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1 Abstract

Automatic seizure detection is a largely studied subject and shows promising results to
ease the life of epileptic patients, in particular those for which drug treatments are not
efficient. As of today, no complete implantable or wearable system is ready for clinical
use to monitor and control seizure events. In this work, a user-oriented selection method
based on three selection algorithms namely Least Absolute Shrinkage and Selection Opera-
tor (LASSO), Maximum Relevance Minimum Redundancy (MRMR), and Random Forest
(RF) was developed to sustain the need for patient-specific solutions. It was validated on
a large feature pool composed of time domain, frequency domain, time-frequency domain,
and non-linear features with a threshold classifier. The results were assessed with the short-
term iEEG recordings of the SWEC-ETHZ iEEG Database of 16 patients. The detection
algorithm demonstrated good results with up to 100% accuracy and latency below 10s,
comparable to other existing seizure detection algorithms. A selection method, developed
to assist the neurologist in the selection of an optimal subset of features for a patient,
was shown to be helpful and ready to support future improvements. Additionally, an ar-
chitecture for hardware implementation was proposed on a Xilinx Virtex-7 FPGA (VC707).

Keywords - Epilepsy, Feature Ranking, Selection Method, FPGA, Feature ex-
traction, Mutual Information, Lasso, Random Forest
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3 Introduction

Nowadays about 50 million people worldwide suffer from epilepsy, a chronic neurological
disorder. A third of them have drug-resistant epilepsy and efforts are made to find alter-
native treatments to ease their life. These unexpected seizures may lead to physical injury
and generate constant anxiety for the patient and their relatives. Several alternatives to
medication exist such as palliative procedures or surgical intervention which are heavy
treatments without a guarantee of a successful outcome. Alternatively, automated real-
time seizure detection systems based on EEG signals have emerged over the past years,
offering the opportunity to provide immediate treatment, for example, in the form of elec-
trical stimulation [1] to stop the seizure. In the future, the hope is to prevent the seizures
proactively.
Seizure detection based on EEG signals requires, in the first place, recording through elec-
trodes the electrical activity of the brain. Data set of EEG signals, usually labeled between
ictal and inter-ictal periods by well-trained specialists, are now available to train algorithms
to recognize seizure event. Actually, each patient will show different EEG characteristics
and the available amount of data per patient are usually very limited. It is indeed very
time-consuming to record the EEG signals and requires hours of work by highly qualified
physicians to label the recordings. To perform classification of the recorded signals, one
should first extract specific features that characterize seizure events more accurately and
more specifically than a raw signal. Possibilities are numerous but usual features are basi-
cally divided into four different domains: time domain, frequency domain, time-frequency
domain, and non-linear features [2]. Although the available features are well-documented,
no exhaustive and reduced list of the ideal extracted features for seizure detection exists.
In fact, choosing the best feature set is a very problematic issue and many works mainly
focus on that matter[2] [3]. This selection is critical because it will affect the detection
accuracy, reactivity, and power consumption of the system. The solution is usually not
trivial and a trade-off will be required. Indeed, a minimal latency may lead to an increased
false alarm rate while large subsets of features will lead to increased power consumption.
Extracted features are then fed into a classifier. The classifier is able to sort the EEG
signals to detect seizure events after being trained with labeled data samples. It allows for
evaluating the performance of the features to detect seizures. Ultimately, the combination
of an EEG signal acquisition Unit (Electrodes, Filters, ADC, ...), a feature extractor, and a
classifier constitute the foundation of any detection system that should generate an alarm
when a seizure event is detected. Today, there are no automated closed-loop systems ready
for clinical purposes and that is why this problem requires further research.
In this master’s thesis, the goal was to, first, develop software as a selection method to
optimize seizure detection and offer patient-specific solutions. This task falls within the
global project of designing a complete closed-loop system [4] that would detect seizure
events with minimal latency and set an alarm that is able to generate electrical stimula-
tion feedback to stop the seizure. In short, the goal is to minimize detection delay while
keeping a very low false alarm rate. The second task of this project is to implement on
FPGA some scenarios of seizure detection developed during the first part to validate the
results and offer an applied hardware architecture. This implementation covers feature
extraction and classification with some of the feature subsets selected with the software
feature selection method.
This report is organized according to the following structure: The first introductory part
of the global project is covered in Sections 4 to 6. In Section 4, related works on seizure
detection are discussed and some relevant values of figure of merits (FOM) are mentioned.
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Note that FOM such as Accuracy, Sensitivity, Specificity, and False Alarm Rate are defined
in the subsection 6.6 for those who would not be familiar with the topic. In Section 5,
features that can be extracted from EEG signals are documented and finally in Section
6 the context of this project is specified with the relevant FOM that will allow a good
analysis of the results and technical details about the data set are given. In the second
part, Section 7 and 8 describe the seizure detection algorithm developed in this work with
application examples. Some theoretical elements concerning the three chosen feature se-
lection methods are given in the Subsection 7.3. Then the user-oriented selection method
is defined and analyzed to end the software implementation. The Section 8 is dedicated to
the hardware implementation of the detection device.
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4 State-of-the-art

The first descriptions of epileptic seizures date back to Antiquity and scientists were already
trying to identify the symptoms of this disease. Over the centuries, the understanding of
this disorder slowly grew. At the end of the 19th century, with the introduction of Elec-
troencephalogram (EEG), knowledge about epilepsy made a huge advancement [5]. EEG
was a key element for the development of classification and the will to replace or help
neurologists with automatic seizure detection systems. The automatic seizure detection
issue is now very popular and the available papers on the subject are numerous. Still,
this topic can be divided into a non-exhaustive list of the main covered thematic: Signal
pre-processing, Feature extraction, Feature Selection, Classification, and Hardware Imple-
mentation. It is important to note that although the final goal is usually to implement
a portable or implantable device, most of the papers do not propose the hardware imple-
mentation of the established algorithmic work.
For example, Jiang and Zhao [2] constructed a feature pool of 24 features commonly used
that cover the four feature domains1. They used a Maximum Relevance Minimum Re-
dundancy (MRMR) algorithm based on Mutual Information (MI) to rank the features
and generate feature subsets specific to each patient. Optimal subsets were selected by
evaluation of the performances through an Support Vector Machine (SVM) classifier. In
that way, they were able to propose seizure detection with high accuracy2 (up to 98.33%
accuracy with only one feature) with only a few personalized features per patient. Their
results were assessed with the UBonn and the CHB-MIT3 datasets. It is worth noting
that in their work, features such as the Lyapunov exponent and the average power of
the α band showed very good ranking results and happened to lead to the best accuracy
when used alone for seizure detection with some patients. Finally, they demonstrated that
MRMR offered a better ranking solution (with smaller subsets) than commonly used se-
lection methods, namely, Correlation Feature Selection (CFS), RelieF, and f_classif.
On the other hand, Peng et al. [6] demonstrated a two-step feature selection method based
on Linear Discriminant Analysis (LDA) and Least Absolute Shrinkage and Selection Oper-
ator (LASSO). LDA helped to detect the most informative channels while LASSO allowed
to build the subsets step by step. The initial feature pool was restrained to normalized
Power Spectral Density (PSD) from six different subbands thus this paper does not demon-
strate the developed selection method on a more broad range of features type. They used
the CHB-MIT dataset that they segmented in 10s windows and an SVM classifier.
Although the previously summarized research papers show the desire to offer personalized
feature selection for epileptic patients, no wearable platform was proposed and the work
was only developed on software from now on. Wang et al. [3] also provided a two-step
selection approach, implemented off-line, with MI for channel selection and Random Forest
(RF) for feature selection. The average false alarm rate provided by their method is about
8.5 daily false detection with a mean latency of 6s. Sensitivity for the seizure onset was
98.4% while sensitivity by sample reached 74.2%. Additionally, they implemented, by the
mean of High Level Synthesis (HLS), on a Xilinx FPGA the signal processing based on
FFT to extract spectral energy and a SVM classifier. EEG signals were treated as half-
overlapped windows of 4s. They proposed two different hardware implementations that
fulfilled real-time requirements with an execution latency below 0.5 ms.
Burrelo et al. [7] proposed a very well documented work using the SWEC-ETHZ iEEG

1Time domain, Frequency Domain, Time-frequency Domain, and Non-linear features
2In their case, accuracy is defined per window, thus this value is relatively high even if lower than what

is achieved in this work
3This dataset is based on scalp EEG signals
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Database [8] that will also be used in this work. For that reason, their work is good basis for
comparison purposes. Only three features were extracted: Line Length4, Mean Amplitude
and Local Binary Pattern (LBP). These features were then fed into various classifiers using
HD computing. Results are very promising and offer reduced latency and the possibility
for specific hardware implementation. Over the 16 patients that compose the database,
an average latency of 8.81s was obtained while achieving a specificity of 97.31% and a
sensitivity of 96.38%.
Wijesinghe et al. [9] depicted a hardware implementation of feature extraction for EEG
signals on a Virtex 7 FPGA that is similar to the one implemented in this work. A control
unit allows to activate the extraction of features selected by the user. The EEG signals are
stored in 24-bit data words. Multiple features, such as DWT, PSD, Band energies, or zero
crossing histogram are extracted simultaneously for each channel while the 14 channels are
fed serially to the extractors. All channels can be processed5 in less than one window du-
ration (2s) so that the real-time condition is fulfilled. They achieved an overall specificity
of 99.06% and sensitivity per sample of 88.43% with the dataset of Bonn University.
To sum up, these automated closed-loop systems are still in the development phase and
suffer from many limitations when dealing with hardware implementation. These kinds of
portable or implantable devices undergo some hardware constraints such as computational
complexity, power consumption, or the availability of the resources and require a lot of
attention.
Based on the study of these research papers this Master’s Thesis was organized and defined
as follows. The project is divided into two main parts: a software implementation in MAT-
LAB and a hardware implementation on FPGA. In the first part of this work, a selection
methodology was developed based on three different selection algorithms, namely Maxi-
mum Relevance Minimum Redundancy (MRMR) (based on Mutual Information), Least
Absolute Shrinkage and Selection Operator (LASSO), and Random Forest (RF) to rank
the features. Note that no channel selection was applied and that channels were simply
averaged for the sake of simplicity. In the future, it would be appreciated to also dig in that
direction. Indeed, the number of channels can be very large (up to 100 in the database)
thus processing each channel is not an option. Some channels may also contain noise arti-
facts that could degrade the detection while some channels may be redundant [3]. A large
feature set is extracted in MATLAB (offline) and fed to the different selection algorithms
to generate three independent rankings. Then, the detection results based on a simple
threshold classification are organized in EXCEL to expose the results of the collected data
and highlight the feature subsets that would fulfill the targeted specifications. The goal is
to provide the material for simpler trade-off analysis of the optimal generated subsets and
assist the neurologist in her/his decision. Although it is not to be proven that classification
also plays an important role in the detection performances, it is out of the scope of this
project and the main work will be directed towards the feature selection. The novelty
of this method is the direct implication of the specialist in the subset choice to provide
personalized seizure detection for each patient. The goal of the second part of this project
is to implement and validate on a Xilinx FPGA some scenarios that the neurologist could
select with this method.

4Equivalent to Coastline
5The sampling frequency is 128 Hz and the FPGA runs at 50Mhz
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5 Feature Pool

In this chapter, a non-exhaustive list of features that can be extracted from the EEG
signals is proposed. A reduced feature pool (Section 7.2), that does not contain all the
listed features here below, was fed to the selection method to ease the analysis and the
exposition of the results. The goal was also to limit the number of features to implement
on hardware for the second part of the work.

5.1 Time Domain Features

Time domain features are usually simple and based on statistics. For that reason, they are
well suited to hardware implementation because they can offer a low computational cost.

5.1.1 Mean

Even if it usually does not perform well for seizure detection when applied to the raw
signal, the mean value is an unavoidable statistical parameter in signal processing and it
will be kept for analysis purposes. It is a simple parameter to extract and should be kept
in the feature pool to see how selection methods may or may not discard this feature.

µ =
1

T

TX
i=1

xi (1)

The mean value6 of the signal is part of the feature pool of the paper of Jiang and Zhao
[2] but was always poorly ranked by the MRMR ranking method.

5.1.2 Root Mean Square (RMS)

RMS =

vuut 1

T

TX
i=1

x2i (2)

The RMS was used by Frances-Villora et al. [10] and Abbaszadeh, Behrooz et al.[11].

5.1.3 Maximum and Minimum

The maximum and the minimum value of the signal over an epoch are easy parameters
to extract that can be very useful for some particular patients. It was used by [2]. These
features are often not relevant in the case of the raw signal, however on the DWT coefficients
there are very promising for certain ranges of frequency.

5.1.4 Hjorth Parameters [11]

Standard deviation and the three Hjorth parameters are similar possible features to extract.
It was chosen to keep only the variance in the reduced feature subset, also referred to as
the 1st Hjorth parameter (Activity), for the sake of simplicity and relevancy in the ranking
analysis [12].

Variance/Activity 1st Hjorth Parameter)

σ2 =
1

T − 1

TX
i=1

(xi − µ2) (3)

6in absolute value
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Mobility (2nd Hjorth Parameter)

Mob =
σ′

σ
(4)

Complexity (3rd Hjorth Parameter)

Compl =
σ′′σ′

σ′σ
(5)

5.1.5 Skewness

Skewness was selected in the reduced feature subset proposed by Frances-Villora et al.
[10]. It is the third statistical moment and provides information on the asymmetry of the
probability function of the signal around its mean value. [11]

Skwe(X) = E((
X − µ

σ
)3) (6)

5.1.6 Kurtosis

Kurtosis is also a statistical feature that is one order higher than Skewness. It shows the
flatness of the probability distribution. [11]

Kurt(X) = E((
X − µ

σ
)4) (7)

5.1.7 Coastline/ Line Length

Coastline7 has proved itself to be a very efficient feature to characterize EEG segments
(especially with threshold methods) [12] while being easy to extract. It is equivalent to
the Line Length by a factor 1/T. In this work, the following definition will be used:

Coastline =
TX
i=2

|xi − xi−1| (8)

This parameter is very suitable for real-time extraction since it only requires the last two
samples.

5.1.8 Interquartile Range (IQR)

The Interquartile Range (IQR) is a measure of the spread of the signal data. It corresponds
to the range of values containing half of the data located in the middle as illustrated in
Fig. 18. In other words, IQR is defined as the difference between the upper quartile Q3
and the lower quartile Q1. [11][13]

7Also called Total Variation
8http://sesp.esep.pro/fr/pages_stat-theorie/html_images/envimage6.html
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Figure 1: Graphical representation of the IQR for a normal distribution

5.1.9 Zero Crossing Histogram

The zero crossing histogram is the count of the number of times the signal crosses the
x-axis during a time window.

5.2 Frequency Domain Features: FFT

Although time domain features offer low complexity extraction and good detection results
with a certain type of patients, it is not sufficient. For that reason, it is necessary to include
frequency analysis to extract more particularities of EEG signals. EEG signals are known
to show five or six specific frequency sub-bands in epilepsy [2][6]. For each band, it is then
interesting to extract the average power that corresponds to the integral over the frequency
range of the PSD. In this work, the six sub-bands shown in Fig. 1 were considered [10]. 9

Band Name δ θ α β γlow γhigh
Frequency
range [Hz] 0.5 - 4 4 - 8 8 - 12 12 - 30 30 - 47 47 - 120

Table 1: Frequency subbands of EEG signal

A commonly used extraction method for frequency components is Fast Fourier Trans-
form (FFT). Other methods that will not be further detailed in this work such as Discrete
Cosine Transform, Auto-regression (AR), or other PSD estimation methods also exist [2].
FFT is a strong tool to perform Fourier Transform with reduced computation time and
complexity and was largely applied in hardware implementations[3] [14]. The PSD can
then be obtained with the square of the magnitude of the FFT. Frequency analysis pro-
vides valuable information on EEG signals but is not able to capture the relation between
time and frequency.

9Frequency range definition may vary across other related works.
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5.3 Time-Frequency Domain Features: DWT

EEG provides non-stationary signals which means that the frequency spectrum will vary
over time. For that reason, Discrete Wavelet Transform (DWT) is a very useful tool that
is able to extract coefficients that reflect the time-frequency relation of the signal. In this
work, the Daubechies 4 is used as the mother wavelet which results in one residual signal
a5 (0-3Hz), and five detail signals d1(50-100Hz), d2(50-25Hz), d3(25-12Hz), d4(12-6Hz)
and d5(6-3Hz) which corresponds the five rhythms of the EEG signal. The previously
defined Time Domain features (Section 5.1) can also be defined as statistical features.
Some of these statistical features will be extracted for the DWT coefficients to obtain
Time-Frequency Domain Features (See Section 7.2).

5.4 Non-Linear Features

5.4.1 Approximate Entropy

Approximate Entropy exposes the complexity of a signal by quantifying the regularity and
unpredictability of its fluctuations. It has the advantage to not be affected by low level
noise [15]. That is why it is well suited for EEG signal characterization. It can be computed
with the two following expressions [16]:
The signal is divided in T-m vectors containing m consecutive sampling points such that
u(i) = [xixi+1...xi+m−1]

T . The self-similarity can then be calculated as such:

Cm
i (r) =

1

T −m+ 1

T−mX
j=0

θ(r − ||ui − uj ||∞) (9)

with r the tolerance. Finally, the Approximate Entropy combines all the indices over the
1s window length:

ApEn(X,m, r) =
1

T −m+ 1

T−mX
i=0

log(Cm
i (r))− 1

T −m

N−m−1X
i=0

log(Cm+1
i (r)) (10)

where θ is the Heaviside step function. During a seizure, this feature shows a steep drop. It
was implemented on MATLAB with the function approximateEntropy 10 with the default
values m = 2 and r = 0.2 std(X)11.

5.4.2 Higuchi Fractal Dimension

Fractal Dimension (FD) is a measure of the complexity of a pattern. To do so the pattern
is measured at different scales. This problem can be imaged with the measure of the
coastline: the more precision is used to take the length, the larger the result will be. The
FD is calculated as follows with Higuchi algorithm [17]:

Lm(k) =

PN−m
k

i=1
|x(m+ik)−x(m+(i−1)k|

N−1

T −m
(11)

FD =

kX
m=1

ln(Lm(k))

ln(1/k)
(12)

with k = 5 [17] and m ranging from 1 to k.
10Copyright 2017-2018 The MathWorks, Inc.
11This value of the tolerance r was shown to be an optimum value for finite data [15]
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5.4.3 Non-Linear Energy

The Non-Linear Energy can be defined as follows:

NE(X) =

T−1X
i=2

(x2i − xi+1xi−1) (13)

It has been shown to be a very effective feature for some patients with our method and
was shown to be a good parameter when applied to the raw signal by [16].
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6 Definitions and Specifications

In this section, the scope of this project will be further specified. Characteristics of the
iEEG dataset used to evaluate the performance of the selected features and the classi-
fication process will be given. The most important FOM are detailed to allow a better
understanding of the assessment of the results.

