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Abstract

Machine Learning requires an enormous amount of mathematical computation
per second. Several architectures have been proposed to match the computation
requirements and improve the calculation efficiency. Among these, the Systolic
Array accelerators show promising results. These accelerators are composed of
several Processing Elements (PEs), arranged on multiple symmetrical lines, which
include a Multiply-And-Accumulate module. Specific multi-precision multipliers
are increasingly popular since they can execute different precision multiplications
and they can be integrated into Systolic Array accelerators.
In this work, a multi-precision multiplier is proposed. The objective of the design
is to build up a multiplier formed by combining smaller and equal multipliers.
Depending on the number of small multipliers that are used, the size of the final
multiplier changes. The mathematical foundation is based on decomposing the
operands as the addition of several numbers and then applying the distributive
and associative properties of mathematics.
Different designs have been implemented with small multipliers able to execute 4x4
and 8x8 multiplications. A total of six multipliers have been implemented: three
multipliers are made with 4x4 small multipliers and their output size is 16,32,64.
The other three multipliers are realized with 8x8 small multipliers and their output
size is 32,64,128.
The multiplier benefits of hardware re-utilization and shows promising results in
terms of area and power consumption. Less energy is consumed and less surface
area is required compared to previously developed solutions.
Compared to other structures performing similar functions, reusing multipliers can
save about 30% of the area with a penalty of only 8% of the delay.

Keywords: Systolic Array, Machine Learning, Processing Elements, Multiply-
And-Accumulate
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Chapter 1

Introduction

1.1 A world full of Deep Learning

Nowadays, artificial intelligence and its utilization are widespread in every field of
science. Deep Learning [1] completely changed the way to identify an object and
has opened a new perspective for computer vision science. Autonomous driving[2],
fake news detection[3], Natural Language Processing[4], and disease’s diagnosis
[5] are clear evidence of how critical the impact of these studies is on our lives.
Deep Learning takes advantage of the CNNs which allows getting a very high
inference accuracy. A Convolutional Neural Network or CNN is a type of artificial
neural network, which is widely used for image/object recognition and classification.
CNNs are inspired by the architecture of the brain. Just like a neuron in the brain
processes and transmits information throughout the body, artificial neurons or
nodes in CNNs take inputs, process them, and sends the result as output. In CNNs,
there could be multiple hidden layers, which perform feature extraction from the
image by doing calculations. This could include convolution, pooling, rectified
linear units, and fully connected layers. Unfortunately, the outstanding results of
the CNNs, come at the price of high computational complexity.
The huge amount of data and the complexity of the operations to be executed put
the strain on the standard CPUs, which turn out to be too slow for these applica-
tions. The research then began to look for some architectures that could provide
a viable alternative. The GPUs could be a solution[6]. Instead of emphasizing
context switching to manage multiple tasks, GPU acceleration emphasizes parallel
data processing through a large number of cores. They are more appropriate for
executing a great number of operations and they are widely used. GPU workloads
scale almost linearly with additional core count, so adding more compute units
increase their performance. It has a corresponding increase in die size and power
consumption and in some applications, GPUs energy consumption turns out to be
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Introduction

a problem[6].
To meet the needed performance and to increase the efficiency, new architectures
have been proposed [7],[8]. The hardware accelerators show impressive improve-
ments from the performance/energy perspective. These architectures are becoming
increasingly popular thanks to the results they achieve working with artificial
intelligence applications. An accelerator employs a series of strategies to accelerate
the calculation and improve the throughput. Some of them consist of reusing the
memory and decreasing the precision of the calculation. One popular accelerator
architecture is the Systolic Array, that is composed of an array of Processing
Elements (PE) which are connected according as a Network On Chip (NoC). Each
one of them is composed of a Multiply-And-Accumulate module (MAC), a register,
and a FIFO. Each MAC module is composed of an adder and a multi-precision
multiplier, which can execute multiplications of different sizes.

1.1.1 The trend in research
For decades all efforts were concentrated to increase the frequency and decrease
supply voltage and transistor size and trying to achieve better performances.
Nowadays the scenario has changed. The frequency’s rise already reached saturation
due to technical reasons and, in particular, due to power consumption reasons. The
current trend consists of increasing the number of cores/chips in architecture and
keeping the same frequency. Using more elements is beneficial because it is possible
scaling down the Vdd of a circuit, not increasing the frequency and increasing
the throughput. The cost is paid in terms of area which is going to increase to
ensure always better performance with lower power consumption. In the field of
hardware accelerators, the trend is following the same strategy. To keep low power
consumption and to increase performance, the idea is to increase the number of
PEs. Having more PEs means achieving better performances.

