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Summary

In recent years, several criteria have been identified for the selection

of hepatocellular cancer (HCC) patients waiting for liver transplanta-

tion (LT). These criteria, like the Milan Criteria, are also the foundation of

models for predicting the risk of relapse after transplantation. However,

these models are severely limited in considering many variables and

their non-linear interactions. This study aims to identify different deep

learning models developed to improve the prediction performance of

post-transplant HCC recurrence. The starting point is TRAIN-AI, based

on the DeepSurv neural network: a Cox proportional hazards model. This

model was developed starting from an International Cohort which will

also be the main dataset of this study. Furthermore new deep learning

models based on hazard rate parametrization and probability mass func-

tion (PMF) parametrization are proposed and compared, performing

an appropriate hyperparameter tuning for each network. Finally a very

different approach based on the DeepHit neural network is presented:

this model takes into account the Competitive Risks of death.
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Disease
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CHAPTER 1

Introduction

1.1 Document guide

This thesis work is based on international research (named TRAIN-AI),

in which the candidate has participated in recent years collaborating

with the Organ Transplantation Unit of Sapienza University of Rome. The

main purpose of this paper is to document the results achieved by using

deep learning for the proposed task. It also shows possible variations that

could potentially be improved. The analyses and models presented were

developed using the Pycox library. In the first part there is a description

of the disease and transplantation, the state of the art regarding research

with similar aims and an overview of the dataset used. This is with more

focus on the features chosen for the models. In the second part, all the

types of networks and models used are presented with a theoretical

explanation and a compilation of the most relevant results obtained. In

the third part, the results of the networks are shown and compared with

a reference to classical algorithms usually used for the task.

2
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CHAPTER 2

HCC and LT

2.1 Epidemiology, aetiology, diagnosis

According to the World Health Organization in 2020, liver cancer is

the sixth most common malignancy, accounting for 4.7% of all new

cancer patients and the third leading cause of cancer-related deaths,

accounting for 8.3% of all cancer deaths worldwide. HCC is responsible

for 75–85% of all cases of primary liver cancer [1]. More than 72% of

cases are estimated to occur in Asia (more than 50% in China), 10% in

Europe, 7.8% in Africa, 5.1% in North America, 4.6% in Latin America,

and 0.5% in Oceania [2].

Moreover, about 90% of HCCs have an underlying cause. The common

aetiologies include chronic viral hepatitis B and C, alcoholic liver disease,

nonalcoholic (metabolic associated) fatty liver disease, and afatoxin ex-

posure. The incidence and aetiology of HCC vary significantly between

countries and geographical regions [3]. Cirrhosis is an important risk fac-

tor for HCC, and approximately one-third of cirrhotic patients will develop

3



HCC and LT

Figure 2.1: Worldwide age-standardized liver cancer incidence rates,
2020. Data source: GLOBOCAN 2020. Graph production: IARC

it in their lifetime [4][5]. Up to 80% of HCCs develop in cirrhotic patients

[6]. The gold standard for diagnosing HCC is histopathological diagnosis,

but liver biopsy is not routinely performed in every HCC patient due to

risks of bleeding (3-4%) and needle track tumour seeding (2,7%) [4][5].

Most HCC patients are diagnosed using non-invasive radiological inves-

tigations. A liver biopsy is only recommended for patients with a liver

mass with radiological features not typical of HCC, particularly in non-

cirrhotic patients. The histopathological diagnosis and classification of

HCC are based on the World Health Organization (WHO) classification

and the International Consensus Group for Hepatocellular Neoplasia

[1][7]. HCC has been shown not to be a simple homogeneous tumour

and exhibits different layers of heterogeneity at the levels of aetiologies,

4
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HCC and LT

clinical manifestations, macroscopic (radiological) appearance, histologi-

cal and cytological features, genetic alterations, and clinical outcomes

[8]. It is estimated that up to 30% of HCCs show distinctive morpholog-

ical appearances and molecular aberrations. These have been further

classified into several HCC subtypes or variants according to the WHO

classification. Most cases are usually straightforward diagnoses for most

general pathologists on H&E-stained sections, but diagnostic challenges

may sometimes arise in cases of very well-differentiated hepatocellular

lesions or small hepatic nodules (<2 cm).

