
Master’s Degree in
Micro and Nanotechnologies for Integrated Systems

Master’s Degree Thesis

On-Chip Processing for Pixel Imagers in
a 28nm technology for High Energy

Physics applications

Supervisors

Dr. Davide CERESA

Prof. Guido MASERA

Prof. Adil KOUKAB

Candidate

Jashandeep DHALIWAL

September 2022

Abstract

English version

This thesis explores a novel approach to on-chip data processing and readout in
pixel imagers based on embedded processors for High Energy Physics applications.
This subject represents a new field of development posing new challenges both at
the system and implementation levels.

The first part of the thesis proposes a methodology to evaluate the performance of
a Network-on-Chip (NoC) connecting several processing elements. Network latency
has been studied taking into consideration several input parameters and different
topologies. The maximum sustainable particle rate before the system diverges
has also been analyzed. Such a methodology can be used to compare distributed
solutions based on NoC to single-processor solutions and help define the readout
architecture for the pixel imagers.

The second part studies embedded processors for on-chip data processing and
readout. Given the limited power, area, and latency budget available for High
Energy Physics applications, general-purpose processors are typically too slow
or power and area hungry. For this reason, the concept of Application Specific
Instruction-set Processor (ASIP) has been introduced for the first time in the field
of High Energy Physics. The objective is to demonstrate a workflow to design a
processor from the Instruction Set Architecture (ISA) and micro-architecture to its
physical implementation. In addition, functional verification and profiling require
the development of an application-specific test code providing measurements of cy-
cle count, instruction, and functional utilization. Finally, a complete RTL-to-GDS
implementation flow in a 28 nm CMOS technology provides the relevant figures
of merit regarding achievable frequency, area occupation, and power consumption
completing the evaluation and enabling further optimization.

This project establishes the first exploratory study for both Network-on-Chip
and ASIP applied to on-chip data processing and readout for future experiments
in High Energy Physics.

Abstract

V ersione italiana

Questa tesi esplora un nuovo approccio all’elaborazione e alla lettura dei dati
on-chip nei pixel imager basati su processori integrati per applicazioni di fisica delle
alte energie. Questo argomento rappresenta un nuovo campo di sviluppo che pone
nuove sfide sia a livello di sistema che di implementazione.

La prima parte della tesi propone una metodologia per valutare le prestazioni
di una Network-on-Chip (NoC) che collega diversi elementi di elaborazione. La
latenza della rete è stata studiata prendendo in considerazione diversi parametri
in ingresso e diverse topologie. È stato analizzato anche il tasso massimo di
particelle sostenibile prima che il sistema diverga. Questa metodologia può es-
sere utilizzata per confrontare soluzioni distribuite basate su NoC con soluzioni
a singolo processore e contribuire a definire l’architettura di lettura nei pixel imager.

La seconda parte studia i processori integrati per l’elaborazione e la lettura dei
dati on-chip. Dato il budget limitato di potenza, area e latenza disponibile per le
applicazioni di fisica delle alte energie, i processori per uso generale sono tipicamente
troppo lenti o affamati di potenza e area. Per questo motivo, il concetto di Applica-
tion Specific Instruction-set Processor (ASIP) è stato introdotto per la prima volta
nel campo della fisica delle alte energie. L’obiettivo è quello di dimostrare un flusso
di lavoro per la progettazione di un processore, dall’architettura del set di istruzioni
(ISA) e dalla microarchitettura fino alla sua implementazione fisica. Inoltre, la
verifica funzionale e il profiling richiedono lo sviluppo di un algoritmo specifico
per l’applicazione che fornisca misurazioni del conteggio dei cicli, delle istruzioni
e dell’utilizzo delle funzioni. Infine, un flusso di implementazione completo da
RTL a GDS in una tecnologia CMOS a 28 nm fornisce le cifre di merito relative
alla frequenza raggiungibile, all’occupazione dell’area e al consumo di energia,
completando la valutazione e consentendo ulteriori ottimizzazioni.

Questo progetto stabilisce il primo studio esplorativo di Network-on-Chip e ASIP
applicato all’elaborazione e alla lettura dei dati on-chip per i futuri esperimenti di
fisica delle alte energie.

Abstract

V ersion française

Cette thèse explore une nouvelle approche pour le traitement et la lecture des
données sur puce dans les imageur à pixel basés sur des processeurs embarqués
pour les applications de la physique des hautes énergies. Ce sujet représente un
nouveau domaine de développement posant de nouveaux défis tant au niveau du
système que de l’implémentation.

La première partie de la thèse propose une méthodologie pour évaluer les perfor-
mances d’un Network-on-Chip (NoC) connectant plusieurs éléments de traitement.
La latence du réseau a été étudiée en prenant en compte plusieurs paramètres
d’entrée et différentes topologies. Le taux de particules maximum soutenable avant
que le système ne diverge a également été analysé. Cette méthodologie peut être
utilisée pour comparer les solutions distribuées basées sur le NoC aux solutions à
processeur unique et aider à définir l’architecture de lecture pour les imageurs à
pixels.

La deuxième partie étudie les processeurs embarqués pour le traitement et la
lecture des données sur la puce. Compte tenu du budget limité en termes de
puissance, d’espace et de latence disponible pour les applications de physique des
hautes énergies, les processeurs polyvalents sont généralement trop lents ou trop
gourmands en énergie et en espace. C’est pourquoi le concept de Application
Specific Instruction-set Processor (ASIP) a été introduit pour la première fois dans
le domaine de la physique des hautes énergies. L’objectif est de démontrer un flux
de travail pour concevoir un processeur à partir de l’Instruction Set Architecture
(ISA) et de la micro-architecture jusqu’à son implémentation physique. En outre,
la vérification fonctionnelle et le profilage nécessitent le développement d’un algo-
rithme spécifique à l’application fournissant des mesures du nombre de cycles, des
instructions et de l’utilisation des fonctions. Enfin, un flux d’implémentation RTL-
to-GDS complet dans une technologie CMOS 28 nm fournit les facteurs de mérite
pertinents concernant la fréquence réalisable, l’occupation de la surface et la consom-
mation d’énergie, ce qui complète l’évaluation et permet une optimisation ultérieure.

Ce projet constitue la première étude exploratoire des Network-on-Chip et des
ASIP appliquée au traitement et à la lecture des données sur puce pour les futures
expériences de physique des hautes énergies.

Acknowledgements

I would like to express my deepest gratitude to my supervisor at CERN, Doctor
Davide Ceresa, for his invaluable guidance and patience throughout this thesis. I
would also like to thank my colleagues at the microelectronics section of CERN for
the support and friendly environment.

I would like to acknowledge Professor Guido Masera as my supervisor at Po-
litecnico di Torino and Professor Adil Koukab as my supervisor at EPFL for their
valuable comments and precious advises on this thesis.

Finally, the completion of the master’s thesis marks the culmination of an ex-
traordinary journey, and I want to thank everyone who helped me along the way.
I am immensely grateful to my parents for their love and sacrifices to give me a
better life. Special thanks to my brother for his continuous support and encourage-
ment. I would like to extend my sincere gratitude to Sukh and Riccardo for the
unforgettable laughs, tears, and memories. Last but not least, a heartfelt thanks
to Matilde for being my love and constant emotional support for a long time.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 CERN . 1

1.1.1 High Luminosity-LHC upgrade 3
1.2 R&D Programme on Technologies for Future Experiments 4

1.2.1 Technology transition . 5
1.3 Data readout and processing in HEP 6

1.3.1 Literature review of HEP detector electronics 8
1.4 Objective of the thesis . 10

1.4.1 On-chip data processing for future experiments 11
1.4.2 Thesis organization . 14

2 On-chip communication architecture for data processing 15
2.1 On-chip communication networks 15
2.2 Network-on-Chip . 16

2.2.1 Network-on-Chip for data processing 17
2.2.2 Packet switching technique 17

2.3 Network-on-Chip analysis . 18
2.4 Network-on-Chip results . 27
2.5 Final considerations . 31

3 On-chip Processor for data processing 33
3.1 Application Specific Instruction-set Processor 35

3.1.1 ASIP optimization space . 36
3.2 Workflow . 37
3.3 nML: a structural processor language 39
3.4 Processor architecture . 41

3.4.1 Processors’ description . 42

vi

3.4.2 Memory interface . 43
3.5 Processor customization . 44

3.5.1 APB interface . 44
3.5.2 Load and Store instructions of Interface Memory 50
3.5.3 On-Chip Debugging . 56

3.6 Final considerations . 58

4 Algorithm and Profiling 59
4.1 Data processing Algorithm . 59

4.1.1 Input data . 60
4.1.2 Application-specific algorithm 65

4.2 Processor Profiling . 68
4.3 Final considerations . 80

5 Physical implementation 81
5.1 First implementation . 82
5.2 RTL optimization of Tmicro microprocessor 88
5.3 Frequency improvement . 92

5.3.1 First frequency improvement 93
5.3.2 Second frequency improvement 94

5.4 Final considerations . 98

6 Conclusions 99

A Network on Chip analysis on MATLAB 101

Bibliography 105

vii

List of Tables

2.1 Summary table for NoC specifications 24
2.2 Cut-off particle rate for the eight analyzed cases. 30

5.1 Summary table of total instances and area for Trv32p3 and Tmicro
microprocessors after synthesis and after PnR. 84

5.2 Summary table of total instances and area for Tmicro microprocessor
without trace buffer after synthesis and after PnR. 90

5.3 Summary table of clock frequency, total instances, area, density,
total power consumption for Trv32p3, Tmicro, and Tmicro without
trace buffer microprocessors after PnR. 92

5.4 Summary table of total instances, area, density, and total power
consumption after PnR for Trv32p3 microprocessor implemented at
333 MHz and 666 MHz of clock frequency. 93

5.5 Summary table of standard cell library, total instances, area, density
and total power consumption after PnR for Trv32p3 microprocessor
implemented at 333 MHz, 666 MHz and 1 GHz of clock frequency. . 97

viii

List of Figures

1.1 Illustration of the LHC accelerator and experiments. 2
1.2 Block diagram of a typical pixel detector readout flow. 7
1.3 Front-end circuit of a typical readout ASIC for pixel detectors. . . . 7
1.4 Configuration of data processing at the periphery. 12
1.5 Configuration of on-pixel data processing. 13

2.1 Maximum traffic on a Network-on-Chip applied to a pixel array. . . 19
2.2 Network-on-Chip router model with a switch, FIFO buffers and four

channels. 20
2.3 4 × 4 pixels NoC node dimension. 25
2.4 32 × 32 pixels NoC node dimension. 25
2.5 3D graph of latency depending on bandwidth delay and particle rate

with the legend on the top. 28
2.6 2D graph of latency depending on bandwidth delay and particle rate

with the legend on the top. 29
2.7 Log-log plot of cut-off particle rate vs the number of pixels per NoC

node at operating frequencies of 80 MHz and 320 MHz. 31

3.1 Flexibility and efficiency diagram for several types of data processing
solution. 35

3.2 Tree diagram of the optimization space provided by ASIP Designer. 36
3.3 Flow of ASIP Designer by Synopsys. 38
3.4 Integration of customized interface from the processor towards an

Interface Memory. 45
3.5 Read transfer signals in AMBA APB system bus protocol. 46
3.6 Write transfer signals in AMBA APB system bus protocol. 46
3.7 Read transfer signals toward Interface Memory in customized Trv32p3

microprocessor using AMBA APB system bus. 47
3.8 Write transfer signals toward Interface Memory in customized Trv32p3

microprocessor using AMBA APB system bus. 47

ix

3.9 Read transfer signals toward Interface Memory in customized Tmicro
microprocessor using AMBA APB system bus. 47

3.10 Write transfer signals toward Interface Memory in customized Tmicro
microprocessor using AMBA APB system bus. 47

4.1 Flow chart of current data analysis. 59
4.2 First measurement results of Timepix3 at the Environmental Re-

search Station Schneefernerhaus on Zugspitze. 60
4.3 Flow chart of the application-specific data processing algorithm. . . 66
4.4 Graphical representation of clustering algorithm. 67

5.1 Place and Route implementation of Trv32p3 microprocessor. 83
5.2 Place and Route implementation of Tmicro microprocessor. 84
5.3 Total power consumption graph of Trv32p3 microprocessor at differ-

ent frequencies and input activities. 86
5.4 Total power consumption graph of Tmicro microprocessor at different

frequencies and input activities. 87
5.5 Summary table of power analysis of Trv32p3 microprocessor. 88
5.6 Hierarchy of Trv32p3 microprocessor instances. 89
5.7 Hierarchy of Tmicro microprocessor instances. 89
5.8 Place and Route implementation of Tmicro microprocessor without

trace buffer. 90
5.9 Power consumption of Tmicro microprocessor without trace buffer

module at different frequencies and input activities. 91

x

Acronyms

pT Transverse momentum. 8

AGU Address Generation Unit. 42, 43, 53–55, 77

ALICE A Large Ion Collider Experiment. 2

ALU Arithmetic Logic Unit. 42, 43, 72, 74, 78

AMBA Advanced Microcontroller Bus Architecture. 14, 44–46, 100

APB Advanced Peripheral Bus. 14, 44–46, 48, 56, 58, 68, 100

ASIC Application Specific Integrated Circuit. 5, 6, 8, 9, 36, 59, 63, 81

ASIP Application Specific Instruction-set Processor. 14, 34–36, 39, 58, 99, 100

ATLAS A Toroidal LHC ApparatuS. 2, 3, 9

BX bunch-crossing. 3

CAD Computer-Aided Design. 6

CERN European Organization for Nuclear Research. 1, 3, 4, 14, 15, 99

CLIC Compact Linear Collider. 4

CMOS Complementary Metal Oxide Semiconductor. 5, 6, 8–10, 14, 34, 82, 96,
100

CMS Compact Muon Solenoid. 2, 3, 8, 9, 21

CTS Clock Tree Synthesis. 81, 82, 84

DAQ Data Acquisition. 6, 13

DM Data Memory. 41, 44, 45, 50, 51, 56, 63–65, 72, 74, 76–80, 100

xii

DRC Design Rule Checking. 81

DSP Digital Signal Processor. 6, 33, 35, 59

EHVT Extremely-High Threshold Voltage. 82

EP Experimental Physics. 1, 4

EPFL École Polytechnique Fédérale de Lausanne. 1

ESE Electronic Systems for Experiments. 1

FCC-ee Future Circular Collider for electron-positron collisions. 4

FCC-he Future Circular Collider for proton-electron collisions. 4

FCC-hh Future Circular Collider for hadron-hadron and proton-proton collisions.
4

FIFO First-In-First-Out. 19

FinFET Fin Field-Effect Transistor. 5, 6

FPGA Field-Programmable Gate Array. 6, 59

FSM Finite State Machine. 35

GPU Graphics Processing Unit. 33

HDL Hardware Description Language. 41, 49, 50

HEP High Energy Physics. 1, 5, 14, 15, 42, 59

HL-LHC High Luminosity-LHC. 3, 4, 8, 9

HPD Hybrid Pixel Detector. 9, 10

HVT High Threshold Voltage. 82

IO Input-Output. 41, 43–45, 49

IP Intellectual Property. 5, 42, 44

ISA Instruction Set Architecture. 38, 42, 43

ISS Instruction Set Simulator. 38, 39, 41, 49, 50, 75

xiii

LEC Logic Equivalence Checking. 81

LHC Large Hadron Collider. 1–3, 8, 9, 25, 61

LHCb LHC-beauty. 2, 21

LS3 Long Shutdown 3. 4

LVS Layout versus schematic. 81

LVT Low Threshold Voltage. 82, 95, 96

MAC Multiply and Accumulate Unit. 43

ME Micro-Electronics. 1, 44, 99

MPA Macro-Pixel ASIC. 8–10

NoC Network-on-Chip. 12, 14–19, 24–27, 30–32, 98–100

OCD On-Chip Debugging. 56–58

P2P Point-to-Point. 15, 16

PCU Processor Control Unit. 41, 49, 58

PDG Primitives Definition and Generation. 41, 44, 48

PE Processing Element. 11–14, 17, 18, 31, 32, 98, 99

PM Program Memory. 41, 44, 45, 50, 56, 79

PnR Place and Route. 39, 81–83, 85, 90, 94–96

R&D Research and Development. 4

RAW Read After Write. 77

RISC-V Reduced Instruction Set Computer five. 11, 12, 42, 43, 100

RTL Register Transfer Level. 38, 39, 41, 49, 50, 81, 84, 89

SDK Software Development Kit. 38

SIMD Single Instruction Multiple Data. 37

sLVS scalable Low Voltage Signaling. 8

xiv

SM Standard Model. 3

SNR Signal to Noise Ratio. 6, 7

SoC System-on-a-Chip. 14, 44, 100

SP Super-Pixel. 9, 10, 12, 17, 18, 21, 32, 98, 99

SSA Short Strip ASIC. 8–10

SVT Standard Threshold Voltage. 82, 83, 93, 95–97

TCE Transport triggered architecture-based Co-design Environment. 36

TID Total Ionizing Dose. 9, 82

ToA Time-of-Arrival. 8, 10, 21, 62, 64–68

ToT Time-over-Threshold. 8–10, 21, 62, 64, 65, 67

TSV Through-Silicon Via. 5

UDM Ultra Density Memories. 82

UHVT Ultra-High Threshold Voltage. 82

ULVT Ultra-Low Threshold Voltage. 82, 96, 97

VHDL Very high speed integrated circuits Hardware Description Language. 39,
41

VLIW Very Long Instruction Word. 37

VLSI Very Large-Scale Integration. 33

WP Work Package. 4–6

WWW World Wide Web. 3

xv

Chapter 1

Introduction

This master’s degree thesis has been conducted at the Micro-Electronics (ME)
section of the Electronic Systems for Experiments (ESE) group under the Experi-
mental Physics (EP) department of CERN, in cooperation with the university of
École Polytechnique Fédérale de Lausanne (EPFL).

1.1 CERN
The study of the nature of particles that compose matter and their interactions
is known as High Energy Physics (HEP). It is performed by colliding accelerated
charged particle beams and observing the interaction of their daughter products
with detectors placed around the collision point. The European Organization for
Nuclear Research (CERN), hosts the world’s largest and most powerful high-energy
particle accelerator and collider known as the Large Hadron Collider (LHC) [1]. It
is located at the Franco-Swiss border close to Geneva, Switzerland. The CERN
acronym origins from the name Conseil Européen pour la Recherche Nucléaire, an
organization established in 1954 to become a world-class scientific research facility
in nuclear physics. Today, CERN officially counts 23 Member States and several
others involved in numerous experiments.
CERN has four main missions:

• Research: investigating and answering Universe-related queries

• Collaboration: bringing people from all around the world together to advance
in science for the benefit of everyone

• Technology: pushing further the frontiers of technology

• Education: training the next generation of scientists and engineers

1

Introduction

The LHC is a 27 km long ring of superconducting magnets, placed 100 m under-
ground, where many accelerating devices are used to increase the particle energy
as it travels through the system. Two proton beams are created and progressively
accelerated through serial accelerators before reaching the LHC, where they are
further accelerated in opposite directions in two separated ultrahigh vacuum tubes.
In the LHC accelerator, these beams are accelerated via superconductive electro-
magnets of 8.3 T operating at a temperature of 1.9 K. When both proton beams
reach a velocity close to the speed of light up to record energy of 6.5 TeV each, they
are made to collide in four different locations along the ring equivalent to the four
experiments: A Toroidal LHC ApparatuS (ATLAS) [2], Compact Muon Solenoid
(CMS) [3], LHC-beauty (LHCb) [4] and A Large Ion Collider Experiment (ALICE)
[5], as shown in figure 1.1. These experiments are made of several sub-detectors

Figure 1.1: Illustration of the LHC accelerator and experiments.
[6]

used to collect daughter products and produce information about the energy, mass,
position, momenta, and scattering angle of particles to recreate collision images.
This is done through different devices present in the same experiment such as:

• Electromagnets: used to bend out-coming particles from the collision point
through a strong solenoid magnet to measure momentum and charge

• Calorimeters: used to stop particles by passive layers to measure their energy

• Trackers: these silicon sensors are placed in several concentric layers around

2

Introduction

the collision point to measure the direction of particles previously deviated by
the electromagnets.

Additional devices might be integrated for specific measures such as the muon detec-
tor installed in CMS to detect muon particles unable to be stopped by calorimeters.
The LHC accelerator can deliver proton-proton collisions with a center-of-mass
energy up to 13 TeV and it reached an instantaneous luminosity of 1034 cm−2·s−1

in 2018 [7]. Luminosity measures the number of collisions occurring in a square
centimeter per second, it represents the particles’ hit rate. These particles bunch
are brought into collision at a reference frequency of 40 MHz also known as bunch-
crossing (BX) frequency.
A complete description of the LHC accelerator regarding the main ring, infrastruc-
tures, general services, and injector chain is provided in its design report [8].
A remarkable achievement at CERN, in terms of the development of new tech-
nologies, is the World Wide Web (WWW) created to ease data and information
communication among scientists. Although, the most important achievement at
CERN, thanks to the LHC accelerator, is the discovery of a new particle at ap-
proximately 125 GeV named Higgs boson: the last missing particle to conclude the
Standard Model (SM) [9]. Such a discovery was separately achieved by the two
general-purpose experiments: ATLAS and CMS.

Numerous other phenomena outside of the SM remain to be investigated such as
the matter-antimatter asymmetry, super-symmetry extensions to the SM to solve
pending issues, and the inconsistency of neutrino oscillation with the SM. Indeed,
an upgrade of the LHC is required to reach higher luminosity and finally answer
these queries.

1.1.1 High Luminosity-LHC upgrade
The High Luminosity-LHC (HL-LHC), represents a significant upgrade of the
current LHC accelerator in the next years [10]. The luminosity will be quintupled
reaching a baseline value of 5 ·1034 cm−2·s−1 and an ultimate luminosity of 7.5
·1034 cm−2·s−1 [8]. Such luminosity will allow physicists to better understand the
Higgs boson by increasing its probability of occurrence. With the current LHC,
their interactions are measured with a 20 % of uncertainty and this is expected
to drop below 1 % with the HL-LHC upgrade. Moreover, since the number of
collisions increases, novel particles might be discovered to explain dark matter and
electroweak symmetry breaking.
In order to reach such a high luminosity, new superconductive electromagnets able
to reach 11-12 T are needed as well as novel power converters to distribute more
current. In addition, a new infrastructure is necessary to dispense a novel cryogenic
system to cool down superconductive electromagnets.

3

Introduction

Consequentially to HL-LHC upgrade, the four experiments need to be upgraded
as well. Original solutions are necessary for higher radiation tolerance devices
to sustain harsher environments. Additionally, novel solutions are going to be
implemented in terms of detectors and readout electronics to sustain such a high
particle rate. Finally, due to the higher hit rate and pile-up density, a new data
processing approach becomes mandatory to increase computation capabilities. A
novel design for on-chip data processing is going to be presented in this thesis.

1.2 R&D Programme on Technologies for Future
Experiments

At CERN, the EP department has established a Research and Development (R&D)
programme on technologies for future experiments started in 2020 for at least
five years [11]. The aim is to advance in experimental high-energy physics, thus
instrumentation becomes essential. Up to now, CERN has well detailed the future
schedule until the realization of the HL-LHC upgrade between 2024 and 2026
during the Long Shutdown 3 (LS3). The next 15 years will completely focus on the
exploration of HL-LHC potentialities until its conclusion, estimated in 2040. On
the other hand, further studies are required for all those projects that are going
to be realized after the LHC such as the Compact Linear Collider (CLIC) [12],
Future Circular Collider for hadron collisions such as heavy ions or proton-proton
(FCC-hh), electron-positron collisions (FCC-ee) and proton-electron (FCC-he) [13].
The aim is to reach 100 TeV of center-of-mass energy in a 100 km long ring through
superconductive electromagnets with a magnetic field of 16 T. For each of these
projects, a complete conceptual design report has been published and reviewed by
an international committee. These projects will provide huge benefits in particle
research but also challenges in all fields of magnets and cooling systems, mechanics,
and electronics. For these reasons, R&D guidelines have been established to
determine the upcoming experimental difficulties and explore solutions. This R&D
programme is sub-divided into eight different Work Packages (WPs) with different
development purposes:

• WP1: New detector technologies for both monolithic and hybrid pixel detectors
with an emphasis on silicon tracking and vertexing detectors.

• WP2: More performing gas-based detectors for radiation detection with a
good signal-to-noise ratio for single particle sensitivity

• WP3: Novel high granularity noble liquid calorimetry and light-based detectors
with high resolution of energy and position with an excellent radiation hardness

4

Introduction

• WP4: Detector mechanics with a focus on large dimensions, high radiation
level, higher spatial resolution, very low material budget, and better detector
cooling systems

• WP5: High-performance integrated circuits in 28 nm and 16 nm technology
with a focus on higher density and speed and lower power consumption along
with radiation validation.

• WP6: Increase performance of high-speed data links by increasing data rate
and radiation hardness

• WP7: Software development of data acquisition systems and triggers for data
taking, simulation, and analysis

• WP8: Advanced detector magnets and magnet systems with a focus on
powering, low mass superconducting cables, cryostat studies, controls, and
safety

This thesis has been carried out under the WP5 which is focused on Application
Specific Integrated Circuits (ASICs) development for HEP particle detectors. WP5
focuses on two main activities: the first one consists of design and Intellectual
Property (IP) with an emphasis on low-voltage and low-power design and in high
efficient power distributions. The second activity consists of CMOS technology
such as radiation effects and design workflows, but also CMOS-related assembly
technologies such as CMOS wafer stacking and Through-Silicon Via (TSV). Finally,
all these activities are performed on novel technology nodes that are going to be
implemented in future experiments.

