
Deep Learning techniques for Natural
Language Processing: A multilingual

Encoder model for NLI task

Author:
Alessandro Manenti

Industrial Supervisor:
Dr. Dario Del Sorbo

Academic Supervisor:
Prof. Alfredo Braunstein

A thesis submitted in fulfillment of the requirements
for the Master’s double-degree in Physics of Complex Systems

October 13, 2022

https://www.linkedin.com/in/alessandromanenti/
https://scholar.google.com/citations?user=JsosgewAAAAJ&hl=en
https://scholar.google.com/citations?user=m_HQ-WQAAAAJ&hl=vi
https://physics-complex-systems.fr/en/




iii

POLITECNICO DI TORINO and SORBONNE UNIVERSITÉ

Master’s double-degree in Physics of Complex Systems

Deep Learning techniques for Natural Language Processing: A multilingual
Encoder model for NLI task

Alessandro Manenti

In this manuscript, we build an Artificial Intelligence model that classifies the infer-
ence relations between pairs of English or Italian sentences with accuracies above
75%. To do so, we leverage pre-trained Transformer-based [1] [2] sentence Encoders
[3] to encode sentences into high-dimensional vectors. Then, we build and test
different algorithms to compare the encoded vectors and to infer the logical rela-
tions between texts. On the SNLI [4] validation set, the simple and fast dot-product
reaches an accuracy of 50.13%; fine-tuning the encoder we obtain a 15.26% increment
of performances; while relying on a more complex algorithms - the Support Vector
Machines - we achieve an accuracy of 84.13%. At the end, we study 4 different
Deep Learnig end-to-end models with 4 different attention heads (Fully Connected,
Convolution, Convolution generalization and dot-product generalization). The best
model on both the SNLI and on the MNLI dataset is the one that uses a series of
Fully Connected Layers as comparing algorithm. It obtains 80.69% on the first and
77.00% on the latter.

We detail the theory behind Transformers and why they have outperformed
state-of-the-art architectures on Natural Language Processing tasks. We stress the
symmetries we exploited and the motivations that led us to improve models’ per-
formances on two Italian datasets (achieving an accuracy of 63.38% and 81.65% on
Italian RTE-31 and ABE_ABSITA [5] datasets). While the model developed may still
improve, it is already able to support quantitative text analysis in industrial envi-
ronments.

1Unluckily the official website is down, but the dataset can be downloaded here: https://github.
com/gilnoh/RTEFormatWork/tree/master/RTE3-ITdata-original-format/RTE3-ITA_V1_2012-10-04

HTTPS://WWW.POLITO.IT
HTTPS://WWW.SORBONNE-UNIVERSITE.FR/
https://physics-complex-systems.fr/en/
https://github.com/gilnoh/RTEFormatWork/tree/master/RTE3-ITdata-original-format/RTE3-ITA_V1_2012-10-04 
https://github.com/gilnoh/RTEFormatWork/tree/master/RTE3-ITdata-original-format/RTE3-ITA_V1_2012-10-04 




v

Contents

Abstract iii

1 Introduction to Natural Language Processing 1
1.1 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 2

The Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
The Loss function and the backpropagation algorithm . . . . . 3

1.3 RNN and LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 The Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Input Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . . 7
Multi-Head attention . . . . . . . . . . . . . . . . . . . . . . . . 8
Add and normalize . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Feed Forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Total Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4.3 Transformer-based sentence Encoders . . . . . . . . . . . . . . . 12

1.5 Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Model development 15
2.1 Model structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Comparing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Dot product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Dot product with fine-tuning . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 SVM improvements strategies: Nystroem approximation and

MNLI dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Better SNLI and MNLI data sampling . . . . . . . . . . . . . . . 20

2.3.5 Deep Learning end-to-end models . . . . . . . . . . . . . . . . . 21
Fully Connected layers . . . . . . . . . . . . . . . . . . . . . . . 21
Convolution layers + Fully Connected . . . . . . . . . . . . . . . 21
Fully Connected layers on single vector components . . . . . . 22
Learnable generalization of the dot product . . . . . . . . . . . . 23

3 Results 25
3.1 Test datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 English datasets: SNLI & MNLI . . . . . . . . . . . . . . . . . . 25
SNLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
MNLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Italian datasets: RTE-3 & ABE_ABSITA . . . . . . . . . . . . . . 25
RTE-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



vi

ABE_ABSITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Conclusions and perspectives 29
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Use knowledge distillation on the best end-to-end Deep Learn-
ing model . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Use a better end-to-end model . . . . . . . . . . . . . . . . . . . 30

List of acronyms 31

Bibliography 33



1

Chapter 1

Introduction to Natural Language
Processing

In this thesis, we aim to build an AI model that understands the language. In Sec. 1.1,
we provide some intuition by describing the main tasks an AI may perform. Then, in
Sec. 1.2, we briefly describe Deep Learning (DL) as it is the field of AI with the most
accurate models for solving NLP tasks. We then start describing RNN and LSTM in
Sec. 1.3, two of the first DL models that could process language in a complex and
accurate way. Finally, we describe in depth the state-of-the-art models for Natural
Language Processing: Transformers and Transformer-based architectures (Sec. 1.4)
and state our research goal in Sec. 1.5

1.1 Natural Language Processing

Natural Language Processing is the branch of AI that deals with human language
comprehension. A language is a form of information encoding that can vary a lot.
For example the same piece of information contained in "I like skiing" is represented
differently if it is in English or Italian, if it is an audio recording or a text. Further-
more, it is possible to express the same meaning by paraphrasing it with similar
words. Data like this are called unstructured and are very difficult to process auto-
matically. In this research, we specifically focus on text inputs.

We aim to build an AI architecture that can extract quantitative information from
Italian sentences. There are many tasks and related datasets that we explored that
allow us to extract pieces of information from text. Here we name a few of them:

• Semantic textual similarity (STS) [6]: Couples of sentences are labeled from
0 to 5 based on how similar they are (5 if they mean the same thing, as "I
like skiing" and "I like sliding down the mountains with skis", 0 if completely
dissimilar). We decided not to use this dataset as "similarity" is a vague no-
tion and we saw that scores can be subjective. For example, in the dataset the
sentences "A woman is playing the guitar" and "A man is playing guitar" have
been labeled with an average score of 2.4, while "A woman is playing the flute"
and "A man is playing a flute" have been labeled with a score of 2.75 (almost a
15% increment for the same "woman" −→ "man" change, in the same context).
Furthermore, the STS task is good for finding some sort of similarity, but there
is no control on which part of the sentences to focus on.

• Question-Answer (QA) (an example dataset is TriviaQA [7]): Couples of ques-
tion and answers are collected in pairs. This is a great task for building AI that
learn notions about the world and can answer questions. Anyway, as we want



2 Chapter 1. Introduction to Natural Language Processing

to extract precise pieces of information from reviews, QA systems wouldn’t be
useful.

• Natural Language Inference (NLI) (two example datasets are Stanford NLI
[4] and Multi NLI [8]): NLI datasets are composed of sentence pairs (sentence1,
sentence2) and labels. Each pair is labeled with: entailment, contradiction or
neutral labels:

Entailment: assuming that sentence1 is true then sentence2 is true.

Neutral: assuming that sentence1 is true then sentence2 might be true.

Contradiction: assuming that sentence1 is true then sentence2 is definitely false.

For each class, we show some examples in Table 1.1

sentence1 sentence2 NLI label
"A soccer game with

multiple males playing"
"Some men are playing

a sport" Entailment (1)

"An older and younger
man smiling"

"Two men are smiling and
laughing at the cats
playing on the floor" Neutral (0)

"A man inspects the uniform
of a figure in some East

Asian country" "The man is sleeping" Contradiction (-1)

TABLE 1.1: 3 examples from the SNLI inference task.

An architecture trained on NLI tasks learns the inference relations between
sentences. Many practical problems can be mapped in an inference task and
this is the main reason we used these datasets. In Chapter 2 we will explain
more in detail how we will use NLI datasets to solve practical problems.

1.2 Introduction to Deep Learning

In this section, we briefly describe the high-level concepts of Deep Learning (DL).
Deep Learning is a field of AI particularly suitable for understanding and process-
ing the key features in unstructured data. This is due to the fact that, when we build
a DL model, we are defining a series of interconnected layers that learn how to pro-
cess information nonlinearly. Since the number of layers stacked together usually is
big (the number of parameters can easily exceed 106) this field of AI is called Deep
Learning.

A Deep Learning model is a sequence of parametric mathematical operations.
Their processing unit is the neuron.

