/‘*@Bf\» POLITECNICO 4 GRENOBLE

@ﬁ%{ DI TORINO ! !}l P Ph Bl ma E P F L
- (meca

Microelectronics

5
e

Les deux infinis

QUENTIN MADARIAGA

NANOTECH
2022

OMEGA MICROELECTRONICS - RTE DE SACLAY, 91120 PALAISEAU

Master Thesis Report

UNDER THE SUPERVISION OF :
FREDERIC DULUCQ , OMEGA MICROELECTRONICS - fdulucq@in2p3.fr
KATELL MORIN-ALLORY, GRENOBLE-INP katell.morin-allory @ grenoble-inp.fr

Confidentiality : NO

Ecole nationale

supérieure de physique,
électronique, matériaux
Phelma

Bat. Grenoble INP - Minatec

3 Parvis Louis Néel - CS 50257
F-38016 Grenoble Cedex 01

Tél +33 (0)4 56 52 91 00
Fax +33 (0)4 56 52 91 03

http://phelma.grenoble-inp.fr

GLOSSARY

ALU Arithmetic Logic Unit.

ASIC Application-Specific Integrated Circuit. As the name suggests,ASICs are destined to
execute the task they have been designed for, ranging from simple logic function to very
complex processors. Large ASICs are often called SoC.

CISC Complex Instruction Set Computer.

Corner A Corner is defined as a set of libraries characterized for process, voltage, and variations.
Corners are not dependent on functionnal settings; they are meant to capture variations in
manufacturing process, along with expected variations in the voltage and temperature of

environment in which the chip will operate.
CPI Cycles Per Instruction.

CPU Central Processing Unit.

FPGA Field Programmable Gate Array. Opposite concept of an ASIC. FPGAs are fully
programmable, which means anything can be emulated by the FPGA, even processors,
within the limits of the available hardware one the FPGA chip..

GAFA Google Facebook Apple Facebook(Meta) and Amazon.

GPI General Purpose Input. Term used in this paper to differentiate those one way input from
GPIOs.

GPIO General Purpose Input/Output. A GPIO is an uncommitted digital signal pin on an
integrated circuit or electronic circuit board which may be used as an input or output, or

both, and is controllable by software..

GPO General Purpose Output. Same as GPIs.

IRQ Interruption ReQuest. A hardware interrupt on a PC: used to signal the CPU that a

peripheral event has started or terminated..

CHAPTER 0 — GLOSSARY

ISA Instruction Set Architecture. In computer science, an instruction set architecture, also called
computer architecture, is an abstract model of a computer. In general, an ISA defines the

supported instructions, data types, registers of such implementation.

LSB Least Significant Bit.

MMMC Multi Mode Multi Corner. See Corner et Mode definitions.

Mode A mode is defined by a set of clocks, suppply voltages, timing constraints, and libraries.
It can also have annotation data, such as SDF or parasitics files. Many chip have multiple

modes such as functional modes, test mode, sleep mode, jtag mode etc..

MSB Most Significant Bit.

PnR Place and Route.

RISC Reduced Instruction Set Computer.

RTL Register Transfer Level : it is an abstraction for defining the digital portions of a design.
When referring to a code (RTL code), it refers to the behavioral code, often written in
VHDL, Verilog or SystemVerilog.

SEE Single Effect Event.

SoC System on Chip.

Verilog An Hardware description language, such as VHDL or System Verilog.

VHDL VHSIC Hardware Description Language.

Contents

Introduction

1.1 Omega Microelectronics

1.2 The RISC-V specification
1.2.1 What is RISC-V
1.2.2 Why using RISC-V

1.3 Aim of the Internship

Theorical background

2.1 Definitions
2.1.1 The CPU
2.1.2 The ISA
RISC-V specification
2.2.1 RISC-V base sets
2.2.2 The extensions

CPROC
3.1 CPU core and ISA choice
3.1.1 PicoRV32
3.1.2 Configuration choice
3.1.3 Register File using Latches
Compilation flow

Digital Flow
3.4.1 Testing CPROC
3.4.2 Synthesis, PnR

Conclusion

Abstract
5.1 French
5.2 English

CHAPTER 0 — GLOSSARY

Diagramme de Gantt
Guantin E.nuw_...m.ua

1he 130nm node to m
digital flow of the PizoRva2
core

Integration of
the spi_master
madule 1o our
nenly named

PiCORV3
testhench
it the

FIGYRE 1
Internship Gantt Diagram

CHAPTER 1

INTRODUCTION

1.1 OMEGA MICROELECTRONICS

OMEGA Microelectronics (Organisation Microélectronique Générale Avancée) is a CNRS/IN2P3-
Ecole Polytechnique microelectronics design center located in Ecole Polytechnique Campus
in Palaiseau, in the southwest suburb of Paris. It was founded in 2013 and is currently
composed of a team of around fifteen microelectronics engineers, mostly analog designers.
They design sophisticated ASICs for nuclear
physics, particle physics and astrophysics de-
tectors, contributing in large scale scientific
experimentations like CMS HGCAL at the
CERN. These state-of-the-art detectors and sig-
nal processing chips require cutting edge tech-
nologies. The chips working environment
and the particles to be detected being always
more evanescent require the chips to be radi-

ation hardened and have high integration de- [
gree and performance levels, some chips be- FIGURE 1.1
ing driven by clocks with a few GHz mag- CMS HGCAL experiment at CERN

nitude.

The number of chips involved in an experiment can be tremendous (about 10° in CMS
HGCAL), so one of the main focus is for the chips to be as low power as possible. They range
between 1 mW and 15 mW per channels depending on their functionalities. OMEGA currently
works on designing chips for three major experiments:

* CMS HGCAL, a high granularity calorimeter at CERN. The chip HGCROC3 designed by

CHAPTER 1 — INTRODUCTION

OMEGA provides charge and time measurements for millions of small sensors (channels)
with integrated processing at 1,28 Gbps. Figure [3] present the actual calorimeter, 21
meters long, 15 meters wide and high, which will become HGCAL in five years from now.

* Hyper-Kamiokande a neutrino observatory. The chip HKROC is involved in the charge
measurement. 3k ASICs would be integrated in this experiment [4]).

* ATLAS HGTD a high granularity timing detector, involved the LHC high luminosity
upgrade phase. The chip ALTIROC?2 is a 225 channels ASIC designed for LGAD (Low
Gain Avalanche Diodes) readout, capable of detecting a 2 fC charge with a 95% accuracy

FIGURE 1.2
ATLAS experiment at CERN

1.2 THE RISC-V SPECIFICATION

1.2.1 WHAT IS RISC-V

RISC-V (pronounced "risk-five") is an open standard implementation of a RISC instruction set,
but is also the name of the foundation that oversees all the activity around it.
RISC-V was developed at UC Berkeley, the same place David Pat-

terson and John Hennessey developped the original RISC chips back

in the 1980s. It was the result of an academic exercise, when Krste

Asanovi¢, a Berkeley professor was looking for a chip that could

be used to help teach his students. All the available chips with their

attached ISA had drawbacks for teaching, an ARM or x86 architec- ‘
ture being way too complex. More importantly, these chips design

are all proprietary and cannot be used without paying important R ISC

fees and royalties to their owner. Krste Asanovi¢ and his students
then started to design their own super basic, efficient and extensible

. . . _ . . FIGURE 1.3
instruction set architecture, resulting in 2010 in the most basic form RISC-V Foundation logo

6

CHAPTER 1 — INTRODUCTION

of the RISC-V ISA we know today.

Over the next years, the industrial interest on RISC-V has constantly grown, some companies
wishing to exploit this new standard. However commercial users require an ISA to be stable
before they can use it in a product that may last many years. To address this issue, the RISC-V
Foundation was formed in 2015 to own, maintain, and publish intellectual property related to
RISC-V’s definition. The Foundation is based in Switzerland since 2019. There are 29 founding

members among which are Google, IBM or Qualcomm [11].

1.2.2 WHY USING RISC-V

One thing to know is that there is no major breakthrough with the RISC-V architecture: the
RISC-V itself does not represent any new technology. The RISC-V ISA is based on computer
architecture ideas that date back at least forty years. What makes it unique is that it’s an open
standard: both the ISA and some basic chip design are available online. In the era of the
IOT (Internet of tings) processors are everywhere, managing power delivery or battery life or
processing signals from sensors, and it is not uncommon to have dozen of chips within one
component running proprietary instruction set from different companies. These tiny SoC and
controllers come from companies like Texas Instrument, Synopsys or Renesas, offering massive
catalog of chips. However if one need something they don’t offer, unless being a GAFA company
and asking for a custom design, it is necessary to find the closest chip that does at least the
wanted functionality. The problem with this is that the chip considered will have excess and
unwanted hardware, with which comes a bigger footprint and power consumption, problematic
when targeting low power and embedded purposes.

It doesn’t get easier when trying to design a chip since most companies do not share their ISA.
Some companies like ARM do license theirs, but it comes in exchange of hundred thousands of
dollars to use them, in addition with royalties and costly updates

Tiers DesignStart Entry Standard
Access fees | $0 ;g i:rii;ar:::;l $200k per annum
License fees (due on project manufacture) Calculated per design based on IP used. **
Rovyalty Calculated per project and paid per unit shipped **
FIGURE 1.4

ARM ISA licence costs [7]

Supposing one can afford such price, it would take month for the legal end of the licence deal,

while lawyers hammers out every details of it, an eternity in the microelectronics field.