1.2.1 Technology transition
The ASICs design for HEP is currently implemented in 130 nm and 65 nm CMOS
technologies, while the industry already reached 7 nm FinFETs technology and
5 nm prototypes. Similar behavior should occur for HEP ASICs to exploit the
benefits of smaller transistors such as:

• Intrinsic higher density

• Intrinsic higher speed

• Intrinsic lower power consumption

• Higher radiation hardness

Beside these benefits, several drawback and challenges are also present such as:

5

Introduction

• More expensive in terms of design and masks

• Higher complexity of design kits, layout for manufacturability, and CAD tools

• Increase of noise, variability, and mismatch parameters

• No reusability of old design techniques (for technologies with 3D shapes of
transistors)

Moreover, current technologies are going to be obsolete and unused, thus, new
technologies become mandatory for future experiments. For these reasons, WP5
started to explore the 28 nm CMOS technology, which represents the last planar
transistor technology, as well as 16 nm FinFETs technology for next-generation
ASICs. These new technologies are necessary to cope with requirements for future
experiments in terms of higher spatial and temporal resolutions. Consequently, the
28 nm CMOS technology will be used in this thesis for a technology evaluation of
the design.

1.3 Data readout and processing in HEP
A particle detector, also known as a radiation detector, is used in particle physics
to find, track and possibly identify ionizing particles. It exploits the Bethe-Bloch
formula which describes the stopping power of materials, corresponding to the
mean rate of ionization energy loss over a distance for charged particles traversing
a medium as a semiconductor. This formula well approximates the energy loss
rate of standard physics particles [14]. Particle detectors are mainly built using
silicon as semiconductor material because it presents a good Signal to Noise Ratio
(SNR) compared to the others. Moreover, silicon devices and technologies are well
developed and supported. These particle detectors are integrated as pixel arrays
with a well-defined regularity. A pixel detector consists of a sensing component
and a readout component. A typical pixel detector readout flow is depicted in
figure 1.2. The impinging radiation, made of ionizing particles, creates electron-hole
pairs inside pixels of a pixel detector. Thanks to the readout ASIC, the generated
signal by these charge carriers is amplified and digitized. After the readout ASIC,
digitized information is sent outside the chip to the Data Acquisition (DAQ) system
for data processing. Such data processing can be performed in several ways such as
through a Digital Signal Processor (DSP), an existing ready-made microprocessor,
or even by a Field-Programmable Gate Array (FPGA). After the elaboration
of information, data is submitted to the final user for further data analysis and
examination.
The front-end circuit of this readout ASIC is depicted in figure 1.3. It consists
of a first analog front-end starting with a charge-sensitive amplifier to convert

6

Introduction

Figure 1.2: Block diagram of a typical pixel detector readout flow.

Figure 1.3: Front-end circuit of a typical readout ASIC for pixel detectors.

the input charge signal into a voltage. Such an amplifier is used as an integrator
thanks to the coupling with a feedback capacitor. Moreover, its DC operating
point is set by a feedback circuit which also clears the coupled feedback capacitor
from signal charges once the signal is amplified. In some cases, an additional
circuit for leakage current compensation might be connected to sink the sensor
leakage. The next analog front-end block is a shaper used to filter out lower and
higher frequencies, thanks to a band-pass filter, to increase the SNR of the signal.
Moreover, the shaper also defines the output bandwidth of the pulse. Finally, the
last analog front-end block is a discriminator used to compare the pulse coming

7

Introduction

from the shaper with a customized threshold voltage. The discriminator provides
a pulse width that is linearly proportional to the input charge signal. This pulse
width is known as Time-over-Threshold (ToT) and it gives information about the
amplitude of the signal related to the energy loss of the traversing ionizing particle
[15]. Then, ToT is forwarded towards the digital front-end for further processing.
In addition, another parameter is required to provide information regarding the
time stamp: the Time-of-Arrival (ToA), which is implemented as a counter of clock
cycles. Moreover, pixel coordinate information is also provided by each hit pixel
for position measurements.

1.3.1 Literature review of HEP detector electronics
The state of the art presents several readout ASIC chips for different purposes in
high energy physics at high rates. Most of them have been realized for the next
HL-LHC upgrade in order to sustain higher hit rates, pile-up density, and total
radiation dose. Among them, there are Macro-Pixel ASIC and Short Strip ASIC
(MPA-SSA), RD53A, and Timepix4 as novel readout ASIC chips.

MPA-SSA

The Macro-Pixel ASIC and Short Strip ASIC (MPA-SSA) [16] are two Read-Out
Chips (ROC) for the Pixel-Strip module for tracking applications, used to perform
particle selection and data reduction through on-chip real-time particle discrimi-
nation with zero-suppression and trigger-free readout. This module is part of the
CMS Outer Tracker upgrade for the HL-LHC. The MPA is implemented in a 65
nm CMOS technology and pixel arrangement consists of 118×16 pixels with a pixel
size of 100×1446 µm2. The SSA is a strip readout chip with a strip sensor that
executes zero-suppression of particle hit coordinates and forwards this information
to the MPA, which meanwhile performs the on-chip particle discrimination. Input
data types of MPA consist of raw strip data or strip clusters while its output data
types consist of pixel and strip clusters or stubs. Input and output data ports
are made of several custom scalable Low Voltage Signaling (sLVS) transmitters
and receivers. The input data port of the MPA consists of 9 custom-sLVS lines
coming from the SSA at 320 Mbps reaching up to 2.88 Gbps; while the output
data port consists of 6 custom-sLVS at 320 Mbps reaching up to 1.92 Gbps. The
chip performs binary readout of silicon modules in continuous acquisition at the
bunch-cross frequency of LHC events of 40 MHz. Moreover, the readout of the chip
can be performed in two ways: the first one is a triggered readout for the full frame
and the second one is a continuous trigger-free readout used for high transverse
momentum information, pT . The first readout type reaches a maximum latency of
12.8 µs and a maximum trigger rate of 750 kHz while the second readout type can

8

Introduction

reach a lower latency of approximately 500 ns. The maximum sustainable hit rate is
53 · 106 hits/cm2/s. In terms of radiation tolerance, MPA-SSA can tolerate a Total
Ionizing Dose (TID) up to 200 Mrad. Finally, MPA-SSA can perform data reduction
from 30 Gbps/cm2 to 0.7 Gbps/cm2 with a 95 % of particle discrimination efficiency.

MPA-SSA represents the first on-chip real-time particle discrimination readout
useful to reduce throughput. It will be able to sustain the data rate of the HL-LHC
upgrade. However, it provides an efficient but very specific processing that requires
a complex module architecture and a fast chip-to-chip communication.

RD53A

RD53A [17] is a large-scale pixel chip intended to be used in the next upgrade for
the HL-LHC. It is born from a collaboration between ATLAS and CMS experi-
ments to sustain very high rates of approximately five times larger than the current
LHC luminosity. Thus, new readout chips are required to work under a higher
level of total dose and hit rates. RD53A is not the final chip but the prototype
for future developments in terms of design methodology, radiation hardness, and
characterization of the chip with a full-size pixel array. It sets down the basis
for future developments of pixel readout ASICs needed in the HL-LHC. RD53A
is implemented in a 65 nm CMOS technology for higher density and radiation
tolerance. Pixel arrangement consists of 400×192 pixels with a pixel size of 50×50
µm2 and the total chip size is 20×11.8 mm2 and it is equivalent to half size of the
production chip. RD53A manages to sustain a maximum hit rate of 3 GHz/cm2

with an average of 75 kHz/pixel and a loss hit of less than 1 % at the maximum hit
rate. Moreover, it is capable to work up to 500 Mrad of radiation. Charge resolu-
tion consists of at least 4 bits for ToT. The readout data is performed via parallel
links, from 1 to 4, each of them at 1.28 Gbps and thus a maximum bandwidth of
approximately 5.12 Gbps. All these RD53A specifications are well-suitable for the
HL-LHC upgrade.

Even though RD53A represents the state-of-the-art of very high hit rates pixel
detector readouts, it is not able to perform any kind of data discrimination or
processing to lower throughput meaningfully.

Timepix4

Timepix4 [18] is a Hybrid Pixel Detector (HPD) readout ASIC presenting a design
with tiling on 4 sides. Pixel array consists of 512×448 pixels where each pixel size is
55×55 µm2 reaching up to 6.94 cm2 of a sensitive area. These pixels are regrouped
into Super-Pixels (SPs) of 2×4 pixels. Tiling becomes mandatory in pixel detectors
with a large area such as in this case. It implements a 65 nm CMOS technology

9

Introduction

and it used up to 10 metal layers. Timepix4 can operate in two modes: data-driven
for tracking and frame-based (or photon counting) for imaging. In data-driven
mode, each pixel transmits information towards the output only if the hit is higher
than a configurable threshold. The output information from each pixel consists of
two components: Time-of-Arrival (ToA) and Time-over-Threshold (ToT). Later
on, additional information is latched along with two components regarding pixel
coordinates. In the end, each pixel sends out event packets of 64 bits per hit. The
maximum achievable hit rate of Timepix4 is approximately 3.58 · 106 hits/mm2/s
and the maximum pixel rate is up to 10.8 kHz/pixel. This occurs by using the
maximum available readout bandwidth of 163.84 Gbps when using all 16 links each
of them at 10.24 Gbps. ToA binning resolution in data-driven mode presents a
value of 195 ps and ToA dynamic range is 1.6384 ms while ToT energy resolution
reaches a maximum of 1 KeV. The second mode is frame-based and consists of
putting two pixel-counters in each pixel with two different programmable depths of
8 and 16 bits. They work in a continuous read and write mode where one counter
is counting whilst the second one is transmitting. In the end, each SP produces
an event packet of 64-bit if pixel counters are 8-bit while it produces two event
packets of 64-bit if pixel counters are 16-bit. This mode performs full-frame readout
without pixel address and reaches a maximum count rate of 5 ·109 hits/mm2/s.
Moreover, latency depends on readout mode and application. Although, readout
in full frame is performed in 726 µs.

Timepix4 shows the state-of-the-art timing resolution for HPD readout chips.
It is used for several purposes such as high energy physics, time-of-flight mass
spectrometry, Compon camera, and X-ray imaging for medical diagnostics, etc.
where timing resolution represents an important parameter. In these fields, the
utilization of flexible chips like Timepix4 is vital. Nevertheless, Timepix4 is not
implemented in any experiment at CERN. In addition, it is not able to sustain
high hit rates as RD53A and it does not perform any kind of data reduction as
MPA-SSA.

1.4 Objective of the thesis
Thanks to the scaling down of CMOS technology, pixel dimensions decrease hence
pixel density increases. This brings to an increment of spatial resolution. Moreover,
another benefit consists also in increment of time resolution thanks to higher
achievable frequencies. These benefits become challenging for the readout systems
described before. In future experiments, due to higher luminosities, an increment
of the amount of data coming from the pixel array might become unsustainable
for the current pixel readout architecture hence their efficiency is going to drop

10

Introduction

steeply. Furthermore, data toward the experiment back-end is going to increase as
well, creating challenges to system bandwidth and off-chip data processing.
This thesis aims to solve such issues by proposing a novel system. This approach
consists of placing an embedded processor directly on the chip, thus, closer to the
pixel array. The objective is to perform a preliminary programmable data processing
and readout, which is not present in the aforementioned chips, to decrease the
amount of data to forward to the data acquisition system. Such a solution would
provide a significant increase in flexibility, reusability, and modularity compared to
the currently designed pixel imagers.

1.4.1 On-chip data processing for future experiments
On-chip data processing can be performed through an embedded processor placed
either as a single processor at the periphery of the chip or as a distributed one
based on Processing Elements (PEs) on the pixel array. Both of them come with
several advantages and disadvantages.

Processing in periphery

Processing in periphery consists of integrating an embedded processor at the
periphery of the pixel array for data elaboration as shown in figure 1.4. This
embedded processor can be either a Reduced Instruction Set Computer five (RISC-
V) core or something simpler.
During boot-up, memories are loaded through a Slow Control Interface and a reset
interrupt is issued to the processor. All communication between the external world
and the chip is handled by such a processor. This helps with programmability
in sequencing commands and a fast context switching of configurations. In each
pixel, during readout, counter values are written into memory, and; if required, the
embedded processor at the periphery may process the raw pixel values to produce
data to be transmitted out of the chip. The processor programs and triggers the
High-Speed Data Interface, which is similar to a Direct Memory Access, to move
data out of the chip through a serial interface. Data processing in the periphery
presents benefits such as

• A relatively simple architecture

• Presence of many reusable blocks, i.e. system interconnect, memory, inter-
faces...

On the other hand, the following issue arises:

• Interface between the pixel array and main memory might become a bottleneck

11

Introduction

Figure 1.4: Configuration of data processing at the periphery.

In the processing in periphery, several challenges emerge such as the design of
banked memories and interconnects to sustain a throughput of three bus masters:
embedded processor, High-Speed Data Interface, and pixel array. Additionally,
a focus on system modeling for architectural studies is required, for instance,
to size interconnects, memories, etc. Moreover, a special firmware architecture,
such as a client-server model, might be necessary for the optimization of the data
acquisition system. Finally, challenges are also present in the design and physical
implementation of such a model.

Processing on-pixel

The second option for on-chip data processing is on-pixel data processing. A
schematic representation is provided in figure 1.5. It consists in placing PEs not at
the periphery of a chip but directly on its pixel array. Each Processing Element
might be placed for groups of pixels named Super-Pixels (SPs). These PEs can
be RISC-V cores or something even simpler. They are interconnected with each
other through a Network-on-Chip (NoC). Each PE is connected to its respective
router of such a network. During boot-up, pixel configuration and PE memories are
loaded. Upon a readout request, PE reads the pixel data and, if required performs
a preliminary programmable data processing by communicating with neighboring
PEs through the NoC. Moreover, the same network can also be used to output the

12

Introduction

Figure 1.5: Configuration of on-pixel data processing.

elaborated data to forward to the off-chip DAQ system for further data processing.
On-pixel data processing presents the following benefits:

• More processing close to the pixel: it lowers the throughput of data by
forwarding off-chip only meaningful information.

• Potentially reduces power consumption: since the data processing is pushed
closer to pixels, not all information from all pixels is sent to the periphery.

On the other hand, on-pixel data processing shows several challenges such as:

• Complex architecture: physical implementation becomes more difficult and
congested.

• Area considerations: area of the Processing Element and router must be small
enough to be accommodated on a group of pixels.

13

Introduction

• Distributed pixel data processing algorithms: fast data computation and
communication with neighboring PEs become mandatory.

This master’s thesis focuses on setting down the background of the exploratory
study of on-chip data processing with a focus on both Network-on-Chip and
Processing Element. It establishes a starting point of on-chip data processing for
future experiment applications.

1.4.2 Thesis organization
The thesis is arranged into 6 chapters:

• Chapter 1: the current chapter presents an overview of CERN and future
upgrades, the working principles of particle detectors and readout systems
with an emphasis on the state-of-the-art and related challenges. Finally, the
objective and description of the project are provided.

• Chapter 2: it provides a conceptual modeling and analysis of a Network-
on-Chip architecture implemented in on-chip processing. It also presents
important figures of merit related to communication timing and its dependen-
cies on several parameters.

• Chapter 3: introduces modelization, development, and optimization of per-
formance, area, and energy-efficient Processing Elements. This is performed
through a Application Specific Instruction-set Processor (ASIP) for the first
time in HEP field. The ASIP has been customized with an AMBA APB
system bus protocol interface towards the external world for future integration
in a System-on-a-Chip (SoC) environment.

• Chapter 4: the first part of this chapter focuses on an application-specific test
code for distributed pixel processing algorithm useful to test the PEs. While,
the second part shows profiling results of these PEs regarding instructions,
functional units, primitive operations, hazards, and code coverage. Both
application-specific test code and profiling are executed on the ASIP Designer
tool developed by Synopsys.

• Chapter 5: this chapter presents physical implementation and frequency
optimization of the Processing Elements. They are implemented in a 28 nm
CMOS technology and relevant figures of merit such as area occupation, power
consumption, and achievable clock frequency are shown.

• Chapter 6: this chapter draws the conclusions of this thesis with a discussion
on future improvements for on-chip data processing in High Energy Physics.

14

Chapter 2

On-chip communication
architecture for data
processing

In HEP at CERN, the particle collision rate is going to increase in future ex-
periments [10]. Novel techniques are required to sustain high performance. The
proposal of this thesis, as described in chapter 1, considers a novel approach to
decrease off-chip data throughput by performing on-chip data processing. This
system requires a specific on-chip communication architecture to interface the
different modules used to execute such data processing. Integration of future
technologies rises big challenges to communication architectures. Latency, network
traffic, cost, power consumption, and scalability become crucial parameters for the
choice of an adequate communication architecture. Among several possible network
structures, Network-on-Chip presents the best trade-off among the aforementioned
parameters [19].

This chapter establishes an exploratory study of a Network-on-Chip communi-
cation architecture applied to on-chip data processing in HEP and it sets the
analytical background for future applications.

2.1 On-chip communication networks
The most common on-chip communication networks are the following: Point-to-
Point (P2P), crossbar, and bus-based.

In a P2P, every node is connected to every other. This network gives the best

15

On-chip communication architecture for data processing

performances in terms of low latency and low contention but it is not so practicable
due to its high cost and especially non-scalability [20, 21]. For instance, a novel
node introduced in the network needs to be connected to every other node already
existing and the routing of wires becomes difficult. Thus, it results in a dense
network and interconnections start to dominate dynamic power dissipation.

The crossbar on-chip communication network allows every node to be connected to
every other in a crossbar configuration and it gives quite similar benefits as the
P2P. On the other hand, it becomes impracticable as the number of nodes grows
and particularly if the distance from one node to another is longer than the clock
period that is intended to use [22, 23].

Finally, the bus-based on-chip communication network is simpler and cheaper
for a small number of nodes since there are no more dedicated interconnections
between each node thus the complexity is reduced and modularity increased. On
the other hand, the bandwidth is limited, and delay and energy consumption
increase significantly since bus drivers have larger capacitive loads. Therefore, this
architecture is not scalable to a large number of communicating nodes and it also
saturates fast due to a high contention [20, 21].

Due to these several issues of the aforementioned networks, a new on-chip commu-
nication network is necessary: the Network-on-Chip, which is deeply discussed in
section 2.2.

2.2 Network-on-Chip
Differently from P2P, crossbar, and bus-based networks, a Network-on-Chip con-
nects two nodes via a packet-switching network based on routers. Each router is
connected to the neighboring ones through bi-directional P2P connections. Because
of this, the additional integration of nodes is quite simple. A router consists of an
input buffer for arriving packets, a switch implementation, a control logic to guide
the packet through the router, and finally an output buffer for outgoing packets.
For the same application, a communication architecture based on Network-on-Chip
shows performances similar to the P2P [21]. For an increasing number of nodes,
the area occupation of P2P increases exaggeratedly whilst NoC shows a modest
area overhead similar to the bus-based network. Moreover, power consumption is
lower than P2P and bus-based and way more scalable than these two [20]. NoC
is an advantageous communication network because it is design-friendly, easily
scalable, flexible, and predictable [19].

16

On-chip communication architecture for data processing

2.2.1 Network-on-Chip for data processing
In this case study, as described in chapter 1, a pixel matrix of a pixel detector
is subdivided into Super-Pixels (SPs). For each SP, a Processing Element (PE)
is placed to read pixel data upon a readout request and, if required, to perform
preliminary data processing. Such data processing requires communication with
neighboring PEs because an event might involve several SPs. The information
sharing among neighboring PEs to perform on-chip data processing is executed by
a specific Network-on-Chip as depicted in the figure 1.5. It is also important to
mention that such a network can also be used to push data off-chip as presented in
[24]. In particular, PEs are connected directly to their local routers which send
packets through a network interface that connects each PE to the general network.
Each packet is sent from a source node to a destination one and it goes through
several nodes. During the servicing of the packet, it needs also to go through input
channels at the beginning, routers, and switches, and so the additional timing given
by these should not be neglected.

A particle detector is characterized by a regular structure of its pixel array. To
avoid breaking this regularity, the assumed Network-on-Chip architecture has a
mesh topology.

In pixel detectors involving PE and relative NoC node for each SP, performances,
area occupation, and power consumption depend on several parameters. The size
of each node, thus the number of pixels for each SP, and the pixel matrix dimen-
sion influence all these three figures of merit. The particle rate sets performance
limitations and possible failures of the network. Finally, the operating frequency
has a huge impact on performance but also power consumption.

2.2.2 Packet switching technique
Concerning a Network-on-Chip, an important decision to take is the technique
of packet switching to apply to such a network. Packets transfer mode through
switches and routing decisions change among several different switching techniques.
There are mainly two groups of switching techniques: circuit switching and packet
switching.

The circuit switching technique implements a physical circuit that goes from
one node, the source, to another one, the destination, and without any mediation
in-between all the packets are transferred.

17

On-chip communication architecture for data processing

The packet switching technique contains several modes: wormhole, virtual cut-
through, and store-and-forward switching. For this case of the NoC study, a
wormhole switching technique will be used, and it consists of dividing the packet
into sub-units, named flits, that are sent one after the other in a pipelined fashion
throughout the network. The first flit of each packet, named header flit, has all
the routing information to go from the source node, throughout the whole network
towards the destination node. Since all the flits move in a pipelined fashion, due to
congestion, the header flit might be stopped at a certain position in the network and
the same occurs to all its following flits at their respective positions. The wormhole
switching is usually a good switching technique for a Network-on-Chip with high
dynamic traffic [25]. Moreover, it does not require the presence of large buffers
at each node since the packet is sub-divided into flits and presents a relatively
low latency. This is why the wormhole technique is also the most used one for
Network-on-Chip [21]. Moreover, in this kind of technique, latency is dominated
by the packet size.

The other two techniques, store-and-forward, and virtual cut-through switching are
quite similar. The first one, which is self-explanatory, stores the packets at halfway
nodes and these are sent to the next node only if both of the following conditions
are respected: the output channel is free and this latter node has a buffer with
enough space to store the incoming packet.
On the other side, the virtual cut-through switching only requires the first con-
dition to be fulfilled and thus improves the problem related to latency in the
store-and-forward technique [21].

2.3 Network-on-Chip analysis
In this case study, as mentioned before, the Network-on-Chip architecture is applied
to a pixel array. A NoC node is placed at each SP with its corresponding PE.
Moreover, in this application, a simple analysis has been conducted considering a
packet that moves by a maximum of two positions, and then it gets reprocessed
again in the latter PE. In the worst-case scenario, when a particle hits the corner
of a SP, the PE requests the information from the adjacent SPs, so packets coming
from lateral SPs move by one position and by two for packets coming from the
diagonally opposite SPs. The probability of occurrence of such a scenario strongly
depends on the size and number of SPs in the pixel array. The dimension of this
SP has been varied during the network analysis to see its effects. The maximum
traffic on a single port of a NoC node router is shown in figure 2.1. So, even though
it is a simplification, this approximation suits well for this application.

18

On-chip communication architecture for data processing

Figure 2.1: Maximum traffic on a Network-on-Chip applied to a pixel array.

In this case study, as shown in the figure 2.2, each router has four channels
with some First-In-First-Out (FIFO) buffers. In order to reach a final formula for
the latency in a wormhole switching technique Network-on-Chip, the starting point
is the packet’s service time which is computed as in [21]:

T = Hs + S

W
(2.1)

19

On-chip communication architecture for data processing

Switch

λ1

λ2

λ3

λ4 FIFO buffers

Figure 2.2: Network-on-Chip router model with a switch, FIFO buffers and four
channels.

Where,

• T is the packet’s service time [cycle]

• Hs is the service time for the header flit [cycle]

• S is the packet’s size [bit]

• W is the bus-width [bit/cycle]

To go more into depth, for this case study, Hs is equal to two cycles where
one cycle is due to service time and one due to routing of the packet with the
header flit. In general, a Poisson distribution for the header flit arrival time is a
good approximation in this kind of network analysis at not too high traffic rates [21].

The ratio between S, the size of the packet, and W , the bus-width, gives an
interesting parameter known as bandwidth delay. This is defined as the amount of
time it takes for a sender to transfer a packet over the network. This parameter
takes into account both the size of the packet and the available bus-width.

20

On-chip communication architecture for data processing

As explained in chapter 1, each pixel of a particle detector usually outputs to
the readout electronics the following information: coordinate of the pixel, Time-of-
Arrival (ToA) which provides information about the time stamp, and Time-over-
Threshold (ToT) of the hit which gives information on the amplitude of the signal
depending on the particle’s energy loss [15].
VeloPix, which is an application-specific integrated circuit coming from Timepix
and Medipix chips, is used in the LHCb experiment for hybrid pixels as a readout
chip. This chip provides as output 9 bits for ToA, 4 bits for ToT and 4 bits for
pixel’s position inside the SP [26].
Similarly, Timepix3 provides 10-bit ToT and 18-bit ToA [27]. It is noticeable how
the packet size changes among different chips. Moreover, the system does not
transmit all the information from all pixels to the network thus the size and number
of packets transmitted vary depending on the kind of event.