6.1 Context

Figure 2: Implantable system device flow

The ultimate purpose of this work development is to design a complete closed-loop im-
plantable system. The device should offer three main functions:

1. Patient-specific Feature Selection

2. Classifier Training

3. Real-time Seizure Detection with Feedback

A simplified flow for each of these functions is shown in Fig. 2. In this work, feature
selection was performed offline only. In the future, the hope is to include this data analysis
step directly on hardware so that this selection can be performed with the implant. This
would offer the possibility for regular updates of the feature subset used for seizure detection
without removing the implant. The idea is to have a set of features available for extraction
(i.e Full Feature Pool) on the implant and to select only a few of them for seizure detection
(i.e Selected Feature Subset). The neurologist has two interactions with the system. First,
he/she should label the EEG recordings before the feature selection and the classifier
training. Secondly, he/she has to select the optimized subset of features with the assistance
of the selection method. In Fig. 3, the model of detection is illustrated. EEG recordings
are labeled between two classes, inter-ictal and ictal. The goal of the system is to detect
the seizure onset as soon as possible and provide feedback to end the seizure. It is thus
assumed that the seizure will not last as illustrated by the red curve. This does not aim to
perform a complete EEG recording characterization. That is why the sensitivity is defined
per seizure event detected and not per window (see Section 6.6).
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Figure 3: Detection model

6.2 Definitions

• N: number of observations

• M: number of channels/electrodes

• T: number of sampling points per window

• fs: sampling frequency (512Hz)

• S: feature set, |S|: number of features

• TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative

• EEG: electroencephalography

• iEEG: Intracranial EEG

6.3 iEEG vs scalp EEG

EEG analysis is a strong tool for epilepsy seizure detection. The signals are obtained via
several electrodes connected either to the scalp or even implanted inside brain tissues that
will collect the signal from the brain. Scalp EEG is a non-invasive diagnostic tool that is
often used to locate the source and type of seizures before using a more invasive monitoring
method such as iEEG which involves depth electrode implantation in a surgery procedure.
Today, iEEG signals have proved to be an important tool to push and complete studies
in cognitive neuroscience [18]. In the context of this work, the final goal is to develop an
implantable device thus the need to analyze iEEG database to assess the results.

6.4 SWEC-ETHZ iEEG Database

Herein the short-term iEEG of the SWEC-ETHZ iEEG Database [8] was used. The pro-
vided data were pre-processed digitally with a Butterworth filter (0.5-150Hz) and sampled
at a rate of 512Hz. Data were collected for 16 different patients going through several
epileptic crises. These patients are known to be drug-resistant thus the need for real-time
seizure detection. Data are stored in a T×M matrix, with T the number of sampling points
and M the number of channels, each provided by one electrode. Each seizure recording
starts with 3min pre-ictal segments and continues with an ictal segment ranging from 10s
to 1002s that is finally followed by a 3min post-ictal period. The number of recordings
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(seizures) per patient is variable (ranging from 2 to 14). The number of recording elec-
trodes per patient may also vary between 36 to 100. Table 7 summarizes the previously
mentioned characteristics for each patient.

6.5 Segmentation

First, the data are restructured to be ready for feature extraction. Features will be ex-
tracted for each 1s window. This window length was chosen to provide enough sampling
points per window to capture the EEG characteristics while keeping an acceptable latency.
Further research could be carried out to optimize this parameter. These epochs are non-
overlapping and each contain 512 data points. Half of the data of each patient is used for
training purposes while the other half is used to test and validate the classification process.
All channel outputs are reduced to a single channel output by a simple averaging. This is
not ideal and preliminary channel selection could provide better seizure detection results.
Indeed, some channels contain more information about epileptic episodes while some may
even distort the signal characteristics with noise.

6.6 Figure of merits

To analyze the results obtained with the selected features and the threshold classifier it
is important to extract the relevant figure of merits (FOM) that will help to assess the
performance of the seizure detection. These FOM will be calculated during the software
implementation as a first step and will then be compared with the obtained ones during the
hardware implementation. These FOM are also very important to compare the results with
the other related work. There are four main FOM that will be used for the comparisons:
Sensitivity, Specificity, False Alarm Rate, and Latency. One can also mention accuracy
that is easily deduced from the sensitivity and the accuracy. The definitions are as follows
[7]:

Sensitivity

Sensitivity is a measure of the correctly detected seizure events. Note that this result
is independent of the delay before detection. If one of the 1s epochs that is part of the
ictal segment is labeled correctly then the seizure is considered as detected. Thus, the
sensitivity will, most of the time, be 100%. The definition of this FOM is directly linked
to the context in which this detection algorithm is used as explained in Section 6.1.PN

i=1 Seizi == ictal

N
(14)

Specificity

Specificity is the ratio of correctly classified non-seizure 1s epochs. Specificity must be
maximized for the comfort of the patient. Indeed, a low specificity induces a large false
alarm rate which leads to possible anxiety for the patients.

TN

FP + TN
(15)
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Macro averaging Accuracy

In this work, accuracy is defined in accordance with the number of detected seizures and
the correctly labeled intra-ictal 1s window rather than to all the correctly labeled 1s epochs.

sensitivity + specificity

2
(16)

False Alarm Rate

The false alarm rate gives a good indication of the possible disturbance that the patient
may experience when False Positive (FP) are recurring. This FOM is often not mentioned
in scientific papers. As a matter of fact, it is very difficult to obtain good results with
respect to the False Alarm Rate. Indeed, for a short-term database such as ours, the false
alarm rate increases drastically for each wrongly labeled window as a seizure (FP)12.

FP

SimulationT ime
[#/hour] (17)

As a reminder, with the CHB-MIT epilepsy database13, Wang et al. [3] (MI and RF
channel and feature selection + SVM classification) obtained a false alarm rate of only 8.5
per day with a latency of 6s at the cost of a sensitivity of 98.4%.

Seizure Onset Detection Latency

Latency represents the time between the starting point of the seizure defined by the expert
and the time at which the classifier detects the seizure. Latency should be minimized while
this may increase the false alarm rate. There is therefore a trade-off to be defined between
reactivity and accuracy. PN

i=1(tdetection − tstart)

N
(18)

12For one recording of 6 min without a seizure, a 1s window that is labeled as positive (FP) already lead
to a False Alarm Rate of 240/day

13969 Hours of scalp EEG recordings over 23 patients
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7 Software Implementation

7.1 Feature extraction

Feature extraction was done in MATLAB. Details about the code14 can be found in the
Appendix A.

7.2 Reduced Feature Pool

The Reduced Feature Pool was constructed with a total of 8 Time domain features, 15
Frequency domain features, 3 Non-Linear features, and, 6x8 Time-Frequency features (See
Table 11 in Appendix B). This reduction aimed to focus on an acceptable number of
features to ease the analysis of the results provided by the selection method. The frequency
domain features referred to as PSD correspond to the average power of the associated
subband while the one referred to as NP contains the normalized band power of these
latter with respect to the raw signal [0-120Hz] band power. RPHFLF is the ratio between
the high (β and γ bands) and the low (δ,θ and α bands) frequency band power.

7.3 Feature ranking and selection

In this work, three different selection methods were used independently to obtain three
different rankings of the features. One is a filter-based selection method based on Mutual
Information and the two others are embedded type feature selectors.

7.3.1 Mutual Information - Maximum Relevance Minimum Redundancy

The Mutual Information (MI) describes the statistical degree of correlation of two random
variables [2]. MI is a powerful tool to minimize redundancy when selecting features but
can also be helpful to detect the most relevant features to detect a seizure. That is why
MI has been frequently used as a selection method in various fields of studies and more
specifically for feature [2] or channel [3] selection in the scope of seizure detection.
There are two ways to define MI mathematically. It can be first defined in terms of joint
probability:

I(X,Y ) =
X

x∈X,y∈Y
p(x, y)log

p(x, y)

p(x)p(y)
(19)

where p(x.y) is the joint probability of x and y, and p(x) and p(y) are the respective
marginal probability distribution of x and y [2]. MI can also be written in terms of entropy:

I(X,Y ) = H(X)−H(X|Y ) (20)
= H(X) +H(Y )−H(X,Y ) (21)

where H(X) and H(Y) are the marginal entropy, H(X|Y) is the conditional entropy and
H(x,Y) is the joint entropy of X and Y [2]. As a consequence, I equals the entropy of X
when X and Y are the same random variable and equals zero when X and Y are independent
[19].
MI is then a very useful mathematical tool to apply a Maximum Relevance Minimum
Redundancy (MRMR) Algorithm. The feature-feature MI and the feature-class MI can be
further used to apply this algorithm. The class corresponds to the possible patient state:
intra-ictal or extra-ictal. Finally, the ranking can be constructed by choosing the features

14The complete code is available on request.
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offering the best balance between a maximized feature-class MI (maximum relevancy)
and a minimized feature-feature MI (minimum redundancy). In this work the Mutual
Information Quotient (MIQ) value will be used to rank the features [19] such that:

MIQx =
Vx

Wx
(22)

where the relevance Vx and the redundancy Wx are defined as follows:

Vx = I(X,Z)Wx =
1

|S|
X
z∈S

I(X,Y ) (23)

X and Y are the random variables each corresponding to a feature during an epoch and Z
is the response variable (ictal/non-ictal). |S| is the number of features in the feature set
S. The MRMR ranking method is implemented in the function fscmrmr15 that is available
in the "Statistical and Machine Learning Toolbox" of MATLAB and was used to perform
the MI ranking. It has the advantage to perform a binning (256 bins) [20] of the discrete
variables when computing the MI values with the definition in Eq. (19).16

7.3.2 Least Absolute Shrinkage and Selection Operator (LASSO)

LASSO selection method is an embedded method and was chosen to deeper evaluate the
possibilities that it can offer. Peng et al. [6] only applied it to PSD features and showed
promising results. LASSO solves a minimization problem that can be described by the
following formula:

min
β0,β

(
1

2N

NX
i=1

(yi − β0 − xTi β)
2 + λ

SX
j=1

|βj |) (24)

with N the number of observations, y the label vector, and S the number of features fed
into the selector. β0 is a scalar and β is a vector of length |S| that contains the coefficients.
The regularization term λ

PS
j=1 |βj | will force the coefficients of the eliminated features to

zero. The larger the regularization parameter λ the more zero coefficients will appear in
the β vector. The nonzero coefficients indicate the features selected for the chosen λ. The
limitation of this selection method is its incapacity to discard irrelevant features that may
be highly correlated with relevant ones. In this case, LASSO may pick these features to
compensate for the over-shrinkage of the nonzero coefficients. e.g if X1 and X2 are relevant,
X3 = a X1 + b X2 + ϵ would not be relevant even if the correlation is high [21].
In MATLAB, the function lasso(X,y)17 returns a matrix B18 containing 100 column-vector
that each corresponds to one value of λ19. Each vector contains one regression coefficient
per feature that will be zero when the feature has been eliminated by the selection method.
The input arguments are X, a NxS matrix containing N observations for each of the |S| fea-
tures. y is the vector containing the class label (seizure/non-seizure) for each observation.
To establish a ranking, each feature removed by the algorithm was added to the ranking
starting from the end.

15Copyright 2019 The MathWorks, Inc.
16Other available function implemented in Matlab usually encounter memory issues when using contin-

uous variables.
17Copyright 2011-2019 The MathWorks, Inc.
18corresponds to β vector from equation 24
19Obtained by default by a geometric sequence.
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7.3.3 Random Forest (RF)

Random Forest is an ensemble-based machine learning method. Often used as a classifier,
it can also provide a ranking for a group of selectors. As its name states it will randomly
pick features to grow decision trees but also chose a random part of the training set thanks
to bootstrapping. These characteristics enable low correlation between the individual trees
as well as low bias and high variance due to the depth of the tree.[22]
There is one main issue with RF, it is reproducibility. There is a different solution to
obtain a reproducible selection in MATLAB. One is to force the algorithm to pick all the
features to build the decision trees and the other is to set the seed of the random number
generator by using rng20. In this work, it was chosen to use the first option so that all
features would be taken into account by the RF algorithm. Note that it is not required to
involve all the features in the selection to obtain satisfying results but this does not result
in a systematic method and it would have been more difficult to analyze. A disadvantage
of RF is that it is unable to eliminate redundant features. It may be more appropriate to
use RF on a feature pool already reduced with methods such as MRMR that can remove
redundant features.

7.4 Classification

Classification is usually performed with powerful machine learning tools such as SVM or
RF. In this work, classification was not the center point of the research and for that reason,
the classification will be performed with a simple threshold comparison. This decision
will indeed result in lower seizure detection performance but it will ease the hardware
implementation and reduce power consumption. In future work, it would be interesting to
improve the classification to improve the detection accuracy and reduce the latency.

7.4.1 Threshold algorithm

To perform the classification on the training and the testing data set, it is required to
obtain the threshold value for each feature and each patient. This step was done using
the training data set and the Algorithm 1 from Wang et al. [23]. If the output range of a
feature during the ictal state does not overlap with the range in the inter-ictal state, the
threshold will simply be the median value between the minimum value of the higher range
and the maximal value of the lower range (l.12-13). If this condition is not fulfilled then
the algorithm detects all overlapping values to finally define the threshold as an average
of the deviations of each range over the other one (l.15-23). In this way, the threshold is
shifted higher if the low values (usually the non-ictal ones) tend to show random peaks of
higher amplitude and inversely. Lines 6-8 were added to distinguish the features that show
higher values during a seizure and the ones that show lower values.

7.4.2 Seizure Detection

After feature extraction, windows are labelled between ictal (logical ’1’) and inter-ictal
(logical ’0’) classes. A seizure is detected when all the selected features are characterized
as ictal by the threshold classifier during m consecutive windows as illustrated in Fig. 4.
In this case m = 2 which results in a detection latency of 4s21. This decision was made to
maximize specificity at all times to avoid a very large false alarm rate.

20Allows to control pseudo-random number generator in MATLAB
21Best case scenario offers a minimum achievable latency of 2s
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Algorithm 1 Threshold algorithm applied to each feature computed with the training
set. The label vector is given by the physician
Require: Extracted feature vector X, Label vector L
1: for i = 1 to N do
2: if L(i) = Seizure then
3: MemSeizure← X(i)
4: else
5: MemNonSeizure← X(i)

6: if Feature is higher during ictal state then
7: MemHigh = MemSeizure
8: MemLow = MemNonSeizure
9: else

10: MemHigh = MemNonSeizure
11: MemLow = MemSeizure
12: if min(MemHigh) > max(MemLow then
13: threshold← min(MemHigh)+max(MemLow)

2
14: else
15: for each element j of MemLow do
16: if MemLow(j) > min(MemHigh) then
17: SumLow ← SumLow +MemLow(j)
18: NumLow ← NumLow + 1

19: for each element j of MemHigh do
20: if MemHigh(j) < max(MemLow) then
21: SumHigh← SumHigh+MemHigh(j)
22: NumHigh← NumHigh+ 1

23: threshold← 1
2(

SumHigh
NumHigh + SumLow

NumLow )

Figure 4: Consecutive windows validation with two features

7.5 Selection Method

When it came to analyzing and selecting manually the optimal feature subset for each
patient according to the ranking provided by the three selection methods, the task appeared
to be very complex. Although MRMR, LASSO, and, RF provide a satisfying ranking,
they do not group the selected features in optimal subsets according to the classification
method. Indeed, these methods operate completely independently from the threshold
classifier. Thus, post-processing analysis is required.
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First, an analysis of subsets generated by taking the k best features (independent for each
selection method) was performed. This procedure allowed us to find some good subsets
for some patients but the available solutions were very limited. In Table 2 an example
of the results obtained for patients 1 and 2 is shown22. Each line corresponds to the
FOM obtained with the feature subset composed of all the features above. For example,
line top2 of patient ID1 gives the results of the classifier for the subset {7,35}. Figure 5
shows the monotone increase of the specificity as a function of the feature subset size (for
100% sensitivity only) which is a direct result of the logical AND classification performed
between all features of the subset (Fig. 4). The more constraints are added, the less FP
there will be. As a result, latency can only increase with the size of the subset. Although

Lasso MRMR RF
ID1 top 10 Sensitivity Specificity Latency top 10 Sensitivity Specificity Latency top 10 Sensitivity Specificity Latency
top 1 7 100.0% 88.3% 2.86 7 100.0% 88.3% 2.86 38 100.0% 85.6% 3.57
top 2 35 100.0% 89.9% 2.86 1 100.0% 94.3% 4.14 7 100.0% 90.1% 3.86
top 3 3 85.7% 92.1% 7.17 52 100.0% 96.8% 4.86 27 100.0% 91.6% 7.00
top 4 18 71.4% 96.8% 18.60 60 100.0% 98.5% 9.29 54 100.0% 92.9% 7.14
top 5 50 57.1% 97.0% 18.25 28 71.4% 99.2% 9.80 43 100.0% 93.3% 7.14
top 6 49 42.9% 98.3% 17.67 36 71.4% 99.5% 9.80 51 100.0% 93.9% 7.14
top 7 36 42.9% 99.0% 25.33 65 42.9% 99.8% 5.33 16 71.4% 96.9% 13.20
top 8 30 42.9% 99.0% 25.33 57 14.3% 99.8% 28.00 22 0.0% 0.0% 0.00
top 9 72 42.9% 99.2% 40.33 44 0.0% 0.0% 0.00 11 0.0% 0.0% 0.00
top 10 55 42.9% 99.2% 40.33 49 0.0% 0.0% 0.00 37 0.0% 0.0% 0.00
ID2
top 1 53 100.0% 70.4% 1.50 7 100.0% 59.7% 2.00 27 100.0% 75.4% 2.50
top 2 45 100.0% 81.8% 3.50 60 100.0% 75.6% 2.00 56 100.0% 86.1% 2.50
top 3 46 100.0% 89.3% 3.50 52 100.0% 86.3% 3.50 53 100.0% 86.1% 2.50
top 4 54 100.0% 92.1% 3.50 36 100.0% 91.7% 5.50 7 100.0% 86.1% 2.50
top 5 3 100.0% 95.1% 3.50 44 100.0% 95.7% 5.50 16 100.0% 90.8% 5.00
top 6 55 100.0% 96.4% 3.50 24 100.0% 98.2% 41.50 48 100.0% 92.6% 5.00
top 7 42 100.0% 96.4% 3.50 28 100.0% 98.8% 47.00 58 100.0% 92.9% 5.00
top 8 19 100.0% 99.2% 5.00 68 100.0% 99.6% 47.00 22 100.0% 99.4% 45.50
top 9 47 100.0% 99.4% 9.00 57 50.0% 99.7% 17.00 60 100.0% 99.7% 45.50
top 10 16 50.0% 99.7% 7.00 65 0.0% 0.0% 0.00 10 100.0% 100.0% 45.50

Table 2: First analysis of subsets generated with the top 10 features of each ranking
method for patient 1 and 2. Each line (e.g top 6) corresponds to the results of one subset
composed of the features above (e.g top 1 to top 6). A single window validation was used
for classification.

Figure 5: Specificity as a function of the feature subset size of the results from Table 2
showing 100% sensitivity

some acceptable results were obtained with some patients, the subset choice was limited
and was lacking flexibility. A deeper analysis was therefore required. For that reason, it
was decided to generate more subsets based on the ranking outcome23. By choosing a

22Note that feature numbering does not correspond to the final reduced feature set of Table 7.2
23As well as introducing consecutive windows validation to improve specificity
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depth of analysis n corresponding to the n best-ranked features by a selection algorithm
it was possible to create N subsets by generating all combinations of features of size 1 to
n (combinations of k elements in a given array of size n (Eq. 25)).

