
Master’s degree in Mathematical Engineering

Markov Chain Model for Football Analytics

Work of: Collaboration of:
Formento Emanuele s282411 Barbiero Federico (Deltatre)

Supervision of:
Prof. Bibbona Enrico

Academic Year 2021-2022

Abstract

This work arises from a thesis proposal launched by the company Deltatre, whose
objective is to extract key performance indicators of a team or a player through a
Markov chain model from the data collection carried out on a football competition.
Each match is modeled as a Markov chain with suitable states and transitions.
The Markov chain theory is used to create the model, while other mathematical
tools as chi-square distribution and confidence intervals are used to check the
goodness of results. The creation of statistics is inspired by the expected threat
theory introduced by Karun Singh.

The data preprocessing begins with understanding the data available and those
useful for analysis: the most important are the ball position and the player and
the team in ball possession, but also other information is used, as the type of
event and the phase of the match.
Then the states defining the model are choosen, composed by field areas plus two
additional states, the goal and the lost ball; the number of field states depends
on the subdivisions on both sides of the field, creating a m×n grid which can be
represented using blurred and defined heatmaps.

Once defined the states, a transition matrix is needed, or rather his estima-
tion, to complete the Markov chain model; this is done computing the frequencies
matrix, whose entries include the count of how many times the ball does a tran-
sition from a state to another, and then normalizing it to obtain a probabilities
matrix, having all sums on rows equal to 1.
The transition matrices can be computed taking data from a single match or from
the entire tournament; in this last case it is used also to compute the stationary
distribution of the Markov chain.
But these results come from estimates, so it is critical to explore their robust-
ness through the Goodman method, obtaining heatmaps of absolute and relative
confidence interval amplitudes.

In the last chapter the idea of Karun Singh is applied to the model, obtaining
the expected threat related to the tournament edition.
Then it is used to find the dominance of teams during the match, which can be
done in different ways and it gives a dynamic and clear idea of the behaviour of
the match.
Some possibilities are to group or to weight different values of the expected threat
with respect to established criteria, for example subdividing the match in minutes
or actions and adding the expected threat in these parts.
The idea of dominance is also applied to players, considering their expected threat
both during a match or during the tournament.
Then to make fairer players performances, two new improvements are introduced:
a normalization for minutes played, so that those who play more minutes or
matches are not more advantaged than others, and a contribution of players to
the expected threat, computing their gains not just based on where they touch
the ball, but also where they pass or steal it, thus encouraging even less offensive
players.

Introduction

About company

Born in 1986 from an idea of Giampiero Rinaudo and Luca Marini, Deltatre is the
world’s leading sports and entertainment technology provider, offering graphics,
data, OTT and live broadcast solutions.
It counts more than a thousand employees in offices spread across 19 cities around
the world and it has received more than 200 awards in its history.
It works with mostly international clients having business in several sports, sup-
porting them in all key steps of a process.
About a match for example, its contribution starts finding useful statistics and
information to introduce the teams or the players before the start.
It continues during the event or its break, e.g. showing highlights or real-time
analysis on the action just taken.
It finishes with the data collection and analysis after the match, providing statis-
tics and insights on it.

Aim of the work

Given its extremely innovative nature, the company is constantly looking for new
metrics or key performance indicators that may help a better game understanding.
The first step is to utilize mathematical tools, precisely a Markov chain and their
properties, to create a model for football matches applicable to the large amount
of data in the company database, containing matches of different tournaments
and years.
In this way the Markov chain model is used to extract statistics about the match,
which can be aggregated into tournament statistics, e.g. considering all matches
of a team in the competition, or disaggregated into player statistics, that can be
again grouped to obtain tournament statistics player by player for example.
The second step is to find the new metrics, which can be done taking inspiration
from what is offered by the model, what is requested by clients or business, but
also trying to imagine alternative ways to explain the match, stimulating the
creativity.

1

Contents

Introduction 1
About company . 1
Aim of the work . 1

1 Theoretical prerequisites 4
1.1 Markov chain . 4

1.1.1 Formal definition . 4
1.1.2 States . 4
1.1.3 Transitions . 5
1.1.4 Assumptions and other properties 5
1.1.5 Embedded Markov chain . 6

1.2 Probabilities robustness . 7
1.2.1 Chi-square distribution . 7
1.2.2 Confidence intervals . 8
1.2.3 Quesenberry and Hurst method 9
1.2.4 Goodman method . 10

1.3 Expected threat . 10

Results 13

2 Preprocessing 13
2.1 Data understanding . 13

2.1.1 Marks file . 14
2.2 Position extraction . 14

2.2.1 Single match . 15
2.3 Field subdivision . 15

2.3.1 Single team in a match . 17
2.4 Results representation . 19

2.4.1 Single team in all matches of a tournament 20
2.4.2 Grid refining . 22

3 Markov chain 23
3.1 Transition matrix . 23

3.1.1 Frequencies matrix . 23
3.1.2 Probabilities matrix . 24
3.1.3 Total tournament edition 24

3.2 Stationary distribution . 26
3.3 Application of robustness to probabilities matrix 27
3.4 Application of robustness to stationary distribution 30

2

4 Application of expected threat to probabilities matrix 31
4.1 Comparison between expected threat and lost probabilities 34
4.2 Match dominance . 35

4.2.1 Both teams in a match . 35
4.2.2 Subdivision by actions . 40

4.3 Player dominance . 41
4.3.1 Total tournament edition 42
4.3.2 Normalization for minutes played 43
4.3.3 Expected threat contribution 45

A Code 48
A.1 Event extraction . 48
A.2 Event validation . 48
A.3 Function is_goal . 48
A.4 Function is_consequential . 49
A.5 States assignment . 49
A.6 Function find_states . 49
A.7 If condition . 50
A.8 Function field_statistics . 50
A.9 Function plot_statistics_on_field 51
A.10 All tournament matches . 52
A.11 Transition matrix . 53
A.12 Function prob_origin_matrix . 53
A.13 Total tournament edition . 54
A.14 Stationary distribution . 54
A.15 Confidence intervals . 55
A.16 Matrix of confidence intervals amplitude 55
A.17 Matrix of relative amplitudes . 56
A.18 Absolute and relative confidence intervals amplitude 56
A.19 Function exp_thr . 56
A.20 Function find_states_match . 57
A.21 If condition (event by event) . 57
A.22 Function field_statistics_match . 58
A.23 xT computing: initial idea . 59
A.24 xT computing: weighted sum idea 59
A.25 xT computing: time segments idea 60
A.26 Function act_dur . 60
A.27 Cumulative xT . 61
A.28 Expected threat player . 62
A.29 Role extraction . 62
A.30 Bar chart match . 63
A.31 Expected threat player tournament 63
A.32 Bar chart tournament . 65
A.33 Normalization by minutes on the match 65
A.34 Normalization by minutes on the tournament 66
A.35 Function gained_exp_thr_player 68
A.36 Expected threat contribution . 69

B Images 70

3

Chapter 1

Theoretical prerequisites

1.1 Markov chain

"A Markov chain or Markov process is a stochastic model describing a sequence
of possible events in which the probability of each event depends only on the state
attained in the previous event." [Eng17]
Its main characteristic is "that satisfies the Markov property (sometimes char-
acterized as "memorylessness")" [Gag17] so in other words, conditional on the
present state of the system, its future and past states are independent.

Since the system changes randomly, about the future it is generally impossible
to predict with certainty the next steps of a Markov chain at a given point, unlike
the asymptotic statistical properties of the system, which can be predicted.

Moreover, there are different types of Markov chains according to how the
time is characterized (discrete or continuous) and the cardinality of the state
space (countable or continuous).

1.1.1 Formal definition

A discrete-time Markov chain is a stochastic process with the Markov property,
that is a sequence of random variables X1, X2, X3, . . . which satisfies

P(Xn+1 = x | X1 = x1, X2 = x2, . . . , Xn = xn) = P(Xn+1 = x | Xn = xn) = P (xn, x),

so the probability of moving to the next state depends only on the present state
and not on the previous history.
It holds if conditional probabilities are well defined, that is

P(X1 = x1, . . . , Xn = xn) > 0.

P is the transition matrix of the process (previously evaluated in the entry (xn, x),
that is the transition from state xn to state x), which together with a state space
S and an initial state i0 or a distribution across the state space π0 uniquely iden-
tifies a Markov chain.[Wike]

1.1.2 States

The state space of the chain S is a finite set including the possible values of Xi.

4

Given two states i and j, j is reachable from i (i −→ j) if ∃m ≥ 0 s.t.
p(m)(i, j) > 0, while they are called communicating if i −→ j and j −→ i.
If all states of the space are reachable with each other, the Markov chain is irre-
ducible.
Given the finite cardinality of the state space, if the Markov chain is irreducible
and aperiodic, Perron–Frobenius theorem states that there is a unique stationary
distribution π and "P k converges to a rank-one matrix in which each row is the
stationary distribution π, that is

lim
k→∞

P k = 1π,

where 1 is the column vector with all entries equal to 1".[Wike]
Finally if limk→∞ P k is found, then the stationary distribution of the Markov
chain can be easily determined for any starting distribution.

If a state i is aperiodic and positive recurrent, it is defined as ergodic; "in
other words, if it is recurrent, it has a period of 1 and finite mean recurrence
time.
If all states in an irreducible Markov chain are ergodic, then the chain is said to
be ergodic." [Wike] If a finite and irreducible Markov chain has an aperiodic state,
it is ergodic.
In general, "a Markov chain is ergodic if there is a number N such that any state
can be reached from any other state in any number of steps less or equal to N .
In the case of a fully connected transition matrix, where all transitions have a
non-zero probability, this condition is fulfilled with N = 1.
A Markov chain with more than one state and just one out-going transition per
state is either not irreducible or not aperiodic, hence cannot be ergodic". [Wike]

1.1.3 Transitions

The changes of state of the system are called transitions and the probabilities
associated with them are called transition probabilities.
If the state space is finite, they can be included in the transition matrix, such
that pij = P(Xn+1 = j | Xn = i).
"Since each row of P sums to one and all elements are non-negative, P is a right
stochastic matrix". [Wike]

Usually in real cases the transition matrix is not given because it is really
difficult to know exact transition probabilities from a state to another.
Then it is necessary to find their estimates, which is a relatively straightforward
process if sequence of states for each individual transition can be observed.

In general, denoting nij the number of observations in state i at t− 1 and in
state j at t, the probability of going from i to j is:

pij =
nij

Ni
,

that is nothing but the proportion of observations started in state i and ended in
state j on all those started in state i.[Jon05]

1.1.4 Assumptions and other properties

The Markov chain considered is assumed to have two important properties:

5

• time-homogeneous: P(Xn+1 = x | Xn = y) = P(Xn = x | Xn−1 = y) = pyx ∀n,
so the probability of the transition is independent of n.

• stationary: P(X0 = x0, X1 = x1, . . . , Xk = xk) = P(Xn = x0, Xn+1 = x1, . . . ,
Xn+k = xk) ∀n, k

SPACE
"If the Markov chain is time-homogeneous, then the transition matrix P is the
same after each step, so the m-step transition probability can be computed as the
m-th power of the transition matrix, Pm". [Wike]
Precisely in this case, taking an instant n then

p(m)(i, j) = P(Xn+m = j | Xn = i) = P(Xm = j | X0 = i) =∑
k

P(Xm = j | X1 = k,X0 = i) · P(X1 = k | X0 = i) =
∑
k

p(m−1)(i, k) · p(k, j)

SPACE
The trajectory of a Markov chain is the set of realizations of the stochastic process;
given the initial distribution it is possible to compute the probability of obtaining
a certain trajectory i1, i2, . . . , in, that is

P(Xn = in, Xn−1 = in−1, . . . , X0 = i0) =

p(in−1, in) · p(in−2, in−1) · . . . · p(i0, i1) · P(X0 = i0)

SPACE
The hitting time is that starting in a given state or set of states until the chain
arrives in the same or another given state or set of states.
"The distribution of such a time period has a phase type distribution.
The simplest such distribution is that of a single exponentially distributed transi-
tion". [Wike]
"For a subset of states A ⊆ S, the vector kA of hitting times (element kAi repre-
sents the expected value that starting in state i the chain enters one of the states
in the set A) is the minimal non-negative solution to [Nor97]

kAi = 0, i ∈ A, −
∑
j∈S

qijk
A
j = 1, i /∈ A”.