7

CHAPTER 1 — INTRODUCTION

The benefit of RISC-V comes right there, any engineer can start designing any RISC-V chip at
this very moment and this without any legal problems. Some companies like Western Digital
already transitioned numerous controllers in the benefits of RISC-V chips. In this very case,
Western digital needed a dual threaded storage controller, which wasn’t available on the market,

resulting in having two controllers, adding fabrication cost and power consumption to the chip.

1.3 AIM OF THE INTERNSHIP

All the chips currently designed and produced by OMEGA are ASICs that serve a specific
purpose and nothing else, their functionality is engraved in silicon. And this has benefits. Since
it is designed and optimized to perform one specific task, it is generally very efficient, fast,
reliable, and "simple" to use: once it is plugged (meaning correctly biased, bound and no active
reset signal), it does what it is designed to do. As stated before, chips designed at OMEGA are
intended for particle physics application, more specifically to be integrated in a more complex
particle physics experiment. Their functionality, which is a small part of the whole process, is
based on calculus and results obtained by physicist that sets the specifications to meet. However
some physicists raised a concern: since ASICs take years to design and test, the physics results
they’re based on could shift in the meantime, making the chip data processing less efficient.
Extra calculus units could be added outside the detector, making up for that loss, but adding
inevitable hardware and power consumption.

This is why OMEGA’s interest on RISC-V processors is growing. The processors have the
advantage of being capable of running code that can be replaced at will. They can execute any
task within the limits of the available hardware. The objective in the long term is not to replace
every chip with microprocessors, since those would be way slower and more power consuming,
but rather to replace some part of an ASIC that are based of physic result subject to change.
The short term goal, this internship goal, is to design a microprocessor, based on an existing open
source core, able to perform low speed data processing, or to be used as a microcontroller in the
control path of a bigger system. The integration environment being limited, the main focus will
be to have the smallest footprint as possible, and to be as low power as possible. The number
of metal layer available is also limited. Performance is not targeted here, as well as radiation

hardening. The reasons of such choices will be addressed later in this paper.

CHAPTER 2

THEORICAL BACKGROUND

2.1 DEFINITIONS

2.1.1 THE CPU

A CPU, also called processor, is the electronic
circuitry that executes instructions comprising
a computer program. Regardless of the phys-
ical implementation of it, its fundamental op-
eration is to execute a sequence of memory
stored instructions. It follows this pattern,
called the instruction cycle:
FFetch an instruction from the memory,
Decode this instruction,

this instruction,
Store the result in memory [14].
It performs basic arithmetic, logic, controlling,
and input/output operations specified by the
instructions fetched. After each execution of
an instruction, a register called the program
counter see its value incremented by a fixed
number, and the entire process repeats, the
next instruction cycle normally fetching the
next-in-sequence instruction defined by the
new value of the program counter. Some in-
structions directly change the value of the pro-
gram counter without producing any results.

Instruction
Fetcher

Instruction
Decoder
Memory
Interface

Registers

F
.

FIGURE 2.1
Simple CPU diagram

CHAPTER 2 — THEORICAL BACKGROUND

There are multiple such instructions, but they are generally referred as "jumps". Any loop,
conditional behavior, or instruction to execute a program stored at a certain address, will contain

a type of jump instruction.

is the action to retrieve an instruction at a location (its address) determined by the

program counter, which stores a value that identifies the next instruction to be fetched. The fixed
number increment after each instruction execution corresponds to the length of instruction just
executed, in bytes. Supposing the PC value is currently 100, and the instruction just executed
was coded on 4 bytes, the new PC value will be 104.
The Decode step is performed by the instruction decoder [2.1] The binary instruction is analyzed
by this decoder, and the way in which it is interpreted is defined by the ISA. The instruction
often contains significant group of bits such as the opcode that defines the operation to be made,
or other information such as the operands or an address.
The step is done by the ALU. It is a digital circuit that performs integer arithmetic and
bitwise logic operations. Its inputs are the operands, status from the last operation (whether it is
finished or not) and the opcode. The initial data and intermediate results are stored in the internal
registers [2.1]

step is in charge of redirecting the output data to its destination, whether is it to be stored
in the memory or displayed at the outputs.

2.1.2 THE ISA

The ISA, also called computer architecture,is part of the abstract model of a computer that defines
how the CPU is controlled by the software. The ISA is the link between the hardware and the
software, specifying both what the processor is capable of doing as well as how it gets done. It
is the only way an external user is able to interact with the hardware, it is the only portion of
the machine that is visible to the assembly language programmer, the compiler writer and the
application programmer. The ISA defines the supported data types, the internal registers, the
memory management that a microprocessor can execute. An ISA is not something immutable, it
can always be extended by adding instructions or support for larger addresses and data values, as
long as the hardware is also updated.

There are two main types of ISA CISC and RISC. Those two ISAs represent two different
approaches. CISC instruction set is mainly exploited by Intel and AMD, with respectively the
x86 and x86-64 ISAs. This type of ISA tends to have very specific instructions for a lot of
actions, which makes them numerous and long, sometimes coded on several word length. For
instance, x86-64 contains 981 different mnemonics and 3684 instruction variants [2]]. On the
other hand, RISC architectures tends to have way less and simpler instructions, reducing the

amount of hardware needed to decode and process the instructions. The CPI is also very low on

10

CHAPTER 2 — THEORICAL BACKGROUND

CISC
x86 (Intel) ARM
x86-64 (AMD) MIPS
SPARC
RISC-V

Instructions larger than a word Few instructions and data types
size, complex and numerous

Emphasis on software

Emphasis on hardware

Register to register:
Memory-to-memory: "LOAD" and "STORE"

"LOAD" and "STORE" are independent instructions
incorporated in instructions

_ Low cycles per second,
Small code sizes, large code sizes

high CPI

. . Spends more transistors
Transistors used for storing on memory registers

complex instructions

FIGURE 2.2
Two families of ISA

RISC architecture with respect to the CISC one, but for one instruction executed in the CISC
case, multiple ones will have to be executed when working with the RISC standard. This means
that the software will tends to occupy more space in the memory since there are more instructions
for one action, so the hardware economy on decoding and executing is compensated by the
hardware needed to have bigger memories. [§]

2.2 RISC-V SPECIFICATION

2.2.1 RISC-V BASE SETS

The RISC-V ISA is fairly recent, which means that the errors from the past from other RISC
ISA have been taken into account while designing it. Furthermore, being an open standard, most
of the work is done by the community and carried by the foundation, and it is accessible by
everyone, implying a fast evolution.

The RISC-V is also a "modular” ISA. When one wish to use this ISA, a choice between four

11

CHAPTER 2 — THEORICAL BACKGROUND

base set must be first done. Every set is fully documented is the RISC-V instruction set manual
Those base sets are:

RV32I Base Integer Instruction Set

RV32E Base Integer Instruction Set

RV 641 Base Integer Instruction Set

RV128I Base Integer Instruction Set

Core Instruction Formats

31 27 26 25 24 20 19 15 14 12 1 7 6 0
funct? [rs2 Ts1 funct3 rd opcode R-type
imm([11:0] 51 funct3 rd opcode I-type
~ imm[11:5] | rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12]10:5] | rs2 sl funct3 | imm[4:1]11] opcode B-type
imm[31:12] rd opcode U-type
imm[20]10:1|11]19:12] rd opcode J-type

RV32I Base Integer Instructions

Inst; Name FMT | Opcode | funct3 | funct? Description (C) Note
add ADD R 9110011 | @x@ 0x00 rd = rs1 + rs2
sub SUB R 21100171 | @x@ 0x2@ rd = rs1 - rs2
xor XOR R 2110011 | @x4 %00 rd = rsl " rs2
or OR R 9110011 | @x6 ox00 rd = rs1 | rs2
and AND R 0110011 | @x7 ox00 rd = rsl & rs2
51l Shift Left Logical R 2110011 | ax1 ox00 rd = rsl << rs2
srl Shift Right Logical R a11e011 | x5 Ox08 rd = rsl »>» rs2
sra Shift Right Arith* R 2110011 | @x5 ox20 rd = rsl >> rs2 msb-extends
slt Set Less Than R @11ee11 | @x2 @xoe rd = (rs1 < rs2)?1:0
sltu Set Less Than (U) R a11e811 | @x3 0x00 rd = (rs1 < rs2)?1:0 zero-extends
addi ADD Immediate i 0010011 | @x@ rd = rs1 + imm
xori XOR Immediate I 2010011 | @x4 rd = rs1 " imm
ori OR Immediate I 0010011 | 0x6 rd = rsl | imm
andi AND Immediate I 2810011 | @x7 rd = rs1 & imm
s11i Shift Left Logical Imm 1 op10611 | ox1 imm[5:11]=0x00 | rd = rs1 << imm[@:4]
srli Shift Right Logical Imm I 2010011 | @x5 imm[5:111=0x@@ | rd = rs1 >> imm[@:4]
srai Shift Right Arith Imm I 2210011 | @x5 imm[5:111=0x28 | rd = rs1 >> imm[@:4] msb-extends
slti Set Less Than Imm I 0010011 | @x2 rd = (rs1 < imnm)?1:@
sltiu Set Less Than Imm (U) I 2010011 | @x3 rd = (rs1 < imm)?1:@ zero-extends
1b Load Byte i 0000011 | 0x0 rd = M[rs1+imm][@:7]
1h Load Half 1 Q000011 | 0x1 rd = M[rs1+imm][@:15]
1w Load Word I 0000011 | @x2 rd = M[rs1+imm][@:31]
lbu Load Byte (U) I 0000011 | ox4 rd = MOrs1+imm][@:7] zero-extends
lhu Load Half (U) I 0000011 | x5 rd = M[rs1+imnm][@:15] zero-extends
sh Store Byte S 100011 axe MLrs1+imm][0:7] = rs2[@:7]
sh Store Half S 2100011 | ex1 MLrs1+imm1[@:151 = rs2[0:15]
sw Store Word S 21eee11 | ex2 MLrs1+imm][@:31] = rs2[@:31]
beq Branch == B 1100011 | @xe if(rsl == rs2) PC += imm
bne Branch != B 1100011 | @x1 if(rs1 != rs2) PC += imm
blt Branch < B 1190011 | @x4 if(rsl < rs2) PC += imm
bge Branch > B 1100011 | @x5 if(rsl >= rs2) PC += imm
bltu Branch < (U) B 1100011 | @x6 if(rsl < rs2) PC += imm zero-extends
bgeu Branch > (U) B 1100011 | @x7 if(rsl >= rs2) PC += imm zero-extends
jal Jump And Link J 1191111 rd = PC+4; PC += imm
jalr Jump And Link Reg I 11900111 | @x@ rd = PC+4; PC = rs1 + imm
lui Load Upper Imm U a11e111 rd = imm << 12
auipc Add Upper Imm to PC U 2010111 rd = PC + (imm << 12)
ecall Environment Call | 1 1118011 | exe imm=0x@ Transfer control to 0S
ebreak | Environment Break | I 1110011 | @xe imm=gx1 Transfer control to debugger
FIGURE 2.3