N =
nX

k=1

Ck
n (25)

For example, if n = 3, there would be seven generated subsets based on the three top-
ranked features: {1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}.
There are now more subsets to analyze and still no systematic method to make the decision.
The center point of this problem resides in the fact that all performances depend on each
other and that, for example, improving the specificity may as well increase the latency.
For example, in Table 2, one can see that for patient 2 with the LASSO method, it is
difficult to determine the optimal subset. Indeed, including feature 47 (top9) in the subset
would increase the specificity but the latency would be degraded and reach 9s. In this case,
how can we, engineers, decide whether a reduction in four seconds of the latency should
be preferred to ten more false alarms in a day? There is indeed a trade-off to consider
and the neurologist will be more qualified than engineers for that task. For these reasons,
a selection method that includes the neurologist in the decision-making was developed.
The goal is to expose to the neurologist all the information required to choose a subset of
features to perform seizure detection for a specific patient.

7.5.1 Implementation and Method flow

Figure 6: Method flow and interactions: All the signals processing and results calculations
are done with MATLAB. Excel is here to offer a synthesized overview to the user with the
possibility to tune specifications and filters.

Two software tools were used namely MATLAB and Excel. MATLAB is used to extract
the features from the EEG signal, rank the features, train the classifier, generate the subsets
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Subset Training set: Choice Testing set: validation Relative error

ID1 1 2 3 4 5 6 7 8 9 10 Sensitivity Specificity Latency[s] False Alarm
Rate [#/day] Sensitivity Specificity Latency[s] False Alarm

Rate [#/day] Sensitivity Specificity Latency[s] False Alarm
Rate[#/day] Result

Lasso 31 50 100.00% 99.21% 6.67 522.3 100.00% 98.49% 17.57 1175.9 0.00% 0.73% 163.57% 125.13% FAILURE
Lasso 50 100.00% 97.73% 6.67 1505.5 100.00% 97.14% 7.86 2228.1 0.00% 0.60% 17.86% 47.99% SUCCESS
RF 15 32 83.33% 99.68% 6.80 215.1 100.00% 98.77% 15.43 959.3 20.00% 0.91% 126.89% 346.03%
Lasso 6 32 50 100.00% 99.44% 6.83 368.7 100.00% 98.61% 17.57 1083.1 0.00% 0.84% 157.14% 193.76% FAILURE
Lasso 6 32 31 50 100.00% 99.44% 6.83 368.7 100.00% 98.61% 17.57 1083.1 0.00% 0.84% 157.14% 193.76% FAILURE
Lasso 32 31 50 100.00% 99.26% 6.83 491.6 100.00% 98.57% 17.57 1114.0 0.00% 0.69% 157.14% 126.61% FAILURE
Lasso 32 50 100.00% 99.21% 6.83 522.3 100.00% 98.49% 17.57 1175.9 0.00% 0.73% 157.14% 125.13% FAILURE
RF 15 32 39 83.33% 99.81% 7.00 122.9 100.00% 98.89% 15.71 866.5 20.00% 0.93% 124.49% 605.01%
RF 15 39 100.00% 99.81% 8.50 122.9 100.00% 98.69% 15.71 1021.2 0.00% 1.13% 84.87% 730.91% FAILURE
Lasso 6 45 31 50 100.00% 99.54% 20.67 307.3 100.00% 98.57% 17.57 1114.0 0.00% 0.97% 14.98% 262.58%

Table 3: Example of the content of the EXCEL results for patient 1

and finally classify the training and the testing set. Excel is used as a tool to expose the
results of the training to the user (the neurologist) to help him/her establish his/her subset
choices by tuning the specifications. It also displays the testing results for one final analysis.
The summarized method flow and interactions between the different blocks are shown in
Fig. 6. In the green box, one can observe the interactions between the neurologist and
the software. Some tunable parameters such as the depth of analysis and the number
of consecutive windows for validation of the seizure onset are given before the MATLAB
analysis. Then the analysis can be launched in MATLAB. The MATLAB part is split into
two phases: a 1st phase of analysis of the features (Blue box in Fig. 6) using the training
set (50% of the database) of the patient, a 2nd phase of classification (Orange box) using
both the training and the testing set (the other half of the database) where all the FOM
from Section 6.6 are extracted. In the Excel file (see Table 3), the user can find all the
subset combinations, up to the specified depth of analysis, and the corresponding FOM
related to the classification. In the EXCEL sheet Specifications, the user can specify the
constraints that the subset should meet to be validated. The available specifications are
as follows:

• Minimum Sensitivity [%]

• Minimum Specificity [%]

• Maximum Latency [s]

• Maximum False Alarm Rate [#/day]

Note that this list is not exhaustive and could be enlarged with more specifications to
match the requirements expressed by medical professionals (See section 7.7.4. It is then
possible to display only the valid subsets by filtering the last column Results as shown
in Table 15 in Appendix C. The column is either filled by SUCCESS when both training
and testing set fulfill the specifications, FAILURE when testing was not successful, and is
blank when the subset was not selected after training. It is then possible to apply filters
with respect to the different columns so that only the subsets of interest are displayed.
It is also possible to sort the subsets by descending, ascending values, or specific values
of a parameter. A case study is detailed in Section 7.6 for a better understanding of the
method. Two scenarios of usage of the method are described in the following paragraphs.

7.5.2 Scenario 1: User-oriented Validation

In this case, the neurologist has access to both the training and the testing classification
results. In this way, the neurologist can understand if the proposed subsets with the train-
ing set are reliable when the outcome matches with the testing set ones. A considerable
inconstancy between the two sets’ results could show a lack of training data or a deficient
feature pool. The neurologist could then determine whether more data are required to ana-
lyze the patient or whether the features proposed are not sufficient and cannot characterize
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the seizure of this patient. On the other hand, if specifications a met, the neurologist can
select a subset to be implemented in the implantable device for real-time seizure detection.

7.5.3 Scenario 2: Theoretical Validation

The testing set results are assumed unknown by the neurologist during the decision-making.
The purpose of these validations FOM is to extract an interval of confidence that the
training choices offer on the FOM. In this way, the error calculation between training and
testing classifications would be a good indicator of the success of the selection method.
In that way, the testing set provides a validation of the success rate of the training and
selection phase. Although this second scenario would be an interesting continuation for a
deeper analysis of the selection methods, the case study in Section 7.6 will be restrained
to Scenario 1.

7.6 Case Study

To illustrate the decision flow that the neurologist could follow to pick a feature subset, an
example with patient ID6 is detailed step by step. A total of four24 seizure recordings are
provided.

Step 1: Matlab Analysis

Step 2: Specifications

Step 3: Filters

Step 4: Final decision

Step 1 A MATLAB analysis of depth 10 with three consecutive windows validation is
performed. This will generate all the possible subsets for each selection method based on
the 10 best-ranked features and compute their performances. In this case, there will be
3×1023 (Eq. 25) lines of results.

Step 2 In an Excel sheet dedicated to the specifications, the neurologist can enter the
minimum specificity and sensitivity to reach and the maximum acceptable latency. In this
example, the following parameters were defined:

Min. Sensitivity Min. Specificity Max. Latency [s] Max. False Alarm
Rate [#/day]

1 0.95 15 N/A

Table 4: Specifications for Case Study of Patient 6

Step 3 In this case, there are 69 subsets that fulfill the requirements during training
and that were validated during testing as well as shown in Table 15 in the Appendix
C. 26 subsets were generated by LASSO, 2 by MRMR, and 41 by RF.25. Note that
in Table 15 some columns were removed to ease the reading and comprehension of the
information26. From this first table, it can be already concluded that Patient 6 offers many

24Two are used for selection/training and two for testing.
25Some subsets may appear twice or three times if selected by different selection methods
26These are specified in the notes of Table 15 in the Appendix C
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subsets with good specificity results, that often reach 100% and that seizure detection is
not problematic. It can be added that 50 subsets that satisfied the specifications during
training were discarded due to the testing results that most of the time showed non-
acceptable latency (except for two subsets with specificity lower than 95%). However, it is
important to note that the number of analyzed seizures is low. On one hand, it implies that
only a small amount of recordings (two seizures) is available to determine the threshold
for the classification but still, the training seems to be performing well, but on the other
hand, the testing set is also small and the validation may not cover all the types of seizure
that the patient may experience. Additionally, it can be noted that the feature subsets
size is strictly smaller than six which is easily explained by the fact that the classification
method is quite strict. Indeed, it requires all the selected features to detect the seizure
during the three same consecutive windows to set the alarm. The neurologist can now

Subset Training set: Choice Testing set: validation Relative error

ID6 1 2 3 4 5 Specificity Latency[s] FalseAlarm
Rate[#/day] Specificity Latency[s] FalseAlarm

Rate[#/day] Sensitivity Specificity Latency[s] FalseAlarm
Rate[#/day]

Lasso 18 99.31% 8.50 437.2 96.81% 9.00 1920.0 0.00% 2.52% 5.88% 339.11%
RF 18 99.31% 8.50 437.2 96.81% 9.00 1920.0 0.00% 2.52% 5.88% 339.11%
RF 53 98.47% 8.50 961.9 99.44% 11.50 333.9 0.00% 0.99% 35.29% 65.29%
RF 19 18 99.86% 9.00 87.4 99.03% 9.00 584.3 0.00% 0.83% 0.00% 568.21%

Lasso 18 15 100.00% 9.50 0.0 98.47% 9.00 918.3 0.00% 1.53% 5.26% -
RF 53 18 100.00% 9.50 0.0 100.00% 11.50 0.0 0.00% 0.00% 21.05% -

Lasso 60 99.58% 9.50 262.3 99.86% 12.00 83.5 0.00% 0.28% 26.32% 68.18%
Lasso 41 99.44% 10.50 349.8 99.72% 9.50 167.0 0.00% 0.28% 9.52% 52.27%
RF 53 6 100.00% 11.00 0.0 100.00% 11.50 0.0 0.00% 0.00% 4.55% -
RF 6 99.58% 11.00 262.3 99.86% 11.50 83.5 0.00% 0.28% 4.55% 68.18%

Lasso 55 99.86% 12.50 87.4 99.72% 12.50 167.0 0.00% 0.14% 0.00% 90.92%
Lasso 55 41 99.86% 12.50 87.4 100.00% 12.50 0.0 0.00% 0.14% 0.00% 100.00%
Lasso 41 18 100.00% 13.00 0.0 99.86% 11.00 83.5 0.00% 0.14% 15.38% -
Lasso 41 15 100.00% 13.00 0.0 100.00% 11.00 0.0 0.00% 0.00% 15.38% -
Lasso 41 17 100.00% 13.00 0.0 100.00% 12.00 0.0 0.00% 0.00% 7.69% -

Table 5: Best 15 subsets w.r.t specificity that fulfill specifications given in Table 4 for
patient 6

proceed to a further reduction of the number of subsets. For example, it is possible to sort
by specificity. As said before, in this case, it is not relevant because specificity is very high
in all the cases. A second option would be to sort by latency in the training phase (from
smaller to larger). The best 15 subsets are shown in Table 4. The normalized PSD of the
beta band27 (18) shows the best latency results, however, it leads to a loss in specificity
both during training and testing and more than 3000 false alarm per day. For that reason,
this feature may be discarded by the neurologist since it is not acceptable for the patient
comfort.

Step 4 Predicting what will be the choice of the neurologist at this point is difficult.
Indeed, the trade-off between the different subsets is now very arbitrary and may be led by
other parameters. Let’s assume the power consumption should be minimized. In this case,
the subset size can be limited to a single feature. There are 11 features that can be chosen
(Table 6). The only time domain feature is Coastline (6). There are four frequency domain
features selected and the others are based on DWT. In this work, it was speculated that
the final choice would go towards the coastline because it has the most direct computation
model since it does not require pre-processing such as FFT or DWT and still performs well
for patient 6.

27selected by RF and LASSO

Page 24



Master’s Thesis - Seizure Detection

ID6
Feature Specificity Latency[s] FalseAlarm

Rate[#/day] Specificity Latency[s] FalseAlarm
Rate[#/day] Sensitivity Specificity Latency[s] FalseAlarm

Rate[#/day]
18 99.31% 8.50 437.2 96.81% 9.00 1920.0 0.00% 2.52% 5.88% 339.11%
53 98.47% 8.50 961.9 99.44% 11.50 333.9 0.00% 0.99% 35.29% 65.29%
60 99.58% 9.50 262.3 99.86% 12.00 83.5 0.00% 0.28% 26.32% 68.18%
41 99.44% 10.50 349.8 99.72% 9.50 167.0 0.00% 0.28% 9.52% 52.27%
6 99.58% 11.00 262.3 99.86% 11.50 83.5 0.00% 0.28% 4.55% 68.18%
55 99.86% 12.50 87.4 99.72% 12.50 167.0 0.00% 0.14% 0.00% 90.92%
12 100.00% 13.00 0.0 100.00% 10.00 0.0 0.00% 0.00% 23.08% -
17 99.58% 13.00 262.3 96.39% 12.00 2170.4 0.00% 3.21% 7.69% 727.31%
13 100.00% 13.50 0.0 100.00% 14.00 0.0 0.00% 0.00% 3.70% -
66 99.03% 13.50 612.1 99.72% 10.00 167.0 0.00% 0.70% 25.93% 72.73%
52 99.86% 14.50 87.4 100.00% 11.50 0.0 0.00% 0.14% 20.69% 100.00%

First Column
Legend: Time domain Frequency domain

Table 6: Single feature that fulfill specifications for patient 6

7.7 Discussions

In this Section, the global results offered by the combination of the Reduced Feature Pool
(Table 11), the Threshold Classifier (Algorithm 1), and the Selection Method (Fig. 6) are
discussed.

7.7.1 Patients

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16
# seizures 13 4 2 14 10 4 2 2 9 5 2 10 7 7 3 6
# channels 47 42 98 62 54 64 36 59 56 100 64 49 92 74 61 92

Mean 71 223 99 98 99 146 15 57 144 14 124 45 79 587 121 79
Seizure duration [s] Min 10 96 73 31 80 89 14 52 104 10 60 23 19 154 52 19

Max 252 301 125 139 154 179 16 61 198 22 192 93 100 1002 184 100
Patient labelling of

Burrello et al. P10 P4 P13 P3 P12 P2 P6 P11 P15 P1 P16 P14 * P7 P8 P9

Burrello et al. obtained Sensitivity and Specificity of 100% with the patient
Burrello et al. did not reach 100% Sensitivity with the patient

∗No correspondance

Table 7: Characteristics of the seizures of the 16 different patients from the short-term
SWEC-ETHZ iEEG Database

Beforehand it is interesting to analyze the result obtained by Burrello et al. [7] to learn
more about the patients. Indeed, their results and our results corroborate the fact that
some patients are more prone to automatic seizure detection and good accuracy is easily
obtained while, some other patients, are more difficult to analyze and lead to poor FOM. A
first observation is that patients with a large number of recorded seizures are more difficult
to analyze. As a matter of fact, the more recordings, the more different types of seizures
may appear. Even if the training data are larger, the specificity of each seizure event
may degrade the training phase and the disparities within the seizures may not be well
characterized. These patients are a good representation of the real problem and point out
the difficulties that automatic seizure detection still faces today. Burrello et al. [7] obtained
100% accuracy28 with eight patients while there were not able to detect all seizures onset
for five patients for which 7 to 14 seizure recordings were provided. Patient 429 is a very
difficult case. The database is large and there do not seem to exist, at least with the
Reduced Feature Pool of Section 7.2 and the threshold classifier, individual features that
lead to good results with this patient. In Table 13 one can observe the poor specificity
results obtained with Patient 4 among all the features (often below 70%).

28100% accuracy implies 100% sensitivity and 100% specificity
29P3 in Burrello et al.
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Burrello et al. algorithm [7]
ID Latency [s] Spc. [%] Sens. [%]

P1 (ID10) 3.8 100 100
P2 (ID6) 10.4 100 100
P3 (ID4) 4.1 96.16 86.43
P4 (ID2) 24.9 100 100

P5 19.3 99.42 100
P6 (ID7) 8.0 100 100
P7 (ID14) 0.5 89.27 90.00
P8 (ID15) 12.9 100 100
P9 (ID16) 0 88.33 100
P10 (ID1) 0.8 97.44 94.52
P11 (ID8) 2.0 100 100
P12 (ID5) 0 93.22 95.00
P13 (ID3) 7 100 100
P14 (ID12) 7.9 99.53 76.17
P15 (ID9) 22.6 93.91 100
P16 (ID11) 17.3 100 100

Ave. 8.81 97.31 96.38

Table 8: Recapitulative table of the results of Burrello et al. [7] with the short-term
SWEC-ETHZ iEEG Database.

7.7.2 Features

In this section, a brief analysis of the Reduced Feature Pool will be discussed. Fig. 7
shows the number of appearances of each feature in the best 5 ranks of the three selection
algorithms across all 16 patients. One can observe how the feature Coastline outdoes
significantly all the other features with a total count of 18. Coastline was selected in the
top 5 at least once for each patient except for Patients 10,12 13 and 1530 (See Table 12
in Appendix B). Moreover, it usually appears in the subsets highlighted by the Selection
Method. This a very good feature for seizure detection that offer multiple advantages in
addition to the good detection performances. Extraction of the Coastline is easy and
well suited for real-time. The different feature domains are well represented in the most
selected features. After Coastline, a time domain feature follows a time-frequency domain
feature, the absolute mean value of the d1 coefficient of DWT. In the third position, there
is the normalized average Band-power of the band β, a frequency domain feature and in
the fourth position a non-linear feature, the Approximate Entropy. Moreover, one can
observe that, although time domain features may lead to good results with some patients
(e.g ID6, ID1, ...), it is not sufficient for others. For example, Patient 8 has only one time
domain feature (Coastline) selected (See Table 12 in Appendix B) in rank 5 out of the 10
best-ranked features. For that reason, it is justified to include multiple feature domains in
the Feature pool fed to the selection method.
In the first place, the mean value was fed as such in our classifier. It was a very problematic
feature since it would often come out as a well-ranked feature for many patients while
performing poorly with the threshold classifier. By observing the tendency of the mean
value with respect to the seizure label, it is clear that a single threshold algorithm cannot be
applied to this feature since it shows large positive and negative peaks during seizures. That
is why the absolute average value is more suited for classification purposes. Note that the
selection methods rank the mean and the absolute mean values similarly. Fig. 8 illustrates
the importance to use the absolute value of the average to perform the classification. It
shows the mean value of the db5 coefficient obtained by DWT. The threshold value is
also indicated. It can be observed that the feature value is below the threshold during the

30Rank 8 with RF
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Figure 7: Histogram of the features selected in the top 5 ranking with LASSO,MRMR and
RF over the 16 patients

pre-ictal period and that it rapidly increases after the seizure’s onset. During the post-ictal
period, it seems that the signal still shows some agitation that could lead to false alarms
if this feature was used alone with a single window for detection. The specificity could be
improved either by consecutive windows validation and/or by combining several features
to confirm the seizure on-set. Another possibility would be to increase the threshold but
this may increase significantly the latency and this is not a parameter that will be further
tuned in this work.

