Yu, H. S. & Houlsby, G. T. (1991). Geotechnique 41, No. 2, 173-183

Finite cavity expansion in dilatant soils: loading analysis

H. S. YU* and G. T. HOULSBY?

An analysis of the quasi-static expansion of a
cylindrical or spherical cavity in an infinite dilatant
elastic—plastic soil is presented. Closed form solu-

tions for the stress and displacement fields in the

soil during the expansion of the cavity are given.
The soil is modelled as linear elastic—perfectly

plastic, using a non-associated Mohr—Coulomb

yield criterion. An explicit solution for the
pressure—expansion relationship is obtained with no

restriction on the magnitude of the deformation. It

is found, in particular, that the radius of the cavity

increases indefinitely as the cavity pressure

approaches a finite limiting value. This limiting
pressure can be determined analytically with the
help of a single expansion of an infinite series. The
novelty of the new solution lies in the introduction
of dilation to the analysis of large strain expansion.
Examples of the implications of the new analysis in
geotechnical engineering are discussed.

KEYWORDS: analysis; elasticity; friction; plasticity;
strains ; stress analysis.

INTRODUCTION
Cavity expansion theory has several applications
in soil mechanics, principally in the areas of inter-
pretation of in situ tests (both the cone penetro-
meter and the pressuremeter) and also in the pre-
diction of the behaviour of piles. Many papers on
this topic have been published and the principal
ones are briefly reviewed here. The purpose of
this Paper is to present a large-strain analysis of
cavity expansion in dilatant soils. This problem
has important applications to the understanding
of In situ tests and piling in dense granular
materials. Large-strain analysis is essential if
some features of soil behaviour are to be
included, particularly the existence of a limit pres-
sure. The combination of large-strain theory with
the dilatant material model means that some of
the analysis is necessarily rather complex mathe-
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L’article presente une analyse de Pexpansion quasi-
statique d’une cavité cylindrique ou sphérique dans
un sol elastoplastique de dilatance infinie. Des sol-
utions de forme fermée sont présentées pour les
champs de contrainte et de déplacement dans le sol
au cours de ’expansion de la cavité. Le sol est mod-
elise comme élastique linéaire/parfaitement plas-
tique, en employant un critére de rendement
non-associe type Mohr—Coulomb. Une solution
explicite pour la relation pression/expansion est
obtenue sans restriction sur la valeur de la deéfor-
mation. On trouve plus particuliérement que le
rayon de la cavité augmente de facon indéfinie au
fur et 2 mesure que la pression de cavité s’approche
d’une valeur limite finie. Cette pression limite peut
se determiner par analyse a Paide d’une seule
expansion d’une série infinie. La nouveaute de la
nouvelle solution réside dans Pinclusion de la dila-
tation dans Panalyse des expansions de déeforma-
tion de valeur élevée. On examine des exemples des

“implications de la nouvelle analyse pour la con-

struction geotechnique.

matically. The end result, however, i1s a fairly
straightforward procedure which can be used to
construct the pressure—expansion relationship. A
slight simplification 1s achieved by using small-
strain theory in the elastically deforming zone, an
approximation which is justified for all realistic
so1l properties.

Previous work on cavity expansion

Cavity expansion theory was first developed for
application to metal indentation problems
(Bishop et al., 1945; Hill, 1950). The application
of cavity expansion theory to geotechnical prob-
lems came later (e.g. Gibson & Anderson, 1961)
and has been progressively refined over the past
two decades. The analysis of a cylindrical cavity
has been applied to practical problems such as
the interpretation of pressuremeter tests (Gibson
& Anderson, 1961; Palmer, 1972; Hughes et al.,
1977; Houlsby et al.,, 1986; Houlsby & Withers,
1988) allowing the pressure—expansion curve
obtained in a pressuremeter test to be interpreted
directly in terms of soil properties. A detailed
study of the application of cylindrical cavity
expansion in modelling the installation of driven
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piles was given by Randolph et al. (1979). The
effect of longitudinal shaft friction in a cylindrical
expanding cavity, which is important for applica-
tion to pile bearing capacity analysis, has been
considered by Sagaseta (1984). It should be noted
that all these analytical studies are either large-
strain analyses of incompressible soils or small-
strain analyses of dilatant soils. The large-strain
cavity expansion problem in dilatant soil has,
therefore, usually been solved using a finite
element method (Carter & Yeung, 1985; Yu &
Houlsby, 1990). However, it is accepted that
severe numerical difficulties arise when using the
finite element method to analyse constrained
problems (e.g. those involving incompressible or
dilatant solids). Hence care must be taken when
using the conventional finite element approach to
model elastic—plastic soil behaviour. A study of
the numerical difficulties in using the convention-
al finite element method to model elastic—plastic
deformation involving incompressibility and
dilatancy is given by Yu (1990).

As far as the spherical cavity problem is con-
cerned, some solutions have been obtained for
cavities in various types of materials. Hill (1950)

gave a general solution of the finite expansion of

the spherical cavity in a Tresca material. Later
Chadwick (1959) presented a more comprehensive
solution for the expansion of a spherical cavity in
an elastic—plastic material obeying the associated
Mohr—Coulomb flow rule. The closed form limit
pressure for the special case of a purely cohesive
incompressible material was also presented in the
same paper. Vesic (1972) extended the analysis to
compressible soils by allowing for the possibility
that the volumetric strain is not zero, and pre-
sented an approximate solution for limit pressure
for spherical cavity expansion. He applied this
solution to the determination of bearing capacity
factors for deep foundations.