Figure 2.2: Hepatocellular carcinoma. A fairly circumscribed cream-tan,
solid mass with haemorrhage in a cirrhotic liver background

5



HCC and LT

2.2 LT for HCC

LT is considered the most effective treatment option since it simulta-

neously removes the tumor and the underlying liver disease. LT was

viewed as a "last chance" treatment in desperate cases of nonresectable

tumors during the 80s. In 1996, the introduction of the Milan Criteria

(MC) (one lesion smaller than 5 cm or up to three lesions smaller than 3

cm without extrahepatic manifestations or vascular invasion)[9] and the

improvement of locoregional therapies (LRT) contributed to real progress

in transplant oncology [10]. In fact, recent evidence indicates that appro-

priately applied LRT may increase the chance of cure, especially in cases

of initially advanced tumors, outside the MC. Nowadays, MC and pre-LT

LRT are widely used, resulting in excellent 5-year disease-free survival

rates of 85%. There is no doubt that the MC is solid, but several groups

have now extended these too restrictive MC, which denied LT access to

many patients unjustifiably. Several Western and Eastern centers have

proposed a prudent increase in the selection criteria, the most significant

ones being San Francisco, Kyoto, Seoul, and Milan with the Metroticket

concept. Resection of the liver and liver transplantation play different

roles: both approaches should, however, be seen as complementary

rather than competitive [11]. In cases of resectable tumors in livers with

preserved function, partial hepatectomy should be used. On the other

hand, liver transplantation should be used in cases of unresectable HCC

or in the presence of HCC in advanced liver disease. However the high re-

currence rate after hepatectomy makes LT a viable salvage therapy [12].

6



HCC and LT

While tumor recurrence can reduce the usefulness of salvage LT, one

of the advantages of the "resection first strategy" is the ability to obtain

a precise pathological examination of the resected specimen, allowing

the identification of risk factors for recurrence, such as microvascular

invasion and satellite nodules [13].
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CHAPTER 3

Related Works

3.1 Metroticket concept

In the previous chapters, we mentioned that several other prognostic

criteria have been developed since the introduction of MC for prognostic

purposes. Among the most successful is the Metroticket calculator [14],

which was created by Mazzaferro and colleagues (who also developed

the Milan criteria) in order to characterise more accurately the survival

of patients who do not meet the Milan criteria. The results of this study

have been validated in other populations, such as Chinese patients [15]

and patients undergoing hepatitis B transplantation [16]. The purpose

of the model was to provide a mathematical function that could predict

survival after transplantation based on three covariates: size, number,

and microvascular invasion. Conclusions of this study were used as a

baseline for subsequent studies. From the perspective of this thesis work,

the idea that we are following is to go beyond the prognostic model as

a deterministic mathematical function by taking advantage of recent

8



Related Works

developments in the field of artificial intelligence.

Figure 3.1: Features required by Metroticket Calculator

3.2 Machine learning and ANN

In many cases, the previously stated criteria have been combined with

deterministic regression models, for example, Cox regression is widely

used in survival analysis. There has been a growing number of research

groups proposing to overcome the limitations presented by these ap-

proaches by using the most representative machine learning algorithms,

such as Random Forest [17] or Support Vector Machine [18][19], which

are suitable for classification tasks (typically the 5-year recurrence of HCC

post-surgery).

Furthermore, several studies have already been conducted in the past

decades that have introduced the use of neural networks for different

9
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Related Works

tasks involving HCC. These include diagnosis [20], tumour progression

grade [21], post resection mortality [22][23][24], and post transplant

recurrence [25]. There is no doubt that these studies were pivotal in

developing today’s methodologies, but they were conducted on cohorts

that were very limited in number, and often highly localised (it is indica-

tive that the networks presented in such studies have one hidden layer

with few perceptrons).

Figure 3.2: One of the first ANNs ever designed for the diagnosis of HCC
[20]. It consisted of nine neurons of the input layer, 14 neurons of the
middle layer and one neuron of the output.

This thesis work is the natural development of the research conducted by

the candidate, which aims to develop and optimize networks capable of

10



Related Works

delivering first-order performance against the regressive task of post-LT

HCC recurrence. In addition, it is fundamentally important to highlight

that this has been implemented with the largest international dataset

currently available, with the goal of solving the task in a global and

generalized manner.

11



CHAPTER 4

Dataset

4.1 International Study Groups

During the course of this thesis work, the dataset that was used was

the same as that used and updated by the candidate for his initial re-

search. Several liver transplantation centers from the West and the East

contributed to the development of this dataset through an extensive in-

ternational effort. The collaborating centres comprised two international

study groups, the EURopean HEpatocellular CAncer Liver Transplan-

tation (EURHECALT) Study Group and the West-East Liver Transplant

Study Group. A special point to highlight is that this dataset is particularly

complete and integral in all its components: each record contains the

data of a specific patient regarding his or her last follow-up. Consider

the fact that the post-LT follow-up period for some patients can last up

to 23 years in order to better highlight the importance of this collection.