The Neuron

A neuron processes its input with a linear transformation followed by a non-linear
activation function:



1.2. Introduction to Deep Learning 3

Neuron #»w ,b(x1, x2, ..., xI) = activation_function(w1x1 + w2x2 + ... + wI xI + b) (1.1)

EQUATION 1.1: The equation for a Neuron: the processing unit of a
Deep Learning model

For every neuron in the architecture, parameters #»w and b may be different. Those
parameters are updated during training and should converge to an optimal config-
uration1. There are many standard activation functions with different properties [9],
but all of them are non-linear functions. The presence of non-linearity is crucial, as
a series of linear transformations can be mapped in a single linear transformation.

Stacking together Neurons produces a Deep Learning architecture that for each
input #»x produces an output #»y . As the set of all #»w and b parameters are usually
randomly initiated, the output is random at the beginning. To obtain useful results,
the parameters need to be trained. This is done via the backpropagation algorithm.

The Loss function and the backpropagation algorithm

To reach an optimal configuration of the parameters #»w and
#»

b , we train the model
on a dataset, consistently called training set. We only describe supervised training,
where training data have labels2. This way, whenever an input data #»x is processed
and a prediction #»y pred is made, the prediction can be compared with the true label
#»y true and the parameters can be changed to improve the model.

The loss function L #»w
#»

b ( #»y pred, #»y true) is the function responsible for the numerical
evaluation of the error made. There are many loss functions, with different proper-
ties and applications [10], but the purpose is always the same: estimating the dis-
tance between #»y pred and #»y true. For each training data, the loss function produces a
scalar called loss. Generally, the more #»y pred is different from #»y true, the bigger the
loss is.

Each model parameter pi ∈ [ #»w,
#»

b ] contributes to the generation of the output
#»y pred. So, more in detail, each parameter pi contributes to the loss. The backpropa-
gation3 algorithms - coupled with Gradient Descent and an optimization algorithm
- tries to find the parameters

#  »

w∗ and
#»

b∗ that are a minimum of L #»w
#»

b . The backpropa-

gation algorithm calculates all the partial derivatives ∂L
∂pi

with the chain rule. Then,

at each training step, parameters are updated in the gradient direction
#»∇ #»w ,

#»

b L4.
This process is called Gradient Descent.
An important practical problem arises when we minimize the loss function.
L #»w

#»

b ( #»y pred, #»y true) is calculated on the training set: there is no guarantee that the pa-
rameters

#  »

w∗ and
#»

b∗ that minimize L #»w
#»

b on this set generalize well for other datasets.
This is known as the bias-variance tradeoff [11]. Two other auxiliary datasets are

1As we will show later, the optimal configuration should be the one that minimizes the Loss func-
tion.

2There are other training schemes, such as unsupervised trainig, self-supervised training, ...
3The name backpropagation derives from the fact that gradients ∂L

∂pi
are calculated from the output

to the input.
4In reality, optimizers are used in order not to get stuck in local minima and perform better. Ex-

plicinting how they work is beyond the scope of this manuscript.



4 Chapter 1. Introduction to Natural Language Processing

used for checking generalization: the validation and the test datasets. The validation
set is used to identify the optimal model and optima hyperparameter, the validation
set is used to infer real performance.

1.3 RNN and LSTM

Recurrent Neural Networks (RNN) are Deep Learning models that leverage the se-
quential structure of texts. This is due to the fact that the order of words in a sentence
is important. Traditional Multilayer Perceptrons do not exploit this feature. On the
other hand, RNNs have only two parameter matrices Whh and WXh that are shared
for all inputs. A sentence is decomposed into single tokens (see 1.4.1 for a detailed
description of sentence pre-processing); for simplicity now imagine that each input
#»

X i is a vector representation of a single word. Mathematically an RNN processes
each input in the following way:

#»

h i = activation(Whh
#»

h i−1 + WXh
#»

X i +
#»

b h) (1.2)

EQUATION 1.2: Equation for processing input Xi based on previous
hidden state

#»

h i−1.
#»

h i is a hidden state that contains all the informa-
tion of previously processed inputs

#»

X1,
#»

X2, ...,
#»

Xi−1.

The computational graph of an RNN is shown in Figure 1.1. For sequence-to-
sequence tasks, hidden layers can be used also as outputs. For sequence to vector
tasks the last hidden layer is usually used.

FIGURE 1.1: The general structure of an RNN. Bias
#»

b are omitted.

In Figure 1.1 and Equation 1.2 we can notice that each input
#»

X i is processed in
the same way and sequentially. In order to produce hidden state

#»

h i,
#»

X i and
#»

h i−1 are
processed with the same weight matrices.

Despite being great architectures for text processing RNNs have important draw-
backs. Each time a hidden layer i is calculated, the information of all previous inputs
{

#»

X0,
#»

X1, ...,
#»

X i−1} gets diluted by a constant factor. This produces an exponential de-
cay of information along the net, so, far inputs do not interact with each other. More-
over, when applying gradient descent, the gradients may easily explode or vanish.



1.4. Transformers 5

This is due to the fact that the same parameter matrices Whh and WXh are shared in
series for many steps [12].

These problems are partially solved by the Long Short-Term Memory [13] Neural
Networks. We do not discuss LSTM NN in detail, as for this research we used more
recent architectures. Anyway, at a high-level, a LSTM may be thought of as a RNN
with some additional memory cells that allow longer-range interactions between
words.

1.4 Transformers

The structure of RNNs and LSTM does not allow them to be computed in parallel, as
each input token is processed sequentially. Starting from this problem the authors of
Ref. [1] built an architecture that could be parallelized more easily, that also handles
the exponential decay of information along the net and the exploding/vanishing
gradient problem : the Transformer.

1.4.1 The Transformer

The main feature of transformers is the attention mechanism: a series of calculations
that allows the Network to focus on some part of the input data and create connec-
tions between them. These connections are showed in 1.4.1 paragraph Multi-Head
attention. The attention mechanism does not sequentially process information. As
we have seen with RNNs the output ht could be written as a function of the input at
time t (xt) and the output at time t-1 (ht−1). On the contrary, the attention mechanism
compares all inputs at the same time with all of them, we will see how soon.

The first Transformer model was represented by the authors [1] in Figure 1.2

FIGURE 1.2: The structure of a Transformer. It can be divided into
two parts: the Encoder, on the right, and the Decoder, on the left. [1].



6 Chapter 1. Introduction to Natural Language Processing

The right part is the Encoder, used to give a vector representation of the meaning
of the input text. On the left-hand side there is the Decoder:

• During training for translation task, the Decoder takes both the Encoder’s out-
put and the translated sentence5 and tries to translate it.

• During training for monolingual data the Encoder receives a sentence of L to-
kens of a corpus (hi, hi+1, ..., hi+L−1) and the Decoder receives the same sen-
tence shifted (hi+1, hi+2, ..., hi+L) (properly masked) and tries to predict token
hi+L.

• During inference, the Decoder takes the Encoder’s output and auto-regressively
processes its output to make predictions.

Since the Decoder is task-specific, its core structure is very similar to the Encoder
and the Decoder is not used in newer Transformer-based architectures, we only de-
tail the Encoder6.

In this section we describe how the Encoder processes an input sequence step
by step, making explicit input and outputs’ dimensions, as it helps understanding
the actual computations. We describe the left hand side of Figure 1.2: the Input
Embedding layer, the Positional Encoding layer, the Multi-Head attention, the Add Norm
blocks and the Feed Forward layer.

Input Embedding

Inputs are usually in the form of raw text that needs to be pre-processed. This com-
putation is made in the Input Embedding cell. Two transformations occur at this
stage: tokenization and token embedding.

FIGURE 1.3: Input Embedding. Raw text is firstly tokenized (with
byte-pair encoding or word-piece, then each token is mapped to a

vector

As shown in Figure 1.3, a sentence is split into the most meaningful subtokens:
this is tokenization. It makes it possible to learn the interaction between subwords
(for example it can learn that the word "skiing" is related to "ski" and is in a gerund
form). If no tokenization was used, each slightly different word would need a new
entry in the dictionary7.

5The translated sentence is properly masked so that it is possible to train in parallel predicting all
output tokens at once. Masking simply makes the future tokens in the output sentence unaccesible to
the Decoder.

6As we will see in the next sections, BERT [2] and Transformer-based sentence Encoders [3] use
only the Encoder part, so, for this research, it is useful to focus only on this.