Furthermore, no restriction has been applied to the bus-width W to give more
freedom to such a parameter in the bandwidth delay. The CMS tracker hybrid
pixel detectors send small size information packets, thus, the required bus-width for
binary readout in these detectors is narrower [28]. On the other hand, the family of
Timepix chips [29, 30, 31, 18] provides data packets with a larger size and so, the
required bus-width is wider. For instance, a packet size of 64 bits might be sent
either on bus-width of 1 bit/cycle, equivalent to a bandwidth delay of 64 cycles,
or 64 bit/cycle, equivalent to a bandwidth delay of 1 cycle. On the other side, by
keeping the same bus-width, packet size might change depending on the application.

Finally, a sweep has been performed on S
W

from 1 cycle to 64 cycles in order
to take the asymptotic value of achievable latency or frequency. These values have
been chosen for parameter space exploration.

The service time of the packet previously computed is necessary in order to compute
the average number of packets at each input buffer of the router, which is well
expressed in [21] by the following formula:

N = (I − TΛC)−1ΛR̄ (2.2)

Where,

• N is the average number of packets at each input buffer of the router

• I is the identity matrix

• T is the packet’s service time [cycle]

• Λ is the traffic arrival rate [1/cycle]

21

On-chip communication architecture for data processing

• C is the contention matrix

• R̄ is the residual time

N is a column vector defined as N =


N1
N2
N3
N4

 where each row represents each of the

four input channels present in the router.

The identity matrix is I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

T has already been explained previously in the formula 2.1.

The residual time is equal to R̄ = R ×


1
1
1
1

 and R is the residual packet waiting

time equal to one for simplicity.

In order to compute the contention matrix C, the forwarding probability ma-
trix F is necessary first.
The latter one is defined as [21]:

F =


0 f12 f13 ... f1P

f21 0 f23 ... f2P

...
fP 1 fP 2 0


fij = λijqP

k=1 λik

, 0 ≤ i, j ≤ P

(2.3)

Where fij gives the probability for a packet to go from a channel i and to exit at
channel j and λij is the traffic arrival rate expressed in [21] as follows:

λij =
Ø
∀s

Ø
∀d

xsd · R(s, d, i, j) (2.4)

This formula considers all the packets that go from a source node s to a destination
node d across a router passing through an input channel i toward an output channel
j of it. This is expressed by the routing function R(s, d, i, j) which is equal to one
when the packet respects the previous routing condition otherwise it is equal to
zero. Furthermore, xsd is the packet transmission rate from node s to node d. Since

22

On-chip communication architecture for data processing

in this case a packet can move only by a maximum of two positions as previously
shown in figure 2.1, it goes only through one router and so all the λij are equal to xsd.

Considering a router with four ports, for simplicity, it is assumable that a packet at
each port has the same probability to be transmitted to any of the remaining three
ports. From equation 2.3, it is noticeable that all the elements on the diagonal of
the matrix are equal to zero such that fii = 0. This is because, in this case study,
a packet cannot be forwarded to the same port from which it arrived. From these
hypotheses, equation 2.3 results as:

F =


0 1/3 1/3 1/3

1/3 0 1/3 1/3
1/3 1/3 0 1/3
1/3 1/3 1/3 0



From the forwarding probability matrix F, the contention matrix C can be computed
by using the following formula [21]:

0 ≤ i, j ≤ P, i /= j, cij =
PØ

k=1
fik · fjk

i /= j, cii = 1
(2.5)

Thus, the contention matrix is equal to:

C =


1 2/9 2/9 2/9

2/9 1 2/9 2/9
2/9 2/9 1 2/9
2/9 2/9 2/9 1


Finally, the traffic arrival rate Λ is a diagonal matrix equal to:

Λ =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 (2.6)

In this application, Λ is a 4 × 4 matrix because the router considered has four
ports. Since the considered system is isotropic, it is easily remarkable that all the
lambdas are equal, thus, λ1 = λ2 = λ3 = λ4 . Using the formula 2.4, these values
can be expressed by the following formula [21]:

λj =
Ø
∀s

Ø
∀d

xsd · R(s, d, j)

23

On-chip communication architecture for data processing

Since λj is the arrival rate at the input buffer of channel j, this is proportional to
the traffic arrival rate λij and equal to:

λj = 3 · λij = 3 · xsd

This is because, in this specific application as it is shown in figure 2.1, for each
input buffer of a router there might be a maximum of three packets coming from
three different routers. This has been deducted considering the already mentioned
assumption where a packet moves by a maximum of two positions.

Furthermore, the packet transmission rate xsd, from source node s to destina-
tion node d, strictly depends on the specifications of the required Network-on-Chip
and it is expressed as follows:

xsd = particle rate · (pixel dimension · pixel matrix)
pixel matrix

NoC node dimension
· operating frequency

[packet

cycle
] (2.7)

An example of specifications used to compute xsd are listed in table 2.1. Notice
that these values strongly depend on the application.

Table 2.1: Summary table for NoC specifications

Particle rate 1 −→ 1011 [cm−2· s−1]

Pixel dimension 55 × 55 [µm2] (pixel pitch = 55 µm)

Pixel matrix 256 × 256

NoC node dimensions 1 × 1, 4 × 4, 32 × 32 and 256 × 256

Operating Frequencies 320 and 80 [MHz]

Considering a maximum hit rate of 40 · 106 cm−2· s−1 in Timepix3 chip [31], during
the analysis of this case study, a sweep on the particle rate has been performed
from 1 cm−2· s−1 to 1011 cm−2· s−1 to see the saturation effects given by it. These
values have been taken for the sake of parameter space exploration. This parameter
influences significantly the performance of the NoC architecture.
The considered pixel pitch and pixel matrix are respectively 55 µm and 256 × 256
as in Timepix3 chip [31].
Moreover, four different NoC node dimensions have been analyzed: 1 × 1, 4 × 4,
32 × 32 and 256 × 256, in order to see the different behavior of latency depending
on this parameter.

24

On-chip communication architecture for data processing

Furthermore, the same analysis has been conducted considering two different oper-
ating frequencies, a fast one at 320 MHz and a slower one at 80 MHz. These values
have been considered as multiples of the typical bunch crossing frequency of 40
MHz in the LHC experiment [32].

Figures 2.3 and 2.4 show the representation of two NoC topologies that have
been analyzed. The first one has a NoC node dimension of 4×4 pixels which means
a NoC matrix of 64 × 64 pixels considering the full pixel matrix of 256 × 256. While
the second one has a NoC node dimension of 32 × 32 pixels thus a NoC matrix of
8 × 8 considering the same pixel matrix as the first topology. Similarly, in 1 × 1
NoC node dimension, a node is applied to each pixel of the pixel array whilst in
256 × 256 there is only one node for the whole pixel array. The latter is equivalent
to performing on-chip data processing in the periphery as shown in chapter 1. The
last two topologies are borderline cases.

Figure 2.3: 4 × 4 pixels NoC node di-
mension.

Figure 2.4: 32 × 32 pixels NoC node
dimension.

Starting from equations 2.4 of traffic arrival rate λij and 2.2 the average number of
packets at each input buffer of the router Nij, applying Little’s theorem [33], it is
possible to get the average waiting time for each channel buffer of each router [21]:

Wij = Nij

λij

(2.8)

This is necessary in order to compute the average latency from source node s to

25

On-chip communication architecture for data processing

destination node d as follows [21]:

Lsd = Ws +
Ø

(i,j)∈
r

sd

(Wij + T) (2.9)

Where, Wij is the average waiting time for each channel buffer of each router and T
is the average service time as previously computed. The summation term considers
all the input buffers of the routers that a single packet must go through to travel
from a source node s to a destination node d. Ws is the queuing delay the packet
experiences at the source node s and it is set to one cycle for simplicity. From this,
it is possible to compute the overall average latency for a packet as [21]:

L = 1q
∀s,d xsd

Ø
∀s,d

xsd · Lsd (2.10)

Consequently, since the packet moves by a maximum of two positions and all the
various xsd from any source node s to any destination node d are the same, equation
2.10 can be simplified as:

L = Lsd

Moreover, in equation 2.9, it is possible to simplify the summation term because a
packet moves by a maximum of two positions and so through a single router. This
is true by assuming that a packet is serviced at the output of its corresponding
router node. So, under this assumption, the previous equation gets simplified even
more as follows:

L = Lsd = Ws + (Wij + T) = Ws + (Nij

λij

+ Hs + S

W
) (2.11)

Equation 2.11 is the starting point of the Network-on-Chip analysis explained in
the next section.

26

On-chip communication architecture for data processing

2.4 Network-on-Chip results
Four different cases have been analyzed by changing the following parameters: NoC
dimension and operating frequency. For all these cases sweeps on the particle rate
and bandwidth delay have been performed. These cases are listed here:

• NoC node dimension 1 × 1 pixels and operating frequency 320 MHz

• NoC node dimension 1 × 1 pixels and operating frequency 80 MHz

• NoC node dimension 4 × 4 pixels and operating frequency 320 MHz

• NoC node dimension 4 × 4 pixels and operating frequency 80 MHz

• NoC node dimension 32 × 32 pixels and operating frequency 320 MHz

• NoC node dimension 32 × 32 pixels and operating frequency 80 MHz

• NoC node dimension 256 × 256 pixels and operating frequency 320 MHz

• NoC node dimension 256 × 256 pixels and operating frequency 80 MHz

In figures 2.5 and 2.6, the previously listed topologies are well summarized and
marked with different colors in the legend on the top. The first graph presents
a 3D plot of latency depending on particle rate and bandwidth delay while the
second graph shows the same dependency but on a 2D plot.

For all the topologies, at a fixed particle rate, latency increases linearly with
the bandwidth delay. On the other hand, at a fixed bandwidth delay, the increment
of latency versus the particle rate is less significant up to a certain value after
which it starts to suddenly diverge. Before such a divergence, latency values are
almost similar among all the analyzed cases. The difference between one case and
another is the particle rate at which latency starts to diverge and this is well shown
by the different colors in figures 2.5 and 2.6. Such a value is named the cut-off
particle rate and, in this case study, it corresponds to the maximum particle rate
the network can sustain in the worst-case scenario. Considering that during this
analysis a sweep on bandwidth delay has been performed, the worst-case scenario
corresponds to its highest value, thus, equal to 64 cycles. In the same figure, it
is also shown how the cut-off particle rate changes depending on the NoC node
dimension and the operating frequency.

27

On-chip communication architecture for data processing

Figure 2.5: 3D graph of latency depending on bandwidth delay and particle rate
with the legend on the top.

28

On-chip communication architecture for data processing

Figure 2.6: 2D graph of latency depending on bandwidth delay and particle rate
with the legend on the top.

29

On-chip communication architecture for data processing

The cut-off particle rate has been summarized in the table 2.2:

NoC node size

Operating

frequency 80 MHz 320 MHz

1 × 1 ∼ 8 · 109 [cm−2· s−1] ∼ 3 · 1010 [cm−2· s−1]

4 × 4 ∼ 5 · 108 [cm−2· s−1] ∼ 2 · 109 [cm−2· s−1]

32 × 32 ∼ 7 · 106 [cm−2· s−1] ∼ 3 · 107 [cm−2· s−1]

256 × 256 ∼ 1 · 105 [cm−2· s−1] ∼ 5 · 105 [cm−2· s−1]

Table 2.2: Cut-off particle rate for the eight analyzed cases.

From the figure 2.6 and the table 2.2, it is noticeable how the cut-off particle rate
changes among these topologies. For the same NoC node dimension, topologies
implementing 320 MHz show a cut-off particle rate approximately four times larger
than the ones implementing 80 MHz. On the other hand, at a fixed operating
frequency, the cut-off particle rate increases by decreasing the NoC node size
through a power function. These two trends are shown in the log-log plot in figure
2.7.

From the figure 2.7 and table 2.2, it is also possible to derive the cut-off oc-
cupancy, which gives information about the maximum data rate and flux a pixel
detector can sustain. This is obtained by dividing the cut-off particle rate by the
bunch crossing frequency of 40 MHz.

It is noticeable from table 2.2 and figure 2.7, that for an increasing NoC node
dimension, the NoC matrix will be smaller thus the packet transmission rate from
source node s to destination node d increases. This causes a higher level of conges-
tion and saturation of the packets across the whole network and so a lower cut-off
particle rate and occupancy. On the other hand, a higher NoC node dimension
brings to a lower complexity during the hardware implementation of such a network
due to the lower number of NoC nodes and routing channels.

30

On-chip communication architecture for data processing

10
0

10
1

10
2

10
3

10
4

10
5

Pixels per NoC node

10
5

10
6

10
7

10
8

10
9

10
10

10
11

C
u

t-
o

ff
 p

a
rt

ic
le

 r
a

te
 [

c
m

-2
·s

-1
]

Cut-off particle rate VS # of pixels per NoC node @ 80 and 320 MHz

80 MHz

320 MHz

Figure 2.7: Log-log plot of cut-off particle rate vs the number of pixels per NoC
node at operating frequencies of 80 MHz and 320 MHz.

A visible trend is also the increment of the possible cut-off particle rate while
the NoC node dimension decreases. This might lead to suppose that the optimal
case is reached when the NoC node size is equal to a single element 1×1, equivalent
to a Network-on-Chip node, and its corresponding PE, for each pixel in the pixel
array. This is only an idealistic supposition but not feasible at all since it is not
possible to put a PE and its corresponding NoC node for each pixel due to area
limitations during the implementation process. On the other hand, the NoC node
dimension might be pushed up to 256×256 pixels, equivalent to a single NoC node
as a matrix applied to the whole pixel array. This denotes that information from
all pixels goes through this single node towards the periphery and data processing
does not occur anymore on-array.

2.5 Final considerations

As expected, the achievable particle rate increases by increasing the operating
frequency and by decreasing the NoC node dimension. Both borderline cases for
NoC node dimension equal to 1 × 1 and 256 × 256 are not feasible. The first one
is due to area constraints and the second one is due to low performance. Moreover,
the second case does not represent anymore a Network-on-Chip and it is equivalent

31

On-chip communication architecture for data processing

to performing on-chip data processing in the periphery. Furthermore, high oper-
ating frequencies also impact negatively the power consumption of the whole system.

As previously described in chapter 1, the considered case study involves a Network-
on-Chip node and a Processing Element for each Super-Pixel. From the analysis and
results described in this chapter, a suitable exploration study of Network-on-Chip
applied to pixel detectors has been established for future experiments. This chapter
sets down the basis for latency computation depending on important parameters
such as particle rate, the packet size of information, available bus-width, operating
frequency, Network-on-Chip node size, and matrix dimension.

An analysis of the considered Processing Element, described in chapter 3, is
necessary to complete the exploration presented in this chapter. Information re-
garding area occupation, achievable operating frequency, and power consumption
will be provided from the physical implementation of such a PE in chapter 5.
Moreover, it might put a constraint on routing resources that consequently limits
the bus-width of the Network-on-Chip. Furthermore, information regarding the
necessary number of cycles to perform data processing is present in chapter 4, to
better specify parameters such as: queuing delay, packet service time, required
bus-width, and average packet size.

Finally, from all this information, it is possible to achieve optimal values of the
Network-on-Chip dimension and operating frequency to have the best trade-off in
terms of area occupation, power consumption, and latency.

For more details, the analysis presented in this chapter, and applying formula 2.11,
has been conducted through a script on MATLAB that can be found in appendix
A.

32

Chapter 3

On-chip Processor for data
processing

Data processing, or information processing, is the manipulation and modification of
collected data to create useful information. Several functions might be implied to
perform data processing such as: validation to verify that data provided is accurate
and pertinent, sorting to re-arrange data by specific order, summarization to distill
complex information down to the essentials, aggregation of different data sets,
analysis and reporting of information, and finally, classification of data into several
categories [34]. Such data processing units are nowadays present as integrated
circuits in computer processors named microprocessors.

A microprocessor is an integrated circuit able to perform the aforementioned
data processing functions through specific arithmetic and logic units. It receives
inputs as binary data and outputs processed information also in binary repre-
sentation [35]. Very Large-Scale Integration (VLSI) made possible the scaling
down of microprocessors’ dimension and their cost. Today, microprocessors are
used everywhere and for everything. Their usage depends on the application in
terms of the trade-off of several parameters such as performance, area occupation,
and power consumption. Computers might require high performance regarding
speed and computational complexity while, on the other hand, portable electronics
concern more about low power consumption and area occupation. Due to the high
demand for several kinds of processing, microprocessors are mainly developed with
a general-purpose design able to perform various tasks on the same physical entity.
On the other hand, some microprocessors are developed as special-purpose entities
for specific processing such as signal processing in Digital Signal Processors (DSPs)
or image processing in Graphics Processing Units (GPUs) [35].

33

On-chip Processor for data processing

Scaling down of CMOS technology has a huge impact on microprocessors. On
one hand, more transistors are available in the same area thus increasing the
computational power and also the speed; this gives a huge boost to performance.
On the other hand, a higher transistor density increases complexity in terms of
design, physical implementation, and verification. Moreover, it presents drawbacks
such as higher power consumption due to the shrinking of the transistor’s size and
higher heat dissipation due to the higher transistor density. To limit such problems,
a re-direction of design purpose is needed.

General-purpose microprocessors present high flexibility but also high area oc-
cupation and power consumption. Moreover, in most of the applications, they are
not even completely exploited thus resulting in a waste of power and resources.
On the other hand, special-purpose microprocessors present high performance
for specific tasks along with a smaller overload on power consumption and area
occupation. Additionally, they lack flexibility and programmability forcing engi-
neers to re-design them for different applications. A link between general-purpose
microprocessors and special-purpose microprocessors is required to mitigate their
drawbacks and enhance their advantages. Such a bridge is named Application
Specific Instruction-set Processor (ASIP).

This chapter will set down an exploratory study of an ASIP by first describing its
architecture definitions, followed by the customization of two microprocessors with
relevant issues and solutions.

34

On-chip Processor for data processing

3.1 Application Specific Instruction-set Proces-
sor

Figure 3.1: Flexibility and efficiency diagram for several types of data processing
solution.

[36]

Figure 3.1 shows graphically the application flexibility versus power and perfor-
mance efficiency for several kinds of data processing solutions. On the left, there are
the general-purpose microprocessors that are very flexible in terms of application
but with the drawback of being very less efficient for what concerns power and
performance. On the other hand, there are hardwired datapaths on the right side
that are very efficient for performance and power but for a single application. In
between the general-purpose microprocessor and the hardwired datapath, there is
a wide range for the Application Specific Instruction-set Processor (ASIP) which
reasonably connects the two extremities.

ASIP provides both benefits, a hardware efficiency like a customized datapath
combined with software programmability. ASIPs are useful, for instance, in hard-
ware accelerators since usually, their datapath consists of handwritten Finite State
Machines (FSMs) that are not easily reusable, and this makes them less flexible.
Moreover, it also helps to improve other processors like DSPs and to create ad
hoc processors focused on specific tasks. ASIP optimizes the performance of the

35

On-chip Processor for data processing

processor by implementing a customized architecture with ad hoc instructions or
operations or by introducing several types of parallelism to enhance the applica-
tion’s execution.

Thanks to the aforementioned specializations, the processor benefits in terms
of power consumption, and ASIP can introduce low power optimizations by adding
clock and power gating. Finally, ASIP provides the designer with good programma-
bility to avoid the ASIC to go through several respins. As a drawback, ASIP design
requires a specific knowledge to describe a customized processor with a high-level
language.

This thesis aims to develop such a knowledge and to demonstrate the flow to
develop an ad-hoc processor for preliminary programmable data processing on
pixel imagers. To create ASIPs from a high-level language, there are various com-
mercial solutions available like Transport triggered architecture-based Co-design
Environment (TCE) that is open source, Studio by Codasip, and ASIP Designer
by Synopsys [37]. The latter one is the tool used in this thesis.

3.1.1 ASIP optimization space

Figure 3.2: Tree diagram of the optimization space provided by ASIP Designer.

The possibilities in terms of processor optimization are quite wide as it is shown in
figure 3.2. They are mainly separated into parallelism and specialization.

Parallelism can be performed on different levels such as:

• Data-level parallelism: to perform the same operations on different data
samples executed by multiple processing elements to increase the throughput.

36

On-chip Processor for data processing

Usually, this is achieved by Single Instruction Multiple Data (SIMD) mode
[38].

• Task-level parallelism: to perform multiple tasks in parallel by exploiting
multi-core and multi-threading. This is in contrast to data-level parallelism.

• Instruction-level parallelism: to have multiple instructions executed in parallel
from a single instruction. This applies to such cases where some instructions,
belonging to the same thread, do not depend on each other and can be
performed in parallel. This is different with respect to concurrency where
multiple threads are executed in alternation on a single core, giving the
impression that they are executed in parallel because of the high switching
frequency [39]. An example is the Very Long Instruction Word (VLIW) as an
instruction set architecture where instructions are executed in parallel.

On the other side, specialization of the processor can be achieved by:

• Application-specific instructions: introduces additional instructions for mem-
ory addressing, data processing, or control processing to perform specific
instructions thus optimizing the processor. For instance, it might be useful
to have an application-specific operator that performs an operation on a
user-defined number of cycles.

• Application-specific data types: introduces additional data types which were
not present such as fractional numbers, and floating-point in order to perform
specific operations on these data types that usually are not included in classic
processors.

• Application-specific connectivities and storages: a specification is required in
terms of register files and their allocations, if central or distributed and how
to connect them to the datapath. Similar decisions must be taken for memory
elements such as their number, their position, and how to connect them to
functional units.

• Application-specific pipeline: the pipeline depth might change depending
on the required clock frequency from specifications. Moreover, solutions for
introduced hazards are necessary to be defined.

3.2 Workflow
In this thesis, the workflow to generate a novel customized processor model is
based on ASIP Designer by Synopsys. Thanks to the retargetable environment,

37

On-chip Processor for data processing

ASIP Designer can change to fit the provided processor. Thus, it needs a special-
purpose high-level language to describe the Instruction Set Architecture (ISA). This
language is called nML, a domain-specific but also a Register Transfer Level (RTL)
language able to describe the instructions of the processor that trigger register
transfers of its datapath [40].

Figure 3.3: Flow of ASIP Designer by Synopsys.
[36]

As shown in the figure 3.3, the processor model, written in nML language by the
designer, is an input of the actual tool. Such a processor model is designed with
a specific user-defined architecture. ASIP Designer is provided with a Software
Development Kit (SDK) that contains multiple features such as an optimizing C
and C++ compiler, a linker, and an assembler.

From a user-defined application-specific test code written in C or C++, which is
another input of the tool, it is possible to simulate the processor model behavior.
This might be done either in an instruction-accurate or cycle-accurate way thanks
to the Instruction Set Simulator (ISS) already present in this SDK.
Furthermore, from the user-defined algorithm applied to the processor model, it is
possible to exploit the debugger and profiler, already present in the SDK, to solve
bugs and optimize the processor architecture. Profiling is obtained by running

38

On-chip Processor for data processing

the algorithm in the ISS and it gives information about instructions, functional
units, primitive operations, nML coverage, hazards, and storage access to get a
report about what and what not the processor is using. This is the starting point
for iterative optimizations of the processor. For instance, data types might be
added or removed from the architecture, the same might be applied to specific
instructions from the instruction set. It is also possible to add or remove some
level of parallelism. Operations might be removed if unused, or created if necessary.
The same applies to specific functional units or pipeline stages to be well suited for
the application-specific test code.

ASIP Designer tool is also provided with an RTL Generator which, starting
from the processor model written in nML language, automatically generates the
RTL code either in VHDL or Verilog. The generated code has a specific structure
starting from the top level with different modules to their behavioral description.
Several configuration options might be enabled to generate an optimized RTL code
by introducing clock gating or reducing critical paths.

To provide a complete analysis of the ASIP performance, the generated RTL
can be implemented from RTL to Place and Route (PnR) with a specific technology.
From the figures of merit extracted from this implementation, such as achievable
clock frequency, area occupation, and power consumption, it is possible to further
optimize the processor model to meet specifications.

The verification part consists of running the user-defined algorithm written in
C/C++ on three different levels. The first one consists of compiling and executing
the C code on the host compiler, and it is used as a reference. The second one
simulates the same C code on the ISS of the processor model while the third
one performs the simulation on the RTL Simulator, already present in ASIP De-
signer. Then, these three levels are compared to check for possible differences and
mismatches.

3.3 nML: a structural processor language
A processor architecture, in ASIP Designer, is defined through several important
characteristics and attributes. This is done by modeling the processor at a high
level written in nML language. This language describes both the instruction-set
architecture and hardware microarchitecture of the target processor. The following
aspects are defined in nML:

• Primitive data types: can be either classic C language data types or user-
defined ones such as floating-point types or complex types. The primitive

39

On-chip Processor for data processing

data types are declared as C++ language classes where the size and type of
data, for instance, signed or unsigned, are described through class properties.
Once defined, data types can be used in the processor model, and the compiler
will use C built-in types to map these data types. This mapping is explicitly
declared in the processor model. Moreover, also conversions between data
types can be performed and these are declared as C++ conversion constructors.

• Primitive operations: can be either classic C language operations or user-
defined ones. Primitive operations are executed on primitive data types.
Primitive operations are modeled as C functions with inputs and outputs.
Similarly to primitive data types, C built-in operators are translated into these
primitive operations. This mapping is explicitly declared in the processor
model.

