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Abstract

The Internet of Things enables us to improve operational efficiency and enjoy
better lives. It also helps the industrial sector work more effectively and under
complete control. The way that things and devices communicate with one another
and with people is changing as more and more of them are connected to the
Internet. Every day, enormous amounts of data are gathered and transported
through networks, giving rise to the idea of Big Data. Companies are increasingly
using data mining techniques to extract knowledge from large, complex, and varied
data sets in order to reap benefits.

One of these benefits embodies the central idea of this thesis: assisting a company
in determining when industrial machines require routine maintenance. The most
recent investigation revealed that there has been a lot of research on subjects
connected to predictive maintenance during the past few years. The ability to
anticipate maintenance improves job scheduling efficiency and results in significant
time and money savings.

The effectiveness of a few popular machine learning techniques has been examined
and compared. A preliminary classification to assess whether the machine is
approaching the next maintenance followed by a regression to actually make the
prediction in terms of days until maintenance has been used to break down the
forecasting problem into two simpler tasks. Basic machine learning approaches
have been contrasted with more sophisticated ones, like ensemble methods. Some
of these algorithms have produced good accuracy metrics, providing a strong basis
for further research and development.

The suggestion of a potential approach to integrating the prediction system in
a more complicated environment is another objective of this thesis. Widely used
enterprise technologies have been employed to deliver comprehensive and practical
solutions. With a thorough methodological definition, the structure of the system
and how its components interact with one another have been described, along with
potential difficulties that can develop while tackling this kind of issue and how to
overcome them.
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Chapter 1

Introduction

1.1 A technological revolution

Internet of Things The year was 1982, when a group of researchers at
Carnegie Mellon University connected a vending machine to the Internet, allowing
them to check if there were cold sodas available in the machine, before going to
purchase one. This turned out to be one of the first non-computer objects to be
connected to the Internet, many years before the definition of the Internet of Things
(IoT) concept [1].
The phrase "Internet of things", indeed, was used for the first time as the title of
a presentation Kevin Ashton made while working at Procter & Gamble, in 1999
[2]. Although, it took at least another decade for the technology to catch up with
Ashton’s vision; in fact, in a Cisco Systems’ white paper it is estimated that the IoT
was actually born sometime between 2008 and 2009, when the number of connected
devices exceeded the world population [3]. Nowadays, the IoT is one of the most
disruptive trends, and it is almost impossible that someone never heard of this
term. Objects like fridges, light bulbs, watches, vehicles, etc. are now connected to
the Internet, and the variety of connected objects is growing so much that Cisco
started to speak about the Internet of Everything (IoE).

During the late 20th century, electronics and information technology (IT) began
to be largely used to automate the manufacturing processes and a shift from analog
to digital domain started. On the basis of this industrial revolution, often called the
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Introduction

(a) Connected IoT devices and
relative market value over time [4]. (b) Data volumes over time [6].

Figure 1.1: Number of IoT devices and data volumes over years.

Digital Revolution, today the world is experiencing a Fourth Industrial Revolution
(also known as Industry 4.0). So, even the industrial field is interested in a series
of new technologies and capabilities derived from recent technical inventions and
communication paradigms. For example, we can now speak of the Industrial
Internet of Things (IIoT), where all the machines involved in manufacturing are
online and can interact with each other (M2M communication) and with humans.

Data mining In [3], it was predicted that around 50 billion IoT devices would
have been connected to the Internet by 2020. More recent research studies ([4], [5])
evidenced that the actual number of IoT devices in 2020 was not so high, but it is
still considerable – around 30 billion, as shown in Figure 1.1a.
Even assuming that each device daily produces and ingests an amount of data
which is in the order of a few megabytes, a huge overall volume of data is easily
reached worldwide. Moreover, it is important to consider the rate at which the
number of IoT devices able to go online grows, and accordingly the data they
produce. In Figure 1.1 the exponential growth of both connected IoT devices and
data volumes over time is clearly visible.

We live in a world where not only the amount but also the variety of data
collected and stored daily is overwhelming – scientific data, medical data, financial
data, marketing data – and analyzing them is a necessity to draw useful knowledge
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and information [7]. Research in statistics, visualization, artificial intelligence,
and machine learning are helping find new ways to automatically analyze and
classify this vast quantity of raw data. Data mining emerged during the late
1980s and continues to develop and evolve into the new millennium. It consists
of the automatic discovery of structure and patterns in large and complex data
repositories [8]. Treating data mining as an equivalent of knowledge discovery from
data (KDD) is the main trend among many people – including the industry, the
media, and the research field – but not the only one [7]. For some people, data
mining is an essential step in a wider process, going from data preprocessing to
postprocessing of data mining results. Data mining tasks are generally classified
into two major categories: descriptive and predictive [9]. Descriptive mining tasks
are usually exploratory and aim to describe patterns and properties of the data in
order to identify underlying relationships among them. Predictive mining tasks
perform induction on the current data in order to predict the outcome of a future
observation.

Data mining is interrelated with Artificial Intelligence (AI) and one of its
branches: machine learning [10]. To be considered intelligent, a system placed in
a changing environment should have the ability to learn. Machine learning (ML)
consists in designing efficient algorithms to teach machines to use experience – all
the past information available – to improve their performance automatically [11].
This phase is usually known as training of a machine learning model.
The main practical objectives of machine learning are focused on accurately predict-
ing unseen items and originating effective algorithms to produce these predictions.
The greatest the quantity and quality of data collected, the better will the accuracy
of the prediction be.

1.2 Objective and challenges

In this section, we are going to investigate in further detail which are the main
objective and the challenges of this thesis.

The objective of this thesis can be summarized in a simple statement: design a
service that is able to predict when generic industrial machine maintenance is due,
and propose some methods to integrate it into an existing industrial environment.
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Let us focus, for now, on the first part of the statement, i.e. the prediction
problem. The first question that arises is: how can we predict something that will
happen in the future? As introduced in Chapter 1.1, data can hide useful knowledge
from which it is possible to extract patterns; so, by analyzing past behaviors, one
can estimate how and when a specific event will occur.
Answering this first question, we alluded to the necessity of knowing something
about the past. This something consists of data collection. Speaking about
industrial machines, meaningful data can be represented by usage hours, voltages,
tire pressure, power consumption, etc. A collection of this kind of parameters
indexed in time order, with a specified granularity (daily, hourly, and so on), is
called time series. At this point, from the previous question, another one can
naturally arise: who will provide us with the data? The data used to train and
test the algorithms described in the thesis will be synthetic data. The application
domain is for sure the Internet of Things and the amount of data can allow many
data mining applications, including the achievement of our objective.

Now, we can focus on the second part of the objective statement, i.e. integrate
the prediction service into a company complex solution. It is a classical engineering
problem (very common in the IT field) of system integration, that arises each time a
new service has to communicate with other pieces of software. The main challenges
involved in this process of adding a sub-system to a large software solution are
described at the end of this section. Many are the benefits that a good integration
strategy can bring.

To summarize, the main challenges of the project can be divided into two
macro-categories: the ones belonging to the machine learning field and the ones
related to system integration.
In the first class, it is possible to define the following challenges:

• Preliminary models comparison: an initial subset of machine learning algo-
rithms should be opportunely designed, in order to compare their prediction
performances on some datasets.

• Analysis on a large set of machines: the analysis described at the previous
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point should be conducted on a considerable number of machines, in order to
better generalize the results obtained.

• Obtain good performances close to maintenance: maintenance technicians
are particularly interested in knowing how many days are left for the next
maintenance, especially when we get closer to it.

• Design machine-specific prediction models: try as much as possible to have an
ML model designed on purpose for each machine, and find other strategies for
machines that do not have enough past data to train their own model.

• Take into account the execution time of the training procedure: considering the
previous point, a large number of models might be trained, so it is important
to analyze also their training time.

The main challenges related to the system integration area can be described as
follows:

• Comply with the technologies used by a company: it is needed to make the
code compliant with the programming languages, architectural structure, and
communication protocols used to build the existing blocks and services. This
would not only improve the coupling among the services but also guarantee
readability and understanding by other developers, allowing future develop-
ments.

• Training automation: the system should be able to "understand" on its own
when a model can be trained again and updated because new data are available.

• Efficient database design: since we spoke about data used to train machine
learning algorithms, an efficient design of the database and its tables is required
in order to minimize the time of reading and writing operations.

• Achieve scalability and modularity of the system: the system should be scalable
and handle a growing number of machines if more resources are added to the
system. Designing a modular system would enhance flexibility, making the
code more easily maintainable.
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1.3 Fields of application

As already introduced in Chapter 1.1, the domains of interest of this thesis are the
IoT, and more specifically the IIoT.
The term IIoT refers to every connected device used in the energetic, manufacturing,
and industrial sectors. It can offer multiple advantages, that allow increasing the
levels of automation and machine monitoring, in order to improve reliability and
efficiency. Data coming from sensors installed on industrial equipment can be
collected and analyzed in real-time, enhancing the whole production and control
processes of a company.

One of the most interesting goals of the IIoT, which is particularly linked to the
work of this thesis, consists of optimizing the production process by processing the
data coming from industrial machines. It can lead to several benefits in terms of
predictive analysis, which leads to substantial savings of money for maintenance
and failures.

Finally, it is worth citing some IoT applications to the automotive field. The first
thing that can come to mind, combining vehicles to IT, could be self-driving cars.
Besides that trendy topic, several other applications exist, enhancing convenience,
safety, and efficiency. Some of them are [12]: Advanced Driver-Assistance Systems
(ADAS), systems that provide useful information to the driver improving driving
performance and road safety; Connected Vehicles: which refers to all the applica-
tions, services, and technologies that connect a vehicle to its surroundings through
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications.
Several other applications can be found, such as fleet management solutions, going
from optimizing the maintenance and logistics of fleets to monitoring drivers’ and
vehicles’ performances through real-time vehicle telematics.

