSA: based on the policy iteration algorithm for MDP, it uses the temporal
difference method to evaluate the action-value function qπ of a given policy π,
which means that a′ = π (s′). Starting from an initial approximation for the
Q-values, the following update rule is iteratively applied to obtain a better
approximation:

qπ (s, a)← qπ (s, a) + α
1

r + γqπ (s′, a′)− qπ (s, a)ü ûú ý
temporal difference

2
(3.22)

where r is the reward signal received by transitioning from state s to state s′

by performing action a and α is a coefficient known as learning rate.
These approximations are then used to improve the current policy using a
greedy approach: πnew (s) ∈ arg maxa∈A qπ (s, a) ∀s ∈ S, which is evaluated
using the process defined in (3.22) and so on. This algorithm is said to follow

24

Reinforcement Learning

an on-policy approach, as the actions to be performed are always taken from
the current policy.

• Q-learning: based on the value iteration algorithm for MDP, it aims at
learning an approximate solution to the Bellman optimality equation (3.14)
by using the temporal difference method to iteratively improve the current
approximation of the Q-values [11]. To do so, the algorithm follows a greedy
strategy, which means that a′ ∈ arg maxa∈A q (s, a). Therefore, the update
rule for the action-value function is given by:

q∗ (s, a)← q∗ (s, a) + α
1

r + γ max
a′∈A

q∗ (s′, a′)− q∗ (s, a)ü ûú ý
temporal difference

2
(3.23)

Q-learning is said to be an off-policy method, due to the fact that it learns
the optimal policy independently of the policy being followed.

This section contains a simple introduction to some of the algorithms used
in reinforcement learning with discrete state and action spaces. If the reader is
interested in a deeper analysis, they should read [10].

3.4.1 Exploration-Exploitation Trade-Off
It is clear that, in order to find the optimal strategy regardless of the type of
algorithm used, a good approximation of the Q values for all state-action pairs
is needed. Indeed, in a pure exploitation strategy in which all actions are chosen
in a greedy manner, it might happen that particularly good actions with a bad
initial approximation are discarded for other less optimal ones. On the other hand,
a pure exploration approach that consists in selecting the actions at random can
be particularly inefficient, especially for large action spaces. For this reason, there
needs to be a good balance between exploiting the good actions and exploring the
less chosen ones [12].

A very naive solution to this problem is the ϵ-greedy approach, which consists in
selecting the most promising action with probability 1− ϵ and selecting a random
one with probability ϵ, where the value of ϵ can either be fixed to a constants or
decrease during the learning process as the estimations get better.

3.4.2 Episodic vs Continuous Tasks
It should also be noted that there are two different types of tasks:

• episodic tasks: they are tasks in which the interaction between agent and
environment can be naturally separated into separate episodes, so that, at the

25

Reinforcement Learning

end of every episode, the environment is reset to its initial state and the next
episode starts independently of how the previous one ended;

• continuous tasks: they are tasks in which the agent-environment interaction
goes on continually without limit. They are the main reason why discounted
rewards are used, since, without discounting, the expected future rewards
would explode to infinity.

3.5 Deep Learning
Up until now, we have always assumed that the state and action spaces were finite,
which allowed the use of a tabular formulation for state-value and action-value
functions. Many applications, however, are not compatible with this assumption
and, therefore, there is a need to find a representation for these functions so that
they work with a continuous range of values for both inputs and outputs. Nowadays,
the most common solution is the use of neural networks to approximate them [15].

3.5.1 Neural Networks
Originated from an attempt to find a mathematical model for the neural systems
of living entities [16], artificial neural network can be considered as black-box
models composed by a large collection of simpler units connected to each other
via edges that represent the flow of information inside the network. Each unit is
represented by a set of parameters, which control the output it will produce given
an array of scalar values as input.

Depending on the application, there are different types of neural networks, which
can also be combined to obtain even more complex structures. This section will
only give a brief overview of the architectures used during the experiments.

Feed-Forward Neural Network

The Feed-forward neural network, also called multi-layer perceptron, is one of
the simplest type of neural network that exists. It consists in a set of nodes, called
neurons, that are connected in a feed-forward manner, meaning that they do not
form any loops. These nodes can be categorized into three different types:

• input nodes: they are the nodes that receive the input data. In particular,
each node corresponds to one specific feature of a data point;

• hidden nodes: they receive the data as a linear combination of the values of
input nodes or other hidden nodes, where the linear combination coefficients

26

Reinforcement Learning

are given by the weights of the connections. They then output a value that
will be used as input for other nodes;

• output nodes: they are just like hidden nodes, with the only difference being
the fact that their outputs are used as the output of the whole neural network
and are not fed into other nodes.

Figure 3.2: Example of a feed-forward neural network with a single hidden layer.
Image taken from [16].

As shown in figure 3.2, these nodes are organized into layers in such a way that
all nodes from one layer are connected to all nodes of the next layer, which is why
these layers are also called fully connected (FC) layers. Furthermore, each layer
excluding the output one also has a bias node, which is used to add a constant
value to its output.

It should also be noted that, with this structure, the network would only be
able to give as output a linear combination of the input values. For this reason, all
linear combinations are followed by a non-linear transformation, called activation
function. In mathematical terms, if (x1, . . . , xM) is the vector of values of a given
layer and (wi,1, . . . , wi,M) are the weights of the edges that connect this layer to
the i-th node of the next layer, then its value is given by:

27

Reinforcement Learning

oi = σ
1 MØ

j=1
wi,jxj + wi,0

2
∀i (3.24)

where σ is the chosen non-linear transformation and wi,0 is the weight of the edge
that connect the bias node of the current layer to the i-th node of the next layer.

Recurrent Neural Network

Recurrent neural networks (RNN) are a family of neural networks designed to
handle sequential data [13], such as time series and sentences. Unlike the standard
multi-layer perceptron, this type of network uses feedback loops, which can be seen
in figure 3.3.

Figure 3.3: Computational graph of a generic recurrent neural network. The left
part shows the simplified representation, which is unfolded on the right to show
the exact flow of information for a single time-step. Image taken from [14].

Assuming that the input is a time series x = [x1, . . . , xt, . . . , xT], the network
recursively builds a hidden representation ht of the input data xt using the value
of the data at that time-step and the hidden representation of the state at the
previous time-step ht−1:

ht = f (ht−1, xt) (3.25)
where f is a function that depends on the parameters of the network. The hidden
representations ht are then used to compute the output of the network yt for all
time-steps t = 1, . . . , T using a second function g:

yt = g (ht) (3.26)
As both the figure and mathematical expression show, the transformations f

and g that are applied to the data are the same for all time-step. This property

28

Reinforcement Learning

is known as parameter sharing and is a fundamental part of all recurrent neural
network, as it allows them to avoid learning a different model for every single
time-step, which would lead to much higher computational costs compared to using
a multi-layer perceptron and possibly overfitting.

Standard RNNs, however, suffer from the vanishing gradient problem [17], which
is encountered when training neural networks with gradient-based algorithms and
consists in having a vanishingly small gradient that prevent the value of some
of the parameteres from being changed. For this reason, other variants have
been developed. The most popular one is the long short-term memory (LSTM)
architecture, which is heavily used due to its ability to handle both long-term and
short-term dependencies in the input data, as its name implies [18].

Figure 3.4: Diagram of an LSTM cell. Image taken from [19].

This is achieved thanks to the way its components interact:

• hidden state: it contains information on previous inputs and is also used as
the output of the network for all time-steps;

• cell state: it works as the memory of the network as it stores information
from both earlier and more recent time-steps according to the behaviour of
the gates;

• forget gate: it decides what information should be kept in the cell state and
what should be forgotten;

• input gate: it handles the role of updating the cell state using the current
input data and the previous hidden state of the network;

• output gate: it decides what the next hidden state should be by using the
current input and the previous hidden state.

29

Reinforcement Learning

Figure 3.4 shows the diagram of a single LSTM cell and highlights all of its
components. In mathematical terms, this structure can be expressed using the
following set of equations:

ft = σ (Wfxt + Ufht−1 + bf) (forget gate)
it = σ (Wixt + Uiht−1 + bi) (input gate)
ot = σ (Woxt + Uoht−1 + bo) (output gate)
gt = tanh (Wgxt + Ught−1 + bg)
ct = ft ⊙ ct−1 + it ⊙ gt (cell state)
ht = ot ⊙ tanh (ct) (hidden state)

(3.27)

where ⊙ refers to the element-wise product operator and W , U and b are parameters
to be learnt.

3.5.2 Training
As mentioned when we introduced the concept of neural networks, their behaviour
depend on the value of their parameters, which means that, in order for them to
output optimal values in response to given inputs, they have to be trained using a
sufficiently large amount of data relative to the number of parameters. The training
process consists in the minimization of a loss function, which, in the context of
reinforcement learning, does not have the same meaning as the loss function used
in supervised learning, as it does not represent the performance of the policy [20].

Gradient Descent

The minimization of the loss function is usually achieved via a process called
gradient descent, which, as the name implies, consists in calculating the gradient
of the loss function obtained on all the training data with respect to the parameters
of the network and then iteratively updating the parameters using the following
update rule:

w ← w − η∇L (w) (3.28)

where w is the vector of parameters of the network, ∇L (w) is the gradient of
the loss function and η ∈ R+ is a hyperparameter of the training process known
as learning rate, which defines the step size at each iteration of the algorithm.
Computing gradients using the whole training dataset at every iteration, however,
can be too demanding in terms of computational resources required. For this
reason, a batch learning variant, called Stochastic Gradient Descent (SGD)
[21], has been proposed, which works in the same way as the original algorithm

30

Reinforcement Learning

with the only difference being that the gradient is computed using a fixed-size
subset of data samples called minibatch.