More recently, Carter et al. (1986) presented an
analytical solution for limit pressures for cavity
expansion in a non-associated Mohr—Coulomb
material, by assuming that a steady state defor-
mation mode 1s approached at very large defor-
mations. It is believed that there are certain
unjustified approximations made in the sub-
sequent analysis and that the limit pressure solu-
tion presented in their paper can only be treated
as approximate. |

The important role of the elastic deformations
in the plastic zone for the cavity expansion
problem i1s emphasized by Bigoni & Laudiero
(1989), who solved the cavity expansion problem
partly analytically and partly using numerical
(Gaussian) integration. In their paper, a similar
approach to Chadwick’s was used and the non-
associated Mohr—Coulomb criterion was
adopted. In the cylindrical case they assumed that

the longitudinal normal stress was equal to the
mean of the other two principal stresses.

- However, this assumption means that the flow

rule which determines the plastic strains in the
axial direction 1s violated.

In this Paper, a unified analytical solution is
presented for the expansmn of both cylindrical
and spherlcal cavities in dilatant elastic—plastic
solls using the Mohr—-Coulomb yield criterion
with a non-associated flow rule. For the case of
cylindrical cavity expansion, the axial or vertical
stress 1s assumed to be the intermediate stress and
plane strain conditions in the axial direction are
assumed. An explicit expression for the pressure—
expansion relation is derived without any
restriction imposed on the magnitude of the
deformations. This is achieved by integrating the
governing equation with the aid of a series expan-
sion. Consequently, the limit cavity pressure when
the radius of the cavity approaches infinity can be
determined analytically with no additional
assumption being made about the mode of defor-
mation.

The importance of the new solution lies in the
introduction of dilatancy into a complete large-
strain analysis. Only approximate solutions to
this problem have been published previously.

SOIL PROPERTIES

The properties of the soil are defined by the
Young’s modulus E and Poisson’s ratio v, and the
cohesion, angle of friction and angle of dilation c,
¢ and Y. The initial in situ stress (assumed
1sotropic) 1s p,. The parameter m is used to indi-
cate cylindrical analysis (m =1) or spherical
analysis (m = 2).

Several functions of these variables recur
throughout the analysis and to abbreviate the
mathematics 1t 1s convenient to define the follow-
ing quantities, all of which are constant in any
given analysis.

E

G=m (1)

E
“Tve-m ?
- 2ccos ¢ 3)

" 1—sin ¢

- 1+sin ¢
a_l—sinqb @)
ﬁ=1+sint// (5)
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2(m + o2)G
(B + m)(1 — 2v)

[ =vH2 —m)](1 + m)d
- (1 + v)o — 1)

x |:aﬂ+m(1—2v)+2v— e + /) ] 9)

1 — v(2 — m)

PROBLEM DEFINITION

An unbounded three-dimensional medium of

dilatant soil contains a single cylindrical or spher-
ical cavity. Initially the radius of the cavity is a,
and a hydrostatic pressure p, acts throughout the
soill, which i1s assumed to be homogeneous. The
pressure 1nside the cavity is then increased to p
sufficiently slowly for dynamic effects to be negli-
gible. The major concern of this Paper is the dis-
tribution of stress and displacement in the soil as
the pressure increases from p, to some limiting
value.

The soil is modelled as an isotropic dilatant
elastic—perfectly plastic material. It behaves elasti-

cally and obeys Hooke’s law until the onset of

yielding which is determined by the Mohr-
Coulomb criterion. When the principal stress
components satisty the inequalities o; < 0, < 7,
the Mohr—Coulomb yield function takes the form

in which o and Y are defined by equations (4) and
(3) respectively. Tensile stresses and strains are
taken as positive.

The 1nitial position of a particle of soil is speci-
fied by spherical polar co-ordinates (r,, 0, w) for
a spherical cavity and by cylindrical polar co-
ordinates (r,, 0, z) for a cylindrical cavity. Plane
strain conditions in the z direction are assumed
for the cylindrical cavity. In addition, the vertical
stress o, 1s assumed to be the intermediate prin-
cipal stress and therefore there is no component

of plastic strain in the vertical direction. This is

because the plastic potential, which takes the
form fo, — o; = constant, does not depend on
the intermediate stress. These two assumptions
are sufficient to determine the vertical stress as
long as the other two stress components are
known. This can be achieved simply by calcu-
lating the increase in g, in both elastic and plastic

(6)

Zones from the equation
O.'z — v(6r T+ 06) (11)

where v denotes Poisson’s ratio. The implication
of these two assumptions will be discussed at
length later in this Paper.

Before any additional pressure is applied
within the cavity wall (¢t = 0), the cavity has a
radius a, and an internal pressure p,. At time ¢
the cavity pressure has been increased to p and
the cavity radius increased to a. A typical
material point now has moved to radius r from
ro. In the current configuration the total stress

must be in equilibrium. Because of symmetry this
requirement can be expressed as

Gp = 0, + -;— aair (12)
subject to the two boundary conditions:

o(a) = —p (13)

lm 6, = —p, (14)

r— oo

noting that the convention of tension positive is
used 1n this Paper.

The displacement, defined by

1s purely radial. As soils are characterized by the
strong 1nequality Y < E for both total stress
undrained analysis and effective stress drained
analysis, the use of small-strain theory for the

mitial phase of elastic deformation is justified

provided also that p, < E, because the strain to
the initiation of plasticity is then small. Following
Gibson & Anderson (1961) and Houlsby &
Withers (1988), a combination of a large-strain
analysis in the plastic region and a small-strain

solution in the elastic region is adopted in this
Paper.