7This should be avoided since 1) it increases the degrees of freedom of the task, for no specific
reason 2) does not allow out-of-distibution learning (words not seen during training are treated as
unknowns) 3) can be computationally infeasible



1.4. Transformers 7

In the original paper, they used both character-level byte pair encoding (BPE), as
trained by [14], and WordPiece [15]. BPE [16] iteratively expands the tokens dictio-
nary until it reaches a certain length. The dictionary is expanded adding the most
frequent couple of tokens as a new token. WordPiece instead of adding new tokens
using only the frequencies of couples of tokens, calculates a score as:

score(tokeni, tokenj) =
freq(tokeni before tokenj)

freq(tokeni)freq(tokenj)

And then chooses the couple of tokens with the highest score. This way, if two to-
kens always appear one after the other, they will be favored in being merged. 8

After tokenization, each token is mapped to a vector of dimension dmodel (in the
original paper they tried different configurations with dmodel = 256, 512, 1024). This
process is called token embedding. Embeddings are usually randomly initiated
and then learned during training, as they are vectors directly connected to the back-
propagation computational graph. After training, embeddings should map simi-
larly used tokens into close vectors (for example "like" embedding vector should be
closer to "love" embedding vector than to the "chair" one). At the end of the Input
Embedding cell the sentence is transformed to a Rntokens x dmodel matrix9

Positional Encoding

As we anticipated and as will see more in detail, all embedded tokens are processed
in parallel. At this stage, the architecture has no information about the relative po-
sitions of words, and sentences like "I love what I understand" and "I understand
what I love" would be the same. Therefore this information is encoded in the vec-
tors adding to each of them a Positional Encoding vector as shown in Figure 1.4.

FIGURE 1.4: Positional Encoding. A Positional Encoding value PE(i,j)
is added to each entry in the token embedding matrix. This produces

the matrix

8A good tokenization is essential to obtain state-of-the-art results and shouldn’t be neglected. It is
worth noticing that other tokenizers exist. Two other famous ones are UnigramLM [17] and Sentence-
Piece [18]. As proved in [19], using UnigramLM rather than BPE improves performances up to 1.4%
in the MNLI task.

9Actually, the input gets padded (transformed to a fixed dimension by the addition of [PAD] to-
kens) to a matrix of shape Rdpad x dmodel , so it becomes ntokens independent. Since it will be useful to keep
in mind which dimension correspond to the tokens we will pretend that ntokens = dpad



8 Chapter 1. Introduction to Natural Language Processing

The authors of Ref. [1] chose the following positional encoding function10:

PE(i, 2j) = sin(
i

100002j/dmodel
)

PE(i, 2j + 1) = cos(
i

100002j/dmodel
)

We will see that newer Transformer-based architectures learn the positional encod-
ings. So, the positional encoding block outputs a Rntokens x dmodel matrix.

Multi-Head attention

As we can see in Figure 1.2, after the Positional Encoding there is the Multi-Head
attention. This part is the innovative structure of the Transformer. In the previous
section we said that from the Positional Encoding a Rntokens x dmodel matrix arrives as
input of the Transformer, where each row corresponds to a token. Now, this matrix
gets projected with 3 different projection matrices WQ ∈ Rdmodel x dk , WK ∈ Rdmodel x dk

and WV ∈ Rdmodel x dv . This process is run h times in parallel. We show this process in
Figure 1.5.

FIGURE 1.5: Linear transformation of input matrices. The matrices Q,
K and V will go through the Attention Mechanism.

In Figure 1.5 we can see the linear projection described above, where we took dv
= dk for simplicity. The outputs of this step are 2h Rntokens x dk matrices and h Rntokens x dv

matrices. We will focus on only one set, since all h sets will undergo the same trans-
formations (with different weight matrices). It is important to notice that each row
of the Q, K and V matrices corresponds to the transformed encoding of a particular
token.11. The attention mechanism is the following:

Attention(Q, K, V) = row_softmax(
QKT
√

dk
)V (1.3)

EQUATION 1.3: Attention mechanism equation. row_softmax is the
softmax function applied row by row.

10They also explored learned positional encodings obtaining similar results.
11The names Q, K and V derive from information retrieval. Q stands for Query, K for Key and V

for Value. Queries are compared to Keys and then, a Value based on the matches.



1.4. Transformers 9

A representation of this operation is shown in Figure 1.6.

FIGURE 1.6: Visual representation of the Attention Mechanism.
Numbers in the right stochastic matrix are approximated to the first

significant digit.

From Figure 1.6 it is clear what the attention mechanism does: firstly it compares
each transformed input token with each transformed input token. This produces a
Rntokens x ntokens matrix that should entail the relations between tokens. Then, it is di-
vided by

√
dk

12 and a softmax function is applicated row by row. This way, a right
stochastic matrix is produced: each row i should represent how much token i is re-
lated to token j13.

Then, the right stochastic matrix selects the elements of the value matrix V. Take
the example in Figure 1.6: If token1 of Q has a high dot product with token1 and
token3 of K, then the right stochastic matrix’s row 1 has the highest probabilities in
entry 1 and 3. Then, the attention output matrix has, as row 1, mainly the weighted
sum of matrix V’s token1 and token3.

In Figure 1.7 we show the attention mechanism for an input sentence.

12The authors of [1] decided to divide by
p

dk because if we take two dk dimensional vectors ran-
domly distributed with 0 mean and variance 1, their dot product has 0 mean and dk variance.

13Whenever we talk about a "token" it is important to keep in mind that we refer to the linearly
transformed token. We dropped the adjective "transformed" for simplicity.



10 Chapter 1. Introduction to Natural Language Processing

FIGURE 1.7: An example of the attention mechanism. Each color rep-
resent an attention matrix for the word "making". Figure taken from

[1]

As we can see, the attention mechanism can learn long-range interactions be-
tween words. The output of each of the h attention heads is a Rntokens x dv matrix.
These matrices are then concatenated in a Rntokens x hdv matrix and linearly projected
with W0 ∈ Rhdv x dmodel . The complete Multi-Head attention is:

MultiHeadAttention(Q, K, V) = concat(Attention1(Q, K, V), ..., Attentionh(Q, K, V))W0

(1.4)

with Attentioni(Q, K, V) from Equation (1.3)

EQUATION 1.4: Mathematical description of Multi-Head attention.
Each attention head Attentioni(Q, K, V) has different weight matrices

WQ
i , WV

i and WK
i

Add and normalize

The output of the Multi-Head attention is a Rntokens x dmodel . This output is summed
to the output of the Positional encoding (a Rntokens x dmodel matrix) via a Residual Con-
nection [20]. A Residual Connection is a processing step that sums the most recent
output to the output of some precedent processing block. From Figure 1.2 The resid-
ual connection is depicted as the line that connects the Positional Encoding output
to the Add & Norm layer. 14.

Then Layer Normalization is applied [21]:

14Note that a unique and fixed dmodel facilitates these residual connections through the model.



1.4. Transformers 11

1. Each row15 of the Rntokens x dmodel matrix gets normalized with 0 mean and unitary
variance16

2. Then, every column, is multiplied by a trainable parameter ac, with c ∈ {1, 2,
..., dmodel}). Then, to every entry of the column the same trainable parameter bc
is added.

The final output is again a Rntokens x dmodel matrix.

Feed Forward

The X ∈ Rntokens x dmodel matrix is then transformed via a Feed-Forward Network:

FFN(X) = max(0, XW1 + b1)W2 + b2 (1.5)

EQUATION 1.5: Equation of a Feed Forward Network, with 1 hidden
layer and ReLU activation function.

with W1 ∈ Rdmodel x dFF , b1 ∈ R1 x dFF , W2 ∈ RdFF x dmodel and b2 ∈ R1 x dmodel . The au-
thors of [1] tried many hyperparameters’ settings, the interesting thing is that the
best results were obtained for dFF > dmodel

17.

In the original paper (and in the literature in general), the tendency is to deeply
study the attention mechanism. On the other hand, the authors of [22] demonstrated
how the FFN is equally important. In particular, they showed how this processing
step (accounting for two thirds of the total number of parameters) behaves as a in-
formation retrieval system. Omitting the bias terms for semplicity, a FFN can be
written in the following way:

FFN(X) = activation(XKM)VM (1.6)

EQUATION 1.6: General form of a Feed Forward Network with 1 hid-
den layer and no bias.

They showed how, after training, KM is responsible for capturing the patterns
in the input, which then would be retrieved in the VM matrix: a memory acquired
during training.

Total Encoder

After the FFN, another Add and normalize block transforms the data and a Rntokens x dmodel

matrix is produced. Then, the blocks from Multi-Head attention process the data
again for N times (each time with different weight matrices) and a final Rntokens x dmodel

matrix is returned as the output of the Encoder.

15A row is a R1 x dmodel vector that is related to a specific mixture of tokens.
16Actually, when normalizing the norm a small ϵ term is added to the denominator for numerical

stability ( x−µ
σ −→ x−µ√

σ2+ϵ
)

17An conventional choice is to set dFF = 4 dmodel .