RV32I| base instructions

12

CHAPTER 2 — THEORICAL BACKGROUND

RV321

This base set features 32 32-bit registers, named x0-x31. x0 is the zero register, always containing
zero and not editable. This set has 40 or 47 base instructions depending on the version used.
The version we work with in this paper in the one where FENCE and CSSR instructions are not
included, consequently having 40 base instructions. In addition to these instructions, there are
pseudo-instruction that are not per say considered as instructions, since they are a combination

of some. For instance the "nop" pseudo instruction is
addi x0, x0, 0 : adds x0 and 0, stores the value in x0

while the frequently used load immediate "li" pseudo instruction, also called the Myriad sequence
and used to load any number in an internal register, has a different combination depending on
the number to be loaded. For instance if the value 1024 is to be loaded in the register a0, the li

instruction is:
addi a0, 1024 :
but if a value coded on more than 12 bits is to be loaded, such as 2048, the li instruction is:

lui a0, Oxl1
addi a0, a0, -2048

The source registers (rs1 and rs2) the destination register (rd) and the opcode are always at
the same place in the instructions, but not all the instructions are the same. There are six main
types of instruction: R-type, I-type, S-type, B-type, U-type and J-type. The complete listing of

these instructions and their format is displayed on figure 2.3]

RV32E

With respect to the base RV32I set, this base set has for only difference the fact that it only uses
16 32-bit registers instead of 32. The instructions are exactly the same, but the available registers
to perform the operations now only range from x0 to x15. It is called -E since it is intended for

embedded purposes.

RV641

This base set features 32 64-bit registers. This set shares the same base instructions as the
RV32I set, but they deal with 64 bits wide data instead of 32 bits. Furthermore, it contains
additional instructions allowing to perform operations on the 32 LSB of a 64 bit register, using
the sign extension. It provides a 32 bits result with a sign extension to fill the remaining bit to
reach 64 bits.

13

CHAPTER 2 — THEORICAL BACKGROUND

RV128I1

Similarly to the RV641, the RV128I base set has 32 registers of 128 bits. The instruction are the
same than RV64I1, but with additional instruction allowing for operations on the 64 LSB, with
the sign extension to add up to 128 bits.

2.2.2 THE EXTENSIONS

As stated before, in addition to the base set that must be first chosen, RISC-V allows for adding
support to subsidiary extensions to deal with specific operations. There is a total of 17 RISC-V
extensions. Only three of them are briefly described in this paper, as they might be considered
for the CPU project. Those extensions are:

* "M" Standard Extension for Integer Multiplication and Division
» "C" Standard Extension for Compressed Instructions
» "F" Standard Extension for Single-Precision Floating-Point

It is important to note that using an extension means new instructions with their own format,
which also means that the hardware must be capable of decoding and executing them. Every

extension used implies an transistor number increase.

Base ISA declinations

RV32I RV32E RV64I RV128I
32 bits 32 bits 64 bits 128 bits
32 registers 16 registers 32 registers 32 registers

F - Standard extension for single precision floating point

FIGURE 2.4
RISC-V ISA declinations

CHAPTER 2 — THEORICAL BACKGROUND

"M'" Standard Extension for Integer Multiplication and Division

This extension contains instructions allowing the multiplication and division of two integers
stored in two integers register. This extension is not included in the base sets for simplification
purposes, for systems that would not have the use for division or multiplication operation.

These instructions allows operations between two signed integers, two unsigned integers and a

signed and an unsigned integer, and are available for any base set listed previously.

""C" Standard Extension for Compressed Instructions

This extension set introduce equivalent reduced instructions, some instructions and pseudo
instructions being now coded on 16 bits. This has a huge impact on the code size. According to
the official documentation [1]], 50 to 60 % of a program using RISC-V assembly code can be
replaced by equivalent reduced instructions from the C extension, which approximately result in
a total program size significant reduction of 25 to 30 %. With this extension, the PC has to be
handled differently, some instructions being 2 bytes long.

To illustrate the benefit of using this extension, a really simple RISC-V assembly program is
presented in table [2.1] After the compilation, the two right columns present the code in its
hexadecimal form. The C extension reduced the code size by 33%.

assembly code hex code,no C extension | hex code,C extension
lui x7,10 0000a3b7 846363a9

00038663 13fd0003
loop: fff38393 0385bfed
beq x7, zero, ext ffoffo6f 90020001
addi x7,x7,-1 00138393
J loop 00100073
ext:
addi x7,x7, 1
.balign 4
ebreak

TABLE 2.1

C extension impact on the code length

"F' Standard Extension for Single-Precision Floating-Point

The F extension set adds instructions capable of dealing with single precision floating point
data. With it comes 32 32-bits floating point registers and two status and control register. The

status register enable the definition of the "rounding mode", coded on 3 bits. When executing an

15

CHAPTER 2 — THEORICAL BACKGROUND

instruction asking for the rounding mode, two possibilities exists. Either the instruction is able to
define a intrinsic "rounding mode", or either it uses the one define by the status register. All the
rounding modes are defined in the official documentation [/1].

Load/store, arithmetic (add/sub, mul/div, sqrt...), conversion (between floating point and (un)signed
integers), comparison (equal, less than, less or equal than) et classification of floating point
number (negative, positive, 0, NaN...) instructions are added to handle this new type of data.

16

CHAPTER 3

CPROC

This section is dedicated to the actual first version of the processor, named CPROC developed
during the internship. As a reminder, CPROC is intended to do digital data post processing and
internal monitoring in mixed signal ASICS. It target a small footprint, low power consumption,
and a maximum of four metal layers. In this context, four different part will be addressed,
namely "CPU core and ISA choice", "Compilation flow", "CPROC" and "digital flow". Both
hardware and firmware/software choices are discussed within this section, as it is impossible to

not consider and understand the firmware while designing the CPU hardware and vice-versa.

3.1 CPU CORE AND ISA CHOICE

CPROC is not designed from scratch. The advantage of using the RISC-V standard is, as stated
before, having access to already existing cores and their documentation. Numerous criteria were
to be considered when choosing the base core of the project. The first and main criteria for
the considered cores is for them to be licensed under a free license. An other one is to find a
core which code is written in a language supported by the design tools (Cadence Genus). The
available documentation is also a very important parameter to consider. For the design part to be
the more effective possible and for understanding purposes, the core has to be up to date, well
documented and active: an active community still working on the project is clearly a plus in this
scope.

The extensions available on the core, meaning the code actually supporting the instructions
added by these extensions, is also to be considered, but is less troublesome as support for theses
extensions can always be added to the core, mimicking the already existing instructions in the

code.

17

CHAPTER 3 — CPROC

3.1.1 PIiCORV32

PicoRV32 [[16] is the core that has been chosen for the base of CPROC. It is under the ISC licence,
meaning it is free and open hardware. It is a RV32 configurable core, providing support for the
base sets RV32I and RV32E, and both the M and C extension., which are the only extensions
that are considered for the CPROC project. All the RTL code is in Verilog, the community is
still very active, and the documentation is up to date and very dense. Besides, it has served as
a base core for several project, namely the Raven SoC, an ASIC by efabless using the 180 nm
node [9], or the Caravel SoC by Google and Efabless [13].

The PicoRV32 CPU is originally mean to

be used as an auxiliary processor in FPGA '”;gﬁ‘:;ﬁ” Foceador Ll mmeny

designs and ASICs. As stated previously, it

includes a variety of parameters that allow con- F’m&ﬂ ﬁ H Data

figuration for the two different base set (EN-
ABLE_REGS_16_31 in the code), inclusion 1

of the "M" and "C" RISC-V extension, and
other functionalities such as a custom hand-

ling of IRQs incorporating custom instructions

for the latter. An other significant feature is the

Pico Co-Processor interface (PCPI) that can be 1o
used to implement non-branching instructions FIGURE 3.1
in an external coprocessor. The code features Simple CPU diagram

an implementations of PCPI cores that imple-

ment the M Standard Extension instructions MUL[H[SUI|U]] and DIV[U]/REM|[U] [[1]].