12
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RESEARCH CENTER LOCATION PATIENTS

Queen Mary Hospital,

University of Hong Kong

Hong Kong

SAR of China
260

Medanta-The Medicity Gurgaon, India 269

Kyushu University Fukuoka, Japan 185

Graduate School of Medicine Kyoto, Japan 241

Kaohsiung Chang Gung

Memorial Hospital,

Chang Gung University

College of Medicine

Kaohsiung, Taiwan 185

Medical University of Innsbruck Innsbruck, Austria 228

Université catholique de Louvain Brussels, Belgium 309

Merkur University of Zagreb Zagreb, Croatia 115

Universitätsmedizin Mainz Mainz, Germany 173

Polytechnic University of Marche Ancona, Italy 95

University of Bologna Bologna, Italy 472

University of Padua Padua, Italy 437

Catholic University,

Fondazione Policlinico

Universitario A.Gemelli IRCCS

Rome, Italy 80

San Camillo Hospital Rome, Italy 142

Sapienza University of Rome Rome, Italy 205

University of Rome Tor Vergata Rome, Italy 121

Royal Free Hospital London, UK 153

Columbia University New York, USA 356

Table 4.1: Dataset grouped by centers of international study groups

13
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4.2 Hold-out strategy

The experiments in this paper were conducted using a classic hold-out

strategy, which is very often used in medical research: the 4026 records

were divided into three subsets that were used for training (2415), vali-

dation (805) and testing (806) of the models, respectively.

Figure 4.1: Split of dataset: 60% Training, 20% Validation, 20% Testing

By conducting a large number of experiments and past studies prior to

this research [26], it was also possible to select features for the optimisa-

tion of the models, some of which were used classically for the main task,

while others were introduced in an original way. The following chapter

provides a detailed analysis of these.

14



CHAPTER 5

Features and labels

5.1 Waiting time duration

The waiting time refers to the period of time before the transplant is

performed. The debate over the impact of waiting time and acceptable

tumour burden on the outcomes of LT is still ongoing. An extensive multi-

center study published in 2017 provides evidence of an association

between very short (<6 months) or very long (>18 months) waiting times

and an increased risk for HCC recurrence post-LT. A "sweet spot" of 6-

18 months is therefore proposed to minimise HCC recurrence [27]. In

general, experiments conducted as part of research prior to this thesis

have demonstrated that the presence of this feature has an impact,

albeit a limited one, on the final results.

15
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Figure 5.1: Dataset distribution: Waiting time duration in months (blue
train, orange val)

5.2 Last DIAM MAX

The Last DIAM MAX is the largest diameter of the lesion that is available.

There is no doubt that this is one of the most significant features for

the purpose of the task. In fact, this kind of dimensional measurement

is considered to be the basis for most of the criteria developed since

the MC [9]. In recent times, a possible multidimensional extension of

this measurement by introducing volume has been discussed [28]: this

possible future implication, however, will require substantial work on

aligning the datasets.

16
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Figure 5.2: Dataset distribution: Last DIAM MAX in cm (threshold 10cm
| blue train, orange val)

5.3 Last number NOD

The Last number NOD is the number of the nodules that is available. As

mentioned earlier, this is one of the most important features, used in

the MC [9] and the subsequent criteria.

5.4 Last log10 AFP

Last AFP stands for last available alpha-fetoprotein. It is a protein that is

produced in the liver of a developing baby. The levels of AFP are usually

17
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Figure 5.3: Dataset distribution: Last number NOD (threshold 10 | blue
train, orange val

high when a baby is born, but they fall to very low levels by the age of

one. (Healthy adults should have very low levels of this protein). AFP in

serum is currently the most effective diagnostic marker for the detection

of HCC. In patients with chronic liver disease, a sustained increase in the

AFP serum level has been shown to be one of the risk factors for HCC, and

this has been used to identify high-risk subgroups of chronic liver disease

[29]. However, the exact threshold for AFP as a diagnostic criterion for

HCC is controversial. [30] Furthermore, AFP may be a crucial predictor

of HCC recurrence after liver transplantation [31]. The experiments in

this thesis used log10 values of AFP.