Finally, another assumption is that the embedded Markov chain is considered,
because the process is measured in microseconds, so it is almost continuous-time,
but for the analysis the interest is given by the jump process from an event to
another.

1.1.5 Embedded Markov chain

"One method of finding the stationary probability distribution π of an ergodic
continuous-time Markov chain Q is by first finding its embedded Markov chain
(EMC)".[Wike]
Let’s denote with Q also the transition matrix of the Markov chain having entries
qij .
The EMC, sometimes called jump process, is a regular discrete-time Markov chain.

6

The one-step transition probability matrix of the EMC, T , has entries tij repre-
senting the conditional probabilities of transitioning from state i into state j.
"One way to find these conditional probabilities is computing

tij =

{ qij∑
k ̸=i qik

if i ̸= j

0 otherwise.

Then T may be written as

T = I − (diag(Q))−1Q,

where I is the identity matrix, and diag(Q) is the diagonal matrix formed by
selecting the main diagonal from the matrix Q and setting all other elements to
zero". [Wike]
To compute the stationary probability distribution vector, it should be found φ
such that

φT = φ, φ > 0 ∀i ∈ S, ∥φ∥1 = 1,

and then

π =
−φ(diag(Q))−1

∥φ(diag(Q))−1∥1
.

1.2 Probabilities robustness

In section 3.3 the problem of the quality of the probabilities found is addressed
because they come from an empiric model, precisely from the collection of fre-
quencies of the transition from one state to another and their normalization on
rows.
A quite simple but efficient strategy to quantify this problem is the so-called
’Goodman’ method [Goo65].
As resumed in the source code [Per13], it "is based on approximating a statistic
based on the multinomial as a chi-squared random variable.
The usual recommendation is that this is valid if all the values in ‘counts‘ are
greater than or equal to 5.
There is no condition on the number of categories for this method."
So there is a sort of weak condition on the frequency of a transition but not on
the minimum number of transitions to be considered (condition also present in
another method explained in [Per13], the "sison-glaz" one).

In the abstract of the article is underlined as this method provides better con-
fidence intervals (better means shorter) than those suggested in the immediately
preceding years, precisely by Quesenberry and Hurst in the 1964 and by Gold in
1963.

But before going into details of this method, it is necessary to introduce a
couple of theoretical concepts.

1.2.1 Chi-square distribution

"The chi-squared distribution (also chi-square or χ2-distribution) with k degrees
of freedom is the distribution of a sum of the squares of k independent standard
normal random variables". [Wikb]

7

The formal definition is that if Z1, . . . , Zk are independent, standard normal ran-
dom variables, then the sum of their squares is distributed according to the chi-
square distribution with k degrees of freedom, usually denoted as

Q =

k∑
i=1

Z2
i ∼ χ2(k) or χ2

k.

This distribution has a positive integer parameter k which specifies the number
of degrees of freedom (that is the number of random variables Zi being summed).
[Moo74]

"The chi-square distribution is a special case of the gamma distribution and
it is one of the most widely used probability distributions in inferential statistics,
notably in hypothesis testing and in construction of confidence intervals". [Moo74]

"A chi-square test is a statistical hypothesis test that is valid to perform when
the test statistic is chi-squared distributed under the null hypothesis, specifically
Pearson’s chi-squared test and variants thereof.
Pearson’s chi-squared test is used to determine whether there is a statistically
significant difference between the expected frequencies and the observed frequencies
in one or more categories of a contingency table". [Wikc]

Suppose that n observations in a random sample from a population are classi-
fied into k mutually exclusive classes with respective observed numbers xi, for i =
1, 2, . . . , k and a null hypothesis gives the probability πi that an observation falls
into the i− th class.
So we have the expected numbers mi = n · pi ∀i, where

k∑
i=1

pi = 1,
k∑

i=1

mi = n ·
k∑

i=1

pi = n.

Pearson in [Pea00] proposed that assuming the correctness of the null hypothesis,
as n −→∞ the limiting distribution of the quantity below is χ2-distributed

X2 =
k∑

i=1

(xi −mi)
2

mi
=

k∑
i=1

x2i
mi
− n

1.2.2 Confidence intervals

"A confidence interval (CI) is a range of estimates for an unknown parameter",
"computed at a designated confidence level (the 95% confidence level is most com-
mon, but other levels, such as 90% or 99%, are sometimes used)". [Dek05]
"The confidence level represents the long-run proportion of corresponding CIs that
contain the true value of the parameter". [Wikd]

Formally "let X be a random sample from a probability distribution with sta-
tistical parameter θ, which is a quantity to be estimated, and φ, representing
quantities that are not of immediate interest.
A confidence interval for the parameter θ with confidence level γ, is an interval
(u(X), v(X)) determined by random variables u(X) and v(X) with the property:

P{u(X) < θ < v(X)} = γ ∀(θ, φ) .

8

The number γ, whose typical value is close to but never greater than 1, is some-
times given in the form 1− α (or as a percentage 100 · (1− α)%), where α is a
small positive number, often 0.05." [Dek05]

So taking the 95% confidence interval as an example, a confidence interval can
be interpreted in two different ways:

• in terms of a long-run frequency in repeated samples: "Were this proce-
dure to be repeated on numerous samples, the proportion of calculated 95%
confidence intervals that encompassed the true value of the population pa-
rameter would tend toward 95%." [CD74]

• in terms of probability related to a theoretical sample: "There is a 95%
probability that the 95% confidence interval calculated from a given future
sample will cover the true value of the population parameter." [Ney37]

1.2.3 Quesenberry and Hurst method

Suppose that estimated probabilities π̂ij , i, j ∈ {1, 2, ..., k} of transition from one
state to another are computed as in paragraph 3.1.2, then in Quesenberry and
Hurst’s article [Que64] the confidence interval [π−

ij , π
+
ij] is proposed, where

π−
ij =

(A+ 2nij − (A(A+ 4nij(Ni − nij)/Ni))
1/2)

2(Ni +A)
,

π+
ij =

(A+ 2nij + (A(A+ 4nij(Ni − nij)/Ni))
1/2)

2(Ni +A)
.

The parameter A is the upper α × 100-th percentile point of the chi-square dis-
tribution with k− 1 degrees of freedom, while Ni is the sample size of state i and
nij is the observed cell frequency of the transition from state i to state j.
These confidence limits π−

ij , π
+
ij are derived simply as the two solutions of the

following quadratic equation in πij(
nij

Ni
− πij

)2

=
Aπij(1− πij)

Ni
, i, j = 1, 2, ..., k

In the article it is not explained the provenance of the formula, but it is clearly
related to the use of a chi-square distribution for the binomial test; "for large
samples the binomial distribution is well approximated by convenient continuous
distributions as the normal or precisely the chi-square and these are used as the
basis for alternative tests that are much quicker to compute, such as Pearson’s
chi-square test". [Wika]
So given that a binomial distribution can be asymptotically approximated with a
normal distribution, it holds that

Z =
(nij − πijNi)√
Niπij(1− πij)

, Z ∼ N (0, 1)

Squaring both sides is obtained Pearson’s cumulative test statistic χ2, which
asymptotically approaches a chi-square distribution:

χ2 =
(nij − πijNi)

2

Niπij(1− πij)

9

Then doing some manipulations the quadratic equation with χ2 instead of A is
obtained.

χ2 =
(nij − πijNi)

2

Niπij(1− πij)
=⇒ χ2πij(1− πij) =

N2
i (

nij

Ni
− πij)

2

Ni

=⇒ χ2πij(1− πij)

Ni
=

(
nij

Ni
− πij

)2

Since solutions π−
ij , π

+
ij have to be related to the 1−α confidence interval, χ2 must

be substituted by A as upper α× 100-th percentile point.
When Ni −→ ∞ the fraction of cases included in the confidence interval will

be at least 1− α.
But there are some difference with respect to different values of k: for k = 2,

that fraction is 1−α (and it coincides with that of usual large-sample confidence
interval for the parameter of a binomial distribution), but for k > 2 the fraction
will be greater than 1−α, so it is become just a lower bound, not the exact value.

1.2.4 Goodman method

The idea behind this improvement was to replace A with B, defined as the upper
(α/k)×100-th percentile of the chi-square distribution with one degree of freedom
(while A was the α× 100-th of that with k − 1 degrees of freedom).
By doing this the fraction of observations out of the confidence interval for a single
πi is α

k and therefore that for at least one of them is α (or less).
In addition to providing shorter confidence intervals than those given by Que-

senberry and Hurst, the preceding remarks allow to obtain a more accurate bound
for the usual fraction.
Let α′ denote the probability that a chi-square variate with one degree of freedom
exceeds A, then the fraction of observations out of the confidence interval for a
single given parameter π̂i is α′ itself and that for at least one of the k confidence
intervals is kα′ (or less).
For k > 2, it was found that kα′ < α at the usual probability levels (e.g.
α = 0.01, 0.05, 0.1); this indicates that the upper bound of α, which is given
by Quesenberry and Hurst for the fraction of observations out of the confidence
interval for a single π̂i, should be replaced when k > 2 by the more accurate
bound kα′.

A more general set of simultaneous confidence intervals is obtained by replac-
ing A by Bi in the confidence interval for π̂i, i = 1, 2, ..., k, where Bi is the upper
βi × 100-th percentile of the chi-square distribution with one degree of freedom
(while A was the α×100-th of that with k−1 degrees of freedom) and

∑k
i=1 βi = α.

Clearly in the special case where βi =
α
k and Bi = B, the simultaneous confidence

intervals introduced earlier is obtained. [Goo65]

1.3 Expected threat

Born from a brilliant idea of Karun Singh, student of the Cornell University,
the expected threat is a new interesting key performance indicator (KPI) for
"modelling team behaviour in possession to gain a deeper understanding of buildup
play." [Sin19].
The keypoints for the Karun framework are the following:

10

• reward individual player actions

• operate on event-level data

• reward actions independent of the end outcome of the possession

• reward moving the ball not just into positions with high goal probability,
but also into "threatening" positions that can in turn lead to dangerous
positions with high likelihood.

After these modelling assumptions were made, he would like to "assign a threat
value to every location on the pitch" [Sin19]; it is not a new idea in football ana-
lytics, but the novelty is the way it is done.
Field areas are identified by a couple (x, y), where x is related to the long side of
the field and y to the short one; so it is a sort of couple of discrete Carthesian
coordinates having the origin of the system on the bottom left corner.
Karun selected for every zone (x, y) four attributes:

• move probability mx,y: when a player has possession in zone (x, y), it is
how often he opts to move (i.e. pass or dribble) the ball as next action.

• shoot probability sx,y: when a player has possession in zone (x, y), it is
how often he opts to shoot as next action.

• move transition matrix Tx,y: in the cases where the player moves from
zone (x, y), it is the probability that he moves to each of the other zones
(z, w).
It is quite different from usual transition matrices, having starting states on
rows and ending states on columns, because here the starting state (x, y) is
fixed out of the matrix, which instead includes possible values of z on rows
and those of w on columns.
So the sum to 1 is not obtained by rows as usual but considering all entries
of the matrix.

• goal probability gx,y: when the player shoots from zone (x, y), it is the
probability that the shot turns into a goal.