• Functional units: are groups of primitive operations executed on the same
hardware unit. They are not mandatory but convenient to perform specific
operations together.

• Memories: are static storage elements with well-defined load and store op-
erations where access timing and addressing mode are both specified. Both
data type of stored values and address type must be coherent with previously
declared primitive data types. In nML, memories are defined as a model and
they are far from actual external memory implementations.

• Registers: are static storage elements that do not require load and store
operations for access. Direct addressing is usually applied. Registers can be
either individuals or piled up to create a register file with a defined size. For
individual registers, only the data type of stored values is necessary while in
a register file also address type is required. Depending on the application,
register files can be either central or distributed. Interconnections of registers
with functional units or primitive operations must also be specified.

• Pipeline registers: are defined in terms of the number of pipeline stages.
Moreover, introduced hazards are also resolved by specifying hardware stalls,
software stalls, bypasses, etc.

• Instruction-set: is defined through several rules and particular grammar and
attributes to uniquely specify instructions. This is done by describing their
actions, assembly language, and instruction encoding. These nML actions are
described as a register-transfer model based on primitive functions. These
actions can be customized by declaring and describing them also in different
pipeline stages of the same instruction-set description. Moreover, also control
instructions, used to deal with the flow of the program, such as subroutines,

40

On-chip Processor for data processing

interrupts, zero overhead loops, etc are specifically defined and modeled with
primitive operations.

• Properties: are used to uniquely determine the purpose of special storage
elements such as Program Memory, Program Counter, Data Memory, etc.

• Hardwired constants: are not required but useful if instantiated multiple times
in the processor model.

In addition to defining primitive data types and operations, nML builds the
structural skeleton of the processor model, as described before. Nevertheless, the
behavior of primitive functions is captured separately in PDG language which
stands for Primitives Definition and Generation [41].
PDG language is a language developed by ASIP Designer to describe these primitives
once. It is a mix between the C language and Hardware Description Language
(HDL) as Verilog; and it is used to define purely functional primitives, controller
primitives and other intricate primitives. It can use primitive data types declared by
the designer in the nML language as well as C language operators with additional
features.
Without this PDG language, primitives defined in a high-level language as nML
need to be implemented both into C++ language to be run on the ISS as well as
implemented into VHDL or Verilog to be run on the HDL simulator. These two
implementations might rise inconsistencies between them. Primitives defined in
PDG description avoid these issues and also the double effort. PDG tool is able to
easily generate C++, VHDL and Verilog implementations without inconsistencies.
Moreover, other components necessary in a processor are described in PDG such
as the Processor Control Unit (PCU) and additional IO interfaces as transition
layers between the abstract view of memories in nML and the external physical
memories.

3.4 Processor architecture
ASIP Designer is equipped with numerous working example processors with different
specifications and modeling features. They go from processors meant for educational
purposes to domain-specific processors such as specialized accelerator processors
for filtering, motion estimation, images, etc. There is also an example of a digital
signal processor and several examples of microcontrollers implementing different
instruction set architectures. For each of them, ASIP Designer has dispensed a
complete project file with all the necessary libraries and processor model files. All
the configuration projects needed to generate the C++ code to be run on ISS and
RTL code to be run on the RTL simulator are also present with a regression setup

41

On-chip Processor for data processing

for the verification flow. Despite the regression verification, all these processors
are not formally verified by Synopsys as IP processors. Moreover, many of these
processors have manuals to have in-depth knowledge and description of their
working principles.

3.4.1 Processors’ description
After a general overview of these examples, two microcontrollers have been selected
as starting points: Trv32p3 and Tmicro. The scope is to reach the minimum
set of instructions necessary to perform on-chip data processing in HEP. This is
achieved by a fair comparison of optimization between two microprocessors, which
are implementing different instruction-set architectures and microarchitectures.
Trv32p3 is a RISC-V-based microprocessor while Tmicro implements a customized
ISA. A complete description of both microprocessors is given as follows.

Trv32p3 presents the following characteristics and features [42]:

• A 32-bit RISC-V microcontroller supporting the RV32IM [43] as ISA

• An ALU with integer arithmetic, bitwise logical, shift and compare instructions

• An AGU to generate addresses to access memories for load and store operations

• A three-stage protected pipeline for fetching, decoding, and executing stages
with register bypasses and both hardware and software stalls

• A 32-bit hardware multiplier that gives 64-bit results

• A 32-bit iterative multi-cycle divider

• A central general-purpose register file with 32 registers

• No specific move instructions and the ALU is used to perform such instructions

• Control flow instructions for conditional branches, direct jumps, indirect jumps
and links

Trv32p3 belongs to the TRV family of processors provided by ASIP Designer in
which other microcontrollers are present with different features but all of them are
RISC-V based. There are 32-bit or 64-bit processors with three or five pipeline
stages. Extensions of RISC-V are present for single-precision floating-point num-
ber instructions or compressed instructions. Trv32p3 has been chosen because it
presents the simplest RISC-V architecture among all these processors.

Tmicro presents the following characteristics and features [44]:

42

On-chip Processor for data processing

• A 16-bit microcontroller with a customized ISA

• An ALU-Shift with integer arithmetic, bitwise logical, compare and shift
instructions

• A MAC unit for multiply-accumulate operations

• AGU to generate addresses to access memories for load and store operations
where the addressing mode is indirect with optional post-modification.

• A three-stage protected pipeline for fetching, decoding, and executing stages
with software stalls that complement user-defined hardware stalls and bypass
rules

• A 16-bit multiplier that gives 32-bit results

• A 16-bit iterative multi-cycle divider

• A central general-purpose register file with 8 registers

• Move instructions

• Control flow instructions for jumps (conditional or unconditional and relative
or absolute), call to subroutines (direct or indirect), return from subroutines,
loops. . .

• Vectored interrupts

• Zero overhead loops

Tmicro has been chosen because it is one of the smallest non-RISC-V-based proces-
sors with a complete basic instruction set architecture provided by ASIP Designer.
These are all the instructions and features included in these two examples. From
these microprocessor examples as a starting point, it is possible to reach an
application-specific processor that fulfills our specifications. This is achieved by
adding specific instructions or functional units to perform some operations effi-
ciently. Another optimization comes from removing instructions and functional
units that are not used at all to lighten processor complexity and resource usage.

3.4.2 Memory interface
IO interfaces, in general, are useful to connect the processor core to its memories
by representing the latter ones in an abstract view. This is done by describing
the data and address types, the timing, and the ports of the memory to give an

43

On-chip Processor for data processing

abstract presentation in nML. Real memories have more properties that are not
described in this module. IO interfaces take nML memories as input with additional
inports and outports, describe the memory behavior for load and store operations
employing registers and transitories; and finally connect them to external interfaces
by declaring local memories [41]. In these examples, microprocessors are already
provided with a Data Memory (DM) that acts as a default memory for program
data storage, and a Program Memory (PM) for program code storage.
In the Trv32p3 microprocessor, DM size is 232 and stores 32-bit signed data with
addressing of 32-bit unsigned. Additionally, also PM size is 232 but it uses 32-bit
unsigned data type both for stored data and address.
On the other hand, in the Tmicro microprocessor, DM size is 216 and stores 16-bit
signed data with addressing of 16-bit unsigned. Additionally, also PM size is 216

but it uses 16-bit unsigned data type both for stored data and address.
In figure 3.4, DM is represented on the left side of the processor and PM on the
bottom-right side of it. The interface of DM has been kept intact while an extra
stage has been added to the PM which will be well described later on.

3.5 Processor customization

Starting from these two examples, an additional interface is needed for each
microprocessor toward the external world. This allows a future integration of
microprocessors in a System-on-a-Chip (SoC) environment and possible further
extensions of these processor models involving multiple memories or processors.
This interface is used to output the processed data. AMBA APB system bus [45]
has been chosen as a protocol for this interface. The choice of such a bus system is
due to consistency since it is already integrated into other SoC modules and IP
blocks developed by the Micro-Electronics (ME) group at CERN.

3.5.1 APB interface

The AMBA APB system bus is realized through serially connected IO interface
modules written in the processor model in PDG language.
Moreover, a custom Interface Memory has been declared, defined, and included in
the processor model as a novel memory in nML language. This Interface Memory
has been used as a testing feature for this APB system bus.

44

On-chip Processor for data processing

Figure 3.4: Integration of customized interface from the processor towards an
Interface Memory.

These IO interfaces are shown in figure 3.4 as stages represented as rounded boxes
and the memory interfaces are the connections between these boxes. In addition to
Data Memory and Program Memory previously described, the custom Interface
Memory has been connected to the APB system bus of both microprocessors and
will be used thereafter in the application-specific test code. The IO interface stages
introduced for this APB interface are outlined as follows:

System bus

The interface between the local Interface Memory and the processor core exploits
the AMBA APB system bus as previously described. The acknowledge response
from the APB testbench slave, represented by the Interface Memory, is emulated
since there is no physical presence of such an element. This signal tells if the
memory element has accepted or not any request of load or store operation from
the processor through the master.

45

On-chip Processor for data processing

Figure 3.5: Read transfer signals in
AMBA APB system bus protocol.

[45]

Figure 3.6: Write transfer signals in
AMBA APB system bus protocol.

[45]

Figures 3.5 and 3.6 respectively show read and write transfer signals for the AMBA
APB system bus [45]. PCLK is the clock signal and all the APB signals are sensitive
to its rising edge. PADDR is the APB address bus. PWRITE is the direction signal
that tells if the transfer is a read (low) or a write (high). PSEL is the selection
signal generated by the master and there is one for each slave to tell which one is
selected. PENABLE is the enable signal referring to the second cycle (or more)
of the transfer. PRDATA carries the read data from the slave toward the master
when PWRITE is low. Similarly, PWDATA carries the write data from the master
toward the slave when PWRITE is high. Finally, PREADY is the ready signal of
the transfer.
In both figures 3.5 and 3.6, at T1 there is the setup stage for read and write transfer
by triggering the PSEL used as a select signal. At this point, PADDR, PWDATA
(for write transfer) or PRDATA (for read transfer), and PWRITE must be stable.
Moreover, PENABLE goes low. The next stage is the access stage at T2. At this
moment, PENABLE goes high as the PREADY signal. The latter signal indicates
that at T3, the write data will be acknowledged (for a write transfer) or the read
data will be presented (for a read transfer) prior to the read transfer’s conclusion.
During this transfer, all the control signals must be valid and stable. Finally, at
T3, if there is no following transfer on the same slave, PSEL goes low.

46

On-chip Processor for data processing

Figure 3.7: Read transfer signals to-
ward Interface Memory in customized
Trv32p3 microprocessor using AMBA
APB system bus.

Figure 3.8: Write transfer signals to-
ward Interface Memory in customized
Trv32p3 microprocessor using AMBA
APB system bus.

Figure 3.9: Read transfer signals to-
ward Interface Memory in customized
Tmicro microprocessor using AMBA
APB system bus.

Figure 3.10: Write transfer signals to-
ward Interface Memory in customized
Tmicro microprocessor using AMBA
APB system bus.

A similar behavior for read and write transfers has been applied to the customized
Trv32p3 and Tmicro microprocessors. Figures 3.7 and 3.8 respectively show the
read and write transfer signals for customized Trv32p3 microprocessor, in which
PADDR, PRDATA and PWDATA are 32-bit signals. Similarly, in figures 3.9 and
3.10 there are the same read and write transfer signals for customized Tmicro
microprocessor, in which PADDR, PRDATA, and PWDATA are 16-bit signals.

In both microprocessors, the selection signal PSEL has been named PSEL0 for
possible further integration of more slaves, and there is no priority algorithm due
to the presence of a single slave.

In figures 3.7 and 3.9, reading operation of value 4 from address 1000 of the
Interface Memory works correctly for both microprocessors. The selection signal is
asserted for two consecutive clock cycles and the enable signal is de-asserted during
the first one and asserted during the second one. Moreover, PRDATA is presented
during the second cycle as well as PREADY signal.

47

On-chip Processor for data processing

Analogously, in figures 3.8 and 3.10, writing operation of value 14 at address
999 of the Interface Memory runs accurately on both microprocessors. Also here,
the selection signal is asserted for two consecutive clock cycles and the enable signal
is de-asserted during the first one and asserted during the second one. Furthermore,
PWDATA is valid and stable since the triggering of write transfer while PREADY
signal is asserted during the second cycle.

These correct behaviors have been achieved after several attempts and modifi-
cations of the master and slave stages of the interface. These stages are better
described later on. The refinements have been done by changing the interface
description in PDG language in terms of signal timings.
The APB transfer behavior has been precisely checked thanks to the waveforms
generated by Verdi, the automated debug system provided by Synopsys, and present
in ASIP Designer. The inspection has been performed in the early stage of the
interface creation because it is easier to do corrections at this level rather than later
on when the processor model gets too complicated. These waveforms have been
examined several times during the exploration and integration of the customized
processor model.

Depipeline stage

The timing of load and store operations, described in the processor model, must
be consistent with the specifications of the protocol chosen. For a load operation,
request of the operation and generation of the address happen in the decode stage,
while loading of the data occurs in the execute stage. On the other hand, for a store
operation, request of the operation, generation of the address, and storage of the
data happen all in the execute stage. An equivalent memory access timing can be
declared in the processor model along with the memory declaration. The problem
with such timing is the following: if a load operation follows a store operation, a
structural hazard occurs because of resource conflict.

In processors such as the Trv32p3, both load and store operations are described in
a pipeline fashion. The request and the generation of the address happen in the
decode stage while the corresponding operation on the data occurs in the execute
stage. This helps to avoid structural hazards.

To be completely consistent for load and store operation timing between pe-
ripheral memory and the one declared in the processor model, a de-pipeline stage
is necessary for store operation. This stage becomes pointless when both timings
of the processor and peripheral memory are consistent with each other.

48

On-chip Processor for data processing

Insert wait state stage

The next IO interface module is the insert wait stage. This stage acts when the
processor sends a request, but the memory is busy and cannot acknowledge it.
It also helps in the opposite case when the memory provides a result, but the
processor cannot receive it because it is in a wait state due to other modules.
In the first case, this stage buffers the request raised by the processor to extend it
and make it available in the next cycles until the memory acknowledges it. During
this time, wait states are introduced in the processor as no-operations also known
as no-op or nop.
In the second case, this stage behaves similarly by buffering the read results coming
from the memory when the processor is in a wait state, and forwarding it when
the processor becomes available.

Further modifications have been introduced to the processor model in order to
correctly act during a wait state:

• A no-operation wait state declaration has been introduced in the PCU

• A no-operation wait state declaration has been introduced in the behavioral
model of the processors

• An extra option for no-operation has been added to stall the processor in the
HDL generation configuration file

• An extra option has been added to the ISS project file to define the wait state
configuration as a no-operation

Buffer result stage on Program Memory

In the beginning, only the novel interface had been added but this raised some
problems due to the introduction of wait states. This can be seen clearly in listing
3.1 where a comparison of register change dumps between the ISS and the RTL is
presented.

Listing 3.1: Comparison of register change dumps between ISS and RTL
1 ISS common RTL
2 −−− −−−−−− −−−
3 EDM_0[5 1 8] = 0 !
4 EDM_1[5 1 8] = 0 !
5 EDM_2[5 1 8] = 0 !
6 EDM_3[5 1 8] = 0 !
7 PC_ID = 00000048
8 22 (76)
9 PC_ID = 0000004C

49

On-chip Processor for data processing

10 X[3] = 2076 ! X[6] = 1341
11 23 (80)
12 ! EDM_0[5 1 8] = 0
13 ! EDM_1[5 1 8] = 0
14 ! EDM_2[5 1 8] = 0
15 ! EDM_3[5 1 8] = 0
16 PC_ID = 00000050
17 X[6] = 1341

A register change dump is a log file containing the cycle number, the value of the
program counter, also written in parenthesis, and the assignment of a value to a
register at a particular address. This is executed on both ISS and RTL simulations
through the application-specific test code. A comparison between these two register
change dump files shows possible errors, mismatches, or misalignment between these
two simulations. This is done to verify the correct functioning of the generated RTL
compared to the ISS, since the latter is already compared to the native simulation
for verification, and thus, can be used as a reference. If the comparison presents
some anomalies, the HDL needs to be debugged [46].
This comparison is used for running regression tests to verify the correct function-
ality of the processor model. This has been performed at each modification of the
processor model to check for possible bugs in the HDL.

In listing 3.1, a clear misalignment is present between the ISS and RTL simu-
lations. The assignment of value zero to the external DM at address 518 takes place
at two different times. This phenomenon occurs for each register assignment along
the whole simulation, which means it is consistent and related to the no-operations
introduced by the insert wait stage of the custom interface.

Because of this mismatch between register change dumps, additionally to this
novel interface, a specific buffering stage must be introduced to the PM, which is
always reactive in these simple microprocessors. This stage is equivalent to the
insert wait stage of the novel interface. When the processor is in a wait state (nop
operation), this stage buffers the read results coming from the memory since they
cannot be received by the processor.

3.5.2 Load and Store instructions of Interface Memory

Once the structure of the additional interface is well defined and verified, an actual
link between this and the processor is necessary. This connection is achieved
by describing the load-store instructions of Interface Memory in the nML model,

50

On-chip Processor for data processing

exploiting the central register file of the processor. The description of such instruc-
tions differs between Trv32p3 and Tmicro processors, in order to adapt to the
already existing load-store instructions on DM in the hosting processor.
Inside such an nML model, a functional unit for address generation is generally
used. The load-store instructions are defined as operations with specific actions,
syntax, and image attributes. In the action attribute, a detailed behavior of the
operation is described separated into pipeline stages.

Trv32p3 microprocessor

Listing 3.2: nML model of load and store instructions for Interface Memory in
Trv32p3 processor

1 fu im_agu ;
2 trn im_aguA <w32>; // opA f o r IM
3 trn im_aguB <w32>; // opB f o r IM
4 trn im_aguR <w32>; // agu r e s u l t f o r IM
5

6 // ~~
7 // ~~~ Top−Level Rule f o r t h i s nML f i l e
8

9 opn im_load_store_instrs (
10 im_load_instr |
11 im_store_instr
12) ;
13

14 // ~~
15 // ~~~ X [] Load Operat ions
16

17 opn im_load_instr (rd : mX1w_EX, r s1 : mX3r_ID, o f f s : c12s)
18 {
19 ac t i on {
20 s tage ID : im_aguA = rs1 ;
21 im_aguB = o f f s ;
22

23 s tage ID : im_aguR = add (im_aguA , im_aguB) @im_agu ;
24 im_addr = im_aguR ;
25

26 s tage ID . .EX:
27 im_read ‘EX‘ = IM[im_addr ‘ ID ‘] ‘EX‘ ;
28 s tage EX:
29 rd = im_read ;
30 }
31 syntax : "IM LD " PADMNM " " rd " , " PADOP1 o f f s " (" r s1 ")

" ;
32 image : o f f s : : r s1 : : "000" : : rd : : opc32 . r e s e rved3
33 c l a s s (im_load) , c l a s s (im_load_store) ;

51

On-chip Processor for data processing

34

35 }
36

37 // ~~
38 // ~~~ X [] Store ope ra t i on s
39

40 opn im_store_instr (r s1 : mX3r_ID, r s2 : mX2r_EX, o f f s : c12s)
41 {
42 ac t i on {
43 s tage ID : im_aguA = rs1 ;
44 im_aguB = o f f s ;
45

46 s tage ID : im_aguR = add (im_aguA , im_aguB) @im_agu ;
47 im_addr = im_aguR ;
48

49 s tage ID . .EX:
50 IM[im_addr ‘ ID ‘] ‘EX‘ = im_write ‘EX‘ = rs2 ;
51 }
52 syntax : "IM ST " PADMNM " " r s2 " , " PADOP1 o f f s " (" r s1 ")

" ;
53 image : o f f s : : r s1 : : "111" : : r s2 : : opc32 . r e s e rved3
54 c l a s s (im_store) , c l a s s (im_load_store) ;
55

56 }
57

58 // ~~
59 // ~~~ Chess Views f o r AGU Operat ions
60 // ~~
61

62 // ~~
63 // ~~~ I n d i r e c t Address ing
64

65 chess_view () {
66 im_aguR = add (im_aguA , im_aguB = 0) ;
67 } −> {
68 im_aguR = im_aguA ;
69 }
70

71 // ~~
72 // ~~~ Direc t Address ing
73

74 chess_view () {
75 im_aguR = add (im_aguA = zero , im_aguB) ;
76 } −> {
77 im_aguR = im_aguB ;
78 }

In listing 3.2, there is the novel nML model of load-store instructions for Interface

52

On-chip Processor for data processing

Memory in Trv32p3 microprocessor.

In the first part, the functional unit for the AGU is declared with its three transi-
tories. Notice that the data type is w32 which is a 32-bit signed value previously
declared as a primitive data type.
In the second part, there is a top-level rule in which a generic load-store instruction
is subdivided respectively into load and store instruction.
The third part contains the load operation. It has three variables as inputs: rd,
rs1, and offs.
The first two are referred to as different mode rules to access the central register
file X of the processor: rd accesses this register in a write mode during the execute
pipeline stage; while rs1 accesses this register in a read mode during the decode
pipeline stage. Finally, offs takes a constant 12-bit signed value. The action
attribute of load operation describes its actual behavior. During the decode stage,
the address is generated as an addition between rs1 and offs. This takes place in
the AGU functional unit described at the beginning. Then, the address im_addr
is sent to the memory during the decode stage while the access to it happens in
the execute stage as well as the data available on the im_read bus.
Finally, during the execute stage, the loaded value from the Interface Memory is
written in the central register file of Trv32p3 through rd. In line 31, the syntax
attribute defines how this instruction will present itself in the generated microcode.
It is a combination of text and input variables. Then, there is the image attribute
which tells how this instruction will be encoded and saved in the program memory.
Here, it is a concatenation of the three input variables and some dedicated major
operation codes, such as opc32.reserved3, which is a declared constant to uniquely
specify the instruction. The instruction can also belong to specific classes, such as
im_store and im_load_store at line 54, to facilitate debugging and profiling.

Analogously, the fourth part describes the store operation to the Interface Memory.
rs1 and offs are still used as input variables and instead of rd, now there is rs2
which accesses the central register X in a read mode during the execute pipeline
stage. The address generation is equivalent to the load operation one. Moreover,
rs2 forwards the value present in the central register to the im_write bus during
the execute pipeline stage. During the same stage, the memory core is accessed
while the address was sent to the memory in the previous pipeline stage of decode.
The images of both load and store operations, besides the usage of rd or rs2,
differ by a specific 3-bit value which is "000" for load operation and "111" for store
operation. If any couple of instructions have the same image, the tool will not
build the processor model and will alert with errors.

Finally, at the end of listing 3.2, there is an optimization for the tool applied

53

On-chip Processor for data processing

to the AGU which states: if one of the addends used to generate the address is
equal to zero, then the resulting address is equal to the other addend. This avoids
the futile usage of adders.

Tmicro microprocessor

Listing 3.3: nML model of load and store instructions for Interface Memory in
Tmicro processor

1 opn im_load_store_instr (im_load_store_wreg_indirect)
2

3 {
4 image : " 1 1 0 0 " : : " 0 0 " : : im_load_store_wreg_indirect
5 ;
6 }
7

8 fu im_ag1 ;
9 trn im_ag1p<word>;

10 trn im_ag1m<word>;
11 trn im_ag1q<word>;
12

13 enum im_load_store_op { ld , s t } ;
14

15

16 // load / s t o r e i n s t r u c t i o n s with l i n e a r address manipulat ions
17

18 enum im_ag1_op { i n d i r " " , i n c r "++", decr "−−" } ;
19

20 opn im_ag1_opn(op : im_ag1_op , r : r r i d)
21 {
22 ac t i on {
23 s tage ID :
24 switch (op) {
25 case i n d i r : im_ag1p = r ;
26 case i n c r : r = im_ag1q = add (im_ag1p=r , im_ag1m= 1) @im_ag1 ;
27 case decr : r = im_ag1q = add (im_ag1p=r , im_ag1m=−1) @im_ag1 ;
28 }
29 }
30 syntax : r op ;
31 image : r : : op ;
32 }
33

34 opn im_load_store_wreg_indirect (op : im_load_store_op , r r : wreg , ag :
im_ag1_opn)

35 {
36 ac t i on {
37 s tage ID :

54

On-chip Processor for data processing

38 ag ;
39 s tage ID . . E1 :
40 switch (op) {
41 case ld :
42 Tmicro_im_addr ‘ ID ‘ = im_ag1p ‘ ID ‘ ;
43 rr ‘ E1 ‘ = Tmicro_im_read ‘ E1 ‘ = Tmicro_IM [Tmicro_im_addr ‘ ID ‘] ‘

ID ‘ ;
44 case s t :
45 s tage ID :
46 Tmicro_im_addr_pipe = im_ag1p ;
47 s tage E1 :
48 Tmicro_im_addr = Tmicro_im_addr_pipe ;
49 Tmicro_IM [Tmicro_im_addr] = Tmicro_im_write = r r ;
50 }
51 }
52 syntax : op " " r r " , Tmicro_im (" ag ") " ;
53 image : op : : ag : : r r ;
54 }

Similarly, in listing 3.3, there is the novel nML model of load-store instructions for
Interface Memory in the Tmicro microprocessor.