Figure 8: Mean and absolute mean values of the db5 coefficient during seizure 1 of patient
16 recordings. The threshold value for classification is shown in the second plot. The
orange curve shows the seizure region marked by the specialist.
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Subset Training set: Choice Testing set: validation Relative error

ID1 1 2 3 4 5 Specificity Latency[s] False Alarm
Rate[#/day] Specificity Latency[s] False Alarm

Rate[#/day] Specificity Latency[s] False Alarm
Rate[#/day] Result

RF 15 39 99.81% 8.50 122.9 98.69% 15.71 1021.2 1.13% 84.87% 730.91% SUCCESS
Lasso 6 32 45 28 99.49% 5.67 338.0 97.98% 16.29 1578.2 1.52% 187.39% 366.96% SUCCESS
Lasso 6 45 31 28 99.49% 5.67 338.0 97.94% 16.29 1609.2 1.56% 187.39% 376.11% SUCCESS
ID2
Lasso 41 99.31% 14.00 401.5 97.08% 6.50 1443.4 2.24% 53.57% 259.52% SUCCESS
Lasso 18 15 95.42% 20.00 2649.8 99.03% 18.50 481.1 3.78% 7.50% 81.84% SUCCESS
Lasso/RF 18 93.75% 10.50 3613.4 98.19% 18.50 893.6 4.74% 76.19% 75.27% SUCCESS
ID3
Lasso 27 36 100.00% 10.00 0.0 100.00% 7.00 0.0 0.00% 30.00% #DIV/0! SUCCESS
Lasso 41 36 100.00% 10.00 0.0 100.00% 7.00 0.0 0.00% 30.00% #DIV/0! SUCCESS
Lasso 48 36 100.00% 10.00 0.0 100.00% 7.00 0.0 0.00% 30.00% #DIV/0! SUCCESS
ID4
RF/Lasso/MRMR 18 93.06% 26.00 4577.7 95.91% 15.43 2867.9 3.07% 40.66% 37.35%
RF 57 83.61% 25.57 10803.3 75.48% 8.29 17207.6 9.73% 67.60% 59.28%
Lasso 3 7 80.71% 23.71 12712.8 71.90% 5.71 19713.6 10.91% 75.90% 55.07%
ID5
RF 57 6 99.72% 11.40 187.6 99.33% 16.20 454.3 0.39% 42.11% 142.21% SUCCESS
RF 57 99.33% 6.00 450.2 98.94% 15.60 719.4 0.39% 160.00% 59.79% SUCCESS
Lasso 22 97.44% 6.20 1725.7 98.78% 13.40 833.0 1.37% 116.13% 51.73% SUCCESS

Table 9: Subset selection for patients 1 to 5 with sensitivity 100%, Specificity maximized
and Latency below 20s. Classification is based on three consecutive windows validation.

7.7.3 Patients results

To provide an overview of the achievable performance with the selection method combined
with the threshold classifier, a selection of optimized subsets was done for patients 1 to 5.
The only fixed specification is sensitivity. It is set to 100%. On the other hand, specificity
will be maximized (with the training results) while an average detection latency of 20s
maximum will be accepted. The three best subset31 proposed by the selection method as
exposed in the EXCEL file for each patient are shown in Fig. 9. For each patient, the first
subset of this Table has been set as the selected one. FOM of the training are summarized
in Fig. 10 with a list of the selected features. Out of the five patients, Patient 332 offers
the best results with two DWT features. This good selection can be understood by the
fact that the database contains only two seizures, thus the algorithm performs better. A
latency of 7s was obtained with 100% accuracy which is equivalent to the result of Burrello
et al. in Table 8. Patient 433 shows a latency below 20s with the testing data set (7 seizures
to classify) set although during training no subset was able to provide such a latency. It
can also be observed in Table 13 in Appendix B that individual specificity of most of the
features hardly reaches 50% of specificity by a single window with this patient. Again,
this result proves that the seizure detection algorithm still requires improvement because
it is not able to cope with complicated patients with many seizure recordings. Indeed, the
false alarm rate remains very high. Note that even a few false alarm per day would still
be very uncomfortable for a patient and that is why specificity should, ideally, be more
than 99% with such short recordings to be acceptable. Still, it has been demonstrated that
the seizure detection algorithm of this work was able to detect all the seizure events for
patients 1 to 5 thus offering a sensitivity of 100%. Another advantage of the algorithm
is that it tends to select small subsets thanks to the strict classification. This is indeed
preferable for low-power applications.

7.7.4 Future Upgrades

The selection method has been developed as a flexible tool that would support different
seizure detection algorithms. Indeed, seizure detection being a hot topic, there already
exist multiple possibilities regarding the methods for feature extraction and classification
and many more are to emerge. The medical professionals may request different specifica-

31For patient 3, there were many more subsets offering the same performances
32Patient 13 of Burrello et al. (Fig. 7)
33Patient 3 of Burrello et al. (Table 7)
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Patient Sensitivty
[%]

Specificity
[%]

Latency
[s]

False Alarm
Rate [#/day] Subset

ID1 100 98.69 15.71 1021.2 {NPDelta(15),
d2IQR(39)}

ID2 100 97.08 6.5 1443.4 {d3RMS(41)}

ID3 100 100 7 0 {d1RMS(27),
d2Minimum(36)}

ID4 100 95.91 15.43 2867.9 {NPBeta(18)}

ID5 100 99.33 16.2 454.3 {d5Minimum(57),
Coastline(6)}

Table 10: Subset selection with FOM (of testing phase) for patients 1 to 5. Sensitivity is
100% and Specificty was maximized for a latency below 20s.

tions to assist their choice. It is therefore very likely that this method will be used with,
for example, a more performing classifier. Still, the method flow proposed in this work
will remain the same. In this next paragraph, a non-exhaustive list of the possible future
upgrades is presented.
First, one can mention the advantages ([3], [6]) that could offer channel selection, similarly
to feature selection. Indeed, the number of recording channels can be very large and it is
required to reduce this number for the feature extraction. It is indeed too costly to process
all channels individually and would not increase detection accuracy. In this work, an av-
erage of all channels was performed for the sake of simplicity and allowed good detection.
Still, channel selection could offer improvements.
The possible feature selection methods are numerous and only three were implemented in
this work. Indefinite further research can be done in that direction. Other algorithms,
based on statistics or correlation[16], for example, may offer different rankings while com-
binations of more than one method could provide a more mature ranking. Ultimately, the
ranking method may need to be adapted to the type of classifier. This is here a large lack
since the ranking is done by the software without aiming at features that are particularly
suited to a fast and accurate threshold detection. In addition to the specifications available
in this application, it could be very useful to add specifications regarding resource usage
and power consumption. This would include the hardware limitations in the analysis of the
most suitable subset and help the neurologist make a choice suited to the hardware imple-
mentation. However, these characteristics cannot be computed directly from the MATLAB
extraction code since it is not representative of the hardware implementation. A complete
hardware platform needs to be first developed to assess the power consumption of each
feature and the required resources. A constraint concerning the available processing blocks
may also be needed. Features based on FFT and DWT will lead to a higher computational
cost and should be limited in number. To conclude there is a large margin for possible
improvements and it is not possible to tune, in a realistic amount of time all parameters
at the same time. Still, the hope remains that a seizure detection algorithm suited for
wearable or implementable devices will soon be ready for medical use.
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8 Hardware Implementation

In this Section, the second part of the project, namely the hardware implementation, is
described. The role of this part is to validate the feasibility of a physical implementation
of the seizure detection system developed in this work and validate the selection method
results. As explained in Section 6.1, the feature selection is only performed offline in this
work. Here, an architecture for the feature extraction (only Coastline block), the training
of the classifier, and the seizure detection for real-time application are developed on FPGA
in VHDL language. The VC707 evaluation board for the Virtex®-7 FPGA was used. The
system runs at a clock frequency of 200MHz. The Clocking Wizard LogiCORE™ IP was
used to generate an output clock frequency of 50MHz to run the detection algorithm.

8.1 Architecture design

In the first place, the input specifications of the application need to be clearly defined to
understand the tasks and requirements that the hardware implementation needs to satisfy.
The provided iEEG signals were converted from analog to digital on 16-bits34 and are
sampled at a 512 Hz rate. It was decided to segment the recordings in 1s windows and to
store the iEEG values on 16-bits to avoid loss of information due to compression. Thus,
there will be 512 samples per window that will be processed to obtain one feature value.
As a consequence, each window should be processed in less than 1s to deliver a real-time
application. A possible latency can be accepted. This constraint is easily fulfilled with a
50MHz clock. A first top-down approach allowed to establish a primary global architecture
and identify the main modules. In this first phase of development, iEEG data will be stored
directly in the FPGA memory. Thus, the data are not written in real-time in the memory
at the sampling rate of 512 Hz but are stored during a memory initialization prior to
hardware computing. It was chosen to do so to center the efforts on the development of
the datapath and the data processing. By this assumption, the following modules were
defined:

• Static Memory Unit

• Control Unit - FSM

• DMA Controller

– FSM (for control)

– Address Generator

• Buffer (to transfer data from the memory to the accelerators)

• Accelerators

• Classifier Training (based on Algorithm 1)

• Classifier (Detection)

• Threshold Memory

In Fig. 9 one can observe the relation between the different blocks listed above.
34Data available from the SWEC-ETHZ iEEG Database are provided in .mat files with values saved in

64-bits signed floating point type (probably due to the applied digital filtering). The data were reconverted
to 16-bits unsigned integer by offset and rescaling
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Figure 9: Micro-architecture of the seizure detection algorithm implementation

8.2 Control Unit

The control unit based on a Finite State Machines (FSM) can be triggered by an ex-
ternal input, in this case PushButtonxS, and enter either in TRAINING mode or in
TESTING mode depending on the previous state as shown in Fig. 10. In the current
implementation the dashed lines states are not implemented. They will be required when
more than one accelerator will be implemented. CONFIGURE will activate/disable the
accelerators blocks chosen during the offline selection. This configuration will control the
classification logic but should also disable unused blocks for power savings purpose. One
possible solution, although not recommended, would be clock gating. It leads to additional
logic but can significantly reduce the power consumption of the system. For a final imple-
mentation, the three dashed TRAIN states would replace the single TRAINING state
to compute the threshold of each accelerator block sequentially. This allows to reuse et
therefore minimize the required hardware resources. In each state, several control signals
will be generated and sent to the other blocks. In this implementation the control unit
does not communicate with the Memory Unit. This communication is to be implemented
in the future for the real-time communication between the PC and the FPGA. The VHDL
code can be found in Appendix D.0.2.

8.3 DMA Controller and FIFO Buffer

To transfer and segment EEG signals stored in memory to the other blocks of the architec-
ture, a Direct Memory Access (DMA) controller was designed. It has direct access to the
memory unit and generates the addressing. The memory output is driven to the input of
the Buffer while the outputs of the two FIFOs are sent to a multiplexer that sends the data
ready to be read to the accelerators blocks (Fig. 9). Each FIFO provides state signals that
indicate whether the FIFO is empty, full or the output data are valid for reading. When
allowed by the control unit, the DMA controls the transfer of data from the memory unit
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Figure 10: Proposed control FSM - Dashed lines correspond to states that were not yet
implemented in the current design

to the buffer block. The FSM shown in Fig. 11 controls the enable/disable signals for
reading and writing into the two FIFOs buffers (Moore machine). The state transitions
are triggered by the status signals from the two FIFOs: EmptyxS and FullxS and the pro-
cess stops either when the memory is empty during training or when the user requests to
stop the detection algorithm (StopxS during testing). Additionally, the FSM output a high
NewWindowxS signal during certain transitions (Mealy Machine) to count the number of
windows processed and generate the addressing to send to the memory. Additionnal buffer
states WR1_MEM_READY and WR1_MEM_READY were required to synchronize
the addressing and the writing into a FIFO. In the current implementation WR2, RD1,
and RD2 are states that are never reached because full_F1xS is true during the same
time clock cycle as empty_F2xS and inversely. Although they are not needed yet, they
were kept since they will be required to use certain additional accelerator blocks that re-
quire more than 512 cycles to compute. In that case, an additional control signal emitted
by the DMA controller will sent the data FSM in these states that pause the buffer until
the accelerator is ready again for a new window.

Figure 11: FSM for the control of the data - Read data sample from memory and write
windows of 512 samples into FIFO used as a buffer between memory/ADC and accelerators
block

8.4 Accelerators

When data are ready to be read from one of the FIFO, the accelerator receives a signal to
start processing. Data arrive in the accelerator at the same rate as they were written in
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Figure 12: Coastline block

the FIFO (50MHz). It is well suited for the first implemented accelerator Coastline that
is processed in the same number of cycles required to fill a FIFO. It may be required to
use a slower clock for more complex accelerators that cannot be processed in 512 cycles.

8.4.1 Coastline

Coastline is a very suitable feature for hardware implementation. It is the sum over
the window of the absolute value of the difference between the current and the previous
sample (Eq. 8). The advantage is that the feature can be processed as soon as the samples
arrive at the input (once the second sample is read) and that the final value is valid in
CoastxDP one cycle after the last sample has been transferred. In Fig. 12 the elements
used to compute Coastline are presented. A D-Flip-Flop at the entry of the block is
used to keep in memory the previous sample. Then the absolute value is obtained by
selecting the valid subtraction (positive) with a comparator. The result is added to an
accumulator and memorized in another D-Flip-flop until the counter reaches 512-1 and
generates a signal ReadyxS to signal that the value will be valid in the next cycle. The
counter generates a reset signal that clears the CoastxDP signal35. The EEG signal value
is stored on 16-bits and the Coastline value is stored on 25-bits during the process. In that
way, no overflow can occur. The maximum difference between two samples is equivalent to
all ’1’s on 16-bits and a multiplication by 512 corresponds to 9 shifts left thus a maximum
of 25-bits (unsigned integer). The CoastxDP is not reduced to 16-bits (by a division by
512 for example) because it could lead to loss of information. The VHDL code is available
in Appendix D.0.4.

8.5 Classification

8.5.1 Training

The training phase starts when the user sends a request that is transferred via the control
unit to the threshold block. The operations for the threshold algorithm (See Algorithm 1
for pseudocode) are controlled with a Moore FSM shown in Fig. 13. It remains in IDLE
state until the training_startxS signal is set high. The training phase is divided into
two stages. The first one consists of memory filling and sorting which corresponds to the

35The sum is calculated from the second cycle because it should wait for two samples
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Figure 13: Moore FSM of the threshold algorithm hardware implementation

states WAIT FOR SAMPLE and SAVE/SORT SAMPLE. For each new value that the
accelerator (that is being trained) computes for a 1s window, a new sample can be saved.
Indeed, the accelerator requires more than one cycle to process a 1s window (minimum
512 cycles to read the FIFO elements). Once the training values are saved, the test
corresponding to line 12 of the Algorithm 1 is evaluated. If the test returns true, the
threshold value is known and the training is over, otherwise, the threshold requires several
cycles to be determined. For that, four sums (SumLow, NumLow, SumHigh, NumHigh)
and two divisions ((SumLow/NumLow, SumHigh/NumHigh) must be performed (line
23 of Algorithm 1) and ultimately a shift right (division by 2). It was chosen to perform
sequentially the result of the four sums and the two divisions to reuse the blocks since there
are nos constraints of time for these operations and it allows to minimize area by using only
two counters and one divider as illustrated in the data flow of threshold algorithm in Fig.
14. State SUM1 (and SUM2) will last a variable number of cycles equal to the number
of saved samples. When the transition to the next state is enabled, the data SUMxDP
and CNTxDP are sent to the divider inputs, respectively the dividend and the divider.
while the division is performed in a fixed number of cycles of 29. This training flow is
to be repeated with each selected feature (accelerator) sequentially (Control FSM) with
the same training set. Thus, the same memory blocks can be reused to save the ictal and
non-ictal values. The size of these two blocks of memory will depend on the size of the
training database. For example, a training of the Coastline feature with the first seizure of
patient 636 would require one block of (180x2x512)x25-bits and one block of (89x512)x25-
bits which leads to a total of 718 400 KB which is quite consequent already. The proposed
algorithm has the disadvantage that it needs to compare all the values of the accelerator
(with the training set) to define the MaxV alxDP and MinV alxDP before switching to
state TEST and starting the calculations. To eliminate these two memory blocks during
the training phase, it would be possible, once the real-time communication with the PC
is implemented, to, first, send these values to the PC and store them. Simultaneously,
MaxV alxDP and MinV alxDP would be determined. And secondly to send back from
the PC to the threshold block the stored data. Again, the training is not constrained by
time in this case and any delay in the data transmission is acceptable. This classifier is
very advantageous with respect to other classifiers in term of resources. The computational
cost is low and only a few parameters have to be saved after the training: the threshold
values of each selected accelerator.

362x3min of non-ictal samples et 89s of ictal samples
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Figure 14: Data flow of the training block (with simplifications)

8.5.2 Detection

Figure 15: FSM for seizure detection with three consecutive windows validation

The multiple consecutive windows validation for classification was simply implemented
with a FSM with four states. If the label obtained from the comparison between the
accelerator block output value and the threshold computed during the training is ’1’ (ictal)
the FSM goes from state NO to Y ES1. When state 3Y ES is reached the alarm is set.

8.6 Discussions

In this section, a global hardware architecture for training and the testing phase was
proposed. Efforts were made to minimize the resources by reusing blocks when it was
possible. This is for example well suited for the threshold algorithm where it is not required
to process all the feature values at the same time, the training data set being accessible at
all times37. The value of the Coastline block is stored on 25-bits. By a simple division by
a constant (a multiple of 2), it is possible to reduce the number of bits. This would allow
reducing the memory blocks required during the training. An analysis of the accuracy with

37not real-time acquisition since it requires the labels from the neurologist
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respect to the bit reduction would allow finding the optimal number of bits (between 25
and 16) that do not lead to critical loss of information. Due to technical difficulties and
time constraints, it was not possible to propose a demonstration on the FPGA and collect
the detection results obtained with the implemented Coastline accelerator. The data
transfer through FIFOs from the memory unit to the accelerator block and the Coastline
training phase were validated with simulations. The division used with threshold classifier
is not optimal but still requires fewer resources than a machine learning based classifier.
The next step for this hardware implementation will first be to develop a real-time PC
to FPGA data transmission to simulate real-time data acquisition. Secondly, additional
accelerator blocks should be implemented with appropriate control management regarding
the selected features and system to disable non-selected blocks for power savings.
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9 Conclusion

A state-of-the-art study of the existing seizure detection systems leads to the identification
of possible areas of improvement. Hence, it was proposed to develop a detection algorithm
from software to hardware implementation, the final goal being an implantable device for
closed-loop seizure detection system with patient-customized solutions. This implementa-
tion aimed to optimize the seizure on-set detection latency without degrading the detection
accuracy. For that purpose, a large Feature Pool was built with features of different do-
mains that are commonly found in the literature. The following selection algorithms were
chosen to generate small subsets of features optimized for each patient: Least Absolute
Shrinkage and Selection Operator (LASSO), Maximum Relevance Minimum Redundancy
(MRMR) and Random Forest (RF). A classification procedure based on threshold compari-
son was used. It was then suggested to complete the software processing by an intervention
of the neurologist in the process because their expertise would allow finalizing the decision
process of optimal subsets. The developed selection method with MATLAB and EXCEL
demonstrated promising results. It was designed such that it offers flexibility to support
further needs, specifications, or requirements for future development. It was possible to
identify good subsets for patients with a small number of seizure recordings that could reach
100% sensitivity and accuracy for both the training and the testing set. Results in latency
were acceptable (below 20s) but there is a place for further improvements. Parameters
such as the Feature Pool, the window length (with possible overlap), the threshold value,
the number of consecutive windows for seizure detection, or the logical function applied
within the selected features can be further tuned. It was demonstrated that, as observed in
the work of Burrello et al. [7], patients with large data sets are more illustrative of reality
and more complex to characterize. These patients showed lower detection accuracy or long
detection latency. One can conclude that the seizure detection algorithm is still not robust
enough and a more adaptive methodology for training and classification may solve this
issue. This work was able to show that the Coastline is a very interesting feature that was
often chosen by the different selection methods and demonstrated good performance for
seizure detection with several patients. The hardware implementation also points out that
this feature is well-suited for real-time applications since it can be processed at the same
rate as the data inputs without any delay and with only one D-Flip to save the previous
data sample. A hardware architecture was proposed to implement the seizure detection
algorithm.
In future works, the hardware implementation can be further extended. The system should
propose a set of available accelerator blocks that can be activated/disabled according to
the neurologist feature subset selection. Ultimately, this block should be implemented in a
complete closed-loop seizure detection system that will consist of a data acquisition block,
the block proposed in this work (feature extraction, training, detection), and a feedback
generation block and aim to stop the seizure in real-time.
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Appendix A MATLAB code

The code used for the software implementation is available on request. It has been written
according to the format of the short-term SWEC-ETHZ iEEG Database. The main file
can be run without any input arguments. In this case, the ID of the patient should be
specified in the main script. Other parameters can be tuned such as the depth of analysis
for the selection method, the number of consecutive positively labelled windows required
for a seizure detection and the window length in seconds. If one need to extract the selec-
tion method results, for one or more patients, in an excel file, the script RunAllPatients.m
can be launched without arguments. To use this code with other datasets, the path to
the file in read_data.m should be updated and the reading method may need changes to
correspond to the data format of the recordings. In the same way, the segmentation of the
windows and creation of the label vector may need updates.
Features are stored as structures with 4 fields: Name, ID, type and threshold. The name
and the type are read (get_feature_info.m) from an excel file where all information are
stored. The threshold is computed during the training phase and is used for the classifica-
tion of the training and the testing pool.
The following MATLAB Toolbox are required to execute the code:

• Signal processing Toolbox

• Statistics and Machine learning Toolbox

• Wavelet Toolbox

• Predictive Maintenance Toolbox

• System Identification Toolbox

• Data Acquisition Toolbox

The Higuchi Fractal Dimension was computed with the script from Jesús Monge Álvarez38

Appendix B Selection method: Excel results

ID Name Domain ID Name Domain
1 Mean∗ Time 35 d2Maximum Time-freq.
2 RMS Time 36 d2Minimum Time-freq.
3 Maximum Time 37 d2Variance Time-freq.
4 Minimum Time 38 d2Coastline Time-freq.
5 Variance Time 39 d2IQR Time-freq.
6 Coastline Time 40 d3Mean∗ Time-freq.
7 IQR Time 41 d3RMS Time-freq.
8 PSDRaw Frequency 42 d3Maximum Time-freq.
9 PSDDelta Frequency 43 d3Minimum Time-freq.
10 PSDTheta Frequency 44 d3Variance Time-freq.
11 PSDAlpha Frequency 45 d3Coastline Time-freq.
12 PSDBeta Frequency 46 d3IQR Time-freq.
13 PSDLowGamma Frequency 47 d4Mean∗ Time-freq.