18
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Figure 5.4: Dataset distribution: Last log10 AFP in ng/mL (blue train,
orange val)

5.5 Last available MELD

The Model for End-Stage Liver Disease (MELD) score is used to estimate

a patient’s chances of surviving their disease over the next three months

[32]. This score ranges from 6 to 40 and is based on results from several

lab tests. When an organ becomes available, the higher the number,

the greater the likelihood of receiving a liver from a deceased donor. The

main indicators for calculating the MEDL are as follows: INR (internal nor-

malised ratio), Creatinine, Bilirubin, Serum sodium. This score is widely

accepted as a tool to prioritise organ allocation for liver transplantation.

19
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However, it is a metric for how sick a patient is: studies [33] and experi-

ments conducted as part of research prior to this thesis have shown that

this feature can also be useful in predicting recurrence after LT.

Figure 5.5: Dataset distribution: Last available MELD score (blue train,
orange val)

5.6 Radiological response

The Radiological response is a feature that expresses the patient’s re-

sponse to treatment. LRT can play a key role in the management of

hepatocellular carcinoma (HCC) as we have discussed above [34]. It has

been categorically expressed as the widely known mRECIST indicator

[35]. In this thesis work, the classes used are:

20
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• Complete Response (CR)

• Partial Response (PR)

• Progressive Disease (PD)

• Stable Disease (SD) / no LRT

Figure 5.6: Dataset distribution: Radiological response (blue train, or-
ange val)

5.7 Living donor LT

Living donor LT (LDLT) was initially performed almost exclusively on in-

fants and children. In response to a critical shortage of deceased donors

21
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and an increase in waiting list mortality, adult LDLT programs were in-

troduced several years later. The procedure is currently accepted as a

therapeutic option for patients with end-stage liver disease to compen-

sate for the shortage of organs from deceased donors [36]. Recent trends

in Asian countries have shown an increased use of adult-to-adult LDLT

to overcome the persistent shortage of donor organs [37] [38]. Some

controversies remain in the use of LDLT, including the safety of living

donation and expanding the current Milan criteria. It is generally agreed

that transplant criteria should be expanded beyond the Milan criteria

since the Milan criteria misses a number of patients who may benefit

from LDLT [39]. This particular feature was included in this thesis since

it is considered to be discriminatory for LTs and to be of fundamental

importance geographically.

Figure 5.7: Dataset distribution: Living donor LT (light living, dark de-
ceased | blue train, orange val)
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5.8 Transplant center volume

According to several studies, the volume of transplants performed by

centers is a variable of interest [40] [41]. In fact, hospital volume is as-

sociated with better overall survival, possibly due to higher treatment

utilisation in high HCC volume hospitals. In this thesis work, it was de-

cided to investigate the impact of this covariate on recurrence, so all

networks were trained and optimised with and without this feature. In

this dataset, it was recorded as binary: the threshold used is 70 LT/year,

which is the standard in the literature.

Figure 5.8: Dataset distribution: Transplant center volume in LT/year
(light low, dark high | blue train, orange val)
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5.9 Labels

Typically, survival analyses include two labels: the event taken into ac-

count (HCC recurrence) and the time elapsed from the LT to the event

(disease free), possibly censored for death.

Figure 5.9: Dataset distribution: HCC recurrence (light recurrence, dark
not recurrence | blue train, orange val)

In order to examine the competitive risks of death that will be investi-

gated in the last part of this thesis, the first label will be ternary and not

binary:

• Alive

• Death for HCC

• Death for other causes
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Figure 5.10: Dataset distribution: Disease free in months (blue train,
orange val)
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CHAPTER 6

Metric

6.1 C-index Antolini

There is a crucial aspect to developing models that can be used for

outcome prediction, and that aspect is the availability of appropriate

measures of predictive accuracy that can be applied to a wide range of

models. Harrell’s C discrimination index is one of the most common in-

dices: an extension of the area under the ROC curve to censored survival

data, which is straightforward to interpret. The original definition of C

would require the prediction of individual failure times for a model with

covariates with time-dependent effects and/or time-dependent features,

which is not generally addressed in most clinical applications.