Then from a position (x, y), the first possibility is to shoot and score with proba-
bility sx,y × gx,y, the second one is to pass the ball following the move transition
matrix and consider the threat from the new position (z, w).

11

SPACE
This reasoning is encoded in the iterative formula

xTx,y = (sx,y × gx,y) + (mx,y ×
m∑
z=1

n∑
w=1

T(x,y)−→(z,w)xTz,w),

where m and n are dimensions of the long and short side of the field respec-
tively, while xTx,y is precisely the expected threat of the zone (x, y), the new KPI
including all possible source of threateness.

It is clear that computing the expected threat directly solving the iterative
formula seems quite hard due to the presence of expected threat values in both
sides of the equation; so Karun has taken advantage of the iterative formula itself
to find a practical neat workaround.
The initial condition is

xTx,y = 0 ∀x = 1, . . . ,m, y = 1, . . . , n

to which it is applied the iterative formula; the result is

xTx,y = sx,y × gx,y ∀x = 1, . . . ,m, y = 1, . . . , n

so at the first iteration the expected threat is nothing but the expected goal xGx,y,
another KPI largely used in football analytics.

Applying this formula iteratively, Karun "found 4-5 iterations to be sufficient
for reasonable convergence, though this may vary based on your dataset." [Sin19]
Of course the more steps are made the more combinations of possible actions
grow; by the way another interpretation of the expected threat after n iterations
is the probability of scoring within the next n actions, due to the iterative nature
of the formula.

12

Results

Chapter 2

Preprocessing

2.1 Data understanding

Before starting with the manipulation of data, it is good practice to focus on their
meaning and structure.

In this case the work will be based on a football competition, whose data are
organized in the following way (see B.1 in appendix):

1. the outermost level includes just the year of the competition; the analysis
will regard just one of the three years of data available.

2. for every year there is the list of all matches played, temporally ordered and
marked by progressive numbers.

3. finally for every match there is a set of files including all information about
it.

SPACE
For the analysis will be mostly used the Marks file, introduced in the next para-
graph, which deserves a more specific knowledge, while the content of the others
can be resumed as follows:

• Lineups: it includes two dictionaries with teams information, each having
the TeamID, the status of Home or Away team and some information about
players as PlayerID or Role, distinguishing between players on the field and
those on the bench.

• MatchData : it includes some technical information about the match as
GroupID and StadiumID, in addition to the ID of match and teams playing
it.

13

• MatchInfo: it includes other background information about the match but
not so related to the game, for example the geometry of the field as well as
weather conditions (wind speed, temperature, humidity, etc...) .

• Phases: it regards the two halves of the match, for each of which there is
information as the effective duration of the half, that of the injury time and
LeftTeamID.

2.1.1 Marks file

It contains the list of all events happened during the match, starting from the
coin toss to the final whistle.
Every event has a dictionary structure containing about 20 keys and their values
are again dictionaries, lists or even lists of dictionaries, so the structure can be
very complex.
Let’s go into detail with the most useful information for the analysis:

• Tags: it is a list of strings (usually one) which briefly describes the event,
using expression as BallTouch, Goal, ThrowIn, Substitution; for the analysis
the first two type of events are the more relevant.

• OfficialTimeUTC : it is a string containing the date and the hour of the
event in format ’YYYY-MM-DDTHH:MM:SS.MLSZ’, where MLS are mil-
liseconds.

• Phase : it is a sort of recall of the information in the Phases file related to
the event, as the half in which is happened (1 or 2) and the team attacking
from the left to the right of the field (LeftTeamID).

• Subjects: it is a list of teams and players involved in the event so it has a
quite variable content: in the case of BallTouch there are just IDs of team
and player performing the balltouch, in the case of Substitution there are
the IDs of players who exchange, while in the case of Tackle IDs of team and
player performing the tackle are shown but also those which have suffered
it.

• PositionNormalized : it is a dictionary having as keys X and Y positions
where the event happens (normalized because they are both between -1 and
1).

2.2 Position extraction

Given the data structure, the first goal is to capture the ball movements to map
them on the playing field.
The ball position is contained in a dictionary having as keys the two-dimensional
axis X and Y and as values the position on that direction.
The values are coordinates of a Carthesian system where the origin is located in
the center of the field and positions are normalized on intervals [−1, 1], so the
field is represented by a square [−1, 1]2 also if in fact is a rectangle (whose actual
size is contained in the MatchInfo file); this is a key point to keep in mind for
next steps. SPACE

14

SPACE

2.2.1 Single match

The extraction of ball positions should be done match by match to achieve the
relative statistics and to see its behaviour.
During a match there are lots of events for which the ball position is not regis-
tered, e.g. substitutions or warnings, so it is necessary to carry out a skimming
of not available or out-of-field values.
The initial point is to consider just events having as ’Tags’ the keywords ’Ball-
touch’ and ’Goal’, distinctly because there are some goals which are not ball
touches (e.g. those of head), but then are joined (see code A.1 the appendix).
Subsequently there are controls about ’Position’, to check if there are "not-a-
number" positions (NaN), and ’Subjects’, to check if there are all keys needed
’Verb’, ’Performed’, ’SubjectID’ and their values are valid (see A.2).
After this data cleaning process, it is possible to see its effects comparing the
number of initial events with those remaining: from 3836 to 2222, so more than
40% of events would have hindered the analysis, leading to bias results.
From the final "balltouches" data frame a list of couples containing the valid ball
coordinates during the match can be extracted (see B.2).

2.3 Field subdivision

The main aim is to map the extracted coordinates in the game field, not with
their effective value (avoiding a not very significant great assembly of points)

15

but discretizing the field in different regions and assigning coordinates to the
respective area.
In this way it is possible to lay the groundwork for a model that allows to represent
field areas as states of a dynamic process.

The simplest solution is to create an uniform grid and to apply it on the field
obtaining m × n areas, where m is the number of subdivisions along the longest
direction and n those on the shortest direction; then every couple of coordinates
is assigned to its area (x corresponds to the longest direction, y to the shortest
one).

A problem that may emerge from this grid subdivision is the so-called "curse of
dimensionality"; as m and n grow to create a more refined grid, also the dimension
of the problem grows as m× n, not linearly, causing computational inefficiencies.

Another problem is the robustness of results, that depends on the frequencies
at which transitions between field areas are visited and that decreases with the
increase of the problem dimension (see paragraph 3.3).

To avoid these problems the initial grid is 6 × 3, even if a more refined one
could be surely better graphically (see paragraph 2.4.2).

In addition to the field areas, other states are needed to record goals scored
and lost balls; but the last is necessary just when the analysis is focused on a
team, while if both teams are considered the state "lost ball" for the team A
coincides with a ball possession in a certain field area for the team B.

Moreover, the data cleaning process showed that some ball positions were
registered out-of-the-field, e.g. before a corner or a throw-in, so it was created
a sort of frame around the field to include these events, assigning them to the
nearest field area.
The list B.3 includes examples of these cases, where position on X, Y or both do
not stay within range [−1, 1].
The idea is shown in the following image and coded in the function field_statistics,
that will be analyzed later.

Figure 2.1: Areas distinguished by corner, behind football goal and lateral (both
orange and green)

SPACE
Another aspect to pay attention to is the field perspective for both teams: if a
field area is seen by team A as an upper-right one, for team B is a lower-left one,
but after the half-time it is in reverse, therefore it is essential to standardize these

16

changes of point of view.
The strategy was to take as reference system the offense from left to right

or from top to bottom (respectively if in the field representation the long side is
horizontal or vertical). Then the ball coordinates for the team whose offense is
consistent with the reference system are let unchanged while the ball coordinates
of the other team are mapped using the function f : (x, y) −→ (−x,−y), that is
just their reflection with respect to the origin of the Carthesian reference system.
For example let’s assume that the analysis is about team A and that in the first
half it is attacking from the right to the left of the field; then f is applied to ball
coordinates of the first half, but not to those of the second half, because after
the break there is the change sides so the team A will attack consistently to the
reference system.

2.3.1 Single team in a match

In this framework the focus is to analyze the match behaviour from the viewpoint
of one of the two teams; then there are three types of states in which the ball
could stay:

• goal: to find goal events the function is_goal is used (see A.3), which simply
check if there is the string ’Goal’ in the columns ’Tags’ of the event.
After this event naturally the state will be lost because the ball will pass to
the other team (except very rare cases where the goal scored by team A is
the last event of the first half and the second half kick-off is beaten by team
A itself); so goal is an almost surely non-recursive state.

• lost: after selecting the events related to that team, to find when the
ball is lost by the team the idea is to check indices with the function
is_consequential (see A.4) such that if the difference between an index and
the following is greater than one it means that in the middle there are events
related to the other team, so the ball was lost.
A key point is that a single state lost could correspond to many events of the
other team, so there is a state goal or position, then a state lost and again a

17

state goal or, most probably, position; for this reason lost is a non-recursive
state.

• position (X,Y): in this case the values of the coordinates X and Y are
simply shown.

A way to represent the connection between states is a graph, useful also to better
understand the transition process that will be analyzed in the next chapter.

Figure 2.2: To avoid too much confusion not all areas are drawn: there are just the
connections between the state 1 and those drawn and self-loops on "field states",
because goal and lost are not recursive states.

SPACE
Then, to assign these states, the piece of code A.5 is used, where team_A is a
data-frame containing all events related to the team A.
It is really important to notice that counts the order in which if conditions are
written in the for cycle: indeed usually both goal and lost events have their
position so if that condition was written before, it could create misunderstandings.
Similarly goal should precede lost because in the case of own goal the ball is not
in possession, so if they were inverted the states would be lost, losing the fact that
a goal was scored.

This framework is included in a function find_states (see A.6), which takes
as input the json file with all information and the team to be analysed and it
provides as output a list of states and an array of left team, the team playing
from left to right, practically about one half with a team and the remaining, after
the half-time, with the other.

Then results are used to find the field area for each state in the list through the
function field_statistics (see A.8), which takes as input the number of subdivisions
of long and short field side, the outputs of previous function states and left_team
and again the team, recalling that the focus is actually the single team in the
match.
Instead outputs are two numpy arrays:

18

• field_zone: it contains the field areas of states provided as input, so the
length is the same of the list states and the possible values are m×n inside
the game field plus two dummy areas, the lost one, signed by m × n + 1,
and the goal one, signed by m× n+ 2.

• count: it counts of how many times events were in the areas, so it is a
vector with length m × n + 2 whose sum on items is equal to field_zone
length.

The matching between states and field areas is immediate in the case of lost
←→ m× n+1 and goal ←→ m× n+2, while is not so easy with position states.
The first step is to understand if the team considered is attacking from left to
right or not, done through the condition (see A.7), where after the else is applied
the reflection function to the position.
Then there are two for cycles which run through all the field zones searching the
one corresponding to the position provided; it is important to notice that in the
case of contour areas are added controls using if conditions to check if the position
is eventually in a frame around the field.

2.4 Results representation

Until now the focus was on the extraction of information from data to better
understand the behaviour of the match, but it is equally important the right rep-
resentation of what was found to make it understandable even to people who have
not directly worked there or who do not have the technical means to understand
it.
A good graphical representation tool could be the heatmap, in which the vector
count is used to create a grid.
Two different types of heatmap can be plotted:

• blurred: it is more qualitative and useful to see the statistics as in a con-
tinuous framework

• defined: it is more quantitative, because the subdivision in areas and the
relative values are clear,

The function plot_statistics_on_field (see A.9) shows the heatmaps, taking as
input the dimension of the subdivision, the vector count and the subject of the
statistics (called team because in the first part statistics were on teams, but
they can be also on the entire tournament), while the outputs are precisely the
heatmaps.