ELASTIC RESPONSE

As the applied pressure p increases from p,, the
deformation of the soil at first is purely elastic.
Under conditions of radial symmetry the elastic
stress—strain relationship may be expressed as

(16)
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where the vertical strain for a cylindrical cavity is
assumed to be zero. The solution of equations
(16), (17) and (12) subject to the boundary condi-

tions (13) and (14) is well known and can easily be
shown to be

a m+ 1
6, = —po— (P - po>(;-) (18
p—7p a m+1 .
g = —Po + —— ("‘) (19)
m r
p— Po a m+1
- = 20
§ 2mG (r) ' (20

where G i1s the shear modulus. Since a compres-

sive negative notation is used, the yield equation
takes the form:

As the pressure p increases further, initial yielding
starts at the cavity wall when the condition

=m[Y+(°‘—1)Po]+
m + o

P = P, Po

= 2mGo + Po (22)

1s satisfied.

We shall now discuss the consistency of the
stress and strain assumptions in the axial direc-
tion used for the expansion of a cylindrical cavity.
The assumption of plane strain conditions and
the intermediacy of o, results in two relationships
between stresses in the plastic zone. They are
defined by equation (11) and equation (21). Before
the soill becomes plasticc the radial stress
decreases while the hoop stress increases and the
vertical stress remains unchanged. Once the soil
deforms plastically all three stresses start to
decrease. The relative magnitude of the decrease
In each stress can easily be derived from equation
(11) and equation (21) thus

: =—)2=20 (23)

(24)

From equations (23) and (24) we can conclude
that a sufficient condition for o, to remain as the
intermediate stress is

Z

WV
|

(25)

which can be simplified further to

2v > 1 —sin ¢ (26)

The condition defined by equation (26) breaks
down only when both the Poisson’s ratio and the
friction angle of a soil are small. Even if this con-
dition 1s violated, then the assumption that the
axial stress remains intermediate may still be
valid throughout the analysis since even though
¢, 1s approaching o, it may not reach it before the
end of the analysis. The most stringent test of this
1s in the calculation of limit pressures. For
example, in an analysis where G/p, = 100,
¢ =30° and Yy =0° it is found that the axial
stress remains intermediate provided that
v> 0-189, whereas the strict criterion above
would require v > 0-25. The assumption about
the axial stress will therefore be satisfied for most
realistic values of soil parameters.

ELASTIC-PLASTIC STRESS ANALYSIS

After 1nitial yielding at the cavity wall a plastic
zone within the region a <r < b forms around
the inner wall of the cavity with the increase of

the cavity pressure p. We now consider the plastic
and elastic regions of the soil separately.

The plastic regiona <r <b

The stress components which satisfy the equi-
librium equation (12) and yield condition (21) can
be found to be

Y
0, =——+ Arl—m@=1Je (27)
Y A,
Oy = — + ; pl—m(@—1))/a (28)

where A is a constant of integration.

T he elastic regionr > b

The stress components in the elastic zone may

be obtained from equations (12)«14), (16) and
(17) thus

6, = —po— Br "™ (29)
Gg = —po + (1/m)Br~01+™ (30)

where B 1s a second constant. The continuity of

stress components at the elastic—plastic interface
can be used to determine the constants A and B
in terms of the interface radius b

- (L +malY + (x — 1)p,]

A = pim@—1))/x
(¢ — 1)m + a)
—_— M 20GhIma—1))ja (31)
o — 1
_ mlY + (& — 1)py]

B

b'*™ = 2méGb1*™ (32)
m + o
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Combining equations (13) and (27) allows the
elastic—plastic interface radius to be expressed in
terms of the cavity pressure ratio R and the
current cavity radius a

(b/a) — R%/lm(a—1)] (33)
where the cavity pressure ratio R 1is defined by

R — (m+ o)[Y + (ax — 1)p}
all + m)[Y + (¢ — 1)po]

The stresses are now established in terms of a
single unknown b. In the next section the dis-
placements are examined, allowing determination
of b and therefore of the complete pressure—
expansion relationship.

(34)

ELASTIC-PLASTIC DISPLACEMENT
ANALYSIS

The results obtained above cannot be used to
calculate the distribution of stress until the dis-
placement field 1s known. On substituting from
equations (29), (30) and (32) into equation (17) the
displacement 1n the elastic zone r > b can be
shown to be

U = 6(2)1 +mr : (35)
r

where o0 1s given by equation (7). The determi-
nation of the displacement field in the plastic
zone requires the use of a plastic flow rule which
indicates the relative magnitude of plastic strains
in different directions. It is assumed that while
yield 1s occurring, the total strain is decomposed
Into additive elastic and plastic components.
Indices e and p are used to distinguish the elastic
and plastic components of the total strains. Fol-
lowing Davis (1969), the soil is assumed to dilate
plastically at a constant rate. This non-associated
flow rule with the Mohr—Coulomb yield criterion
1s well established for modelling dilatant soil
behaviour. Clearly the use of a fixed angle of dila-
tion 1s a simplification and it would be preferable
to consider the angles of friction and dilation as
functions of density and pressure. This would,
however, result 1n even more complex mathe-
matics. The constant angle of dilation is at least a
step forward from previous large-strain analyses
in which zero dilation was assumed. For the
loading phase of the cavity expansion the non-
associated flow rule may be expressed as

(€/€5) = —(m/p) (36)

where £ 1s defined in equation (5). If f = a then
the flow rule for the soil is associated.

Substituting equations (16) and (17) into the
plastic flow rule defined by equation (36) results

1n

mpyv _
+ I:M(l — 2v) + 2v — m]de} (37)

where M 1s defined by equation (2). The distribu-
tions of stress and strain i1n the soil at the initi-

ation of plastic yield are obtained from equations
(16)20) by putting p = p,. The integral of equa-
tion (37) subject to these conditions is found to be

fmy
+ [m(l — 2v) + 2v — m]de

mv(l + f)
+ I:ﬂ + m(1 — 2v) + 2v — 1_—--;;(2—-_711—)-]170}

(38)

In order to account for effects of large strain in

the plastic zone the logarithmic strain is adopted,
namely

e, = In(dr/dr,) (39)
go = In(r/ry) (40)

Substituting equations (39) and (40), and (27), (28)
and (31) into equation (38) leads to

m/f [m(a—1)]/a
(&) )
ro/ drg r

where n and ¢ are defined by equations (8) and (9)
respectively.