Speaking about industrial vehicles, a lot of IT companies provide solutions to
make the machines "smart".
Usually, a large amount of data can be easily collected from a set of heterogeneous
vehicles, machinery, and objects, in order to be stored, processed, and managed.
This task is accomplished by installing an onboard device on the assets: different
devices have to be produced to suit any type of vehicle, from surveying to construc-
tion, from agriculture to automotive. Data about the assets’ activity (e.g. location,
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movement, oil pressure, fuel consumption, etc.) are collected and processed to
get meaningful and readable charts. Most solutions allow the users to check the
analytics in real-time, through web platforms and/or mobile applications.

1.4 Predictive vs Preventive vs Reactive Main-
tenance

Nowadays, plant management in manufacturing is still governed, in most cases, by
traditional preventive manifestation systems. The initial assumption is that by
regularly maintaining machinery, the risks of malfunctions are reduced. Predictive
maintenance overcomes this paradigm in favor of a system in which maintenance
is managed according to the actual state of equipment, supplies, and machinery
through a system of monitoring, analysis, and prediction.

Compared to reactive maintenance (RM), in which repairs are carried out only
after a malfunction or failure has occurred, or preventive or scheduled maintenance,
in which interventions are planned against predefined intervals dictated by the
technical usage specifications of component consumption, predictive maintenance
(PdM) is a methodology that uses historical data from monitoring phases to track
equipment performance during normal operation and to detect any anomalies and
resolve them before they give rise to failures.

By pushing the machinery to its limits, RM achieves maximum equipment
utilization and, as a result, maximum production output. When utilizing run-to-
failure management, a business waits to invest in maintenance until equipment or
system breaks down. However, it is possible that the cost of fixing or replacing
a component might exceed the production value gained from operating it until
the breakdown. Additionally, if parts start to shake, overheat, and fail, equipment
damage might continue, possibly necessitating more expensive repairs. A business
should also keep a large supply of spare parts for all essential machinery and
components to be prepared for any breakdowns. [13]

On the other hand, utilizing a system or component’s real working state is the
basis of PdM. The predictive analysis is based on information gathered from meters
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(a) Maintenance plans of RM, PM and
PdM. [13]

(b) Comparison of RM, PM and PdM
on the cost and frequency of

maintenance work. [13]

Figure 1.2: Predictive vs Preventive vs Reactive Maintenance.

and sensors attached to tools and machines, including vibration data, thermal
imaging, ultrasonic data, operation availability, etc. The predictive model uses
predictive algorithms to evaluate the data, identify trends, and forecast when
equipment will need to be fixed or replaced. By performing maintenance tasks only
when absolutely essential, PdM helps businesses optimize their strategies rather
than using equipment or components until they break or replace them when they
still have a useful life. PdM can reduce unplanned and scheduled downtime, high
maintenance costs, superfluous inventory, and unneeded maintenance on operating
equipment. The price of the condition monitoring equipment required for PdM is
frequently higher than that of RM and PM, though. Additionally, as a result of
data gathering, analysis, and decision-making, the PdM system is getting more
and more sophisticated. [13]

In order to reduce the likelihood of failures, preventive maintenance (PM) plans
routine maintenance procedures for specified equipment. To prevent unexpected
malfunctions with the resulting downtime and costs, maintenance is performed even
when the machine is still operational and functioning normally. PM could prevent
unplanned downtime and repair expenses, but it might also cause catastrophic
failures or unneeded repairs. Instead of using actual statistics on the condition of
the particular piece of equipment, the theoretical rate of failure is used to predict
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when an item of equipment will reach the wear-out phase. This frequently leads
to expensive and wholly useless maintenance procedures being performed either
before a real issue arises or once the possibly catastrophic harm has started. [13]

We conclude by summarizing the distinctions between the three categories of
maintenance techniques in terms of costs, advantages, difficulties, and applications
that are appropriate and inappropriate. First, we include in 1.2a the maintenance
schedules for RM, PM, and PdM. Additionally, in 1.2b, we contrast the price
of these three maintenance procedures. As a result of adopting run-to-failure
management, RM has the lowest prevention cost; PM has the lowest repair cost,
and PdM may achieve the best balance between repair cost and prevention cost.
To prevent unplanned RM, PdM ideally enables the maintenance frequency to be
as low as feasible without paying the costs associated with performing excessive
PM. Note that the repair cost refers to the corrective replacement cost once a
failure has occurred, whereas the prevention cost primarily includes inspection cost,
preventative replacement cost, etc.

1.5 Thesis outline

A short summary of all the thesis chapters is here provided:

In Chapter 1 a general introduction is given. We spoke about the domains of
interest in which this project is collocated: the Internet of Things and Data mining.
A short overview of the possible fields of application involved in the thesis and a
comparison among Predictive (PdM), Preventive (PM), and Reactive Maintenance
(RM) are also provided. Finally, the objective is defined and so are the challenges
that arise during its achievement.

Chapter 2 provides the state of the art about some topics related to this
thesis development. Scientific papers and books discussing predictive maintenance,
time series forecasting, and IT management are reviewed, reporting some useful
information for the development of the thesis.

Chapter 3 covers the conceptual formulation of the problem, its mathematical
representation, how we altered it to fit a machine learning challenge, and the
algorithms we used to solve it.
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The problem formulation will be presented first. The applied regression and
classification algorithms will next be examined mathematically and analytically,
along with comparisons and some advantages and disadvantages of using them.

Chapter 4 presents an overview of the data used in the thesis and how they were
generated, taking into consideration all the features that artificially created data
should have. The two main tables of the database are described: a register that
keeps track of the equipment’s basic information and the usage dataset containing
the information needed by the machine learning algorithms.

In Chapter 5, using the approaches outlined in Chapter 3, we offer the results and
a few outputs from the dataset that was studied in Chapter 4. A brief summary of
the most popular metrics used to assess the performance of classifiers and regressors
is offered because the main focus of this chapter will be an investigation of machine
learning methods. Results for both the classification and regression algorithms’
hyperparameter adjustment are shown, and they are discussed. The various
algorithms are then examined using graphs, charts, and performance indicators.

Chapter 6 simply draws the final conclusions and insights from the work done.
Some future developments and improvements are also proposed and examined.

10



Chapter 2

State of the art

In this chapter, we are going to perform a literature review and state-of-the-art
analysis of some important topics involved in the development of this thesis. The
three analyzed areas are: predictive maintenance with a special focus on the
industrial environment; generic methods for time series forecasting; IT management
and integration of a simple service into a more complex system.

2.1 Predictive maintenance

Since the maintenance strategies should be developed so that the maintenance
operations are carried out at the appropriate times in order to prevent breakdown,
the following work is focused on Predictive maintenance (PdM).

The method proposed in this thesis cannot be defined as a predictive mainte-
nance system in a very real sense, because it is only based on the past usage of
machines and does not use information collected by a set of sensors installed on
them.

A heterogeneous set of scientific papers about predictive maintenance from a
different point of view has been selected.

• Through the article [15], the possibility of using predictive maintenance (PdM)
to optimize plant operations and decrease system downtime, which will result
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Figure 2.1: Experience- and data-driven predictive maintenance. [14]

in lower production costs, has been explored. The authors propose a predictive
maintenance architecture: a sensor node was developed and the parameters
commonly required in industry to monitor were uploaded to the cloud; further
steps include using the data in the database and developing machine learning
algorithms in order to develop a predictive analysis and elect appropriate
maintenance task and schedule them.

• In paper [16] a multiple classifier machine learning methodology for Predictive
Maintenance (PdM) is presented. The suggested PdM methodology works
with high-dimensional and censored data problems and enables the use of
dynamical decision rules for maintenance management. This is accomplished
by using several classification modules that have been trained with various
prediction horizons to provide various performance trade-offs in terms of the
frequency of unexpected breaks and unutilized lifetime and then applying this
knowledge in an operating cost-based maintenance decision system to reduce
anticipated costs.

• In the article [14], Farooq et al. make a distinction between experience-driven
and data-driven maintenance. Experience-driven preventative maintenance
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bases its maintenance planning on accumulated information about manufac-
turing equipment. Data-driven preventative maintenance, on the other hand,
is based on analyzing a lot of data. The difference is presented in Figure
2.1. This strategy is appropriate for Industry 4.0 settings since it is built on
artificial intelligence, specifically machine learning and statistical modeling.

• Authors of [17] analyzed a popular fault detection method, the Consensus
self-organized models approach (COSMO), applied to a fleet of buses. They
proposed an IoT architecture for predictive maintenance, based on a semi-
supervised machine learning algorithm with the aim of improving the sensor
feature selection performed in COSMO. A prototype of the proposed architec-
ture has been installed on some test vehicles, with the intent to collect data
to continue data analytic research.

• In [18], a system to find the root cause of malfunctioning in vehicles is
presented. The authors tested different hardware/software solutions and ML
techniques, including convolutional neural network (CNN). They designed a
method to define what data to collect and when, in order to perform a root
cause diagnostic based on time series analysis.

2.2 Time series forecasting

Predicting the future by means of time series analysis is something that humans
have been trying to achieve for a long time, way before the advent of computers.
Anyway, one of the first formalizations came out in 1970, with the first publication of
the book "Time Series Analysis" by Box and Jenkins [19], which contains a detailed
modeling procedure, going from the time series specification to the forecasting
problem. Box-Jenkins models represent the base of most forecasting techniques
widely used nowadays, known as Autoregressive (AR) and Moving Average (MA)
models.
Many research projects about time series forecasting, especially in financial, electric,
and energetic domains, can be found in the literature. A collection of some of them
is reviewed hereafter:

• A review of the existing machine learning techniques for forecasting buildings’
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energy consumption is presented in [20]. Since energy historic data is often
related to other time series – e.g. outdoor weather or environmental conditions,
the study is not limited to the analysis of the single energetic consumption
time series. Performances of nine popular forecasting methods and some
hybrid models, obtained by combining two or more techniques, are reported.

• Paper [21] proposes a combination of random walk and artificial neural network
(ANN) for financial time series forecasting, to counteract two key problems in
financial data – noise and non-stationarity. Their approach consists of two
steps: the linear part of the financial time series is processed by the random
walk model, and the non-linear residuals are processed by feed-forward ANN
and Elman ANN models. The results show that the proposed hybrid method
outperforms each of the isolated methods.