12 Chapter 1. Introduction to Natural Language Processing

1.4.2 BERT

As we mentioned above, the Transformer introduced in [1] was trained:

• In an auto-regressive way for single-input tasks: the Decoder uses the En-
coder’s output as a fixed input, and each of its previously generated outputs
to predict the next token.

• Using the "Language A" sentence as input of the Encoder and "Language B"
sentence as input of the Decoder for translation tasks.

A Google research group [2] made two main changes to the original Transformer
and obtained state-of-the-art results on NLP tasks (7.7% absolute improvement on
the GLUE benchmark):

1. Instead of having an Encoder-Decoder structure for processing sentences, they
used an unique Encoder that took as input couples of sentences divided by a
[SEP] (separator) token.

2. The training procedure changed: they trained the model by substituting 15%
of input words with: a [MASK] token (80% of the time), a random word (10%
of the time) or the same word (10% of the time). Then the model learned in
a self-supervised way to reconstruct the original sentence. They also added a
"next sentence prediction task" where the model should understand if the two
sentences separated by the [SEP] token were sequential originally.
The model was then fine-tuned on task specific tasks changing only the last
layer and fine-tuning all the parameters.

The authors named this model BERT (Bidirectional Encoder Representations from
Transformers)[2]. This architecture laid the foundations for modern Transformers,
and in particular for the Transformer-based sentence Encoders: the architecture we
used for this work.

1.4.3 Transformer-based sentence Encoders

While BERT-like architectures can solve NLP tasks with high accuracy (often in the
80% - 90% range), in certain situations they are computationally too expensive. Con-
sider the Semantic Textual Similarity task (STS), where we want to understand if
couples of sentences are semantically similar18. If we want to find the two most
semantically similar sentences in a database of N sentences the computational com-
plexity is O(N2). Since BERT-like architectures have ∼ 107 - ∼ 1012 parameters, they
become too expensive very fast (for as little as N = 103 we would need approximately
5 million calls that need ∼ 6.5 hours with BERT).

The authors of [3] proposed to use a Siamese Network [23] based on BERT to
create Sentence-BERT (SBERT).

Siamese Networks transform unstructured data into vectors so that similar19 sen-
tences produce similar vectors and no relevant information is lost in the transforma-
tion. This is possible since during training the same network is used to produce vec-
tor embeddings, and only at the end a few classification layers are used. A scheme

18For example, despite using different words the sentence "I love experimenting with recipes" and
"I’m fond of cooking" are similar.

19It is worth noticing that "similar" is task specific: we may be interested in similar meaning, similar
sentiment and so forth.



1.5. Research goal 13

of the training setup of a Siamese Network is in Figure 1.8

FIGURE 1.8: Training scheme of a Siamese Network.

In our research, we tried different pre-trained Encoders and, based on their pro-
prieties and performances we selected and used 2 of them: a SBERT 20 and a Tensor-
Flow multilingual Encoder 21

1.5 Research goal

Ideally, we imagine having a large (∼ 105) corpus of Italian sentences, and we want
to extract information from each sentence. So, the goal of this research is to build a
model that:

• Can understand inference between pairs of Italian sentences. In other words,
we train and test our models on NLI datasets. This way we can query each
sentence in the dataset in the way we want.

For example, consider having a set of hotel reviews and being interested in
knowing what custumers think about the price. If two reviews are:

POS_review: "This hotel is cheap"
NEG_review: "This hotel is too expensive"

Then, coupling each review in a NLI task with the ground truth sentence:

GT_review: "I have paid too much"

will give:

Review to classify Ground truth review NLI label
(sentence 1 of NLI) (sentence 2 of NLI)

"This hotel is cheap" "I have paid too much" Contradiction (-1)
"This hotel is too expensive" "I have paid too much" Entailment (1)

TABLE 1.2: NLI inference task for two reviews

This way we can query our dataset in a very general way without retraining
the model each time.

20https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
21https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3

https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3


14 Chapter 1. Introduction to Natural Language Processing

• Is based on an Encoder: by encoding the sentences into vectors we can perform
many operations on them very fast.

Imagine that we have a dataset of N reviews and, for each of them, we want to
query for Q pieces of information22, then if we don’t use an Encoder we would
need O(NQ) calls to the Deep Learning BERT-based model. On the other hand,
if we previously encode all the sentences and then compare them with a fast
algorithm23, we need to call the BERT-based Encoder only O(N + Q) times. 24

• Understands Italian. The majority of the optimized and high-performance
models published online are in English. This reflects the fact that research is
published in English and important NLP datasets (as SNLI [4], STS [6], MNLI
[8]) and benchmarks (as GLUE [24]) are all in English.

Transformers are computationally expensive to train from scratch and require the
choice and tune of many hyperparameters (such as learning rate, gradient descent
parameters, batch size, loss function, ...). As an example, the latest Google AI NLP
architecture [25] was developed and trained from scratch by a team of 50+ people
with the collaboration of other 8 teams. Furthermore, one complete training of BERT
can take up to 4 days on 16 Cloud TPUs25 (with 64 TPU chips total). So, we decided
to test some multilingual transformer models and fine-tune them to solve our task.
In the next chapter, we explain the models we developed and the improvements we
made step by step.

22An example can be a dataset of hotel reviews. Not only we may be interested in knowing whether
each review talks about the price or not, but we may want to know whether it talks about the cleanli-
ness, about the staff and so forth. Moreover, for each topic and each review, we may be interested in
knowing the sentiment.

23Fast means that the time complexity of the comparing algorithm must be much lower than the
one of a BERT-like architecture. This is quite easy to obtain as Transformer architectures often have ∼
107 - ∼ 1012 parameters.

24Furthermore, the attention mechanism computational complexity scales quadratically with the
sentence length L (due to the matrix in the attention mechanism), making each call of the non-Encoder
model quadratically slower in space and time.

25TPUs or Tensor Processing Units are hardware components developed by Google that allow fast
and low-energy training of Deep Learning architectures. They are built to make the tensor operations
typical of DL extremely fast.



15

Chapter 2

Model development

When researching for a Machine Learning model, it is important to follow a scien-
tific method, as acceptable results may also be achieved using an architecture as a
"black box". Many times, in Deep Learning it is not well understood why some ar-
chitectures perform better than others. For example, Transformers where invented
as a NLP architecture that could be parallelized. Only at a latter time they started to
understand why they outperformed RNN and LSTM. This is the reason why, during
our research, we tried to understand the strength and the weaknesses of our models
and improved them step by step.

In this chapter, we explain the basic structure of the models we used and the
computational-informed or physics-informed motivations that brought us to make
certain changes.

2.1 Model structure

As we stated in Chapter 1, we wanted to build a NLI classifier that takes two sen-
tences as input, separately encodes them in a multidimensional-vector and com-
pares them with a fast mathematical rule. Graphically the model structure we want
to build is depicted in Figure 2.1:

FIGURE 2.1: The general structure of the algorithms we tested. The
Encoder is a transformer-based Deep Learning model, while the com-

paring algorithm is a fast rule.

Before the development of a final model, we tried different choices both for the
encoder part and for the comparing algorithm. In the following sections we describe
more deeply what we tried and why.

2.2 Encoders

We considered two different pre-trained, open-source alternatives as Transformer-
based sentence Encoders available in the following repositories:



16 Chapter 2. Model development

• The official SBERT website. Among the 4 multilingual alternative models, we
opted for the most performing1, according to reference [26], and that does not
normalize output vectors. 2 We refer to this model as SBERT.

• TensorFlow Hub: the official repository for TF. Between the 7 multilingual en-
coders we chose the most performing on STS. 3 We refer to this model as TFH.

As we describe in Subsection 2.3.2, we fine-tuned the Transformer-based sen-
tence Encoder model only once. In all the other cases, the Encoders we used were
not re-trained. We will always specify the Encoder we used.

2.3 Comparing algorithms

A part from the study of Transformers, their properties, their strengths and weak-
nesses, the main research focus was on the comparing algorithm. It takes as input
two encoded sentences and calculates their NLI label, in a fast way (fast with respect
to a Transformer-based architecture).

2.3.1 Dot product

One of the fastest ways to compare vector pairs is via their dot-product, with this
purpose, we checked whether the SNLI’s validation set could be divided easily, by
using the dot-product only. With both Encoders (SBERT and TFH) we encode all
the sentences and, for each pair of encoded sentences, we calculate the relative dot
product. We produce an histogram for each class and group them in a unique plot.
Results for the SBERT model are shown in Figure 2.2. Results for the TFH model are
shown in Figure 2.3.

We can clearly see that we cannot properly divide the 3 classes with two thresh-
olds. Even with the best division (showed as black vertical lines) we obtain an accu-
racy of 57.87% for the SBERT encodings and 50.13% for the TFH encodings.