By means of the transformation
p = (b/ryme= Dl (42)
( = (ro/b)* ™" (43)

and use of equation (35), equation (41) can be
integrated over the interval [b, r], leading to

.Z_ (1 — 5)B+mIB _ (1, /b)#+mIB)

(b/r)im(a— 1)]/a N
= J exp(Cp)p ' dp (44)
1

By putting r, =a,, r =a and making use of
equation (33), we have

g {(1 _ 5)(3 +m)/B __ R~ r(ao /a)(ﬂ + m)/ﬂ}

= J; exp(Sp)p 7" Tdp  (45)
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For spherical cavity expansion in the associ-
ated Mohr—Coulomb material (1.e. m =2 and

p = o) equation (45) reduces to the solution given
by Chadwick (1959).

With the aid of the series expansion

(46)

the following explicit expression for the pressure—
expansion relationship 1s obtained

B/(B+m)

} (47)

a _ {______L______
ap (1 — 88+ — (y/n)AL(R, &)

where
Ax, y)= ) A (43)
n=0
in which
Y In x if n=y
41— n!
n yn n— |
———— [x"7Y — 1] otherwise
nl(n — v)

and the first condition will only rarely be encoun-
tered since y 1s unlikely to take an integer value.

Having noted that £ 1s a small value with the
same order as o, we can easily prove that the
series defined by equation (48) converges very
rapidly for all values of a and S of the soil. In
general, the first few terms 1n the series may be
used to give satisfactory results.

All the necessary information 1s now available
to construct the complete pressure—expansion
curve, but 1t 1s not expressed in terms of a single
equation. It 1s worth summarizing the procedure
to be used to construct the curve:

(@) choose input parameters E, v, ¢, ¢, ¥, p, and
m

(b) calculate the derived parameters G, M, a, f,
Y, v, 0,nand ¢ from equations (1) to (9)

(c) for pressure p less than the pressure p,
required to initiate plasticity, equation (22),
calculate the cavity radius from the small-

strain elastic expression (a — agy)/ap, = (p

— Do)/ 2mG

(d) for a given value of p (greater than p, and less
than the limit pressure p_ discussed below)
calculate R from equation (34)

(e) evaluate sufficient terms in the infinite series

in equation (48) to obtain an accurate value of

A;—only a few terms will usually be suffi-
cient "

(f) evaluate a/a, from equation (47) and if neces-
sary the pressuremeter displacement u = a
— a, or the hoop strain at the cavity surface
e = In(a/a,).

The procedure from (d) to (f) can be repeated
to construct the complete cavity pressure-
expansion relationship.

It 1s worth noting that at the transition from
elastic to plastic behaviour one can calculate from
the plastic expressions that R=1 and A, =0 so
that p = p, + 2mGo and a/a, = 1/(1 — 9). Only if
o0 1s small (1.e. if small-strain theory is appropriate
to the elastic region) does this reduce to the same
solution as for elasticity. The following form is a
convenient alternative expression for ¢

5 _ c COsS ¢ + p, Sin ¢
~ G[(1 + m) + (1 — m) sin @]

For typical soil parameters 0 1s unlikely to take a
value larger than about 1/200.

(49)

SPECIAL CASES
Limit pressure

When a cavity i1s expanded in a plastically
deforming material the cavity pressure does not
increase indefinitely, but a limit pressure is
approached. By putting (a/a,) - c© in equation
(47), the limit cavity pressure p_ may be obtained
by finding R __ from

ARy, &) = (n/yX1 — o)¥*mIF (50)

where

© ol + m[Y + (x — 1)p,]

It was found that the limit pressure depends
strongly on both the angle of friction and the
angle of dilation, as well as the stiffness properties
of the soil. A discussion of the variation of limit
pressure and some i1mplications in geotechnical
engineering is given in a later section.

(51)

Frictionless case

The importance of the solution above is for its
application to soils with friction and dilation. The
above solution does not reduce to the solution for
a frictionless soill when ¢ = 0. This is because in
this case oo = 1 and the terms in (& — 1) which fre-
quently appear 1n the denominator make the
expressions indeterminate. For ¢ =0, ¥ = 0 and

v = (-5 the plastic solution is (Gibson & Ander-
son, 1961) '

2 4+ m
3

P = po + c{l + In(G/c)

+In[1 — (ap/a)"* ']} (52)

Since the application of the ¢ = 0 solution is to
undrained analysis, 1t i1s unlikely that a solution
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with different values of Yy and v will be of practi-
cal interest. It can be confirmed that at very small
¢ values the solution presented in this Paper

approaches numerically the values given by equa-
tion (52).

Small strain case

Large-strain theory 1s somewhat complex and,
where possible, small-strain theory is used to
model cavity expansion. In small-strain theory
the fact that the displacements modify the posi-
tion of material points 1s ignored, so the theory is
only valid for small expansions. In particular, no
prediction of limit pressure 1s possible using
small-strain theory. It can be shown that if the
small-strain assumption 1s made it is possible to
obtain the following closed form expression for
displacement in the plastic zone

s e
u_|:5+m(oc+ﬁ)+aﬁ(l—-m)

|2+

- B+m|\r p+ m
aﬂf b [m(a— 1)])/a
- m(oc + ) + af(1 — m) (;) r (39)

Noting that the special case where r = a, gives
the displacement at the pressuremeter surface,
this equation can be used instead of equation (47),
and 1s simpler because it is not necessary to
evaluate the infinite series.