In the beginning, there is a top-level rule used to properly encode the actual
load-store operation. The image is the concatenation of "1100", "00" and the image
of im_load_store_wreg_indirect operation. The first two values are defined
to avoid possible conflicts with images of other operations and thus to uniquely
identify this instruction. Then, there is the declaration of the AGU functional unit
used to generate the address with its three transitories. The data type is word
which is a 16-bit signed value previously declared among the other primitive data
types.

In Tmicro, load and store instructions are only defined with linear address ma-
nipulation. The address generation is described in a separate operation named
im_ag1_opn at line 20. It takes the type of address operation such as indirect,
increment, or decrement; and r the decode pipeline stage read port of central
register R of the processor, as input variables. The action attribute, in line 22,
describes the instruction behavior. During the decode pipeline stage, the address
might be generated indirectly or; incremented or decremented using an adder
present in the previously defined functional unit.

Differently from Trv32p3, in Tmicro microprocessor, store and load instructions are
defined in a single operation called im_load_store_wreg_indirect. It takes the
operation type, load or store, as an input variable. Moreover, also rr is an input

55

On-chip Processor for data processing

variable representing the memory access mode either in read or write during any
pipeline stage. Finally, another input is ag which carries the address value generated
by im_ag1_opn operation which is performed during the decode stage. At line 40,
load and store operations are separately described thanks to a switch statement.
For a load operation, the address is sent to memory during the decode stage as well
as the access to it. Data becomes available on micro_im_read bus in execute stage
as well as the writing of such value in the central register of Tmicro. On the other
hand, in the store operation, an extra pipeline signal Tmicro_im_addr_pipe
is present and it is used for On-Chip Debugging purposes as shown in listing
3.5. Then, sending the address to memory, accessing it, and availability of data
on the bus, all happen during the execute stage. Notice that, the type of opera-
tion on Interface Memory will be the discriminator to uniquely determine the image.

Once the APB interface has been created and connected to the microprocessor
through custom load and store instructions, On-Chip Debugging must be updated
as well. Every time a new memory element is introduced, such as the Interface
Memory in this case, it needs to be connected to the On-Chip Debugging module
to maintain consistency and coherency of the processor model. This is better
described in the next subsection.

3.5.3 On-Chip Debugging
Both microprocessors implement the On-Chip Debugging (OCD) feature to create
a debug interface and debug controller modules useful for hardware debugging. The
connection between the processor and the debug controller is done through specific
registers for address, data, and instruction. These registers are used to access
memories from the debug interface. The load and store operations must be speci-
fied in nML language for each memory element declared in the processor model [46].

The OCD specifications are already described for DM and PM memories. Novel
OCD memory accesses have been declared in nML for the newly introduced Inter-
face Memory as shown in listing 3.4 for Trv32p3 microprocessor and in listing 3.5
for Tmicro microprocessor. These nML models are defined in an always() nML
rule so they occur every time. Load and store accesses to memories are guarded
by transitories with specific names to create a bridge between the processor and
debug controller.

For Trv32p3, the debug moves are described along the three pipeline stages.
During the first stage, OCD guarding transitories are used to raise a load or store
request. During the second stage, the OCD address is forwarded to the Interface
Memory address bus and used to access the memory in the third stage. In a load

56

On-chip Processor for data processing

operation, this data becomes available on im_read bus used to forward it towards
the ocd_imd register of the debug controller. Analogously, in a store operation, the
data coming from the debug controller, present in ocd_imd_r register, is stored in
the Interface Memory through the im_write bus. Notice that ocd_imd_r is just
a buffer register of ocd_imd.

Listing 3.4: nML model for OCD memory accesses to Interface Memory in
Trv32p3 processor

1 // IM debug moves
2 s tage 1 . . 3 :
3 guard (ocd_ld_IM ‘ 1 ‘) {
4 s tage 2 :
5 ocd_addr = ocd_addr_w = inc r1 (ocd_addr_r) @ocd_addr_incr ;
6 s tage 2 . . 3 :
7 ocd_imd ‘ 3 ‘ = ocd_imd_w = im_read = IM[im_addr ‘2 ‘= ocd_addr_r

‘ 2 ‘] ‘ 3 ‘ ;
8 }
9 s tage 1 . . 3 :

10 guard (ocd_st_IM ‘ 1 ‘) {
11 s tage 2 :
12 ocd_addr = ocd_addr_w = inc r1 (ocd_addr_r) @ocd_addr_incr ;
13 s tage 2 . . 3 :
14 IM[im_addr ‘2 ‘= ocd_addr_r ‘ 2 ‘] ‘ 3 ‘ = im_write ‘ 3 ‘ = ocd_imd_r

‘ 3 ‘ ;
15 }

Similar behavior of OCD memory access is present in the Tmicro processor where
ocd_data is used as the data register of debug controller. For the load operation,
the OCD address is forwarded to the Interface Memory address bus which takes
place in the decode stage as well as the access to the memory. In execute stage,
data is available on the Tmicro_im_read bus and carried out to the ocd_data
register. On the other hand, in store operation, pm_addr_pipe signal defined in
the previous paragraph is used for an intermediate state; while the forwarding of
data present in ocd_data register towards the Interface Memory occurs in execute
stage.
Notice that in Trv32p3, the pipeline stages have been named 1, 2, and 3 to generalize
the OCD. On the contrary, in Tmicro, pipeline stages in OCD have the same names
as the ones defined in the processor model.

Listing 3.5: nML model for OCD memory accesses to Interface Memory in Tmicro
processor

1 s tage ID . . E1 :
2 guard (ocd_ld_Tmicro_IM) {
3 ocd_data ‘E1 ‘ = ocd_data_w = Tmicro_im_read ‘E1 ‘ =

57

On-chip Processor for data processing

4 Tmicro_IM [Tmicro_im_addr ‘ ID ‘ = ocd_addr_r = ocd_addr
‘ ID ‘] ‘ ID ‘ ;

5 }
6 guard (ocd_st_Tmicro_IM) {
7 s tage ID :
8 Tmicro_im_addr_pipe = ocd_addr_r = ocd_addr ;
9 s tage E1 :

10 Tmicro_IM [Tmicro_im_addr = Tmicro_im_addr_pipe] =
Tmicro_im_write = ocd_data_r = ocd_data ;

11

12 }

OCD is an extremely useful feature for hardware debugging. Nevertheless, it is not
mandatory and it can be easily disabled when unnecessary.

3.6 Final considerations
General-purpose processors and hardwired datapaths present complementary ad-
vantages and disadvantages. An Application Specific Instruction-set Processor
permits the creation of a bridge between them and enhances their benefits. This
chapter explored the possibility to use an ASIP for on-chip data processing in
future pixel detectors. ASIP design is a powerful tool that allows the designer to
tailor the processor architecture to comply with an application. Nevertheless, the
design of an ASIP requires a high-level architecture description language which is
complex. Several specific aspects are needed to fully characterize an ASIP such as
data types, operations, instruction-set, PCU, etc.
In this work frame, two microprocessors have been chosen as candidates to perform
an exploratory study: Trv32p3 and Tmicro. The two microprocessors have been
customized by integrating an interface towards the external world by following the
APB system bus. Specific load and store instructions have been introduced in their
processor models to fully connect the interface to the processor core.
The newly introduced APB interface is going to be exploited to test the function-
ality of the processor model and extract important results. Chapter 4 presents a
specific-application test code with relevant profiling results to better understand
the potentialities of ASIPs.

58

Chapter 4

Algorithm and Profiling

Once the processor model of a microprocessor is ready, the next step consists of
testing it. This chapter is divided into two parts: algorithm and profiling. The
first part shows the testing of the processor model through an application-specific
test code written in C++ and ran on the processor model. This chapter shows a
specific data processing algorithm developed for High Energy Physics applications.
Input data of this algorithm are real physics data from old particle detectors. The
second part of this chapter presents the profiling results of the processor model
using the algorithm presented. This helps to better understand the utilization of
processor model features.

4.1 Data processing Algorithm
Data processing of information coming from a detector is currently performed
off-chip through FPGA or DSP or processors. A chart showing a generic data
processing flow is provided in figure 4.1.

Figure 4.1: Flow chart of current data analysis.

After digitizing signals through the readout ASIC present on the chip, raw data from
the pixel detector is forwarded off-chip to the data acquisition system. Raw data
is a partly chronologically sorted stream of pixel hits or frames with information
about position and intensity.

59

Algorithm and Profiling

These pixel hits go through a clustering function that uses spatial and temporal
coincidence to assign pixels to clusters. Several methodologies are applied for
clustering such as QuadTree [47] able to process approximately 1 Mhits/s and
Clustering from Petr Mánek [48] able to process approximately 3 MHits/s. Cluster
events, outputted by the clustering function, go through classification and even
filtering which depend on the application and provide data compression.
This section proposes an algorithm to perform part of the off-chip data processing
previously described directly on the chip. The objective is not to obtain a software-
optimized algorithm but to develop a test case to evaluate the processors described
in section 3.4 and perform further optimizations.

4.1.1 Input data
Figure 4.2 shows a typical event to be processed: the first measurement results
of Timepix3 chip [31] for radon decay products at the Environmental Research
Station Schneefernerhaus. This image is the result of an integration time of 60
minutes. It shows a real-time measurement of several particles with their trajecto-
ries. These particles show various shapes of trajectories. α-particles usually present
a rounded shape while muons present a straight trajectory. Data from all pixels

Figure 4.2: First measurement results of Timepix3 at the Environmental Research
Station Schneefernerhaus on Zugspitze.

[49]

60

Algorithm and Profiling

might be redundant and unnecessary. For instance, α-particles present raw data of
approximately 100 - 200 pixels but the only necessary parameters are the mean
position of its center, radius, and total energy. Similarly, particles with rectilinear
trajectories, present raw data of approximately 10 - 200 pixels, and the necessary
parameters are the coordinate of its most left pixel, the coordinate of its most right
pixel, and its total energy.

Real raw data from Timepix3 has been used as input for such data process-
ing. This set of data consists of information about pion particles, also known as
pi mesons, denoted as π. A pion is a sub-atomic particle made of a quark and
an anti-quark and represents the lightest meson and hadron. They are unstable
particles and so they decay into muons as soon as possible. Through the process
of photo-production, pion beams are created when multi-TeV proton or deuteron
beams traveling through the LHC collide with photons from an X-ray Free Electron
Laser [50].
Several files of raw data are present for different incident angles of pions of 0, 30,
50, 70, and 90 degrees on the detector. The clustering time window within a single
track is 200 ns and, since the clock frequency is equal to 40 MHz, it is equivalent
to 8 cycles. The wait time between the first pixel in the cluster and the finish flag
is 500 µs.
Clustering event outputs are also provided, exploiting the QuadTree clustering
method, as a reference to compare results with outputs coming from the data
processing algorithm that will be described later on. These clustering events are
computed off-chip and, in these reference output files, each line contains the clusters’
start time and clusters’ size.

Raw data format comes as follows in listing 4.1:
Listing 4.1: Pions raw data of Timepix3 at 120 GeV and incidence angle of 0
degree and integration time of 300 s

1 # Ikrum : 15 (1 . 087V)
2 # Vfbk : 164 (0 . 793V)
3 # Vthreshold_f ine : 390 (0 . 778V)
4 # Vthreshold_coarse : 7 (0 . 778V)
5 # Ibias_DiscS1_ON : 100 (1 . 070V)
6 # Ibias_DiscS1_OFF : 8 (1 . 278V)
7 # Ibias_DiscS2_ON : 128 (0 . 341V)
8 # Ibias_DiscS2_OFF : 8 (0 . 196V)
9 # Ibias_PixelDAC : 128 (0 . 938V)

10 # Ibias_TPbufferIn : 128 (1 . 132V)
11 # Ibias_TPbufferOut : 128 (1 . 034V)
12 # VTP_coarse : 128 (0 . 642V)
13 # VTP_fine : 256 (0 . 635V)
14 # Ibias_CP_PLL : 128 (0 . 493V)

61

Algorithm and Profiling

15 # PLL_Vcntrl : 128 (0 . 813V)
16 # BandGap output : −−− (0 . 634V)
17 # BandGap_Temp : −−− (0 . 683V)
18 # Ibias_dac : −−− (1 . 198V)
19 # Ibias_dac_cas : −−− (0 . 968V)
20 # DACs: 128 8 128 15 164 390 7 100 8 128 8 128 128 128

128 256 128 128
21 # DACs Scans : 1 .164V 1.306V 0.635V 1.087V 0.793V 0.778V 0.778

V 1.070V 1.278V 0.341V 0.196V 0.938V 1.132V 1.034V 0.642V
0.635V 0.493V 0.813V 0.634V 0.683V 1.198V 0.968V

22 # −−−
23 21248 3550080 2 16
24 41070 6762306 3 30
25 41065 6762306 6 12
26 41066 6762306 9 19
27 41068 6762306 7 24
28 40814 6762307 10 7
29 41067 6762306 9 23
30 41069 6762306 7 33
31 11894 19404263 11 9
32 11895 19404263 10 14
33 11638 19404263 12 16
34 .
35 .
36 .
37 # Frame : 1
38 #Star t time : 5E−08
39 #End time : 300.00000005
40 #Hits : 17 ,814 ,239
41 #Lost Hits : 0
42 #UDP Tranfer : 99.7%

After a first listing of setting parameters such as threshold voltages and bias
currents, data lines start at line 23. Each data line is composed of four parameters:

• The first column represents the pixel coordinate for a 256×256 pixel matrix.
The division of such pixel coordinate by 256 gives a quotient, equivalent to y
coordinate, and a remainder, equivalent to x coordinate.

• The second column represents a coefficient of Time-of-Arrival (ToA) of pion
particle in cycles. Since clock frequency is 40 MHz, such a coefficient needs to
be multiplied by 25 ns to obtain ToA in seconds.

• The third column represents a correction factor for ToA. For simplification,
such a factor has not been taken into account.

• The fourth column represents the value of Time-over-Threshold (ToT) as the
amplitude of the signal equivalent to the energy loss of the particle.

62

Algorithm and Profiling

These raw data have been converted into C files thanks to a Python script. These
C files are used as input data for our customized data processing algorithm.
Input files for Trv32p3 and Tmicro microprocessors are not the same due to their
different architectures. Such input data have been pre-stored in the DM memory
of each processor. This has been done by declaring them as unsigned values and
assigning them to specific DM memory locations through the "chess_storage" built-
in function. The allocation addresses have been casually chosen to not conflict with
some reserved DM locations. This is because for the sake of developing a test case,
where and how the input data is stored does not matter. Front-end and readout
ASIC are responsible for storing data in a specific allocation.
Listing 4.2: Input data file of Trv32p3 microprocessor converted from pions raw
data of Timepix3 at 120 GeV and incidence angle of 0 degree and integration time
of 300 s

1 #i f n d e f __DATA__H
2 #d e f i n e __DATA__H
3 unsigned chess_storage (DMb: 0 x1000000)
4 in [2 3] = {22 , // Coord ToA−#c y c l e ToT
5

6 3550080 , // 3550080
7 0x53000010 , // 21248 16
8

9 6762306 , // 6762306
10 0xA06E001E , // 41070 30
11

12 6762306 , // 6762306
13 0xA069000C , // 41065 12
14

15 6762306 , // 6762306
16 0xA06A0013 , // 41066 19
17

18 6762306 , // 6762306
19 0xA06C0018 , // 41068 24
20

21 6762307 , // 6762307
22 0x9F6E0007 , // 40814 7
23

24 6762306 , // 6762306
25 0xA06B0017 , // 41067 23
26

27 6762306 , // 6762306
28 0xA06D0021 , // 41069 33
29

30 19404263 , // 19404263
31 0x2E760009 , // 11894 9
32

63

Algorithm and Profiling

33 19404263 , // 19404263
34 0x2E77000E , // 11895 14
35

36 19404263 , // 19404263
37 0x2D760010 // 11638 16
38 } ;
39 #e n d i f

Listing 4.2 shows input data file for Trv32p3 microprocessor. Information for each
pixel occupies two DM memory locations. The first location is occupied by the
ToA value in cycles while the second location is a concatenation between pixel
coordinate and ToT value. This is because Trv32p3 is a 32-bit microprocessor and,
pixel coordinate takes a maximum of 16 bits. After some time, the ToA value
exceeds 32 bits and thus a reset on ToA occurs.
Listing 4.3: Input data file of Tmicro microprocessor converted from pions raw
data of Timepix3 at 120 GeV and incidence angle of 0 degrees and integration time
of 300 s

1 #i f n d e f __DATA__H
2 #d e f i n e __DATA__H
3 unsigned chess_storage (DM: 0 x 0 f f f)
4 in [3 4] = {33 , // Coord ToA−#c y c l e ToT
5

6 1 , // 1
7 0x5300 , // 21248 (0 , 83)
8 0x0010 , // 16
9

10 2 , // 2
11 0xA06E , // 41070 (110 , 160)
12 0x001E , // 30
13

14 2 , // 2
15 0xA069 , // 41065 (105 , 160)
16 0x000C , // 12
17

18 2 , // 2
19 0xA06A , // 41066 (106 , 160)
20 0x0013 , // 19
21

22 2 , // 2
23 0xA06C , // 41068 (108 , 160)
24 0x0018 , // 24
25

26 2 , // 2
27 0x9F6E , // 40814 (110 , 159)
28 0x0007 , // 7
29

30 2 , // 2

64

Algorithm and Profiling

31 0xA06B , // 41067 (107 , 160)
32 0x0017 , // 23
33

34 2 , // 2
35 0xA06D , // 41069 (109 , 160)
36 0x0021 , // 33
37

38 5 , // 5
39 0x2E76 , // 11894 (118 , 46)
40 0x0009 , // 9
41

42 5 , // 5
43 0x2E77 , // 11895 (119 , 46)
44 0x000E , // 14
45

46 5 , // 5
47 0x2D76 , // 11638 (118 , 45)
48 0x0010 // 16
49

50 } ;
51 #e n d i f

Similarly, listing 4.3 shows the input data file for the Tmicro microprocessor. Infor-
mation for each pixel occupies three DM memory locations. The first location is
occupied by the ToA value in cycles, the second one is occupied by pixel coordinates,
and finally, the third one by the ToT value. This is because Tmicro is a 16-bit
microprocessor and, pixel coordinate takes a maximum of 16 bits. Since ToA values
exceed 16 bits from the beginning, a reset and re-computation have been performed
on ToA to fit in the 16-bit DM memory.

In both data input files, the first memory element corresponds to the total number
of the following values. Moreover, coordinate and ToT are written in the hexadeci-
mal notation for compactness. For clearness, both files include a commented part
to explicitly show coordinate, ToA, and ToT values for each information.
Finally, only three kinds of events at different ToA windows have been used as
input data due to run-time limitations: a single pixel without neighbors, a large
cluster event and a small cluster event.

4.1.2 Application-specific algorithm

Figure 4.3 shows the flow chart of the application-specific data processing algorithm
implemented in this thesis.

65

Algorithm and Profiling

Figure 4.3: Flow chart of the application-specific data processing algorithm.

The algorithm has been divided into four different steps:

Sorting by ToA

The first step consists of sorting input data depending on ToA values. Since input
data already comes as a partly chronologically sorted stream of pixel hits, this step
just consists of fetching input data. This fetching by ToA takes into account a
clustering time window of 200 ns equivalent to 8 cycles for a clock frequency of 40
MHz.
During this step, x and y coordinates are computed from the single input coordinate
value (idx) for each pixel as follows:

x = idx%256 [integer]
y = idx/256 [integer]

(4.1)

Filtering and Sorting by clusters

The second step consists of two parts:

• Filtering: this part consists of background cancellation. A single hit pixel
without any neighbors is probably associated with some kind of noise thus it
gets filtered out. On the other hand, if cluster size exceeds the computational
boundary conditions, all the data values belonging to the same ToA are directly
forwarded towards the output to avoid any information loss. These filtering
conditions can be specified depending on the application.

66

Algorithm and Profiling

• Clustering: this part consists of checking for neighbors around a specific area.
A graphical representation of the clustering algorithm is provided in figure 4.4.

Figure 4.4: Graphical representation of clustering algorithm.

The clustering algorithm starts by searching for a pixel with the maximum value of
ToT in a certain ToA window (dark green pixel). This pixel is used as a starting
point by the clustering algorithm. From this pixel, the algorithm searches for
first-level neighbors and if any are present, it searches for second-level neighbors
around the first level. For instance, in figure 4.4 the pixel with the maximum
value of ToT is represented in dark green. Then, it looks for a first-level neighbor
towards the east. If this neighbor is present, it looks for second-level neighbors
towards its east and south. The same principle is applied in the south, west, and
north directions. If any neighbor is present from a second-level neighborhood
(red arrows), the algorithm rises an "out of border" flag that immediately outputs
all data belonging to the same ToA window towards the external peripheral and
fetches the next ToA window. Otherwise, if a clustering event is finished and
non-processed data values belonging to the same ToA window are still present, the
algorithm searches for the next maximum value among the remaining data as the
next starting point.
Furthermore, if a single pixel without neighbors is present (pink pixel), it gets
filtered out.
The clustering algorithm implements two levels of nested functions. Such depth

67

Algorithm and Profiling

can be extended for specific applications depending on how many nested functions
the processor can sustain.

Computation of Centre of Gravity and total energy

The third step consists of computing the Centre of Gravity and total energy while
regrouping pixels by clusters as follows:

xtot =
nØ

i=0
xi · Ei

ytot =
nØ

i=0
yi · Ei

Etot =
nØ

i=0
Ei

(4.2)

Values of xtot, ytot, Etot are sufficient to fully describe Centre of Gravity of a cluster
and its total energy.

Output to External Peripheral

The fourth and last step consists of outputting Centre of Gravity and total energy
information towards an external peripheral through the APB interface introduced
in section 3.5.1. In this case, the external peripheral is the Interface Memory which
is used as a testing feature. Moreover, if input data exceeds the clustering boundary
conditions, all data from the same ToA window are outputted too. The output
function consists of writing this information in specific allocations of Interface
Memory with increasing address. The output values are visible in register change
dump files during verification of processor functionality.

4.2 Processor Profiling
Profiling is a sophisticated optimization approach and dynamic program analysis
that reorders code inside processes or between operations based on statistical
information obtained while the program is executing [51]. Profiling does not impact
the program’s syntactic functionality however it can increase performance relying
on the kind of application. At both the instruction and function levels, profile
data is accessible. Profiling reveals which sections of the application software
receive the majority of cycles [52]. With the use of profiling, users may locate the
application and architectural performance bottlenecks, as well as learn how much
code is covered and find uncovered functionality.
ASIP Designer provides the following profiling reports:

68

Algorithm and Profiling

• Instructions profiling

• Functional units profiling

• Primitive operations profiling

• Instruction classes profiling

• Hazards profiling

• nML coverage profiling

• Storages accesses profiling

For each kind of profiling, reports on the application-specific data processing algo-
rithm, presented in section 4.1, applied to both Trv32p3 and Tmicro microprocessors
will be shown.

Instructions profiling
Instruction profiling reorganizes processor instructions used during the execution
of the program code and regroups them by functions.

Listing 4.4: Instruction profiling report of Trv32p3 microprocessor
1 Total c y c l e count : 2560
2 Report c y c l e count : 2560
3 Total i n s t r u c t i o n count : 2144
4 Report i n s t r u c t i o n count : 2144
5 Report i n s t r u c t i o n coverage : 71.64%
6 Total s i z e in program memory : 2948
7

8 Function summary :
9

10 Cycles % o f t o t a l I n s t r u c t i o n % of t o t a l % Coverage Function
11 −−−−−− −−−−−−−−−− −−−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−−−−−
12 1188 46.41% 952 44.40% 55.86% sort ing_by_c lus te r s
13 617 24.10% 559 26.07% 100.00% fetching_by_ToA
14 322 12.58% 240 11.19% 100.00% output_to_IM
15 318 12.42% 288 13.43% 100.00% main
16 104 4.06% 96 4.48% 100.00% computing_CoG_Etot
17 6 0.23% 6 0.28% 100.00% _main_init
18 2 0.08% 1 0.05% 33.33% _start_bas ic

Listing 4.5: Instruction profiling report of Tmicro microprocessor
1 Total c y c l e count : 4284
2 Report c y c l e count : 4284

69

Algorithm and Profiling

3 Total i n s t r u c t i o n count : 3406
4 Report i n s t r u c t i o n count : 3406
5 Report i n s t r u c t i o n coverage : 69.50%
6 Total s i z e in program memory : 1252
7

8 Function summary :
9

10 Cycles % o f t o t a l I n s t r u c t i o n % of t o t a l % Coverage Function
11 −−−−−− −−−−−−−−−− −−−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−−−−−
12 2275 53.10% 1677 49.24% 53.67% sort ing_by_c lus te r s
13 854 19.93% 762 22.37% 100.00% fetching_by_ToA
14 578 13.49% 448 13.15% 99.19% output_to_IM
15 443 10.34% 396 11.63% 100.00% main
16 112 2.61% 112 3.29% 100.00% computing_CoG_Etot
17 16 0.37% 8 0.23% 100.00% t e s t _ i n i t
18 2 0.05% 1 0.03% 33.33% _start_bas ic

Instruction profiling report of Trv32p3 microprocessor, in listing 4.4, presents 2560
cycles while Tmicro microprocessor, in listing 4.5, presents 4284 cycles to perform
the complete data processing algorithm for three events. This is because Trv32p3
has a 32-bit architecture while Tmicro has a 16-bit architecture thus it takes more
cycles to perform the same tasks.
The total instruction count is respectively 2144 and 3406 cycles due to the presence
of multi-cycle instructions.
Instruction coverage of respectively 71.64 % and 69.50 % mean not all instructions
present in Trv32p3 and Tmicro microprocessors have been used, thus, optimization
of approximately 30 % might be reached in terms of instruction-set. This also needs
to take into account that instruction coverage changes depending on application
and input data.
Function summary is also present in both reports and shows the list of functions
sorted by cycle count. In both cases, sorting_by_clusters is the function in which
most cycles are spent occupying approximately half of the total cycle count. This
function needs a huge work of optimization to lower its cycle count. Moreover, the
algorithm is covering approximately 50 % of this function code. After running a
complete set of real input data, it is possible to better understand which parts
of this sorting function are the most used in order to optimize them. Function
fetching_by_ToA takes fewer cycles and its C code is fully covered. The same
occurs to output_to_IM and computing_CoG_Etot functions.
The last two functions in both listings are external C file functions used to initiate
the algorithm.
The original instruction profiling reports are also provided with a complete de-
scription of each function in terms of instructions such as Program Counter value,
assembly code, execution count, cycles, and wait states. This information has been

70

Algorithm and Profiling

omitted in these listings for compactness.