The metric used in the previous research and for this thesis work is a

time-dependent discrimination index named C-Antolini [42], in which

the whole predicted survival function is used as outcome prediction, and

the ability to discriminate between subjects having different outcomes

is summarized over time. This index is based on a novel definition of
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concordance: a subject who develops the event should have a lower

predicted probability of surviving beyond his/her survival time than any

other subject who survives longer. It compares the predicted survival

function of a subject who developed the event with that of subjects who

developed the event before his/her survival time, and that of subjects

who developed the event, or were censored, after his/her survival time. It

is important to note that censored subjects are included in comparisons

with subjects who developed the event before their observed times. In

addition, the Kaplan-Meier (KM) estimator is also used to treat these

subjects in evaluation step. KM [43] is the most widely used survival

model in the statistical and medical literature, which has the advantage

of learning very flexible survival curves, but the disadvantage of not

taking into account patients’ covariates. Therefore, it is useful at the

population level, but not at the individual level, requiring more complex

techniques such as regressors and deep learning, as shown in this thesis.
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CHAPTER 7

DeepSurv

7.1 Background

Prior research (TRAIN-AI) has been based exclusively on the DeepSurv

model [44]: a deep neural network with Cox proportional hazards and a

state-of-the-art survival method that takes into account the interaction

between a patient’s features and treatment efficacy to provide person-

alised treatment recommendations.

The term survival refers to a specific event (such as the recurrence of

illness or death). The survival function and the hazard function are

the two fundamental functions of survival analysis. Survival function

S(t) = Pr(T > t) indicates the probability that an individual has "survived"

beyond time t. The hazard function λ(t) is defined as:

λ(t) = lim
δ→0

Pr(t ≤ T < t+ δ|T ≥ t)
δ

(7.1)

The hazard function is the probability that an individual will not survive
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an additional infinitesimal amount of time δ, assuming they have already

survived to time t. Thus, a greater hazard signifies a greater risk.

In the model, the hazard function is composed of two non-negative

functions: a baseline hazard function, λ0(t), and a risk score, r(x) = eh(x),

defined as the effect of an individual’s observed covariates on the baseline

hazard function. We denote h(x) as the log-risk function. The hazard

function is assumed to have the following form:

λ(t|x) = λ0(t) · eh(x) (7.2)

In the linear case, the proportional hazards model (CPH) is a proportional

hazards model that estimates the log-risk function, by linear function

âhβ(x) = βTx. In the non-linear case of neural networks [45], the linear

combination of features âhβ(x) is replaced with the output of the network

âhθ(x). In fact, DeepSurv is a deep feed-forward neural network that pre-

dicts a patient’s hazard rate based on the weights of the network θ. The

input to the network is a patient’s baseline data x. The hidden layers of

the network consist of a fully-connected layer of nodes, followed by a

dropout layer. The output of the network âhθ(x) is a single node with a

linear activation which estimates the log-risk function in the Cox model.

The network is trained by setting the objective function to be the average

negative log partial likelihood with regularization:

L(θ) = − 1
NE=1

Ø
i:Ei=1

3âhθ(xi) − log
Ø

j∈ℜ(Ti)
e
âhθ(xj)

4
+ λ · ∥θ∥2

2 (7.3)

where NE=1 is the number of patients with an observable event and
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λ is the l2 regularization parameter. Gradient descent optimization is

then used to find the weights of the network that minimize the previous

equation.

Modern deep learning techniques are used to optimize the training of

the network. These include standardizing the input, Rectified Linear

Units (ReLU) as the activation function, Adaptive Moment Estimation

(Adam) for gradient descent, and learning rate scheduling.

Figure 7.1: DeepSurv architecture
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7.2 Method

In this configuration, the number and density of the layers is primarily

determined by the need to avoid problems of too much simplicity in

predicting Val and Test (which would result in a loss on the Val less than

that on the Train, which is exactly what should be avoided). Nevertheless,

an appropriate number of epochs was also chosen (as well as the epoch

at which the LR was rescaled) in order to avoid overfitting while still

achieving the highest possible metrics.
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Figure 7.2: DeepSurv1 Figure 7.3: DeepSurv2

Figure 7.4: DeepSurv3 (+HV) Figure 7.5: DeepSurv4 (+HV)

DeepSurv1 DeepSurv2 DeepSurv3 DeepSurv4

LAYERS [512]*4 [512]*5
[512]*4

[256]

[512]*4
[256]
[128]

DROPOUT 0.1 0.1 0.1 0.1

LR ep0 : 5e-3
ep0 : 6e-3
ep5 : 1e-4

ep0 : 8e-3
ep3 : 1e-4

ep0 : 9e-3
ep3 : 1e-4

C train 0.77 0.78 0.78 0.77
C val 0.75 0.74 0.75 0.76
C test 0.75 0.74 0.75 0.76

Table 7.1: DeepSurv models
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CHAPTER 8

PC Hazard

8.1 Background

The approach proposed in this chapter is structurally and conceptually

similar to the previous one, but with one significant difference: it is a

continuous-time approach that assumes that the continuous-time haz-

ard rate is piecewise constant [46]. The temporal discretisation methods

used in this and subsequent sections do not change the nature of the

task since the dataset used has monthly granularity for temporal features

and labels.