Equation (53) 1s only applicable to the situation
where the maximum value of the cavity pressure
1s sufficiently small for the squares and higher
powers of strains included in the large-strain defi-
nition (equations (39){(40)) to be negligible. This
small-strain solution i1s the same as that derived
by Carter et al. (1986). When f = « and m = 2 the
solution reduces to the case for spherical expan-
sion given by Chadwick (1959).

Neglecting elastic strain in plastic zone

A common assumption which considerably
simplifies the analysis of plastic cavity expansion
(see for example Hughes et al., 1977) is to ignore
the contribution of elastic strain within the plasti-
cally deforming region. While this may at first
seem to be a reasonable assumption, since the
clastic strains are considerably smaller than the
plastic strains, it appears that it has a significant
eflect on the predicted results.

Neglecting the elastic deformation in the plastic
zone results 1n the relatively simple expression for
R from which the large-strain pressure—expansion

(p + ¢ cot ¢)/(pg + € cot ¢)

relationship can be derived

R — I: 1 — (ao/a)(ﬂ+m)/ﬂ :Ilfw

1 — (1 _ 5)(ﬁ+m)/ﬂ (54)

Note that this again avoids the need to evaluate
the infinite series. A comparison between the

approximate solution obtained from equation
(54) and the exact solution defined by equation
(47) clearly i1ndicates that the effects of elastic
strain in the plastic zone are more important for
solls with a high angle of friction, high angle of
dilation and low elastic stiffness. This is exactly
the trend that would be expected. By putting
a,Ja=0 and f=1 and assuming o is small,

equation (54) reduces to the limit solution derived
by Vesic (1972).

RESULTS

A selection of results is now presented in order
to indicate the effects of the various parameters
on the behaviour of cavity expansion. The
pressure—expansion relationship, derived from the
procedure described above is plotted in Fig. 1 for
a material with a Poisson’s ratio v of 0:3, a fric-

tion angle ¢ of 30° and a stiffness index E/{p,

+ [Y/(e« — 1)]} of 260. Three curves are shown
for Y values of 0°, 15° and 30°. The expansion
pressure 1s expressed non-dimensionally as (p + ¢
cot ¢)/(po + ¢ cot ¢). The increasing stiffness of
the response with increasing dilatancy is clearly
shown. For the range of expansion ratios a/a,
shown up to 1-2, a small-strain theory would give
similar results, but at larger expansion ratios a
large-strain theory 1is necessary. The same
analyses are shown continuing to an expansion
ratio of 10 in Fig. 2, in which the limit pressure
which 1s approached asymptotically is clearly
shown. The limit pressure is seen to depend
strongly on the angle of dilation, as higher angles
of dilation result in a more extensive plastically

1 102 1-04 1-06 1-08 1-1 1-12 1-14 1-16 1-18 12
alag

Fig. 1. Typical pressure—expansion curves for cylindrical
cavities—initial section
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Fig. 2. Typical pressure—expansion curves for cylindrical
cavities

deforming zone. Figs 3 and 4 show the equivalent
results for spherical cavity expansion. The trend
of the results 1s exactly as for cylindrical expan-
sion, but the response is much stiffer and the limit
pressures correspondingly higher.

20

1 102 1-04 1-06 1-08 1-1 112 114 1-16 1-18 1-2
alag

Fig. 3. Typical pressure—expansion curves for spherical
cavities—initial section
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Fig. 4. Typical pressure—expansion curves for spherical
cavities -

The stresses calculated around an expanding
cylindrical cavity, as defined by equations (27)-
(32) at a cavity expansion ratio of 10 for a
material with the properties defined above,
Y =0°and Y = 0-5p, are presented in Fig. 5. The
variable on the horizontal axis is a/r, so that the
left side of the figure shows the stresses remote
from the cavity and the right side shows the
stresses close to the cavity. It can be seen that
close to the cavity the radial stress is largest, the
hoop stress smallest and the axial stress interme-
diate. Similar results are shown for a spherical
cavity (with a ¥ of 30°) in Fig. 6. In this case the
rate of increase of the radial stress as the cavity is
approached is even more striking.

Limit pressure solutions

One of the most important results from this
Paper 1s the solution for limit pressures in dilat-
ant soils. The limit pressure in spherical cavity
expansion 1s often applied to estimate the end
bearing capacity of piles or the tip resistance in
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Fig. S. Stress distribution around cylindrical cavity,
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Fig. 6. Stress distribution around a spherical cavity,
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the cone penetrometer test. While this gives rea-
sonable values for undrained problems (i.e. the
frictionless case) it has been found that spherical
limit pressures calculated wusing previously
published solutions severely underestimate end
bearing resistance in frictional materials.

In Fig. 7 the variation of limit pressure for both
cylindrical and spherical expansion with friction
angle 1s shown. The following values were used:
¢c=0,v=02and G/p, = 500. For each case four
curves are presented. Curves (a), (b) and (c) are for
Yy = 0° 10° and 20° respectively, while curve (d)
shows a realistic variation for a single soil with
., = 33° and ¢ = ¢_, + 0-8¢. It can be seen that
the inclusion of dilation in the analysis has a very
important effect, increasing the limit pressures
considerably. For spherical cavity expansion the
lmit pressure for the realistic soil varies from
about 31p, in a very loose state (¢ = 33°) to
about 353p, in a very dense state (¢ = 49°). In
the latter case, if dilation were to be ignored, then
the limit pressure would be only 58p, .

The other primary variable which controls the

limit pressure is the ratio of stiffness to strength of

the soil, closely related to the inverse of the factor
0. In Fig. 8 the variation of limit pressure with
G/p, 1s presented for the case ¢ = 40°, and
v = 0-2. Values of ¥ of 0°, 10° and 20° are con-
sidered.