In reality, most of the time, actual training of neural networks do not use the
gradient descent algorithm or its batch learning version as is and, instead, opt
for more complex variants that have been proved to have better performance in
general, such as Adam, which relies on gradient scaling and the use of momentum
[22].

Furthermore, in order to avoid overfitting on the training data as much as possible,
these algorithms also make use of regularization, which consists in augmenting the
original loss function by adding a regularization term so that the training process
minimizes the sum of the two. One of the most commonly used regularization
method is called L2 regularization, or weight decay [23], which can be explained
with the following expression:

L (w) = Lold (w) + λ∥w∥2 (3.29)

where Lold is the original loss function and λ is a hyperparameter that controls the
degree of regularization. This method leads to smaller values for the parameters of
the network, making it more robust to noise in the input.

3.6 Deep Learning Approach to Reinforcement
Learning

Recent advances in the field of deep learning, especially applied to tasks related
to computer vision and natural language processing, have proven the ability of
neural networks to extract high-level features from raw data. For this reason, many
researchers tried to adapt deep learning techniques to the reinforcement learning
framework, which, at the time, mainly relied on linear combinations of hand-crafted
features [24], leading to the creation of a variety of new algorithms as shown in
figure 3.5.

Reinforcement learning algorithms can be divided into two groups: model-based
approaches are based on trying to learn the behaviour of the environment by
interacting with it, while model-free ones try to directly optimize the policy or the
value function without inferring anything about the environment they interact with.
In this thesis we will mostly focus on the second class of RL methods, although we
will also briefly rely on the first kind.

Just like algorithms used to solve Markov decision processes rely either on
improving the policy or on finding the optimal value function to find the best
strategy, model-free RL approaches can also be categorized into two classes:

• Policy Optimization: this family of algorithms works by directly trying

31

Reinforcement Learning

Figure 3.5: Non-exhaustive taxonomy of modern reinforcement learning algo-
rithms. Image taken from [27].

to find the optimal parameters of the network used as the policy function.
In particular, they usually perform on-policy optimization by learning the
state-value function vπ of the current policy π, which is then used to find a
better one, just like in the policy iteration algorithm for MDP;

• Q-Learning: as the name implies, algorithms belonging to this group work
in the same way as the Q-learning algorithm introduced in section 3.4, with
the only difference being that it does not try to learn the Q-value for all
state-action pairs directly and, instead, relies on finding the optimal value
for the parameters of the neural network that approximates the action-value
function.

Both types of algorithms have their own strengths and weaknesses. In partic-
ular, while policy optimization methods are often more reliable than Q-learning
methods, which are prone to instabilities [29], they are less sample efficient than
the counterpart [30]. As a solution, various algorithms that make use of both
frameworks simultaneously have been developed.

3.6.1 Actor-Critic Methods
Using a different terminology, the term actor is used to refer to the policy function,
while critic is used for the action-value function. Actor-Critic methods, therefore,

32

Reinforcement Learning

refer to algorithms that aim to combine the strong points of policy optimization
methods and Q-learning methods, which are also called actor-only and critic-only
methods respectively [31].

Figure 3.6: Dynamic of actor-critic algorithms. Image taken from [32].

In particular, the actor and the critic, which are represented by neural networks
whose parameters have to be learnt, interact with each other and with the environ-
ment as shown in figure 3.6: the actor decides which action to perform depending
on the current state of the environment, while the critic tells the actor how good
its action was and how the parameters of the two networks should be adjusted
based on the reward signal received from the environment.

A variety of actor-critic algorithms have been developed since their conception.
We will now explain in details only the two that were used during the experiments
performed for this thesis: DDPG and SAC.

DDPG

Short for Deep Deterministic Policy Gradient, DDPG is an off-policy algorithm
developed as an adaptation of the Deep Q Network (DQN) algorithm [24], which is
based on Q-learning, to deal with continuous action spaces [33]. Indeed, Q-learning
algorithms struggle with this type of problems because they follow a greedy policy,
which requires finding the optimal action at every time-step, and this can be
impractical for high-dimensional continuous action spaces.

In particular, DDPG uses four networks: a deterministic actor network πϕ, a
critic network Qθ and two target networks π′

ϕ′ and Q′
θ′ , which are used to stabilize

the training of the critic network [25]. Indeed, the training process consists in
solving two optimization problem simultaneously:

33

Reinforcement Learning

• optimizing the parameters ϕ of the policy so that the expected future return
is maximized, meaning that the objective function to maximize is given by:

Jπ (ϕ) = E
è
Q (s, πϕ (s))

é
(3.30)

• finding the optimal parameters θ of the critic network so that it satisfies the
Bellman equation 3.11 by minimizing the following loss function:

L (θ) = E
è

(Qθ (st, at)− yt)2
é

(3.31)

where
yt = rt+1 (st, at, st+1) + γQθ′ (st+1, πϕ′ (st+1)) (3.32)

In order to train the actor and critic networks using the aforementioned objectives,
the algorithm applies gradient descent algorithms using samples obtained from
interactions between the actor and the environment. In particular, it makes use of
an experience memory replay buffer [26] to store the last N ∈ N agent-environment
interactions in the shape of tuples (st, at, st+1, rt+1), which are then used as samples
to form the batches needed for the training process. This addresses the issue of not
having i.i.d. data due to the samples being generated sequentially from interacting
with the environment and allows the networks to be trained offline using batches
rather than online with single samples, improving the computational efficiency of
the training process. It should be noted that the use of batches allows the loss
defined in (3.31) to be expressed as:

L (θ) = 1
B

Ø
i

1
Qθ (st, at)− yt

22
(3.33)

where B is the number of samples in the batch.
On the other hand, the target networks are not trained and, instead, have their

parameters updated with the following soft update rule:
ϕ′ ← τϕ + (1− τ) ϕ′

θ′ ← τθ + (1− τ) θ′ (3.34)

where θ ≪ 1 is a hyperparameter to set.
Lastly, regarding the exploration-exploitation trade-off, DDPG deals with it by

adding a noise N to the actor output during training, which can either be sampled
from a simple distribution or also from a random process like the Ornstein-Uhlenbeck
process that was used in the original paper [33].

34

Reinforcement Learning

Algorithm 1 Pseudo Code of Deep Deterministic Policy Gradient Algorithm
1: Input: Initial actor parameters ϕ and initial critic parameters θ
2: ϕ′ ← ϕ, θ′ ← θ ▷ Initialize target network weights
3: D ← ∅ ▷ Initialize an empty replay buffer
4: for episode = 1, . . . , M do
5: Initialize a random process N
6: st ← s1 ▷ Receive initial state
7: repeat
8: Observe state st and select action at = πϕ (st) +N
9: Execute action at and store tuple (st, at, st+1, rt+1) in D

10: Sample a random minibatch of B transitions (st, at, st+1, rt+1) from D
11: Compute yt = rt+1 (st, at, st+1) + γQ′

θ′

1
st+1, π′

ϕ′ (st+1)
2

12: Update the parameters θ of the critic network by minimizing:
L (θ) = 1

B

q
i

1
Qθ (st, at)− yt

22

13: Update the parameters ϕ of the actor network by maximizing:
Jπ (ϕ) = E

è
Q (s, π (s))

é
14: ϕ′ ← τϕ + (1− τ) ϕ′ ▷ Update target actor
15: θ′ ← τθ + (1− τ) θ′ ▷ Update target critic
16: st ← st+1 ▷ Receive next state
17: until st is terminal
18: end for
19: Output: Policy πϕ and Q-function Qθ with optimal parameters

35

Reinforcement Learning

SAC

The DDPG algorithm, however, can be extremely brittle, as its performance is
highly dependent on the initialization of the weights of the network and on the
values of the hyperparameters [34]. For this reason, a new algorithm called Soft
Actor-Critic (SAC) has been developed [35, 36].

Just like the DDPG algorithm, SAC uses a replay buffer to store all the interac-
tions between agent and environment for offline training. This method, however,
relies on a stochastic policy, which means that, rather than outputting an action
directly, the actor generates the distribution of a random variable, from which
an action will be sampled. This fact implies that exploration is intrinsic to the
architecture of the policy and no external noise has to be added. To remove the
exploration component during testing time, the policy simply uses the expected
value of the output distribution as the action to perform.

Furthermore, it does not use the standard RL strategy of training the policy
network to maximize the expected sum of rewards and, instead, augments the
standard objective Eπ

è q∞
t=0 γtrt+1 (st, at, st+1)

é
by adding the expected entropy of

the policy to the reward signals, where the entropy of a random variable x with
density function P is denoted by:

H (P) = Ex∼P

è
− log P (x)

é
(3.35)

and represents, in simple terms, the level of randomness of the outcome of the
random variable. This new term changes the objective of the policy optimization
part of the algorithm to:

Jπ (ϕ) = Eπ

è ∞Ø
t=0

γt
1
rt+1 (st, at, st+1) + αH (πϕ (· | st))

2é
= E

è
Q (st, at)− α log πϕ (at | st)

é (3.36)

where ϕ is the set of parameters of the policy network π, Q (st, at) is the current
approximation of the value of the state-value pair (st, at) and α is a parameter
called temperature. Likewise, the equations for the state-value and action-value
functions under policy π become [38]:

Vπ (s) = Eπ

è ∞Ø
t=0

γt
1
rt+1 (st, at, st+1) + αH (πϕ (· | st))

2
| st = s

é
(3.37)

and

Qπ (s, a) = Eπ

è ∞Ø
t=0

γtrt+1 (st, at, st+1) + α
∞Ø

t=1
γtH (πϕ (· | st)) | st = s, at = a

é
(3.38)

36

Reinforcement Learning

respectively, from which it is possible to prove that:

Vπ (s) = Eπ

è
Qπ (s, a) + αH (πϕ (· | s))

é
= Eπ

è
Qπ (s, a)− α log π (a | s)