FIGURE 2.2: Histogram of dot product between SBERT sentence em-
beddings of SNLI validation set. Classifying thresholds are shown.

1https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
2We look for not normalized vectors as we hypothesize that meaning is encoded in the direction

of a vector while intensity in its length. So a sentence with a lot of information should be longer
3TFH: https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3

SBERT: https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2
https://tfhub.dev/google/universal-sentence-encoder-multilingual-large/3


2.3. Comparing algorithms 17

FIGURE 2.3: Histogram of dot product between TFH sentence em-
beddings of SNLI validation set. Classifying thresholds are shown.

Up to now, the Encoder was not fine-tuned on this comparing algorithm, so we
expect to have a large margin of improvement

2.3.2 Dot product with fine-tuning

Using Keras Functional API we build an end-to-end model that takes couples of
SNLI sentences, encodes them4 and calculates the dot product between them. We
used the following loss function:

RootLoss(ypred, ytrue) =
q
|ypred − ytrue| (2.1)

EQUATION 2.1: Loss function used for the fine-tuning.

A standard choice for regression tasks like this would have been the Absolute
Error Loss. We decided to use this loss function since {{-1}, {0}, {1}} are three differ-
ent classes and this should be considered when building an adequate loss function.
More in detail, we represented each class as a point on the continuos line with -1
and 1 as extrema. We spaced the classes linearly, but there is no guarantee that this
linearity should hold in the loss function. For example, if a couple of sentences is
labeled as "-1", the absolute mean error gives a penality that it is double if the true
label is "1" rather than "0". To mitigate this effect more in favor of a multiclass classi-
fication task we employed Equation 2.1 the loss function.

We used Adam optimizer [27] with learning rate of 10−4, β1 = 0.9, β2 = 0.999. We
used a learning rate warmup over the first 10% of steps and trained for 5 epochs.
These are the set of hyperparameters that were chosen for training BERT [2]. Since
a complete training took ≡ 4 hours on a Google Colab GPU we decided not to try
other configurations.

We then repeated the analysis on the dot product distributions and got the results
of Figure 2.4

4Since Keras Functional API is based on TensorFlow, for this section we Encoded sentences with
the TFH model.



18 Chapter 2. Model development

FIGURE 2.4: Histogram of dot products between sentence embed-
dings of SNLI validation dataset. Results after fine-tuning the Ten-

sorFlow Hub Encoder model.

It is straightforward to notice that now two thresholds can divide the distribu-
tions quite well. If we set them at -0.25 and at 0.25 we get an accuracy on the valida-
tion set of 65.39%. This is an increment of 15.26% from the previous accuracy.

Retraining the encoder on the SNLI dataset we lost the multilingualism of the
Encoder. For this reason, we no longer can use this algorithm to treat italian sente-
ces. Anyway, we showed how a fine-tuninig of the Transformer could considerably
improve the accuracy, prooving the benefits of this approach.

Up to now, we have always considered the dot product, which is an average
operation. The dot product between two vectors s1 and s2 can be written as:

< s1|s2 >=
D

∑
i=1

s1i ∗ s2i

So, we looked at the distributions of element by element product pi ≡ s1i * s2i to see
if only a few components were encoding all the inference relation. We didn’t find
any single component that could classify the data.

2.3.3 Support Vector Machine

We saw that no components pi of the element-wise product vector #»p ( #»p ≡ (s11 * s21,
s12 * s22 , ..., s1D * s2D)) can classify the SNLI data alone. The fact that no component
of #»p is able to classify the SNLI dataset does not mean that a mixture of them can’t.
So, we decided to use Support Vector Machines (SVM) [28], a supervised machine
learning algorithm that can handle high-dimensional data. SVM find the hyperplane
that divides the data at best. Since data could be divided by an infinite number of
planes SVM finds those that maximize its distance with respect to both classes. A
nonlinear division can be learned by mapping the data to a high dimensional space
with a non-linear function, this technique is called Kernel Method [28]. 5 6

5For multiclass classification tasks, an hyperplane is found for every pair of classes.
6Note that SVM can be seen as improved perceptrons. [29]



2.3. Comparing algorithms 19

We chose SVM as they obtain high performances when the number of features
is large (we recall that SBERT and TFH output vectors of whose dimensions respec-
tively are 768 and 512).

First, we want to set the SVM’s input. In particular, we want input vectors to
have 2 properties:

1. We want to include the element-wise product #»p as part of the input. As we said, the
dot-product is an average among the #»p components, but some components, if
properly combined, may be more relevat than others for the classification. We
believe so, since the dot product proved capable of classification, even with
low performance. Moreover, the dot-product is the metric used in the original
SBERT paper [3] when performing Semantic Textual Similarity.

2. We want an input that preserves the asymmetry of the problem. The NLI task is
asymmetric under sentences permutation, but the #»p vector is. So, we must
enrich the inputs with an asymmetric vector.

For these reasons we decide to input the vector #»p concatenated with the differ-
ence vector

#»

d ≡ #»s1 - #»s2. 7.

Furthermore, we notice that an input as [ #»p ,
#»

d ] satisfies other two properties:

1. Almost all the information that was in #»s1 and #»s2 is preserved. If we only keep the #»p
vector OR the

#»

d vector as input, a lot of information from the original #»s1 and
#»s2 encodings is lost. The information is lost as we cannot reconstruct #»s1 and #»s2
from #»p . Consider the ith component of #»p , pi: there is an infinite set of pairs
(s1i, s2i) such that s1i x s2i = pi.
Using both #»p AND

#»

d the set of possible input vectors #»s1, #»s2 that identifies
[ #»p and

#»

d ] is reduced from ∞D to at most 2D, with D the dimension of the
encoding space. This is due to the fact that, for every pair of transformed
components pi and di, we have to solve the system of equations 2.2 to obtain
s1i and s2i: (

s1i = di + s2i

s2
2i + dis2i − pi = 0

(2.2)

EQUATION 2.2: System of equations to obtain s1i and s2i from their
product pi and difference di.

2. NLI is a relation task, an input that is a relation between #»s1 and #»s2 may be benefi-
cial. Encodings are vectors whose positions are connected with the meaning.
It has been shown [30] that, for some encodings, simple arithmetic relations
stand. For example

#      »

king -
#       »

male ≃ #         »queen -
#             »

f emale. In the NLI task we want to
classify the implication relation between sentences. If this relation is (partially)
made explicit in the preprocessing of #»s1 and #»s2 the comparing algorithm may
significantly benefit, learning similar relations for sentences.

Since nonlinear Support Vector Machines struggle with big data (Memory com-
plexity scales as O(N3), where N is number of data), but we saw that nonlinearity

7 #»s1 and #»s2 are the TensorFlow Hub encodings of SNLI’s sentences.



20 Chapter 2. Model development

was essential to obtain accuracies over 80%, we decided to take the maximum num-
ber of training data that didn’t saturate the RAM (3 x 104). So, we trained a SVM
on SBERT encodings of 3 x 104 pairs randomly sampled from SNLI training set. We
chose a gaussian kernel with γ = 0.002 and C = 50. On the SNLI validation set the
accuracy achieved is 84.13%. This is an 18.74% accuracy improvement.

2.3.4 SVM improvements strategies: Nystroem approximation and MNLI
dataset

The last model described shows an accuracy of 84.13% on the SNLI validation set.
In order to furhter generalize this model we trained it including MNLI dataset [8] as
well (as frequently done in literature [2])8. MNLI has 2 validation sets: one matched
(with the same genres9 as the train dataset) and one mismatched (with genres differ-
ent from training dataset).

As previously stated, memory constraints prevents us from using the whole
dataset (we used only 6% of the SNLI training data). The main problem in the space
complexity of SVM is the nonlinear transformation i.e. the kernelization (that scales
as O(N3)). We tried to approximate this nonlinear map with the so-called Nystroem
approximation [31]. Nystroem fixes the dimensionality of the nonlinear space, so
less memory is required. 10

By decreasing the number of components used in the Nystroem approximation,
we can use more and more data. We did many explorative experiments with the
Nystroem approximation (tried different hyperparameters, tried using Stochastic
Gradient Descend on Linear SVM using all the data and tried different number of
Nystroem components m).
We have developed a prototype model based on SBERT encodings of a mixture of
SNLI and MNLI data (34K SNLI data and 136K MNLI data). The hyperparameters
are m = 3000, C = 1, γ = 0.0003. With this model we obtain an accuracy of 72.66% on
the SNLI validation set and of 70.15% on MNLI matched validation set.

Better SNLI and MNLI data sampling

Up to now, SNLI and MNLI data were randomly sampled when fewer data were
used. With this method high-density clusters can be oversampled at the expense of
single points and low-density clusters.