38https://github.com/malkhodari/COVID19_breathing_machine_learning/blob/main/Higuchi_FD.m
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ID Name Domain ID Name Domain
14 PSDHighGamma Frequency 48 d4RMS Time-freq.
15 NPDelta Frequency 49 d4Maximum Time-freq.
16 NPTheta Frequency 50 d4Minimum Time-freq.
17 NPAlpha Frequency 51 d4Variance Time-freq.
18 NPBeta Frequency 52 d4Coastline Time-freq.
19 NPLowGamma Frequency 53 d4IQR Time-freq.
20 NPHighGamma Frequency 54 d5Mean∗ Time-freq.
21 RP_HF_LF Frequency 55 d5RMS Time-freq.
22 RPBetaGamma Frequency 56 d5Maximum Time-freq.
23 ApproxEnt NonLinear 57 d5Minimum Time-freq.
24 FractalDimension NonLinear 58 d5Variance Time-freq.
25 NonLinearEnergy NonLinear 59 d5Coastline Time-freq.
26 d1Mean∗ Time-freq. 60 d5IQR Time-freq.
27 d1RMS Time-freq. 61 a5Mean∗ Time-freq.
28 d1Maximum Time-freq. 62 a5RMS Time-freq.
29 d1Minimum Time-freq. 63 a5Maximum Time-freq.
30 d1Variance Time-freq. 64 a5Minimum Time-freq.
31 d1Coastline Time-freq. 65 a5Variance Time-freq.
32 d1IQR Time-freq. 66 a5Coastline Time-freq.
33 d2Mean∗ Time-freq. 67 a5IQR Time-freq.
34 d2RMS Time-freq.

Table 11: Reduced feature pool used with the selection algorithms

∗The absolute value of this feature is considered.

Rank 1 2 3 4 5 6 7 8 9 10
ID1
Lasso 6 32 3 17 45 1 31 54 50 28
MRMR 6 54 17 47 26 33 61 40 35 1
RF 15 6 32 40 1 35 17 18 39 13
Specificity 25 30 37 14 27 34 44 12 58 6
ID2
Lasso 48 41 42 49 3 50 38 18 43 15
MRMR 6 23 54 26 33 47 50 22 40 13
RF 48 54 9 6 32 56 18 57 25 35
Specificity 14 12 37 58 51 56 25 13 35 34
ID3
Lasso 27 6 41 48 36 49 29 18 54 50
MRMR 27 18 33 26 54 40 47 36 53 17
RF 27 36 26 50 17 1 6 42 47 16
Specificity 13 14 42 43 10 44 30 28 40 58
ID4
Lasso 21 18 28 30 3 1 17 7 20 12
MRMR 18 26 33 25 1 16 61 59 28 15
RF 53 18 12 6 57 23 15 39 14 38
Specificity 21 20 19 18 13 17 61 54 10 14
ID5
Lasso 6 66 59 23 46 39 20 32 19 22
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Rank 1 2 3 4 5 6 7 8 9 10
MRMR 2 33 40 47 46 22 59 10 39 1
RF 2 39 4 32 46 3 57 6 8 14
Specificity 58 11 10 12 8 9 5 51 65 7
ID6
Lasso 55 48 66 41 18 15 42 60 23 17
MRMR 52 23 26 40 61 47 17 33 54 39
RF 53 54 61 6 52 16 19 13 12 18
Specificity 51 48 52 13 50 12 58 49 11 25
ID7
Lasso 44 30 53 63 33 19 26 56 42 13
MRMR 44 40 16 33 1 61 54 15 47 26
RF 14 6 28 27 45 40 37 46 15 31
Specificity 6 14 27 30 39 25 38 41 44 45
ID8
Lasso 55 48 66 41 18 15 42 60 23 17
MRMR 52 23 26 40 61 47 17 33 54 39
RF 53 54 61 6 52 16 19 13 12 18
Specificity 51 48 52 13 50 12 58 49 11 25
ID9
Lasso 48 55 50 41 49 3 15 56 45 5
MRMR 6 15 47 26 54 33 40 50 18 42
RF 50 19 26 6 3 49 23 42 13 41
Specificity 29 36 43 13 28 12 42 35 11 50
ID10
Lasso 37 14 21 19 39 11 10 58 66 5
MRMR 39 16 40 47 26 19 46 35 32 17
RF 39 2 38 36 64 16 3 32 26 14
Specificity 13 46 14 44 45 41 43 37 42 12
ID11
Lasso 6 15 21 53 19 29 56 8 20 17
MRMR 25 15 47 26 33 40 22 39 57 18
RF 6 36 23 19 64 7 2 26 54 16
Specificity 29 5 21 8 10 17 18 50 66 22
ID12
Lasso 52 51 21 12 53 58 8 16 9 19
MRMR 52 16 18 33 54 26 24 30 61 53
RF 21 24 23 52 3 18 53 2 17 27
Specificity 51 12 44 25 13 14 58 37 48 43
ID13
Lasso 32 53 23 18 39 16 13 35 65 52
MRMR 48 18 46 53 13 12 16 50 39 1
RF 53 23 48 3 18 12 10 2 14 50
Specificity 51 12 13 58 8 11 10 25 44 48
ID14
Lasso 24 6 23 20 39 31 38 16 45 41
MRMR 25 17 16 22 26 47 40 61 60 33
RF 12 3 66 25 49 1 11 48 29 18
Specificity 5 8 65 51 9 10 25 58 3 7
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Rank 1 2 3 4 5 6 7 8 9 10
ID15
Lasso 55 52 24 53 16 20 18 22 57 19
MRMR 10 22 54 23 16 60 24 18 51 67
RF 24 20 22 12 16 3 19 6 53 1
Specificity 11 50 53 24 12 22 51 57 56 64
ID16
Lasso 48 41 4 18 57 50 21 35 15 66
MRMR 6 20 26 54 33 47 40 61 18 60
RF 39 23 43 46 13 15 45 18 41 28
Specificity 10 42 14 13 36 35 43 28 44 5

Time Domain
Frequency Domain
Non Linear Features
DWT

Table 12: Top 10 ranking of the three selection methods (LASSO, MRMR and RF) and
Top 10 specificity ranking obtained with the threshold classification on the training set

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8
1 75.14% 65.97% 73.61% 58.25% 85.39% 61.39% 75.56% 79.17%
2 74.35% 75.97% 80.00% 42.94% 87.44% 87.08% 98.33% 85.83%
3 76.76% 82.36% 86.11% 43.33% 85.89% 90.28% 98.06% 87.50%
4 74.63% 77.78% 83.33% 42.78% 86.89% 92.50% 96.11% 84.44%
5 82.45% 83.19% 85.00% 51.51% 88.83% 91.67% 98.33% 87.22%
6 88.15% 90.42% 75.83% 45.32% 83.78% 89.44% 99.44% 94.17%
7 75.74% 78.89% 81.94% 45.04% 87.94% 85.14% 98.33% 87.78%
8 82.59% 87.92% 89.17% 58.29% 90.28% 90.00% 97.78% 89.72%
9 80.88% 77.64% 83.33% 61.07% 90.06% 81.81% 86.94% 88.06%
10 88.15% 90.42% 91.94% 61.79% 91.72% 91.67% 87.50% 88.33%
11 86.62% 88.89% 88.06% 61.51% 91.78% 93.89% 89.44% 80.28%
12 88.47% 95.83% 88.06% 60.36% 90.83% 94.17% 96.94% 82.78%
13 86.34% 92.64% 97.22% 65.79% 85.39% 95.97% 98.89% 88.33%
14 92.13% 96.67% 94.44% 61.71% 84.00% 92.08% 99.44% 91.94%
15 44.21% 65.97% 60.00% 56.03% 32.94% 76.81% 54.17% 72.50%
16 56.44% 66.94% 56.94% 48.10% 51.61% 69.17% 46.39% 58.61%
17 53.56% 70.69% 69.72% 63.93% 51.22% 78.33% 58.06% 46.94%
18 48.98% 71.67% 72.78% 69.29% 39.83% 82.36% 70.83% 38.33%
19 53.52% 65.69% 63.06% 71.75% 44.56% 76.53% 65.83% 44.17%
20 52.69% 61.81% 60.56% 75.16% 42.61% 66.67% 68.89% 42.22%
21 59.40% 72.08% 72.22% 75.83% 47.22% 83.89% 81.39% 43.61%
22 63.01% 82.22% 71.94% 60.00% 74.00% 81.53% 72.78% 60.56%
23 58.80% 47.36% 53.33% 34.56% 76.72% 41.94% 56.67% 69.72%
24 53.33% 63.89% 59.72% 39.60% 66.50% 61.53% 53.61% 61.94%
25 94.91% 93.06% 80.83% 50.52% 87.83% 93.75% 99.17% 93.89%
26 66.85% 76.67% 72.50% 61.35% 63.83% 79.17% 81.94% 75.83%
27 90.05% 87.78% 89.44% 52.14% 74.78% 88.75% 99.44% 96.39%
28 85.00% 89.86% 90.56% 52.78% 74.89% 88.61% 98.06% 91.94%
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ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8
29 85.83% 86.11% 89.72% 53.65% 73.72% 88.89% 96.67% 90.56%
30 94.77% 90.97% 91.39% 59.05% 80.50% 91.94% 99.44% 96.67%
31 87.50% 84.86% 85.83% 52.10% 72.72% 90.00% 98.89% 95.28%
32 85.42% 78.33% 75.56% 55.75% 71.11% 91.94% 98.61% 91.67%
33 64.21% 75.14% 78.33% 59.60% 61.78% 80.28% 72.78% 63.06%
34 89.95% 92.22% 80.56% 51.51% 78.78% 86.67% 98.89% 91.94%
35 85.60% 92.50% 86.39% 56.35% 75.78% 88.33% 97.78% 95.28%
36 86.06% 88.61% 90.28% 54.05% 72.17% 86.39% 97.50% 92.22%
37 94.72% 94.58% 84.17% 58.25% 83.78% 89.86% 98.89% 94.72%
38 87.78% 89.58% 78.89% 53.17% 77.44% 86.81% 99.17% 93.06%
39 84.81% 81.39% 73.06% 55.99% 77.17% 92.78% 99.44% 93.33%
40 65.28% 77.36% 90.56% 59.72% 63.78% 81.94% 84.44% 61.67%
41 83.94% 90.42% 85.83% 51.15% 81.78% 90.28% 99.17% 84.17%
42 81.57% 91.94% 94.17% 54.72% 80.06% 91.39% 98.06% 89.44%
43 83.33% 91.11% 93.61% 59.25% 77.28% 89.17% 98.61% 86.67%
44 89.72% 91.94% 91.67% 60.32% 85.06% 93.75% 99.17% 86.11%
45 82.59% 89.31% 82.50% 50.67% 81.17% 91.11% 99.17% 85.28%
46 81.57% 85.83% 76.94% 53.49% 78.78% 90.00% 99.17% 92.22%
47 66.30% 83.47% 83.06% 61.03% 65.83% 83.89% 87.50% 67.22%
48 79.72% 89.58% 82.50% 48.33% 83.50% 97.36% 98.06% 77.78%
49 78.70% 90.56% 85.56% 51.03% 84.83% 94.03% 94.72% 83.61%
50 79.35% 90.14% 90.28% 55.16% 83.22% 95.28% 97.22% 81.94%
51 87.45% 93.89% 87.78% 56.71% 88.33% 98.89% 98.61% 83.61%
52 78.43% 89.31% 86.67% 49.60% 83.28% 96.11% 96.94% 78.89%
53 74.95% 85.56% 88.89% 53.06% 78.22% 82.50% 93.33% 78.61%
54 70.46% 81.53% 80.56% 62.18% 67.17% 81.81% 81.11% 66.39%
55 78.70% 90.00% 85.56% 47.98% 86.50% 90.69% 95.83% 80.00%
56 76.62% 93.61% 88.89% 50.40% 84.67% 93.06% 87.22% 76.39%
57 78.24% 85.28% 90.00% 51.43% 84.28% 92.78% 91.11% 77.50%
58 88.19% 94.17% 90.56% 57.78% 92.67% 94.17% 96.67% 84.44%
59 76.53% 89.72% 81.11% 48.57% 86.33% 87.08% 95.28% 76.67%
60 72.87% 85.42% 80.83% 52.78% 80.28% 85.28% 90.83% 76.94%
61 73.47% 73.06% 78.06% 63.21% 78.06% 70.00% 80.56% 72.22%
62 71.71% 73.33% 78.89% 44.13% 85.67% 79.44% 89.72% 88.33%
63 73.01% 77.64% 86.94% 44.01% 85.39% 79.17% 89.17% 78.89%
64 70.05% 75.14% 80.83% 47.14% 86.28% 80.97% 88.61% 84.72%
65 80.14% 80.97% 83.89% 54.33% 88.17% 87.22% 92.50% 90.28%
66 73.56% 75.00% 76.39% 44.09% 85.61% 83.47% 89.72% 85.28%
67 72.36% 74.31% 83.06% 57.30% 86.00% 77.92% 85.28% 82.50%

Table 13: Individual specificity of each feature with single window validation (Patient 1 to
8)

ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16
1 73.26% 77.08% 65.83% 65.33% 65.74% 74.72% 78.06% 80.28%
2 80.49% 85.97% 83.89% 71.67% 66.94% 94.54% 61.94% 95.93%
3 90.49% 88.33% 81.11% 73.11% 78.33% 94.63% 59.44% 97.96%
4 87.43% 87.78% 79.72% 73.44% 67.78% 92.31% 76.11% 95.09%
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ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16
5 90.63% 90.14% 90.83% 80.50% 86.20% 98.52% 68.33% 98.15%
6 73.89% 91.94% 46.67% 79.00% 71.39% 84.17% 64.72% 86.48%
7 80.76% 84.44% 76.11% 71.44% 67.50% 94.63% 72.50% 95.09%
8 91.88% 89.58% 90.00% 81.22% 88.52% 97.50% 66.11% 98.15%
9 80.49% 88.47% 78.33% 79.17% 86.30% 96.76% 82.50% 93.89%
10 95.56% 87.22% 89.44% 79.44% 87.87% 96.76% 86.39% 99.54%
11 95.83% 85.83% 78.33% 80.67% 88.06% 90.93% 94.17% 97.69%
12 96.46% 93.61% 66.11% 89.61% 93.70% 91.39% 91.11% 96.48%
13 97.01% 97.92% 67.78% 87.00% 93.06% 76.11% 81.94% 99.17%
14 92.36% 96.67% 81.94% 85.44% 81.20% 79.17% 65.83% 99.35%
15 72.01% 58.61% 85.00% 46.11% 48.15% 38.06% 55.00% 72.59%
16 67.29% 41.81% 83.89% 46.28% 53.06% 67.04% 79.44% 63.15%
17 76.88% 45.42% 87.50% 50.94% 61.02% 59.63% 81.11% 72.96%
18 77.43% 72.22% 87.50% 65.50% 63.24% 43.06% 77.78% 82.41%
19 70.35% 80.00% 82.50% 63.94% 64.07% 38.24% 55.28% 78.89%
20 66.88% 76.67% 76.39% 61.00% 69.81% 33.24% 54.72% 75.19%
21 79.38% 81.81% 90.28% 80.00% 73.43% 45.09% 62.78% 85.28%
22 79.51% 55.00% 86.11% 73.50% 55.46% 84.35% 90.83% 70.93%
23 46.88% 40.69% 32.22% 56.11% 46.67% 81.48% 79.44% 48.89%
24 59.79% 48.33% 71.94% 61.78% 35.46% 81.39% 91.39% 63.98%
25 89.24% 93.33% 55.83% 87.17% 87.69% 96.02% 69.17% 95.28%
26 80.21% 85.69% 77.22% 63.89% 71.30% 63.33% 73.89% 81.20%
27 82.85% 88.61% 58.06% 75.28% 66.85% 78.24% 58.89% 91.20%
28 96.60% 92.22% 84.44% 74.94% 68.70% 77.59% 60.83% 98.70%
29 97.29% 92.78% 91.11% 74.89% 67.59% 77.41% 61.94% 97.96%
30 89.72% 91.67% 65.28% 79.39% 83.80% 82.22% 68.89% 93.89%
31 79.58% 87.92% 55.56% 73.61% 67.59% 76.30% 63.06% 87.96%
32 78.82% 88.61% 50.56% 71.61% 69.72% 70.93% 66.39% 94.81%
33 71.11% 80.97% 64.72% 64.61% 69.17% 62.87% 77.22% 84.35%
34 81.25% 91.94% 62.22% 78.17% 68.98% 84.26% 57.78% 94.54%
35 96.11% 92.50% 76.67% 77.89% 70.65% 81.20% 60.00% 98.89%
36 97.22% 92.92% 72.50% 79.67% 71.39% 84.07% 62.78% 98.98%
37 87.29% 93.89% 68.61% 84.28% 83.80% 92.04% 62.78% 96.67%
38 76.81% 90.69% 63.33% 76.94% 69.44% 80.09% 60.83% 85.37%
39 75.28% 90.83% 58.33% 73.44% 71.30% 76.57% 64.44% 86.39%
40 80.07% 85.28% 68.06% 64.94% 66.76% 62.96% 76.11% 83.61%
41 83.96% 95.14% 57.22% 81.00% 72.41% 88.33% 62.22% 96.02%
42 96.32% 93.75% 85.00% 82.28% 74.26% 84.63% 61.67% 99.54%
43 97.08% 94.72% 77.22% 83.17% 73.70% 83.43% 60.28% 98.80%
44 91.32% 96.11% 63.33% 87.56% 87.50% 91.76% 68.06% 98.24%
45 77.71% 95.97% 64.44% 78.11% 73.15% 79.72% 66.39% 92.41%
46 70.35% 96.81% 65.56% 74.39% 74.63% 75.37% 65.83% 81.76%
47 74.86% 88.75% 68.06% 66.61% 67.04% 63.43% 82.78% 90.19%
48 78.75% 88.89% 58.89% 83.94% 87.13% 94.35% 80.28% 85.65%
49 90.49% 90.14% 68.06% 81.67% 83.61% 91.11% 81.94% 91.67%
50 95.83% 90.28% 86.67% 82.89% 84.35% 91.20% 93.33% 96.85%
51 89.17% 91.25% 68.61% 89.83% 94.91% 97.13% 90.83% 91.76%
52 75.56% 88.06% 54.17% 78.78% 84.07% 87.69% 79.44% 78.80%
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ID9 ID10 ID11 ID12 ID13 ID14 ID15 ID16
53 69.03% 89.31% 54.44% 76.50% 80.56% 72.31% 93.06% 77.87%
54 84.03% 77.22% 73.33% 68.67% 65.46% 70.65% 87.50% 84.07%
55 75.56% 84.58% 64.44% 74.00% 76.76% 90.65% 79.44% 86.30%
56 90.69% 83.33% 83.61% 72.17% 75.28% 87.87% 89.17% 93.98%
57 93.82% 83.61% 68.89% 70.89% 76.30% 87.13% 90.00% 96.57%
58 87.22% 88.19% 76.39% 85.33% 93.06% 94.81% 86.94% 92.87%
59 76.74% 83.06% 69.44% 67.17% 73.24% 89.26% 79.17% 77.04%
60 79.31% 83.47% 75.83% 71.39% 71.39% 85.83% 85.83% 83.15%
61 77.99% 75.56% 74.72% 70.33% 66.67% 81.11% 78.89% 84.54%
62 75.83% 84.72% 74.44% 68.89% 63.80% 92.78% 83.89% 94.07%
63 76.88% 86.53% 76.39% 70.33% 70.19% 91.67% 83.89% 94.44%
64 78.13% 82.92% 78.33% 68.17% 62.69% 92.50% 88.61% 94.07%
65 86.32% 88.61% 85.56% 78.00% 82.22% 97.41% 87.22% 96.94%
66 69.93% 82.50% 86.67% 67.83% 63.98% 93.61% 76.67% 82.96%
67 80.07% 81.25% 69.17% 68.61% 66.57% 89.81% 81.11% 92.22%