These are an example of output applied to a match played by the team A
displaying the offense behavior during the game (from top to bottom). SPACE

19

SPACE

2.4.1 Single team in all matches of a tournament

It is possible to extend the analysis done on a single match to the entire tourna-
ment, putting together the information arising from all games played.
It could be useful to better understand the behaviour of the team not just in a
single apparition but on average along the competition.
The idea is to collect all matches played by a team and to iterate on them the
process described above.
To avoid the manual search in the tournament folder the function glob of the
homonymous package is used (see A.10), passing the team code as searching term.

Practically the field_zone vectors of all matches found and saved in path_list
are linked one to the other as a single match throughout the tournament.
This solution leads to a little bias passing from a match to another, but it is
negligible with respect to the chained vector dimension.
Instead the count vector is the resulting sum of count vectors of all matches.
Then applying it to all tournament matches of the team A are obtained the
following plots

20

SPACE
It is interesting to compare the performance of two teams, understanding the dif-
ferent ways to play during the tournament.

Figure 2.3: The game of team A is more concentrated in the classic construction
area of the game, the number 7, while that of team B has a more distributed
maneuver in the central areas of the field

21

2.4.2 Grid refining

Until now the field has been subdivided into 6×3 areas to avoid data sparse prob-
lems, which may emerge when considering just a single or not many matches, e.g.
in the case of a team playing just an initial part of the tournament before being
eliminated.
A possible refinement of the grid is obtained duplicating subdivisions in both di-
mensions, resulting in an almost quadruplication of states (from 20 to 74); then
field_zone and count vectors are recomputed changing parameters m and n of
field_statistics and plot_statistics_on_field function to show results (of a single
match on the left, of the tournament on the right).

Figure 2.4: The left plot has some strange behaviours on the side lanes and it is
much more irregular than the right one because there are far fewer observations,
less than 10 in many areas, arising the problems mentioned above, while with
more data the graphical result is better than with 6× 3 grid.

22

Chapter 3

Markov chain

3.1 Transition matrix

Previously, the vectors contained the field areas where events happened, while
now begins a new phase of the work; the idea is to create transition matrices
representing the passage from one state to another, modeling the system not
with just a list of states where the ball is but more dynamically, focusing on the
interaction between different areas.

Matrices are structured having the starting states on rows and the final ones
on columns, so they are squared with dimensions [m× n+ 2]2

3.1.1 Frequencies matrix

The first type of transition matrix is the frequencies one, in which the general
entry (i, j) represents how many times the ball passed from field area i to field
area j.
It is quite easy to create it because it is enough to consider field_zone previously
found and take couple by couple all its items and starting from a zero matrix add
one to the entry (i, j) every time there is a couple of consecutive areas i and j.
To do it the function transit_matrix is used (see A.11), where the last part of the
function is for saving the frequencies matrix in an Excel file.
This process works well especially in the case of single team in all matches of a
tournament, obtaining the a large sample of frequencies; here there is that referred
to the team A.

So for example during the tournament players of team A have passed the ball
from area 8 to area 5 for 88 times, lost the ball for 61 times from area 2 and
scored a goal from area 13 for 3 times.

23

This matrix is also useful to verify the successful cleaning of the data because it
can be noticed that transition from lost states to itself and from goal states to
itself are both zeros, due to the fact that they are non-recursive states, as well as
transitions from lost to goal.
Finally the sum of goals scored by team A during the competition is visible on
the cell (19, 18), the transition from goal to lost, rather than calculating the sum
of values in the last column, including transition from all states to goal (clearly
they are equal).

3.1.2 Probabilities matrix

The second type of transition matrix is the probabilities one, in which the general
entry (i, j) represents the probability that the ball passed from field area i to field
area j.
It is really similar to the previous but, as seen in paragraph 1.1.3, a normalization
is needed because probabilities of going to another state must sum to 1; this
operation is implemented in the function prob_origin_matrix (see A.12), which
takes as input the frequencies matrix previously found and normalizes it with
respect to rows (precisely to obtain sum on columns equal to 1 for every row).

Once again the result related to the team A can be shown in the following
matrix:

Figure 3.1: For example the probability to pass from field area 17 to 14, that is a
back passage on the right lane, is almost 15%, while that of scoring a goal from
area 13 is less than 1%.

3.1.3 Total tournament edition

The tools just seen can be applied to the outermost level of this analysis, the
entire tournament edition; the results may be useful for comparison with those of
other years but also to have a sort of average approach to attacking of the teams
along the competition.

The structure of A.13 is the same for the analysis about a single team during
the competition but extended to all teams, similar to what happened passing from
one match of a team to all its matches.
In this case an external for cycle is added, iterating on a dictionary composed by
all teams participating in the competition and their relative code.
It is possible to see graphically the average way to play of teams during the com-
petition (the first couple), but also a comparison with the approach to attacking
by single teams (the second couple):

24

Figure 3.2: It is interesting to notice that the tournament plot is almost sym-
metric, with a negligible dominance of on the left lane, while for team A this
dominance is more pronounced, as it can be seen from the darker colour of areas
3 and 12 with respect to 5 and 14 respectively. Moreover seeing the lighter colour
of area 6 and the darker of area 11, the team B seems to slightly prefer a more
advanced position on the right side.

25

3.2 Stationary distribution

The analysis on the entire tournament has led to the study of a new tool that
could be useful in the continuation of the work: the stationary distribution.
Until now charts were about how many times the ball passed on different field
areas, while here the focus is to find the stationary probabilities to be in field
areas given a random instant of the match.
This aim can be attained in three different ways:

• limit distribution: based on the fact that the chain is ergodic because it is
finite, irreducible (taking every couple of states they are mutually reachable)
and aperiodic (the chain period is equal to 1), so the limit distribution is
also the stationary one.

• analytic distribution: based on the solution of the linear system π = πP ,
derived by the definition of stationary distribution.

• empiric distribution: more pratical because the stationary distribution
is obtained normalizing the count vector found in the previous subsection.

In the piece of code A.14 after a common first part to import the transition
matrix, let just notice that in the limit method starting from a vector in which
all states are equiprobable, the transition matrix is iterated for k times, where
theoretically k tends to infinity but in practice it only takes about ten iteration
to reach convergence.

The comparison between the results can be done again through the function
A.9, obtaining

The stationary distribution obtained by the limit distribution and by solving
the linear system are identical, while the empiric is almost the same except for
a little difference in the center-defensive areas of the field, that is a qualitative
proof that the three methods are almost equivalent.
The elapsed times are almost negligible so this is not a valid discriminator, but
imagining to be on a large scale the more efficient is the iterative one, because
the analytic one requires the solution of a linear system, heavier than a matrix
product, while the count one is the highest probably due to the import of the
Excel file.

26

Limit time
Elapsed time: 0.001977 seconds.

Analytic time
Elapsed time: 0.006979 seconds.

Count time
Elapsed time: 0.031848 seconds.

SPACE
The real differences between these methods are reliability and conditioning of
the results; iterative and analytical ones are subject to the propagation of any
errors present within the transition matrix, whose poor conditioning is not to be
excluded given its construction based on empirical data.
So because of its nature, the empirical method is the most stable, since it does
not depend on the transition matrix but only on the count vector in the various
field areas.

3.3 Application of robustness to probabilities matrix

The possible strategy presented in section 1.2 is implemented in the piece of code
A.15, which starts with controls on inputs α and counts and initialization of n
and k.
Then B (chi2 variable), the new upper (α/k) × 100-th percentile of the chi-
square distribution with one degree of freedom, and delta, which is the common
term preceded by a minus or a plus in the confidence interval limits formulas, are
computed.
[π−

i , π
+
i] can be computed in vectorial form (region variable) following again those

formulas.
Before using function multinomial_proportions_confint (see A.15), it is neces-

sary to import the frequencies matrix and to find the probabilities one (see A.16).
Then a three-dimension matrix is initialized to save lower and upper confidence
interval limits for all transitions.
But the function A.15 takes as input just one row at a time; thus proportions vec-
tor and confidence intervals resulting are coherent with probabilities computed in
prob_trans_matrix.
Externally a for cycle is iterated on rows and results are saved on a "slice" of
region (see again A.16); from these confidence intervals it is generated another
matrix including their amplitude, a simple measure of goodness of the estimated
probability.
The matrix can be visualized through an heatmap, which is quite different as
long as expected: entries having high frequencies are those with larger confidence
intervals.

27

SPACE
A possible explanation could be that high-frequency transitions are also the most
likely ones, so a large absolute amplitude of the intervals turns out to be in fact
small if evaluated relatively.
Then a new matrix rel_ampl_matrix is created in A.17, having entries equal to
the ratio between entries of amplitude_confint_matrix and prob_trans_matrix.
Moreover it is added an if condition to control the initial hypothesis "values
in ’counts’ are greater than or equal to 5", because in this case the measure of
robustness of these entries is not valid.
A max_elem is saved and their value is put at 2×max_elem by hand to make
the difference with respect to "valid" values.

28

SPACE
Now the heatmap is much more similar to what expected, with low values near
the diagonal and high values on those in upper-right and lower-left corners.
Row and column 18 are almost white and this could seems inconsistent with
other states near the edges of the matrix, but it should be remembered that state
m× n+ 1 corresponds to lost, which has an high frequency from and to all other
states.

To better understand the behavior of relative amplitudes in the area near the
diagonal it can be created a little more detailed heatmap:

29

SPACE

3.4 Application of robustness to stationary distribu-
tion

The method presented in section 1.2 is also useful to understand the consistency
of results about the stationary distribution.
Considering just the distribution found following the empirical method, which has
been inferred to be the most stable, in the piece of code A.18 the function A.15
is applied to the count vector, previously found with A.14.
The absolute and relative confidence intervals for stationary_count vector (noth-
ing but the normalization of count) are then computed in the for cycles obtaining
the following plots

30

Figure 3.3: The pattern of absolute amplitude of confidence intervals is really
similar to that of stationary distribution, stating that they seem directly propor-
tional.
The relative amplitude instead reveals how the less visited areas are those with
the highest values, especially the 16-th area, in front of the opponent’s goal.
Its relative amplitude is more than 15% of the stationary distribution value, while
others are lower than 10%.

Chapter 4

Application of expected threat to
probabilities matrix

The aim is trying to replicate the idea of Karun Singh presented in section 1.3
exploiting what was previously found.
The starting point is quite different, because here the probabilities of moving
or shooting were not distinguished from each other but only the passage from
one state to another, while goal probabilities and transition matrix can be easily
derived.
In particular, probabilities are the last column of the matrix because it includes
all probabilities to pass from a field zone to the state goal.

31

The function exp_thr (A.19) is used for this purpose, to find the expected
threat and to save it in an Excel file; the input n represents the number of it-
erations, which is basically how many times is done the matrix-vector product
between transition matrix and expected threat vector.

The reasoning behind this simplification is that at the iteration 0, that is the
initial condition, the question should be "What is the probability of scoring a goal
with another 0 passes?", therefore shooting directly from the area where the ball
is; clearly the answer is given by the last column of the matrix.
In general for step k the question is the same with k passes, but it can be reduced
to "What is the probability of scoring a goal with another pass from the state
k − 1?"; that is the explanation of the recursive formula

xT(x,y) =
∑
z

∑
w

T(x,y)−→(z,w)xT(z,w)

contained in the for cycle.
The xT matrix is obtained running this function with n = 10, that seemed to

be a good parameter, and it is interesting to analyze the results: going forward
with the iterations, there is a sort of normalization among all field areas, due to
the fact that considering 10 iterations, so 10 passages before the goal, the initial
area begins to become irrelevant.
For this reason, it was decided (in a qualitative way) to take the second iteration,
which can be visualized through the usual function plot_statistics_on_field :

SPACE
It is interesting a comparison between the expected threat found at the second
iteration and goal probabilities, the initial condition, to appreciate the improving
of information about the goal, passing from its mere realization to its construction
in the last and usually more decisive steps.