So, we used Ball Trees [32] to sample more frequently those points on low density
volumes in the hyperspace where #»p ⊗ #»

d vectors lay. More in detail, the Ball Tree al-
gorithm constructs a tree where siblings leaf nodes are close in the high-dimensional
space11. We then uniformly sampled 170K vectors, extracting the same number of
samples from different siblings leaf nodes. We then trained a model as done in 2.3.4,
but obtained comparable results.

8In the SNLI paper [4] there is the explanation of the dataset creation: sentences are created from
photo descriptions. So, the SNLI sentences are text descriptions of only visual images. As the dataset
is so visual-specific, we hypothesize it can be a cause of bad generalization.

9A genre is the origin of the dataset. It can be a telephone call, a letter 9/11 Report, ... . There are 5
genres for train set and matched set, and other 5 for the mismatches set.

10Space complexity of the Nystroem approximation scales as O(Nm2), with N number of data and
m the dimensionality of the nonlinear space.

11Note that the Ball Tree algorithm is an approximate algorithm



2.3. Comparing algorithms 21

2.3.5 Deep Learning end-to-end models

The space complexity of previous algorithms allowed us to use only ∼ 15% of the
data available. On such dataset, we trained end-to-end Deep Learning models: mod-
els where both the Encoder and the comparing algorithms are Deep Learning layers.

We trained 4 different deep learning comparing algorithms: Fully Connected lay-
ers, Convolution layers + fully connected, Fully Connected layers on single vector compo-
nents and a Learnable generalization of the dot product. All models were trained on both
the SNLI and on the MNLI datasets. We remark that retraining all the models on
those datasets make the encoder monolingual.

Fully Connected layers

The concatenated vector [p, d] is passed to a feed forward neural network composed
by 6 different Fully Connected layers. The dimensions of inner vectors are 1024, 512,
256, 128, 64, 312. Then, the softmax function is applied to the final 3D vector in order
to obtain the classification probabilities. For all layers GeLU activation function is
used as it is the activation function used in the BERT model [2]. Every end-to-end
model can be trained on a 16 Gb Pascal GPU in approximately 7 hours. Based on the
results of Ref. [2] we decided not to change the activation function and try different
ones (ReLU, tanh, sigmoid, ...).

With this comparing algorithm we obtain an accuracy of 80.69% on SNLI and
77.00 % on MNLI mismatched.

In a Fully Connected layer each component of the input vector is used to com-
pute each component of the output vector. All these interactions may not be neces-
sary from the beginning and it may be beneficial to process the encodings #»s 1 and
#»s 2 differently, before using the Fully Connected layers.

Convolution layers + Fully Connected

In 2.3.3 we described how we decided to process the encodings #»s 1 and #»s 2 before
using them as the inputs of the comparing algorithm. The choices we made were
based on informed reasonings but we wanted to test if a network could learn more
relevant operations. So, we built a series of 1D convolutions that preprocess #»s 1, #»s 2,
#»p and

#»

d . The convolution operation we used is depicted in Figure 2.5.

12We tried both deeper networks and shallower ones. Deeper networks are heavier and do not
produce higher accuracies and converge more slowly. Shallower ones start losing predictive power.



22 Chapter 2. Model development

FIGURE 2.5: The convolution operation: #»s 1, #»s 2, #»p and
#»

d are stacked.
Then a convolution consists in a 1D learnable matrix that is multiplied
element-wisely column by column. A learnable bias term is added

and an activation function is applied.

As described in previous Figure 2.5, for each pair of encodings a convolution
matrix produces a vector with same dimensions as encodings’ dimensions dmodel .
If C1 convolutions are used, a RC1 x dmodel matrix is produced stacking the outputs.
Then, the process can be repeated with a different number of convolutions C2.

We noticed that a network with more than 3 convolutional sequences had con-
vergence problems, in addition to an increased computation time. For this reason
we decided to use C1 = 256 and C2 = 1. Then, we applied a series of FC layers of
dimensions 512, 128, 64, 3.

With this network we we obtain an accuracy of 78.89% on SNLI and 75.37 % on
MNLI mismatched.

Fully Connected layers on single vector components

The convolution works well when the input data present a translational invariance
symmetry. This is due to the fact that the weight matrix is always the same, column
independent. In our example different column may need to be processed differently.
From this idea we tried to generalize a convolution applying a different weigth ma-
trix for each column. This new operation is depicted in Figure 2.6.

FIGURE 2.6: The convolution is generalized as the weight matrices
and biases can be different. This can be seen also as a series of FC

layers on each column.

Note that in Figure 2.6 the 1D weight matrix that is multiplied to the first column
is different to the one that is multiplied by the second column. There is no convolu-
tion anymore.



2.3. Comparing algorithms 23

Since in the computational graphs each node associated to a weight parameter is
connected to fewer outputs, the gradient descend is more stable. We could use more
generalized convolutions in series. In particular we used C1 = 16, C2 = 16, C3 = 8, C4
= 4, C5 = 2, C6 = 1. We then applied the usual series of FC layers of dimensions 512,
128, 64, 3. With this network we obtain an accuracy of 79.31% on SNLI and 75.02 %
on MNLI mismatched.

Again, the accuracy decreased. We interpreted this as an indicator of the fact that
it is important for different entries to be able to interact with one another. Further-
more we have a proof that processing the vectors #»s 1 and #»s 1 into #»p and

#»

d works
better than making a network choose how to process them. This suggests that the
properties used in 2.3.3 help preprocessing the encodings in the correct way.

Learnable generalization of the dot product

In the previous paragraph we showed that is important for different components to
interact. So, we tried to generalize the dot-product with a learnable matrix. More in
detail we can write the dot-product between #»a ∈ R1 x dmodel and

#»

b ∈ R1 x dmodel as:

< #»a | #»

b >= #»a 1
#»

b T

It is clear that the identity operator does not make any interaction between different
components possible. So, we decided to try the following map:

#»a −→ [ #»p ,
#»

d ] (2.3)
#»

b −→ [ #»p ,
#»

d ] (2.4)

1 −→ P, a parameter matrix. (2.5)

We then use the scalar obtained with this procedure as a classifier for the NLI
task. We obtain an accuracy of 79.55% on SNLI and 75.74 % on MNLI mismatched.
This result shows how a simple all components to all components interaction can be
used to achieve high accuracies.

In Table 3.3 we group the results of all models previously described.

Each test described in the previous chapters helped us build a better model step
by step. We obtained better and better results leveraging symmetries, geometric
intuitions and literature. We have also developed a webapp to make the model de-
veloped in 2.3.4 available for non-technical users. We are developing an end-to-end
model for Italian language via knowledge distillation [26]. 13

13Knowledge distillation is a technique used to train a new model (student model) on a training
dataset labelled by another model (teacher model). The teacher model we are using is the one devel-
oped in 2.3.5 - Fully Connected layers.





25

Chapter 3

Results

In this chapter, we present our results, i.e. the performance of the models developed
- as they are at the current stage - and discuss the tests we developed to infer these
performance.

3.1 Test datasets

3.1.1 English datasets: SNLI & MNLI

Both the SNLI [4] dataset and MNLI [8] dataset are NLI datasets. The detailed de-
scription of the Natural Language Inference task can be found in Sec. 1.1. Here we
describe the test set for both datasets.

SNLI

SNLI has the canonical train-validation-test split of the dataset. The train set is used
to train the models, for each trained model an accuracy is calculate on the valida-
tion set and these accuracies are used to choose the best model. Since the train and
validation sets are used to choose the best model it may be possible that the model
specialized on those data. In order to have an accuracy that is meaningful, the test
set is used.
For the SNLI dataset we have simply used the SNLI test set.

MNLI

MNLI does not have the standard train-validation-test split of the dataset. Differ-
ently from the SNLI dataset the MNLI datasets are divided into genres. A genre is a
particular source of the data. For example, if a sentence was extracted from a letter
the genre is "Letters".
The train and matched validation sets have the same gentres: "Telephone", "Fiction",
"Government", "Slate" and "Travel". For the mismatched validation set, the genres
are different: "Letters", "Oxford University Press", "Face-to-face", "9/11 reports" and
"Verbatim".
Since no test set is available for MNLI, the mismatched validation dataset is used to
evaluate the generalization power of the model. A high accuracy on the mismatched
set corresponds to a better generalization of the model.

3.1.2 Italian datasets: RTE-3 & ABE_ABSITA

We identified two open-source Italian datasets and the relative evaluating procedure
to estimate how our models generalize to Italian and to free-text information extrac-
tion.