1.1.2 Aim of the work
A multi precision multiplier is an architecture which can be configured to execute
different precision multiplications. It can do matrix products multiplications and it
turns out to be useful in Machine Learning’s applications
The scope of this project is to study and design a multi-precision multiplier, as
alternative to have multiple multipliers of different precision. This can efficiently
done by reusing small multiplier to build up a big multiplier.
The main idea behind our multi-precision multiplier is the utilization of the sub-
products multiplication. A standard multiplication, indeed, can be solved by using
smaller multipliers and by doing a sum of products, each one with the necessary
bit extension. This mechanism is very useful in our research because it allows us
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to design a multiplier able to execute multi-precision multiplications and, achieve
excellent results from the point of view of area utilization. This that can be
implemented in the PEs of a hardware accelerator. The data precision needed
depends a lot on the application, and having it be configurable, without losing
throughput, would be very convenient and efficient . It should achieve improvements
from an Area and Power consumption point of view. Disposing of this multiplier
would mean being able to increase the number of PEs situated on a hardware
accelerator. This would lead to higher throughput and, consequently, better
performance. The aim is to find a suitable architecture in the state of art, which
can be modified and adapted to this specific application. In the upcoming chapters,
there is an analysis of the trend in the multiplier design, followed by a comparison
among them. Then there is the explanation of the theoretical background and the
behavior of the architecture developed. Finally, an explanation of the results leads
to the conclusions.
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Chapter 2

Background

In this chapter the knowledge present in the state of art is analyzed.

2.1 The current trend
The world of research is very focused on finding new solutions, that can satisfy
the new technologies and can deal with the new challenges that we are facing. In
the field of the hardware design of multi-precision multipliers, it is possible to
distinguish two main attitudes which are being used:

• Low Power approach: it is to try to keep the throughput of the multiplier
fixed and to apply some techniques to reduce the power consumption of the
circuit;

• High-Performance approach: it is to try to keep the power consumption of
the circuit fixed and to increase the throughput

In the following sections, the two trends are explained and for each some architecture
of the stat of art are analyzed.

2.2 Low power architectures
2.2.1 DVS multi-precision multiplier
This multiplier[9] was designed to improve the power consumption of a potential
ALU in multimedia and communication applications. The peculiarity of this multi-
plier is the presence of a Dynamic Voltage/Frequency Scaling unit, shown in figure
2.1[9], which regulates the values of the frequency and the Vdd depending on the
Throughput required by the user. Furthermore, the multiplier has a system, based
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on a razor flip flop, that implements an error detection strategy to improve the
DVS mechanism. Thanks to this mechanism, the circuit is able to save a great
amount of energy by regulating the main parameters depending on the requirements.

Figure 2.1: Razor Dynamic Voltage/Frequency Scaling unit

The multiplier is based on Booth Radix-4 core multipliers, and it can execute
1/3/9 multiplication 8x8, 1/2/3 multiplications 16x16, and 1 multiplication 32x32.
It is composed of 9 units, each one containing an ALU and the DVS logic. The
operating frequency is about 50 MHz and the technology used is 0.35 um.

2.2.2 Multi-precision multiplier with truncated partial prod-
uct

The truncated multiplier[10] is designed to reduce the power consumption and area,
to facilitate applications in the field of deep learning and Deep Neural networks.
The main idea of the multiplier is that the power consumption in low precision
mode can be reduced by turning off the unnecessary circuit parts. The product of
two numbers has twice the large bit-width concerning the initial numbers. Often,
only the MSB bits of the product are useful for the following computations. Due
to this reason, the proposed multiplier is truncated, and thanks to this, the area
and the power consumption are reduced while keeping throughput unchanged. Its
block diagram is shown in 2.2[10].
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Figure 2.2: Truncated multiplier’s block diagram

The multiplier can execute one multiplication of different precision modes:
4,8,12,16 bits. The architecture is composed of 4x4 multipliers and those reds are
truncated. The implemented technology is 40 nm and the operating frequency is
about 400 MHz.