A CPU is always associated to memories, that can be internal or external, and I/Os 3.1} To
communicate with those elements, it needs communication protocols, which PicoRV32 offers.
The core exists in three variations: picorv32, picorv32_axi and picorv32_wb. The first provides
a simple native memory interface, that is easy to use in simple environments. picorv32_axi
provides an AXI-4 Lite Master interface that can easily be integrated with existing systems that
are already using the AXI standard. picorv32_wb provides a Wishbone master interface. At first,
CPROC was meant to implement the picorv32_wb interface, which for the same testbench was
two times slower than the picorv32_axi interface. Among the first lines of work of this internship
was to make the wishbone version as fast as the axi one, which was successful. Nevertheless,
for module compatibility issues, CPROC will incorporate the native memory interface, using an
external spi master for external integration.

As stated by the author on the picoRV32 git [[16], its design targets a small footprint and high
maximum frequency. Consequently, it lacks features that would increase its complexity, such as
a multi-stage pipeline. However, while not pipelined in the sense that different stages of multiple
instructions execute simultaneously, the processor does feature a state machine that divides the

18

CHAPTER 3 — CPROC

execution of each instruction into stages. In all, there are eight possible states: fetch, 1d_rs1,
1d_rs2, exec, ldmem, stmem, shift, and trap. By default, the ENABLE_REGS_DUALPORT
parameter of the PicoRV32 will be enabled, allowing the processor to read two values from
the register file simultaneously and eliminating any need for the 1d_rs2 state. The trap state,
meanwhile, exists to let the processor handle unrecognized instructions. All six other states may
be used during normal operation.

1600
1498

1400
w 1200
[¥ .
©
@ 1000 -0 1018
_E :

0
= 818
Z 800 o > £96
7 696
600
o 524
400
Minimum Mul MUL+FAST MUL+FAST+DIV MUL+DIV
CPU configuration
FIGURE 3.2
Total number of Flip Flops with and the register file FF, RV32E

3.1.2 CONFIGURATION CHOICE

To determine how to configure the core, meaning choosing the value of the 25 parameters in
the Verilog code, we first had to get a better grasp of how changing those values impacts the
hardware, and especially the core’s footprint. The latter also have an impact on the memory
mapping, thus the software and compilation too. There are a lot of different parameters to be set

[16] but only three are considered for this quick study. Those parameters are:

* ENABLE_MUL that internally enables PCPI and instantiates the picorv32_pcpi_mul core
that implements the MUL[H[SUIU]] instructions.

* ENABLE_FAST_MUL that internally enables PCPI and instantiates the picorv32_pcpi_fast_mul
core that implements the MUL[H[SUIU]] instructions using a single cycle multiplier.

* ENABLE_DIV that internally enables PCPI and instantiates the picorv32_pcpi_div core
that implements the DIV[U]/REM[U] instructions.

19

CHAPTER 3 — CPROC

55,00% i

50,00%
1 47,81%

45,00% +

40,82%

40,00% +

35,00% +
1 32,04%

30,00%

cpuregsFF/total number of FF (%)

Minimum Mul MUL+FAST MUL+FAST+DIV ~ MUL+DIV

CPU configuration

FIGURE 3.3
Register file FF share with respect to the core, RV32E

This lead up to five different configurations: the Minimum configuration with all the pre-
viously cited parameters set to O (meaning not instantiated), the Mul configuration with only
the multiplier activated, the MUL+FAST configuration replacing the normal multiplier with the
single cycle multiplier, the MUL+FAST+DIV featuring the fast multiplier and the division blocks,
and finally the MUL+DIV configuration instantiating the normal multiplier and the the division
block. The digital flow used to synthesize and place and route the different cores configuration
uses a 100MHz clock (10ns period) and is set to allow only for four metal layers while generating
the layout as in a mixed-signal ASIC, the superior metal layers are dedicated to power routing to
have ultra lo< noise circuits. The slack and footprint values are from Cadence Innovus reports,

post PnR and extraction (with the worst case corner).

In the CPROC scope, some parameters are already set with respect to the constraints: we are
using the C extension (COMPRESSED_ISA = 1) and E extension (ENABLE_REGS_16_31 =
1) to ensure respectively the minimum code size and register file footprint. Since the register
x0, the "zero register", is constant zero, the E extension features 15x32 = 480 registers only
for the register file. The IRQs are also enabled along with the custom IRQ handling offered by
picoRV32 since we want the final SoC to be able to deal with external data. It is important to
note that the custom IRQ handling adds four 32 bits registers to the register file, and it has to be
taken into account when using a custom implementation of the register file. In this quick study,
this parameter is not enabled, this is why the register file only features 480 registers, and not 608

registers.

20

CHAPTER 3 — CPROC

40,00%

37,84%

35,00%

30,00% 30,18%

25,00% 23.20% 25,87%

20,00% 20,36%

cpuregs area/total area (%)

15,00%
Minimum Mul MUL+FAST MUL+FAST+DIV ~ MUL+DIV

CPU configuration

FIGURE 3.4
Register file area share with respect to the core, RV32E

When looking at the results on figure 3.2} [3.3]and [3.4] we can clearly see that the register file
register takes up to half of the total number of registers of the core in the minimum configuration
and 40% of the total area. The area here designs the output of the report_area command in
Cadence Genus, not to be confused with the footprint which is the actual space, usually a
square, in which the core can physically fit in, depending on the number of metal layer used
and so on. A first conclusion that can be made right away, is that making the core resistant
to radiations is way more complex than expected: the usual way to make radiation hardened

chips in the laboratory is to triplicate every re-

gister within the control path. Every now trip- / \
licated registers are spaced in the layout, so a

SEE is less likely to affect all of these registers. _

A voter placed a the output of every triplicated el comb m\zg;ty out
register make sure that the majority value, most logic |

surely the right value, is propagated through L |_

the system, and auto-corrects the register being

faulty [3.5] \ L /

In our case, if the register file is not triplicated, FIGURE 3.5

there are still 524 registers [3.2] to potentially Triplication example
triplicate in the minimum configuration. Fur-
thermore, triplicating means deeply understanding the way the code is written, which isn’t

something we could afford during a five and half months internship.

21

CHAPTER 3 — CPROC

Concerning the configurations themselves, the minimum configuration is non surprisingly the
most compact in terms of footprint [3.6] the most efficient in terms of slack[3.7]and counts the
lowest number of registers. It is by far the best option for a very compact use and fairly simple
calculus not involving loads of multiplication nor divisions.

The Mul configuration adds nearly three hundreds registers, however the Slack is comparable to
the minimum configuration and the footprint is the same. Regarding that last point, the minimum
configuration could have fitted in a smaller square, but the Mul one is nevertheless still compact.
Every configuration instantiating the Fast Multiplication presents a high footprint and a problem-
atic slack value. Usually we consider that an acceptable slack value is above 10% of the clock
period, which in our case would be more than 1000 ps. This is caused by the constraint of having
single cycle operation for the multiplication which inevitably adds to the propagation delay.

The last configuration is the MUL+DIV configuration: the slack is acceptable because slightly
over the limit, the footprint is manageable, however the number of total registers is by far the

highest, 1498 registers, making the future radiation hardening much harder.

Footprint

230000
220000
210000
200000
190000
180000
170000
160000
150000

Footprint (umA2)

160000 v i
Bt 160000

Vo

Minimum Mul MUL+FAST MUL+FAST+DIV MUL+DIV

CPU configuration

FIGURE 3.6
Footprint in um, RV32E

3.1.3 REGISTER FILE USING LATCHES

As stated before, the register file represent a non negligible part of the total area share. The RV32E
configuration already cuts half of the registers, leaving 480 of them. However, there’s no way to
further reduce the total number of register without undermining the processor functionalities. An
other solution could be to find something that takes less space than a register, but still provides
the same functionality: a latch, which is half a register. Cadence Genus offers the possibility to

create memories using its own IPs, and it is possible to instantiate the equivalent of the register

22

CHAPTER 3 — CPROC

SLACK

3500
3181 3105
3000

2500

2000
1679

Slack (ps)

1500

1000
496
500

124
Minimum Mul MUL+FAST MUL+FAST+DIV MUL+DIV

CPU configuration

FIGURE 3.7
Slack in ps, RV32E

file, but using latches.

The way this quick study has been done is the following one: only the register file using registers
and latches have been synthesized using Cadence Genus, not the entire core. The registers files
have both a depth of 8 and a length of 16, meaning eight sixteen bits registers. The IPs used are
all Low Voltage Threshold (LVT) ones.

The results are presented in figure [3.8] Even though a small number of instances are present in
each memory, there is a 27% gain in area, but two times less slack, which can be a problem when
having stricter constraints. having two times less slack using latches is normal, since they update
on levels and not on edges like registers. We could have expected half the area, however only the
latches takes 2 times less space, and not all the logic involved in the row and column decoding.
Greatly increasing the size of the memory would lead to a better gain in area.

Even though there might be a gain using latches in the place of registers, the register file in
our SoC will use registers, since there is less risk that everything breaks down when running a
program, especially for such an vital component. This study has been done at the very beginning
of the internship to explore different possibilities and mainly for the sake of it.