26 Chapter 3. Results

RTE-3

RTE-3 for Textual Entailment in Italian: an NLI Italian dataset. Unluckily the of-
ficial website is down, but the dataset can be downloaded here: https://github.
com/gilnoh/RTEFormatWork/tree/master/RTE3-ITdata-original-format/RTE3-ITA_V1_2012-
10-041

This dataset is composed of only two classes: Entailment and Not Entailment.
Since our model produces 3 classes (Entailment, Neutral, Contradiction) we map the
outputs in the following way:

Entailment −→ Entailment
Neutral −→ Not Entailment

Contradiction −→ Not Entailment

We chose this mapping as it is the one that maximizes the accuracy on the validation
set.

ABE_ABSITA

ABE_ABSITA [5] is Subtopic-level Sentiment Analysis (SSA) dataset in Italian: A
corpus of Italian hotel reviews that can have multiple topics (Price, Cleanliness, Staff,
Location, ...) and sentiments for each topic (sentiment can be different for different
topics in the same sentence). This dataset is useful to test our models on different
tasks. Our aim is to build a general architecture that can be used for different tasks.
On this dataset we can test our models on 3 different tasks:

1. Topic recognition: recognize if a given sentences talks about a topic.

2. Aspect-based Sentiment Analysis: Given a sentence with a certain topic, rec-
ognize the sentiment for that topic.

3. General Sentiment Analysis: Recognize whether or not the overall sentiment
is positive.

For each task we used the following ground truths2 as sentence2 of the NLI task:

Task Ground truth English translation
Topic Recognition "Parlo di pulizia" "I’m talking about cleanliness"

Aspect-based "La camera è pulita" "The room is clean"
General "Sono soddisfatto" "I’m satisfied"

TABLE 3.1: Ground truths used fro different ABE_ABSITA tasks.

Since each task is a binary classification task we mapped the 3 outputs of our
model in the following way:

1We weren’t able to find a human labelled NLI datset for the Italian language, se we used RTE.
2Remember that a ground truth is a query sentence that, when used with a NLI model, can give

information on other sentences. Look at Sec. 1.5 for clarification

https://github.com/gilnoh/RTEFormatWork/tree/master/RTE3-ITdata-original-format/RTE3-ITA_V1_2012-10-04
https://github.com/gilnoh/RTEFormatWork/tree/master/RTE3-ITdata-original-format/RTE3-ITA_V1_2012-10-04
https://github.com/gilnoh/RTEFormatWork/tree/master/RTE3-ITdata-original-format/RTE3-ITA_V1_2012-10-04


3.2. Results 27

Task 3-class output −→ task output
Topic Recognition Entailment −→ Entailment

Neutral −→ Entailment
Contradiction −→ Contradiction

Aspect-based Entailment −→ Entailment
Sentiment Analysis Neutral −→ Contradiction

Contradiction −→ Contradiction
General Entailment −→ Entailment

Sentiment Analysis Neutral −→ Entailment
Contradiction −→ Contradiction

TABLE 3.2

For topic recognition and Aspect-based Sentiment Analysis we focused only on
detecting and classifying the "Cleanliness" topic. There is no particular reason for
this choice.

In the tests we made we used only 1 ground truth. All the accuracies described
before were achived using only 1 ground truth. A unique ground truth may produce
biased and inaccurate results. So, we are currently testing a more Ground Truth inde-
pendent inference scheme that uses 5 sentences. For each task and for each sentence
in the dataset we use 5 Ground Truths to produce an output. In order to have an
unique label we implemented the following voting system: If one of the output is
Entailment then we label the sentence as Entailment, otherwise label as the majority
between Neutral and Contraddictions. Then label is mapped to one of the 2 classes
using the mapping described in Table 3.2.

3.2 Results

In Table 3.3 we summarize the result that were shown in a scattered way in Chapter
2 and the results on the Italian datasets.



28 Chapter 3. Results

Encoder Comparing Dataset Validation RTE-3 val ABE_ABSITA
algorithm accuracy accuracy val accuracy

SBERT dot product SNLI 57.87A% – –
TFH dot product SNLI 50.13A% – –
TFH dot product SNLI 65.39A% – –

with fine-tuning
SBERT SVM SNLI (N = 30K) 84.13A% (in progress) (in progress)
SBERT Nystroem (m=3000) SNLI (N=34K) + 72.66A% 63.38% 67.00C1%

+ Linear SVM MNLI (N=136K) 70.15B% 86.00C2%
76.00C3%

SBERT FC layers SNLI + MNLI 80.69A% (not doable) (not doable)
77.00B%

SBERT Convolution + FC SNLI + MNLI 78.89A% (not doable) (not doable)
75.37B%

SBERT FC layers on SNLI + MNLI 79.31A% (not doable) (not doable)
single components 75.02B%

SBERT Generalization SNLI + MNLI 79.55A% (not doable) (not doable)
of dot-product 75.74B%

TABLE 3.3: Summary of the main models described in this thesis. All
the models are the ones described in Chapter 2. A: SNLI validation,
B: MNLI matched, C1: Topic recognition task, C2: Aspect-based Senti-

ment Analysis task, C3: General Sentiment Analysis task.

In Table 3.3 a validation accuracy is calculated on the MNLI matched validation
dataset.

It may seem that the best performing model is the one that reaches an accuracy
of 84.13% on the SNLI validation accuracy. But, as we already discussed in Sec. 2.3.4
this model was neither trained nor validated on the MNLI dataset. For this reason it
is a SNLI specific model that is not general on the NLI task. The most general mul-
tilingual model we developed is the one that uses the Nystroem approximation and
the Linear SVM. With that model we calculate the test accuracies. These accuracies
are the one we expect to have on real-world data. We obtain an accuracy of 72.30%
on SNLI test set and 70.52% on MNLI mismatched.

On the RTE-3 dataset we achieved an accuracy of 63.38%. This is a ∼ 7% drop
from the MNLI results. Since RTE-3 is almost equivalent to a NLI task in italian, we
attribute this 7% gap to a problem in the multilingualism of the Encoder.

On ABE_ABSITA we obtained different results. For the Topic recognition tasks
and the General Sentiment Analysis task we obtained, with the best multilingual
model, respectively 67% and 76%. The score on topic recognition may appear poor
but still is acceptable fpr industrial purposes since accuracy may be practically in-
creased by adding ground truths as described in Sec. 3.1.2. The 86% accuracy for
the Aspect-based sentiment analysis shows that more specific queries leads to more
accurate results.



29

Chapter 4

Conclusions and perspectives

4.1 Conclusions

In this work we built several models showing that it is possible to obtain high accura-
cies (over 84% on the SNLI dataset) on the NLI task with an sentence-Encoder-based
architecture folowed by a comparing algorithm. We showed that, even if the train
dataset for the SVM is in English, it is possible to generalize it to other languages,
such as italian, as long as the Encoder is multilingual.

We also showed that various NLP problems (e.g. the tasks derived from the
ABE_ABSITA dataset) may be mapped mapped into a NLI task. After this map we
showed how we could perform sentiment analysis on a specific subtopic ("cleanli-
ness"), obtaining an accuracy of 86%. We also obtained acceptable accuracies (67%
and 76%) on other tasks (respectively, Topic Recognition and General Sentiment
Analysis). In this way, we empirically proved the generality of the NLI task. We
stress that all these results were obtained without retraining the model on the specific
task. This allows us to make many explorative analysis when lacking task-specific
datasets. Moreover, we may avoid the time and financial costs of a task-specific
training.

We showed that, with the same comparing algorithm (dot product), the SBERT
encoder gives more accurate results than the TFH one. We showed how both models
can be improved with a fine-tuning on the comparing algorithm. However, this pro-
cess makes the Encoder monolingual and should be limited to the target language or
coupled with knowledge distillation [26] for task translation to the target language.

We showed how the best accuracies were achieved by pre-processing the inputs
of the comparing algorithm in a geometric-informed way (keeping a dot-product-
based input and exploiting the asymmetries of the NLI task): Instead of using the
encoded sentences ( #»s1 and #»s2), we showed the validity of pre-processing them by
calculating their element-wise product ( #»p ) and their difference (

#»

d ).

Using different end-to-end Deep Learning models we then obtained the most ac-
curate algorithm on the NLI task (both the SNLI and MNLI accuracies raised of over
6%). Furthermore, comparing the different Deep Learning comparing algorithms we
confirmed that the informed pre-processing we made (transforming the encodings #»s1

and #»s2 into the element-wise and difference vectors #»p and
#»

d ) to the encodings were
solid. Indeed, when we let a simple network decide, that pre-processing resulted in
worse accuracy (Sec. 2.3.5 - Fully Connected layers on single vector components).



30 Chapter 4. Conclusions and perspectives

We also showed that after the pre-processing it is useful to make different com-
ponents of the input interact without any symmetry exploitation. This fact reflects
the asymmetry of the encodings: different entries may encode different information
that needs to be processed in different ways.