• Authors of [22] try to improve the accuracy of long-future horizon forecasting.
They propose a novel multiple-step-ahead time series forecasting approach,
employing multiple-output support vector regression (M-SVR) with multiple-
input multiple-output (MIMO) prediction strategy. The results demonstrate
that their solution achieves better performances and computational loads when
compared to standard SVR.

2.3 Information technology management

Being a project of integration of service into an existing company web solution, the
IT management is a crucial aspect that is worth examining.
Integration is a word that could have many meanings. However, it is a universally
accepted need in the development of complex engineering systems. It derives from
the decomposition of a complex problem into several simpler problems, which can
be more easily solved by teams of specialists. For this reason, a well-defined system
integration process facilitates the connections of the separate solutions into a whole
system. [23]

These are the same concepts applied by a relatively recent and emerging software
architecture pattern: the micro-services approach. It enables the development of
an application as a set of small, independent, and loosely coupled services. This
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approach is opposite to the so-called monolithic architecture: a single program
containing multiple functions, but deployed as a united solution.
Some of the numerous benefits the micro-services approach brings are [24]:

• Understanding and modifying a small service is easier than working on a huge
application. Moreover maintaining and updating a big monolithic application
could become very difficult.

• It allows the development of each service in parallel by different independent
teams.

• Each micro-service can be implemented with its own set of technologies and
programming languages, without impacting other services.

• The scalability of the system can be improved because micros-services run in
their own independent processes.

A common programming framework used by a lot of companies is the Spring
Framework1 for the Java platform. So, we will spend some words on this widespread
enterprise framework.
A recent version of this framework is called Spring Boot and aims to simplify
Spring development. For this reason, a portion of our service will be based on this
framework.
Since it is a very complex framework, it would be impossible to describe every
aspect of it. Some basic information hereafter reported is taken from [25].

Before Spring, Java Enterprise Edition represented the de-facto standard in
enterprise Java programming. The first aim of Spring was to offer a lightweight
alternative to Java Enterprise Edition, substituting heavyweight components as
Enterprise JavaBeans (EJBs) with plain old Java objects (POJO) and utilizing
dependency injection and aspect-oriented programming.
In the beginning, Spring offered this lightweight solution, but with an important
drawback: it was quite difficult to be configured. Spring Boot highly simplifies this
step, allowing for the reduction of the development friction of configuration.

1https://spring.io/
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One of the most common programming languages used by data scientists for
machine learning and data mining applications is Python2.
For this reason, all the machine learning algorithms described later are designed in
Python.
Here is a list with some descriptions of the Python libraries used for this thesis:

Pandas is a library for data manipulation and analysis. It includes specific data
structures and procedures for working with time series and mathematical tables.

NumPy adds support for large matrices and multidimensional arrays along with
a large collection of high-level mathematical functions to operate efficiently on
these data structures.

Matplotlib is a library for creating graphs and plots.
Scikit-learn is a machine learning library. It features various classification,

regression and clustering algorithms including support-vector machines, random
forests, gradient boosting, etc.

Another technology that is worth introducing is Node-RED3 since it has been
employed in order to develop a dashboard for providing a user interface.
Node-RED is a flow-based visual programming tool that was initially created by
IBM for the Internet of Things to connect hardware components, APIs, and web
services.
An online flow editor powered by Node-RED is available for developing JavaScript
functions. Applications’ components can be shared or saved for later use.

As concerns data storage, a PostgreSQL4 database has been employed. Post-
greSQL, also simply called Postgres, is an object-relational database system (OR-
DBMS) that is open source and free. Its main features are reliability, data integrity,
functionality, and extensibility. For querying and interacting with data, Postgres
uses a subset language of SQL.

2https://www.python.org/
3https://nodered.org/
4https://www.postgresql.org/
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Chapter 3

Methodology

In this chapter, we discuss the conceptual formulation of the problem, its mathe-
matical representation, how we modified it to match a machine learning challenge,
and the algorithms we employed to solve it.

First of all, the global structure of the system will be presented. Then, the
problem formulation is discussed, with a particular focus on the forecasting problem
resolved using classification and regression algorithms. At the end of the chapter,
the regression and classification algorithms employed will be analyzed from a
mathematical and analytical point of view, providing some comparisons among
them and some pros and cons of using each of them.

3.1 Global structure

As we introduced in Section 1.2 when discussing the objectives and the challenges
that arose in this work, we want to design a system that is able to predict when
generic industrial machine maintenance is due, and propose some methods to
integrate it into an existing industrial environment.

A sort of microservices approach has been chosen in order to improve the
scalability, modularity, and maintenance of the system. Each block is independent,
loosely coupled to the others, and has been developed using different programming
languages and technologies.

Figure 3.1 shows how the blocks of the system are built and presents how they
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Figure 3.1: Structure of the project.

are interconnected among them.
The first block represents all the databases involved in the system: an artificial
external database in which the daily utilization is retrieved, representing an external
service, and two internal databases; the first one where the information of each
machine is stored (a machine registry) and the second where the dataset for the
machine learning algorithms is built and stored. All the tables containing the data
are stored in a PostgreSQL database.

A second block is a dashboard that has been developed using Node-RED. It
provides a graphical user interface with plots and user-friendly information about
the prediction, the last update of the model, etc.

The micro-service of the project which is coded using Spring Boot is a sort of
coordinator. It handles the communications between the external world and the
service itself. Once a day gets the new parameters from the databases and saves
the new predictions. The predictions are obtained by interrogating the last block.

The last block is the machine learning module which has been coded in Python.
It is where the predictions are made. First of all, it checks if new data can be
retrieved to train a new model, then predict the new maintenance prediction and
send it to the Spring module previously described. Since very often, companies are
interested in having good accuracy when we are near maintenance, the machine
learning module performs two steps. Firstly a classifier predicts if we are close to
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the maintenance or not. Accordingly, the actual prediction is performed using a
regression model trained on the whole dataset or only on the days close to the
maintenance.

3.2 Prediction problem formulation

Our aim is to forecast the next maintenance operation for a given industrial machine
m. Let Tm be the permitted usage times (in seconds) for m between two consecutive
maintenance operations, and let Nm be the number of days for which historical
data about m usage is accessible.

A cycle will now be used to refer to the interval between maintenance procedures,
so Tm will represent the cycle duration for the machine m. The countdown to
the next maintenance on m changes day by day. Consider the series of the
aforementioned daily counts as Dm(t). We want to forecast this value, where t

stands for the current day. The series of utilization left to the next maintenance,
Lm(t), can be evaluated this way:

Lm(t) = Tm −
t−1Ø

i=t−Cm(t)
Um(i)

where Um(t) is the time series of the daily usage in seconds and Cm(t) represents
the days passed from the last maintenance.

We create a relational dataset including the historical utilization series U(i) for
each machine m. To be more precise, each record represents a distinct day t and
is made up of a number of variables that represent the previous use in seconds.
The features include the values of Um(i) in a time window [t −W ≤ i ≤ t − 1],
where W is the window size. Other features are the current time until the following
maintenance, denoted by Lm(t), and the target variable, denoted by the number of
days till maintenance, denoted by Dm(t). Only for the classifier, we add another
feature: a binary flag, F [Dm(t)] which is True if Dm(t) > 30 and False otherwise.
This variable will be used by the classifier to decide whether or not we are close to
maintenance. In particular, the maintenance is reputed close when less than 30
days remain.
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Figure 3.2: The workflow that leads to the prediction.

Now, it is important to state a difference regarding the dataset of the regression
algorithm, because actually, we will have two versions of the predictor for each
machine: one will be trained on the whole dataset and will be used for making
predictions when the classifier predicts we are far from maintenance (more than 30
days are left), the other will be trained only on the last 30 days of each cycle in the
dataset and will be employed when the classifier predicts the machine is near the
next maintenance. This solution, as we will see in the results in Chapter 5, improves
the prediction quality when the maintenance is close and high performance would
be important for scheduling purposes.

Figure 3.2 highlights how the process that leads to the prediction goes. The
"handler" of the system (the Spring Boot piece of the application) makes some
requests to the machine learning module (coded in Python, which can be consulted
in Appendix A.3). It is here that the above-described classification and the related
regression are executed.
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3.3 Classification algorithms

As said in the previous section, first of all, we have to decide whether or not the
equipment is close to maintenance. This is achieved using a classifier that has to
decide if the days remaining to the maintenance are less or more than a predefined
threshold.
In particular, the four analyzed classification algorithms are: a simple Naive Bayes
classifier, k-nearest neighbors (k-NN), a Support Vector Machine (SVM), Random
Forest classifier (RF) and AdaBoost (short for Adaptive Boosting).

3.3.1 Naive Bayes classifier

A group of classification algorithms built on Bayes’ Theorem is known as naive
Bayes classifiers. It is a family of algorithms rather than a single algorithm, and
they all conform to the same basic idea. They are some of the most basic Bayesian
network models, but when combined with kernel density estimation, they could
achieve high levels of accuracy.

The Bayes theorem which acts as the basis of the classifier can be summarized
as follow [26]:

P (y|X) = P (X|y)P (y)
P (X)

where, y is the class variable and X = (x1, x2, x3, ..., xn) is a dependent feature
vector.
By replacing X and expanding using the chain rule, we obtain:

P (y|x1, ..., xn) = P (x1|y)P (x2|y)...P (xn|y)P (y)
P (x1)P (x2)...P (xn)

Now, we may eliminate the denominator and introduce a proportionality since, for
each given input, that term is constant:

P (y|x1, ..., xn) ∝ P (y)
nÙ
i=1

P (xi|y)
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Finding the class ŷ with the highest probability is the final goal:

ŷ = argmaxyP (y)
nÙ
i=1

P (xi|y)

3.3.2 K-nearest neighbors

The k-nearest neighbors, abbreviated as k-NN, is an algorithm used in pattern
recognition for classifying objects based on the characteristics of objects close to the
one being considered. The result of the k-NN classification is a class membership.
An object is classified by a plurality vote of its neighbors, with the object being
allocated to the class with the most members among its k closest neighbors, where
k is a positive integer, typically small. The object is merely put into the class
of its one nearest neighbor if k = 1; in this case, the method makes no error on
the training set, but it generalized poorly to novel test data and could result in
overfitting.
Increasing k and tuning its value provides for sure more interesting results.