Instruction profiling helps a lot to understand which functions require most of the
cycles but it is incomplete. Other kinds of profiling reports are necessary to have a
complete understanding of optimization space.

Functional units profiling
Functional units profiling reorganizes processor functional units used during the
execution of the program. Here, functional units are sorted out by count occurrences
and also by functions. Listing 4.6 and listing 4.7 respectively show profiling of
functional units of Trv32p3 and Tmicro microprocessors. The first column presents
how many times a functional unit is used for more complex instructions. The
percentage is related to the total instruction count presented during instructions
profiling.

Listing 4.6: Functional units profiling report of Trv32p3 microprocessor
1 Count % Count Funct iona l Func % Func Function name
2 un i t s Count Count
3 −−−−− −−−−−−−− −−−−−−−−−− −−−−−− −−−−−−− −−−−−−−−−−−−−−−−−−
4 1016 47.39% DMw 483 47.54% sort ing_by_c lus te r s
5 259 25.49% fetching_by_ToA
6 137 13.48% main
7 89 8.76% output_to_IM
8 48 4.72% computing_CoG_Etot
9 1016 47.39% agu 483 47.54% sort ing_by_c lus te r s

10 259 25.49% fetching_by_ToA
11 137 13.48% main
12 89 8.76% output_to_IM
13 48 4.72% computing_CoG_Etot
14 790 36.85% alu 317 40.13% sort ing_by_c lus te r s
15 237 30.00% fetching_by_ToA
16 119 15.06% main
17 88 11.14% output_to_IM
18 24 3.04% computing_CoG_Etot
19 5 0.63% _main_init
20 711 33.16% lx 388 54.57% sort ing_by_c lus te r s
21 172 24.19% fetching_by_ToA
22 68 9.56% output_to_IM
23 59 8.30% main
24 24 3.38% computing_CoG_Etot
25 292 13.62% pca 152 52.05% sort ing_by_c lus te r s
26 57 19.52% fetching_by_ToA
27 47 16.10% output_to_IM
28 27 9.25% main
29 8 2.74% computing_CoG_Etot

71

Algorithm and Profiling

30 1 0.34% _start_bas ic
31 232 10.82% cmp 131 56.47% sort ing_by_c lus te r s
32 51 21.98% fetching_by_ToA
33 39 16.81% output_to_IM
34 11 4.74% main
35 16 0.75% mpy 16 100.00% computing_CoG_Etot
36 15 0.70% IM 15 100.00% output_to_IM
37 15 0.70% im_agu 15 100.00% output_to_IM

Listing 4.7: Functional units profiling report of Tmicro microprocessor
1 Count % Count Funct iona l Func % Func Function name
2 un i t s Count Count
3 −−−−− −−−−−−−− −−−−−−−−−− −−−−−− −−−−−−− −−−−−−−−−−−−−−−−−−
4 1947 57.16% DM 1051 53.98% sort ing_by_c lus te r s
5 398 20.44% fetching_by_ToA
6 278 14.28% main _main
7 172 8.83% output_to_IM
8 48 2.47% computing_CoG_Etot
9 1285 37.73% ag1 759 59.07% sort ing_by_c lus te r s

10 257 20.00% main _main
11 160 12.45% fetching_by_ToA
12 109 8.48% output_to_IM
13 441 12.95% alu 154 34.92% fetching_by_ToA
14 143 32.43% sort ing_by_c lus te r s
15 103 23.36% output_to_IM
16 33 7.48% main _main
17 8 1.81% computing_CoG_Etot
18 245 7.19% Tmicro_IM 169 68.98% sort ing_by_c lus te r s
19 49 20.00% output_to_IM
20 20 8.16% fetching_by_ToA
21 7 2.86% main _main
22 221 6.49% im_ag1 169 76.47% sort ing_by_c lus te r s
23 25 11.31% output_to_IM
24 20 9.05% fetching_by_ToA
25 7 3.17% main _main
26 16 0.47% mul 16 100.00% computing_CoG_Etot
27 11 0.32% sh 11 100.00% fetching_by_ToA
28 5 0.15% d l f l g 5 100.00% output_to_IM

It is noticeable how Data Memory and address generation functional units take most
cycles in both microprocessors. Additionally, in both microprocessors, Data Memory
functional unit is called most of the times in sorting_by_clusters function followed
by fetching_by_ToA, main, output_to_IM and computing_CoG_Etot.
Moreover, the third most used functional unit in both processors is the ALU unit.
In Trv32p3, the following functional units are: lx used for load operations of central
register files, pca used as Program Counter adder in control instructions, cmp used
as a comparator in control instructions, mpy used for multiplication operations,

72

Algorithm and Profiling

IM is the functional unit representing Interface Memory accesses and im_agu as
address generation unit of Interface Memory.
On the other hand, functional units following alu in Tmicro microprocessor are:
Tmicro_IM representing Interface Memory accesses, im_ag1 as address genera-
tion unit of Interface Memory, mul used for multiplication operations, sh used as
a shifter and dlflg as a hardware loop flag update unit.
Regardless of all similarities, the functional unit for Interface Memory is different.
In Trv32p3, Interface Memory is accessed only during the output_to_IM function,
as it should be, while Tmicro accesses it also during other functions. This shows a
flaw in the Tmicro microprocessor which increases its cycle count.

Optimizations might be implemented in these functional units to lower their
cycle count and be more application-specific. But it is still difficult which parts of
such functional units are used and not. For further understanding, it is important
to look at the building blocks of functional units: primitive operations. Moreover,
the unused functional units, such as the divider, might be removed to optimize
both microprocessors in terms of area.

Primitive operations profiling
Similar profiling can also be performed on primitive operations. Listing 4.8 and
listing 4.9 respectively show profiling of primitive operations of Trv32p3 and Tmicro
microprocessors. For compactness, only a few primitive operations have been shown.
In both listings, the first column represents the number of times a certain primitive
operation is used for more complex instructions. The percentage is related to the
total instruction count shown during instructions profiling.

Listing 4.8: Primitive operations profiling report of Trv32p3 microprocessor
1 Count % Count Pr imi t ive opera t i on
2 −−−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−−−−−−−−
3 2762 128.82% rd X
4 2011 93.80% add
5 1546 72.11% wr X
6 711 33.16% rd DMw
7 305 14.23% wr DMw
8 272 12.69% rd PC_ID
9 232 10.82% br

10 102 4.76% ne
11
12 15 0.70% wr IM
13

Listing 4.9: Primitive operations profiling report of Tmicro microprocessor

73

Algorithm and Profiling

1 Count % Count Pr imi t ive opera t i on
2 −−−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−−−−−−−−
3 2483 72.90% rd R
4 2332 68.47% wr R
5 1730 50.79% add
6 1416 41.57% rd DM
7 1246 36.58% rd SP
8 531 15.59% wr DM
9 235 6.90% jump

10 221 6.49% rd Tmicro_IM
11
12 24 0.70% wr Tmicro_IM
13

In Trv32p3, rd X and wr X respectively correspond to read and write primitive op-
erations on central register file X. Similarly, in Tmicro, rd R and wr R respectively
correspond to read and write primitive operations on central register file R. From
both listings, it is noticeable how the total cycle count, in both microprocessors, is
extremely dominated by the accesses to central register files.
Furthermore, also primitive operations for reading and writing on Data Memory
strongly influence total cycle count.
Moreover, another primitive operation that impacts a lot the total cycle count is
the addition add in both microprocessors

Accesses to central register files and Data Memory must be optimized to hugely
decrease total cycle counts. Another optimization might be introduced in ALU
since it exploits a lot of add primitive operations.

Instruction classes profiling
Instructions can also be reorganized into classes for a better understanding of
profiling. In the processor model, a class attribute might be associated with
some instructions to collect them under the same instruction class. Listing 4.10
and listing 4.11 respectively show profiling of instruction classes of Trv32p3 and
Tmicro microprocessors. For compactness, only a few instruction classes have been
shown. In both listings, the first column represents the number of times a certain
instruction class is used for more complex instructions. The percentage is related
to the total instruction count shown during instructions profiling.

Listing 4.10: Instruction classes profiling report of Trv32p3 microprocessor
1 Count % Count I n s t r u c t i o n c l a s s
2 −−−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−
3 2142 99.91% i_class_chckrs_Trv32p3
4 1590 74.16% i_class_mX1w
5 1051 49.02% i_class_mX3r

74

Algorithm and Profiling

6 1038 48.41% i_class_mX1r
7 1016 47.39% i_c l a s s_ ld s t
8 711 33.16% i_c lass_load
9 685 31.95% i_c la s s_a lu_rr i

10 673 31.39% i_class_mX2r
11 305 14.23% i_c l a s s_s to r e
12 292 13.62% i _ c l a s s _ c t r l
13 232 10.82% i_class_branch
14 105 4.90% i_c lass_a lu_rrr
15 40 1.87% i _ c l a s s _ j a l
16 20 0.93% i _ c l a s s _ j a l r
17 16 0.75% i_class_mpy
18 15 0.70% i_class_im_load_store
19 15 0.70% i_class_im_store
20

Listing 4.11: Instruction classes profiling report of Tmicro microprocessor
1 Count % Count I n s t r u c t i o n c l a s s
2 −−−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 3404 99.94% i_class_chckrs_Tmicro
4 3404 99.94% i_class_Tmicro
5 2400 70.46% i_class_wreg
6 2386 70.05% i_class_r_reg
7 1971 57.87% i_c las s_load_store_ins t r
8 1845 54.17% i_class_wreg_w
9 1836 53.90% i_class_r_reg_w

10 1217 35.73% i_class_load_store_wreg_sp_indexed
11 1217 35.73% i_class_sp_indexed
12 975 28.63% i_c l a s s_r r i d
13 975 28.63% i_c las s_rr id_r
14 730 21.43% i_class_ag1_opn
15 730 21.43% i_class_load_store_wreg_indirect
16 575 16.88% i_class_wreg_r
17 565 16.59% i_class_r_reg_r
18 512 15.03% i_c l a s s_cont ro l_ in s t r
19 475 13.95% i_c la s s_rs
20 475 13.95% i_class_rs_r
21 468 13.74% i_c la s s_a lu_ins t r
22 468 13.74% i_c la s s_rr
23 468 13.74% i_class_rr_r
24 265 7.78% i_class_rrid_w
25 245 7.19% i_class_im_ag1_opn
26 245 7.19% i_class_im_load_store_instr
27 245 7.19% i_class_im_load_store_wreg_indirect
28

In both listings, the first class is just associated with CHECKERS which is the
Instruction Set Simulator of ASIP Designer. As shown in primitive operations

75

Algorithm and Profiling

profiling, read and write accesses to central register files are the most impacting
instructions on total cycle count. In Trv32p3, i_class_mX1w represents a write
access mode during execute stage while i_class_mX1r and i_class_mX2r rep-
resent two different read access modes during execute stage and i_class_mX3r
represents a read access mode during decode stage to central register file X. Similar
behavior also occurs in the Tmicro microprocessor.
Moreover, also load and store instructions to Data Memory impact a lot the total
cycle count, as shown previously in primitive operations profiling.

Instruction classes profiling confirms what was stated before in primitive operations
profiling: accesses to central register files and Data Memory must be optimized to
hugely decrease total cycle count.

Hazards profiling
During the application-specific algorithm, several hazards occur due to pipeline
stages implemented in both microprocessors. Listing 4.12 and listing 4.13 respec-
tively show introduced stalls in Trv32p3 and Tmicro during the execution of the
algorithm to solve such hazards. These stall rules are described in both processor
models with a special class attribute to ease profiling and debugging.

Listing 4.12: Hazards profiling report of Trv32p3 microprocessor
1 Hardware s t a l l s by c l a s s :
2

3 Count % Count Class name Func Count % Func Cnt Function name
4 −−−−− −−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−
5 11 0.43% agu_read_after_write 6 54.55% fetching_by_ToA
6 5 45.45% sort ing_by_c lus te r s

Listing 4.13: Hazards profiling report of Tmicro microprocessor
1 Software s t a l l s by c l a s s :
2

3 Count % Count Class name Func Count % Func Cnt Function name
4 −−−−− −−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−− −−−−−−−−−−−−−
5 152 3.55% dm_addr_conflict 63 41.45% sort ing_by_c lus te r s
6 63 41.45% fetching_by_ToA
7 16 10.53% computing_CoG_Etot
8 6 3.95% output_to_IM
9 4 2.63% main _main

10 48 1.12% read_after_write_R 15 31.25% output_to_IM
11 14 29.17% sort ing_by_c lus te r s
12 11 22.92% fetching_by_ToA
13 8 16.67% computing_CoG_Etot
14 21 0.49% de lay_s lo t 8 38.10% output_to_IM

76

Algorithm and Profiling

15 8 38.10% computing_CoG_Etot
16 4 19.05% sort ing_by_c lus te r s
17 1 4.76% fetching_by_ToA
18 7 0.16% between_loop_ends 7 100.00% output_to_IM
19 4 0.09% o f f s _ c o n f l i c t 4 100.00% sort ing_by_c lus te r s

In Trv32p3, eleven Read After Write (RAW) data hazards occur on the AGU unit:
six during fetching_by_ToA and five during sorting_by_clusters. They occur
because AGU uses results from other units. To solve such hazards, a one-cycle
hardware stall named agu_read_after_write is used for load and store instructions
and it is explicitly described in the processor model of Trv32p3. Other hardware
and software stalls are described in the processor model too but they do not occur
during this algorithm.

On the other hand, when the algorithm is running on the Tmicro microprocessor,
232 hazards occur. These hazards are solved through software stalls described
in the processor model of Tmicro. dm_addr_conflict is a software stall of one
cycle that solves structural hazards occurring on the address of Data Memory.
read_after_write_R is a software stall of one cycle that solves Read After Write
(RAW) data hazards occurring on central register file R. Additionally, other
delay_slot are used. between_loop_ends is required to avoid two nested hardware
loops ending at the same address. This occurs in the output_to_IM function since
it is the last nested function of the algorithm.

Hazards profiling reports a good understanding of where and how hazards are
present and solved by stalls or bypasses.

nML coverage profiling
nML coverage profiling report shows how much of the processor model is used in
terms of operations. Listing 4.14 and listing 4.15 respectively show the ratio of
nML operations used for Trv32p3 and Tmicro microprocessors. For compactness,
only a small part of nML coverage profilings have been shown.

Listing 4.14: nML coverage profiling report of Trv32p3 microprocessor
1 Trv32p3 (0 .178988)
2 . i32 fmt (0 .178988)
3 . a l u_ in s t r s (0 . 134167)
4 . a lu_rrr_ar_instr (0 . 05625)
5 +majOP_fn10 (0 . 2)
6 −add (1)
7 − s l l (0)
8 − s l t (0)
9 −s l t u (0)

77

Algorithm and Profiling

10 −xor (0)
11 − s r l (0)
12 −or (0)
13 −and (1)
14 −sub (0)
15 −s ra (0)
16 +mX1w_EX (0 .28125)
17 +mX1w (0 .28125)
18 +eX (0 .28125)
19 . . . (. . .)
20 +mX1r_EX (1)
21 . . . (. . .)

Listing 4.15: nML coverage profiling report of Tmicro microprocessor
1 Tmicro (0 . 263301)
2 . a lu_ins t r (0 . 41336)
3 . a lu_rrr (0 . 428571)
4 +alu_op (0 .428571)
5 −add (1)
6 −addc (0)
7 −sub (1)
8 −subb (0)
9 −and (1)

10 −or (0)
11 −xor (0)
12 +rt (1)
13 +rr (1)
14 +rs (1)
15 . s h i f t _ r r r (0 . 333333)
16 . . . (. . .)

The algorithm uses approximately 18 % of Trv32p3 microprocessor while it uses
approximately 26 % of Tmicro microprocessor. For instance, add and and are the
only operations used in ALU instruction-set alu_instrs of Trv32p3 microprocessor.
Thus all the other operations might be removed since not necessary. Similarly, in
the Tmicro microprocessor, only add, sub and and are used so the other operations
can be removed.

From nML coverage reports, it is easier to identify which operations are not
used by the application-specific test code and remove them to decrease processor
model complexity.

Storages accesses profiling
Another possible profiling consists of storage accesses profiling. Listing 4.16 and
listing 4.17 respectively show the storages accesses of Data Memory and Interface

78

Algorithm and Profiling

Memory done by Trv32p3 and Tmicro microprocessors. For compactness, only
Data Memory and Interface Memory are shown in these listings but information
about other memories is possible such as Program Memory, Program Counter,
central register file, etc.

Listing 4.16: Storages accesses profiling report of Trv32p3 microprocessor
1 Function s to rage a c c e s s summary :
2

3 Storage Read Read Write Write Function name
4 count count count count
5 (t o t a l) (f unc t i on) (t o t a l) (func t i on)
6 −−−−−−− −−−− −−−−−−−−−−− −−−−−−− −−−−−−−−−−− −−−−−−−−−−−−−−−−−−
7 DMb 2844 96 (3.38%) 1220 96 (7.87%) computing_CoG_Etot
8 688 (24.19%) 348 (28.52%) fetching_by_ToA
9 236 (8.30%) 312 (25.57%) main

10 272 (9.56%) 84 (6.89%) output_to_IM
11 1552 (54.57%) 380 (31.15%) sor t ing_by_c lus te r s
12 IM 0 0 (0.00%) 15 15 (100.00%) output_to_IM
13 .

Listing 4.17: Storages accesses profiling report of Tmicro microprocessor
1 Function s to rage a c c e s s summary :
2

3 Storage Read Read Write Write Function name
4 count count count count
5 (t o t a l) (f unc t i on) (t o t a l) (func t i on)
6 −−−−−−− −−−− −−−−−−−−−−− −−−−−−− −−−−−−−−−−− −−−−−−−−−−−−−−−−−−
7 DM 1416 24 (1.69%) 531 24 (4.52%) computing_CoG_Etot
8 280 (19.77%) 118 (22.22%) fetching_by_ToA
9 171 (12.08%) 107 (20.15%) main

10 126 (8.90%) 46 (8.66%) output_to_IM
11 815 (57.56%) 236 (44.44%) sor t ing_by_c lus te r s
12 Tmicro_IM 221 20 (9.05%) 24 0 (0.00%) fetching_by_ToA
13 7 (3.17%) 0 (0.00%) main _main
14 25 (11.31%) 24 (100.00%) output_to_IM
15 169 (76.47%) 0 (0.00%) sor t ing_by_c lus te r s
16 .

In the Trv32p3 microprocessor, Data Memory is accessed 2844 times in read
mode and 1220 times in write mode, mostly during the sorting_by_clusters
function. Similarly, in the Tmicro microprocessor, Data Memory is accessed 1416
times in read mode and 531 times in write mode and also here mostly during
the sorting_by_clusters function. During such a function, both microprocessors
access Data Memory one by one for each single input value and this might be
optimized. Moreover, Interface Memory is accessed only in write mode by Trv32p3
as it should be. On the other hand, Tmicro presents some errors since it accesses

79

Algorithm and Profiling

Interface Memory also in read mode which should not occur as previously presented
in functional units profiling.

4.3 Final considerations
The application-specific algorithm of event clustering proves the functionality of
both microprocessors. Moreover, profiling results show a complete picture of the
processor model utilization. Both microprocessors use approximately 70 % of their
instruction set so an improvement of almost 30 % can be achieved. Furthermore, it
shows that access to central register files as well as to Data Memory, in both mi-
croprocessors, are the most impacting primitive operations in terms of the number
of cycles. A huge improvement must be implemented to drastically decrease this
cycle count. On the other hand, unused functional units such as the divider can
be removed from both processor models. Finally, all these results depend on the
application and input data set, thus they might differ from one case to another.

In this chapter, information regarding latency of data processing has been ex-
tracted from both microprocessors. This information is necessary to improve their
performance. Nevertheless, information regarding physical implementation is still
missing. Chapter 5 provides a complete description of the physical implementation
of both Trv32p3 and Tmicro microprocessors. Figures of merit concerning fre-
quency, area occupation, and power consumption are presented as well as additional
frequency optimizations.

80

Chapter 5

Physical implementation

Once the RTL code is generated and tested, to complete an ASIC design flow,
physical implementation is required. This is composed of two parts: RTL synthesis
and Place and Route (PnR). The first one exploits specific tools to map the
RTL code into a gate-level netlist through specific technologies libraries. Logic
optimizations are also performed during this part to meet specific time constraints.
Moreover, also a preliminary power analysis can be performed at this stage.
Although, for area information, the second step is needed: PnR consists of a first
part of setting down a floorplan of the chip in which standard cells are placed. The
floorplan also gives information about the total size of the chip. It is important
to carefully place blocks and pins to ease the routing part of metal wires to
interconnect them but also to minimize the total area of the final chip. Moreover,
the placement is done to minimize the timing and length of connections to reduce
power dissipation. Then, since the clock signal must be equally distributed to all
flops in the chip, Clock Tree Synthesis (CTS) is performed. It introduces buffers and
inverters along the clock tree to balance its delay and decrease power consumption.
Finally, routing of metal wires is performed to interconnect all blocks taking into
account fan-out wire delays.
At the end, such a physical implementation is verified through:

• Design Rule Checking (DRC) to check if the design meets the geometry rules
provided by the manufacturing foundry

• Logic Equivalence Checking (LEC) to check the equivalency between a refer-
ence design and the revised design through mathematical modeling techniques

• Layout versus schematic (LVS) to check for equivalency between the extracted
layout netlist and schematic synthesis netlist

This digital flow from RTL to PnR has been performed on the Cadence platform.

81

Physical implementation

The flow is based on the YAML language which is a human-friendly data serializa-
tion language able to manage Cadence Stylus flowKit from a higher level. Such
a flow serially performs the following steps: synthesis generic, synthesis mapping,
synthesis optimization, floorplan, pre-CTS, CTS, post-CTS, route, post-route,
optimization signoff, and export verify.
Cadence platform consists of several tools for different steps: Genus for synthesis, In-
novus for implementation, Tempus for timing analysis and Voltus for power analysis.

In this thesis, a 28 nm CMOS technology has been used to compute perfor-
mances of the physical implementation which presents tap-less standard cells to
achieve small dimensions. Various standard cell libraries are present in such a
technology depending on several combinations of gate length, threshold voltage,
and the number of tracks. All of them present a pitch dimension of 140 nm.
Standard cell libraries present three different gate lengths: 30 nm, 35 nm, and 40
nm. Small gate length standard cells are faster and show a better Total Ionizing
Dose (TID) response. On the other side, long gate length standard cells present
less leakage.
Additionally, standard cells come with six different threshold voltage flavors: Ultra-
Low Threshold Voltage (ULVT), Low Threshold Voltage (LVT), Standard Threshold
Voltage (SVT), High Threshold Voltage (HVT), Ultra-High Threshold Voltage
(UHVT) and Extremely-High Threshold Voltage (EHVT). Higher threshold voltages
are used to lower power consumption and leakage but also the achievable frequency
decreases. Oh the other hand, lower threshold voltages are used to push higher the
frequency but also power consumption and leakage increase. Moreover, two extra
flavors are present for Ultra Density Memories (UDM).
Finally, three different numbers of tracks are possible for these standard cells:
7-track, 9-track, and 12-track. This value represents the number of metal-1 lines
available in the routing space of a cell. It is equivalent to the height of cells.
Moreover, higher the number of tracks higher the speed due to higher current.

In this chapter, a fair comparison between the physical implementations of Trv32p3
and Tmicro microprocessors will be presented as well as the area comparison between
post-synthesis, at synthesis optimization step, and post-PnR, at optimization
signoff step. Moreover, several physical optimizations have been conducted on
both microprocessors and important figures of merit are shown.

5.1 First implementation
The first implementation has been performed with the following set of constraints:

• clock period: 3 ns

82

Physical implementation

• clock duty cycle: 50 %

• clock transition time: 0.2 ns

• clock uncertainty time: 0.2 ns

• clock uncertainty time for setup: 0.2 ns

• clock uncertainty time for hold: 0.05 ns

• inputs maximum fanout load: 1

• inputs transition time: 0.1 ns
All the presented implementations are routable and with correct timing closures.
A general occupancy of 50 % of the target has been used for floorplan without any
further constraints to see the achievable area.
Moreover, only one standard cells library has been used with the following charac-
teristics:

• gate length: 35 nm

• threshold voltage: standard (SVT)

• track: 9-track
Place and Route implementations at signoff step of Trv32p3 and Tmicro micropro-
cessors are presented respectively in figures 5.1 and 5.2.