In analyses which neglect the elastic strains in
the plastically deforming region then the only
elastic property which influences the solution is
the shear modulus G, but when this simplification
1s not made then the Poisson’s ratio does influ-
ence the limit pressure. As shown in Fig. 9, the
limit pressure does depend on the Poisson’s ratio,
particularly for the case of spherical expansion.

1000

—&8— Cylindrical
—-—+—=—Spherical

30 40 o0
@

Fig. 7. Variation of limit pressure with angle of friction,
G/po =200, v=02: (a) y=0° (b) v = 10° (c)
\p==:Zﬂp,(d)(b==ﬁ33°-ﬁ‘ﬂihb

1000

—&8— C(Cylindrical
—=+=— Spherical A (C)

100 1000
G/po

Fig. 8. Variation of limit pressure with stiffness, v = 0-2,
=40 (a) Yy =0°(b) ¥y =10° (c) y = 20°

Application to piling engineering

The fact that the inclusion of dilation signifi-
cantly increases the limit pressure means that the
spherical limit pressure can now realistically be
applied to the estimation of pile end bearing
capacity. Calculations of spherical limit pressure
have been made for a typical quartz sand using
the following estimates of soil properties.

The angles of friction and dilation are esti-
mated from the correlations published by Bolton
(1986): ¢, = 33° ¢ = ¢, + 3[Ip(10 — Inp’) — 1]
where I, is the relative density and p’ is the mean
effective stress in kPa at failure. The dilation
angle 1s given by ¢ = ¢_, + 0-8y. The stiffness
properties are G/p, = 1000 and v = 0-2. Fig. 10
shows the predicted variation of spherical limit

1000

-~ —&— C(Cylindrical
- —=—+-— Spherical

10,5 01 02 03 04 05

Fig. 9. Variation of limit pressure with Poisson’s ratio,

Glpe=200 ¢=40° () ¥=0° (b) ¥=10° (¢
v =20°
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Fig. 10. End bearing capacity of piles calculated by limit
pressure method, compared to chart given by Fleming et

al. (1985), b, = 33°

pressure with relative density and vertical effec-
tive stress (taken as p, 1n this analysis since 1nitial
stresses are assumed 1sotropic). The p’ value for
Bolton’s correlation 1s estimated iteratively as
P = ./(PoP.) The spherical limit pressure may
be compared to the results presented by Fleming
et al. (1985) 1n their design chart for the end
bearing capacity of piles. The latter figures were
derived using estimates of ¢ and Berezantzev’s
approximate bearing capacity factors for buried
circular footings. The comparison shows that the
spherical limit pressure 1s comparable to accepted
end bearing capacity values in sands. It 1s consis-
tently lower than the values presented by Fleming
et al. (1985) by a factor of about 0-8. This differ-
ence depends to a large extent on the specific
choice of the G/p, value.

Future developments
The analysis described in this Paper also serves

as the starting point for an analysis of the

unloading of a cylindrical or spherical cavity after
an initial loading phase. This is treated in a com-
panion paper (Yu & Houlsby, 1991). The analysis
of unloading is receiving increased attention as it
1s appreciated that additional information can be
obtained from pressuremeter tests by examining
" the unloading as well as the loading phase of the
test.

An obvious limitation of the analysis presented
here 1s that the friction and dilation angles are
assumed constant. As a dense soil dilates it
approaches the critical state, the angle of dilation
gradually approaches zero and the angle of fric-

tion approaches its critical state value. The angles
of friction and dilation can be estimated with
some accuracy 1if the stress level and the current
density are known. It would be more realistic to
model cavity expansion in dilatant soils using
variable angles of dilation and friction, but the
complexity of the mathematics is likely to become
so great as to render closed form solutions
impractical.

The most efficient way to progress will be to
use numerical analysis for such cases, since the
implementation of variable properties in, for
instance, a finite element program is straightfor-
ward. A new approach for the accurate analysis
of this type of problem has recently been devel-
oped (Yu & Houlsby, 1990). In this case the solu-
tions obtained in this Paper play an important
role in the calibration of the numerical analysis to
verily that 1t 1s giving reliable solutions.

CONCLUSION
A unified analytical solution 1s presented for

the stress and displacement fields for the expan-
sion of both cylindrical and spherical cavities in
dilatant soils. The approach using the direct inte-
gration of strain rate and the logarithmic strain
definition has been used so that large-strain
effects can be taken into account. The dilatancy
of the soil 1s accounted for by adopting the
Mohr—Coulomb yield criterion with a non-
associated plastic flow rule. An explicit expression
for the pressure—expansion relationship has been
obtained for a displacement with arbitrary mag-
nitude. The analytical limit pressure can then be
determined as a special case when the cavity
radius approaches infinity. Finally, some selected
results are presented to highlight the capability of
the proposed solutions.
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NOTATION

a radius of the cavity during loading

a, radius of the cavity at initial unloaded state
A, B constants of integration

A} general term of infinite series
b outer radius of the plastic zone during
loading

cohesion of the soil

Young’s modulus

shear modulus

factor identifying cavity type

S Qe
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integer from zero to infinity
cavity pressure
po 1mtal cavity pressure and in-situ hydro-
static stress
P, limit cavity pressure
p, cavity pressure causing first yielding
d, pile end bearing capacity
r radius of a material point during loading
ro radius of material point at initial state
R cavity pressure ratio
R, limit cavity pressure ratio
u radial displacement during loading mea-
sured from initial state
x, ¥ auxiliary variables
Y function of cohesion and friction angle
z axial direction for cylindrical cavity
a function of friction angle
p function of dilation angle
Y
0

M function of material properties
n
P

function of material properties
function of material properties
gy Strains measured from initial state
n function of material properties
A, 1nfinite power series
v Poisson’s ratio
¢ function of material properties
p, ¢ auxiliary variables
0.,0,,0, Slresses
¢ friction angle
Y dilation angle
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DISCUSSION

Finite cavity expansion in dilatant soils: loading analysis

H. 5. YU and G. T. HOULSBY (1991). Géotechnique 41, No. 2, 173—183

M. Manassero, Ingegneria Geotecnica, Torino and
T'echnical University of Torino
The Paper presents innovative aspects of com-

parison of existing solutions to the problem of the

expansion of cavities in soil. One of the most
important features of the proposed approach

seems to be the possibility of taking into account
large strains and thus obtaining the complete

stress—strain curve of the idealized material up to
the limit cavity pressure p_ at infinite expansion.