In conclusion, the final configuration chosen for our project is the minimum configuration,
corresponding to the RV32EC ISA, with 19x32 registers in the register file, including registers
for the custom IRQ handling. Adding the multiplier is still on the table, since the trade-off

between the area and the code size could nevertheless be interesting , nonetheless we are not

23

CHAPTER 3 — CPROC

10D 9073,832

9000
q0d0 7103,477
7000 6622
6000
5000
4000 3129
3000
2000
1000

0

REGISTERS LATCH

B Area (um”2) ® Slack (ps)

FIGURE 3.8
8x16 register file using registers and latches

using it in this study.

3.2 COMPILATION FLOW

In this part we are going to focus on the compilation flow, a key part of processor designing.
What the processor is designed to be able to do relies nearly entirely on what firmware/software
it is going to run. Having a clear idea of what we want to do with the processor is essential. For
instance, knowing approximately the size of the code to be loaded into the processor memory
will dictate what internal memory size should be used.

To compile any piece of code into a language that the processor can understand, we need the GNU
GCC cross-compiler for RISC-V C and C++. This compiler, based on gcc can be downloaded on
the RISC-V GitHub page [12] can translates any coded in C/C++ in RISC-V assembly code, and
further into machine code. It works the same way as the standalone gcc software, with the same
command line options and the same functionalities. The version of the RISC-V GNU toolchain
is also an important parameter: PicoRV32 is intended to be build with along with the RV32I,
RV32IC, RV32IM or RV32IMC ISA, even though the compatibility with the RV32E ISA is
offered in the code. When cloning the git on a local machine, the RV32E RISC-V toolchain is
therefore not installed, and it needs to be so manually, or by modifying the Makefile provided on
the git to do it automatically. Trying to compile a code intended for the RV32E ISA with the

24

CHAPTER 3 — CPROC

firwmare.elf : sections.lds main.o start.o

fopt/riscv32e/bin/riscv32-unknown-elf-gcc -81, -mabi=ilp32e -march=rv32e [...] -o firmware.elf main.o start.o -lgcc

FIGURE 3.9
A Makefile compilation command line

RV32I toolchain won’t work, and vice-versa. Figure shows a compilation line command
were the compiler version (RV32E) and the exclusive RISC-V command line options -march
and -mabi correspond. The -march=ISA selects the architecture to target. This controls which
instructions and registers are available for the compiler to use. The -mabi=ABI selects the ABI
to target. This controls the calling convention (which arguments are passed in which registers)

and the layout of data in memory.

int x = 3;

X =2 * x + 4; .
High level
language
addi x6, x0, 2

RISC-V addi X5, XO,

assembly mul x5, x5, x6
addi x5, x5, 4

w

assembler

00000000001000000000001100010011
Machine 00000000001100000000001010010011

code 00000010011000101000001010110011
00000000010000101000001010010011

Read data

Instruction set

architecture

CPU

FIGURE 3.10
Compilation flow of a small piece of code

A short example of of the RISC-V compilation flow is depicted in figure [3.10} the small
piece of code is first ran through the compiler which translates it in RISC-V assembly code,
or instructions. The compiler used here is the RV32IM version, as it can be observed by the
presence of a "mul" instruction. This intermediary result needs to be further processed, this time
through the assembler that will transform these instructions into machine code, Os and 1s, in a

25

CHAPTER 3 — CPROC

file that will be loaded into the SoC memory by a loader.

startup code

interruption code

main.c Firmware
func_1.c
func_2.c
func_3.c
func_4.s sections.lds

v s . Linker file
Program code Compilation options

FIGURE 3.11
Diagram of what is included in the SoC firmware

However, one can guess that an SoC firmware is not that simple and involves multiple files to
create the rather complex firmware environment our SoC is going to execute. The example of
such environment is depicted in figure 3.11]

The first group of file includes the files containing the "program code", meaning the main function
that has to be ran on the processor. There is nothing very special about this group of file, as long
as no unrecognized operation are written in C/C++ such as log or exponential functions, which
are not supported by the RISC-V compiler, there are no special requirements here. Our SoC
supports interruption, which can be external interruptions toggled by the assessment of one of
the four external IRQ pins, or internal interruptions. These interruptions, when assessed, make
the current processing stops and jumps to the address of the piece of code describing what needs
to be done with respect to this interruption. This piece of code is the irq.c file, and it usually
do some very simple computing, or calls function of the main program. Its size may be fairly
consequent.

The next very important file is the startup code, start.s in figure[3.11] This file contains the first
lines of code executed by the processor upon booting. The .s extension means it is written in
assembly code, so only very simple code is comprise within this file. When booting the processor,
it will typically initialize all the register file register to zero, except the stack pointer (x2) register
which value is initialized by the hardware. Then it can run some basic code such as copying data
from an external memory to the internal SoC memory, and finally jumps on the main program.
This file also contains what is called the IRQ handler: when an IRQ is assessed, the PC jumps to
the address of the handler, the latter saves the current value of all register in the register file in the
memory, and then jumps to the IRQ program. When the action induced by this IRQ is finished,

26

CHAPTER 3 — CPROC

the handler loads the previously memory-saved register file values and carry-on its process.
The last, and maybe the most important file, is the linked script file or Ids file. Linking is the last
stage in compiling a program. It takes a number of compiled object files and merges them into a
single program, filling in addresses so that everything is in the right place. The linker takes all of
the previously compiled object files and merges them together along with external dependencies
like the C Standard Library into an output file, an executable (.bin .elf etc). To figure out which
bits go where, the linker relies on a linker script - a blueprint for your program, it controls the
memory layout of the output file. Besides, when necessary the linker script can also direct the
linker to perform many other operations, using the linker commands. The linker place every
element of the input object files into sections. Each section in an object file has a name and a size.
Most sections also have an associated block of data, known as the section contents. For instance,
there might be a section containing all the program code from different object files, a section
for initial data, and so on . A section may be marked as loadable , meaning that the contents
should be loaded into memory when the output file is run. A section with no contents may be
allocatable , which means that an area in memory should be set aside, but nothing in particular
should be loaded there (in some cases this memory must be zeroed out). A section, which is
neither loadable nor allocatable, typically contains some sort of debugging information [6].
Many linker scripts are fairly simple. The simplest possible linker script has just one command:
SECTIONS. SECTIONS command is used to describe the memory layout of the output file. Let’s
assume our program consists only of code, initialized data, and uninitialized data. These will be
in the .text, .data, and .bss sections, respectively. Let’s assume further that these are the only
sections, which appear in the input files. In this example, the code is loaded at address 0x1000,
and the data starts at address 0x40000. The following linker script will do this function[3.12}

SECTIONS

{
= 0x1000;

.text : { =(.text) }
= 0x40000;

.data : { =x(.data) }

.bss : { =x(.bss) }

}

FIGURE 3.12
Short linker script example

The linker script also declares the the name of the different memory accessible, the size, by
setting an origin and a length value, and whether they should only be read from (xr command in

the linker script) or also written in (xrw command).

Figure [3.13|sums up all the compilation flow. The input files, containing RISC-V assembly

code and C/C++ code are passed through the compiler and assembler to end up translated in

27

CHAPTER 3 — CPROC

Compiler + assembler - I
Sy —

Compiler + assembler

-

Linker
gee -0

main.elf Flohlen

Loader
Loads elf file in memory

Executing
program in
memory

FIGURE 3.13
Full compilation flow, from multiple input file to one executable output file

machine code (command line option gcc -0). The latter, now called object files, are linked using
the same command line option (gcc -0) along with the linker script, and the output file is now
a executable file, with the extension .elf in our case. The .elf or .o files can be translated back
to assembly code with the command line option -objdump in place of -gcc. When used for the
executable file, the memory mapping of the .text section can be observed as every instruction
is displayed with its address. This is very useful for debugging since it is easier to track what
instruction the pc counter is pointing on.

Then the loader loads the data within the executable file into the internal memory. In the case of
our SoC, the executable file as first to be translated to hexadecimal (a .hex file), and then fed into

the memory.

3.3 CPROC

CPROC is the final name of our SoC, and its digital block diagram is presented in figure
The analog modules its missing such as a Power On Reset (POR) or pads for the package modules
will be integrated later by OMEGA analog designers. It is partially based on the PicoSoC SoC, a
simple SoC design using PicoRV32, developed for the iCE40-HX8K FPGA Breakout Board.
CPROC features:

* A single core CPU: PicoRV32, RV32EC ISA, 40 MHz working frequency
* An internal 8ko SRAM memory (2048 words)

* An external flash support and a dedicated spi master. The has already been chosen, it is
the new W25Q64NE 1.2 V serial NOR flash from Winbond [15]].

28

CHAPTER 3 — CPROC

An other SPI master to deal with external SPI compatible modules.