3.3.3 Support Vector Machine

A Support Vector Machine (SVM) is a supervised learning algorithm, used in many
classification and regression problems. In case of regression problems, it is usually
called support vector regression (SVR).
The goal of an SVM algorithm is to find a hyperplane that separates, to the best
degree possible, the data points of one class from those of another class. "Best"
means the hyperplane that has the greatest margin between the two classes. Margin
means the maximum width of the line parallel to the hyperplane that has no internal
data points. The algorithm is only able to find such a hyperplane for linearly
separable problems, while for more practical problems the algorithm maximizes
the soft margin, which allows for a reduced number of misclassifications.

A mathematical formulation of the method is presented for the respective
regression problem in Section 3.4.2.
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3.3.4 Random forest classifier

Random forest is a versatile, user-friendly machine learning approach that typically
yields excellent results even without hyper-parameter adjustment. As a result of
its versatility and simplicity, it is also one of the most widely used algorithms (it
can be used for both classification and regression tasks).

An ensemble of decision trees, typically trained using the "bagging" approach,
make up the "forest" that it constructs. The bagging method’s general premise is
that combining learning models improves the end outcome.

Simply put, a random forest creates many decision trees and integrates them to
get a prediction that is more accurate and reliable.

The random forest has the key benefit of being applicable to both classification
and regression problems, which make up the majority of modern machine-learning
systems.

Additional information will be provided in Section 3.4.3, where the regression
version of the random forest will be treated.

3.3.5 AdaBoost

Since it was first introduced by Freund and Schapire in 1997 [27], boosting is an
ensemble modeling method that is frequently used to solve binary classification
issues. By transforming a number of weak learners into strong learners, these
methods increase prediction ability.
The basic idea behind boosting methods is that after creating a model using the
training dataset, we create a second model to fix any mistakes in the original one.
This process is repeated until the mistakes are reduced and the dataset can be
accurately forecasted.

AdaBoost, also known as Adaptive Boosting, is an ensemble method used in
machine learning. Decision trees with only one split, or those with one level, are
the most frequent algorithm employed with AdaBoost. This algorithm creates a
model while assigning each data point an equal weight. Then, it gives points that
were incorrectly categorized as larger weights. The next model now gives more
weight to all the points with higher importance. It will continue to train models
until a smaller error is observed.
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Following is the formula to determine the sample weights at the beginning:

w = 1/N ∈ [0,1]

where N is the overall number of observations in the dataset.
After that, we use the following formula to determine the classifier’s actual influence
in identifying the data points:

αt = 1
2 ln

31− Ôt
Ôt

4

Where αt expresses how much of an impact this stump will have on the final
classification.
Ôt is just the total error; the sum of all incorrect classifications for that training set
divided by the size of the training set.

The sample weights are updated by entering the actual Ôt values for each stump
using the following formula:

wi = wi−1e
±αt

It means that the old sample weight will be multiplied by Euler’s number, raised
to plus or minus αt, and the new sample weight will be equal to that result.
The sign of αt depends on whether the predicted and the actual class agree (+) or
do not agree (−).

3.4 Regression algorithms

In the following sections, a theoretical presentation of the regression algorithms used
in this thesis for the maintenance forecasting problem is provided. In particular, the
four analyzed regression algorithms are: a simple Linear Regression (LR), Support
Vector Regression (SVR), Random Forest Regression (RF), and an improved version
of the gradient boosting regression called eXtreme Gradient Boosting (XGB).
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3.4.1 Linear regression

Linear regression analysis is used to predict the value of one variable based on the
value of another variable. The variable you want to predict is called the dependent
variable. The variable you use to predict the value of the other variable is called
the independent variable.
This form of analysis estimates the coefficients of the linear equation and involves
one or more independent variables that best predict the value of the dependent
variable. Linear regression corresponds to a straight line or surface that minimizes
discrepancies between predicted and actual output values. There are simple linear
regression calculators that use a method called "least squares" to find the optimal
straight line for a paired data set. Then, the value of X (dependent variable) is
calculated from Y (independent variable).

A general mathematical formulation of the problem can be described by the
following formula:

y = Xw + ν

Where y is the target variable vector (Nx1), X is the feature matrix (NxF ), w is
a vector of weights (Fx1) and ν is the vector Nx1 that identifies noise; being N

the number of observations and F the number of features.
The Least Squares approach is used to achieve the objective of estimating the
weights w, minimizing the square error:

e(w) = ||y −Xw||2

3.4.2 Support vector regression

An approach for supervised learning called Support Vector Regression (SVR) is used
to forecast discrete values. This is a regression algorithm derived from a Support
Vector Machine (SVM) which examines data used for classification and regression
analysis using supervised learning models and associated learning algorithms.

SVR uses the same principle of SVM to minimize an error, finding the best fit
line called hyperplane. The SVR seeks to fit the best line within a threshold value,
in contrast to other regression models that aim to reduce the error between the real
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and predicted value. The distance between the boundary line and the hyperplane
is the threshold value.

Instead of minimizing the squared error, like with the Least square method,
SVR’s objective function is to minimize the coefficients, or more precisely, the
l2-norm of the coefficient vector.
The error term is dealt with in the constraints, where we set the absolute error less
than or equal to a predetermined margin, known as the maximum error (Ô). The
maximum error Ô can be adjusted to give our model the necessary level of precision.
The following describes our new objective function that has to be minimized and
constraints:

f(x) = 1
2 ||w||

2

subject to:
|yi − wixi| ≤ Ô

You might immediately realize that not all data points are compatible with this
approach. Even though the algorithm did its best to solve the objective function,
some of the points are still beyond the acceptable range. As a result, we must
consider the potential of errors bigger than Ô. Slack variables will help us with this.
Slack variables have a straightforward concept: we may write every value that is
outside of the range Ô as having a margin deviation of ξ.

Although we are aware that these deviations could occur, we nonetheless want
to do everything in our power to prevent them. So, these deviations can be added
to the goal function.

f(x) = 1
2 ||w||

2 + C
nØ
i=1
|ξi|

subject to:
|yi − wixi| ≤ Ô + |ξi|

Now that C has been added, we have to tune this other hyperparameter. We
become more accepting of values outside of Ô as C rises. The simplified equation,
though occasionally impractical, emerges as C approaches zero and the tolerance
gets closer to zero.

Since some regression problems cannot adequately be described using a linear
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model, usually Nonlinear SVR is more suitable for this kind of problem. Nonlinear
SVR is obtained by exploiting the so-called kernel trick. Kernel functions are able
to map the points into higher dimensional spaces in which they become more easily
separable.

In conclusion, the hyperparameters to be tuned in an SVR model are the
following:

• The kernel: it specifies the kernel function used by the algorithm (e.g. linear,
polynomial, Radial basis function (RBF), sigmoid)

• Degree: the degree of the polynomial kernel function. Ignored by all other
kernels.

• The γ multiplier: it is a kernel coefficient for RBF, polynomial and sigmoid.

• The C parameter: the regularization parameter. The strength of the regular-
ization is inversely proportional to C. Must be strictly positive. The penalty
is a squared l2 penalty.

• Ô: it specifies the epsilon-tube within which no penalty is associated in the
training loss function with points predicted within a distance epsilon from the
actual value.

3.4.3 Random forest regression

Here we are going to further discuss the random forest technique (already introduced
in Section 3.3.4), with a particular focus on the regression version.
Random forest regression leverages the ensemble learning approach for regression.
The ensemble learning method combines predictions from various machine learning
algorithms to provide predictions that are more accurate than those from a single
model. It is an averaging method, which means that it creates a number of
weak learners (independent estimators) before averaging their predictions. During
training, a Random Forest builds many decision trees and outputs the mean of the
classes as the forecast of all the trees.

While random forests frequently outperform a single decision tree in terms of
accuracy, they do so at the expense of decision trees’ inherent interpretability. In
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addition to linear models, rule-based models, and attention-based models, decision
trees are part of a relatively limited family of machine learning models that are
simple to understand. One of the most desirable characteristics of decision trees
is their interpretability. It enables developers to verify that the model has drawn
accurate conclusions from the data, and it enables end users to have faith and
confidence in the model’s judgments.

The hyperparameters of the random forest that have to be tuned are:

• The number of estimators: how many trees there are in the forest. Although
it will take longer to compute, usually the larger the better. After a certain
number of trees, the results will not improve considerably any further.

• Criterion (squared error, absolute error, Poisson): the function to measure the
quality of a split. Squared error is equal to variance reduction as a feature
selection criterion, absolute error for the mean absolute error, and Poisson
which uses reduction in Poisson deviance to find splits.

• The maximum depth of the tree

• The minimum number of samples required to split an internal node

• The minimum number of samples required to be at a leaf node: this may have
the effect of smoothing the model, especially in regression.

• The minimum weighted fraction of the sum total of weights (of all the input
samples) required to be at a leaf node.

• The number of features to consider when looking for the best split.

3.4.4 eXtreme Gradient Boosting

A class of ensemble machine learning methods known as gradient boosting can be
applied to classification or regression predictive modeling issues.

Decision tree models are used to build ensembles. In order to repair the prediction
mistakes caused by earlier models, trees are added one at a time to the ensemble
and fitted. Boosting is a term used to describe this kind of ensemble machine
learning model.
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Figure 3.3: Difference between random forest and gradient boosting techniques.

EXtreme Gradient Boosting can be considered a tree-based algorithm too. While
Random forest regression is an averaging method, eXtreme Gradient Boosting is a
boosting method. Although more effective, eXtreme Gradient Boosting is similar
to the gradient boosting architecture. It features both tree learning methods and
linear model solvers. Therefore, its ability to perform parallel processing on a single
machine is what makes it quick.