Table 14: Individual specificity of each feature with single window validation (Patient 9 to
16)
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Appendix C Case Study Table

Subset Training set: choice Testing set: validation Relative error

ID6 1 2 3 4 5 Specificity Latency[s] FalseAlarm
Rate[#/day] Specificity Latency[s] False Alarm

Rate[#/day] Specificity Latency[s] False Alarm
Rate[#/day] Result

Lasso 55 99.86% 12.50 87.4 99.72% 12.50 167.0 0.14% 0.00% 90.92% SUCCESS
Lasso 66 99.03% 13.50 612.1 99.72% 10.00 167.0 0.70% 25.93% 72.73% SUCCESS
Lasso 41 99.44% 10.50 349.8 99.72% 9.50 167.0 0.28% 9.52% 52.27% SUCCESS
Lasso 18 99.31% 8.50 437.2 96.81% 9.00 1920.0 2.52% 5.88% 339.11% SUCCESS
Lasso 60 99.58% 9.50 262.3 99.86% 12.00 83.5 0.28% 26.32% 68.18% SUCCESS
Lasso 17 99.58% 13.00 262.3 96.39% 12.00 2170.4 3.21% 7.69% 727.31% SUCCESS
Lasso 55 41 99.86% 12.50 87.4 100.00% 12.50 0.0 0.14% 0.00% 100.00% SUCCESS
Lasso 55 18 100.00% 14.50 0.0 100.00% 12.50 0.0 0.00% 13.79% - SUCCESS
Lasso 55 15 100.00% 14.50 0.0 100.00% 12.50 0.0 0.00% 13.79% - SUCCESS
Lasso 55 60 99.86% 13.50 87.4 99.86% 12.50 83.5 0.00% 7.41% 4.54% SUCCESS
Lasso 41 18 100.00% 13.00 0.0 99.86% 11.00 83.5 0.14% 15.38% - SUCCESS
Lasso 41 15 100.00% 13.00 0.0 100.00% 11.00 0.0 0.00% 15.38% - SUCCESS
Lasso 41 60 99.86% 15.00 87.4 100.00% 12.00 0.0 0.14% 20.00% 100.00% SUCCESS
Lasso 41 17 100.00% 13.00 0.0 100.00% 12.00 0.0 0.00% 7.69% - SUCCESS
Lasso 18 15 100.00% 9.50 0.0 98.47% 9.00 918.3 1.53% 5.26% - SUCCESS
Lasso 18 17 100.00% 13.00 0.0 99.03% 12.00 584.3 0.97% 7.69% - SUCCESS
Lasso 15 17 99.86% 13.00 87.4 98.19% 12.00 1085.2 1.67% 7.69% 1140.97% SUCCESS
Lasso 55 41 18 100.00% 14.50 0.0 100.00% 12.50 0.0 0.00% 13.79% - SUCCESS
Lasso 55 41 15 100.00% 14.50 0.0 100.00% 12.50 0.0 0.00% 13.79% - SUCCESS
Lasso 55 18 15 100.00% 14.50 0.0 100.00% 12.50 0.0 0.00% 13.79% - SUCCESS
Lasso 41 18 15 100.00% 13.00 0.0 100.00% 11.00 0.0 0.00% 15.38% - SUCCESS
Lasso 41 18 17 100.00% 13.00 0.0 100.00% 12.00 0.0 0.00% 7.69% - SUCCESS
Lasso 41 15 17 100.00% 13.00 0.0 100.00% 12.00 0.0 0.00% 7.69% - SUCCESS
Lasso 18 15 17 100.00% 13.00 0.0 99.17% 12.00 500.9 0.83% 7.69% - SUCCESS
Lasso 55 41 18 15 100.00% 14.50 0.0 100.00% 12.50 0.0 0.00% 13.79% - SUCCESS
Lasso 41 18 15 17 100.00% 13.00 0.0 100.00% 12.00 0.0 0.00% 7.69% - SUCCESS

MRMR 52 99.86% 14.50 87.4 100.00% 11.50 0.0 0.14% 20.69% 100.00% SUCCESS
MRMR 17 99.58% 13.00 262.3 96.39% 12.00 2170.4 3.21% 7.69% 727.31% SUCCESS

RF 53 98.47% 8.50 961.9 99.44% 11.50 333.9 0.99% 35.29% 65.29% SUCCESS
RF 6 99.58% 11.00 262.3 99.86% 11.50 83.5 0.28% 4.55% 68.18% SUCCESS
RF 52 99.86% 14.50 87.4 100.00% 11.50 0.0 0.14% 20.69% 100.00% SUCCESS
RF 13 100.00% 13.50 0.0 100.00% 14.00 0.0 0.00% 3.70% - SUCCESS
RF 12 100.00% 13.00 0.0 100.00% 10.00 0.0 0.00% 23.08% - SUCCESS
RF 18 99.31% 8.50 437.2 96.81% 9.00 1920.0 2.52% 5.88% 339.11% SUCCESS
RF 53 6 100.00% 11.00 0.0 100.00% 11.50 0.0 0.00% 4.55% - SUCCESS
RF 53 52 100.00% 14.50 0.0 100.00% 11.50 0.0 0.00% 20.69% - SUCCESS
RF 53 13 100.00% 13.50 0.0 100.00% 14.00 0.0 0.00% 3.70% - SUCCESS
RF 53 12 100.00% 13.00 0.0 100.00% 11.50 0.0 0.00% 11.54% - SUCCESS
RF 53 18 100.00% 9.50 0.0 100.00% 11.50 0.0 0.00% 21.05% - SUCCESS
RF 6 52 99.86% 14.50 87.4 100.00% 11.50 0.0 0.14% 20.69% 100.00% SUCCESS
RF 6 13 100.00% 13.50 0.0 100.00% 14.00 0.0 0.00% 3.70% - SUCCESS
RF 6 12 100.00% 13.00 0.0 100.00% 11.50 0.0 0.00% 11.54% - SUCCESS
RF 6 18 100.00% 13.50 0.0 100.00% 11.50 0.0 0.00% 14.81% - SUCCESS
RF 52 13 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS
RF 52 18 100.00% 14.50 0.0 100.00% 11.50 0.0 0.00% 20.69% - SUCCESS
RF 19 12 100.00% 15.00 0.0 100.00% 10.00 0.0 0.00% 33.33% - SUCCESS
RF 19 18 99.86% 9.00 87.4 99.03% 9.00 584.3 0.83% 0.00% 568.21% SUCCESS
RF 13 12 100.00% 14.00 0.0 100.00% 14.00 0.0 0.00% 0.00% - SUCCESS
RF 13 18 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS
RF 53 6 52 100.00% 14.50 0.0 100.00% 11.50 0.0 0.00% 20.69% - SUCCESS
RF 53 6 13 100.00% 13.50 0.0 100.00% 14.00 0.0 0.00% 3.70% - SUCCESS
RF 53 6 12 100.00% 13.00 0.0 100.00% 11.50 0.0 0.00% 11.54% - SUCCESS
RF 53 6 18 100.00% 13.50 0.0 100.00% 11.50 0.0 0.00% 14.81% - SUCCESS
RF 53 52 13 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS
RF 53 52 18 100.00% 14.50 0.0 100.00% 11.50 0.0 0.00% 20.69% - SUCCESS
RF 53 13 12 100.00% 14.00 0.0 100.00% 14.00 0.0 0.00% 0.00% - SUCCESS
RF 53 13 18 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS
RF 6 52 13 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS
RF 6 52 18 100.00% 14.50 0.0 100.00% 11.50 0.0 0.00% 20.69% - SUCCESS
RF 6 13 12 100.00% 14.00 0.0 100.00% 14.00 0.0 0.00% 0.00% - SUCCESS
RF 6 13 18 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS
RF 52 13 18 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS
RF 53 6 52 13 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS
RF 53 6 52 18 100.00% 14.50 0.0 100.00% 11.50 0.0 0.00% 20.69% - SUCCESS
RF 53 6 13 12 100.00% 14.00 0.0 100.00% 14.00 0.0 0.00% 0.00% - SUCCESS
RF 53 6 13 18 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS
RF 53 52 13 18 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS
RF 6 52 13 18 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS
RF 53 6 52 13 18 100.00% 15.00 0.0 100.00% 14.00 0.0 0.00% 6.67% - SUCCESS

Table 15: Step 3: Filter specifications - 69 selected subsets that fulfill specifications
*Columns 6 to 10 where removed because all the selected subsets have a maximal size
of 5. Sensitivity columns are removed because all 100%

Appendix D VHDL code
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D.0.1 Top level

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 09.06.2022 11:24:27
-- Design Name:
-- Module Name: top_level - rtl
-- Project Name: Seizure Detection
-- Target Devices: Virtex VC707 Evaluation Kit
-- Tool Versions: Vivado v2020.2
-- Description: top level of seizure detection project
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity top_level is

Port (
clk_pin_p : in STD_LOGIC;
clk_pin_n : in STD_LOGIC;
RSTxRI : in std_logic;
LCD_RWxSO : out std_logic;
LCD_ExSO : out std_logic;
LCD_RSxSO : out std_logic;
LCD_dataxSO : out std_logic_vector(3 downto 0);
PushButtonxSI : in std_logic
);

end top_level;

architecture rtl of top_level is

component clk_wiz_0 is
Port ( clk_in1_p : in std_logic;

clk_in1_n : in std_logic;
clk_out1 : out std_logic

);
end component clk_wiz_0;

component detection_top
port(

CLKxCI : in STD_LOGIC;
RSTxRI : in std_logic;
STARTxSI : in std_logic;
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STOPxSI : in std_logic;
LCD_RWxSO : out std_logic;
LCD_ExSO : out std_logic;
LCD_RSxSO : out std_logic;
LCD_dataxSO : out std_logic_vector(3 downto 0)
);

end component;

--clk wiz
signal CLKxC : STD_LOGIC;
signal stopxS : std_logic;
--signal TRAINING_DONExS, END_TRAININGxS : std_logic;

begin

i_clk_wiz_0 : clk_wiz_0
port map (

clk_in1_p => clk_pin_p,
clk_in1_n => clk_pin_n,
clk_out1 => CLKxC

);
i_detection_top : detection_top
PORT MAP(

CLKxCI => CLKxC,
RSTxRI => RSTxRI,
STARTxSI => PushButtonxSI,
STOPxSI => stopxS,
LCD_RWxSO => LCD_RWxSO,
LCD_ExSO => LCD_ExSO,
LCD_RSxSO => LCD_RSxSO,
LCD_dataxSO => LCD_dataxSO
);

end rtl;
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D.0.2 Control Unit

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 06/29/2022 09:48:44 AM
-- Design Name:
-- Module Name: detection_top - rtl
-- Project Name: Seizure Detection
-- Target Devices: Virtex VC707 Evaluation Kit
-- Tool Versions: Vivado v2020.2
-- Description:
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
library work;
use work.pdm_prj_pkg.all;

entity detection_top is
Port(

CLKxCI : in STD_LOGIC;
RSTxRI : in std_logic;
STARTxSI : in std_logic;
STOPxSI : in std_logic;
LCD_RWxSO : out std_logic;
LCD_ExSO : out std_logic;
LCD_RSxSO : out std_logic;
LCD_dataxSO : out std_logic_vector(3 downto 0)
);

end detection_top;

architecture rtl of detection_top is
--==========================================================================
--SIGNAL DECLARATION
--==========================================================================
--control
signal stopxS, stop_dataxS : std_logic;
signal startxS : std_logic;
--clk wiz
signal CLKxC : STD_LOGIC;
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signal NEW_DATAxS : std_logic;
signal DATAxD : STD_LOGIC_VECTOR (16-1 downto 0);
signal ACCELxD : STD_LOGIC_VECTOR (25-1 downto 0);

signal labelxD :std_Logic;
signal new_labelxS : std_logic;
signal coast_readyxS :std_logic;
signal RLEDxS : std_logic;
signal GLEDxS : std_logic;

signal THRESHOLD_COASTxDP, THRESHOLD_COASTxDN, THRESHOLDxD :
STD_LOGIC_VECTOR(25-1 DOWNTO 0);

signal THRESHOLD_READYxS, START_TRAININGxS : std_logic;
signal last_samplexS : std_logic;
signal label_trainxS : std_logic;
signal CNT_TRAININGxDP, CNT_TRAININGxDN : unsigned(10-1 downto 0);
signal MemLabelxDP, MemLabelxDN : std_logic_vector(3 downto 0);

--CONTROL FSM
-- Declare Types for FSM
type Control_fsm_Type is (

IDLE, TRAINING, TRAINING_DONE, TESTING
);
signal STATExDP, STATExDN : Control_fsm_Type;

--==========================================================================
--COMPONENT DECLARATION
--==========================================================================

component lcd
port( clk : in std_logic;

rst : in std_logic;
SF_D : out std_logic_vector(11 downto 8);
LCD_E : out std_logic;
LCD_RS : out std_logic;
LCD_RW : out std_logic;
labelxDI : in std_logic_vector(3 downto 0));

end component;

component detection_fsm is
port (

CLKxCI : in std_logic;
RSTxRI : in std_logic;

new_labelxSI : in std_logic;
labelxDI : in std_logic;
RLEDxSO : out std_logic;
GLEDxSO : out std_logic

);
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end component;

component data_fsm is
Port (

CLKxCI: in std_logic;
RSTxRI : in std_logic;
STARTxSI : in std_logic;
STOPxSI : in std_logic;
DATAxDO : out STD_LOGIC_VECTOR(15 DOWNTO 0); --FIFO MUX output
RD_VALIDxSO : out STD_LOGIC
);

end component data_fsm;

component coastline is
Port (

CLKxCI : in STD_LOGIC;
RSTxRI : in STD_LOGIC;
COASTxDO : out STD_LOGIC_VECTOR (25-1 downto 0);
COAST_READYxSO :out std_logic;
FIFOxDI : in STD_LOGIC_VECTOR (16-1 downto 0);
ENxSI : in STD_LOGIC --when reading fifo in data_fsm
);

end component coastline;

component threshold_fsm is
Port (

CLKxCI: in std_logic;
RSTxRI : in std_logic;
SAMPLExDI : in std_logic_vector (25-1 downto 0);
NEW_SAMPLExSI :in std_logic;
LAST_SAMPLExSI : in std_logic;
START_TRAININGxSI: in std_logic;
THRESHOLDxDO : out std_logic_vector (25-1 downto 0);
THRESHOLD_READYxSO: out std_logic;
LABELXSI: in std_logic
);

end component threshold_fsm;

begin
--START_TRAININGxS <= '1' when (STARTxS = '1' and TRAINING_DONExS = '0') else '0';
CLKxC <= CLKxCI;
--to modify when several accelerators with a mux
THRESHOLD_COASTxDN <= THRESHOLDxD when STATExDP = TRAINING
else THRESHOLD_COASTxDP;
--==========================================================================
--COMPONENT INSTANTIATION
--==========================================================================
i_lcd : lcd
PORT MAP(
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clk => CLKxC,
rst => RSTxRI,

LCD_RW => LCD_RWxSO,
LCD_E => LCD_ExSO,
LCD_RS => LCD_RSxSO,
SF_D => LCD_dataxSO,
labelxDI => MemlabelxDP
);

i_detection_fsm : detection_fsm
PORT MAP(

CLKxCI => CLKxC,
RSTxRI => RSTxRI,
new_labelxSI => new_labelxS,
labelxDI => labelxD,
RLEDxSO => RLEDxS,
GLEDxSO => GLEDxS

);

i_data_fsm : data_fsm port map ( CLKxCI => CLKxCI,
RSTxRI => RSTXRI,
STARTxSI => startxS,
STOPxSI => stop_dataxS,
RD_VALIDxSO => NEW_DATAxS,
DATAxDO => DATAxD
);

i_coastline : coastline port map ( CLKxCI => CLKxCI,
RSTxRI => RSTXRI,
COASTxDO => ACCELxD,
COAST_READYxSO => coast_readyxS,
FIFOxDI =>DATAxD,
ENxSI => NEW_DATAxS
);

i_threshold_fsm : threshold_fsm port map(
CLKxCI => CLKxCI,
RSTxRI => RSTXRI,
SAMPLExDI => ACCELxD,
NEW_SAMPLExSI => coast_readyxS,
LAST_SAMPLExSI => LAST_SAMPLExS,
START_TRAININGxSI => START_TRAININGxS,
THRESHOLDxDO => THRESHOLDxD,
THRESHOLD_READYxSO => THRESHOLD_READYxS,
LABELXSI => label_trainxS