Figure 5.1: Place and Route implementation of Trv32p3 microprocessor.

83

Physical implementation

Figure 5.2: Place and Route implementation of Tmicro microprocessor.

Microprocessor Instances Area [µm2] Clock [MHz]

Post
Synthesis

Trv32p3 11859 12223 333

Tmicro 12988 12993 333

Post
PnR

Trv32p3 12152 12231 333

Tmicro 13479 13105 333

Table 5.1: Summary table of total instances and area for Trv32p3 and Tmicro
microprocessors after synthesis and after PnR.

After synthesis of RTL code, Trv32p3 microprocessor presents 11859 total instances
in 12223 µm2. On the other hand, the Tmicro microprocessor presents 12988 total
instances in 12993 µm2. It is immediately visible that both microprocessors present
a similar area occupation and the total number of instances. Area information
after synthesis gives preliminary knowledge about the final area occupation but
it is still incomplete of placing, CTS, and routing details. Thus, it is important

84

Physical implementation

to check their consistency after the complete implementation flow to check for
its reliability. After PnR, the Trv32p3 microprocessor presents 12152 total in-
stances in 12231 µm2 with a density utilization of 51.61 %. On the other hand,
the Tmicro microprocessor presents 13479 total instances in 13105 µm2 with a
density utilization of 52.14 %. It is noticeable again the similarity of area occu-
pation between the two microprocessors. In addition, density utilization is still
approximately 50 %. Moreover, design information about the area was already re-
liable above 99 % after synthesis. All these information are summarized in table 5.1.

From now on, only information after the complete implementation flow will be
analyzed and presented for Trv32p3 and Tmicro microprocessors.

Power analysis has been conducted on both microprocessors to extract impor-
tant information regarding power consumption as internal power, switching power,
and leakage power. This analysis has been managed by changing input activity
and dominant frequency. Figures 5.3 and 5.4 represent summary graphs of total
power consumption of respectively Trv32p3 and Tmicro microprocessors. In both
graphs, total power consumption increases with both frequency and input activity.
Moreover, Tmicro presents higher power consumption with respect to Trv32p3 for
all values of frequency and input activity.

85

Physical implementation

Figure 5.3: Total power consumption graph of Trv32p3 microprocessor at different
frequencies and input activities.

86

Physical implementation

Figure 5.4: Total power consumption graph of Tmicro microprocessor at different
frequencies and input activities.

The figure 5.5 shows a summary table of power analysis of the Trv32p3 micro-
processor in which all the different kinds of power components are present. It is
noticeable how internal power contributes the most to the total power regardless of
the input activity and frequency. Although, internal power does not change too
much with input activity and frequency with a maximum increment of approxi-
mately 6 % from the lowest to the highest value. On the other hand, switching
power shows lower values than internal power but it does change largely with input
activity and frequency with a maximum increment of 61 % from the lowest to the
highest value. At 30 % of input activity and frequency of 300 MHz, it contributes
approximately 45 % of total power consumption. Finally, leakage power does not
have a meaningful impact on total power with a contribution always lower than 3 %.
Moreover, leakage power does not change at all with input activity and frequency.
Similar behavior occurs in the Tmicro microprocessor.

87

Physical implementation

Figure 5.5: Summary table of power analysis of Trv32p3 microprocessor.

Power analysis comparison between these two microprocessors shows that the total
power consumption of Tmicro is always larger than Trv32p3 by approximately 15
%. In addition, previously performed area analysis and summarized in table 5.1,
presents Tmicro microprocessor with a larger area and also with a larger number
of instances with respect to Trv32p3 microprocessor. These results are both in
contradiction with the architectural nature of these microprocessors. Tmicro
presents a limited instruction set compared to Trv32p3. Moreover, Tmicro is a
16-bit microprocessor while Trv32p3 is a 32-bit microprocessor. Thus, Tmicro
should present lower area occupation with a lower number of instances and lower
power consumption. The reason for such incongruity is better analyzed in the next
section.

5.2 RTL optimization of Tmicro microprocessor

To better understand why Tmicro presents higher values of instances, area occupa-
tion, and power consumption compared to Trv32p3, the hierarchy of modules has
been checked. Figure 5.6 shows a part of the hierarchy of instances present in the
Trv32p3 microprocessor sorted by the number of standard cells. Similarly, figure
5.7 shows a part of the hierarchy of instances present in the Tmicro microprocessor
sorted by the number of standard cells.

88

Physical implementation

Figure 5.6: Hierarchy of Trv32p3 mi-
croprocessor instances.

Figure 5.7: Hierarchy of Tmicro micro-
processor instances.

The largest instance in Trv32p3 is the central register file X which is coherent. On
the other side, in Tmicro, the central register file R is the second largest instance
after the trace buffer module. This module is a trace buffer simply implemented
as a ring buffer that stores sequentially a certain number of events. It is used
for debugging purposes and it is often present on-chip to keep records of the
Program Counter values of executed code. Such a module is not present in Trv32p3
microprocessor.
To have a fair comparison between these two microprocessors, the trace buffer
module has been removed from Tmicro. This has been done by removing such
a module from the processor model of Tmicro, thus inducing an optimization at
the RTL level. First, the processor model of the Tmicro microprocessor without
trace buffer has been correctly compiled and verified on ASIP Designer. Then,
the generated RTL code has been synthesized and implemented under the same
constraints and parameter settings of the first implementation flow used for Trv32p3
and original Tmicro.
The novel implementation at the signoff step of Tmicro without trace buffer is
shown in figure 5.8.

89

Physical implementation

Figure 5.8: Place and Route implementation of Tmicro microprocessor without
trace buffer.

Table 5.2: Summary table of total instances and area for Tmicro microprocessor
without trace buffer after synthesis and after PnR.

Microprocessor Instances Area [µm2] Clock [MHz]

Post
Synthesis

Tmicro without trace buffer 6853 6067 333

Post
PnR

Tmicro without trace buffer 7195 6147 333

Table 5.2 summarized area information of Tmicro microprocessor without trace
buffer. It presents 6853 total instances in 6067 µm2 after synthesis. Similar values
are also present after PnR with 7195 total instances in 6147 µm2 indicating that
area information after synthesis is reliable. Moreover, density utilization is 52.48
%, still close to the nominal 50 % of the previous microprocessors. Tmicro without
trace buffer shows an area of 47 % of the original Tmicro microprocessor, as shown

90

Physical implementation

previously in table 5.1 denoting that trace buffer occupies approximately 53 %
of the total area. Finally, the novel Tmicro without trace buffer now presents
approximately half of total instances and area occupation with respect to the
Trv32p3 microprocessor. This is coherent with the architectural differences between
these two microprocessors.

Power analysis has also been performed on Tmicro without trace buffer at the same
frequencies and input activities as previously performed analysis on Trv32p3 and
original Tmicro. The results of total power consumption are summarized in figure
5.9.

Figure 5.9: Power consumption of Tmicro microprocessor without trace buffer
module at different frequencies and input activities.

Similarly to Trv32p3 and original Tmicro, also the total power consumption of
Tmicro without trace buffer increases with both frequency and input activity. On
the other hand, all values of power consumption are hugely reduced with respect to

91

Physical implementation

Trv32p3 and original Tmicro of approximately 50% because of the lower number of
instances.

Microprocessor Trv32p3 Tmicro Tmicro
without trace buffer

Clock [MHz] 333 333 333

Instances 12152 13479 7195

Area [µm2] 12231 13105 6147

Density [%] 51.61 52.14 52.48

Total power consumption [mW]
(at 300 MHz and 30% input activity)

0.81 0.94 0.50

Table 5.3: Summary table of clock frequency, total instances, area, density,
total power consumption for Trv32p3, Tmicro, and Tmicro without trace buffer
microprocessors after PnR.

A summary of clock frequency, total instances, area occupation, density utilization,
total power consumption at 300 MHz, and 30 % of input activity of Trv32p3,
Tmicro, and Tmicro without trace buffer is present in the table 5.3.

During the first implementation, both microprocessors have been implemented
using a clock frequency of 333 MHz and a perfect timing closure is present in all of
them. In order to seek the maximum achievable frequency, the clock frequency has
been increased.

5.3 Frequency improvement

From now on, optimization of frequency will be performed only on the Trv32p3
microprocessor, and results presented at the optimization signoff step will be
shown. These results are similar to the Tmicro microprocessor.

92

Physical implementation

5.3.1 First frequency improvement
To further push the microprocessor timing performance, the clock frequency has
been doubled from 333 MHz to 666 MHz to see figures of merit of timing, area,
and power consumption.
The following implementation has been performed with the same standard cells
library (gate length of 35 nm, SVT flavor of threshold voltage, and 9-track) and
also timing constraints set as for the first implementation with the exception of
clock period which is now:

• clock period: 1.5 ns

This implementation presents the timing closure of the design. Nevertheless, the
route step of the flow shows several paths with a negative slack. At this step,
the worst negative slack is presented by the critical path that involves the 32-bit
multiplier of Trv32p3. It starts from a register of central register file X, where
input data for the multiplication are present; and it ends with another register of
central register file X to store back the result of the multiplication. This critical
path presents the worst negative slack of -7 ps, which is negligible considering
the constraint on clock uncertainty of 200 ps. After this step, the postroute and
optimization signoff steps increase timing performance reaching a timing closure
of the design. The slack at optimization signoff step is positive and equal to 27
ps.

Clock [MHz] 333 666

Instances 12152 17465

Area [µm2] 12231 18549

Density [%] 51.61 56.70

Total power consumption [mW]
(at 300 MHz and 30% input activity)

0.81 2.91

Table 5.4: Summary table of total instances, area, density, and total power
consumption after PnR for Trv32p3 microprocessor implemented at 333 MHz and
666 MHz of clock frequency.

Because of better performance, both area and power consumption increase compared

93

Physical implementation

to the previous implementation at 333 MHz. The number of instances increases
by approximately 44 % up to 17465. Similarly, area occupation increased by
approximately 52 % up to 18549 µm2. At the same time, density occupation
slightly increases from 51.61 % to 56.70 %. Finally, the worst impact of doubling
the clock frequency is on the total power consumption which increases by almost 260
% reaching 2.91 mW at 300 MHz and 30 % of input activity. All these information
are summarized in the table 5.4.

5.3.2 Second frequency improvement
Since the design presents a timing closure at 666 MHz, this clock frequency has
been pushed even further up to 1 GHz. The following implementation has been
performed with the same standard cells library and also timing constraints set
as for the previous implementations except for the clock period. The current
implementation constraints and characteristics are the following:

• clock period: 1 ns

• clock duty cycle: 50 %

• clock transition time: 0.2 ns

• clock uncertainty time: 0.2 ns

• clock uncertainty time for setup: 0.2 ns

• clock uncertainty time for hold: 0.05 ns

• inputs maximum fanout load: 1

• inputs transition time: 0.1 ns

• reference utilization density: 50 %

• standard cells’ gate length: 35 nm

• standard cells’ threshold voltage: standard (SVT)

• standard cells’ track: 9-track

The implementation of Trv32p3 using these constraints and standard cells com-
pletely fails at 1 GHz of clock frequency. The design does not present a timing
closure and the critical path at all steps is the same as the one in the previous im-
plementation at 666 MHz. It starts from a register of central register file X, then it
goes through the multiplier and it finally reaches another register of central register
files X to store back the result. At the end of PnR, regardless of all the optimization

94

Physical implementation

steps during the flow, the worst negative slack at the optimization signoff step
of this critical path is equal to -308 ps.

To reach timing closure of Trv32p3 design at 1 GHz, it is necessary to improve
standard cell libraries. Several optimizations are going to be presented to close this
timing.

Optimization 1

For this optimization, a novel standard cells library has been introduced in addition
to the previous one and it presents the following characteristics:

• gate length: 35 nm

• threshold voltage: low (LVT)

• track: 9-track

Standard cells with low threshold voltage are able to reach higher speeds. This is
because, at the same supply voltage, a lower threshold voltage produces a higher
drain current. On the other hand, as threshold voltage decreases, leakage current
increases which induces higher static power consumption. Moreover, due to higher
current and speed, also dynamic power consumption increases.
The old standard cells library (gate length of 35 nm, SVT flavor of threshold voltage,
and 9-track) is used from the beginning of the implementation while the novel
standard cells library is activated only at the beginning of the optimization signoff
step at the end of PnR flow. This has been done to maintain the overall power
consumption low and to keep the same placing of cells and routing of wires. Thus,
the only optimization consists of exchanging old standard cells along critical paths
with the new ones to reach the timing closure.
Despite the new standard cells library, the design still does not present the timing
closure. From the beginning of the flow until the optimization signoff step,
critical paths are the same and present similar negative slacks as before. This is
because the standard cell library used is the same. Nevertheless, at the end of the
flow, the LVT standard cells library reduces the worst negative slack from -308 ps
to -59 ps.

Optimization 2

Since optimization 1 does not present a timing closure, a better performing standard
cells library is required. Similarly to optimization 1, two different standard cell
libraries are used in this optimization. The first standard cells library has been

95

Physical implementation

used from the beginning of the implementation for both synthesis and PnR. It
presents the following characteristics:

• gate length: 30 nm

• threshold voltage: standard (SVT)

• track: 12-track

The second standard cell library has been introduced only at the optimization
signoff step similarly to optimization 1. It presents the following characteristics:

• gate length: 30 nm

• threshold voltage: ultra-low (ULVT)

• track: 12-track

Both libraries present the smallest gate length and highest number of tracks possi-
ble.
Standard cells with shorter gate lengths present higher speed because as the gate
length of the transistor decreases, the mobility of carriers increases and so does the
transconductance. This effect is caused by a lower resistance and scattering events
in the channel. On the other side, shorter gate length transistors lead to higher
current leakage and power consumption.
Moreover, standard cells with a higher number of tracks show higher achievable
speeds due to higher driving capability. On the other hand, the area occupation
increases.
Finally, standard cells with an ultra-low threshold voltage, as the second library
presented here, are able to reach higher speeds than LVT and SVT ones as explained
in optimization 1.
The second library presents the best timing performance among all the possible
libraries in 28 nm CMOS technology. It combines all three different effects to reach
the maximum speed. On the other side, due to the same reasons, it presents the
highest power consumption and area occupation.

Differently from optimization 1, optimization 2 does not present any path with
negative slack during synthesis. Despite this, it still does not reach the timing
closure of the design. The critical path is still the same which involves the 32-bit
multiplier. Nevertheless, the worst negative slack at the end of the implementation
reduces from -59 ps, presented in optimization 1, to -39 ps. This value is small
compared to the constraint on clock uncertainty of 200 ps. By reducing this value,
the design might reach the timing closure but the margin related to clock jitter
will decrease too, and this can create problems later on.

96

Physical implementation

Optimization 3

The last optimization consists of using only one standard cells library for the
complete implementation flow with the following characteristics:

• gate length: 30 nm

• threshold voltage: ultra-low (ULVT)

• track: 12-track

This library is equivalent to the second library presented in optimization 2 but
this time it is used from the beginning. This allows more freedom for the imple-
mentation to optimize final critical paths not only by exchanging standard cells
but also by rearranging cells and routing wires differently to reach the timing closure.

Indeed, using optimization 3, the design finally presents the timing closure. The
critical path is still the same which involves the 32-bit multiplier. At the end of
the implementation, the worst slack is positive and equal to 43 ps.

Clock [MHz] 333 666 1000

Standard cells library 35 nm, SVT,
9-track

35 nm, SVT,
9-track

30 nm, ULVT,
12-track

Instances 12152 17465 18317

Area [µm2] 12231 18549 26619

Density [%] 51.61 56.70 65.39

Total power consumption [mW]
(at 300 MHz and 30% input activity)

0.81 2.91 12.81

Table 5.5: Summary table of standard cell library, total instances, area, density
and total power consumption after PnR for Trv32p3 microprocessor implemented
at 333 MHz, 666 MHz and 1 GHz of clock frequency.

On the other hand, higher clock frequency impacts both area and power con-
sumption. The final area of the Trv32p3 microprocessor implemented at 1 GHz is
26619 µm2 with an occupation density of 65.39 % and counts 18317 total instances.

97

Physical implementation

The area occupation increases by 118 % compared to the implementation at 333
MHz and by 44 % compared to the implementation at 666 MHz. Similarly, the
total number of instances increases by 51 % and 5 % respectively compared to the
implementation at 333 MHz and 666 MHz.
Moreover, total power consumption rises abruptly. At an input activity of 30 %
and a dominant frequency of 300 MHz, total power consumption is 12.81 mW. This
implementation consumes 1481 % and 340 % more power respectively compared to
the design implemented at 333 MHz and 666 MHz. All these information are well
summarized in table 5.5.

5.4 Final considerations
Several implementations have been presented in this chapter with related optimiza-
tions. The choice of an implementation strictly depends on the application. In
this case study, these microprocessors need to be small enough to be contained
in a Super-Pixel (SP) of a pixel detector. Moreover, they should be fast enough
to perform data processing of pixels contained in a SP. By placing a Processing
Element (PE) on a larger SP, the required clock frequency increases. At the same
time, by placing PEs on larger SPs, the number of PEs on the pixel array decreases.
Moreover, power consumption locally increases by increasing clock frequency but it
overall decreases by decreasing the total number of PEs.
For instance, neglecting Network-on-Chip routers and considering pixel size of
55×55 µm2, Trv32p3 microprocessor with a clock frequency of 333 MHz requires
SPs with at least five pixels each. At the same clock frequency, the Tmicro micro-
processor without trace buffer requires SPs with at least three pixels. To halve
the time needed for data processing, by using Trv32p3 at a clock frequency of 666
MHz, the minimum number of pixels per SP increases up to eight. This reduces the
maximum number of PEs on the pixel array but increases the power consumption
for each of them. Furthermore, to perform data processing three times faster using 1
GHz of clock frequency, the Trv32p3 microprocessor should be placed at least every
nine pixels. Nevertheless, this design presents extremely high power consumption.
Finally, a good trade-off must be found between frequency, area, and power con-
sumption of a PE. These figures of merit strongly depend on the size of the pixel
array.

98

Chapter 6

Conclusions

This work presents a novel approach based on an embedded processor for data
processing and readout for HEP applications. Two different proposals are presented:
the first one consists of integrating an embedded processor at the periphery of the
chip while the second one consists of placing Processing Elements directly on the
pixel array. The latter one involves the division of the pixel array into Super-Pixels
and the placement of Processing Elements on each Super-Pixel to perform a pre-
liminary programmable data processing. This requires an ad-hoc communication
architecture to allow the interaction among neighboring Processing Elements which
is fulfilled by a Network-on-Chip. Each node of the Network-on-Chip is placed on
each Super-Pixel to connect the corresponding Processing Element to the general
network for information sharing. Network-on-Chip and Processing Elements have
been analyzed separately.

The considered Network-on-Chip is characterized by a mesh topology and a worm-
hole packet switching technique. Several configurations have been analyzed by
varying the Super-Pixel dimension and the operating frequency. Results show
that latency always grows when the packet size increases or the available bus-
width decreases. Moreover, latency explodes at high levels of particle rate and the
Network-on-Chip starts to fail. The maximum sustainable particle rate improves
by reducing the Super-Pixel dimension and it increases proportionally with the
operating frequency.

Given the limited power, area, and latency budget available for High Energy
Physics applications, an Application Specific Instruction-set Processor (ASIP) has
been chosen as Processing Element since it ensures hardware efficiency with good
software programmability. This work has been done for the first time in the Micro-
Electronics group at CERN. Due to the high-level language complexity of ASIPs,
two microprocessor examples have been chosen as a starting point characterized

99

Conclusions

by 16-bit non-RISC-V and 32-bit RISC-V instruction sets. Both microprocessors
have been customized with an AMBA APB system bus protocol interface toward
the external world for possible future integration in a SoC environment. Moreover,
additional load and store instructions have been added to their instruction sets.
An application-specific test code performing filtering and clustering of particles
verified their correct functionality with real physics data as input. Results are
strongly dependent on the application and input data set. Considering an input
set of three events, the 16-bit non-RISC-V microprocessor requires 4284 cycles
while the 32-bit RISC-V one requires 2560 cycles. The number of cycles is strongly
dominated by read and write accesses to the central register file and Data Memory.
Approximately 70 % of the instructions are used in the processor model which
allows up to 30 % of instruction set reduction. Nevertheless, in the same conditions,
the former microprocessor occupies 6147 µm2 and consumes 0.50 mW while the
latter one occupies 12231 µm2 and consumes 0.81 mW when both are implemented
with a clock frequency of 333 MHz in a 28 nm CMOS technology. For the 32-bit
RISC-V core, higher performance can be achieved by doubling the clock frequency
at the expense of a larger area (×1.5) and higher power consumption (×3.5). To
achieve an operating frequency of 1 GHz, high-performance standard cells are
required to reach the timing closure of the design. Despite the high frequency, the
area only doubles, but the power consumption increases by more than 10 times
compared to an increase of ×3 of the frequency.

Further improvements are necessary to better specify the Network-on-Chip and the
processor model to be fully compliant with the application. Novel instructions and
functional units are required to decrease the cycle count, especially for register and
memory accesses. Moreover, the removal of unused instructions, operations, and
functional units might further optimize the physical implementation of the ASIP.

100

Appendix A

Network on Chip analysis on
MATLAB

1 bd = 64 ; % Bandwidth delay , number o f columns
2 pr = 200 ; % P a r t i c l e Rate , number o f rows
3 bandwidth_delay = l i n s p a c e (1 , bd , bd) ; % packet_s ize (S) /buswidth (W)
4 p a r t i c l e _ r a t e s = logspace (0 ,11 , pr) ; % [cm^{−2}∗ s ^{−1}]
5

6 %% f i r s t case f o r 1x1 & 320 MHz
7 m = 1 ;
8 op_freq = 320 ;
9 L_sd = Latency_Function (m, op_freq) ;

10

11 %% Plot s e t t i n g s
12 A = axes ;
13 mesh (bandwidth_delay , p a r t i c l e _ ra t e s , L_sd)
14 s e t (A, ’ YScale ’ , ’ l og ’) ;
15 z l im ([8 200]) ;
16 t i t l e (" Latency VS Bandwidth de lay & P a r t i c l e r a t e ") ;
17 x l a b e l (’ Bandwidth de lay [c y c l e] ’) ;
18 y l a b e l (’ P a r t i c l e r a t e [cm^{−2}∗ s ^{−1}] ’) ;
19 z l a b e l (’ Latency [c y c l e] ’) ;
20

21 hold on
22 %% second case f o r 1x1 & 80 MHz
23 m = 1 ;
24 f r e q = 80 ;
25 L_sd = Latency_Function (m, f r e q) ;
26 mesh (bandwidth_delay , p a r t i c l e _ ra t e s , L_sd)
27

28 %% th i rd case f o r 4x4 & 320 MHz

101

Network on Chip analysis on MATLAB

29 m = 4 ;
30 f r e q = 320 ;
31 L_sd = Latency_Function (m, f r e q) ;
32 mesh (bandwidth_delay , p a r t i c l e _ ra t e s , L_sd)
33

34 %% four th case f o r 4x4 & 80 MHz
35 m = 4 ;
36 f r e q = 80 ;
37 L_sd = Latency_Function (m, f r e q) ;
38 mesh (bandwidth_delay , p a r t i c l e _ ra t e s , L_sd)
39

40 %% f i f t h case f o r 32x32 & 320 MHz
41 m = 32 ;
42 f r e q = 320 ;
43 L_sd = Latency_Function (m, f r e q) ;
44 mesh (bandwidth_delay , p a r t i c l e _ ra t e s , L_sd)
45

46 %% s i x t h case f o r 32x32 & 80 MHz
47 m = 32 ;
48 f r e q = 80 ;
49 L_sd = Latency_Function (m, f r e q) ;
50 mesh (bandwidth_delay , p a r t i c l e _ ra t e s , L_sd)
51

52 %% seventh case f o r 256 x256 & 320 MHz
53 m = 256 ;
54 f r e q = 320 ;
55 L_sd = Latency_Function (m, f r e q) ;
56 mesh (bandwidth_delay , p a r t i c l e _ ra t e s , L_sd)
57

58 %% eighth case f o r 256 x256 & 80 MHz
59 m = 256 ;
60 f r e q = 80 ;
61 L_sd = Latency_Function (m, f r e q) ;
62 mesh (bandwidth_delay , p a r t i c l e _ ra t e s , L_sd)
63 hold o f f
64

65 %% FUNCTION
66 f unc t i on Latency_Output = Latency_Function (general_m , general_op_freq)
67 bd = 64 ; % Bandwidth delay , number o f columns
68 pr = 200 ; % P a r t i c l e Rate , number o f rows
69 bandwidth_delay = l i n s p a c e (1 , bd , bd) ; % packet_s ize (S) /buswidth (W)
70 p a r t i c l e _ r a t e s = logspace (0 ,11 , pr) ; % [cm^{−2}∗ s ^{−1}]
71 n = 256 ; %p i x e l matrix
72 pixe l_matr ix = n∗n ;
73 pixel_dim = 55∗55 ; % Pixe l dimension , 1 um^2 = 1e−8 cm^2
74

75 m = general_m ; %NoC matrix − t h i s can be 1 , 4 , 32 , 256 or any other
value

76 NoC_dim = m∗m;

102

Network on Chip analysis on MATLAB

77

78 op_freq = general_op_freq ∗1 e6 ; %operat ing frequency , in t h i s case 320
or 80 MHz

79 Latency_Output = ones (pr , bd) ; %i n i t i a l i z a t i o n o f Latency matrix
80

81 Hs = 2 ; %Router s e r v i c e time f o r the header f l i t [c y c l e]
82 C = [1 2/9 2/9 2/9 ; %content ion matrix
83 2/9 1 2/9 2/9 ;
84 2/9 2/9 1 2/9 ;
85 2/9 2/9 2/9 1] ;
86 f o r j = 1 : pr %f i l l i n g o f rows
87 p a r t i c l e _ r a t e = p a r t i c l e _ r a t e s (j) ;
88 f o r i = 1 : bd %f i l l i n g o f columns
89 % S_W means S/W
90 S_W = bandwidth_delay (i) ; %[c y c l e] sweep over bandwidth de lay
91 %so both S and W might vary
92 T = Hs + S_W; %s e r v i c e time o f the packet
93 Ws = 1 ; %queuing de lay the packet expe r i en c e s at the source

node s
94 x_sd = (p a r t i c l e _ r a t e ∗(pixel_dim ∗1e−8)∗NoC_dim) /(op_freq) ; %

[packet / c y c l e]
95 %" p i x e l matrix " at numerator and denominator get s i m p l i f i e d
96

97 lambda_i_j = x_sd ;
98 lambda_j = 3∗ lambda_i_j ; %Since a PE reque s t s i n f o from

adjacent super−p i x e l s and packets move only by maximum 2 p o s i t i o n s
99 LAMBDA = [lambda_j 0 0 0 ; %t r a f f i c a r r i v a l r a t e and f o r a

symmetric and i s o t r o p i c case a l l the d iagona l va lue s are equal
100 0 lambda_j 0 0 ;
101 0 0 lambda_j 0 ;
102 0 0 0 lambda_j] ;
103 I = eye (4) ; %i d e n t i t y matrix
104 R_bar = [1 ; %r e s i d u a l time and R = 1
105 1 ;
106 1 ;
107 1] ;
108 N = (inv (I − T∗LAMBDA∗C)) ∗LAMBDA∗R_bar ; %average number o f

packets at each input b u f f e r o f the route r
109 W_i_j = N/lambda_i_j ; %average wai t ing time f o r each channel

b u f f e r o f each route r
110 l a t = Ws + W_i_j + T; %Latency
111 i f (l a t (1) < 4) %To stop when i t s t a r t s to d ive rge
112 break ; % (no ac tua l va lue w i l l be lower or equal to 4

becuase they a l l s t a r t from higher va lue s)
113 e l s e
114 Latency_Output (j , i) = l a t (1) ; %Since a l l the l a t va lue s are

the same , j u s t take one f o r p l o t t i n g
115 end
116

103

Network on Chip analysis on MATLAB

117 end
118 end
119 end

104

Bibliography

[1] CERN. CERN website. url: https://home.cern/ (cit. on p. 1).
[2] CERN. ATLAS Experiment. url: www.atlas.ch (cit. on p. 2).
[3] CERN. CMS Experiment. url: https://cms.cern/ (cit. on p. 2).
[4] CERN. LHCb Experiment. url: http://lhcb.web.cern.ch/ (cit. on p. 2).
[5] CERN. ALICE Experiment. url: https://alice- collaboration.web.

cern.ch/ (cit. on p. 2).
[6] Philippe Mouche. «Overall view of the LHC. Vue d’ensemble du LHC». In:

(2014). General Photo. url: https://cds.cern.ch/record/1708847 (cit.
on p. 2).