Figure 3.3 shows the differences between the boosting methods (such as gradient
boosting) and the bagging methods (e.g. random forest): in the first technique,
the output is obtained by combining multiple sequential simple regression trees
into a stronger model; bagging models as random forest trains a number T of
decision trees, each one on a different subset of observations and features, randomly
selected with replacement at each iteration. The final model is then an ensemble
of T = 1, ..., N slightly differently trained decision trees.
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Data characterization

The big data process of characterization is used to create descriptive parameters
that accurately characterize the properties and behavior of a specific piece of data.
In this chapter, we are going to provide an overview of the data and a general
characterization of it. First of all, it is important to specify that the data does not
come from collections in a real-world environment, but are artificially generated.

Synthetic data produced by algorithms are utilized in model datasets for valida-
tion or training. In order to test or train machine learning models, synthetic data
might simulate operational or production data.

Synthetic data has a number of key advantages, including the ability to generate
large training datasets without the need for manual labeling of data and the
reduction of restrictions associated with the use of regulated or sensitive data.
Synthetic data can also be used to customize data to match circumstances that
real data does not permit.

The data employed in this thesis can be divided into two tables belonging to a
PostgreSQL database. The first one is a sort of register that, as the name suggests,
is a list of machines (for example all the equipment owned by a company) and
contains all the useful information for the machines. The second table contains the
information needed for the machine learning algorithms to work, i.e. the daily usage
time for each machine registered into the system and other important variables
that will be discussed in the relative section.
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4.1 The equipment registry

An important piece of the database is the one that will be referred to as Equipment
registry. It contains basic information about the synthetic industrial machines
involved in this work.

The fields for each machine are the following:

• Universally unique identifier (UUID). A 36-character string with dashes, digits,
and letters, is intended to be universally unique in the system.

• Service ID. An identifier used to have more than one maintenance cycle for
each machine.

• Cycle duration. An integer number representing the amount of time in seconds
between two consecutive maintenance.

• Time zone. An integer from -12 to +14 represents the time zone where the
machine is located.

• Total utilization. The total amount of time in hours the equipment has been
used.

• Average utilization. It represents the daily average amount of time, in seconds,
a piece of equipment has been used.

• Last update. It is the last date, in year-month-day format, when the prediction
model has been updated.

Table 4.1 shows some records of the equipment registry. Each row represents
a specific machine, with the exception of machines that have more than one
maintenance service with different cycle duration (e.g. the equipment with UUID
equal to df7f5...11701 has three different maintenance with cycle duration 150, 200
and 550 hours, hence three different rows characterized by service_id equal to 0,
1 and 2). From the machine learning algorithms’ point of view, each row represents
an entity, so, for example, a machine with three different maintenance services will
be treated as three different machines.

It is clear that the primary key of the database is a composite primary key,
made from the columns UUID and service_id.

31



Data characterization

UUID service_id cycle_dur time_zone tot_util avg_util last_up

0c217...db055 0 200 +8 7582 1422 2021-07-12
f0a64...ed234 0 350 -10 2566 3885 2021-11-05
df7f5...11701 0 150 +2 573 2351 2022-05-03
df7f5...11701 1 200 +2 573 2351 2022-05-13
df7f5...11701 2 550 +2 573 2351 2022-06-08
83ef6...045b7 0 500 -4 865 1278 2020-08-22

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
5bee2...0924a 0 300 -8 5524 6879 2022-04-25
5475f...a868a 0 300 +8 75 574 2022-03-03
de426...31c97 0 200 +11 548 1524 2021-06-21
2ad43...6bd89 0 300 +5 129 6512 2022-01-15
4d6be...7233a 0 250 +9 752 3289 2021-12-03
69eca...79daa 0 500 -6 6452 1528 2021-10-24

Table 4.1: Equipment registry samples.

Figure 4.1: How the equipment registry is created and populated.

The flowchart in Figure 4.1 represents the process that leads to the registry
creation. First of all, it is necessary to define how many machines will compose the
table. Secondly, an empty list that represents the registry in which each record
is stored is declared. Then, a cycle starts in order to create the i-th machine. In
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this cycle, a random UUID is generated and a number of services for the current
machine is randomly chosen from 1 to a maximum arbitrary value (MAX_S in
the flowchart). The probability of picking only one service has deliberately been
set as higher in order to avoid too many records per equipment. A nested cycle
creates the j-th service, with its own cycle duration. In the end, a random time
zone from -12 to +14 is chosen and put in all the service records of the current
machine. Lastly, the service list is saved into the registry. Once the desired number
of machines is reached the process stops and the registry creation is completed.

Note that the fields containing the total utilization, the average utilization,
and the last update of the model have not been mentioned. This is because the
utilization time and the machine learning models will be generated later, and
these values are originally set to null. In particular, the process that generates the
utilization for each machine is analyzed in the next section.

The Spring Model that works as an interface to map a database entry of the
registry to a Java object can be found in Appendix A.1.

4.2 Usage dataset

The usage dataset is the database where the data used as input by the machine
learning models are stored, so it represents the most interesting part of the data
characterization.
The main idea at the basis of the data that can be of interest for this thesis work
is the following: the analysis will be based on the usage time of industrial machine
samples (e.g. robots, vehicles, etc.), so what we are looking for is a time series
representing for each day the number of hours a piece of equipment has been used.

This statement leads to the following assumptions on the synthetic usage time
we want to obtain:

• Day-night seasonality. Usually, equipment is mostly used during the day and
less or not used during the night. This is not particularly important for our
application, since we are interested in the overall usage time in a day, but has
been considered just to be thorough and for possible future developments.
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(a) Sample #1. (b) Sample #2.

Figure 4.2: Two time-series samples of equipment’s daily usage time in seconds
versus the day.

• Week seasonality. Usage will be concentrated on the weekdays and the proba-
bility of using an industrial machine during the weekend will be considered
low.

• Some machines are more "stressed" during relatively short periods of time and
they are almost unused during the remaining time.

• The amount of data is different for each piece of equipment. Old machines
have more records with respect to recently introduced machines.

• The last trivial constraint is that the number of hours per day a machine can
be used can not exceed 24 (or 86400 in seconds).

In Figure 4.2 the usage time, expressed in seconds, per day of two example
machines, and its rolling mean and standard deviation evaluated on a 30-days
window are presented. In particular, it is possible to notice some of the features
previously described when speaking about the assumptions on synthetic data. From
the rolling metrics, the different types of seasonality come to light. The fact that
machines are not used for relatively long periods of time is clearly visible; the
first machine remained almost not used from 2016-03-28 to 2016-10-2014 and from
2017-05-02 to 2018-02-26, and the second one presents very low usage from February
to September 2016. The amount of data for the two machines is different; both of
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UUID service_id date util util_to_m days_to_m pred

0c217...db055 0 2020-03-12 7582 15025 45 -
0c217...db055 0 2020-03-13 2468 12557 44 -
0c217...db055 0 2020-03-14 0 12557 43 -
5475f...a868a 0 2020-03-12 554 1250 - 1
df7f5...11701 0 2020-03-12 1545 85622 125 -
5475f...a868a 0 2020-03-13 0 1250 - 1

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
5bee2...0924a 0 2021-05-02 2548 17254 - 6
83ef6...045b7 0 2021-05-02 4862 48751 78 -
5bee2...0924a 0 2021-05-03 5488 11766 - 5
5bee2...0924a 0 2021-05-04 4587 7179 - 4
5bee2...0924a 0 2021-05-05 0 7179 - 4
83ef6...045b7 0 2021-05-03 1158 47593 77 -

Table 4.2: Usage dataset samples.

them start in 2015 but the first sample records end in 2018 while the other one in
2017.

Now, we should step into a more accurate description of the usage dataset
creation and provide some examples.
Table 4.2 shows some sample records of the usage database.

The fields it contains are the following:

• Universally unique identifier (UUID). A 36-character string with dashes, digits,
and letters, is intended to be universally unique in the system.

• Service ID. An identifier used to have more than one maintenance cycle for
each machine.

• Date. A progressive date to store values for a specific day is used to define a
time series.

• Utilization. It is the time in seconds the machine has been used during the
day indicated in the previous field (Date). It is the field that stores the time
series Um(t) defined in the problem formulation (Section 3.2).
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• Utilization to maintenance. The remaining time in seconds a machine can be
used before going to maintenance. It is the field where the time series Lm(t)
defined in the problem formulation (Section 3.2) is stored.

• Days to maintenance. The remaining calendar days before going to mainte-
nance. This is the field used to train the machine learning algorithms and
represents the target variable (i.e. what we want to predict). Obviously, it
is not known day by day and its value is evaluated a posteriori. It is the
field which contains the time series Dm(t) defined in the problem formulation
(Section 3.2).

• Predictions. The days remaining for maintenance, as predicted by the machine
learning algorithms.

It is easy to understand that each row is uniquely identified by the fields UUID,
service_id and date, that act as composite primary key of the table. As one can
notice, the columns days_to_maint and predictions have some missing values.
The reason is that, as we already said, the remaining days to maintenance can not
be evaluated during the current cycle and we are interested in predictions only
during the ongoing cycle, so past records do not include predictions. More details
on how the days to maintenance are evaluated will be explained in the following
paragraphs.

Now, let us analyze and further understand which is the purpose of the three
fields util, util_to_maint and days_to_maint. The first one is simply the time
in seconds the machine has been used during a specific day; it is synthetic data
coming from the considerations previously made about the time series of usage time.
The field util_to_maint is a counter used to keep track of the time a machine
can still be used before going to maintenance. It is needed to understand when a
cycle is over and the counter is restarted to its original value (the cycle duration
contained in the Equipment registry discussed in Section 4.1).

The full code which performs the operations of creation and update of the table
can be found in the Appendix A.2, while here the process is explained.
Figure 4.3 can help understand how the process works: each day the field util_to_maint
is updated by making the difference between its value at the previous day and the
utilization of the current day.
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Figure 4.3: How the remaining utilization to maintenance (util_to_maint) is
updated day by day and how the days left to next maintenance (days_to_maint)

are evaluated at the end of a cycle.