32

A last consideration can be done regarding the normalization of the expected
threat with respect to how many times the ball passes over areas, such that is
given importance to areas more frequented, measuring it with count vector, to
have a better idea of from where comes the majority of danger situations.

33

4.1 Comparison between expected threat and lost prob-
abilities

It is interesting to spent few lines seeing the relationship between this two factors.
The expectation is that they are directly proportional because when a team plays
near the opposing area clearly the probability of losing the ball is higher than near
its area; this is confirmed by the following chart, where the points correspond
to every field area and their coordinates are the expected threat and the lost
probability.

Figure 4.1: The increasing trend is shown by the regression line of these points.

SPACE
There is a clear distinction between "safe" areas, characterized by low lost proba-
bilities but also low expected threat, while there are areas more or less "inviting"
depending on whether they are above or below the line. To understand which are
those areas, the vectors should be analyzed, whose representation on the pitch is
shown in the following charts.

34

SPACE
So the worst areas are the three having lost probabilities between 0.3 and 0.4 but
expected threat lower than 0.001, that are the number 0, 1 and 2.
The other group of "bad" areas is composed by those having lost probabilities
between about 0.13 and 0.2 but expected threat lower than 0.0005, that are the
number 3, 4, 5, 6, 8, while the field area 7 is at the beginning of the line.
The last not so inviting area corresponds to the isolated point with more than 0.6
as probability of losing the ball, that is the number 16.

Regarding "good" areas, there is a group of three points between 0.1 and 0.2
of lost probabilities and around 0.001 of expected threat including areas number
9, 10 and 11. The remaining five points over the line are the best areas in which
playing on the field, because expected threat values are high relatively at the
probabilities of losing the ball; they are the number 12, 13, 14, 15 and 17.

4.2 Match dominance

The expected threat can be applied to better understand the behaviour of a match,
providing a more dynamic and interesting point of view of the crucial phases.
But considering the match from a complete point of view, it is not possible to
continue the analysis thinking team by team, there are some changes to be carried
out.

4.2.1 Both teams in a match

Firstly it disappears the state lost, because when a team loses the ball it means
that the ball possession is now kept by the other team, so instead of lost there is
a state position referred to the other team.
As direct consequence a new information about the team holding ball is needed;
the new function find_states_match (A.20) has an additional output team, a list
including the team relating to states.
So for each event the state, the team and the left team are known, grouped in
three different lists.

35

Secondly the team changes event by event, so in the new function
field_statistics_match (A.22) the condition A.7 becomes A.21.
Finally the output count is omitted because it does not make much sense write
down how many times the ball is in a certain area without distinction between
teams.

So these functions provide the inputs of this process, which are applied to the
expected threat found in the previous section following the piece of code A.23.
The idea is to iterate on field_zone items taking the expected threat in that field
area with the positive sign if the team playing on it is the first team touching
the ball (not very relevant here, it only counts graphically), the negative sign
otherwise.
The representation of this result is not very significant; watching carefully can be
noticed that the team represented at the top seems to dominate the other, but
this is not enough.

Another idea was to compute the match expected threat with a weighted sum of
the expected threat in the actual field area and the previous ones (preceded by
plus or minus following the same criterion as before).
In this way a leveling in the chart due to equal values of expected threat is avoided.
In A.24 the first for cycle is a kind of initialization of the match expected threat,
while the second includes the weighted sum.
It is designed in such a way as to halve the importance of the expected threat
the further away from the current observation but to maintain the sum of weights
equal to 1; the choice was to consider the actual and the three previous observa-
tions, so a 4-upla of weights satisfying these properties is [8/15, 4/15, 2/15, 1/15].
Clearly it is not the unique possibility because properties are satisfied also by
n-uple as [24/45, 12/45, 6/45, 3/45] or [27/40, 9/40, 3/40, 1/40] if the importance
is not halved but divided into three or even [4/7, 2/7, 1/7] if considered just the

36

two previous observations, but after a qualitative comparison between some of
them the choice was [8/15, 4/15, 2/15, 1/15].

The chart is slightly more understandable than the initial one but it is still difficult
to get a better idea about certain moments of the game.

A solution could be to group values of expected threat with respect to their
timestamp (it will be done by k minutes) in order to have a clearer chart.
In A.25 the time range of the match is divided in time_segments, on which
the external for cycle iterates, while the range of the internal cycle is the en-
tire time_stamp vector but the if condition makes sure that just the values on
the i-th time segment are taken.

37

Figure 4.2: Ranges on the x-axis indicate the parts in which is splitted the match,
that are nothing but the match duration measured in minutes divided by param-
eter k and overestimed.

SPACE
The graphic representation of the case k = 2 is much better than before; now
there is a clear dominance between of the team A with respect to the team B and
the moments in which one team prevails over the other are more outlined.

A further improvement is to distinguish teams not just with the horizontal
line but colouring areas created by their expected threat, to draw a dash line at
the half-time and to set k = 1 so that numbers on the x-axis have the meaning
of minutes of the match.

38

Figure 4.3: The result of the match was 2-0 for the team A

SPACE
Finally it is possible to add vertical lines corresponding to the minute of the goals
done, that could be useful to better understand the behaviour of the match; a team
can reach the goal due to its dominance in the match or it can gain dominance
thanks to the goal itself.

39

4.2.2 Subdivision by actions

Another approach to the match analysis is to consider actions played in turn by
teams, grouping consequential events of the same team in a unique action.
The aim is again to measure the dangerousness of teams during the match but
not dividing it by minutes and "mixing" different attacks of the teams; now the
strategy is to compute the expected threat of an action by doing the sum of the
expected threat of every event that compose the action.
It seems to be a good trade-off between possession and verticalization because a
long actions in areas away from the goal or dangerous but short actions do not
represent a real dominance in the match.

The function act_dur (see A.26) is built to obtain a vector counting the
number of events for each action; the first for cycle includes if conditions to dis-
criminate between cases of same team in consecutive events in which the action
continues and those of different teams in which a new action is initialized.
The other outputs are the average length of actions mean_action_A and mean_action_B,
so a split of the count_action vector is needed.

A not very significant result is shown in the following chart, similarly to the
first attempt in paragraph 4.2.1.

SPACE
A solution is again to aggregate information: it is possible to create a cumulative
vector of expected threat for each team to bring out measure like the expected
threat created during the entire match or even just during certain situations.
The piece of code A.27 can be added to the previous function act_dur, while the
charts are two different ways of representation of these statistics:

40

4.3 Player dominance

Analyzing the match it could be interesting to go into more detail about the
contribution of each player, not just stopping at team level.

41

The initial idea is to compute the expected threat produced by the player similar
to how it has been done for actions: when a player is the protagonist of an event
is added the expected threat of the field area where the event takes place.
The implementation consists of a function exp_thr_player (see A.28) where by
swiping the player vector, which includes the player protagonist of every event
in the match, three lists are created for the players themselves and their relative
expected threat and team.

The function role_extraction is built to show results through a chart and not
to use the player ID to identify him, assigning roles followed by sequence numbers
according to them position in the player_list vector (see A.29).
The piece of code A.30 is written to create the following bar chart:

Figure 4.4: The third midfielder is the player with the highest expected threat
during the match.

4.3.1 Total tournament edition

The logical continuation of the analysis is to evaluate the performance of players
not just in a match, but during all the competition.
In the piece of code A.31 it is necessary to separate teams in the match because
the analysis on the tournament edition is done team by team.
Then the external for cycle is iterated on teams (or rather a dictionary containing
their names and codes), while in the for cycle on i the function exp_thr_player
is applied to lists same_team and same_team_player.
In the for cycle on k partial results are added to finally obtain the vector xT_player,
containing the expected threat of players of a team during the competition.

The results are again shown through the bar chart A.32, where there is no

42

longer the distinction between teams because this analysis is distinct for each of
them.

Figure 4.5: The player of team A with the highest expected threat during the
tournament is again the third midfielder.

4.3.2 Normalization for minutes played

An additional factor that can be considered is how much a player was present on
the field, because him absolute impact on the tournament depends also on the
number of match played, which until now has not been considered.
This information is extracted in the framework A.33, checking whether or not the
player belongs to the list of those substituted and entered.
The result is a vector min_on_field, which at the end of the for cycle is used to
normalize the vector xT_player.
The outcome would have unit of measurement equal to xT per minutes
(xTpmin), while often the statistics are reported on the regulatory duration of a
match, hence the final multiplication for 90 minutes obtaining the xT per match
or xTp90min.

43

Figure 4.6: It is interesting to see how this normalization gives importance to the
new entries of team A, that probably have had a good impact in the last minutes
of the match.
However, they enter when other players are more tired so there might be a little
bias.

SPACE
This analysis can be extended to the entire competition similarly to before.
But doing the normalization on the match it becomes relevant just the impact
of the new entries (so few players), while on the tournament that of players not
always deployed on the field, which are many more and with more variability.

In the piece of code A.34 the structure of external for cycles come again from
the previous paragraph, while internal cycles to compute vector min_on_field
has the same structure of A.33.

44

Figure 4.7: These results can be considered the most consistent until now regard-
ing the player performances during the competition.
They confirm that midfielders, in particular MF5 and MF3, were the most threat-
ing in the team.

4.3.3 Expected threat contribution

Another interesting analysis is to evaluate a player for his contribution to the
action moving the ball from an area to another, not just for the expected threat
of the field area where he is located.

The function contribution (see A.36) has been built for this purpose; its struc-
ture is really similar to that of exp_thr_player, but instead of tixT of the actual
field area the addends are values of diff_xT in the actual and the consequent field
area, computed with a for cycle at the beginning of the function.

If conditions on field_zone values are inserted to avoid bias in results because
when there is a goal the expected threat becomes near to 0 (almost impossible to
score another goal immediately after having made one).
The strategy adopted is to break the process at the ball touch before the goal
until there is a new possession, so couples [field area before goal, goal] and [goal,
lost] are skipped.

There are other conditions on the value of vector team, in particular on the
actual, previous and next elements, to make possible, for a player of team A:

• if the possession is gained, the addition of the expected threat in the previous
position of team B

• if the possession is lost, the subtraction of the expected threat in the next
position of the team B

45

The bar chart has a similar structure to the figure 4.4 but now values can be
negative.

Figure 4.8: With respect to the previous approach, goalkeepers and defenders
acquire great importance in the contribution to the match.

Bibliography

[CD74] Hinkley D.V. Cox D.R. Theoretical Statistics, pages 49,209. Chapman
Hall, 1974.

[Dek05] Cornelis; Lopuhaä Hendrik Paul; Meester Ludolf Erwin Dekking, Fred-
erik Michel; Kraaikamp. A Modern Introduction to Probability and
Statistics. Springer Texts in Statistics, 2005.

[Eng17] Oxford Dictionaries | English. Markov chain | definition of markov chain
in us english by oxford dictionaries, 2017.

[Gag17] Paul A. Gagniuc. Markov Chains: From Theory to Implementation and
Experimentation, pages 1–235. John Wiley Sons, 2017.

46

[Goo65] L.A. Goodman. On simultaneous confidence intervals for multinomial
proportions, volume 7, pages 247–254. Technometrics, 2 edition, 1965.

[Jon05] Matthew T. Jones. Estimating markov transition matrices using pro-
portions data: An application to credit risk. IMF Working Paper, 219,
2005.

[Moo74] Franklin A.; Boes Duane C. Mood, Alexander; Graybill. Introduction to
the Theory of Statistics, page 241–246. McGraw-Hill, 1974.

[Ney37] J. Neyman. Outline of a theory of statistical estimation based on the clas-
sical theory of probability. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences, 236:333–380,
1937.

[Nor97] J. R. Norris. Markov chains, pages 108–127. Cambridge University Press,
1997.