Using the closed form solution of the Authors,
it 1s Interesting to compare the cylindrical cavity
expansion stress—strain curve of the idealized soil
with the experimental one obtained from self-
boring pressuremeter tests (SBPT) carried out
both in well-known natural sandy deposits and in
a calibration chamber. The comparison can be
carried out using the following steps.

(@) Plot the experimental curve from SBPTs
using an appropriate coordinate AV/V for
cav1ty strain, to allow complete and easy com-
parison with the theoretical functions from
zero to infinite cavity expansion. Current
volumetric cavity strain is given by

AVIV =V — V)V

where V, is 1nitial cavity volume and V is the
current volume . of the expanding cavity. For

the cavity expansion coordinate used by the
Authors

AV/V =1 — (ay/a)? (55)

(b) Extrapolate the SBPT curve to infinite cavity
expansion using the method proposed by
Ghionna, Jamiolkowski & Manassero (1990).

(c) Assess the plane strain peak friction angle ?,
of sandy material from cone penetration tests
(CPT) (Jamiolkowski, Ghionna, Lancellotta
& Pasqualini, 1988) and SBPTs (Manassero,
1989) for natural deposits and from labor-
atory triaxial tests (Baldi, Bellotti, Crippa,
Fretti, Ghionna, Jamiolkowski, Morabito,
Ostricati & Pasqualini, 1985) for calibration
chamber specimens. Lade & Duncan’s (1975)
tormula for calculating ¢, from the peak fric-

tion angle in axially symmetric strain condi-
tions ¢, gives

¢,” =15¢,° —17° (56)

(d) Assess the constant volume friction angle
(9., = 34°) from ring shear tests on reconsti-
tuted samples (Baldi et al, 1985; Carriglio,
1989).

(e) Assess the dilatancy angle ¥ from ¢, and ¢,
using Rowe’s (1972) formula

1 + sin ¢, 1l+sing@., 1 +siny (57)
l—sinqbp_l—sinqbcvl—-—sintp

which, in the range of interest, gives about the
same results as Bolton’s (1986) formula used
by the Authors.

(f) Adopt a Poisson’s ratio v of 0-2.

(9) Assess shear modulus G imposing a limit
cavity pressure from the Authors’ method
Poyu €qual to the limit cavity pressure

obtained using the extrapolation procedure of
Ghionna et al., p_ 5u .-

The SBPT's were carried out

(i) 1n a calibration chamber test with a medium
dense (relative density 65%) Ticino sand
specimen (Ticino sand has been characterized
by Baldi et al. (1985))

(i) 1n a natural sandy deposit of the Po river with
an estimated relative density of about 50-
60% (Po river sand has been characterized by

Bruzzi, Ghionna, Jamiolkowski, Lancellotta
& Manfredini (1986)).

The first series of comparisons was performed
using peak strength parameters and related
values of G assessed by imposing p_ vy = Pucim-
The second series used critical state strength
parameters ¢, = ¢, (therefore Yy = 0) and related
values of G from PooyH = P GIM -

Two of the results obtained are shown in Fig. 11.
Using the peak strength parameter for the ideal-
1zed elastic perfectly plastic sand behaviour and
given the G value to reach p_ gy, there is a poor
agreement with the experimental SBPT curve.
Using the AV/V cavity strain coordinate, the con-
tinuously dilatant behaviour of the Authors’
model gives a rather unusual shape to the last
part of the curves in Figs 11(a) and 11(d) before
reaching p_ . This is probably due to the physical
impossibility of the material being able to dilate
to an infinite value. Good agreement is shown
between the theoretical and experimental curves
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Fig. 11. Theoretical versus experimental cylindrical cavity expansion curves: (a), (b), (c) calibration chamber tests in

Ticino sand; (d), (e), (f) in situ tests in Po river sand
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using, for the elasto-plastic sand model, the criti-
cal state strength parameters ¢, = ¢, and Yy =0
and G from p_yy = P.cm- With these param-
eters the Authors’ model and extrapolation pro-
.cedure of Ghionna et al. (1990) give practically
the same stress—strain relationships when the
sandy element at the cavity wall reaches critical
state conditions (Figs 11(b) and 11(e)).

- These comments may be confirmed by plotting
the theoretical and experimental curves using the
strain coordinates of the Authors (Figs 11(c) and
11(f)).

The values of G/G, are plotted against relative
density in Fig. 12 for a number of calibration
chamber tests in Ticino sand, G, being the initial
tangent shear modulus from resonant column
tests (the reference deformability parameter for a
given relative density and octahedral normal
stress g,) and G the shear modulus from p_y =
P.cu Using either peak or critical state strength
parameters. Figure 12 shows that, using peak
strength parameters, G/G, approaches a more or
less constant value independent of the relative
density of the calibration chamber specimen.
However, as expected considering the unique
value of ¢, = ¢, = 34°, the ratio G/G,, increases
with increasing relative density.

Figure 12 can be useful in the assessment of
deformability parameters of elastic perfectly
plastic models when the limit pressure of cylin-
drical cavity expansion in cohesionless soils is to
be estimated using the Authors’ method.