First of all consider a partition of the time scale τ and k(t) denoting

interval index of time t such that t ∈ (τk(t)−1, τk(t)]. Taking the assumption

that the hazard is constant within each interval, we can express the

hazard as a step function:

h(t) = ηk(t) (8.1)
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for a set of non-negative constants {η1, ..., ηm}. Therefore, the loss used

for this network is the mean negative log-likelihood:

L = − 1
n

nØ
i=1

A
di log åηk(t)(xi) − åηk(ti)(xi)ρ(ti) −

k(ti)−1Ø
j=1

åηj(xi)
B

(8.2)

with di ∈ {0,1}, åηj = ηj∆τk, ρ(t) = t−τk(t)−1
∆τk(t)

.

To follow the complete development of the formulae, see [46].

Figure 8.1: PC Hazard conceptual representation

8.2 Method

The most promising results from the numerous trials conducted are

presented below. In comparison to its predecessor, the network does not

improve in terms of performance, but it allows for comparable metrics

with a ’lighter’ structure in terms of layers. The loss is generally more

stable.

36



PC Hazard

Figure 8.2: PCHazard1 Figure 8.3: PCHazard2

Figure 8.4: PCHazard3 (+HV) Figure 8.5: PCHazard4 (+HV)

PCHazard1 PCHazard2 PCHazard3 PCHazard4
LAYERS [64]*2 [128]*7 [64]*4 [128]*6
DROPOUT 0.1 0.2 0.1 0.1

LR
ep0 : 1e-1
ep5 : 1e-3

ep0 : 4e-2
ep5 : 5e-3

ep0 : 1e-2 ep0 : 4e-2

C train 0.72 0.73 0.74 0.75
C val 0.72 0.72 0.74 0.75
C test 0.72 0.73 0.73 0.75

Table 8.1: PCHazard models
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CHAPTER 9

Neural-MTLR

9.1 Background

The likelihood for discrete-time survival data may be parameterised by

the discrete hazard rate but also by a probability mass function (PMF).

This type of approach requires fewer assumptions than the previous

ones and has been developed in several ways. This approach is used in

this chapter through the Multi-task Logistic Regression (MTLR) method

applied to a neural network.

The original MTLR [47] is a generalization of the binomial log-likelihood

to jointly model the sequence of binary labels. In fact Y = (y1, ..., ym) is a

sequence with zeros for every time τj up to the event time, followed by

one’s, e.g., (0, ..., 0, 1, ...1).

Pr(Y = (y1, ..., ym)|x) = exp[qm
k=1 ykψk(x)]

1 +qm
k=1 exp[qm

l=k ψl(x)] (9.1)

But one problem remains: the model is still linear at its core, with ψk(x) =
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xTβk , so it cannot properly model nonlinear dependencies in the dataset.

Therefore, this model has been extended to the N-MTLR [48]: in par-

ticular the parameters of ψk(x) are found by minimizing the negative

log-likelihood:

L = − 1
n

nØ
i=1

(di log[f(ti|xi)] + (1 − di) log[S(ti|xi)] (9.2)

with f(τj) = Pr(T = τj) as PMF, S(τj) = q
k>j f(τj) as survival function.

Figure 9.1: Neural-MTLR architecture
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9.2 Method

The minimum granularity on the timescale in the dataset (monthly)

was used for necessary discretization, and it is notable that the network

manages to achieve comparable performance to the previous ones, but

with a "heavier and deeper" structure at the layer level that requires more

training epochs. Nevertheless, it may be a viable alternative if a more

pronounced discretisation of the time span is required, e.g. with annual

granularity (although this obviously worsens the metrics because the

information content is synthesised).
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Figure 9.2: N-MTLR1 Figure 9.3: N-MTLR2

Figure 9.4: N-MTLR3 (+HV) Figure 9.5: N-MTLR4 (+HV)

N-MTLR1 N-MTLR2 N-MTLR3 N-MTLR4
LAYERS [128]*5 [128]*5 [256]*10 [512]*6
DROPOUT 0.1 0.1 0.2 0.1

LR
ep0 : 1e-2
ep8 : 1e-4

ep0 : 8e-3
ep12 : 1e-4

ep0 : 9e-3
ep18 : 5e-4

ep0 : 1e-2

C train 0.74 0.75 0.77 0.76
C val 0.72 0.74 0.74 0.75
C test 0.73 0.73 0.74 0.75

Table 9.1: N-MTLR models
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CHAPTER 10

DeepHit - Competing Risks

10.1 Background

Researchers have increasingly focused on developing predictive tools

that can distinguish between specific risks, especially in the case of death.