2.2.3 Low power and configurable Booth

The multiplier[11] has been made for Digital Signal Processing Applications, where.
usually, it is necessary for flexibility and low power consumption. There are several
techniques to reduce power consumption and increase the operating frequency and
they are visible in figure 2.3[11].
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Figure 2.3: Low power and configurable Booth diagram

The "Shutdown logic" detects if any partial products will be zero and shut down
the circuit parts which are unnecessary for the computation. The "Switching logic"
detects if any Booth encoded product is zero and exchanges the operands it is
more convenient for the computation. The "sign bit generator" detects if one of
the operands is zero and it, immediately, outputs the result saving energy. The
"truncation and compensation circuit" disables the least significant bits computation
to further reduce the power consumption.
The multiplier can execute 1 multiplication 16x16 or 2 8x8. The technology
implemented is 90 nm and the operating frequency is about 50 MHz.

2.2.4 Approximate multiplier

This multiplier[12] is a multi-precision architecture suitable for digital signal pro-
cessing applications. Its peculiarity is the ability to work in both full-precision
and approximate mode. Depending on the input word length, only the required
numbers of the sub-multiplications are activated. The idea consists of subdividing
the main multiplications into smaller sub-products executed by different sub-units.
The diagram of the multiplier is shown in figure 2.4[12].
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Figure 2.4: Approximate multiplier diagram

If any of the operands has a word length less than 3/4-bit length, the approximate
mode is activated. In this case, the operands are truncated and the multiplication
is computed using only 1/4 of the PEs.
The multiplier can execute multiplication of 8x8 or 16x16. The technology imple-
mented is 90 nm and the working frequency is about 200 MHz.

2.3 High performance architectures

2.3.1 A flexible multiplier for media processing

This multiplier[13] is supposed to reduce energy consumption while offering flex-
ibility and high performance, for applications in the field of graphic and signal
processing. It is based on the recursive technique, which consists of building wider
vector elements using narrower ones and adding together the partial results in an
iterative way. It is suitable for high-performance applications.
The multiplier can execute double precision, single precision, and multi-precision
integer 8x8, 16x16, 32x32. The mechanism exploits the sum of products to compute
all multiplications. The block diagram is visible in the figure 2.5[13].
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Figure 2.5: Recursive multiplier diagram

This specific architecture is composed of 8-bit integer multipliers, it is, therefore,
possible to compute 4 8x8 bit multiplication or combine them with shifters and
adders to compute a 16x16 ore single precision or double precision multiplications.
The technology implemented is 130 nm and the operating frequency is about 330
MHz.

2.3.2 Multiple-Precision Floating-Point Dot Product Unit

This high-speed multiple-precision multiplier[14] was designed for deep learning
applications, in particular object recognition and natural language processing.
It computes integer and floating point multiplications, indeed, it divides the
multiplication in exponent and mantissa. In the figure 2.6[14] the block diagram is
shown.

9



Background

Figure 2.6: CSA multiplier

It is composed of different multipliers that can execute multiplications of 12x12,
12x5,17x15.
The results are then summed by an adder tree, which is structured with a chain of
Carry Select Adder. The Alignment shifter aligns the results depending on their
exponent.
The technology implemented is 55 nm and the operating frequency is about 450
MHz.

2.3.3 Dual-Mode Double Precision multiplier

This multiplier[15] aims to improve the floating point computation and, at the same
time, save area. In order to execute the floating point multiplications, the multiplier
decomposes the input numbers into sign, exponent, and mantissa. It is divided into
four stages shown in the figure 2.7[15]: in the first one the data from the inputs are
extracted and the sign of the multiplication is computed; furthermore, the mantissa
multiplications are executed. In the second stage, there are two levels of Dadda
Tree. In the third stage, the specific elements calculate and do the appropriate shift
of the exponent. In the fourth stage, the exponent and the mantissa are unified
and the final output is provided.

10
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Figure 2.7: Dual-Mode Double Precision multiplier

The multiplier can execute multiplication 1 double precision or 2 multiplications
which can be 32x32, 16x16, or 8x8. The technology implemented is 90 nm and the
operating frequency is about 1 GHz.

2.3.4 High-performance multi format multiplier

The multiplier described in [16] is made for digital signal applications, and in
particular, it has great performance with matrix multiplication. It is composed of
several multipliers, distributed according to a hierarchical scheme. The strategy
employed is based on the sum of products, which consists of dividing the numbers
to be multiplied, into smaller parts. The multiplier is therefore composed of smaller
multipliers, shifters, and adders used to compose the final result. Thanks to its
hierarchic shape, the multiplier shows great performances in terms of latency, and
also it can save a great amount of area thanks to the hardware re-utilization. Its
block diagram is shown in the figure 2.8[16].
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Figure 2.8: High-performance multi format multiplier

The multiplier can execute multiplications 8x8, 16x16, 32x32, and 64x64. It can
also do matrix multiplications exploiting the smaller multipliers. The technology
implemented is 28 nm and the operating frequency is about 660 MHz.