);

-- Clck process
PROCESS (CLKxC, RSTxRI)
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BEGIN
IF RSTXRI = '1' THEN

MemLabelxDP <= (others => '0');
ELSIF CLKxC'EVENT AND CLKxC = '1' THEN

MemLabelxDP <= MemLabelxDN;
END IF;
END PROCESS;

-- CNT windows used for training to generate stop when reached max
PROCESS (CLKxC, RSTxRI)
BEGIN
IF RSTXRI = '1' THEN

CNT_TRAININGxDP <= (others => '0');
THRESHOLD_COASTxDP <= (others => '0');

ELSIF CLKxC'EVENT AND CLKxC = '1' THEN
CNT_TRAININGxDP <= CNT_TRAININGxDN;
THRESHOLD_COASTxDP <= THRESHOLD_COASTxDN;

END IF;
END PROCESS;
--First window is numbered as 1 because coast_readyxS is
--high one cycle before label is sent to threshold
CNT_TRAININGxDN <= (others => '0') when startxS = '1' else CNT_TRAININGxDP + 1

when coast_readyxS = '1' else CNT_TRAININGxDP;

LAST_SAMPLExS <= '1' when (CNT_TRAININGxDP = (TRAINING_WIDTH - 1)) else '0'; --TO TUNE

--GENRERATE LABEL TRAIN - TO UPDATE WITH TRAINING SET INFORMATIONS
label_trainxS <= '0' when CNT_TRAININGxDP < 31 or CNT_TRAININGxDP > 31 + 89 - 1
else '1';
--Updtate memory with label
MemLabelxDN <= (labelxD & MemLabelxDP(3 downto 1)) when new_labelxS = '1'
else MemLabelxDP; --TO UPDATE
--detection_fsm signals input assignement
labelxD <= '1' when (ACCELxD > THRESHOLD_COASTxDP) else '0';
--new_labelxS <= coast_readyxS when TRAINING_DONExS ='1' else '0';
--training done depends on State of controller
new_labelxS <= coast_readyxS when STATExDP = TESTING else '0';
startxS <= STARTxSI;
stopxS <= STOPxSI;

--CONTROL FSM
PROCESS (CLKxC, RSTxRI)
BEGIN
IF RSTXRI = '1' THEN

STATExDP <= IDLE;
ELSIF CLKxC'EVENT AND CLKxC = '1' THEN

STATExDP <= STATExDN;
END IF;
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END PROCESS;

-- FSM
p_FSMControl: process (all) is

begin
STATExDN <= STATExDP;
START_TRAININGxS <= '0';
stop_dataxS <= '0';

case STATExDP is
-- Initial state

when IDLE =>
if STARTxS = '1' then

STATExDN <= TRAINING;
START_TRAININGxS <= '1';

end if;
when TRAINING =>

if THRESHOLD_READYxS = '1' then
STATExDN <= TRAINING_DONE;

end if;
when TRAINING_DONE =>

stop_dataxS <= '1';
if STARTxS = '1' then

STATExDN <= TESTING;
end if;

when TESTING =>
if stopxS = '1' then

STATExDN <= TRAINING_DONE;
end if;

when others => NULL;
end case;

end process p_FSMControl;
end rtl;
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D.0.3 data_fsm.vhd

----------------------------------------------------------------------------------
-- Engineer: Salma Chatagny
--
-- Create Date: 06/20/2022 10:23:06 PM
-- Design Name: Buffer with 2 FIFOS
-- Module Name: data_fsm - rtl
-- Project Name: eizure Detection
-- Target Devices: Virtex VC707 Evaluation Kit
-- Tool Versions: Vivado v2020.2
-- Description: This block controls in alterance the Writing and the Reading
-- of 2 FIFOS blocks of size 512x16. When one FIFO is full, it is then read while the
-- second FIFO is written into and inversely. Written samples are directly extracted
-- from the memory.
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
library work;
use work.pdm_prj_pkg.all;

entity data_fsm is
Port (

CLKxCI: in std_logic;
RSTxRI : in std_logic;
STARTxSI : in std_logic;
STOPxSI : in std_logic;
DATAxDO : out STD_LOGIC_VECTOR(15 DOWNTO 0); --FIFO MUX output
RD_VALIDxSO : out STD_LOGIC
);

end data_fsm;

architecture rtl of data_fsm is
--==========================================================================
--SIGNAL DECLARATION
--==========================================================================
signal ADDRAxD : STD_LOGIC_VECTOR(ADDR_SIZE -1 DOWNTO 0); --TO TUNE
signal DINAxD : STD_LOGIC_VECTOR(N_BITS - 1 DOWNTO 0);
signal DOUTAxD : STD_LOGIC_VECTOR(N_BITS - 1 DOWNTO 0);
signal ENAxS : std_logic;
signal WEAxS : STD_LOGIC_VECTOR(0 DOWNTO 0);

signal CNTxDP, CNTxDN : unsigned(ADDR_SIZE -1 downto 0);
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--FIFO
signal RST_FIFOxR: STD_LOGIC;
signal DIN_F1xD, DIN_F2xD: STD_LOGIC_VECTOR(N_BITS-1 DOWNTO 0);
signal WR_EN_F1xS, WR_EN_F2xS: STD_LOGIC;
signal RD_EN_F1xS, RD_EN_F2xS: STD_LOGIC;
signal DOUT_F1xD,DOUT_F2xD: STD_LOGIC_VECTOR(15 DOWNTO 0);
signal FULL_F1xS, FULL_F2xS: STD_LOGIC;
signal EMPTY_F1xS, EMPTY_F2xS, valid_F1xS, valid_F2xS: STD_LOGIC;

--Data Count
signal NewWindowxS : STD_LOGIC;
signal WindowCountxDP, WindowCountxDN :unsigned(ADDR_SIZE -1 downto 0); --5?

--FIFO FSM
TYPE state_type IS(IDLE, INIT_MEM_READY, WR_F1_MEM_READY, WR_F2_MEM_READY, WR1,

WR2, WR1_RD2, WR2_RD1,RD1, RD2, LAST_F1, LAST_F2,
OVER,WAIT_BEFORE_LAST_F1, WAIT_BEFORE_LAST_F2);

signal STATExDP, STATExDN : state_type;

--Algorithm control signals
signal startxS, stopxS : std_logic;
signal EmptyMemxS: STD_LOGIC;

--==========================================================================
--COMPONENT DECLARATION
--==========================================================================

component blk_mem_gen_0 --single port memory
PORT (

clka : IN STD_LOGIC;
ena : IN STD_LOGIC;
wea : IN STD_LOGIC_VECTOR(0 DOWNTO 0);
addra : IN STD_LOGIC_VECTOR(ADDR_SIZE-1 DOWNTO 0);
dina : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
douta : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

);
end component blk_mem_gen_0;

COMPONENT fifo_generator_0
PORT (

clk : IN STD_LOGIC;
srst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
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valid : OUT STD_LOGIC
);

END COMPONENT;
COMPONENT fifo_generator_1

PORT (
clk : IN STD_LOGIC;
srst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(15 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
valid : OUT STD_LOGIC

);
END COMPONENT;

begin

--==========================================================================
--COMPONENT INSTANTIATION
--==========================================================================

i_blk_mem_gen_0 : blk_mem_gen_0
PORT MAP (

clka => CLKxCI,
ena => ENAxS,
wea => WEAxS,
addra => ADDRAxD,
dina => DINAxD,
douta => DOUTAxD

);
i_fifo_generator_0 : fifo_generator_0

PORT MAP (
srst => RST_FIFOxR, --asynchronous active low reset
clk => CLKxCI,
din => DIN_F1xD,
wr_en => WR_EN_F1xS,
rd_en => RD_EN_F1xS,
dout => DOUT_F1xD,
full => FULL_F1xS,
empty => EMPTY_F1xS,
valid => valid_F1xS

);

i_fifo_generator_1 : fifo_generator_1
PORT MAP (

srst => RST_FIFOxR, --asynchronous active low reset
clk => CLKxCI,
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din => DIN_F2xD,
wr_en => WR_EN_F2xS,
rd_en => RD_EN_F2xS,
dout => DOUT_F2xD,
full => FULL_F2xS,
empty => EMPTY_F2xS,
valid => valid_F2xS

);
--==========================================================================
--ARCHITECTURE
--==========================================================================
--Control signals
WEAxS <= "0"; --The memory is read only in this case
RST_FIFOxR <= '1' when (RSTxRI = '1' or STOPxS = '1') else '0';
startxS <= STARTxSI;
stopxS <= STOPxSI;

-- No value to write into memory (avoid unkonwn state)
DINAxD <= (OTHERS => '0');

-- Clck process
PROCESS (CLKxCI, RSTxRI, STATExDP)
BEGIN
IF RSTXRI = '1' or STATExDP = IDLE THEN

CNTxDP <= (others => '0');
ELSIF CLKxCI'EVENT AND CLKxCI = '1' THEN

if NewWindowxS = '1' then
CNTxDP <= WindowCountxDN;
else
CNTxDP <= CNTxDN;
end if;

END IF;
END PROCESS;

-- WindowCount (for address generation)
PROCESS (CLKxCI, RSTxRI, STATExDP)
BEGIN
IF RSTXRI = '1' or STATExDP = IDLE THEN

WindowCountxDP <= to_unsigned(0, WindowCountxDP'length);
ELSIF CLKxCI'EVENT AND CLKxCI = '1' THEN

WindowCountxDP <= WindowCountxDN;
END IF;
END PROCESS;

--FSM
PROCESS (CLKxCI, RSTxRI, stopxS)
BEGIN
IF RSTXRI = '1' or stopxS = '1' THEN

STATExDP <= IDLE;
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ELSIF CLKxCI'EVENT AND CLKxCI = '1' THEN
STATExDP <= STATExDN;

END IF;
END PROCESS;

process(all) is
begin
NewWindowxS <= '0';
STATExDN <= STATExDP;
case STATExDP is
--Initial state

when IDLE =>
if startxS = '1' then

STATExDN <= INIT_MEM_READY;
end if;

when INIT_MEM_READY =>
STATExDN <= WR1;

when WR1 =>
if Full_F1xS = '1' then

STATExDN <= WR_F2_MEM_READY;
NewWindowxS <= '1';

end if;
when WR_F2_MEM_READY =>

STATExDN <= WR2_RD1;
when WR2_RD1 =>

if EmptyMemxS = '1' then
STATExDN <= WAIT_BEFORE_LAST_F2;
NewWindowxS <= '1';

elsif Empty_F1xS = '1' then
if Full_F2xS = '1' then

STATExDN <= WR_F1_MEM_READY;
NewWindowxS <= '1';

else
STATExDN <= WR2;

end if;
elsif Full_F2xS = '1' then

STATExDN <= RD1;
end if;

when RD1 =>
if Empty_F1xS = '1' then

STATExDN <= WR_F1_MEM_READY;
NewWindowxS <= '1';

end if;
when WR_F1_MEM_READY =>

STATExDN <= WR1_RD2;
when WR1_RD2 =>

if EmptyMemxS = '1' then
STATExDN <= WAIT_BEFORE_LAST_F1;
NewWindowxS <= '1';
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elsif Full_F1xS = '1' then
if Empty_F2xS = '1' then

STATExDN <= WR_F2_MEM_READY;
NewWindowxS <= '1';

else
STATExDN <= RD2;

end if;
elsif Empty_F2xS = '1' then

STATExDN <= WR1;
end if;

when RD2 =>
if Empty_F2xS = '1' then

STATExDN <= WR_F2_MEM_READY;
NewWindowxS <= '1';

end if;
when WAIT_BEFORE_LAST_F1 =>

STATExDN <= LAST_F1;
when WAIT_BEFORE_LAST_F2 =>

STATExDN <= LAST_F2;
when LAST_F1 =>

if Empty_F1xS = '1' then
STATExDN <= OVER;

end if;
when LAST_F2 =>

if Empty_F2xS = '1' then
STATExDN <= OVER;

end if;
when OVER =>

STATExDN <= IDLE;
when OTHERS =>

STATExDN <= IDLE;
end case;
end process;

--Memory control signals update: Enable reading from memory
ENAxS <= '1' when STATExDP = INIT_MEM_READY or STATExDP = WR_F1_MEM_READY

or STATExDP = WR_F2_MEM_READY or STATExDP = WR1 or
STATExDP = WR2 or STATExDP = WR1_RD2 or STATExDP = WR2_RD1
or STATExDP = LAST_F1 or STATExDP = LAST_F2 else '0';

--Counter for memory adressing
CNTxDN <= CNTxDP + 1;
ADDRAxD <= std_logic_vector(CNTxDP);

WindowCountxDN <= WindowCountxDP + SAMPLE_NUM when NewWindowxS = '1'
else WindowCountxDP; --TO TUNE

--FIFO control signals update
WR_EN_F1xS <= '1' when STATExDP = WR1_RD2 or STATExDP = WR1 else '0';
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RD_EN_F1xS <= '1' when STATExDP = WR2_RD1 or STATExDP = RD1
or STATExDP = LAST_F1 else '0';

WR_EN_F2xS <= '1' when STATExDP = WR2_RD1 or STATExDP = WR2 else '0';
RD_EN_F2xS <= '1' when STATExDP = WR1_RD2 or STATExDP = RD2

or STATExDP = LAST_F2 else '0';

--Write memory output into FIFO input
DIN_F1xD <= DOUTAxD;
DIN_F2xD <= DOUTAxD;

--Flag update -TO UPDATE
EmptyMemxS <= '1' when CNTxDP = 0 and (STATExDP /= (IDLE)

and STATExDP /= (INIT_MEM_READY)) else '0';

--Output assignement
DATAxDO <= DOUT_F1xD when STATExDP = RD1 or STATExDP = WR2_RD1 or STATExDP = LAST_F1

else DOUT_F2xD when STATExDP = RD2 or STATExDP = WR1_RD2 or STATExDP = LAST_F2
else (OTHERS => '0');

RD_VALIDxSO <= valid_F1xS or valid_F2xS; --output value of the FIFO is valid

end rtl;
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D.0.4 Coastline.vhd

----------------------------------------------------------------------------------
-- Engineer: Salma Chatagny
--
-- Create Date: 13.06.2022 13:59:52
-- Design Name: coastline - rtl
-- Module Name: coastline_accelerator
-- Project Name: Seizure Detection
-- Target Devices: Virtex VC707 Evaluation Kit
-- Tool Versions: Vivado v2020.2
-- Description: This block (when enabled) computes the coastline value of the 512
-- consecutive samples provided at the input at the system clck frequency (50Mhz)
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

-- Uncomment the following library declaration if using
-- arithmetic functions with Signed or Unsigned values
use IEEE.NUMERIC_STD.ALL;

-- Uncomment the following library declaration if instantiating
-- any Xilinx leaf cells in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
library work;
use work.pdm_prj_pkg.all;

entity coastline is
Port ( CLKxCI : in STD_LOGIC;

RSTxRI : in STD_LOGIC;
COASTxDO : out STD_LOGIC_VECTOR (N_BITS_COAST -1 downto 0);
COAST_READYxSO :out std_logic;
FIFOxDI : in STD_LOGIC_VECTOR (N_BITS - 1 downto 0);
ENxSI : in STD_LOGIC);

end coastline;

--==================================================================================
-- ARCHITECTURE DECLARATION
--==================================================================================
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architecture rtl of coastline is
--==================================================================================
-- SIGNALS DECLARATION
--==================================================================================
signal DataxDN, DataxDP, SubxS: unsigned(N_BITS - 1 downto 0);
signal SumxS, CoastxDN, CoastxDP: unsigned(N_BITS_COAST -1 downto 0);
-- CNT should reach N_sample (16)(one extra bit) -->count to 512 later TO TUNE
signal CNTxDP, CNTxDN : unsigned(CNT_SAMPLE downto 0);
signal CoastRSTxS, EndWindowxS, WindowReadyxS: std_logic;

begin

--Input assginements
WindowReadyxS <= ENxSI;
DataxDN <= unsigned(FIFOxDI);

--Control assignement
EndWindowxS <= '1' when CNTxDP = SAMPLE_NUM - 1 else '0'; --TO TUNE
CoastRSTxS <= '1' when CNTxDP = 0 else '0';

-- Clck process
PROCESS (CLKxCI, RSTxRI, CoastRSTxS)
BEGIN
IF RSTXRI = '1' THEN

CNTxDP <= (others => '0');
DataxDP <= (others => '0');
CoastxDP <= (others => '0');

ELSIF CLKxCI'EVENT AND CLKxCI = '1' THEN
CNTxDP <= CNTxDN;
DataxDP <= DataxDN;
CoastxDP <= CoastxDN when CoastRSTxS = '0' else (OTHERS => '0');

END IF;
END PROCESS;

--Counter: Counts when the accelerator block is enabled
CNTxDN <= (OTHERS => '0') when WindowReadyxS = '0' or CNTxDP = SAMPLE_NUM

else CNTxDP + 1; --TO TUNE

--Substraction and absolute value
PROCESS(all)
BEGIN
IF DataxDP > DataxDN THEN

SubxS <= DataxDP - DataxDN;
ELSE

SubxS <= DataxDN - DataxDP;
END IF;
END PROCESS;

-- Addition
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SumxS <= resize(SubxS,25) + CoastxDP;

CoastxDN <= SumxS;
--==================================================================================
-- OUTPUT ASSIGNEMENT
--==================================================================================
COASTxDO <= std_logic_vector(CoastxDP);

COAST_READYxSO <= EndWindowxS;
end rtl;
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D.0.5 Classifier Training

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 08.07.2022 14:56:33
-- Design Name:
-- Module Name: threshold_fsm - rtl
-- Project Name: Seizure Detection
-- Target Devices: Virtex VC707 Evaluation Kit
-- Tool Versions: Vivado v2020.2
-- Description: This code computes the threshold for an accelerator block
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
entity threshold_fsm is

Port (
CLKxCI: in std_logic;
RSTxRI : in std_logic;
SAMPLExDI : in std_logic_vector (25-1 downto 0);
NEW_SAMPLExSI :in std_logic;
LAST_SAMPLExSI : in std_logic;
START_TRAININGxSI: in std_logic;
THRESHOLDxDO : out std_logic_vector (25-1 downto 0);
THRESHOLD_READYxSO: out std_logic;
LABELXSI: in std_logic
);

end threshold_fsm;

architecture rtl of threshold_fsm is

--==========================================================================
--SIGNAL DECLARATION
--==========================================================================

-----------------------------------------------------------------------
-- Divider input signals
-----------------------------------------------------------------------

-- Slave channel DIVIDEND inputs
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signal s_axis_dividend_tvalid : std_logic := '0'; -- TVALID for channel A
signal s_axis_dividend_tdata : std_logic_vector(31 downto 0)

:= (others => 'X'); -- TDATA for channel A

-- Slave channel DIVISOR inputs
signal s_axis_divisor_tvalid : std_logic := '0'; -- TVALID for channel B
signal s_axis_divisor_tdata : std_logic_vector(15 downto 0)

:= (others => 'X'); -- TDATA for channel B
signal quotient : std_logic_vector(24 downto 0) := (others => '0');
-----------------------------------------------------------------------
-- Divider output signals
-----------------------------------------------------------------------