é (3.39)

and

Qπ (s, a) = Eπ

è
r (s, a, s′) + γ

1
Qπ (s′, a′) + αH (πϕ (· | s))

2é
= Eπ

è
r (s, a, s′) + γ

1
Qπ (s′, a′)− α log πϕ (a′ | s′)

2é (3.40)

In order to approximate the value of Qπ, SAC makes use of two Q-value functions,
denoted by their set of parameters θ1 and θ2. In particular, the two networks are
trained simultaneously in order to satisfy equation (3.40) by minimizing:

L (θi) = E
è1

Qθi
(s, a)−

1
r (s, a, s′) + γ

1
Q (s′, a′)− α log πϕ (a′ | s′)

2222é
(3.41)

where:

Q (s, a) = min
i=1,2

Qθi
(s, a) (3.42)

which means that the estimate of the action-value function is given by the minimum
of the outputs of the two critic networks. This is done in order to reduce the
overestimation problem that plagues value-based reinforcement learning algorithms
[39]

Lastly, regarding the temperature parameter, it is used to determine the impor-
tance of the entropy term with respect to the reward signal, which means that it
controls the stochasticity of the policy [35] and, therefore, the trade-off between
exploration and exploitation. Indeed, adding entropy to the objective function for
the optimization of the policy was shown to improve exploration by discouraging
premature convergence to sub-optimal deterministic policies [37]. The value of
the temperature can either be fixed to a constant or learnt like the parameters
of the networks, which is the preferable strategy, as the policy should be more
stochastic in more uncertain regions and more deterministic in states where there is
a clear separation between good and bad actions [36]. In this case, the optimization
problem to solve, which was formulated in [36], is:

J (α) = Eπ

è
− α log π (a | s)− αH̄

é
(3.43)

37

Reinforcement Learning

Algorithm 2 Pseudo Code of Soft Actor-Critic Algorithm
1: Input: Initial actor parameters ϕ and initial critic parameters θ1 and θ2
2: θ′

1 ← θ1, θ′
2 ← θ2 ▷ Initialize target network weights

3: D ← ∅ ▷ Initialize an empty replay buffer
4: for episode = 1, . . . , M do
5: st ← s1 ▷ Receive initial state
6: repeat
7: Observe state st and sample action at ∼ πϕ (· | st)
8: Execute action at and store tuple (st, at, st+1, rt+1) in D
9: Sample a random minibatch of B transitions (st, at, st+1, rt+1) from D

10: Compute Q (s, a) = mini=1,2 Qθi
(s, a)

11: Update the parameters θ1 and θ2 of the two critics by minimizing:
L (θi) = E

è1
Qθi

(s, a)−
1
r (s, a, s′)+γ

1
Q (s′, a′)−α log πϕ (a′ | s′)

2222é
12: Update the parameters ϕ of the actor network by maximizing:

Jπ (ϕ) = E
è
Q (st, at)− α log πϕ (at | st)

é
13: Update the temperature parameter by minimizing:

J (α) = Eπ

è
− α log π (a | s)− αH̄

é
14: θ′

i ← τθ + (1− τ) θ′
i i = 1,2 ▷ Update target critics

15: st ← st+1 ▷ Receive next state
16: until st is terminal
17: end for
18: Output: Policy πϕ and Q-functions Qθ1 , Qθ2 with optimal parameters

38

Part II

Contribution

39

Chapter 4

Methodology

In chapter 2, the static portfolio management problem was introduced alongside
the traditional method to solve it. We then presented the reinforcement learning
framework in chapter 3 in order to tackle sequential decision making problems. In
this chapter, we will formulate the dynamic asset allocation problem as a discrete
time dynamical system so that it is compatible with the algorithms introduced in
the previous chapter. In particular, section 4.1 will list all the assumptions that
were made about the trading environment and the agent during the experiments,
then section 4.2 will define the mathematical framework, which is heavily inspired
by [40], and lastly sections 4.3 and 4.4 will introduce all the network architectures
used to represent the policy and the Q-value functions and what can be done to
speed up their training.

4.1 Assumptions
In this thesis, all experiments are done exclusively via back-test trading using
historical data, which means that the trading agent pretends to be at a certain
point in the past and then does paper trading without using any information from
the "future" [40]. Therefore, in order for this method of testing to make sense,
various assumptions regarding the market have to be made, which are:

• there is no bid-ask spread , meaning that all assets can be bought and sold at
the same price;

• all assets must be sufficiently liquid, so that transactions involving any asset
can take place immediately and at any time as long as the market is open
with no difference between the expected price and the actual one;

• buying and selling fractions of shares is possible;

40

Methodology

• all transactions have a cost equal to 0.2% of their value;

• the amount of money the trading agent can move is not meaningful enough to
have an impact on the market.

Furthermore, we also assume that the market is composed of only M assets, of
which one is the risk-free cash, and that the trading agent re-balances the portfolio
at the end of every trading day, which means the closing prices of the assets are
used to calculate the costs.

4.2 Framework definition
In the dynamic portfolio optimization task, an investor, who covers the role of agent,
continuously interact with the market, which functions as the environment of the
system, by changing their investment strategy in order to maximize a predefined
reward signal after having observed the behaviour of the assets in the market.

4.2.1 State and Action Spaces
At any time-step t, which in this framework refers to the moment the market closes
at the end of day t, the agent can only observe the price vector p⃗t of the assets
included in the market, which, however, is not enough to determine the actual state
of the environment [14], meaning that the environment is only partially observable.
For this reason, as mentioned in section 3.1, the agent needs to build its own
representation of the environment state by relying on the history of observations
and interactions between agent and environment. Nevertheless, using the complete
history from the start of the trading period to the current time-step t is not
computationally feasible. As a middle ground, a solution employed by many [14, 40,
41, 42], which this framework will also utilize, is to use a rolling window setup in
which at every time-step t only the observations from the past W time periods are
considered, where W is a hyperparameter called window length, which is set to be
equal to 50 for all of our experiments. Furthermore, since transaction costs are also
included, the current portfolio weights should also be included in the environment
state. As a consequence, at every time-step t, the state st used by the agent to
decide the action at to perform is given by:

st = (p⃗t−W +1:t, wt) (4.1)

where p⃗t−W +1:t is the asset data matrix defined in (2.5) and wt is the vector of
portfolio weights at the end of day t. Since assets can, in theory, have any value as
long as it is not negative, the state space is considered to be continuous.

41

Methodology

Data Preprocessing

As mentioned before in section 2.2, working directly with asset prices is not
recommended due to their non-stationarity. For this reason, before being used as
input for the policy and Q-value networks, various preprocessing steps are applied
to the asset data matrix p⃗t−W +1:t. Firstly, the difference of the logarithm of the
prices are calculated, obtaining the log return matrix ρ⃗t−W +2:t defined in (2.10).
Then, since all transactions are done with closing prices, the log-differences of the
opening prices are removed for all assets. Lastly, the remaining four features for all
assets are standardized using mean and standard deviation of the training data.
Using the same notation to avoid unnecessary complications, the networks’ input
can be expressed as:

st = (ρ⃗t−W +2:t, wt) (4.2)

Action Space

Regarding, instead, the actions performed by the agent, in this framework they
refer directly to the new portfolio weights, which will be applied when the market
closes for the day and will be the investment strategy until the re-balancing the
next day. This means that, just like the state space, the action space is also not
discrete.

4.2.2 Trading Dynamics

Figure 4.1: Dynamics of the portfolio

Following the assumptions made in section 4.1, the complete dynamics of the
interactions between trading agent and market environment are represented by
figure 4.1, which shows how the value and the weights of the portfolio change in
response to the re-balancing actions of the agent and the changes in the prices of

42

Methodology

the assets for one time period, which can also be explained by the following list of
events:

1. at the end of day t (time instant t′), the market closes and the portfolio has
weights wt and a total value of pt;

2. the agent, after having observed the price changes during day t and the current
portfolio weights, decides to re-balance the portfolio by performing action at

(time instant t), which changes the portfolio value to p′
t due to transaction

costs. The new portfolio value is, therefore, given by:

p′
t = (1− µt) pt with µt ≈ µ∥at − wt∥1 (4.3)

where µt is the transaction cost expressed as a fraction of the portfolio value
before being re-balanced, which is also used in (2.23) to express the transaction
cost in the Markowitz model, and µ = 0.2% as mentioned in section 4.1;

3. trading day t+1 starts and, at closing time (time instant (t+1)′), the portfolio
has a total value of pt+1 with weights wt+1, which are equal to:

pt+1 = p′

t (yt+1 · at)
wt+1 = yt+1 ⊙ at

yt+1 · at

(4.4)

where yt+1 is the vector of closing prices of the assets for day t + 1 expressed
as a fraction of the closing prices for day t, that is:

yt+1 = pclose
t+1

pclose
t

(4.5)

Regarding the first trading day, it is assumed that the starting portfolio consists
of only 1$ in cash, which will stay the same until the first closing day and the
subsequent re-balancing, as the cash asset is used as the point of reference for all
other assets and, therefore, does not change in value over time.

Remark It should be noted that the expression used in (4.3) to obtain the value
of the portfolio after re-balancing is only an approximation. Indeed, in [40] it was
proven that the exact formula for the transaction cost µ′ is the solution of the
following equation:

µt = 1
1− µa1,t

è
1− µw1,t −

1
2µ− µ2

2 MØ
i=2

(wi,t − µtai,t)+
é

(4.6)

43

Methodology

where w1,t and a1,t refer to the percentages invested in the cash asset, and that it
can be solved using the fixed-point iteration method [43].

Nevertheless, figure 4.2 shows that the approximation is good enough that it
does not warrant the loss in efficiency the use of this algorithm entails, as it only
tends to slightly underestimate the exact value.

Figure 4.2: Comparison of exact and approximated transaction costs incurred by
a trading agent that performs only random actions.