When this difference is negative or equal to zero (line 71 of the code in the Appendix
A.2), it means that there is no more usage time left and the machine should go to
maintenance. In other words, the cycle is over and the field days_to_maint can
be evaluated and inserted into the table from the beginning to the end of the cycle.
At this point, the counter util_to_maint restarts from the value cycle_dur for
that specific machine and service and the process is repeated.

In conclusion, an analysis of the cycle duration is presented.
Two examples of the target series Dm(t) representing the days left to the next
maintenance are shown in Figure 4.4, The first sample with 5 cycles, the second
sample with 4 cycles. When the days to maintenance reach 0, the machine enters
maintenance mode. Once a new maintenance cycle has begun, the remaining days
restart from a maximum value and monotonically decrease, by one day for every day
that has gone, until the next maintenance operation is carried out. It is important
to notice that the cycle duration varies a lot. The first sample’s first three cycles
have a duration of around 100 days, while for the last two cycles the duration is
four times longer. This is because the usage does not follow specific patterns and
low or zero utilization periods highly affect the cycle duration.

Figure 4.5 compares the number of usage seconds left for the subsequent main-
tenance to the number of days remaining for maintenance. When the seconds
to maintenance are closer to 0, the functions appear to run at a constant rate,
indicating that the usage rate is generally constant and not zero when the machine
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(a) Sample #1. (b) Sample #2.

Figure 4.4: Two samples of remaining days to next maintenance versus the day.

(a) Sample #1. (b) Sample #2.

Figure 4.5: Utilization seconds left to maintenance versus the number of days to
maintenance for all the cycles of two sample machines.

is approaching maintenance.
There are, however, a few vertical steps that signify consecutive days when there was
no utilization. This demonstrates that the target variable is significantly affected
by the occurrence of low or zero utilization periods. Consequently, determining
the precise target value could be difficult. Hopefully, in the days leading up to the
deadline, there will not be many extended periods of zero utilization.
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Chapter 5

Results

In this chapter, we present the findings and some outputs obtained from the dataset
that was examined in Chapter 4 using the methodologies described in Chapter 3.

Since the purpose of this chapter will mostly consist of an analysis of machine
learning algorithms, a brief overview of the most common metrics used to evaluate
the performance of classifiers and regressors is presented.

Results obtained for the hyperparameters’ tuning both of classification and
regression algorithms are shown and discussed. The different algorithms are then
compared by means of plots, charts, and performance metrics.

5.1 Performance metrics

Performance metrics are an essential part of every machine-learning pipeline.
Your model might produce satisfactory results when measured with one metric,
but unsatisfactory results when measured using another. For this reason, it is
important to evaluate a machine learning model – classification as well as regression
algorithms – by means of different metrics, in order to give it a fair evaluation.
We must pick our metrics for estimating ML performance very carefully because the
statistic you select will determine exactly how the effectiveness of ML algorithms
is assessed and compared. Moreover, the metric you select will have a significant
impact on how you weigh the relative value of different variables in the outcome.

Various performance metrics that can be used to evaluate the results obtained
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for classification and regression problems will be covered in this section.

5.1.1 Classification

Classification accuracy is the metric that is most frequently used to gauge how well
a classification predictive model is doing. It may be calculated easily by dividing
the number of examples in the test set that were successfully predicted by the total
number of predictions made on the test set:

Accuracy = Correct Classifications

Total Classifications
= TP + TN

TP + TN + FP + FN

On the other hand, the error rate may be determined by dividing the number of
wrong predictions on the test set by the total number of predictions on the test set:

Error rate = Wrong Classifications

Total Classifications
= FP + FN

TP + TN + FP + FN

Now, let us examine each of the elements in the aforementioned formulations
individually:

• TP (True Positive) indicates the number of positive class samples that your
model accurately predicted.

• TN (True Negative) indicates the number of negative class samples that your
model accurately predicted.

• FP (False Positive) indicates the number of negative class samples that your
model was inaccurate in predicting.

• FN (False Negative) indicates the number of positive class samples that your
model was inaccurate in predicting.

Notice that the formulation with these factors only stands for a binary classifier,
since only two classes are taken into consideration (positive and negative).

A tabular representation of the ground-truth labels and model predictions is
called a confusion matrix (Figure 5.1). The instances in a predicted class are
represented in each column of the confusion matrix, and the instances in actual
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Figure 5.1: Binary confusion matrix.

classes are represented in each row. The confusion matrix is not really a performance
statistic, but it serves as a sort of foundation for how other metrics assess the
outcomes:

5.1.2 Regression

A common error metric for regression problems is called mean squared error, or
MSE for short.

The average of the squared discrepancies between the predicted and expected
target values in a dataset is used to calculate the MSE:

MSE = 1
N

NØ
i=1

(yi − ŷi)2

where yi and ŷi are, respectively, the i-th observed and predicted values in the
dataset. In order to remove the sign and get a positive error value, the difference
between these two numbers is squared.
Large errors are also inflated or magnified as a result of the squaring. In other
words, the wider the discrepancy between the expected and predicted values, the
larger the squared positive error that results.

In addition to the mean squared error is the root mean squared error or RMSE.
It is simply the squared root of the MSE:

RMSE =
√

MSE =

öõõô 1
N

NØ
i=1

(yi − ŷi)2

Another popular metric is the mean absolute error (MAE). It is determined
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by averaging the absolute errors, as suggested by its name. As a result, while
calculating the MAE, the difference between an expected and forecasted value is
forced to be positive.
The calculation is as follows:

MAE = 1
N

NØ
i=1
|yi − ŷi|

Unlike MSE and RMSE which punish bigger mistakes more severely than smaller
ones, the MAE does not give distinct sorts of errors more or less weight; instead,
the scores rise linearly as the number of errors increases.

The errors just defined do not account for or weigh the amount of time until
the next maintenance. To put it another way, a 1-day error when we are close
to the maintenance is equivalent to a 1-day error when we are distant from the
maintenance. This problem is resolved by taking into account the mean residual
error (MRE). It represents the average daily errors across a chosen range of days.
We specifically want to calculate the average solely for specific Dm values found in
a subset D̃, that is a list of days that are closer to the maintenance for each cycle
(for example the last 30 days of each cycle).
The MRE is evaluated in the following way:

MRE = 1
|D̃|

Ø
i:yi∈D̃

|yi − ŷi|

From all the errors’ formulations is clear that the smaller they are, the better.
Our main objective will be to minimize especially the MRE since we are most
concerned about receiving precise forecasts when the machines are getting close to
the conclusion of their maintenance cycle.

5.1.3 Hyperparameter tuning

Finding the optimal combination of hyperparameters to enhance the model’s per-
formance is known as hyperparameter tuning. It operates by conducting numerous
trials within a single training procedure. Every trial entails the full execution of
your training application with the values of the selected hyperparameters set within
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Figure 5.2: Overall error rates of all the classifiers vs. remaining days to next
maintenance for all the machines in the database.

the predetermined bounds. Once this procedure is complete, you will have the set
of hyperparameter values that the model requires to perform at its best.

The approach used to optimize the hyperparameters of the following classification
and regression models is the grid search. With the grid search approach, we
build a grid of potential hyperparameter values. Each iteration tries a set of
hyperparameters in a certain sequence. It tracks the model performance when
fitting the model with every conceivable set of hyperparameters. The best model
with the best hyperparameters is then returned.

5.2 Classification models

In this section, we are going to analyze the performance of the classification models
previously described, from a theoretical point of view, in Section 3.3.
The five analyzed classification methods are: Naive Bayes classifier, k-nearest
neighbors (k-NN), Support Vector Machine (SVM), Random Forest classifier (RF)
and AdaBoost.

The performance of the various classifier is analyzed in Figure 5.2 in terms of
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(a) K-nearest neighbors. (b) Random forest classifier.

Figure 5.3: Error rates of k-NN and RF classifiers vs. days to maintenance in
two different scenarios: unique model and machine-specific models.

error rate. The results have been obtained by classifying the data of all the machines
stored in the database, with a specific model for each machine. As expected all
the classifiers have a maximum error rate at the threshold between the two classes
(30 days to maintenance), which is almost 60% for all of them. The errors are
really low when far from the threshold, both for smaller and larger values. The
worst classification accuracy is obtained with the Naive Bayes classifier, which is
the simplest one, so one could have expected this behavior. Random forest, k-NN,
and AdaBoost have comparable error rates and result in the best classifiers. A
bit worse is the SVM, especially in the area around the threshold, where the error
rates are a bit higher with respect to the three just mentioned methods.

Figure 5.3 provides a different kind of analysis. K-NN and Random forest, which
are the two best algorithms (AdaBoost has been discarded because it is a bit more
time-consuming), have been tested under two different scenarios. A unique model
is trained on the whole dataset and machine-specific models, each of them trained
only on one machine’s past data.

The unique model is obviously simpler to be trained and maintained. The
downside is that, as expected, the accuracy of predictions is generally lower, both
for k-NN and RF. The natural choice would be: going for a unique model in case
simplicity and speed are fundamental, choosing to train a classification model for
each machine if accuracy is important at the expense of having a more complex
system.
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(a) AdaBoost. (b) k-NN. (c) Random forest. (d) SVM.

Figure 5.4: Confusion matrix of AdaBoost, k-NN, RF, and SVM, classifying
every machine’s data with its own specific model.

The last way of performance comparison is the confusion matrix, as in Figure
5.4. The label 1 is used to indicate the "more than 30 days left to maintenance"
class, while 0 represents the opposite situation. The Naive Bayes classifier has
been excluded from this analysis because, as already said, its performance is not
satisfying when compared to the other algorithms. From a first look, the SVM is
easily confirmed as slightly worse with respect to the other methods. In particular,
the SVM outputs contain many false positives, meaning that the model is not able
to accurately predict when less than 30 days are remaining. This can be due to
the fact that cycles are usually way longer than 30 days, so the two classes are not
balanced.

The best algorithm from this analysis results to be the random forest classifier,
with a very low rate of false positives and false negatives, equal to 16% and 5.5%
respectively.