-- Master channel DOUT outputs
signal m_axis_dout_tvalid : std_logic := '0'; -- TVALID for channel DOUT
signal m_axis_dout_tdata : std_logic_vector(47 downto 0) := (others => '0');

-- TDATA for channel DOUT
------------------------------------------------------------------------
signal MIN_VALxDP : STD_LOGIC_VECTOR(25-1 DOWNTO 0):= (others => '1');
signal MIN_VALxDN : STD_LOGIC_VECTOR(25-1 DOWNTO 0);
signal MAX_VALxDN : STD_LOGIC_VECTOR(25-1 DOWNTO 0);
signal MAX_VALxDP : STD_LOGIC_VECTOR(25-1 DOWNTO 0):= (others => '0');
signal THRESHOLDxDP, THRESHOLDxDN : STD_LOGIC_VECTOR(26-1 DOWNTO 0);

signal CNTxDP, CNTxDN : unsigned(9-1 downto 0); --depends of number of window
signal SUMxDP, SUMxDN : unsigned(32-1 downto 0);
signal NEW_SUMxS : unsigned(32-1 downto 0);

signal NEW_ELEMENTxS: STD_LOGIC;

--Control signal
signal start_trainingxS, new_samplexS, last_samplexS,overlapxS,

Threshold_readyxS, labelxS: std_logic;
--FSM
TYPE state_type is (IDLE, WAIT_FOR_SAMPLE, SAVE_SAMPLE, TEST, SUM1, SUM2,

DIVIDE1, DIVIDE2,THRESHOLD_DONE);
signal STATExDP, STATExDN : state_type;

--FIFO
signal RST_FIFOxR: STD_LOGIC;
signal DIN_F1xD, DIN_F2xD: STD_LOGIC_VECTOR(25-1 DOWNTO 0);
signal WR_EN_F1xS, WR_EN_F2xS: STD_LOGIC;
signal RD_EN_F1xS, RD_EN_F2xS: STD_LOGIC;
signal DOUT_F1xD,DOUT_F2xD: STD_LOGIC_VECTOR(25-1 DOWNTO 0);
signal FULL_F1xS, FULL_F2xS: STD_LOGIC;
signal EMPTY_F1xS, EMPTY_F2xS: STD_LOGIC;
signal valid_F1xS,valid_F2xS: STD_LOGIC;

--==========================================================================
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--COMPONENT DECLARATION
--==========================================================================
COMPONENT div_gen_0

PORT (
aclk : IN STD_LOGIC;
s_axis_divisor_tvalid : IN STD_LOGIC;
s_axis_divisor_tdata : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
s_axis_dividend_tvalid : IN STD_LOGIC;
s_axis_dividend_tdata : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
m_axis_dout_tvalid : OUT STD_LOGIC;
m_axis_dout_tdata : OUT STD_LOGIC_VECTOR(47 DOWNTO 0)

);
END COMPONENT;
COMPONENT fifo_generator_2

PORT (
clk : IN STD_LOGIC;
srst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(25-1 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(25-1 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
valid : OUT STD_LOGIC

);
END COMPONENT;
COMPONENT fifo_generator_3

PORT (
clk : IN STD_LOGIC;
srst : IN STD_LOGIC;
din : IN STD_LOGIC_VECTOR(25-1 DOWNTO 0);
wr_en : IN STD_LOGIC;
rd_en : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR(25-1 DOWNTO 0);
full : OUT STD_LOGIC;
empty : OUT STD_LOGIC;
valid : OUT STD_LOGIC

);
END COMPONENT;
begin

--==========================================================================
--COMPONENT INSTANTIATION
--==========================================================================

i_div_gen_0 : div_gen_0
PORT MAP (

aclk => CLKxCI,
s_axis_divisor_tvalid => s_axis_divisor_tvalid,
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s_axis_divisor_tdata => s_axis_divisor_tdata,
s_axis_dividend_tvalid => s_axis_dividend_tvalid,
s_axis_dividend_tdata => s_axis_dividend_tdata,
m_axis_dout_tvalid => m_axis_dout_tvalid,
m_axis_dout_tdata => m_axis_dout_tdata
);

i_fifo_generator_2 : fifo_generator_2
PORT MAP (

srst => RST_FIFOxR, --asynchronous active low reset
clk => CLKxCI,
din => DIN_F1xD,
wr_en => WR_EN_F1xS,
rd_en => RD_EN_F1xS,
dout => DOUT_F1xD,
full => FULL_F1xS,
empty => EMPTY_F1xS,
valid => valid_F1xS

);

i_fifo_generator_3 : fifo_generator_3
PORT MAP (

srst => RST_FIFOxR, --asynchronous active low reset
clk => CLKxCI,
din => DIN_F2xD,
wr_en => WR_EN_F2xS,
rd_en => RD_EN_F2xS,
dout => DOUT_F2xD,
full => FULL_F2xS,
empty => EMPTY_F2xS,
valid => valid_F2xS

);
--Assign input signals
start_trainingxS <= START_TRAININGxSI;
labelxS <= LABELxSI;
new_samplexS <= NEW_SAMPLExSI;
last_samplexS <= LAST_SAMPLExSI;
--Control signals
overlapxS <= '1' when (MIN_VALxDP < MAX_VALxDP) else '0';

-- Clck process
PROCESS (CLKxCI, RSTxRI)
BEGIN
IF RSTXRI = '1' THEN

STATExDP <= IDLE;
ELSIF CLKxCI'EVENT AND CLKxCI = '1' THEN

STATExDP <= STATExDN;
END IF;
END PROCESS;
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process(all) is
begin
Threshold_readyxS <= '0';
s_axis_divisor_tvalid <= '0';
s_axis_dividend_tvalid <= '0';
WR_EN_F1xS <= '0';
WR_EN_F2xS <= '0';
RD_EN_F1xS <= '0';
RD_EN_F2xS <= '0';
STATExDN <= STATExDP;
case STATExDP is
--Initial state

when IDLE =>
if start_trainingxS = '1' then

STATExDN <= WAIT_FOR_SAMPLE;
end if;

when WAIT_FOR_SAMPLE=>
if new_samplexS = '1' then

STATExDN <= SAVE_SAMPLE;
end if;

when SAVE_SAMPLE =>
if labelxS = '0' then

WR_EN_F1xS <= '1';
else

WR_EN_F2xS <= '1';
end if;
if last_samplexS = '1' then

STATExDN <= TEST;
else

STATExDN <= WAIT_FOR_SAMPLE;
end if;

when TEST =>
if overlapxS = '1' then

STATExDN <= SUM1;
else

STATExDN <= THRESHOLD_DONE;
end if;

when SUM1 =>
RD_EN_F1xS <= '1';

if empty_F1xS = '1' then
s_axis_divisor_tvalid <= '1';
s_axis_dividend_tvalid <= '1';
STATExDN <= DIVIDE1;

end if;
when SUM2 =>
RD_EN_F2xS <= '1';

if empty_F2xS = '1' then
s_axis_divisor_tvalid <= '1';
s_axis_dividend_tvalid <= '1';
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STATExDN <= DIVIDE2;
end if;

when DIVIDE1 =>
--s_axis_divisor_tvalid <= '1';
--s_axis_dividend_tvalid <= '1';
if m_axis_dout_tvalid = '1' then

STATExDN <= SUM2;
end if;

when DIVIDE2 =>
--s_axis_divisor_tvalid <= '1';
--s_axis_dividend_tvalid <= '1';
if m_axis_dout_tvalid = '1' then --division is done

STATExDN <= THRESHOLD_DONE;
end if;

when THRESHOLD_DONE =>
Threshold_readyxS <= '1';
STATExDN <= IDLE;

when OTHERS =>
STATExDN <= IDLE;

end case;
end process;

--SUM
NEW_SUMxS <= SUMxDP + unsigned(DOUT_F1xD) when STATExDP = SUM1

else SUMxDP + unsigned(DOUT_F2xD);

--MUX (use the same for sum1 and sum2
SUMxDN <= NEW_SUMxS when NEW_ELEMENTxS = '1' else (others => '0')

when STATExDP = DIVIDE1 or STATExDP = IDLE else SUMxDP;
CNTxDN <= CNTxDP + 1 when NEW_ELEMENTxS = '1' else (others => '0')

when STATExDP = DIVIDE1 or STATExDP = IDLE else CNTxDP;

NEW_ELEMENTxS <= '1' when (unsigned(DOUT_F1xD) > unsigned(MIN_VALxDP)
and STATExDP = SUM1 and valid_F1xS = '1')
or (unsigned(DOUT_F2xD) < unsigned(MAX_VALxDP)
and STATExDP = SUM2 and valid_F2xS = '1')
else '0';

s_axis_divisor_tdata(8 downto 0) <= std_logic_vector(CNTxDP);
s_axis_divisor_tdata(15 downto 9) <= (others => '0');
s_axis_dividend_tdata(31 downto 0) <= std_logic_vector(SUMxDP);
quotient <= m_axis_dout_tdata(40 downto 16);

--THRESHOLD VALUE
THRESHOLDxDN <= std_logic_vector(unsigned('0' & MAX_VALxDP(25-1 downto 0)) +

unsigned('0' & MIN_VALxDP (25-1 downto 0))) when STATExDP = TEST
else '0' & quotient (25-1 downto 0) when
(STATExDP = DIVIDE1 and m_axis_dout_tvalid = '1')
else std_logic_vector(unsigned('0' & quotient(25-1 downto 0))
+ unsigned(THRESHOLDxDP)) when (STATExDP = DIVIDE2 and
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m_axis_dout_tvalid = '1')
else (others => '0') when STATExDP = IDLE

else THRESHOLDxDP;

--do division by 2 when assigning threshold to output(shift right)
THRESHOLDxDO <= THRESHOLDxDP(26-1 downto 1);
THRESHOLD_READYxSO <= Threshold_readyxS;
--FIFO
DIN_F1xD <= SAMPLExDI;
DIN_F2xD <= SAMPLExDI;

MAX_VALxDN <= (others => '0') when STATExDP = IDLE else SAMPLExDI
when (SAMPLExDI > MAX_VALxDP and WR_EN_F1xS = '1')
else MAX_VALxDP;

MIN_VALxDN <= (others => '1') when STATExDP = IDLE else SAMPLExDI
when (SAMPLExDI < MIN_VALxDP and WR_EN_F2xS = '1')
else MIN_VALxDP;

RST_FIFOxR <= '1' when STATExDP = IDLE else '0';
-- Clck process
PROCESS (CLKxCI, RSTxRI)
BEGIN
IF RSTXRI = '1' then

MIN_VALxDP <= (others => '1');
MAX_VALxDP <= (others => '0');
SUMxDP <= (others => '0');
CNTxDP <= (others => '0');
THRESHOLDxDP <= (others => '0');

ELSIF CLKxCI'EVENT AND CLKxCI = '1' THEN
MIN_VALxDP <= MIN_VALxDN;
MAX_VALxDP <= MAX_VALxDN;
SUMxDP <= SUMxDN;
CNTxDP <= CNTxDN;
THRESHOLDxDP <= THRESHOLDxDN;

END IF;
END PROCESS;
end rtl;
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D.0.6 Classifier

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 06.06.2022 11:35:25
-- Design Name:
-- Module Name: detection_fsm - rtl
-- Project Name: Seizure Detection
-- Target Devices: Virtex VC707 Evaluation Kit
-- Tool Versions: Vivado v2020.2
-- Description: Perform classification by comparing the --last three windows comparison results
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

entity detection_fsm is
port (

CLKxCI : in std_logic;
RSTxRI : in std_logic;

new_labelxSI : in std_logic;
labelxDI : in std_logic;
RLEDxSO : out std_logic;
GLEDxSO : out std_logic

);
end detection_fsm;

architecture rtl of detection_fsm is

-- Declare Types for FSM
type Detection_fsm_Type is (

No, Yes1, Yes2, Yes3
);

-- FSM
signal STATExDN, STATExDP : Detection_fsm_Type;

signal CountCLRxS : std_logic;
signal CountENxS : std_logic;
signal new_labelxS :std_logic;
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signal labelxD :std_logic;

begin
new_labelxS <= new_labelxSI;
labelxD <= labelxDI;
-- FSM
p_FSMComb: process (all) is

begin
STATExDN <= STATExDP;
GLEDxSO <= '0'; -- default : LED OFF
RLEDxSO <= '0'; -- default : LED OFF
CountCLRxS <= '0';
CountENxS <= '0';

case STATExDP is
-- Initial state

when No =>
RLEDxSO <= '1';
if labelxD = '1' then

STATExDN <= Yes1;
else

STATExDN <= No;
end if;

when Yes1 =>
RLEDxSO <= '1';
if labelxDI = '1' then

STATExDN <= Yes2;
else

STATExDN <= No;
end if;

when Yes2 =>
RLEDxSO <= '1';
if labelxDI = '1' then

STATExDN <= Yes3;
else

STATExDN <= No;
end if;

when Yes3 =>
GLEDxSO <= '1';
if labelxDI = '1' then

STATExDN <= Yes3;
else

STATExDN <= No;
end if;

when others => NULL;
end case;

end process p_FSMComb;

-- FSM Sequential Process
p_FSMSeq: process (CLKxCI, RSTxRI, new_labelxS) is
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begin
if (RSTxRI = '1') then

STATExDP <= No;
elsif (CLKxCI'event and CLKxCI = '1' and new_labelxS = '1') then

STATExDP <= STATExDN;
end if;

end process p_FSMSeq;
end architecture rtl;
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D.0.7 Testbench for detection top

----------------------------------------------------------------------------------
-- Company:
-- Engineer:
--
-- Create Date: 29.06.2022 14:13:23
-- Design Name:
-- Module Name: detection_top_tb - tb
-- Project Name: Seizure Detection
-- Target Devices: Virtex VC707 Evaluation Kit
-- Tool Versions: Vivado v2020.2
-- Description: Testbench for detection top.vhd
--
-- Dependencies:
--
-- Revision:
-- Revision 0.01 - File Created
-- Additional Comments:
--
----------------------------------------------------------------------------------

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity detection_top_tb is
-- Port ( );
end detection_top_tb;

architecture tb of detection_top_tb is

--=============================================================================
-- TYPE AND CONSTANT DECLARATIONS
--=============================================================================

constant CLK_HIGH : time := 4 ns;
constant CLK_LOW : time := 4 ns;
constant CLK_PERIOD : time := CLK_LOW + CLK_HIGH;
constant CLK_STIM : time := 1 ns;
constant CLK_RESP : time := CLK_PERIOD - 1 ns;

--=============================================================================
-- COMPONENT DECLARATIONS
--=============================================================================

component detection_top is
Port (
CLKxCI : in STD_LOGIC;
RSTxRI : in std_logic;
STARTxSI : in std_logic;
STOPxSI : in std_logic;
LCD_RWxSO : out std_logic;
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LCD_ExSO : out std_logic;
LCD_RSxSO : out std_logic;
LCD_dataxSO : out std_logic_vector(3 downto 0)

);
end component detection_top ;

--=============================================================================
-- SIGNAL DECLARATIONS
--=============================================================================

signal CLKxC : std_logic;
signal RSTxR : std_logic;
signal STARTxS, STOPxS : std_logic;
signal LCD_RWxS, LCD_ExS , LCD_RSxS: std_logic;
signal LCD_dataxS : std_logic_vector(3 downto 0);

begin

--=============================================================================
-- COMPONENT INSTANTIATIONS
--=============================================================================

-- Instantiate dut
mem_to_coast_1: entity work.detection_top

port map (
CLKxCI => CLKxC,
RSTxRI => RSTxR,
STARTxSI => STARTxS,
STOPxSI => STOPxS,
LCD_RWxSO => LCD_RWxS,
LCD_ExSO => LCD_ExS,
LCD_RSxSO => LCD_RSxS ,
LCD_dataxSO => LCD_dataxS

);

--=============================================================================
-- CLOCK PROCESS
-- Process for generating the clock signal
--=============================================================================

p_CLK: process is
begin

CLKxC <= '0';
wait for CLK_LOW;
CLKxC <= '1';
wait for CLK_HIGH;

end process p_CLK;
--=============================================================================

-- RESET PROCESS
-- Process for generating the reset signal
--=============================================================================

p_RST: process is
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begin
RSTxR <= '1';
wait until CLKxC'event and CLKxC = '1'; -- Align to rising-edge
wait for (2*CLK_PERIOD + CLK_STIM); -- Wait 2 CC and a little after edge
RSTxR <= '0';
wait;

end process p_RST;
--=============================================================================

-- TEST PROCESSS
--=============================================================================

p_STIM: process is
begin
--reset

STARTxS <= '0';
STOPxS <= '0';
wait until CLKxC'event and CLKxC = '1' and RSTxR = '0';

--test
wait for 0.5ms;
wait until CLKxC'event and CLKxC = '1';
STARTxS <= '1';
wait for CLK_STIM;
wait until CLKxC'event and CLKxC = '1';
STARTxS <= '0';
--stopxS <= '1';
wait for 1us;
wait until CLKxC'event and CLKxC = '1';
stopxS <= '0';
STARTxS <= '1';
wait until CLKxC'event and CLKxC = '1';
STARTxS <= '0';
wait for 1 ms;

end process p_STIM;
end tb;
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D.0.8 Constraints file

################################################################################
# CLOCKS
################################################################################

# SYSCLK 200MHz
set_property IOSTANDARD LVDS [get_ports clk_pin_p]
set_property PACKAGE_PIN E19 [get_ports clk_pin_p]
set_property PACKAGE_PIN E18 [get_ports clk_pin_n]
set_property IOSTANDARD LVDS [get_ports clk_pin_n]

################################################################################
# LCD Display (2x15 5x8 Dot display) (DisplayTech 162D) (ST7066U Driver)
################################################################################

set_property PACKAGE_PIN AT42 [get_ports {LCD_dataxSO[0]}]
set_property IOSTANDARD LVCMOS18 [get_ports {LCD_dataxSO[0]}]
set_property PACKAGE_PIN AR38 [get_ports {LCD_dataxSO[1]}]
set_property IOSTANDARD LVCMOS18 [get_ports {LCD_dataxSO[1]}]
set_property PACKAGE_PIN AR39 [get_ports {LCD_dataxSO[2]}]
set_property IOSTANDARD LVCMOS18 [get_ports {LCD_dataxSO[2]}]
set_property PACKAGE_PIN AN40 [get_ports {LCD_dataxSO[3]}]
set_property IOSTANDARD LVCMOS18 [get_ports {LCD_dataxSO[3]}]
set_property PACKAGE_PIN AN41 [get_ports LCD_RSxSO]
set_property IOSTANDARD LVCMOS18 [get_ports LCD_RSxSO]
set_property PACKAGE_PIN AR42 [get_ports LCD_RWxSO]
set_property IOSTANDARD LVCMOS18 [get_ports LCD_RWxSO]
set_property PACKAGE_PIN AT40 [get_ports LCD_ExSO]
set_property IOSTANDARD LVCMOS18 [get_ports LCD_ExSO]

# Pushbuttons - center button
set_property PACKAGE_PIN AV39 [get_ports PushButtonxSI]
set_property IOSTANDARD LVCMOS18 [get_ports PushButtonxSI]

set_property IOSTANDARD LVCMOS18 [get_ports RSTxRI]
set_property PACKAGE_PIN AV40 [get_ports RSTxRI]
set_property CONFIG_VOLTAGE 1.8 [current_design]
set_property CFGBVS GND [current_design]
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