2.4 The choice
In our specific project, the ideal architecture should be able to execute parallel and
multi-precision multiplications. It should be able to reach high performance (deep
learning application) and it should be also able to reduce the area and the power
consumption.
The architectures analyzed are the best available in the state of art. All of them
have specific characteristics and potentialities. The low-power architectures show
very promising results in terms of power consumption, but they don’t have enough
granularity in the multiplication’s precision. Furthermore, they need the usage of
additional units to implement all the mechanisms to save energy. This represents
an increment in the Area of the multiplier and, consequently, in the PE’s area.
The High-performance architectures are better in terms of latency and granularity.
All of them are able to execute multi-precision multiplications and, in some cases,
they are able to execute also floating point operations. The limitation of some is
that can’t execute parallel multiplications. In addition, executing floating point
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operation requires specific units, due to the division into mantissa and exponent,
and this is an increment in terms of Area. The multiplier, described in [16], is
an architecture able to compute multiplications of different precision and execute
parallel multiplications. It can reach good performance, in terms of operating
frequency, and thanks to its structure, it can lead to a reduction in terms of Area
and power consumption.

The high-performance multi-precision multiplier, described in [16], exploits the
calculation of products of parts of the numbers, to calculate the multiplication.
This method is very popular and it is used to compute column multiplications.
This mechanism draws inspiration from some popular implementations:

• Vedic multiplier[17]: The Vedic multiplier implements the "Vertical and Cross-
wise" algorithm, shown in figure2.9[17]. The multiplication is decomposed
into 4x4 multiplications. The result of the first multiplication is used with the
following partial product to generate the 16x16 product. The result is that
any multiplications can be executed utilizing 4x4 multipliers.

Figure 2.9: "Vertical and Crosswise" algorithm

In the picture is possible to see an example of this algorithm: The digits on the
two ends of the line are multiplied and the result is added with the previous
carry. When there are more lines in one step, all the results are added to the
previous carry. The least significant digit of the number thus obtained acts as
one of the result digits and the rest act as the carry for the next step.
This mechanism can be extended to the binary case using the AND gate. The
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final architecture is efficient in speed and area. It is also flexible and can be
extended to a larger case like 32,64 bits.

• Karatsuba multiplier [18]: The Karatsuba multiplier decomposes a multiplica-
tion NxN into 3 multiplications N/2xN/2 and some additions and subtractions.
It is based on the following algorithm:
Starting from 2 numbers x and y, it is possible to write them in the following
way:

x = a ∗ 10m + b (2.1)

y = c ∗ 10m + d (2.2)

Now the final multiplication can be computed as:

x∗y = (a∗10m +b)∗(c∗10m +d) = a∗c∗102m +(a∗d+b∗c)∗10m +b∗d (2.3)

Both these two approaches aim to simplify the procedure to execute a multiplication.
They use a system of adders, shifters, and sub-multiplications to divide the initial
operation into smaller ones. The limit of both these strategies is that "they can’t
be used if it is necessary to preserve all of the n-bit operand products" [16]. This
means that, computing a specific multiplication, doesn’t allow to compute a bigger
one, exploiting the intermediate results. Instead, the mechanism based on the
sub-products multiplications can be applied recursively, and, by simply using adder
and shifters, it is possible to compute larger multiplications.

14



Chapter 3

Architecture

3.1 Subproducts multiplication
By combining the results of the "small" multipliers with adders and shifters, and by
doing it recursively, it is possible to compute the results of larger size multiplications.

In the state of art, several solutions have been discussed. In [16] it is discussed the
possibility to decompose a standard multiplication of N-bit into 4 sub-multiplication
of N/2-bit and one addition.
This method consists of dividing both multiplication operands, A and B, into two
parts, high and low, Ah, Bh, Al, Bl. Multiplying each part of the first operand by
each part of the second one, and then summing all products, it is possible to get
the result of the initial multiplication X = A * B.
In order to get the four distinct numbers (Ah, Al, Bh, Bl), starting from the main
ones, it is necessary to shift the High part of n bits. Let’s assume the presence of
two operands, A and B, which are binary numbers of 2N-bit. Dividing them into
the high and low parts and doing the appropriate shift, the following scenario is
obtained:

A = 2n ∗ AH + AL (3.1)

B = 2n ∗ BH + BL (3.2)

Now it is possible to execute the multiplication in the following way:

X = AB = (2nAH + AL)(2nBH + BL) = (3.3)

22nAHBH + 2nAHBL + 2nLBH + ALBL (3.4)

The 4 sub-products, which are 2N-bit numbers, need to be extended by implement-
ing shifters to fit the 4N-bit addition. After this simple mathematical elaboration,
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instead of doing multiplication of 2n-bit, the multiplication can be solved by doing
4 multiplication of n bit and one final addition of 4N bit. This lead to the situation
represented in the figure 3.1.