An UART connection

24 General purposes inputs and 16 General purpose outputs

4 external and programmable IRQ pins

A two start address choice

: - { Flash controller | i prog_flash

g & b |

H F' o H

! o g spimemio (flash spi i

: g master) i

i } ;

i L Sp_moasi

: B - ! spi_clk
GPO[15:0] < » T apios

i o gpio H SP_Miso

i \ controller cPU

h - : SEr_MK
U ey
]

g

Memory i
' Ram_Controller<=—s| 8x1024_8b i

FIGURE 3.14
CPROC digital block diagram

As stated before, CPROC is partially based on PicoSoC as it reuse two of its blocks: a
standard UART master protocol (named simpleuart) and an SPI master (named spimemio). The
simpleuart module is as its names suggests it, the block managing the UART connection between
the exterior and CPROC through the ser_tx and ser_rx pins. Except the readjustment of the
baud rate to fit CPROC working frequency (100 MHz in PicoSoC, 40 MHz in CPROC), no
modifications were made to this block. The spimemio module, the dedicated flash SPI master,
is a rather complex module created by Claire Wolf, the original author of PicoRV32 [16] and
PicoSoC [17]. No modifications were made to this block, except permanently deactivating the
Quad and Dual SPI functionalities by setting two status register to a permanent zero value. The
philosophy behind the first version of CPROC is to make it as simple as possible, using as much
as possible what is already in house, i.e. mainly analog blocks and pads for package bonding.
As Dual and Quad SPI would mean designing analog pads able to manage dual way I/Os (used

29

CHAPTER 3 — CPROC

as input and output) at a 40 MHz speed, which hasn’t been done in the past at OMEGA, we
restricted every pins of the chip to be only input or output since pads for the latter are available
for a 40 MHz frequency. Single SPI protocol has only ne way I/Os, 3 outputs and 1 input for the
SPI master (the inverse for the SPI slave).

The choice of memory has been a center discussion around this SoC. In the PicoSoC project,

the program code 1.e. the .text sections, is stored in the external flash, and only some initial data
is copied in the internal SRAM. Even with the Quad SPI enabled, it only allows simultaneous 4
bit reading, being at least eight times slower than the internal SRAM, the latter connection with
the CPU allows for entire word reading, 32 bits simultaneously. In our case only the Single SPI
is available, meaning any program execution from the flash would be at least 32 times slower
than when read from the SRAM. This means that the SRAM has to be big enough to fit medium
sized program codes. The memory was chosen among the radiation hardened memories offered
by CERN. The store byte and store half instructions relies on a 4 bits internal write enable signal,
that selects which byte of the 32 bits word has to be written on. This specificity require the use
of four 8 bits wide memory instead of a single 32 bits wide one. Among the memory offered in
the CERN list, only the 1k words 8 bits wide qdp130_1024w8b_1mrs memory fitted our needs.
Eight of them were used in order to make a 2ko internal SRAM. Furthermore, the memory adds
a constraint as the chip is forced to run at the same frequency as the memory IP, which is 40
MHz.
In addition, a new feature has been added to PicoRV32, and on a wider scale CPROC: it is the
start address choice. In PicoRV32, the start address is set in silicon, it is an hardware parameter,
and when chosen during the design phase, it doesn’t change. What was wanted with CPROC, was
the choice to either start from the SRAM address which is 0x0, or from the external flash address
which is 0x100000. It is controlled by an external pin called start_addr: when set to logic 0
(before the reset signal going high) the CPU will start in the SRAM, when set to logic 1 the CPU
starts in the external flash. This offer the possibility, unlike PicoRV32, to use the SoC without
the need of an external flash to hold the program data and initial data. But for this to happen,
the internal CPROC SRAM has first to be programmed, before the CPU is booted. For this to
happen, a module referred as Ram_Controller has been designed to offer a connection between
the internal SRAM and the exterior through the GPO and GPI pins, completely bypassing the
rest of the chip. This module has two configuration: programming mode (prog_ram = 1, resetn
=0) which functionality has been described, and normal mode (prog_ram = 0, resetn =
1), simply linking the CPU to the memory. The internal SRAM is programmed byte per byte,
every data, address, and control signals being passed through the GPI[3.1] The GPO pins can be
utilized to monitor the process.

A similar module called Flash_Controller allows for the chip to serve as a loader for the

30

CHAPTER 3 — CPROC

GPI pins | Mapping

GPI [10: O] | Pin: prog_RA & prog_WA - The address for the Write and Read Address
(WA & RA) pins of the memory, coded on 11 bits

GPI [18:11] | Pin : prog_WD - The data intended to be loaded into the SRAM. The data is
loaded in the SRAM one byte after the other, by bringing low only
one bit of the enable at a time

GPI [22:19] | Pin : prog_Wb_Rb - The enable signal for both reading and writing in the
SRAM. Whether we are writing or reading is defined by the prog_Rb_W pin

GPI [23] | Pin: prog_Rb_W - Toggle whether we are writing or reading. 1 means writing,
0 means reading

TABLE 3.1
GPI pins mapping when using the Ram_Controller programming mode

external Flash. Using the flash programming mode (prog_flash = 1, resetn = 0), the flash is
programmed through the GPI and GPO, using the classic SPI protocol [3.16]

The gpio controller module is a simple block managing the connection between the GPIs and
GPOs pins and the CPU. Finally, the spi master module is as its name suggests a second SPI
master intended for general external SPI connection. This block is borrowed from the caravel
[13] project.

The memory mapping of every module is as it follows:

Address range Description
0x0000_0000 - 0xO00F_FFFF | Internal SRAM. The irq handler is located at address
0x0000_0010, in the SRAM.
0x0010_0000 - 0xO01FF_FFFF | External Serial Flash
0x0200_0000 - 0x0200_0003 | SPI Flash Controller Config Register
0x0200_0004 - 0x0200_0007 | UART Clock Divider Register
0x0200_0008 - 0x0200_000B | UART Send/Recv Data Register
0x0200_0014 - 0x0200_0017 | SPI Master Controller Config Register
0x0200_0018 - 0x0200_001B | SPI Master Controller (Data)
0x0300_0000 - 0x0300_0003 | GPO
0x0300_0004 - 0x0300_0007 | GPI

TABLE 3.2
Module address mapping

31

CHAPTER 3 — CPROC

&
w o ~ @ = g? g § v:}
ey LR ¥ed
=)
Ay Al
! CPROC (digital) :
H Flash controller — prog_flash
ﬁ _+_¢—1 :
E & ¥
E' @ - - - ;
o g spimemio (flash spi i
g master)

; o

=

S_Mmiso

GPO[15:0]
gpio
controfler

E ? H SEI_Ix
| . s

L I

Ram_Controller| 8/x 1024_8b

[CPU

.

FIGURE 3.15
Ram_Controller programming mode

SIERMA

MICROELECTRONICS

LEAD FRAME
ALLOY 42
t=0.15
{.005)
. | CERANIC BASE
Mg Gy 30NN
(BLACK)
3
M/ CERRMC FRAME
Az Oy S0RMN
[BLACK)
(.55 /] 0. 76404
20,0040, 18 (030400,
(. 7H7£.007)
FIGURE 3.17
CPROC package

The last thing to choose is the package. For the moment, the digital part of CPROC has 60
pins, and analog blocks that will be added later will inevitably need some more. A 80 pin package
would be too small, as the empiric rule for power biasing is one VSS pin (usually grounded)
and one VDD pin every ten pins, so two power pins every ten pins. On a 80 pins package, this
represent 16 power pins, which only allocate 4 pins for analog blocks in our case. For CPROC,

32

CHAPTER 3 — CPROC

g
E
]

g
=!
g

H
&S"Lc‘s.g
flash ok

—
g
€ g p
— frq_g
H

i

i

H

i

i

|

i

— s

i

i

H

i

i

;

-~
-

H

i

i

{ CPROC (digital)

ram

Flash controller i prog_flash
A $ |

spimemio (flash spi

rog_!
prog_flash

master)

,

!

i

i

i |

Il i

, .

, .

! i

! . Spi_mosi

! . '+ spick
GPO[15:0] <~ Spi master —= spicsb

.

i !

o

gpio > spi_miso
controller cru

] 1
i - | e
N e
| '
r |]

Memory
Ram_Controllere—s=| 8x1024_8b

FIGURE 3.16
Flash_Controller programming mode

we opted for a hundred pin package the QFP10014X20 from SERMA Microelectronics It
has already been used at OMEGA, so every analog bonding pad has already been developed. It’s
internal dimensions are 11 x 9 mm.

3.4 DIGITAL FLOW

This sections is about the chip testing, synthesis and PnR. The testing phase is not finished, but
Cadence Genus (synthesis) and Innovus (PnR) runs were already made to have a better grasp on
the chip dimensions, and this to see if it would fit in any candidate package. This also allowed to
prepare the scripts those tools rely on for when the chip will be fully tested and debugged.

3.4.1 TESTING CPROC

Functionally speaking, most of the chip has already been tested. First of all, the core itself has
been tested according to the officials battery of tests offered by the RISC-V Foundation [10].
Unfortunately, nothing is offered to test RV32E based core, but adapting the one for RV32I based
core is fairly simple, and this is what was done. The PicoRV32 project already used the official
RV32I official battery of tests, for its core testbench, plus some other functionality testing as the
IRQ testing. From there, the last thing to adapt this testbench for the CPROC RV32E core was to
adapt the firmware, to suppress any reference to x16 up to x31 registers, as in the register file

initialization to zero in the start.s file for instance.

33

CHAPTER 3 — CPROC

The core being fully tested, all the surrounding blocks have then to be tested. The testbench for
the Ram_Controller module tests the functionality of the latter by first testing the programming
mode (prog_ram = 1, resetn = 0). The internal SRAM is first filled with zeros, then a very simple
program is then written into it (see firmware/firmware.s), and the SoC is set out of programming
mode (prog_ram = 0, resetn = 1). The SoC starts in the SRAM (address = 0x00000000) and
executes the simple program [3.18] before trapping.