[Pea00] Karl Pearson. Introduction to the theory of statistics. Philosophical
Magazine, Series 5. 50 (302):157–175, 1900.

[Per13] Josef Perktold. Tests and confidence intervals for binomial propor-
tions. https://www.statsmodels.org/dev/_modules/statsmodels/
stats/proportion.html#multinomial_proportions_confint,
2013. Created on 1 March 2013.

[Que64] Hurst D.C. Quesenberry, C.P. Large-sample simultaneous confidence
intervals for multinomial proportions, volume 6, pages 191–195. Tech-
nometrics, 1964.

[Sin19] Karun Singh. Introducing expected threat. https://karun.in/blog/
expected-threat.html, 2019.

[Wika] Wikipedia. Binomial test. https://en.wikipedia.org/wiki/
Binomial_test.

[Wikb] Wikipedia. Chi-squared distribution. https://en.wikipedia.org/
wiki/Chi-squared_distribution#cite_note-Lancaster1969-8.

[Wikc] Wikipedia. Chi-squared test. https://en.wikipedia.org/wiki/
Chi-squared_test.

[Wikd] Wikipedia. Confidence interval. https://en.wikipedia.org/wiki/
Confidence_interval.

[Wike] Wikipedia. Markov chain. https://en.wikipedia.org/wiki/Markov_
chain.

47

Appendix A

Code

A.1 Event extraction

marks = pd.read_json(json_file)

balltouches = marks[marks[’Tags’].apply(lambda x:
np.all([*map(lambda l: l in x, [’BallTouch ’])]))]

goals = marks[marks[’Tags’]. apply(lambda x:
np.all([*map(lambda l: l in x, [’Goal’])]))]

balltouches = pd.concat ([balltouches , goals],
join=’inner ’, ignore_index=True)

A.2 Event validation

balltouches[’is_Position_nan ’] = balltouches[’X’]. apply(lambda x:
1 if not np.isnan(x) else 0)

balltouches[’is_Subjects_nan ’] = balltouches[’Subjects ’].apply
(lambda x: 1 if collections.Counter ([’Type’, ’Verb’,
’SubjectID ’]) == collections.Counter(list(pd.DataFrame
([l for l in x]). columns)) else 0)

balltouches = balltouches[balltouches[’is_Subjects_nan ’] == 1]
balltouches = balltouches[balltouches[’is_Position_nan ’] == 1]

SPACE

A.3 Function is_goal

def is_goal(x):
if ’Goal’ in x[’Tags’]:

return True
else:

48

return False

A.4 Function is_consequential

def is_consequential(x):
if not np.isnan(x[’next_index ’]):

if int(x[’next_index ’]) - int(x[’index_col ’]) > 1:
return False

else:
return True

else:
return True

A.5 States assignment

states = []
for i, row in team_A.iterrows ():

if row[’is_goal ’]:
states.append(’goal’)
states.append(’lost’)

elif not row[’is_ball_in_possession ’]:
states.append(’lost’)

else:
states.append ([row[’X’], row[’Y’]])

A.6 Function find_states

def find_states(json_file , team):
"""
States assignment to events
:param json_file: marks file containing all match events
:param team: ID of the team to which the states are assigned
:return: list containing the state for each event and numpy

vector containing the ID of the left team for each event
"""

marks = pd.read_json(json_file)

[...]

team_A = balltouches[balltouches[’Team’] == team]

[...]

left_team = team_A[’LeftTeam ’]
states = []
for i, row in team_A.iterrows ():

if row[’is_goal ’]:

49

states.append(’goal’)
states.append(’lost’)

elif not row[’is_ball_in_possession ’]:
states.append(’lost’)

else:
states.append ([row[’X’], row[’Y’]])

return states , left_team

A.7 If condition

if team == int(left_team[i]):

[...]

else:

A.8 Function field_statistics

def field_statistics(m, n, states , team , left_team):
"""
Statistics about field areas
:param m: areas of the long side of the field
:param n: areas of the short side of the field
:param states: list with position , lost and goals of match
team events
:param team: integer with the ID of the team
:param left_team: integer with the ID of the first team
playing from left to right
:return: numpy vectors with the field area for each event
and with the count of events for each field area (0 when
the field is not identified , probably due to not available
coordinates)
"""
subdivision of the field in m parts on the x, n parts on the y
x = 2 / m
y = 2 / n
eps = 0.2
assignment of each ball touch to a field area
field_zone = np.zeros(len(states))
count = np.zeros(m * n + 2)
for i in left_team.index:

if states[i] == ’goal’:
field_zone[i] = m * n + 1
count[m * n + 1] += 1

elif states[i] == ’lost’:
field_zone[i] = m * n
count[m * n] += 1

else:
if team == int(left_team[i]):

for j in range(m):

50

for h in range(n):
if -1 + j * x < states[i][0] <= -1 +

(j + 1) * x and -1 + h * y <
states[i][1] <= -1 + (h + 1) * y:

field_zone[i] = j * n + h
count[j * n + h] += 1

if j == 0:
if -1 - eps < states[i][0] <= -1:

field_zone[i] = j * n + h
count[j * n + h] += 1

elif j == m - 1:
if 1 <= states[i][0] < 1 + eps:

field_zone[i] = j * n + h
count[j * n + h] += 1

if h == 0:
if -1 - eps < states[i][1] <= -1:

field_zone[i] = j * n + h
count[j * n + h] += 1

elif h == n - 1:
if 1 <= states[i][1] < 1 + eps:

field_zone[i] = j * n + h
count[j * n + h] += 1

else:
for j in range(m):

for h in range(n):
if -1 + j * x < -states[i][0] <= -1 +

(j + 1) * x and -1 + h * y <
-states[i][1] <= -1 + (h + 1) * y:

field_zone[i] = j * n + h
count[j * n + h] += 1

if j == 0:
if -1 - eps < -states[i][0] <= -1:

field_zone[i] = j * n + h
count[j * n + h] += 1

elif j == m - 1:
if 1 <= -states[i][0] < 1 + eps:

field_zone[i] = j * n + h
count[j * n + h] += 1

if h == 0:
if -1 - eps < -states[i][1] <= -1:

field_zone[i] = j * n + h
count[j * n + h] += 1

elif h == n - 1:
if 1 <= -states[i][1] < 1 + eps:

field_zone[i] = j * n + h
count[j * n + h] += 1

return field_zone , count

A.9 Function plot_statistics_on_field

def plot_statistics_on_field(m, n, count , team):

51

"""
Plot of statistics extracted by field statistics functions
:param m: areas of the long side of the field
:param n: areas of the short side of the field
:param count: vector returned by field_statistics
with count of events for each field zone
:param team: ID of the team for the plot title
:return: plots
"""
create and fill a grid to plot frequencies in
different positions
grid = np.zeros((m, n))
for i in range(m):

for j in range(n):
grid[i, j] = count[i * n + j]

plt.xticks(ticks=np.arange(m))
plt.yticks(ticks=np.arange(n))

blurred heatmap
plt.imshow(grid , cmap=’Blues ’, interpolation="spline16")
if team is not None:

plt.title(team)
plt.show()
plt.savefig(’Blurred%s’ % team)

defined square heatmap
f = plt.figure ()
f.set_figwidth (30)
f.set_figheight (60)

pitch = VerticalPitch(pitch_color=’grass ’,
line_color=’white ’, stripe=True)

fig , ax = pitch.draw()

hm = plt.imshow(grid , cmap=’Blues’, interpolation="nearest",
extent =[0, 80, 0, 120])

plt.colorbar(hm)
centers = np.zeros((m * n, 2))
for i in range(m):

for j in range(n):
centers[i * n + j, 0] = i
centers[i * n + j, 1] = j

plt.text (10 + 25*(n-1-j), 5 + 20*(m-1-i),
str(i * n + j), color="red", fontsize =20)

plt.show()
plt.savefig(’DefinedSquare%s’ % team)

A.10 All tournament matches

path = os.path.dirname(r’C:[...] ’)

52

path_list = glob.glob(path + "/**/*%s*. Marks.json" % team ,
recursive=True ,)

for match_path in path_list:
[states , left_team] = find_states(match_path , team_id)

[field_zone_v , count_v] = field_statistics(m, n, states ,
team_id , left_team)

field_zone = [*field_zone , *field_zone_v]
count += count_v

plot_statistics_on_field(m, n, count , ’team A’)

A.11 Transition matrix

def transit_matrix(m, n, field_zone , team):
tm = np.zeros((m*n+2, m*n+2))
for index in range(len(field_zone)-1):

i = int(field_zone[index])
j = int(field_zone[index +1])
tm[i, j] += 1

pn_transition = pd.DataFrame(tm[:, :])

coordinates = pd.ExcelWriter(’Transition matrix %s.xlsx’
% team , engine=’xlsxwriter ’)

pn_transition.to_excel(coordinates , ’Transition matrix %s’
% team , startcol=0, startrow =0)

coordinates.close()

return tm

A.12 Function prob_origin_matrix

def prob_origin_matrix(transition_matrix , team):
m = transition_matrix.shape [0]
n = transition_matrix.shape [1]
ptm = np.zeros((m, n))
s = np.sum(transition_matrix , axis =1)
for i in range(m):

for j in range(n):
if s[i] != 0:

ptm[i, j] = transition_matrix[i, j] / s[i]
else:

ptm[i, j] = 0
pn_transition = pd.DataFrame(ptm[:, :])

coordinates = pd.ExcelWriter(’ProbOrigMatrix%s.xlsx’
% team , engine=’xlsxwriter ’)

pn_transition.to_excel(coordinates , ’ProbOrigMatrix%s’

53

% team , startcol=0, startrow =0)

coordinates.close ()

return ptm

A.13 Total tournament edition

team_list = [...]
team_code = [...]
team_dict = dict(zip(team_list , team_code))
field_zone = []
count = np.zeros(m*n+2)
path = os.path.dirname(r’C:[...] ’)

for team , team_id in team_dict.items ():

path_list = glob.glob(path + "/**/*%s*. Marks.json" % team ,
recursive=True ,)

for match_path in path_list:
[states , left_team] = find_states(match_path , team_id)

[field_zone_v , count_v] = field_statistics(m, n,
states , team_id , left_team)

field_zone = [*field_zone , *field_zone_v]
count += count_v

matrix_team = transit_matrix(m, n, field_zone , ’Tournament ’)
prob_team = prob_origin_matrix(matrix_team , ’Tournament ’)
plot_statistics_on_field(m, n, count , ’Tournament ’)

A.14 Stationary distribution

import_transition_matrix = pd.read_excel(’C:[...] ’)
transition_matrix = import_transition_matrix.iloc[0:, 0:]
dim = np.shape(transition_matrix)[1]
limit method
iteration_matrix = np.linalg.matrix_power(transition_matrix , k)
init_distr = np.repeat (1/dim , dim)
stationary_limit = np.matmul(iteration_matrix , init_distr)
analytic method
S, U = eig(transition_matrix)

stationary = np.array(U[:, np.where(np.abs(S - 1.) <
1e -8)[0][0]]. flat)

stationary = np.array(stationary / np.sum(stationary))
stationary_limit = stationary.real
empiric method
count = pd.read_excel(’C:[...] ’)

54

count = pd.DataFrame.to_numpy(count.iloc[1:, 1:])
stationary_count = count / np.sum(count)