4.2.3 Reward Signals
Regarding the reward signals that are essential to the reinforcement learning
framework, they have to be chosen so that they faithfully represent the effect of
the most recent action. In order to do so, our framework takes inspiration from the
various performance metrics introduced in section 2.3. In particular, three different
reward signals will be used and compared: log returns, differential Sharpe ratio
and differential downside deviation ratio.

Log Returns

Since the objective of RL is to maximize the sum of the rewards and that it is
possible to express the value of the portfolio at time-step t using the sum of log
returns using the formula in (2.12), one possible reward signal is the log return of
the portfolio, that is:

rt+1 = ln
1vt+1

vt

2
= ρt+1 (4.7)

44

Methodology

which translates to trying to maximize the final value of the portfolio without
caring about the risks incurred.

Differential Sharpe Ratio

In order to include a measure of risk in the reward signal, using metrics such as the
Sharpe ratio directly is not ideal, as its value is influenced by all actions performed
from the start of the trading period to the current time-step and, as mentioned
above, reward signals should only represent the effect of the most recent one. For
this reason, one possible alternative is to use the differential Sharpe ratio (DSR)
[44], which represents the influence on the Sharpe ratio of the return received at
the current time-step and is defined as:

rt+1
.=

Bt (ρt+1 − At)− 1
2At

1
ρ2

t+1 −Bt

2
(Bt − A2

t)
3/2 (4.8)

with: At = At−1 + η (ρt − At−1)
Bt = Bt−1 + η (ρ2

t −Bt−1)
(4.9)

where η is a constant that controls the magnitude of the influence of the return on
the Sharpe ratio.

Differential Downside Deviation Ratio

Just like the Sortino ratio was proposed as an alternative metric to the Sharpe ratio
that takes into consideration the asymmetric preferences of most investors to price
changes, the differential downside deviation ratio (D3R) [45] is proposed as an
alternative reward signal to the differential Sharpe ratio that, as the name implies,
uses the downside deviation as the risk measure. This value has the following form:

rt+1
.=

ρt+1 − 1

2At

DDt

ρt+1 > 0

DD2
t

1
ρt+1 − 1

2At

2
− 1

2Atρ
2
t+1

DD3
t

ρt+1 ≤ 0
(4.10)

with:
At = At−1 + η (ρt − At−1)
DD2

t = DD2
t−1 + η

31
ρ+

t

22
−DD2

t−1

4 (4.11)

45

Methodology

4.3 Network Architectures
In this thesis, the neural networks used to represent the policy and value functions
are heavily inspired by [40, 14, 42], in which they aim to build a universal model
that reduces the agent model complexity and is able to generalize across different
trading universes by exploiting the principle of parameter sharing [46].

4.3.1 Asset Value Module
In order to achieve this universality, we propose the Asset Value Module (AVM)
shown in figure 4.3, which is a neural network that takes as input a multivariate
time-series of fixed length and generates a score that summarizes its properties. In
our case, the input time-series is the standardized log differences of the OHLCV
data of a single asset i in a given time window ρ⃗i,t−W +2:t, which, in turns, means
that the generated score vt ∈ R refers to how well the asset is doing in that period
of time.

Figure 4.3: Asset Value Module architecture. The first fully connected layer
construct a feature map, which are then elaborated by three LSTM layers. Lastly,
two final dense layers combine the output of the last LSTM layer into a single
scalar value.

Regarding the nonlinear transformations, the network uses leaky ReLUs with
negative slope equal to 0.1 after every fully connected layer. Furthermore, the
dimension of the feature map is a hyperparameter called hidden size that is kept
constant throughout the whole network.

Since there are M assets in the market environment, the input matrix ρ⃗i,t−W +2:t
of each asset is passed through the AVM separately and independently, which
means that the parameters of the networks are shared for all assets, hence the
use of the parameter sharing principle. Furthermore, since one of the M assets
is the cash asset, whose price and volume are set to be constant throughout the
whole trading period, the network will calculate the value of a matrix of all zeros,
which can be beneficial, since, in this way, the network has a point of reference to
evaluate the rest of the assets [42].

46

Methodology

4.3.2 Actor and Critic Networks

The output of the AVM network for all assets are then combined with the current
portfolio weights, which are the second part of the state of the environment, using
another set of dense layers to obtain the complete deterministic policy network. In
order to satisfy the constraint that the sum of the weights of the portfolio must be
equal to 1, the final fully connected layer is followed by a softmax as the non-linear
activation function. The critic network, instead, takes as additional input a third
vector, the action at performed by the policy, which is then combined with the rest
to output the Q-value of the state-action pair (st, at) as shown in figure 4.4.

Figure 4.4: Diagram of the deterministic actor and critic networks. Note that,
even if in this diagram the two networks are shown to share the initial part, this is
done only for simplicity sake and that the parameters of the two networks are not
actually shared. What is shared, instead, is the set of parameters of the AVM for
each asset, separately for actor and critic.

47

Methodology

Stochastic Policy Network

The two networks shown in figure 4.4 will be used in the DDPG algorithm introduced
in section 3.6.1 to find the optimal policy with respect to the chosen reward signal.
To use the SAC algorithm, instead, there is a need to define a network that takes
the same input as the deterministic policy network, but outputs a distribution. To
achieve this, inspired by the stochastic network used in [36], a slight modification
to the deterministic actor is proposed: instead of a single dense layer as the output
layer, it uses two separate fully connected layers, one for the mean of the distribution
and the other for the standard deviation. The outputs of these two layers are then
used to define a multivariate normal distribution, from which the action to perform
will be sampled and, in order to satisfy the usual constraint on the portfolio weights,
all components of the sampled vector are divided by their sum.

Figure 4.5: Diagram of the stochastic actor network.

48

Methodology

4.3.3 Parameter Sharing
Until now, we have made use of the concept of parameter sharing without explaining
why it is advantageous to do so, which is what this section will do, especially in
the context of portfolio management. In order to explain the reasoning behind
this choice, we will consider a variant of the networks proposed above, in which
the AVM section of the networks is not shared and, instead, has a different set of
parameters for each asset.

First of all, by using the same Asset Value Module for all assets, the total number
of parameters of the network is significantly lower compared to the non-parameter-
sharing variant, decreasing the probability of overfitting [47]. For the same reason,
the parameters of the AVM are trained on a much larger amount of data points,
which can be extremely important, as deep neural networks require a large amount
of training data to obtain meaningful results. For example, if the training dataset
consists of 10 years of daily OHLCV data of 5 assets, the parameter-sharing version
trains its only AVM using 5 · 10 · 252 = 12600 samples, while the alternative version
has 5 different AVMs and each of them is trained on 10 · 252 = 2520 samples.
Last but not least, the Asset Value Module is universe-agnostic, meaning that,
assuming that is has been trained on a sufficient amount of data of different assets,
it can also be used without training on a different set of assets. Indeed, if the actor
and critic networks have already been trained on a specific market environment,
when a different set of assets is given, it is possible to adapt the networks to the
new data by simply freezing the parameters of the AVM and training only the
following sections of the networks, drastically reducing the number of parameters
to be trained [14].

4.3.4 Training
Regarding the training for the actor and critic networks, the process follows the
algorithms shown in Algorithms 1 and 2 faithfully, with only a few exceptions:

• since the training data is obtained from historical observations, at the end of
every episode, the environment is not reset to the oldest data point, but to a
random one. The initial portfolio, instead, is always set to be equal to 1$ in
cash;

• in order to use all observations an approximately equal number of times, rather
than reaching the end of the trading period every episode, the number of
agent-environment interactions per episode is fixed to 1000;

• since both DDPG and SAC are based on storing the interactions in a replay
buffer and training the networks offline by sampling batches from it, the first
episode is always spent on filling the buffer with agent-environment interactions

49

Methodology

in which the agent performs random actions, since, otherwise, in the beginning
there would not be enough samples in memory to form a complete batch.

4.4 Pre-Training
Nevertheless, despite the use of this particular architecture, training deep neural
networks is still computationally expensive and require a lot of time, especially if
there is a lack of a powerful GPU. For this reason, various techniques to reduce
the training time are heavily used.

One such technique that is frequently used in the field of computer vision and
natural language processing is the pre-training of neural networks, which consists
in training the network on an auxiliary task and then fine-tune it for the actual
task [49]. In particular, in the context of portfolio optimization, a sensible auxiliary
task is the forecasting of future asset returns using the same standardized matrix
of log returns used as input for the actor and critic networks. Indeed, the current
framework only works with past data in order to decide a trading strategy for
the future, which means that forecasting future values might improve the training
process.

4.4.1 Forecasting
Since the main features that determines the value of the reward signal in the
reinforcement learning framework are the closing prices of the assets, the forecasting
task we are interested in consists in predicting the value of the vector of log returns
of closing prices at the next time-step t + 1, that is ρclose

t+1 , given the matrix ρ⃗t−W +2:t
as input.

To achieve this, we simply adapted the deterministic actor network by removing
the section that processes the current portfolio weights and the softmax transfor-
mation at the end of the network, since the log returns do not follow the same
constraints as the weights of the portfolio, leading to the network architecture
shown in figure 4.6.

Regarding the training process, it uses the same historical data used for the
portfolio management task and follows the typical supervised learning approach:
after having processed the training data and obtained the inputs Xt = ρ⃗t−W +2:t
and the target outputs yt = ρclose

t+1 for all time-steps t, stochastic gradient descent
or one of its variants is used to minimize a chosen loss function, which, in this case,
is the root mean squared error (RMSE) [50]:

RMSE =
óqT

t=1 (ŷt − yt)2

T
(4.12)

50

Methodology

Figure 4.6: Diagram of the forecaster network.

where ŷt is the prediction value. Actually, since the task is multivariate forecasting,
the target outputs yt and their predictions ŷt are vectors and not scalar values.
For this reason, the loss function used is calculated as the mean RMSE along the
components of the vectors, which, in this case, represent the RMSE relative to the
single assets.