Figure 3.1: Sub-products multiplication

An architecture based on this mechanism can, therefore, be used to solve both
parallel multiplications of N-bit or a larger one of 2N-bit. This feature has been
reached by utilizing "smaller" multipliers, an adder, and shifters.
The multiplier implements all these components to execute different precision
multiplications in a efficient way. The smaller multiplier are reused to compute
larger size multiplications according to the hardware reuse strategy.

3.2 Extension to larger multiplications
The decomposition explained above can be easily extended to larger multiplications,
by applying recursively the algorithm just explained.
The mathematical rule tells that it is possible to decompose a multiplication of N
bit into 4 of N/2. Applying the same strategy to a multiplication of 4N bit, we can
reach an equivalent situation. The main multiplication of 4N can be decomposed
and executed by doing 4 four sub-products of 2N bit and one addition of 4N. By
further applying it, each multiplication of 2N bit can be decomposed into smaller
multiplication of N bit. In the end, the result is shown in the following equation:
The operands:

A = 23nAhh + 22nAhl + 2nAlh + All (3.5)
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B = 23nBhh + 22nBhl + 2nBlh + Bll (3.6)

The multiplications become:

X = AB = (23nAhh + 22nAhl + 2nAlh + All) ∗ (23nBhh+
+ 22nBhl + 2nBlh + Bll)

(3.7)

Which can be rewritten in the following way:

X =26nAhhBhl + 25nAhlBhh + 24nAlhBhh + 23nAllBhh+
25nAhhBhl + 24nAhlBhl + 23nAlhBhl + 22nAllBhl+
24nAhhBlh + 23nAhlBlh + 22nAlhBlh + 22nAllBlh+
23nAhhBll + 22nAhlBll + 2nAlhBll + AllBll

(3.8)

The initial multiplication of 4N bit can be solved by doing 16 multiplications of
N bit each one and by doing 4 additions of 2N bit and, one addition of 4N bit.

Once again the same mechanism can be applied to a bigger multiplication of 8N
bit. The initial multiplication of 8N bit can be performed by doing 64 multiplica-
tions of N bit, 16 additions of 2N bit, 4 additions of 4N bit, and one addition of
8N bit.
The result of this method is the possibility to compute large multiplication starting
from smaller ones. This is an important feature for the multiplier, which can im-
plement hardware re-utilization to execute multi-precision multiplications. Indeed,
using this technique, the same multiplier can compute the following multiplications
NxN, 2Nx2N, 4Nx4N, and 8Nx8N. The NxN precision is executed by the core
multipliers and the other precision can be reached by a chain of adders and shifters.

3.3 Unsigned and signed multiplications
This section discussed how the architecture deals with signed and unsigned numbers
and which is the strategy to preserve the result’s sign if it is necessary.
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3.4 Unsigned
The Sub-products strategy discussed extensively in the previous section, divides
the original number of 2N-bit into two sub-numbers. The two sub-numbers are
binary numbers, each one of N bit and they have to be processed by the multiplier.

Figure 3.2: unsigned number decomposition

From the mathematical point of view, the situation can be generalized and
expressed as follows:

AH = an−1 ∗ 2n−i (3.9)

AL =
n−2Ø
i=0

ai ∗ 2i (3.10)

A = AH + AL (3.11)

To solve unsigned operations, a standard multiplier able to do multiplication NxN
is implemented.
The multiplier used to implement the small multipliers is a standard multiplier,
described in a high-level language(figure3.3).