A.15 Confidence intervals

def multinomial_proportions_confint(counts , alpha =0.05 ,
method=’goodman ’):

if alpha <= 0 or alpha >= 1:

raise ValueError(’alpha must be in (0,1),
bounds excluded ’)

counts = np.array(counts , dtype=float)
if (counts < 0). any ():

raise ValueError(’counts must be >= 0’)
n = counts.sum()
k = len(counts)
proportions = counts / n
chi2 = stats.chi2.ppf(1 - alpha / k, 1)

delta = chi2 ** 2 + (4 * n * proportions * chi2 * (1 -
proportions))

region = ((2 * n * proportions + chi2 + np.array([-
np.sqrt(delta), np.sqrt(delta)]))/(2*(chi2 +
n))).T

return region

A.16 Matrix of confidence intervals amplitude

import_transition_matrix = pd.read_csv(’C:[...] ’, header=None)
dim = np.shape(import_transition_matrix)[1]
transition_matrix = import_transition_matrix.to_numpy ()

prob_trans_matrix = prob_origin_matrix(transition_matrix ,
’Tournament ’)

region = np.zeros((dim , dim , 2))
for i in range(dim):

region_v = multinomial_proportions_confint
(transition_matrix[i, :])

region[i, :, :] = region_v

amplitude_confint_matrix = np.zeros((dim , dim))
for i in range(dim):

for j in range(dim):

55

amplitude_confint_matrix[i, j] = region[i, j, 1] -
region[i, j, 0]

A.17 Matrix of relative amplitudes

rel_ampl_matrix = np.zeros((dim , dim))
max_elem = 0
for i in range(dim):

for j in range(dim):
if transition_matrix[i, j] > 5:

rel_ampl_matrix[i, j] = amplitude_confint_matrix[i, j]/
prob_trans_matrix[i, j]

if rel_ampl_matrix[i, j] > max_elem:
max_elem = rel_ampl_matrix[i, j]

for i in range(dim):
for j in range(dim):

if rel_ampl_matrix[i, j] == 0:
rel_ampl_matrix[i, j] = 2 * max_elem

A.18 Absolute and relative confidence intervals ampli-
tude

dim = len(count)
region_stat = multinomial_proportions_confint(count)

amplitude_confint_count = np.zeros(dim)
for i in range(dim):

amplitude_confint_count[i] = region_stat [0, i, 1]-
region_stat [0, i, 0]

plot_statistics_on_field (6, 3, amplitude_confint_count ,
’StationaryDistribution ’)

rel_ampl_confint_count = np.zeros(dim)
for i in range(dim):

rel_ampl_confint_count[i] = amplitude_confint_count[i]/
stationary_count[i]

plot_statistics_on_field (6, 3, rel_ampl_confint_count ,
’StationaryDistribution ’)

A.19 Function exp_thr

56

def exp_thr(n):
import_transition_matrix = pd.read_csv(’C:[...] ’)

prob_trans_matrix = prob_origin_matrix(pd.DataFrame.to_numpy
(import_transition_matrix), ’Tournament ’)

import_count = pd.read_excel(’C:[...] ’)
count = import_count.iloc[0:, 1:]
dim = int(np.shape(transition_matrix)[1])
xT = np.zeros((dim , n))
np_transition_matrix = prob_trans_matrix
xT[:, 0] = np_transition_matrix [:, -1]
for i in range(n-1):

xT[:, i+1] = np.dot(np_transition_matrix , xT[:, i])
exp_thr_matrix = pd.DataFrame(xT[:, :])

coordinates = pd.ExcelWriter(’ExpectedThreat%sIterations.xlsx’
% n, engine=’xlsxwriter ’)

exp_thr_matrix.to_excel(coordinates , ’ExpectedThreat%sIterations ’
% n, startcol=0, startrow =0)

coordinates.close ()
return xT, count

A.20 Function find_states_match

def find_states_match(json_file):

marks = pd.read_json(json_file)

[...]

states = []
team = []
left_team = []
for i, row in balltouches.iterrows ():

if row[’is_goal ’]:
states.append(’goal’)
team.append(row[’Team’])
left_team.append(row[’LeftTeam ’])

else:
states.append ([row[’X’], row[’Y’]])
team.append(row[’Team’])
left_team.append(row[’LeftTeam ’])

return states , team , left_team

A.21 If condition (event by event)

57

if int(team[i]) == int(left_team[i]):

[...]

else:

A.22 Function field_statistics_match

def field_statistics_match(m, n, states , team , left_team):
"""
Statistics about field zones
:param m: subdivisions of the long side of the field
:param n: subdivisions of the short side of the field
:param states: list with states
:param team: list with team
:param left_team: list with left team
:return: numpy vectors with the field area for each
event and with the count of events for each field area
"""
subdivision of the field in m parts on the x,
n parts on the y
x = 2 / m
y = 2 / n
eps = 0.2
len_states = len(states)

assignment of each ball touch to a field area
field_zone = np.zeros(len_states)
count = np.zeros(m * n + 2)
for i in range(len_states):

if states[i] == ’goal’:
field_zone[i] = m * n + 1
count[m * n + 1] += 1

else:
if int(team[i]) == int(left_team[i]):

for j in range(m):
for h in range(n):

if -1 + j * x < states[i][0] <= -1 +
(j + 1) * x and -1 + h * y <
states[i][1] <= -1 + (h + 1) * y:

field_zone[i] = j * n + h
count[j * n + h] += 1

if j == 0:
if -1 - eps < states[i][0] <= -1:

field_zone[i] = j * n + h
count[j * n + h] += 1

elif j == m - 1:
if 1 <= states[i][0] < 1 + eps:

field_zone[i] = j * n + h
count[j * n + h] += 1

58

if h == 0:
if -1 - eps < states[i][1] <= -1:

field_zone[i] = j * n + h
count[j * n + h] += 1

elif h == n - 1:
if 1 <= states[i][1] < 1 + eps:

field_zone[i] = j * n + h
count[j * n + h] += 1

else:
for j in range(m):

for h in range(n):

if -1 + j * x < -states[i][0] <= -1 +
(j + 1) * x and -1 + h * y <
-states[i][1] <= -1 + (h + 1) * y:

field_zone[i] = j * n + h
count[j * n + h] += 1

if j == 0:
if -1 - eps < -states[i][0] <= -1:

field_zone[i] = j * n + h
count[j * n + h] += 1

elif j == m - 1:
if 1 <= -states[i][0] < 1 + eps:

field_zone[i] = j * n + h
count[j * n + h] += 1

if h == 0:
if -1 - eps < -states[i][1] <= -1:

field_zone[i] = j * n + h
count[j * n + h] += 1

elif h == n - 1:
if 1 <= -states[i][1] < 1 + eps:

field_zone[i] = j * n + h
count[j * n + h] += 1

return field_zone

A.23 xT computing: initial idea

initial idea
xT = np.zeros(len(field_zone))
for i in range(1, len(field_zone)):

if team[i] == team [0]:
xT[i] = tixT[int(field_zone[i])]

else:
xT[i] = -tixT[int(field_zone[i])]

A.24 xT computing: weighted sum idea

xT = np.zeros(len(field_zone))
for i in range(1, 3):

59

if team[i] == team [0]:
xT[i] = tixT[int(field_zone[i])]

else:
xT[i] = -tixT[int(field_zone[i])]

for i in range(3, len(field_zone)):
if team[i] == team [0]:

xT[i] = tixT[int(field_zone[i])]*8/15 +
xT[i -1]*4/15 + xT[i -2]*2/15 + xT[i -3]*1/15

else:

xT[i] = -tixT[int(field_zone[i])]*8/15 +
xT[i -1]*4/15 + xT[i -2]*2/15 + xT[i -3]*1/15

A.25 xT computing: time segments idea

max_time = max(time_stamp)
minute_range = k
millisec_range = minute_range *60*1000 # 1000 because time_stamp

is measured in milliseconds
time_segments = int(max_time // millisec_range)

xT = np.zeros(time_segments +1)
for i in range(1, time_segments +1):

for j in range(len(time_stamp)):
if i*millisec_range <= time_stamp[j] <= (i+1)* millisec_range:

if team[j] == team [0]:
xT[i] = xT[i] + tixT[int(field_zone[j])]

else:
xT[i] = xT[i] - tixT[int(field_zone[j])]

A.26 Function act_dur

def act_dur(vect_team , field_zone , tixT):
count_action = []
xT_action = []
j = 0
for i in range(len(vect_team)):

if i == 0:
count_action.append (0)
count_action[j] += 1
xT_action.append (0)
xT_action[j] += tixT[int(field_zone[i])]

elif vect_team[i-1] == vect_team [0] and vect_team[i]
== vect_team [0]:

count_action[j] += 1
xT_action[j] += tixT[int(field_zone[i])]

60

elif vect_team[i-1] != vect_team [0] and vect_team[i]
!= vect_team [0]:

count_action[j] += 1
xT_action[j] -= tixT[int(field_zone[i])]

elif vect_team[i-1] == vect_team [0] and vect_team[i]
!= vect_team [0]:

count_action.append (0)
xT_action.append (0)
j += 1
count_action[j] += 1
xT_action[j] -= tixT[int(field_zone[i])]

elif vect_team[i-1] != vect_team [0] and vect_team[i]
== vect_team [0]:

count_action.append (0)
xT_action.append (0)
j += 1
count_action[j] += 1
xT_action[j] += tixT[int(field_zone[i])]

team_A_action = []
team_B_action = []
for i in range(len(np_count_action)):

if vect_team[i] == team [0]:
team_A_action.append(np_count_action[i])

else:
team_B_action.append(np_count_action[i])

mean_action_A = np.mean(team_A_action)
mean_action_B = np.mean(team_B_action)

return np_count_action , np_xT_action , mean_action_A ,
mean_action_B

A.27 Cumulative xT

cum_xT_action_A = []
cum_xT_action_B = []
j = 0
k = 0
for i in range(len(np_xT_action)):

if np_xT_action[i] > 0:
if i == 0 or i == 1:

cum_xT_action_A.append(np_xT_action[i])
j += 1

elif i > 1:

cum_xT_action_A.append(np_xT_action[i] +
cum_xT_action_A[j-1])

j += 1

61

elif np_xT_action[i] < 0:
if i == 0 or i == 1:

cum_xT_action_B.append(np_xT_action[i])
k += 1

elif i > 1:

cum_xT_action_B.append(np_xT_action[i] +
cum_xT_action_B[k-1])

k += 1

return np_count_action , np_xT_action , mean_action_A ,
mean_action_B , cum_xT_action_A , cum_xT_action_B

A.28 Expected threat player

def exp_thr_player(team , player , field_zone , tixT):
player_list = []
xT_player = []
team_list = []
for i in range(len(player)):

exist_count = player_list.count(player[i])
if exist_count > 0:

j = player_list.index(player[i])
xT_player[j] += tixT[int(field_zone[i])]

else:
player_list.append(player[i])
team_list.append(team[i])
xT_player.append (0)
xT_player [-1] += tixT[int(field_zone[i])]

return xT_player , player_list , team_list

A.29 Role extraction

def role_extraction(player_list , json_file):
lineups = pd.read_json(json_file)
teams = lineups[’Teams’]
players_A = teams [0][’Players ’]
players_B = teams [1][’Players ’]
players_id_A = []
role_A = []
for i in range(len(players_A)):

players_id_A.append(int(players_A[i][’PlayerID ’]))
role_A.append(players_A[i][’Role’])

players_id_B = []
role_B = []
for i in range(len(players_B)):

players_id_B.append(int(players_B[i][’PlayerID ’]))
role_B.append(players_B[i][’Role’])

players_id = players_id_A + players_id_B
role = role_A + role_B

62

role_list = []
count_g = 1
count_d = 1
count_m = 1
count_f = 1
for i in range(len(player_list)):

j = players_id.index(player_list[i])
if role[j] == ’Goalkeeper ’:

role_list.append(str(’GK’)+str(count_g))
count_g += 1

if role[j] == ’Defender ’:
role_list.append(str(’DF’)+str(count_d))
count_d += 1

if role[j] == ’Midfielder ’:
role_list.append(str(’MF’)+str(count_m))
count_m += 1

if role[j] == ’Forward ’:
role_list.append(str(’FW’)+str(count_f))
count_f += 1

return players_id , role , role_list

A.30 Bar chart match

fig , ax = plt.subplots ()
y_pos = np.arange(len(xT_player))
ax.barh(index_A , xT_player_A , align=’center ’, color=’b’)
ax.barh(index_B , xT_player_B , align=’center ’, color=’orange ’)
ax.set_yticks(index_A + index_B , labels=role_list_A + role_list_B)
ax.invert_yaxis ()
ax.set_xlabel(’xT value ’)
ax.set_title(’xT created by players ’)
ax.legend ([’Team A’, ’Team B’], loc=’lower right’)
plt.show()