The testbench for the Flash_Controller block is quite similar to the RAM_Controller one. The
testbench is adapted from the winbond testbench provided with the verilog behavioral model
of the flash. It first tests the flash programming mode by doing simple operations (Read
Manufacturer ID, WRITE, READ) while being in programming mode (prog_flash = 1, resetn
= 0). The inputs GPI and outputs GPO are used to bypass the spimemio module, through the
flash_controller[3.16] A very simple program is then written in the flash and the SoC is set
out of programation mode (prog_flash = 0, resetn = 1). The SoC then starts in the flash (address
= 0x00100000) and executes the simple program before trapping.

lui x7, 5
loop:
beq x7,zero, ext | Thissimple program loads 52" in
addi x7.,x7, -1 the x7 register, then subtract one to
j loop it and loops until it is equal to zero.

When so, it exits the loop, adds one
ext: to the same register, then breaks.
addi x7, x7, 1
.balign 4
ebreak

FIGURE 3.18

Simple program

The IRQ used in CPROC are not the same that are tested in the core testbench: PicoRV32
offers the possibility to program 32 different IRQ through 32 pins, but only few of them are
used in both case, but some are not in common. An CPROC IRQ testbench was made to tests
the functionality of CPROC, when using the RV32E ISA. Each IRQ pin is asserted several
times during the test, and the number of time they are asserted is displayed at the end of the
simulation. In this test only pins 0, 1, 2, 5, 6, 7 and 8 are tested, the external IRQ pins being pins
5, 6,7 and 8 When an IRQ is brought to logic 1, the CPU jumps ton the IRQ handler address
(PROGADDR_IRQ = 0x0000_0010) which saves the internal registers state. This part of the
program is coded in startup code start.s. It then jumps onto the handler C function which codes
what the processors need to do. This part of the program is coded in irq.c .

The simpleuart block is exactly the same as in the picoSoC project, and it has already been
tested in the project testbench, and thus, at 40 MHz, with the same baud rate as in CPROC.

34

CHAPTER 3 — CPROC

Nevertheless, a simple testbench has to be written for this module in the CPROC project, just to
make sure.

The GPIO testbench is a very simple testbench: integers are sent to CPROC through the GPI
pins, an IRQ pin is brought to logic one to make the CPU process stops and acknowledged the
integer value. The value 1 in added to the integer, and the final value is displayed on the GPOs
pins.

What is left to be tested is the spi master module, and the chip in general by combining all the
testbenchs into one generic CPROC testbench. Layers of UVM verification will then be done to
complete the chip testing.

3.4.2 SYNTHESIS, PNR

Doing a full digital flow (synthesis, PnR) on a not yet fully tested chip isn’t something that is
generally done. However in our case and as stated previously, we are are working with in house
options for a lot of components, packaging included. The chosen package, the QFP10014X20
from SERMA Microelectronics has a finite space for the full chip to fill in, digital and
analog parts included. Furthermore, the metal layer constraints are not helping with making the
more compact chip possible. If after this full digital flow, the chip footprint would be too big,
some elements would have to be rethought and resized or removed.

The constraints on the layout are having a chip footprint smaller than 11 x 9 mm, and possibly
way smaller to fit the additional analog blocks. The maximum number of metal layer available
for the digital part is layer 4, as analog designers working to add the analog blocks on CPROC
use wider metal tracks, thus using layer 5 and above. We are working with Low Threshold
Voltage (LVT) cells, filler and decaps cells included. CPROC will be made using the TSMC
130 node, technology that has recently been approved by CERN for radiation hardened chips.
The constraints on the clocks are for most contained in a file called the constraint file or sdc file
because of its extension name (i.e. .sdc). We are working with a 40 MHz clock (25 ns clock
period), with a 100 ps uncertainty and a transition time, the time it takes to the clock signal to go
from logic O to logic 1 and vice-versa, of 200 ps. Moreover, for software licence concerns, the
total number of cells has to be lower than 50000.

For the synthesis, scripts that were already used on other OMEGA projects were used, they
just needed to be adapted to the CPROC project, by adjusting some parameters or including the
memory cells library for instance. This step is fairly quick from the script modification to its
execution by Cadence Genus 20.1. This step is mainly to verify if everything works as intended,
to see if design mistakes led to the presence of latches instead of registers for example. The
intermediary result such as the slack, the power consumption or the net length are only predictive
and not relevant enough. As the goal of this full digital flow is just to check what is the size of

35

CHAPTER 3 — CPROC

~

FIGURE 3.19
First floorplan on the left, second one on the right

the layout and prepare the scripts in prevision, no post synthesis simulation were made.

The next step is to proceed to the PnR to obtain a first layout. As we are using 8 memory IPs, the
first step is to place them on the layout: it is called the floorplan step. This step also includes
making the ring, the stripes, the power routing, placing the pins, and routing the eventual IPs.
Every odd metal layer are horizontal, every even one are vertical. The outer ring is Metal 3 (M3)
and Metal 2 (M2), the vertical stripes are in M2 and the power routing horizontal stripes are in
MI. The

first floorplan design on the left in figure [3.19| was quite compact (1850 ym x 1850xm) but
pins weren’t disposed evenly around the layout, it used M5 (in dark red) and could be more
optimized. The second attempt on the right of figure [3.19) was intended to make it more compact,
which it did (1700 pm x 1700 pm), the pins were disposed more evenly than on the first floorplan,
however M5 was used, and there was a major problem with the IPs placement. The IPs placed
horizontally have their odd metal layers vertically and their even one vertically. This can cause
problems when trying to route over them, since it could be the origin of short issues for instance.
The third and last in date floorplan presented in figure is the more compact yet (1600 pm
x 1550pm). It uses only layer up to M4, has no IPs placement issues, has on even number of
pins on all four sides, and zero DRC nor LVS violations at the end of the process. This is the
layout given to the analog designers to work with, as they only need the dimension and the pin

mapping. When it comes to the first technical results, post extraction we have:
* A total number of 44133 cells, filler and decap cells included.

* A slack of 5482 ps, which is twice as much as than the minimum needed (10% of 25 ns =
2500 ps).

36

CHAPTER 3 — CPROC

LAAAARAAALAAARLL]

[
-
[
| =
-
-
-
-
-
-
-
[=
-
-
-
-
-
-
-
| =
-
-
|
-

IIIIIMH i'l

FIGURE 3.20
CPROC final layout

* A worst negative slack (WNS) for the hold mode of 19 ps.

* An announced power consumption of 12,5 mW. This result is actually most certainly not
valid, since in the memory IPs datasheet provided by CERN, the worst consumption case
for an IP is announced to be around 4mW. In the Innovus report, the total IPs consumption

is about 5,77 mW. Cadence Voltus will have to be used to get a better result.

Moreover, it is important to consider results referring to the clock tree[3.21] In our case, the
clock tree is distributed on three level, with 34 inverters used to send the same clock signal as
much as possible to all sequential elements: 41,6 ps separate the time when the first sequential
elements receive the clock (red squares on figure [3.21] and when the last ones receive it (deep
blue squares on the left). The clock skew is about 51 ps, and the clock tree in itself has a power
consumption of 0.9 mW, which is non negligible.

Four different corners (.mmmc files) are used by Innovus to creates those results: the typical

37

CHAPTER 3 — CPROC

FIGURE 3.21
CPROC clock tree

case, the worst case, the best case, and the low temperature one. For the slack calculus (setup
mode) the worst case corner is used, whereas for the WNS hold mode, the best case corner is
used.

A lot of time was spent on the floorplan scripts, essentially because I still needed to correctly
used the tools and the commands to be used. Some problems were encountered, but eventually
overcame. One of them was an issue with the placement of decap filler cells, which are essential
for decoupling purposes. Their placement created numbers of short issues, mainly because they
were placed under vertical stripes (in M2), creating biasing problems since no metal layer was
able to reach those cells pins. The solution was a simple command to prevent the placement of

such cells under vertical stripes, and like that about 40K DRC violations disappeared.

On figure two different Amoeba view of CPROC are displayed. On the left view, each
block of the CPROC block diagram [3.14] are displayed in different colors: in red the CPU, in
light blue the simpleuart module, in dark blue the gpio controller, in orange the spi master and in
green the spimemio module. The two Ram_Controller and Flash_Controller block are two small
to be observed here. In the right view, we descended into the hierarchy of the CPU, and we can

see that the register file occupies a large part of the CPU footprint.

38

CHAPTER 3 — CPROC

LidbdiRiddniddiliaihidial
TIFTFTTTTT,

E
E
E
E
E

FIGURE 3.22
Amoeba Views of CPROC

39

CHAPTER 4

CONCLUSION

The work presented in this internship report is only the beginning of the CPROC project, and I
will have the pleasure to pursue it and come up with a final first working version of it between
October 2022 and February 2023, as an research Engineer at OMEGA Electronics.

To put it in a nutshell, the first chapter introduce the topic and goals of this internship,
presenting the laboratory and its projects, but also a brief introduction to what is RISC-V and its
history, and finally why using this specification.

The second chapter familiarized us to the basic of CPUs designs by describing its main
components and roughly explaining how it works, but also with the notion of ISA that is inherent
to CPU design. A broader presentation of the RISC-V base sets and its extensions is also offered

in this section.