Considering the limit pressure of cavities from
available closed form solutions, it is interesting to
compare the results of the Authors’ and Carter,
Booker & Yeung’s (1986) procedures. Using the
same strength and deformation parameters, in the

0-25

0-20
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range of interest for sandy soils, the solutions of
the Author’s and Carter et al. give very close
results with a maximum variation of 1-2%.

A direct comparison of the Vésic (1972) solu-
tion with the other two procedures is not possible
because of different input parameters. Vésic’s
formula needs constant volumetric deformation
in the plastic zone ¢, instead of the dilation
angle y used by the Authors’ and Carter et al.
With regard to the actual behaviour of sands
(Lade, 1972; Schofield & Wroth, 1968), in partic-
ular at large deformations, it seems more appro-
priate to consider constant volumetric strains
rather than a constant angle of dilation in the
assessment of limit cavity pressures.

As far as the range of shear strain smaller than
10% 1s concerned, taking as an example the
SBPT 1n Po river sand, the best fit of Fig. 11(e)
(9, = ¢, = 34° and G = 57 500 kPa) significantly
underpredicts cavity strain below AV/V = 10%
(1.e. shear strain at the cavity wall of about 10%).
A much better fit can be obtained using peak
strength and G = 19 500 kPa, as shown in Fig. 13.

Due to SBPT equipment reliability at shear
strain lower than 10~ '%, an effective comparison
between experimental and theoretical results in
the very small strain range is practically impossi-
ble.

It therefore seems that with a simple elastic
perfectly plastic model it is very difficult to fit the
complete real stress—strain behaviour of sandy
soils satisfactorily (Fig. 14) and simple boundary
problems like cylindrical cavity expansion. An
alternative solution, without increasing the com-
plexity of the mathematics or using numerical
procedures, would be to split up the problem by
referring to restricted ranges of the actual stress—

0-05

40 o0 60 70 80 90 100

Relative density: %

(a)

strength parameters

25
/
/
20 Y
05 oo
0
40 50 60 70 80 90 100

Relative density: %

(b)

Fig. 12. Shear moduli ratio plotted against relative density (Ticino sand): (a) peak strength parameters: (b) critical state
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Fig. 13. Theoretical and experimental cylindrical cavity
expansion curves at small strains

strain behaviour and to adopt the appropriate
parameters, possibly those from back-analyses of
experimental results.

Authors’ reply
The Authors’ analysis is applicable only to the
case of an infinitely distant outer boundary, and
therefore should be used only with great caution
for the analysis of calibration chamber results.
The influence of the proximity of the chamber
boundary can be important, especially in cases
where the zone of plastically deforming soil

extends as far as the boundary (Schnaid &
Houlsby, 1991).

Elasto-plastic models

Actual behéviour

£

Fig. 14. Actual behaviour of sands and possible elastic-
perfectly plastic models

Since the self-boring pressuremeter imposes
only small strain, the extrapolation to obtain a
limit pressure using, for instance, the procedure of
Ghionna et al. (1990) is rather unreliable. The
decision to match limit pressures from the.
Ghionna et al. and the Authors’ analyses does not
therefore seem to be justifiable. The matching was
used to determine the appropriate shear modulus,
which can be determined much better from:
unload-reload loops.

The result of matching the limit pressures in
this way 1s that in, for instance, Fig. 11(a) the
shear modulus used in conjunction with the peak
friction angle is only one tenth of the value of
that used in conjunction with the critical state
value. If a reasonable estimate of the shear
modulus were to be made from unload-reload
loops, then a more rational comparison of differ-
ent friction angles could be made using the same
modulus 1n each case (but implying different Iimit
pressures).

Manassero chooses the strain axis AV/V for
convenience, because at large strain this measure
approaches unity. This has the effect of compres-
sing the higher values of the more usual stress—
strain curve plotted in terms of linear strain. The
unusual shape of the curves predicted by the
Author i1s due entirely to Manassero’s choice of
an unusual strain measure, and is unrelated to the
dilation implied by the model. This is shown, for
instance, by the curves in Fig. 11(c).

Bearing 1n mind these concerns about match-
ing of the limit pressure, it is not surprising that
when using peak strength values a rather low
G/G, value is determined (Fig. 12(a)), nor that
much higher (and inconsistent) values are needed
in conjunction with critical state strengths (Fig.
12(b)). As the density is increased, the critical state
strength becomes an increasingly bad underesti-
mate of the relevant strength, so that to achieve
the same limit pressure an increasingly unrealistic
overestimate of G/G, must be used. For dense
sands this implies an unacceptable value of G/G,
greater than 1-0, but this is due entirely to the
choice of matching the limit pressures from two
analyses.

It 1s reassuring to see (Fig. 13) that a realistic
choice of shear modulus and strength parameters

results in a very close fitting of the observed curve
by the Authors’ analysis.

Corrigendum

In the Paper there is an inconsistency between
the algebra and Figs 7-10. The algebra is correct
and the figures are in error. Corrected versions of
Figs 7-10 are presented here. The result is a slight
reduction of limit pressure in cases where ¥ # 0.
The consequential changes to the text are
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Fig. 7. Variation of limit pressure with angle of friction,
Glpy =500, v=02: (a) ¥ =0% (b) ¥=10° (c)
V= 20°(d) & = 33° + 0-8y
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Spherical

1000

Fig. 8. Variation of limit pressure with stiffness, v = 0-2,
¢ =40°:(a) d = 0°;(b) & = 10° (c) = 20°

(a) referring to Fig. 7, the limit pressure is 184 p,
at ¢ = 49°

(b) referring to Fig. 10, the cavity expansion solu-
tion 1s lower than the Fleming et al. (1985)
solution by a factor of between 0-8 for loose
sand and 0-4 for dense sand; these figures still
depend on the choice of G/p, value.
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