4.2 Perspectives

Up to now the best model working for Italian is the one using a Support Vector
Machine (line 5 of Table 3.3). In order to build a better model for Italian we can
follow 2 paths.

Use knowledge distillation on the best end-to-end Deep Learning model

When we fine-tunined all the Deep Learning end-to-end models we transformed the
multilingual Encoder into a monolingual one, as both SNLI and MNLI are English
datasets.

We have already seen and studied proper techniques to transfer learning knowl-
edge from Monolingual Encoders [26] and how to properly tune some hyperparam-
eters. For example, the authors of [33] described how to use a Kullback–Leibler
divergence loss function for high performances in knowledge distillation.

We are now developing a model for the Italian language with these techniques.
Then, these models should be tested on the public Italian datasets described before.

Use a better end-to-end model

We have seen that the best models so far on the SNLI and MNLI datasets are the
end-to-end Deep Learning ones. We have tried 4 comparing algorithms but some
improvements may be added.

The simplest improvements are those that change the hyperparameters of the ex-
isting network. For example it would be interesting studying what different learning
rates produce, different parameters in the optimizer, and so on. Another interesting
perspective is to use a different Encoder. We tried the SBERT encoder and the TFH
one, but many more are present and, as more time passes, better models are avail-
able. In order to achieve better results more modern architecture should be consid-
ered.



31

List of acronyms

ABSITA Aspect-based Sentiment Analysis for Italian
ABSA Aspect-based Sentiment Analysis
AI Artificial Intelligence
ATE Aspect Term Extraction
BERT Bidirectional Encoder Representations from Transformers
CNN Convolutional Neural Network
DL Deep Learning
FC Fully Connected
LSTM Long Short Term Memory
MNLI Multi-genre Natural Languange Inference
NN Neural Network
NLI Natural Languange Inference
NLP Natural Languange Processing
RNN Recurrent Neural Network
RTE Recognizing Textual Entailment
SBERT Sentence-BERT
SNLI Stanford Natural Languange Inference
STS Semantic Textual Similarity
SVM Support Vector Machines
TFH TensorFlow Hub





33

Bibliography

[1] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural infor-
mation processing systems 30 (2017).

[2] Jacob Devlin et al. “Bert: Pre-training of deep bidirectional transformers for
language understanding”. In: arXiv preprint arXiv:1810.04805 (2018).

[3] Nils Reimers and Iryna Gurevych. “Sentence-bert: Sentence embeddings using
siamese bert-networks”. In: arXiv preprint arXiv:1908.10084 (2019).

[4] Samuel R Bowman et al. “A large annotated corpus for learning natural lan-
guage inference”. In: arXiv preprint arXiv:1508.05326 (2015).

[5] Pierpaolo Basile et al. “Overview of the EVALITA 2018 Aspect-based Senti-
ment Analysis task (ABSITA)”. In: EVALITA Evaluation of NLP and Speech Tools
for Italian. CEUR. 2018, pp. 1–10.

[6] Daniel Cer et al. “Semeval-2017 task 1: Semantic textual similarity-multilingual
and cross-lingual focused evaluation”. In: arXiv preprint arXiv:1708.00055 (2017).

[7] Mandar Joshi et al. “Triviaqa: A large scale distantly supervised challenge
dataset for reading comprehension”. In: arXiv preprint arXiv:1705.03551 (2017).

[8] Adina Williams, Nikita Nangia, and Samuel R Bowman. “A broad-coverage
challenge corpus for sentence understanding through inference”. In: arXiv preprint
arXiv:1704.05426 (2017).

[9] Bin Ding, Huimin Qian, and Jun Zhou. “Activation functions and their char-
acteristics in deep neural networks”. In: 2018 Chinese control and decision con-
ference (CCDC). IEEE. 2018, pp. 1836–1841.

[10] Katarzyna Janocha and Wojciech Marian Czarnecki. “On loss functions for
deep neural networks in classification”. In: arXiv preprint arXiv:1702.05659 (2017).

[11] Pankaj Mehta et al. “A high-bias, low-variance introduction to machine learn-
ing for physicists”. In: Physics reports 810 (2019), pp. 1–124.

[12] Robert DiPietro and Gregory D Hager. “Deep learning: RNNs and LSTM”. In:
Handbook of medical image computing and computer assisted intervention. Elsevier,
2020, pp. 503–519.

[13] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. In:
Neural computation 9.8 (1997), pp. 1735–1780.

[14] Denny Britz et al. “Massive exploration of neural machine translation archi-
tectures”. In: arXiv preprint arXiv:1703.03906 (2017).

[15] Yonghui Wu et al. “Google’s neural machine translation system: Bridging the
gap between human and machine translation”. In: arXiv preprint arXiv:1609.08144
(2016).

[16] Philip Gage. “A new algorithm for data compression”. In: C Users Journal 12.2
(1994), pp. 23–38.



34 Bibliography

[17] Taku Kudo. “Subword regularization: Improving neural network translation
models with multiple subword candidates”. In: arXiv preprint arXiv:1804.10959
(2018).

[18] Taku Kudo and John Richardson. “Sentencepiece: A simple and language in-
dependent subword tokenizer and detokenizer for neural text processing”. In:
arXiv preprint arXiv:1808.06226 (2018).

[19] Kaj Bostrom and Greg Durrett. “Byte pair encoding is suboptimal for language
model pretraining”. In: arXiv preprint arXiv:2004.03720 (2020).

[20] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 770–778.

[21] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normaliza-
tion”. In: arXiv preprint arXiv:1607.06450 (2016).

[22] Mor Geva et al. “Transformer feed-forward layers are key-value memories”.
In: arXiv preprint arXiv:2012.14913 (2020).

[23] Jane Bromley et al. “Signature verification using a" siamese" time delay neural
network”. In: Advances in neural information processing systems 6 (1993).

[24] Alex Wang et al. “GLUE: A multi-task benchmark and analysis platform for
natural language understanding”. In: arXiv preprint arXiv:1804.07461 (2018).

[25] Aakanksha Chowdhery et al. “Palm: Scaling language modeling with path-
ways”. In: arXiv preprint arXiv:2204.02311 (2022).

[26] Nils Reimers and Iryna Gurevych. “Making monolingual sentence embed-
dings multilingual using knowledge distillation”. In: arXiv preprint arXiv:2004.09813
(2020).

[27] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980 (2014).

[28] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine
learning 20.3 (1995), pp. 273–297.

[29] Stephen I Gallant et al. “Perceptron-based learning algorithms”. In: IEEE Trans-
actions on neural networks 1.2 (1990), pp. 179–191.

[30] Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. Towards Understand-
ing Linear Word Analogies. 2018. DOI: 10 . 48550 / ARXIV . 1810 . 04882. URL:
https://arxiv.org/abs/1810.04882.

[31] Christopher Williams and Matthias Seeger. “Using the Nyström method to
speed up kernel machines”. In: Advances in neural information processing systems
13 (2000).

[32] Stephen M Omohundro. Five balltree construction algorithms. International Com-
puter Science Institute Berkeley, 1989.

[33] Taehyeon Kim et al. “Comparing kullback-leibler divergence and mean squared
error loss in knowledge distillation”. In: arXiv preprint arXiv:2105.08919 (2021).

https://doi.org/10.48550/ARXIV.1810.04882
https://arxiv.org/abs/1810.04882

	Abstract
	Introduction to Natural Language Processing
	Natural Language Processing 
	Introduction to Deep Learning 
	The Neuron
	The Loss function and the backpropagation algorithm


	RNN and LSTM
	Transformers
	The Transformer 
	Input Embedding
	Positional Encoding
	Multi-Head attention 
	Add and normalize
	Feed Forward
	Total Encoder

	BERT
	Transformer-based sentence Encoders

	Research goal

	Model development
	Model structure
	Encoders
	Comparing algorithms
	Dot product
	Dot product with fine-tuning
	Support Vector Machine
	SVM improvements strategies: Nystroem approximation and MNLI dataset
	Better SNLI and MNLI data sampling

	Deep Learning end-to-end models
	Fully Connected layers 
	Convolution layers + Fully Connected
	Fully Connected layers on single vector components 
	Learnable generalization of the dot product



	Results
	Test datasets
	English datasets: SNLI & MNLI
	SNLI
	MNLI

	Italian datasets: RTE-3 & ABE_ABSITA 
	RTE-3
	ABE_ABSITA 


	Results

	Conclusions and perspectives
	Conclusions
	Perspectives
	Use knowledge distillation on the best end-to-end Deep Learning model
	Use a better end-to-end model



	List of acronyms
	Bibliography