A survival analysis with competing risks is a challenging problem. This is

made all the more relevant because the choice of treatment must take

into account these competing risks. Furthermore, right-censoring of

data is extremely common in the medical setting: patients are frequently

lost to follow-up (often for unknown reasons). One of the proposals in

this area is the Metroticket 2.0 [49], an evolution of the model presented

in one of the previous chapters. It is a combination of classical regression

models focusing on the different risks to be considered. This type of

task can also be handled by deep learning: in this last part of the thesis

work, a deep neural network was implemented and used that directly

learns the distribution of first hit times, hence the name DeepHit [50]. It

can be considered one of the parameterisation models of the PMF (like
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the N-MTLR in the previous chapter). Therefore, it is possible to avoid

the strong assumptions of models derived from Cox regression on the

relationship between the covariates and the parameters of this process.

This is the case in one of the most popular models for competitive risks,

Fine and Gray [51]. In this case, the goal remains to calculate Cumulative

Incidence Functions (CIF), which estimate the marginal probability for

each competing event. Marginal probability refers to the probability

of the individuals who developed the event of interest, regardless of

whether they were censored or unsuccessful for other competing events.

DeepHit uses a multi-task network architecture that consists of a shared

sub-network and a family of cause-specific sub-networks. This architec-

ture differs slightly from that of conventional multi-task networks. In

fact, it is implemented with a single softmax layer as the output layer of

DeepHit in order to ensure that the network learns the joint distribution

of K competing events not the marginal distributions of each event. A

loss function is used to train by exploiting both survival times and relative

risks. This loss function is the sum of two terms LT otal = L1 + L2.

L1 is the log-likelihood of the joint distribution of the first hitting time

and event: it drives DeepHit to learn the general representation for the

joint distribution of the first hitting time and event.

L1 = −
NØ

i=1

⊮(k(i) /= ∅) · log(y(i)
k(i),s(i))

+ ⊮(k(i) /= ∅) · log
3

1 −
KØ

k=1

âFk(s(i)|x(i)
4 (10.1)
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Each patient history is prepresented by a triple (x, s, k) where x ∈ X is a

D-dimensional vector of covariates, s ∈ T is the time at which the event

or censoring occurred, and k ∈ K is the event or censoring that occurred

at time s. Right-censoring id indicated by ∅. The output of the softmax

layer is a probability distribution y.

Figure 10.1: DeepHit architecture

L2 incorporates estimated CIFs calculated at different times (i.e. the time

at which an event actually occurs) in order to fine-tune the network to

each cause-specific estimated CIF expressed as a function âFk.
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L2 =
KØ

k=1
αk ·

Ø
i /=k

Ak,i,j · η
A âFk(s(i)|x(i)), âFk(s(i)|x(j))

B
(10.2)

Ak,i,j = ⊮(k(i) = k, s(i) < s(j)) in an indicator function of pairs (i, j) who

experience risk k at different time. The coefficients αk are chosen to trade

off ranking losses of the k-th competing event, and η(x, y) is a convex loss

function. To follow the complete development of the formulae, see [50].

Figure 10.2: Inverted CIFs of six random patients (blue HCCdeath,
orange OTHERdeath)
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10.2 Method

Below are the best results, however it is important to note that these

results should not be compared with the previous networks as a different

objective is announced: the specific risk of death from HCC instead of

recurrence risk. The model calculates the so-called CIFs for competitive

risks and then calculates the metrics using these inverted curves (CIFs

increase with risk).

Figure 10.3: DeepHit1 Figure 10.4: DeepHit2

Figure 10.5: DeepHit3 (+HV) Figure 10.6: DeepHit4 (+HV)

Another aspect to note about this network is that it is trained using the
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AdamWR cyclic optimiser with following regularisation policies:

decoupled_weight_decay = 0.01 and cycle_eta_multiplier = 0.6.