The third and last chapter presents the CPROC core and ISA choices, but also a different way
of designing a register file using latches. The full compilation flow and digital flow are described
with the software used, the files and eventual results. Finally, what CPROC is composed of is

explained, along with explanations of every block.

Finally, as stated previously, the work in this paper retrace a great part of a CPU design
project, but work still need to be done to finish it. The last modules that have not been tested yet
have to be, and UVM verification has to be done on the SoC. When the chip will be fully tested,
post synthesis testing using the same testbenchs will have to be done to ensure the good working
of the chip. Then, using the same scripts already developed for the firsts layouts, the PnR will be
done, and better results of power consumption and temperature of the chip while processing will
be obtained with Cadence Voltus and Tempus. The Layout might have to be revised with respect

to the latter results. Some clock gating might have to be done on the memory IPs to reduce the

40

CHAPTER 4 — CONCLUSION

power consumption of CPROC. The chip is programmed to be produced by the end of this year,
or by the beginning of the next one, it will then have to be physically tested.

41

CHAPTER 5

ABSTRACT

5.1 FRENCH

A I'ere de I’IOT (Internet of tings), les processeurs sont omniprésents, qu’il s’agisse de gérer
I’alimentation électrique, la durée de vie des batteries ou le traitement des signaux provenant de
capteurs. La plupart d’entre eux utilisent des jeux d’instructions propriétaires de sociétés privées
telles que ARM ou Intel. Si les entreprises qui vendent ces puces ne proposent pas la puce
souhaitée, n’importe qui peut concevoir son propre processeur en utilisant I’ ISA libre de droits
RISC-V. Les processeurs RISC-V n’en sont qu’a leurs débuts, car la norme est relativement
récente et, jusqu’a présent, principalement des CPU a un seul coeur ont été fabriquées. Pour
I’instant, la majorité de ces processeurs libre de droit sont destinés aux FPGA, et ceux qui
sont réélement fondus sous forme d’ ASICs sont détenus par des entreprises qui ne partagent
généralement que 1’ IP. Chez OMEGA Microelectronics, la décision de fabriquer un processeur
ASIC RISC-V a un seul cceur a été prise : il est destiné a effectuer le post-traitement de
données numériques et de la gestion interne dans des ASICS a signaux mixtes. La puce vise
un faible encombrement, une faible consommation d’énergie, un maximum de quatre couches
métalliques pour la partie numérique afin d’étre a faible bruit, et utilisera le nceud 130 nm de
TSMC. La premiere version de la puce apppelée CPROC, comportera deux maitres SPI (un pour
la communication externe, un autre pour communiquer avec une mémoire flash externe), un
controleur UART, une SRAM interne de 8 ko, 24 entrées et 16 sorties et 4 pin d’IRQ, avec une
fréquence de travail de 40 MHz et fonctionnant avec I'ISA RV32EC. Quelques blocs ont été pris
dans des projets déja existants, le reste a été concu en interne. La puce est encore en cours de
développement, elle nécessite des tests supplémentaires, cependant un premier layout est déja
disponible pour permettre aux ingénieurs analogiques de travailler sur les futurs composants
analogiques de CPROC.

42

CHAPTER 5 — ABSTRACT

5.2 ENGLISH

In the era of the IOT (Internet of tings) processors are everywhere, managing power delivery or
battery life or processing signals from sensors, and most of them runs proprietary instruction
sets from private companies such as ARM or Intel. If companies selling those chips doesn’t
offer the specifically desired chip, anyone can design it’s own CPU using the open-standard ISA
RISC-V. RISC-V processors are only at their early stage as the standard is fairly new, and mainly
single cor CPUs have been made up to today. As for now, the majority of those open CPUs
deign targets FPGAs, and the one actually being ASICs are detained by companies generally
sharing only the IP. At OMEGA Microelectronics, the decision to make an ASIC RISC-V single
core processor has been made: it is intended to perform digital data post processing and internal
monitoring in mixed signal ASICS. The chip targets a small footprint, low power consumption ,
a maximum of four metal layers for the digital part in order to be low noise, and will use the
130 nm node from TSMC. The first version of the chip, called CPROC, will feature two SPI
master (one for external communication, an other to communicate with an external flash), and
UART controller, and a 8 ko internal SRAM, 24 inputs and 16 outputs and 4 IRQ pins, with
a working frequency of 40 MHz and running the RV32EC ISA. Few blocks were taken from
already existing projects, the rest being designed in house. The chip is still under development,
it needs further testing, however a first layout is already available to allow analog designers to

work on the CPROC future analog components.

43

BIBLIOGRAPHY

[1]

[2]

[5]

[6]

[10]

[11]
[12]

SiFive Inc. Andrew Waterman Krste Asanovi¢. “The RISC-V Instruction Set Manual’. In:
Volume I : User-Level ISA. Document version 2.2 (2017).

J. Todd McDonald William Mahoney. ‘Enumerating x86-64 — It’s Not as Easy as Count-
ing’. In: (2019).

Frederic Dulucq. HGCROC3: the front-end readout ASIC for the CMS High Granularity
Calorimeter. 2021. URL: https://indico.cern.ch/event/1019078/contr
ibutions/4443949/.

Selma Conforti Di Lorenzo. HKROC: an integrated front-end ASIC to readout photomul-
tiplier tubes for the Hyper-Kamiokande experiment. 2022. URL: https://indico.
cern.ch/event/1127562/contributions/4904493/.

Maxime Morenas. Performance of ALTIROC?2 readout ASIC with LGADs for ATLAS
HGTD picosecond MIP timing detector. 2022. URL: https://indico.cern.ch/
event/1127562/contributions/4904499/.

Fastbit Embedded Brain Academy. Bare metal embedded lecture-4: Writing linker scripts
and section placement. URL: https://www.youtube.com/watch?v=B70KdUv
RhQOQ.

ARM. ARM flexible access. URL: https://www.arm.com/products/flexibl
e—access.

Kirk Shimano Crystal Chen Greg Novick. Risc architecture, CISC vs RISC. URL: https:
//cs.stanford.edu/people/eroberts/courses/soco/projects/
risc/risccisc/.

Efabless. Raven: An ASIC implementation of the PicoSoC PicoRV32. URL: https :
//github.com/efabless/raven—-picorv32.

RISC-V Foundation. RISC-V core tests repository. URL: https://github.com/
riscv-software-src/riscv-tests.

RISC-V Foundation. RISC-V Foundation website. URL: https://riscv.org/.
RISC-V Foundation. RISC-V GNU Compiler Toolchain. URL: https://github .

com/riscv-collab/riscv—-gnu—-toolchain.

44

https://indico.cern.ch/event/1019078/contributions/4443949/
https://indico.cern.ch/event/1019078/contributions/4443949/
https://indico.cern.ch/event/1127562/contributions/4904493/
https://indico.cern.ch/event/1127562/contributions/4904493/
https://indico.cern.ch/event/1127562/contributions/4904499/
https://indico.cern.ch/event/1127562/contributions/4904499/
https://www.youtube.com/watch?v=B7oKdUvRhQQ
https://www.youtube.com/watch?v=B7oKdUvRhQQ
https://www.arm.com/products/flexible-access
https://www.arm.com/products/flexible-access
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/
https://github.com/efabless/raven-picorv32
https://github.com/efabless/raven-picorv32
https://github.com/riscv-software-src/riscv-tests
https://github.com/riscv-software-src/riscv-tests
https://riscv.org/
https://github.com/riscv-collab/riscv-gnu-toolchain
https://github.com/riscv-collab/riscv-gnu-toolchain

[13]

[14]

[15]

[16]

[17]

Efabless - Google. Caravel SoC, Picorv32 based. URL: https://github . com/
efabless/caravel_pico.

Wikipedia. Wikipedia, the free encyclopedia. Wikimedia Foundation. URL: https :
//www.wikipedia.orqg/.

WINBOND. 1.2V Serial NOR Flash. URL: https://www.winbond.com/hqg/
product/code-storage-flash-memory/1l.2v-serial-nor—flash/?_
_locale=ené&selected=64Mb#Density.

Claire Wolf. PicoRV32 - A Size-Optimized RISC-V CPU. URL: https://github.
com/YosysHQ/picorv32.

Claire Wolf. PicoSoC - A simple example SoC using PicoRV32. URL: https://githu

b.com/YosysHQ/picorv32/tree/master/picosoc.

45

https://github.com/efabless/caravel_pico
https://github.com/efabless/caravel_pico
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.winbond.com/hq/product/code-storage-flash-memory/1.2v-serial-nor-flash/?__locale=en&selected=64Mb#Density
https://www.winbond.com/hq/product/code-storage-flash-memory/1.2v-serial-nor-flash/?__locale=en&selected=64Mb#Density
https://www.winbond.com/hq/product/code-storage-flash-memory/1.2v-serial-nor-flash/?__locale=en&selected=64Mb#Density
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32/tree/master/picosoc
https://github.com/YosysHQ/picorv32/tree/master/picosoc

	Introduction
	Omega Microelectronics
	The RISC-V specification
	What is RISC-V
	Why using RISC-V

	Aim of the Internship

	Theorical background
	Definitions
	The CPU
	The ISA

	RISC-V specification
	RISC-V base sets
	The extensions

	CPROC
	CPU core and ISA choice
	PicoRV32
	Configuration choice
	Register File using Latches

	Compilation flow
	CPROC
	Digital Flow
	Testing CPROC
	Synthesis, PnR

	Conclusion
	Abstract
	French
	English