4.4.2 Pre-Trained Networks
After having trained a neural network to forecast future log returns, the next step
is to fine-tune it for the asset allocation task, which, however, is problematic, since
the network used for forecasting and the actor and critic networks do not share the
same architecture.

To solve this problem, we make use of the process proposed in [51], which works
as follows:

1. consider only the part of the network that is shared among all networks
involved, which, in this case, refers to the Asset Value Module and the first
dense layer after it;

2. copy the parameters from the forecaster network to the actor and critic
networks used in the RL algorithm;

3. freeze the copied parameters;

4. train the actor and critic network by optimizing only the unfrozen parameters.

In this way, the number of parameters to be optimized is heavily reduced.

51

Chapter 5

Implementation

This chapter will give a brief overview of how the multiple components of the
framework introduced in the previous chapter were implemented in Python. This
means that not all of the codebase will be explained, as otherwise it would result
in too many uninteresting details that are not particularly relevant to the task at
hand. In particular, only the main classes that are used to represent the agent, the
environment and the training process will be presented. Indeed, this chapter is
written under the premise that the reader also has the source code at hand, which
can be found in the online repository of this project, in order to facilitate their
understanding of the various pieces of code.

5.1 Market

As the name implies, the Market class handles the retrieval of historical market
data from online resources. In particular, it relies on the yfinance package, which
downloads the data using Yahoo’s publicly available APIs, to access the data of all
assets that belong to the trading universe in a particular period of time. In order
to feed this data to the environment and the agent, the class has two methods:

• step: given the current time-step t, which is stored as an attribute of this
class, it returns the asset data matrix p⃗t−W +1:t and checks if the maximum
number of steps has been reached;

• reset: it resets the current time-step to the initial value, which, as mentioned
in section 4.3.4, it is a randomly chosen for each epoch of the training process.

52

https://github.com/ChenYiYuIvan/rl_portfolio_management

Implementation

5.2 Portfolio
The Portfolio class represents the environment in the reinforcement learning
framework and is implemented as a subclass of the Env class of the OpenAi Gym
package. Instances of this class have multiple important attributes, which are: an
instance of the Market class, the current value and weights of the portfolio and the
current time-step of the environment, which is shared with the step of the Market.
Its methods, instead, are:

• step: it takes as input the action to perform and, using the market data
obtained from the step method of the Market class, it computes the portfolio
weights and value at the end of the next step just before the re-balance and
returns the next state of the environment;

• reset: just like the reset method of Market, it is used to reset the environment
to its initial and possible random state;

• render: as the name implies, when called, this method plots the trajectory of
the portfolio value from the start to the current step.

In order to avoid mixing training and testing data, two instances of the Portfolio
class, each of them with its own instance of the Market class, were defined.

5.3 Agent
To implement the multiple trading agents, we used a base class named BaseAgent,
which is used to apply the reinforcement learning algorithms to train the policy
networks and to produce the action to perform given the current state of the
environment. To achieve this, this class stores an instance of the Portfolio class
as one of its attribute to use as the training environment and defines multiple
methods, which are:

• predict_action: it takes as input the current state of the environment and a
boolean value that indicates if exploration noise has to be added and returns
the action that the agent has to perform;

• preprocess_data: given the unprocessed asset data matrix p⃗t−W +1:t, it applies
all the necessary transformations introduced in section 4.2.1;

• get_reward: given the interaction between agent and environment via the
Portfolio’s step method, it generates the appropriate reward signal;

• train: it applies a given reinforcement learning algorithm to train the actor
and critic networks using the training environment;

53

Implementation

• eval: it takes as input a second instance of the Portfolio class and uses it as
a testing environment on which to evaluate the performance of the trained
agent by printing various summarizing statistics and plotting the trajectory of
the value and the weights of the portfolio over the testing period.

Using the BaseAgent class, multiple subclasses are defined, with each of them
representing a specific agent, such as DDPGAgent and SACAgent, which represent
the agents trained using DDPG and SAC respectively, and MPTAgent, which is an
agent that does not need any training and, instead, follows the strategy defined in
section 2.4.3 and simply solves the optimization problem (2.23) at every time-step.
It should also be noted that, with the exception of eval, all other methods are
redefined in the subclasses in order to add implementative details specific to the
single agents. For example, the exploration noise for the DDPG algorithm is not
compatible with the way SAC adds the exploration component to the actions,
which means that a unique method for both of them is not feasible.

Furthermore, for the DDPGAgent and SACAgent, the neural networks used to
define the various actors and critics are implemented and trained using the PyTorch
package, which, alongside Tensorflow and Keras, is one of the most diffused open
source packages for deep learning. Regarding the algorithms used to them, despite
the fact that they were implemented from scratch, they are heavily inspired by
the OpenAi implementations, which can be easily found online with a much more
detailed documentation [52, 53]. For this reason, we will not explain the details of
their implementation in this thesis.

Lastly, after multiple agents have been trained, in order to compare their
performances, a new class called AgentsEvaluator is defined, which simply has
the role of collecting the list of agents used and calling the eval method for all of
them.

5.4 Forecaster
In regards to the training of the forecaster network introduced in section 4.4.1,
the class NNForecaster handles the training of the network via the method train,
which uses the data directly from a Market instance. Furthermore, in order to have
a point of reference, we also implemented a more classical method of forecasting,
which is based on the Autoregressive-Moving-Average (ARMA) model [54]. In
particular, by using the statsmodel package, we defined the class VARMAForecaster,
which implements a multivariate ARMA model (VARMA) and finds the optimal
parameter via cross-validation, since the objective is to forecast the future returns
of multiple assets at the same time.

In order to compare these two types of forecasting techniques, the method
plot_all is used, which plots the true returns against the predicted ones and also

54

Implementation

calculates the error both in and out of sample.

5.5 Pre-Training
As explained in section 4.4.2, the pre-training process involves copying a subset of
the trained parameters of the forecaster network into the actor and critic networks
and then freezing them for the fine-tuning part. In Pytorch this is easily achievable:

• for the copying part, since the set of parameters of a network is represented
by a dictionary, it is sufficient to copy the key-value pairs of the section of
interest;

• in order to freeze a part of the network, it is sufficient to know that all
parameters of a network in Pytorch have the boolean attribute requires_grad,
which defines if the parameter is trainable or not.

In our project, this is done in the load_pretrained method of both DDPGAgent
and SACAgent.

5.6 Complete Framework

Figure 5.1: Complete framework of the training and testing process with pre-
training using the forecasting task.

55

Implementation

The complete training, testing and pre-training process can therefore be repre-
sented by the figure 5.1 and can be explained by the following steps:

1. one instance of the Market class downloads the market data relative to the
training period and sends it to a Portfolio object;

2. the same market data is used in a NNForecaster object to train a forecaster
to predict future log-returns of the assets;

3. a subset of the weights are copied into the policy and Q-value networks of the
agent via the load_pretrained method;

4. the train method of the RL agent is called, which makes the agent and the
portfolio interact with each other via the methods predict_action of the
agent and step of the portfolio;

5. from the training, which is achieved by sampling from the replay buffer, the
actor and critic networks have their parameters optimized;

6. a second instance of the Market class is used to download the market data
relative to the testing period;

7. the actor network is used on another Portfolio object with the testing data
to obtain the out of sample performance of the trading strategy.

56

Chapter 6

Experiments

In this chapter, first an introduction of the datasets used will be given, then all
the results obtained from the various experiments will be shown along with some
comments.

6.1 Datasets
All experiments carried out in this thesis are done using a small subsets of stocks
chosen randomly from all the stocks tracked by the S&P500 index, which was
created in 1957 and is regarded by many as one of the best gauge of the performance
of the largest United States based companies [55]. In particular, we tested the
reinforcement learning framework on two datasets, each composed by 4 stocks, that
are:

• Dataset 1: Apple Inc (AAPL), Amazon.com, Inc (AMZN), Costco Wholesale
Corporation (COST) and Alphabet Inc Class A (GOOGL);

• Dataset 2: DISH Network Corp (DISH), Electronic Arts Inc (EA), Intel
Corporation (INTC) and Marriott International Inc (MAR).

and the cash asset (CASH) for a total of 5 assets each. Furthermore, as it should
now be clear, two time intervals are used in order to create a train/test split so
that the algorithms can be evaluated out of sample. In particular, our experiments
use the period from 2007/01/01 to 2016/12/31 inclusive for training and the period
from 2017/01/01 to 2020/12/31 inclusive for testing.

Remark 1 The reason why such a limited number of stocks was selected for each
dataset is the lack of sufficient computational resources needed to manage a larger
amount of data. Indeed, initial experiments were done with a set of 16 assets,

57

Experiments

which resulted in extremely long training times of more than one hour per episode
and in much smaller improvements in the performance of the resulting policy.

Remark 2 Until now we have used the terms portfolio management and asset al-
location interchangeably. However, in reality, this is incorrect, since asset allocation
is only one of the two steps of actual portfolio management strategies [56]:

1. asset allocation: the investor decides the percentages of the portfolio they
would like to invest in the different types of assets, such as stocks and bonds;

2. asset selection: after having fixed the percentages, the investor decides the
specific assets to buy.

The reason behind this imprecision is the fact that the framework introduced in
this work combines the two steps by allocating the percentages directly to the single
assets and not to the categories. Nevertheless, despite this difference, the results
still provides valuable information regarding the applicability of reinforcement
learning algorithms to the portfolio optimization problem.

6.2 Hyperparameter Setup
The hyperparameters exploited in the experiments for the DDPG and SAC al-
gorithms are shown in tables 6.1 and 6.2 respectively, which are used for both
datasets without change.
The hyperparameters used for the forecasting task, instead, are shown in table 6.3.