DeepHit1 DeepHit2 DeepHit3 DeepHit4
LAYERS
shared

[512]*5 [256]*7 [512]*10 [256]*7

LAYERS
individual_risk

[256]*4 [128]*3 [256]*4 [128]*3

DROPOUT 0.1 0.1 0.1 0.1

LR
ep0 : 1e-2
ep2 : 1e-4

ep0 : 1e-2
ep4 : 1e-4

ep0 : 1e-2
ep3 : 1e-4

ep0 : 1e-2
ep4 : 1e-4

C train HCC death 0.75 0.76 0.74 0.79
C train other death 0.61 0.63 0.56 0.66
C val HCC death 0.73 0.73 0.73 0.76
C val other death 0.58 0.57 0.54 0.57
C test HCC death 0.75 0.75 0.73 0.78
C test other death 0.57 0.58 0.51 0.56

Table 10.1: DeepHit models
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Results

49



CHAPTER 11

Work analysis

11.1 Comparison with classical criteria

The last part of the thesis compares the metrics obtained with the most

effective models presented above (with the exception of DeepHit, which

was developed for a different purpose) and those obtained from the

classical algorithms underlying the commonly applied regressors. A

comparison was conducted in the Test set, and it is pertinent to em-

phasize that the metrics were calculated after making a cut based on

the criteria scores according to the common practice of considering the

fifth year post-LT. To ensure stability and reliability, a 1000 repetition

bootstrap was conducted. In accordance with this procedure, the 95%

confidence intervals were calculated using the established percentile

method. The following two tables show the results for the models that

used seven features and those that also used the High Volume feature:

as can be seen here, a slight improvement in performance has been
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made. All deep learning models perform significantly better than clas-

sical algorithms (of which Metroticket is the most efficient). However,

the DeepSurv models seem to be the best, which shows that for a rela-

tively large amount of data, discretisation methods do not pay off, and

continuous-time methods based on parameterisation of the hazard rate

are preferable.

C-Antolini Lower Upper

Milan 0.63 0.58 0.68

San Francisco 0.60 0.56 0.65

Upto7 0.59 0.56 0.65

Metroticket 0.66 0.61 0.71

HALTHCC 0.52 0.50 0.55

AFPFrench 0.64 0.58 0.68

ASAN 0.60 0.56 0.64

Kyoto 0.58 0.54 0.62

DeepSurv1 0.75 0.69 0.80

PCHazard2 0.73 0.67 0.78

MTLR2 0.73 0.68 0.78

Table 11.1: Test comparison (CI 95%)
without High Volume feature
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C-Antolini Lower Upper

Milan 0.63 0.58 0.68

San Francisco 0.60 0.56 0.66

Upto7 0.59 0.55 0.64

Metroticket 0.66 0.61 0.71

HALTHCC 0.52 0.50 0.55

AFPFrench 0.64 0.59 0.69

ASAN 0.60 0.56 0.64

Kyoto 0.58 0.54 0.62

DeepSurv1 0.76 0.70 0.81

PCHazard2 0.75 0.70 0.80

MTLR2 0.75 0.68 0.80

Table 11.2: Test comparison (CI 95%)
with High Volume feature

11.2 Practical interpretability

For predictive computer models, it is crucial to understand how the

results can be interpreted and applied in practice. In this specific task,

each predictive model was compared with reality for three risk classes

(thresholds: 0.70 and 0.85). To obtain the predicted curve, the Kaplan-

Meier algorithm is used on the Test set. The mean probability curve of

the predictions was plotted over time (with 95% confidence intervals).

Curves are calculated over the original time period, but trimmed to 10

years (not very significant later).
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Figure 11.1: Risk ranges using DeepSurv4
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CHAPTER 12

Future developments

12.1 Goals and perspectives

This thesis shows that deep learning has many application possibilities

in the field of survival analysis. The proposed approaches make the most

of the large amount of data collected and make this type of cooperation

between databases vital for the future.

Another important aspect of this last part is the construction and devel-

opment of simple and immediate tools that will allow people without

advanced computer or AI skills to use these models. In this sense, taking

a cue from the Metroticket, a web application capable of serving doctors

and researchers who would like to use the best model presented here

was developed during the thesis phase.
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Figure 12.1: Features required by TRAIN-AI Calculator

Lastly, it is important to consider the future impact that the approaches

presented in similar tasks may have, which is even more relevant than

the ones analyzed: if in fact the MC has been developed to improve

the criteria of the transplant list, but it is still widely used today also for

the prognostic of post-LT recurrence, it will be possible to perform the

"reverse path" for deep learning models. By combining different features

and optimizing them appropriately, it will be possible to develop models

that will significantly improve the functioning of transplant lists in the

future.
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