A.31 Expected threat player tournament

for team , team_id in team_dict.items ():

path_list_marks = glob.glob(path + "/**/*%s*. Marks.json"
% team , recursive=True ,)

path_list_phases = glob.glob(path + "/**/*%s*. Phases.json"
% team , recursive=True ,)

path_list_lineups = glob.glob(path + "/**/*%s*. Lineups.json"
% team , recursive=True ,)

for i in range(len(path_list_marks)):
if i == 0:

63

[states , team , player , left_team , time_stamp ,
first_enj , second_enj] = find_states_match
(path_list_marks[i], path_list_phases[i])

field_zone = field_statistics_match(m, n, states ,
team , left_team)

same_team = []
same_team_player = []
same_team_field_zone = []
for j in range(len(team)):

if team[j] == team_id:
same_team.append(team[j])
same_team_player.append(player[j])
same_team_field_zone.append(field_zone[j])

[xT_player , player_list , team_list] =
exp_thr_player(same_team , same_team_player ,
same_team_field_zone , tixT)

[player_id , role , role_list] = role_extraction
(player_list , path_list_lineups[i])

if i > 0:
[states , team , player , left_team , time_stamp ,

first_enj , second_enj] = find_states_match
(path_list_marks[i], path_list_phases[i])

field_zone = field_statistics_match(m, n, states ,
team , left_team)

same_team = []
same_team_player = []
same_team_field_zone = []
for j in range(len(team)):

if team[j] == team_id:
same_team.append(team[j])
same_team_player.append(player[j])
same_team_field_zone.append(field_zone[j])

[xT_player_i , player_list_i , team_list_i] =
exp_thr_player(same_team , same_team_player ,
same_team_field_zone , tixT)

[player_id_i , role_i , role_list_i] =
role_extraction(player_list_i ,
path_list_lineups[i])

for k in range(len(player_list_i)):
exist_count = player_list.count(player_list_i[k])
if exist_count > 0:

z = player_list.index(player_list_i[k])
xT_player[z] += xT_player_i[k]

else:
player_list.append(player_list_i[k])
team_list.append(team_list_i[k])

64

xT_player.append (0)
xT_player [-1] += xT_player_i[k]

A.32 Bar chart tournament

fig , ax = plt.subplots ()
y_pos = np.arange(len(xT_player))
ax.barh(y_pos , xT_player , align=’center ’, color=’b’)
ax.set_yticks(y_pos , labels=role_list)
ax.invert_yaxis ()
ax.set_xlabel(’xT value ’)
ax.set_title(’xT created by players during the tournament ’)
plt.show()

A.33 Normalization by minutes on the match

match_dur = 90+int(first_enj)+int(second_enj)
min_on_field = np.zeros(len(player_list))
for i in range(len(player_list)):

if not np.any(player_left == player_list[i]) and not
np.any(player_entered == player_list[i]):

min_on_field[i] = match_dur

elif np.any(player_left == player_list[i]) and not
np.any(player_entered == player_list[i]):

j = np.where(player_left == player_list[i])
min_on_field[i] = int(time_stamp_subst[j[1]])//(1000*60)

elif not np.any(player_left == player_list[i]) and
np.any(player_entered == player_list[i]):

j = np.where(player_entered == player_list[i])

min_on_field[i] = (match_dur *1000*60 -
int(time_stamp_subst[j[1]]))//(1000*60)

elif np.any(player_left == player_list[i]) and
np.any(player_entered == player_list[i]):

j = np.where(player_entered == player_list[i])
k = np.where(player_left == player_list[i])

min_on_field[i] = (int(time_stamp_subst[k[1]]) -
int(time_stamp_subst[j[1]]))//(1000*60)

xT_player_norm_by_min = np.divide(xT_player , min_on_field)

65

A.34 Normalization by minutes on the tournament

for team , team_id in team_dict.items ():

path_list_marks = glob.glob(path + "/**/*%s*. Marks.json"
% team , recursive=True ,)

path_list_phases = glob.glob(path + "/**/*%s*. Phases.json"
% team , recursive=True ,)

path_list_lineups = glob.glob(path + "/**/*%s*. Lineups.json"
% team , recursive=True ,)

for i in range(len(path_list_marks)):
if i == 0:

[player_left , player_entered , time_stamp_subst] =
min_played(path_list_marks[i],
path_list_lineups[i], path_list_phases[i])

[states , team , player , left_team , time_stamp ,
first_enj , second_enj] = find_states_match
(path_list_marks[i], path_list_phases[i])

field_zone = field_statistics_match(m, n, states ,
team , left_team)

same_team = []
same_team_player = []
same_team_field_zone = []
for j in range(len(team)):

if team[j] == team_id:
same_team.append(team[j])
same_team_player.append(player[j])
same_team_field_zone.append(field_zone[j])

[xT_player , player_list , team_list] = exp_thr_player
(same_team , same_team_player ,
same_team_field_zone , tixT)

match_dur = 90+int(first_enj)+int(second_enj)
min_on_field = []
for h in range(len(player_list)):

if not np.any(player_left == player_list[h]) and
not np.any(player_entered == player_list[h]):

min_on_field.append(match_dur)

elif np.any(player_left == player_list[h]) and not
np.any(player_entered == player_list[h]):

j = np.where(player_left == player_list[h])
min_on_field.append(int(time_stamp_subst[j[1]])

//(1000*60))

66

elif not np.any(player_left == player_list[h]) and
np.any(player_entered == player_list[h]):

j = np.where(player_entered == player_list[h])

min_on_field.append ((match_dur *1000*60 -
int(time_stamp_subst[j[1]]))//(1000*60))

elif np.any(player_left == player_list[h]) and
np.any(player_entered == player_list[h]):

j = np.where(player_entered == player_list[h])
k = np.where(player_left == player_list[h])

min_on_field.append ((int(time_stamp_subst[k[1]])
-int(time_stamp_subst[j[1]]))//(1000*60))

[player_id , role , role_list] = role_extraction
(player_list , path_list_lineups[i])

if i > 0:

[player_left , player_entered , time_stamp_subst] =
min_played(path_list_marks[i], path_list_lineups[i],
path_list_phases[i])

[states , team , player , left_team , time_stamp , first_enj ,
second_enj] = find_states_match(path_list_marks[i],
path_list_phases[i])

field_zone = field_statistics_match(m, n,
states , team , left_team)

same_team = []
same_team_player = []
same_team_field_zone = []
for j in range(len(team)):

if team[j] == team_id:
same_team.append(team[j])
same_team_player.append(player[j])
same_team_field_zone.append(field_zone[j])

[xT_player_i , player_list_i , team_list_i] =
exp_thr_player(same_team , same_team_player ,
same_team_field_zone , tixT)

match_dur = 90 + int(first_enj) + int(second_enj)
min_on_field_i = []
for h in range(len(player_list_i)):

if not np.any(player_left == player_list_i[h]) and
not np.any(player_entered == player_list_i[h]):

min_on_field_i.append(match_dur)

elif np.any(player_left == player_list_i[h]) and not
np.any(player_entered == player_list_i[h]):

67

j = np.where(player_left == player_list_i[h])
min_on_field_i.append(int(time_stamp_subst[j[1]])

//(1000*60))

elif not np.any(player_left == player_list_i[h]) and
np.any(player_entered == player_list_i[h]):

j = np.where(player_entered == player_list_i[h])
min_on_field_i.append ((match_dur *1000*60 -

int(time_stamp_subst[j[1]]))//(1000*60))

elif np.any(player_left == player_list_i[h]) and
np.any(player_entered == player_list_i[h]):

j = np.where(player_entered == player_list_i[h])
k = np.where(player_left == player_list_i[h])
min_on_field_i.append ((int(time_stamp_subst[k[1]])

-int(time_stamp_subst[j[1]]))//(1000*60))

[player_id_i , role_i , role_list_i] = role_extraction
(player_list_i , path_list_lineups[i])

for k in range(len(player_list_i)):
exist_count = player_list.count(player_list_i[k])
if exist_count > 0:

z = player_list.index(player_list_i[k])
xT_player[z] += xT_player_i[k]
min_on_field[z] += min_on_field_i[k]

else:
player_list.append(player_list_i[k])
team_list.append(team_list_i[k])
role_list.append(role_list_i[k])
xT_player.append (0)
xT_player [-1] += xT_player_i[k]
min_on_field.append(min_on_field_i[k])

xT_player_norm_by_min = np.divide(xT_player , min_on_field)
fig , ax = plt.subplots ()
y_pos = np.arange(len(xT_player))
ax.barh(y_pos , xT_player_norm_by_min , align=’center ’, color=’b’)
ax.set_yticks(y_pos , labels=role_list)
ax.invert_yaxis ()
ax.set_xlabel(’xT value ’)
ax.set_title(’xT created by players of team A during the

tournament normalized by minutes ’)
plt.show()

A.35 Function gained_exp_thr_player

def gained_exp_thr_player(team , player , field_zone , tixT):
diff_xT = np.zeros([len(tixT), len(tixT)])
for i in range(len(tixT)):

for j in range(len(tixT)):
diff_xT[i, j] = tixT[j] - tixT[i]

68

player_list = []
xT_player = []
team_list = []
for i in range(len(player)-1):

exist_count = player_list.count(player[i])
if exist_count > 0:

j = player_list.index(player[i])

if field_zone[i] != m*n+1 and
field_zone[i+1] != m*n+1:

xT_player[j] += diff_xT[int(field_zone[i]),
int(field_zone[i+1])]

else:
player_list.append(player[i])
team_list.append(team[i])
xT_player.append (0)

if field_zone[i] != m*n+1 and
field_zone[i+1] != m*n+1:

xT_player [-1] += diff_xT[int(field_zone[i]),
int(field_zone[i+1])]

return xT_player , player_list , team_list , diff_xT

A.36 Expected threat contribution

def contribution(team , player , field_zone , tixT):
diff_xT = np.zeros([len(tixT), len(tixT)])
for i in range(len(tixT)):

for j in range(len(tixT)):
diff_xT[i, j] = tixT[j] - tixT[i]

player_list = []
xT_player = []
team_list = []
for i in range(len(player)-1):

exist_count = player_list.count(player[i])
if exist_count > 0:

j = player_list.index(player[i])
if field_zone[i] != m*n+1 and field_zone[i+1] !=
m*n+1:

if team[i] == team[i+1]:
xT_player[j] += diff_xT[int(field_zone[i]),
int(field_zone[i+1])]

else:
xT_player[j] += -tixT[int(field_zone[i+1])]

if i > 0:
if team[i-1] != team[i]:

xT_player[j] += tixT[int(field_zone[i-1])]
else:

print(’goal’)
else:

69

player_list.append(player[i])
team_list.append(team[i])
xT_player.append (0)
if field_zone[i] != m*n+1 and field_zone[i+1] !=
m*n+1:

xT_player [-1] += diff_xT[int(field_zone[i]),
int(field_zone[i+1])]

else:
print(’goal’)

return xT_player , player_list , team_list , diff_xT

Appendix B

Images

Figure B.1: Folder graph

70

Figure B.2: Ball coordinates

Figure B.3: Out of ranges positions

71