6.3 Results
Regarding the experiments done, we will apply DDPG and SAC algorithms and
compare the results with an agent that simply solves the optimization problem
(2.23) at every time-step, which we will call MPT agent from now on. In particular
we will discuss the results obtained with the three reward signals proposed in
section 4.2.3 and use the performance metrics introduced in section 2.3 to compare
the different portfolios. Then, as a last experiment, we apply the pre-training step
explained in section 4.4 and compare the results with the previous ones to see if
adding a pre-training step has any effect on the training process.

6.3.1 DDPG Approach
From the results obtained using the DDPG algorithm on both trading universes, it
is clear that using log returns or differential Sharpe ratio results in almost the same

58

Experiments

Hyperparameter Value

Actor Network
Optimizer: Adam
Learning rate: 1× 10−4

Hidden size: 64

Critic Network
Optimizer: Adam
Learning rate: 1× 10−4

Hidden size: 64

Exploration Source: Ornstein-Uhlenbeck Process
Parameters: µ = 0, σ = 0.2, θ = 0.15

Gamma (γ) 0.99
Tau (τ) 1× 10−3

Replay Memory Size 1× 10000
Batch Size 64
Number of Episodes 100
Number of Steps per Episode 1000

Table 6.1: Hyperparameter setup for DDPG algorithim.

strategy in which the trading agent invests almost everything into a single asset
for the whole duration of the trading period with all other assets having less than
0.1% invested into them. Moreover, the resulting strategies are basically static,
since, even though the portfolio weights are not constant throughout the trading
period, the amount by which they change is insignificant. Furthermore, due to the
fact that these results were obtained after a single episode of training and that all
subsequent episodes did not bring any change to the networks, we hypothesize that
the training process gets stuck in a local optimum.

Regarding, instead, the use of the differential downside deviation ratio as the
reward signal, we have found it to be particularly problematic. Indeed, regardless
of the dataset used, the loss functions for the actor and critic networks would
immediately start to diverge and overflow after a couple of episodes, causing the
policy to output NaN as the action to perform independently of the input. Even
after applying various numerical techniques such as adding a small value to the
denominator to avoid division by 0 or scaling the reward signal to reduce its order
of magnitude, we were unable to solve this problem. For this reason, from then on,
we restricted the experiments to the other two reward signals.

59

Experiments

Hyperparameter Value

Actor Network
Optimizer: Adam
Learning rate: 3× 10−4

Hidden size: 64

Critic Networks
Optimizer: Adam
Learning rate: 3× 10−4

Hidden size: 64

Temperature
Optimizer: Adam
Learning rate: 3× 10−4

Initial value: 1
Gamma (γ) 0.99
Tau (τ) 1× 10−3

Replay Memory Size 1× 10000
Batch Size 64
Number of Episodes 100
Number of Steps per Episode 1000

Table 6.2: Hyperparameter setup for SAC algorithim.

Hyperparameter Value

Forecaster Network
Optimizer: Adam
Learning rate: 1× 10−4

Hidden size: 64
Batch Size 256
Number of Epochs 1000

Table 6.3: Hyperparameter setup for the forecasting task.

6.3.2 SAC Approach

Training the trading agent using the SAC algorithm seems to have solved some
of the problems of DDPG. Indeed, figures 6.1 and 6.2 show that the agent is able
to diversify its portfolio, while figures 6.2 and 6.2 show that using the differential
Sharpe ratio as the reward signal results in an improved portfolio compared to
using the log returns. Nevertheless, the problem of having an almost static strategy

60

Experiments

Figure 6.1: Dynamics of the portfolio weights during the testing period for SAC
with log returns and differential Sharpe ratio as reward signals for dataset 1.

Figure 6.2: Dynamics of the portfolio weights during the testing period for SAC
with log returns and differential Sharpe ratio as reward signals for dataset 2.

in which the weights of the portfolio do not change by any significant amount over
time still stands.

6.3.3 Pre-Training Approach
As out last step, we try to apply pre-training to all the previous experiments in
order to see whether it is able to speed up the training process and solve the
problems encountered before.

First of all, we train the forecaster network on the training data of both datasets,
yielding the results shown in figures 6.5 and 6.6, which are comparable to to the
results obtained using the more standard multivariate ARMA forecaster shown in
figures 6.7 and 6.8.

Then, as explained in section 4.4, we copy the parameters of the forecaster
network into those of the actor and critic networks, freeze them and train only the
remaining ones using the standard DDPG and SAC algorithms.

For DDPG, this process did not bring any kind of improvement, since the
strategy simply changed to investing everything into another asset.

For SAC, instead, pre-training the networks had a positive impact on the results,
as it is possible to see from figures 6.9 and 6.11, which show that the trading
strategy is no longer static for either dataset, and figures 6.10 and 6.12, which

61

Experiments

Figure 6.3: Dynamics of the portfolio weights during the testing period for SAC
with log returns and differential Sharpe ratio as reward signals for dataset 1.

Figure 6.4: Dynamics of the portfolio weights during the testing period for SAC
with log returns and differential Sharpe ratio as reward signals for dataset 2.

show the superiority of using differential Sharpe ratio instead of log returns as the
reward signal for the SAC algorithm.

6.3.4 Comparison
Tables 6.4 and 6.5 present the performance metrics of the portfolios obtained using
DDPG and SAC on the two datasets with and without pre-training and compare
them with the MPT agent, which show the superiority of reinforcement learning
based methods compared to an agent based on a one-step optimization problem.

Furthermore, comparing the metrics between the methods with and without
pre-training, it is possible to notice that overall it had a positive effect on the
performance of the portfolios with the exception of the DDPG algorithm on the first
dataset, which is the only situation in which the performance dropped. Moreover,
we also noticed a decrease in the training time for both algorithms: for DDPG, the
training time dropped from 1 minute per episode to about 40 seconds, while for
SAC the time required went from 80 seconds to 1 minute per episode.

Lastly, it should be noted that, even though DDPG seems to perform better
than SAC, especially on the first dataset, this is most likely due to the fact that
agents obtained from DDPG always invest everything into one asset combined with
the presence in the dataset of an asset that performs much better than the others.

62

Experiments

Figure 6.5: Results of training the forecaster network on dataset 1. The green
section is in-sample, while the red section is out-of-sample.

Figure 6.6: Results of training the forecaster network on dataset 2.

63

Experiments

Figure 6.7: Results of training the multivariate ARMA forecaster on dataset 1.

Figure 6.8: Results of training the multivariate ARMA forecaster on dataset 2.

64

Experiments

Figure 6.9: Dynamics of the portfolio weights for SAC with pre-training and with
log returns and differential Sharpe ratio as reward signals for dataset 1.

Figure 6.10: Dynamics of the portfolio weights for SAC with pre-training and
with log returns and differential Sharpe ratio as reward signals for dataset 1.

Figure 6.11: Dynamics of the portfolio values for SAC with pre-training and with
log returns and differential Sharpe ratio as reward signals for dataset 2.

Figure 6.12: Dynamics of the portfolio values for SAC with pre-training and with
log returns and differential Sharpe ratio as reward signals for dataset 2.

65

Experiments

Method FPV σ SR SorR MDD V@R0.95 CV@R0.95

DDPG w/ Log Ret 3.81 0.020 0.081 0.12 0.34 0.031 0.044
(Above) + PT 3.75 0.020 0.078 0.12 0.39 0.030 0.048
DDPG w/ DSR 3.81 0.020 0.081 0.12 0.34 0.031 0.044
(Above) + PT 2.01 0.018 0.050 0.071 0.31 0.027 0.044
SAC w/ Log Ret 2.26 0.012 0.080 0.12 0.23 0.019 0.028
(Above) + PT 2.67 0.014 0.078 0.11 0.25 0.022 0.036
SAC w/ DSR 3.22 0.019 0.075 0.11 0.33 0.029 0.043
(Above) + PT 3.53 0.019 0.078 0.11 0.36 0.029 0.046
MPT 1.88 0.011 0.064 0.096 0.24 0.016 0.028

Table 6.4: Results obtained on dataset 1. PT stands for pre-training.

Method FPV σ SR SorR MDD V@R0.95 CV@R0.95

DDPG w/ Log Ret 1.42 0.023 0.027 0.039 0.36 0.030 0.053
(Above) + PT 1.50 0.025 0.029 0.044 0.61 0.034 0.059
DDPG w/ DSR 1.42 0.023 0.027 0.039 0.36 0.030 0.053
(Above) + PT 1.50 0.025 0.029 0.044 0.61 0.034 0.059
SAC w/ Log Ret 1.22 0.014 0.023 0.031 0.33 0.020 0.033
(Above) + PT 1.38 0.013 0.032 0.044 0.31 0.019 0.032
SAC w/ DSR 1.34 0.014 0.029 0.040 0.33 0.020 0.034
(Above) + PT 1.53 0.017 0.035 0.050 0.43 0.026 0.040
MPT 1.17 0.017 0.018 0.027 0.32 0.020 0.039

Table 6.5: Results obtained on dataset 2. PT stands for pre-training.

66

Chapter 7

Conclusion

The ever-growing interest in reinforcement learning approaches to solving many
real-world applications combined with recent advancement in the field of deep
learning has motivated the work done in this thesis. Indeed, reinforcement learning
introduces a new framework to solve dynamic decision making problems, which
were usually solved using more standard mathematical optimization methods.

7.1 Contributions
In order to solve the portfolio management problem with this novel framework,
inspired by works like [14] and [40], we first modeled the trading universe as a discrete
time dynamical system. Then, we proposed a neural network architecture that was
able to process the market data while keeping in mind the overall computational
complexity. Furthermore, using state of the art reinforcement learning algorithms,
we were able to produce competitive results compared to more standard approaches,
even though we had to limit the experiments to small datasets with a very limited
number of assets. Lastly, we proposed a pre-training step using the forecasting task
in order to try to improve the previous results, which led to a promising outcome,
since the performance metrics indicated that this step had an overall positive effect
on the training of the agents.