5.3 Regression models

In this section, we are going to analyze the performance of the classification
models previously described, from a theoretical point of view, in Section 3.4. The
four analysed regression methods are: Linear Regression (LR), Support Vector
Regression (SVR), Random Forest Regression (RF) and eXtreme Gradient Boosting
(XGB).

The results presented in the following have been obtained considering one of
the machines belonging to the system.
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(a) Linear regression. (b) SVR.

(c) Random forest. (d) XGB.

Figure 5.5: Comparison between predicted values and test set of the four
algorithms trained on the whole dataset and on the last 30 days of each cycle of

one of the machines.

Some comparisons among the four algorithms of interest are shown in Figure 5.5.
In red we find the actual values of the test set, i.e. what we aim to predict, in blue,
there are the predictions made by the algorithms trained on the whole dataset,
and in violet the predicted values obtained by the regression methods trained only
on the last 30 days of each cycle. The violet lines are clearly very far from the
ground truth at the beginning of the cycle (except for the LR which performs a
bit better), while they become very precise in the last 30 days of the cycle. It
is expected behavior since the algorithms are trained to work at their best when
maintenance is forthcoming. The blue lines seem to follow the decreasing trend
more accurately, although they are fluctuating close to the true values.

A similar performance comparison is reported in Table 5.1 from a metrics
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Whole data Last 30 days
Model MAE MRE MAE MRE
LR 28.314 19.869 14.973 1.439
SVR 16.350 7.129 35.038 2.440
RF 18.975 4.889 30.400 1.289
XGB 18.161 7.618 29.716 1.862

Table 5.1: Machines subset’s average error metrics (MAE and MRE over the last
30 days) of the four algorithms trained on the whole dataset and on the last 30

days of each cycle.

perspective, which is more informative and precise in reflecting the actual differences
among the methods. The MAE is the most important metric when speaking of
models trained on the whole dataset. The worst performance has been obtained
by linear regression, with a mean absolute error of 28.314 days. The other three
algorithms have comparable errors in the range [16, 18] days, almost halving the
error of the LR. The MRE depicts the same situation, with the SVR, RF, and
XGB that outperform the LR.

Looking at the version of the algorithms trained on the last 30 days of the cycles,
we are more interested in the mean residual error evaluated on the subset composed
by the last 30 days of the test set. In this case, all the methods have really low
MRE, with the random forest resulting as the best with an MRE equal to 1.289
days. The MAEs are generally higher because are evaluated on the whole test set,
while the algorithm is designed in order to have good accuracy on the last days
before maintenance operations. As said from the analysis of Figure 5.5, the LR
is the one that presents a good performance on the whole test set, even with the
version trained on the last 30 days.

5.4 Dashboard

The Node-RED dashboard represents the graphical user interface to interact with
the system. Figure 5.6 shows the output of the dashboard for one of the machines
stored in the database.

On the left side, there is the time series of the daily usage time, in hours, versus
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Figure 5.6: The dashboard interface.

the day, expressed as year-month-day. On the same plot, the vertical red lines
mark the limits of the maintenance cycles.
Under this plot, we can find a search bar used to search a machine in the database.

On the right side of the dashboard, it is possible to find some useful information
about past cycles’ duration (in red) and the ongoing cycle (in green); the dark
green bar are the days already passed during the ongoing maintenance cycle, while
the light green amount represents the predicted days to maintenance.

The elements in the bottom-right corner are: the last time the machine was used,
the predicted days to maintenance, a button to request an update of the model for
the current machine, and an input box to enter the actual last maintenance. This
is required because we cannot be sure that the last maintenance was carried out
exactly at the end of the last cycle; the maintenance could have been anticipated
or delayed for any reason and this should be taken into account.
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Chapter 6

Conclusion

The final chapter is totally dedicated to drawing some conclusions and insights
from the work that has been done. A short recap is provided, before discussing
some ideas for future developments and possible improvements to the work.

The first sections of the introduction debate the important role of the Internet of
Things in today’s world. Having more and more devices and objects connected to the
Internet is changing the way they interact with each other and with people. Huge
volumes of data are collected and transferred over the networks every day, leading
to the concept of Big Data. To extract insights from huge, varied, complicated
data sets, a variety of approaches and technologies with novel forms of integration
are needed. Data mining techniques are increasingly used by companies to extract
knowledge from data, in order to achieve benefits.
One of these advantages represents the main topic of the thesis: help a company
predict when industrial machines have to undergo periodic maintenance. The
state-of-the-art analysis showed that a lot of research on topics related to predictive
maintenance has been carried out during the last few years. The ability to predict
maintenance brings efficiency in scheduling tasks, with substantial savings in terms
of time and money.

Some common machine learning methods have been analyzed and their perfor-
mance has been compared. The forecasting problem has been decomposed into two
simpler problems: a preliminary classification to determine whether the machine is
close to the next maintenance, and a regression actually making the prediction in
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terms of days left to maintenance.
Simple methods like linear regression, or Naive Bayes classifier for classification,

have been compared to more complex techniques, like ensemble methods. Good
accuracy metrics have been obtained by using some of these algorithms, representing
a solid foundation for future developments and improvements.

Another goal of this thesis is to propose a possible way to integrate the prediction
system in a more complex environment. Common enterprise technologies, like
the Spring Framework, or PostgreSQL, have been employed in order to present a
complete and realistic solution. The structure and how the blocks of the system
communicate with each other have been explained with a complete methodology
definition, underlining the challenges that can arise when dealing with this kind of
problem and how they can be solved. A prototype of a graphical interface allowing
the user to interact with the system and look up the results has been proposed.

6.1 Future developments

Data collection and management systems used today are able to improve over time,
leveraging artificial intelligence and machine learning solutions. Another aspect
that should not be underestimated, particularly in cloud-based implementations,
is that the predictive models used are constantly being updated and improved,
making predictive maintenance systems increasingly effective over time. So, a pre-
dictive maintenance system can not be considered a static solution, but continuous
adjustments and updates are required.

A possible future improvement of the work discussed in this thesis is particularly
related to the machine learning models and could be the enrichment of the dataset
with other features. Indeed, only temporal data, such as the historical records of
daily working hours of previous days were employed in the study. Other changing
parameters or characteristics that have an impact on the maintenance of the
equipment, such as the type of machine (e.g. industrial robot, vehicle, etc.),
measurements coming from sensors (e.g. pressure, voltage, etc.), details about the
task a machine is working on, etc. can further enhance the features. These are
merely a few suggestions for enhancing model correctness by adding extra features
to the input, but others can be easily found.
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Another important aspect is related to the source of the data. As discussed in
Chapter 4, the data employed to train and test the predictive models are synthetic.
Further validation of the system should include the use of real-world data coming
from industrial equipment.

Considering a company with heterogeneous machines, in terms of usage patterns
and type, another consideration could be done. Instead of developing a predictive
model for each machine, some unsupervised learning techniques (like clustering)
can be used to firstly group the equipment. With this approach, predictions can be
made even for new machines (with few historical records), by using data coming
from similar equipment.

In conclusion, we can say that the key to applying a predictive maintenance
method is to collect historical data, so the first step is to equip the machines with
sensors and establish a network infrastructure. The work presented in this thesis
could represent a starting point and an initial analysis of a possible way to integrate
a predictive maintenance system in a company environment. The technologies
are easily adaptable and can also be changed in order to be compliant with the
frameworks and tools already in use by a company.

All this surely involves costs and investments, but a company that today has
maintenance among its major cost items should undoubtedly consider switching to
a predictive system, which will ensure greater efficiency and cost containment.
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Codes

A.1 Equipment registry model

Each equipment stored into the registry is mapped in a Spring @Entity. Using the
MVC pattern, it represents a Model that handles the access to data needed by the
application (machines in this case).

Listing A.1: Machine model
1 @Entity
2 @Table(name = "machines_registry")
3 @IdClass(MachineId.class)
4 public class Machine {
5

6 @Id
7 private String uuid;
8 @Id
9 @Column(name = "service_id")

10 private int serviceId;
11 private int cycle_dur;
12 private int time_zone;
13 private int tot_util;
14 private int avg_util;
15 private LocalDate last_update;
16
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17 public Machine() {
18 }
19

20 public Machine(String uuid, int serviceId, int cycle_dur, int
ñ→ time_zone, int tot_util, int avg_util,

21 LocalDate last_update) {
22 super();
23 this.uuid = uuid;
24 this.serviceId = serviceId;
25 this.cycle_dur = cycle_dur;
26 this.time_zone = time_zone;
27 this.tot_util = tot_util;
28 this.avg_util = avg_util;
29 this.last_update = last_update;
30 }
31

32 public String getUuid() {
33 return uuid;
34 }
35

36 public void setUuid(String uuid) {
37 this.uuid = uuid;
38 }
39

40 public int getServiceId() {
41 return serviceId;
42 }
43

44 public void setServiceId(int serviceId) {
45 this.serviceId = serviceId;
46 }
47

48 public int getCycle_dur() {
49 return cycle_dur;
50 }
51
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52 public void setCycle_dur(int cycle_dur) {
53 this.cycle_dur = cycle_dur;
54 }
55

56 public int getTime_zone() {
57 return time_zone;
58 }
59

60 public void setTime_zone(int time_zone) {
61 this.time_zone = time_zone;
62 }
63

64 public int getTot_util() {
65 return tot_util;
66 }
67

68 public void setTot_util(int tot_util) {
69 this.tot_util = tot_util;
70 }
71

72 public int getAvg_util() {
73 return avg_util;
74 }
75

76 public void setAvg_util(int avg_util) {
77 this.avg_util = avg_util;
78 }
79

80 public LocalDate getLast_update() {
81 return last_update;
82 }
83

84 public void setLast_update(LocalDate last_update) {
85 this.last_update = last_update;
86 }
87
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88 @Override
89 public String toString() {
90 return "Machine [uuid=" + uuid + ", serviceId=" + serviceId + ",

ñ→ cycle_dur=" + cycle_dur + ", time_zone="
91 + time_zone + ", tot_util=" + tot_util + ", avg_util=" +

ñ→ avg_util + ", last_update=" + last_update
92 + "]";
93 }
94 }

A.2 Usage dataset creation and update

The usage table is created and updated by a Spring @Component. It contains a
function updateTable scheduled to run every hour in order to update the machines
located in time zones where the day is over (at midnight) and new information
about utilization can be available.
The auxiliary function updateCycle update the table with days left to maintenance
once a cycle is complete.