[7] Stefan Ulmer. BASE Annual Report 2018. Tech. rep. Geneva: CERN, 2019.
url: https://cds.cern.ch/record/2654098 (cit. on p. 3).

[8] Oliver Sim Brüning, Paul Collier, P Lebrun, Stephen Myers, Ranko Ostojic,
John Poole, and Paul Proudlock. LHC Design Report. CERN Yellow Reports:
Monographs. Geneva: CERN, 2004. doi: 10.5170/CERN-2004-003-V-1.
url: https://cds.cern.ch/record/782076 (cit. on p. 3).

[9] Toshinori Mori. «Searches for standard model Higgs boson at LEP». In: AIP
Conference Proceedings 272.2 (1992), pp. 1321–1325. doi: 10.1063/1.43422.
eprint: https://aip.scitation.org/doi/pdf/10.1063/1.43422. url:
https://aip.scitation.org/doi/abs/10.1063/1.43422 (cit. on p. 3).

[10] G Apollinari, I Béjar Alonso, O Brüning, M Lamont, and L Rossi. High-
Luminosity Large Hadron Collider (HL-LHC): Preliminary Design Report.
CERN Yellow Reports: Monographs. Geneva: CERN, 2015. doi: 10.5170/
CERN-2015-005. url: https://cds.cern.ch/record/2116337 (cit. on
pp. 3, 15).

[11] Martin Aleksa et al. Strategic R&D Programme on Technologies for Future
Experiments. Tech. rep. Geneva: CERN, 2018. url: https://cds.cern.ch/
record/2649646 (cit. on p. 4).

105

https://home.cern/
www.atlas.ch
https://cms.cern/
http://lhcb.web.cern.ch/
https://alice-collaboration.web.cern.ch/
https://alice-collaboration.web.cern.ch/
https://cds.cern.ch/record/1708847
https://cds.cern.ch/record/2654098
https://doi.org/10.5170/CERN-2004-003-V-1
https://cds.cern.ch/record/782076
https://doi.org/10.1063/1.43422
https://aip.scitation.org/doi/pdf/10.1063/1.43422
https://aip.scitation.org/doi/abs/10.1063/1.43422
https://doi.org/10.5170/CERN-2015-005
https://doi.org/10.5170/CERN-2015-005
https://cds.cern.ch/record/2116337
https://cds.cern.ch/record/2649646
https://cds.cern.ch/record/2649646

BIBLIOGRAPHY

[12] Lucie Linssen, Akiya Miyamoto, Marcel Stanitzki, and Harry Weerts. Physics
and Detectors at CLIC: CLIC Conceptual Design Report. 2012. doi: 10.
48550/ARXIV.1202.5940. url: https://arxiv.org/abs/1202.5940 (cit.
on p. 4).

[13] A Abada et al. «FCC Physics Opportunities: Future Circular Collider Con-
ceptual Design Report Volume 1». In: European Physical Journal C 79 (2019)
(cit. on p. 4).

[14] M. Tanabashi et al. «Review of Particle Physics». In: Phys. Rev. D 98
(3 2018), p. 030001. doi: 10 . 1103 / PhysRevD . 98 . 030001. url: https :
//link.aps.org/doi/10.1103/PhysRevD.98.030001 (cit. on p. 6).

[15] T Akesson et al. «Particle identification using the time-over-threshold method
in the ATLAS Transition Radiation Tracker». In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 474.2 (2001), pp. 172–187. issn: 0168-9002. doi:
https : / / doi . org / 10 . 1016 / S0168 - 9002(01) 00878 - 6. url: https :
//www.sciencedirect.com/science/article/pii/S0168900201008786
(cit. on pp. 8, 21).

[16] Davide Ceresa, Gianmario Bergamin, Alessandro Caratelli, Jan Kaplon,
Kostas Kloukinas, Simone Scarfì, and Yusuf Leblebici. «MPA-SSA, design
and test of a 65nm ASIC-based system for particle tracking at HL-LHC
featuring on-chip particle discrimination». In: 2019 IEEE Nuclear Science
Symposium and Medical Imaging Conference (NSS/MIC). 2019, pp. 1–3. doi:
10.1109/NSS/MIC42101.2019.9059989 (cit. on p. 8).

[17] Aleksandra Dimitrievska and Andreas Stiller. «RD53A: A large-scale pro-
totype chip for the phase II upgrade in the serially powered HL-LHC pixel
detectors». In: Nuclear Instruments and Methods in Physics Research Sec-
tion A: Accelerators, Spectrometers, Detectors and Associated Equipment
958 (2020). Proceedings of the Vienna Conference on Instrumentation 2019,
p. 162091. issn: 0168-9002. doi: https://doi.org/10.1016/j.nima.2019.
04.045. url: https://www.sciencedirect.com/science/article/pii/
S0168900219305029 (cit. on p. 9).

[18] X. Llopart et al. «Timepix4, a large area pixel detector readout chip which
can be tiled on 4 sides providing sub-200 ps timestamp binning». In: Journal
of Instrumentation 17.01 (2022), p. C01044. doi: 10.1088/1748-0221/17/
01/c01044. url: https://doi.org/10.1088/1748-0221/17/01/c01044
(cit. on pp. 9, 21).

106

https://doi.org/10.48550/ARXIV.1202.5940
https://doi.org/10.48550/ARXIV.1202.5940
https://arxiv.org/abs/1202.5940
https://doi.org/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://link.aps.org/doi/10.1103/PhysRevD.98.030001
https://doi.org/https://doi.org/10.1016/S0168-9002(01)00878-6
https://www.sciencedirect.com/science/article/pii/S0168900201008786
https://www.sciencedirect.com/science/article/pii/S0168900201008786
https://doi.org/10.1109/NSS/MIC42101.2019.9059989
https://doi.org/https://doi.org/10.1016/j.nima.2019.04.045
https://doi.org/https://doi.org/10.1016/j.nima.2019.04.045
https://www.sciencedirect.com/science/article/pii/S0168900219305029
https://www.sciencedirect.com/science/article/pii/S0168900219305029
https://doi.org/10.1088/1748-0221/17/01/c01044
https://doi.org/10.1088/1748-0221/17/01/c01044
https://doi.org/10.1088/1748-0221/17/01/c01044

BIBLIOGRAPHY

[19] Isiaka A. Alimi, Romil K. Patel, Oluyomi Aboderin, Abdelgader M. Abdalla,
Ramoni A. Gbadamosi, Nelson J. Muga, Armando N. Pinto, and António
L. Teixeira. «Network-on-Chip Topologies: Potentials, Technical Challenges,
Recent Advances and Research Direction». In: Network-on-Chip. Ed. by
Isiaka A. Alimi, Oluyomi Aboderin, Nelson J. Muga, and António L. Teixeira.
Rijeka: IntechOpen, 2021. Chap. 3. doi: 10.5772/intechopen.97262. url:
https://doi.org/10.5772/intechopen.97262 (cit. on pp. 15, 16).

[20] Hyung Gyu Lee, Naehyuck Chang, Umit Y. Ogras, and Radu Marculescu. «On-
Chip Communication Architecture Exploration: A Quantitative Evaluation
of Point-to-Point, Bus, and Network-on-Chip Approaches». In: ACM Trans.
Des. Autom. Electron. Syst. 12.3 (2008). issn: 1084-4309. doi: 10.1145/
1255456.1255460. url: https://doi.org/10.1145/1255456.1255460
(cit. on p. 16).

[21] Umit Y. Ogras and Radu Marculescu. Modeling, Analysis and Optimiza-
tion of Network-on-Chip Communication Architectures. Springer Publishing
Company, Incorporated, 2013. isbn: 9400739575 (cit. on pp. 16, 18–23, 25,
26).

[22] José Duato, Sudhakar Yalamanchili, and Lionel Ni. «CHAPTER 1 - In-
troduction». In: Interconnection Networks. Ed. by José Duato, Sudhakar
Yalamanchili, and Lionel Ni. The Morgan Kaufmann Series in Computer Ar-
chitecture and Design. San Francisco: Morgan Kaufmann, 2003, pp. 1–41. doi:
https://doi.org/10.1016/B978-155860852-8/50004-3. url: https://
www.sciencedirect.com/science/article/pii/B9781558608528500043
(cit. on p. 16).

[23] Benoit De Lescure. «Why network-on-chip has displaced crossbar switches
at scale». In: (2021). url: https://www.edn.com/why-network-on-chip-
has-displaced-crossbar-switches-at-scale/ (cit. on p. 16).

[24] Tuomas Sakari Poikela. «Readout Architecture for Hybrid Pixel Readout
Chips». Presented 15 Jun 2015. 2015. url: https://cds.cern.ch/record/
2042198 (cit. on p. 17).

[25] Zhonghai Lu. «Using wormhole switching for networks on chip : feasibility
analysis and microarchitecture adaptation». In: 2005 (cit. on p. 18).

[26] T. Poikela et al. «The VeloPix ASIC». In: Journal of Instrumentation 12
(Jan. 2017), pp. C01070–C01070. doi: 10.1088/1748-0221/12/01/C01070
(cit. on p. 21).

107

https://doi.org/10.5772/intechopen.97262
https://doi.org/10.5772/intechopen.97262
https://doi.org/10.1145/1255456.1255460
https://doi.org/10.1145/1255456.1255460
https://doi.org/10.1145/1255456.1255460
https://doi.org/https://doi.org/10.1016/B978-155860852-8/50004-3
https://www.sciencedirect.com/science/article/pii/B9781558608528500043
https://www.sciencedirect.com/science/article/pii/B9781558608528500043
https://www.edn.com/why-network-on-chip-has-displaced-crossbar-switches-at-scale/
https://www.edn.com/why-network-on-chip-has-displaced-crossbar-switches-at-scale/
https://cds.cern.ch/record/2042198
https://cds.cern.ch/record/2042198
https://doi.org/10.1088/1748-0221/12/01/C01070

BIBLIOGRAPHY

[27] M De Gaspari et al. «Design of the analog front-end for the Timepix3 and
Smallpix hybrid pixel detectors in 130 nm CMOS technology». In: Journal of
Instrumentation 9.01 (2014), pp. C01037–C01037. doi: 10.1088/1748-0221/
9/01/c01037. url: https://doi.org/10.1088/1748-0221/9/01/c01037
(cit. on p. 21).

[28] M Raymond, D Braga, W Ferguson, J Fulcher, G Hall, J Jacob, L Jones, M
Pesaresi, and M Prydderch. «The CMS binary chip for microstrip tracker read-
out at the SLHC». In: Journal of Instrumentation 7.01 (2012), pp. C01033–
C01033. doi: 10.1088/1748-0221/7/01/c01033. url: https://doi.org/
10.1088/1748-0221/7/01/c01033 (cit. on p. 21).

[29] X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, and W. Wong. «Timepix,
a 65k programmable pixel readout chip for arrival time, energy and/or photon
counting measurements». In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 581.1 (2007). VCI 2007, pp. 485–494. issn: 0168-9002. doi: https:
//doi.org/10.1016/j.nima.2007.08.079. url: https://www.sciencedi
rect.com/science/article/pii/S0168900207017020 (cit. on p. 21).

[30] W.S. Wong et al. «Introducing Timepix2, a frame-based pixel detector readout
ASIC measuring energy deposition and arrival time». In: Radiation Measure-
ments 131 (2020), p. 106230. issn: 1350-4487. doi: https://doi.org/10.
1016/j.radmeas.2019.106230. url: https://www.sciencedirect.com/
science/article/pii/S1350448719305165 (cit. on p. 21).

[31] T Poikela et al. «Timepix3: a 65K channel hybrid pixel readout chip with
simultaneous ToA/ToT and sparse readout». In: Journal of Instrumentation
9.05 (2014), pp. C05013–C05013. doi: 10.1088/1748-0221/9/05/c05013.
url: https://doi.org/10.1088/1748-0221/9/05/c05013 (cit. on pp. 21,
24, 60).

[32] J Varela. Timing and synchronization in the LHC experiments. Tech. rep.
Geneva: CERN, 2000. doi: 10.5170/CERN- 2000- 010.77. url: https:
//cds.cern.ch/record/478248 (cit. on p. 25).

[33] John Little. «OR FORUM - Little’s Law as Viewed on Its 50th Anniversary.»
In: Operations Research 59 (June 2011), pp. 536–549. doi: 10.2307/23013126
(cit. on p. 25).

[34] Wikipedia: The Free Encyclopedia. Data processing. [Online; accessed 10-
August-2022]. url: https://en.wikipedia.org/wiki/Data_processing
(cit. on p. 33).

[35] Wikipedia: The Free Encyclopedia. Microprocessor. [Online; accessed 10-
August-2022]. url: https://en.wikipedia.org/wiki/Microprocessor
(cit. on p. 33).

108

https://doi.org/10.1088/1748-0221/9/01/c01037
https://doi.org/10.1088/1748-0221/9/01/c01037
https://doi.org/10.1088/1748-0221/9/01/c01037
https://doi.org/10.1088/1748-0221/7/01/c01033
https://doi.org/10.1088/1748-0221/7/01/c01033
https://doi.org/10.1088/1748-0221/7/01/c01033
https://doi.org/https://doi.org/10.1016/j.nima.2007.08.079
https://doi.org/https://doi.org/10.1016/j.nima.2007.08.079
https://www.sciencedirect.com/science/article/pii/S0168900207017020
https://www.sciencedirect.com/science/article/pii/S0168900207017020
https://doi.org/https://doi.org/10.1016/j.radmeas.2019.106230
https://doi.org/https://doi.org/10.1016/j.radmeas.2019.106230
https://www.sciencedirect.com/science/article/pii/S1350448719305165
https://www.sciencedirect.com/science/article/pii/S1350448719305165
https://doi.org/10.1088/1748-0221/9/05/c05013
https://doi.org/10.1088/1748-0221/9/05/c05013
https://doi.org/10.5170/CERN-2000-010.77
https://cds.cern.ch/record/478248
https://cds.cern.ch/record/478248
https://doi.org/10.2307/23013126
https://en.wikipedia.org/wiki/Data_processing
https://en.wikipedia.org/wiki/Microprocessor

BIBLIOGRAPHY

[36] Synopsys, Inc. ASIP Designer - Application-Specific Processor Design Made
Easy. url: https : / / www . synopsys . com / dw / doc . php / ds / cc / asip -
brochure.pdf (cit. on pp. 35, 38).

[37] Wikipedia: The Free Encyclopedia. Application-specific instruction set pro-
cessor. [Online; accessed 27-July-2022]. url: https://en.wikipedia.org/
wiki/Application-specific_instruction_set_processor (cit. on p. 36).

[38] Dinkar Sitaram and Geetha Manjunath. «Chapter 5 - Paradigms for De-
veloping Cloud Applications». In: Moving To The Cloud. Ed. by Dinkar
Sitaram and Geetha Manjunath. Boston: Syngress, 2012, pp. 205–253. isbn:
978-1-59749-725-1. doi: https://doi.org/10.1016/B978-1-59749-725-
1.00005-6. url: https://www.sciencedirect.com/science/article/
pii/B9781597497251000056 (cit. on p. 37).

[39] Wikipedia: The Free Encyclopedia. Instruction-level parallelism. [Online;
accessed 27-July-2022]. url: https://en.wikipedia.org/wiki/Instructi
on-level_parallelism (cit. on p. 37).

[40] Inc. Synopsys. nML Manual - ASIP Designer. English. Version S-2021.12.
Synopsys, Inc. 2021 (cit. on p. 38).

[41] Inc. Synopsys. PDG Manual - ASIP Designer. English. Version S-2021.12.
Synopsys, Inc. 2021 (cit. on pp. 41, 44).

[42] Inc. Synopsys. Trv (RISC-V ISA) Models - ASIP Designer. English. Version S-
2021.12. Synopsys, Inc. 2021 (cit. on p. 42).

[43] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović.
The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 2.1.
Tech. rep. UCB/EECS-2016-118. EECS Department, University of California,
Berkeley, 2016. url: http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2016/EECS-2016-118.html (cit. on p. 42).

[44] Inc. Synopsys. Tmicro Core - ASIP Designer. English. Version S-2021.12.
Synopsys, Inc. 2021 (cit. on p. 42).

[45] Arm. AMBA®APB Protocol Specification. English. Version 2.2. Arm. 2021
(cit. on pp. 44, 46).

[46] Inc. Synopsys. Go HDL Generator Manual - ASIP Designer. English. Ver-
sion S-2021.12. Synopsys, Inc. 2021 (cit. on pp. 50, 56).

[47] MEDUNA Lukáš. «Detecting elementary particles with Timepix3 detector».
Diplomová práce. Praha: Univerzita Karlova, Matematicko-fyzikální fakulta,
Katedra softwaru a výuky informatiky, 2019. url: https://dspace.cuni.
cz/bitstream/handle/20.500.11956/106938/120331567.pdf?sequence=
1&isAllowed=y (cit. on p. 60).

109

https://www.synopsys.com/dw/doc.php/ds/cc/asip-brochure.pdf
https://www.synopsys.com/dw/doc.php/ds/cc/asip-brochure.pdf
https://en.wikipedia.org/wiki/Application-specific_instruction_set_processor
https://en.wikipedia.org/wiki/Application-specific_instruction_set_processor
https://doi.org/https://doi.org/10.1016/B978-1-59749-725-1.00005-6
https://doi.org/https://doi.org/10.1016/B978-1-59749-725-1.00005-6
https://www.sciencedirect.com/science/article/pii/B9781597497251000056
https://www.sciencedirect.com/science/article/pii/B9781597497251000056
https://en.wikipedia.org/wiki/Instruction-level_parallelism
https://en.wikipedia.org/wiki/Instruction-level_parallelism
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.html
https://dspace.cuni.cz/bitstream/handle/20.500.11956/106938/120331567.pdf?sequence=1&isAllowed=y
https://dspace.cuni.cz/bitstream/handle/20.500.11956/106938/120331567.pdf?sequence=1&isAllowed=y
https://dspace.cuni.cz/bitstream/handle/20.500.11956/106938/120331567.pdf?sequence=1&isAllowed=y

BIBLIOGRAPHY

[48] MÁNEK Petr. «A system for 3D localization of gamma sources using Timepix3-
based Compton cameras». Diplomová práce. Univerzita Karlova, Matematicko-
fyzikální fakulta, Katedra softwarového inženýrství, 2018. url: https://
dspace.cuni.cz/bitstream/handle/20.500.11956/101404/120308522.
pdf?sequence=1&isAllowed=y (cit. on p. 60).

[49] Benedikt Bergmann and Till Rehm. Detector measures cosmic radiation on
the Zugspitze. 2021. url: https://www.dlr.de/content/en/articles/
news/2021/02/20210616_detector-measures-cosmic-radiation-on-
the-zugspitze.html (visited on 08/15/2022) (cit. on p. 60).

[50] F. Zimmermann. «LHC/FCC-based muon colliders». In: Journal of Physics:
Conference Series 1067 (2018), p. 022017. doi: 10.1088/1742-6596/1067/
2/022017. url: https://doi.org/10.1088/1742-6596/1067/2/022017
(cit. on p. 61).

[51] IBM. Program Profiling. [Online; accessed 17-August-2022]. url: https:
//www.ibm.com/docs/en/i/7.2?topic=techniques-program-profiling
(cit. on p. 68).

[52] Inc. Synopsys. Checkers Simulator Manual - ASIP Designer. English. Ver-
sion S-2021.12. Synopsys, Inc. 2021 (cit. on p. 68).

110

https://dspace.cuni.cz/bitstream/handle/20.500.11956/101404/120308522.pdf?sequence=1&isAllowed=y
https://dspace.cuni.cz/bitstream/handle/20.500.11956/101404/120308522.pdf?sequence=1&isAllowed=y
https://dspace.cuni.cz/bitstream/handle/20.500.11956/101404/120308522.pdf?sequence=1&isAllowed=y
https://www.dlr.de/content/en/articles/news/2021/02/20210616_detector-measures-cosmic-radiation-on-the-zugspitze.html
https://www.dlr.de/content/en/articles/news/2021/02/20210616_detector-measures-cosmic-radiation-on-the-zugspitze.html
https://www.dlr.de/content/en/articles/news/2021/02/20210616_detector-measures-cosmic-radiation-on-the-zugspitze.html
https://doi.org/10.1088/1742-6596/1067/2/022017
https://doi.org/10.1088/1742-6596/1067/2/022017
https://doi.org/10.1088/1742-6596/1067/2/022017
https://www.ibm.com/docs/en/i/7.2?topic=techniques-program-profiling
https://www.ibm.com/docs/en/i/7.2?topic=techniques-program-profiling

	List of Tables
	List of Figures
	Introduction
	CERN
	High Luminosity-LHC upgrade

	R&D Programme on Technologies for Future Experiments
	Technology transition

	Data readout and processing in HEP
	Literature review of HEP detector electronics

	Objective of the thesis
	On-chip data processing for future experiments
	Thesis organization

	On-chip communication architecture for data processing
	On-chip communication networks
	Network-on-Chip
	Network-on-Chip for data processing
	Packet switching technique

	Network-on-Chip analysis
	Network-on-Chip results
	Final considerations

	On-chip Processor for data processing
	Application Specific Instruction-set Processor
	ASIP optimization space

	Workflow
	nML: a structural processor language
	Processor architecture
	Processors' description
	Memory interface

	Processor customization
	APB interface
	Load and Store instructions of Interface Memory
	On-Chip Debugging

	Final considerations

	Algorithm and Profiling
	Data processing Algorithm
	Input data
	Application-specific algorithm

	Processor Profiling
	Final considerations

	Physical implementation
	First implementation
	RTL optimization of Tmicro microprocessor
	Frequency improvement
	First frequency improvement
	Second frequency improvement

	Final considerations

	Conclusions
	Network on Chip analysis on MATLAB
	Bibliography