Nevertheless, all the results obtained in this work should be carefully considered,
since the methods have only been tested via back-testing, meaning that there is no
guarantee that the same results will be achieved in a live-trading environment.

7.2 Future Work
First of all, one possible extension of this work is to check, using a more powerful
GPU, if the results obtained in this work still hold for larger environments or if, by

67

Conclusion

increasing the number of stocks in the market, the algorithms used are no longer
able to obtain competitive results.

Secondly, all experiemnts were carried out used only the OHLCV data of the
assets, which is very limited compared to the total amount of information available
online regarding the various assets. Indeed, adding other sources of information
such as news data to the reinforcement learning framework can be an interesting
extension.

Lastly, more research should be done regarding the explainability of the resulting
neural networks. Indeed, right now the agent is treated as a black-box, which is
the complete opposite of actual investment strategies where being able to explain
the reasoning behind the various actions is fundamental.

68

Bibliography

[1] Harry Markowitz. «PORTFOLIO SELECTION». In: The Journal of Finance
7.1 (Mar. 1952), pp. 77–91. doi: 10.1111/j.1540-6261.1952.tb01525.x.
url: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x (cit. on
p. 12).

[2] William F. Sharpe. «Mutual Fund Performance». In: The Journal of Business
39.1 (1966), pp. 119–138. issn: 00219398, 15375374. url: http://www.jstor.
org/stable/2351741 (visited on 11/06/2022) (cit. on p. 10).

[3] Frank A. Sortino and Lee N. Price. «Performance Measurement in a Downside
Risk Framework». In: The Journal of Investing 3.3 (Aug. 1994), pp. 59–64.
doi: 10.3905/joi.3.3.59. url: https://doi.org/10.3905/joi.3.3.59
(cit. on p. 10).

[4] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. «Coher-
ent Measures of Risk». In: Mathematical Finance 9.3 (July 1999), pp. 203–228.
doi: 10.1111/1467-9965.00068. url: https://doi.org/10.1111/1467-
9965.00068 (cit. on p. 11).

[5] Malik Magdon-Ismail, Amir F. Atiya, Amrit Pratap, and Yaser S. Abu-
Mostafa. «On the maximum drawdown of a Brownian motion». In: Journal of
Applied Probability 41.1 (2004), pp. 147–161. doi: 10.1239/jap/1077134674
(cit. on p. 11).

[6] Mikkel Rasmussen. Quantitative Portfolio Optimisation, Asset Allocation
and Risk Management: A Practical Guide to Implementing Quantitative
Investment Theory. Springer, 2002 (cit. on p. 14).

[7] Gérard Cornuéjols, Javier Peña, and Reha Tütüncü. Optimization Methods
in Finance. 2nd ed. Cambridge University Press, 2018. doi: 10.1017/978110
7297340 (cit. on p. 14).

[8] David G Luenberger. Investment Science. en. New York, NY: Oxford Univer-
sity Press, June 1997 (cit. on p. 5).

[9] David Silver. Lectures on Reinforcement Learning. 2015. url: https://www.
davidsilver.uk/teaching/ (cit. on p. 17).

69

https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
http://www.jstor.org/stable/2351741
http://www.jstor.org/stable/2351741
https://doi.org/10.3905/joi.3.3.59
https://doi.org/10.3905/joi.3.3.59
https://doi.org/10.1111/1467-9965.00068
https://doi.org/10.1111/1467-9965.00068
https://doi.org/10.1111/1467-9965.00068
https://doi.org/10.1239/jap/1077134674
https://doi.org/10.1017/9781107297340
https://doi.org/10.1017/9781107297340
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/

BIBLIOGRAPHY

[10] Richard S Sutton and Andrew G Barto. Reinforcement Learning. 2nd ed.
Adaptive Computation and Machine Learning series. Cambridge, MA: Brad-
ford Books, Nov. 2018 (cit. on pp. 16, 21, 23, 25).

[11] Christopher J. C. H. Watkins and Peter Dayan. «Q-learning». In: Machine
Learning 8.3 (May 1992), pp. 279–292. issn: 1573-0565. doi: 10 . 1007 /
BF00992698. url: https://doi.org/10.1007/BF00992698 (cit. on p. 25).

[12] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. «Rein-
forcement learning: A survey». In: Journal of artificial intelligence research 4
(1996), pp. 237–285 (cit. on p. 25).

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on p. 28).

[14] Angelos Filos. Reinforcement Learning for Portfolio Management. 2019. doi:
10.48550/ARXIV.1909.09571. url: https://arxiv.org/abs/1909.09571
(cit. on pp. 15, 28, 41, 46, 49, 67).

[15] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare,
and Joelle Pineau. «An Introduction to Deep Reinforcement Learning». In:
Foundations and Trends® in Machine Learning 11.3-4 (2018), pp. 219–354.
doi: 10.1561/2200000071. url: https://doi.org/10.1561/2200000071
(cit. on p. 26).

[16] Christopher M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. isbn:
0387310738 (cit. on pp. 26, 27).

[17] Sepp Hochreiter. «The Vanishing Gradient Problem During Learning Recur-
rent Neural Nets and Problem Solutions». In: International Journal of Un-
certainty, Fuzziness and Knowledge-Based Systems 06.02 (1998), pp. 107–116.
doi: 10.1142/S0218488598000094. eprint: https://doi.org/10.1142/S
0218488598000094. url: https://doi.org/10.1142/S0218488598000094
(cit. on p. 29).

[18] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-term Memory». In:
Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.
8.1735 (cit. on p. 29).

[19] Ryan T. J. J. LSTMs explained: A complete, technically accurate, conceptual
guide with keras. July 2021. url: https://medium.com/analytics-vidhya/
lstms - explained - a - complete - technically - accurate - conceptual -
guide-with-keras-2a650327e8f2 (cit. on p. 29).

[20] Part 3: Intro to policy optimization. url: https://spinningup.openai.
com/en/latest/spinningup/rl_intro3.html (cit. on p. 30).

70

https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.1909.09571
https://arxiv.org/abs/1909.09571
https://doi.org/10.1561/2200000071
https://doi.org/10.1561/2200000071
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2
https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2
https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

BIBLIOGRAPHY

[21] David Saad. On-Line Learning in Neural Networks. Jan. 1999. isbn: 9780521652636
(cit. on p. 30).

[22] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. 2014. doi: 10.48550/ARXIV.1412.6980. url: https://arxiv.
org/abs/1412.6980 (cit. on p. 31).

[23] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization.
2017. doi: 10.48550/ARXIV.1711.05101. url: https://arxiv.org/abs/
1711.05101 (cit. on p. 31).

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep
Reinforcement Learning. 2013. doi: 10 . 48550 / ARXIV . 1312 . 5602. url:
https://arxiv.org/abs/1312.5602 (cit. on pp. 31, 33).

[25] Juntao Gao, Yulong Shen, Jia Liu, Minoru Ito, and Norio Shiratori. Adaptive
Traffic Signal Control: Deep Reinforcement Learning Algorithm with Experi-
ence Replay and Target Network. 2017. doi: 10.48550/ARXIV.1705.02755.
url: https://arxiv.org/abs/1705.02755 (cit. on p. 33).

[26] Long-Ji Lin. «Self-improving reactive agents based on reinforcement learning,
planning and teaching». In: Machine Learning 8.3 (May 1992), pp. 293–321.
issn: 1573-0565. doi: 10.1007/BF00992699. url: https://doi.org/10.
1007/BF00992699 (cit. on p. 34).

[27] Part 2: Kinds of RL algorithms. url: https://spinningup.openai.com/
en/latest/spinningup/rl_intro2.html (cit. on p. 32).

[28] Soft actor-critic. url: https://spinningup.openai.com/en/latest/
algorithms/sac.html.

[29] Csaba Szepesvari. Algorithms for Reinforcement Learning. Morgan and Clay-
pool Publishers, 2010. isbn: 1608454924 (cit. on p. 32).

[30] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I. Jordan. Is
Q-learning Provably Efficient? 2018. doi: 10.48550/ARXIV.1807.03765.
url: https://arxiv.org/abs/1807.03765 (cit. on p. 32).

[31] Vijay Konda and John Tsitsiklis. «Actor-Critic Algorithms». In: Society for
Industrial and Applied Mathematics 42 (Apr. 2001) (cit. on p. 33).

[32] Luis A. Garrido, Rajiv Nishtala, and Paul Carpenter. «Continuous-Action
Reinforcement Learning for Memory Allocation in Virtualized Servers». In:
Lecture Notes in Computer Science. Springer International Publishing, 2019,
pp. 13–24. doi: 10.1007/978-3-030-34356-9_2. url: https://doi.org/
10.1007/978-3-030-34356-9_2 (cit. on p. 33).

71

https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://doi.org/10.48550/ARXIV.1312.5602
https://arxiv.org/abs/1312.5602
https://doi.org/10.48550/ARXIV.1705.02755
https://arxiv.org/abs/1705.02755
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://doi.org/10.1007/BF00992699
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
https://spinningup.openai.com/en/latest/algorithms/sac.html
https://spinningup.openai.com/en/latest/algorithms/sac.html
https://doi.org/10.48550/ARXIV.1807.03765
https://arxiv.org/abs/1807.03765
https://doi.org/10.1007/978-3-030-34356-9_2
https://doi.org/10.1007/978-3-030-34356-9_2
https://doi.org/10.1007/978-3-030-34356-9_2

BIBLIOGRAPHY

[33] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control
with deep reinforcement learning. 2015. doi: 10.48550/ARXIV.1509.02971.
url: https://arxiv.org/abs/1509.02971 (cit. on pp. 33, 34).