Listing A.2: Table Updater
1 @Component
2 public class TableUpdater {
3

4 private static final Logger logger =
ñ→ LoggerFactory.getLogger(TableUpdater.class);

5

6 @Autowired
7 private IMachineService machineService;
8

9 @Autowired
10 private IMyRecordService recordService;
11

12 @Autowired
13 private IUtiliztionService utilizationService;

55



Codes

14

15 private void updateCycle(List<MyRecord> records, int daysCount) {
16 int index = records.size() - 1;
17 for (int i=0; i<=daysCount; i++) {
18 MyRecord record = records.get(index);
19 record.setDays_to_maint(i);
20 records.set(index, record);
21 index--;
22 }
23 }
24

25 @Scheduled(initialDelay = 24*3600000, fixedRate = 3600000)
26 public void updateTable() {
27 Date now = new Date();
28 int hour = (int)(now.getTime() % 86400000) / 3600000;
29 int midnightTz;
30 if (hour <= 11) {
31 midnightTz = -hour;
32 } else {
33 midnightTz = 24 - hour;
34 }
35 logger.info("Updating usage dataset of time zone: " + midnightTz );
36

37 List<Machine> machines = (List<Machine>)
ñ→ machineService.findByTimezone(midnightTz);

38

39 for (Machine v:machines) {
40

41 List<MyRecord> records = new ArrayList<>();
42

43 LocalDate lastDate = recordService.getLastDate(v.getUuid());
44

45 ArrayList<DailyUtilization> dailyUtilization =
ñ→ utilizationService.findDailyUtilization(v.getUuid());

46 if (dailyUtilization.isEmpty()) {
47 // If the machine has no utilization, skip it
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48 continue;
49 }
50 if (lastDate != null) {
51 dailyUtilization = (ArrayList<DailyUtilization>)

ñ→ dailyUtilization.stream()
52 .filter(e -> e.getDate().isAfter(lastDate))
53 .collect(Collectors.toList());
54 }
55 int utilToMaintenance = v.getCycle_dur();
56 int daysCount = -1;
57 for (int i=0; i<dailyUtilization.size(); i++) {
58 DailyUtilization u = dailyUtilization.get(i);
59 int utilization = 0;
60 if (u.getEngineHours() != null) {
61 utilization = u.getEngineHours().intValue();
62 if (utilization > 86400) {
63 utilization = 86400;
64 } else if (utilization < 0) {
65 utilization = 0;
66 }
67 }
68 LocalDate date = u.getDate();
69 LocalDate next_date = (i+1 < dailyUtilization.size()) ?

ñ→ dailyUtilization.get(i+1).getDate() : date.plusDays(1);
70 while ( date.isBefore(next_date) ) {
71 if (utilToMaintenance - utilization <= 0) {
72 updateCycle(records, daysCount);
73 utilToMaintenance = v.getCycle_dur();
74 daysCount = -1;
75 }
76 daysCount ++;
77 utilToMaintenance -= utilization;
78

79 // Append new record to list
80 records.add(new MyRecord(v.getUuid(), v.getServiceId(), date,

ñ→ utilization, utilToMaintenance, null, null));
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81 date = date.plusDays(1);
82 utilization = 0;
83 }
84 }
85 // Insert the records in the table
86 recordService.saveAll(records);
87

88 // Update tot. util. and avg util of the machine
89 Integer totUtil = recordService.getTotalUtilization(v.getUuid());
90 Integer avgUtil = recordService.getAvgUtilization(v.getUuid());
91 if (totUtil == null || avgUtil == null) {
92 totUtil = 0;
93 avgUtil = 0;
94 }
95 machineService.save(new Machine(v.getUuid(),
96 v.getServiceId(),
97 v.getCycle_dur(),
98 v.getTime_zone(),
99 totUtil, avgUtil, null));

100 }
101 logger.info("Usage dataset of time zone " + midnightTz + "

ñ→ updated.");
102 }
103 }

A.3 The machine learning module

It is the piece of Python code that is in charge of all procedures related to
machine learning. It has been designed as a REST web service using the Flask
framework. The service exposes two routes. /update takes as parameters a UUID
and service_id in order to check if the models can be retrained. /predict takes as
parameters the UUID, the service_id and the date of last maintenance last_maint.
It responds with the predictions of the remaining days to maintenance according
to the parameters in the request.
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Listing A.3: Machine learning module
1 app = Flask(__name__)
2

3 @app.route(’/update’)
4 def update_model():
5 uuid = request.args.get(’uuid’, type=str)
6 service_id = request.args.get(’service_id’, type=int)
7

8 if uuid is None:
9 abort(404, ’Invalid uuid, should be a string.’)

10

11 if service_id is None:
12 abort(404, ’Invalid service_id, sould be an integer.’)
13

14 db_mgr = DbManager()
15 db_mgr.connect()
16

17 try:
18 # Get machine’s information
19 rows = db_mgr.get_machine(uuid, service_id)
20 keys = [’uuid’, ’service_id’, ’cycle_dur’, ’time_zone’,

ñ→ ’tot_util’, ’avg_util’, ’last_update’]
21 machine = dict(zip(keys, rows[0]))
22 except IndexError:
23 abort(404, f"Machine {uuid} with service_id {service_id} not

ñ→ found.")
24

25 # Get table
26 rows = db_mgr.get_table(uuid, service_id)
27 keys = [’uuid’, ’service_id’, ’date’, ’util’, ’util_to_maint’,

ñ→ ’days_to_maint’, ’predictions’]
28

29 if not rows:
30 abort(404, f"Machine {uuid} has no utilization history.")
31

32 time_window_size = 10
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33 tot_util_sec = machine[’tot_util’] * 3600
34 if tot_util_sec >= machine[’cycle_dur’]:
35 # Old machine
36 df = pd.DataFrame(rows, columns=keys)
37 filename = f’./models/{uuid}_{service_id}.sav’
38 last_cycle_end = df[df[’days_to_maint’] == 0].iloc[-1][’date’]
39 # Check if the model can be trained again with new data
40 if machine[’last_update’] is None or last_cycle_end >

ñ→ machine[’last_update’] or not os.path.isfile(filename):
41 df = Model.build_dataset(df, time_window_size)
42 X_train, X_test, y_train, y_test =

ñ→ Model.my_train_test_split(df, last_30_days=True)
43 Model.train_random_forest(filename, X_train, y_train)
44 db_mgr.set_last_update(machine[’uuid’],

ñ→ machine[’service_id’], last_cycle_end)
45

46 response = {’uuid’: machine[’uuid’], ’service_id’:
ñ→ machine[’service_id’], ’updated’: True}

47

48 db_mgr.close()
49

50 return jsonify(response)
51

52

53 @app.route(’/predict’)
54 def predict():
55 uuid = request.args.get(’uuid’, type=str)
56 service_id = request.args.get(’service_id’, type=int)
57 last_maint = request.args.get(’last_maint’, type=str)
58

59 if uuid is None:
60 abort(404, ’Invalid uuid, should be a string.’)
61

62 if service_id is None:
63 abort(404, ’Invalid service_id, sould be an integer.’)
64
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65 if last_maint is None:
66 abort(404, ’Invalid last_maint, sould be a string.’)
67 else:
68 try:
69 last_maint = datetime.strptime(last_maint,

ñ→ ’%Y-%m-%d’).date()
70 except:
71 abort(404, "Unable to parse last_maint, format should be

ñ→ ’%Y-%m-%d’")
72

73 db_mgr = DbManager()
74 db_mgr.connect()
75

76 try:
77 # Get machine’s information
78 rows = db_mgr.get_machine(uuid, service_id)
79 keys = [’uuid’, ’service_id’, ’cycle_dur’, ’time_zone’,

ñ→ ’tot_util’, ’avg_util’, ’last_update’]
80 machine = dict(zip(keys, rows[0]))
81 except IndexError:
82 abort(404, f"Machine {uuid} with service_id {service_id} not

ñ→ found.")
83

84 # Get table
85 rows = db_mgr.get_table(uuid, service_id)
86 keys = [’uuid’, ’service_id’, ’date’, ’util’, ’util_to_maint’,

ñ→ ’days_to_maint’, ’predictions’]
87 df = pd.DataFrame(rows, columns=keys)
88

89 if not rows:
90 abort(404, f"Machine {uuid} has no utilization history.")
91

92 last_util_date = df.iloc[-1][’date’]
93

94 # Select the last ’time_window_size’ records in the dataframe
95 time_window_size = 10
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96 to_be_predicted = Model.build_prediction_X(df, time_window_size,
ñ→ last_maint, machine[’cycle_dur’])

97

98 tot_util_sec = machine[’tot_util’] * 3600
99 if tot_util_sec >= machine[’cycle_dur’]:

100 filename = f’./models/{uuid}_{service_id}.sav’
101 if os.path.isfile(filename):
102 prediction = Model.predict(filename, to_be_predicted)[0]
103 status = ’ok’
104 else:
105 prediction = None
106 status = ’model not found’
107 else:
108 filename = ’./models/unified.sav’
109 if os.path.isfile(filename):
110 prediction = Model.predict(filename, to_be_predicted)[0]
111 status = ’ok’
112 else:
113 prediction = None
114 status = ’model not found’
115

116 last_daily_util = int(to_be_predicted[’util’].iloc[0])
117

118 response = {’uuid’: machine[’uuid’], ’service_id’:
ñ→ machine[’service_id’],

119 ’date’: last_util_date, ’daily_util’: last_daily_util,
120 ’days_to_maint’: prediction, ’status’: status}
121

122 db_mgr.close()
123

124 return jsonify(response)
125

126

127 if __name__ == ’__main__’:
128 app.run(host=’0.0.0.0’)
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