[34] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel.
Benchmarking Deep Reinforcement Learning for Continuous Control. 2016.
doi: 10.48550/ARXIV.1604.06778. url: https://arxiv.org/abs/1604.
06778 (cit. on p. 36).

[35] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning
with a Stochastic Actor. 2018. doi: 10.48550/ARXIV.1801.01290. url:
https://arxiv.org/abs/1801.01290 (cit. on pp. 36, 37).

[36] Tuomas Haarnoja et al. Soft Actor-Critic Algorithms and Applications. 2018.
doi: 10.48550/ARXIV.1812.05905. url: https://arxiv.org/abs/1812.
05905 (cit. on pp. 36, 37, 48).

[37] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves,
Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
«Asynchronous Methods for Deep Reinforcement Learning». In: (2016). doi:
10.48550/ARXIV.1602.01783. url: https://arxiv.org/abs/1602.01783
(cit. on p. 37).

[38] Pietro Michiardi, Elena Baralis, and Piero Macaluso. «Deep Reinforcement
Learning for Autonomous Systems». In: () (cit. on p. 36).

[39] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing Function
Approximation Error in Actor-Critic Methods. 2018. doi: 10.48550/ARXIV.
1802.09477. url: https://arxiv.org/abs/1802.09477 (cit. on p. 37).

[40] Zhengyao Jiang, Dixing Xu, and Jinjun Liang. A Deep Reinforcement Learning
Framework for the Financial Portfolio Management Problem. 2017. doi:
10.48550/ARXIV.1706.10059. url: https://arxiv.org/abs/1706.10059
(cit. on pp. 40, 41, 43, 46, 67).

[41] Pengqian Yu, Joon Sern Lee, Ilya Kulyatin, Zekun Shi, and Sakyasingha
Dasgupta. Model-based Deep Reinforcement Learning for Dynamic Portfolio
Optimization. 2019. doi: 10.48550/ARXIV.1901.08740. url: https://
arxiv.org/abs/1901.08740 (cit. on p. 41).

[42] Carlos Betancourt and Wen-Hui Chen. «Deep reinforcement learning for
portfolio management of markets with a dynamic number of assets». In: Expert
Systems with Applications 164 (Feb. 2021), p. 114002. doi: 10.1016/j.eswa.
2020.114002. url: https://doi.org/10.1016/j.eswa.2020.114002
(cit. on pp. 41, 46).

72

https://doi.org/10.48550/ARXIV.1509.02971
https://arxiv.org/abs/1509.02971
https://doi.org/10.48550/ARXIV.1604.06778
https://arxiv.org/abs/1604.06778
https://arxiv.org/abs/1604.06778
https://doi.org/10.48550/ARXIV.1801.01290
https://arxiv.org/abs/1801.01290
https://doi.org/10.48550/ARXIV.1812.05905
https://arxiv.org/abs/1812.05905
https://arxiv.org/abs/1812.05905
https://doi.org/10.48550/ARXIV.1602.01783
https://arxiv.org/abs/1602.01783
https://doi.org/10.48550/ARXIV.1802.09477
https://doi.org/10.48550/ARXIV.1802.09477
https://arxiv.org/abs/1802.09477
https://doi.org/10.48550/ARXIV.1706.10059
https://arxiv.org/abs/1706.10059
https://doi.org/10.48550/ARXIV.1901.08740
https://arxiv.org/abs/1901.08740
https://arxiv.org/abs/1901.08740
https://doi.org/10.1016/j.eswa.2020.114002
https://doi.org/10.1016/j.eswa.2020.114002
https://doi.org/10.1016/j.eswa.2020.114002

BIBLIOGRAPHY

[43] Richard L Burden and J Douglas Faires. «Numerical Analysis». In: 9th ed.
Florence, AL: Cengage Learning, July 2010, pp. 56–64 (cit. on p. 44).

[44] John E Moody, Matthew Saffell, Y Liao, and L Wu. «Reinforcement Learning
for Trading Systems and Portfolios.» In: KDD. 1998, pp. 279–283 (cit. on
p. 45).

[45] John Moody and Matthew Saffell. «Learning to trade via direct reinforcement».
In: IEEE transactions on neural Networks 12.4 (2001), pp. 875–889 (cit. on
p. 45).

[46] Devendra Sachan and Graham Neubig. «Parameter Sharing Methods for
Multilingual Self-Attentional Translation Models». In: Proceedings of the
Third Conference on Machine Translation: Research Papers. Brussels, Belgium:
Association for Computational Linguistics, Oct. 2018, pp. 261–271. doi:
10.18653/v1/W18- 6327. url: https://aclanthology.org/W18- 6327
(cit. on p. 46).

[47] Xue Ying. «An Overview of Overfitting and its Solutions». In: Journal of
Physics: Conference Series 1168.2 (Feb. 2019), p. 022022. doi: 10.1088/
1742-6596/1168/2/022022. url: https://dx.doi.org/10.1088/1742-
6596/1168/2/022022 (cit. on p. 49).

[48] Kevin P Murphy. Machine Learning. en. Adaptive Computation and Machine
Learning series. London, England: MIT Press, Aug. 2012.

[49] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. 2013. doi:
10.48550/ARXIV.1311.2524. url: https://arxiv.org/abs/1311.2524
(cit. on p. 50).

[50] Rob J. Hyndman and Anne B. Koehler. «Another look at measures of forecast
accuracy». In: International Journal of Forecasting 22.4 (2006), pp. 679–688.
issn: 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2006.
03.001. url: https://www.sciencedirect.com/science/article/pii/
S0169207006000239 (cit. on p. 50).

[51] Tianqi Wang and Dong Eui Chang. Improved Reinforcement Learning through
Imitation Learning Pretraining Towards Image-based Autonomous Driving.
2019. doi: 10.48550/ARXIV.1907.06838. url: https://arxiv.org/abs/
1907.06838 (cit. on p. 51).

[52] Source code for spinup.algos.pytorch.ddpg.ddpg. url: https://spinningup.
openai.com/en/latest/_modules/spinup/algos/pytorch/ddpg/ddpg.
html (cit. on p. 54).

73

https://doi.org/10.18653/v1/W18-6327
https://aclanthology.org/W18-6327
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://dx.doi.org/10.1088/1742-6596/1168/2/022022
https://dx.doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.48550/ARXIV.1311.2524
https://arxiv.org/abs/1311.2524
https://doi.org/https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/https://doi.org/10.1016/j.ijforecast.2006.03.001
https://www.sciencedirect.com/science/article/pii/S0169207006000239
https://www.sciencedirect.com/science/article/pii/S0169207006000239
https://doi.org/10.48550/ARXIV.1907.06838
https://arxiv.org/abs/1907.06838
https://arxiv.org/abs/1907.06838
https://spinningup.openai.com/en/latest/_modules/spinup/algos/pytorch/ddpg/ddpg.html
https://spinningup.openai.com/en/latest/_modules/spinup/algos/pytorch/ddpg/ddpg.html
https://spinningup.openai.com/en/latest/_modules/spinup/algos/pytorch/ddpg/ddpg.html

BIBLIOGRAPHY

[53] Source code for spinup.algos.pytorch.sac.sac. url: https://spinningup.
openai.com/en/latest/_modules/spinup/algos/pytorch/sac/sac.html
(cit. on p. 54).

[54] George E. P. Box, Gwilym M. Jenkins, and Gregory C. Reinsel. Time Series
Analysis. Nov. 1994. isbn: 9780130607744 (cit. on p. 54).

[55] S&P 500®. url: https://www.spglobal.com/spdji/en/indices/equity/
sp-500/#overview (cit. on p. 57).

[56] Emmanouil Platanakis, Charles Sutcliffe, and Xiaoxia Ye. «Horses for courses:
Mean-variance for asset allocation and 1/N for stock selection». In: European
Journal of Operational Research 288.1 (2021), pp. 302–317 (cit. on p. 58).

74

https://spinningup.openai.com/en/latest/_modules/spinup/algos/pytorch/sac/sac.html
https://spinningup.openai.com/en/latest/_modules/spinup/algos/pytorch/sac/sac.html
https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview
https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview

	List of Tables
	List of Figures
	Introduction
	Research Question
	Thesis structure

	I Theoretical Background
	Portfolio Management
	Assets and Portfolios
	Asset prices and returns
	Simple returns
	Log Returns

	Performance Metrics
	Final Portfolio Value
	Standard Deviation of Portfolio Returns
	Sharpe Ratio
	Value at Risk
	Maximum Drawdown

	Modern Portfolio Theory
	Mathematical Formulation
	Efficient Frontier
	Multi-Stage Optimization

	Reinforcement Learning
	Framework Definition
	Rewards, Policies and Value Functions

	Markov Decision Processes
	Bellman Equation

	Dynamic Programming
	Policy Iteration
	Value Iteration

	Model-Free Learning
	Exploration-Exploitation Trade-Off
	Episodic vs Continuous Tasks

	Deep Learning
	Neural Networks
	Training

	Deep Learning Approach to Reinforcement Learning
	Actor-Critic Methods

	II Contribution
	Methodology
	Assumptions
	Framework definition
	State and Action Spaces
	Trading Dynamics
	Reward Signals

	Network Architectures
	Asset Value Module
	Actor and Critic Networks
	Parameter Sharing
	Training

	Pre-Training
	Forecasting
	Pre-Trained Networks

	Implementation
	Market
	Portfolio
	Agent
	Forecaster
	Pre-Training
	Complete Framework

	Experiments
	Datasets
	Hyperparameter Setup
	Results
	DDPG Approach
	SAC Approach
	Pre-Training Approach
	Comparison

	Conclusion
	Contributions
	Future Work

	Bibliography