Figure 3.3: High-level multiplier

It does a multiplication NxN and the result is 2N-bit.
After the sub-products have been computed, it is necessary to extend them to a
larger size. Before doing the addition, indeed, it is necessary to have numbers with
the same size aligned.
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3.4.1 Unsigned extension

In the unsigned case, each number extension can be easily done by adding zeros to
the number. This is possible due to the absence of the sign. An unsigned number
can be always considered as a binary number and, consequently, all sub-products
will be unsigned. Let’s consider a standard scenario, in which a multiplication
of 2Nx2N has to be solved by using the sub-products mechanism. After having
obtained the 2N-bit sub-products, the numbers have to be uniform to the same
size. The situation is shown in the following picture:

Figure 3.4: Unsigned addition

Each sub-product has been aligned and extended to allow the execution of the
addition.

3.5 Signed

The goal and the field of application of the project require a multiplier for signed
operations.
Dealing with signed numbers is different and requires more attention. In the
previous case, each sub-numbers can be considered as a binary number and each
sub-product has no sign. Therefore, the extensions and following steps in the
execution were always the same.
Let’s analyze the signed multiplication starting from the mathematical representa-
tion of a signed number:
In the signed case, considering a number A of 2n-bit and considering its decompo-
sition into 2 sub-numbers of N-bit, the sign is situated in the higher part.
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Figure 3.5: 2’s complement number decomposition

The sub-number, which is the high part of the number, can be considered as a
2’s complement number, while the lower part has no sign and can be considered as
a binary number, as in the unsigned case. From the mathematical point of view,
the situation can be generalized and expressed as follows:

AH = −an−1 ∗ 2n−i (3.12)

AL =
n−2Ø
i=0

ai ∗ 2i (3.13)

A = AH + AL (3.14)

Figure 3.6: 2’s complement number decomposition generalization

Clearly, this has to be taken into account in the execution process.
The multiplier used in the unsigned case was enough for executing unsigned
multiplications, but it would not work in this case. Indeed, doing multiplications
with a 2’s complement numbers, means that each sub-product can be positive or
negative depending on the sign of the factors. It is necessary to find a solution.
When a multiplication is done using the sub-products strategy, clearly, 3 different
kind of multiplications have been executed: 2’s complement x 2’s complement,
2’s complement x binary and binary x binary. This means that they can be done
by utilizing : 1 multiplier 2Nx2N 2s complement, 1 NxN binary and 1 NxN 2s
complement.
To enhance re-usability and to be able to implement 2’s complement multipliers
for extending the multiplier utilization to the signed number field, the following
strategy has been adopted. The solution consists of adding an extra bit to each
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sub-number and using a booth multiplier instead of a standard multiplier.
Booth’s algorithm uses a procedure for multiplying binary integers in signed 2’s
complement representation efficiently way. It examines the multiplier bits and
depending on the Booth encoding, the multiplicand may be added to the partial
product, subtracted from the partial product, or left unchanged. The fulcrum of
this method is the encoding mechanism and it requires numbers represented in
2’s complement. For this reason, it is possible to get a signed multiplication by
extending the sub-numbers with a bit and using the booth multiplier. The added
bit allows the correct Booth encoding depending on the number’s sign.

The higher part contains the sign which has to be preserved. To extend it, it is
necessary to add an extra bit of the left part of the number which is exactly the
MSB of the original number. By doing this, the number will be extended taking
into account the sign.
The lower part, as said before, is a binary number. Therefore, in order to extend
it, it is enough to add a zero on the left part of the number.
Obviously, due to the extension, each multiplier has to execute a multiplication
(N+1)x(N+1). This is a requirement that imposes a hardware modification for all
core multipliers.

3.5.1 Signed extension

Each sub-products has to be signed, which means that can be positive or negative
depending on the sign of the respective operands. In this situation, the number
extension has to take into account the sign of the number. Depending on it, it
will consist of a series of ones or a series of zeros added to the number. Let’s
consider a standard scenario, in which a multiplication of 2Nx2N has to be solved by
using the sub-products mechanism. After having obtained the 2N-bit sub-products,
the numbers have to be uniform to the same size. The situation is shown in the
following picture:
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Figure 3.7: addition with signed sub-products

Each sub-product has been aligned and extended, depending on the sign of the
sub-products, to allow the execution of the addition.

3.6 Mixed

The Mixed version is another architecture able to do both signed and unsigned
multiplications, depending on a parameter that can be changed at run time.

Figure 3.8: bit extension

The multiplier is an extension of the signed version: when the "unsigned compu-
tation" is activated, it forces all the extension bits to zero. Therefore, in this case,
before the multiplications and the size extension will be done by only adding zeros,
as in the unsigned case. If the "unsigned computation is deactivated, the numbers
will be extended with a zero or with MSB, depending on the type (high or low),
and the size extension will depend on the sign of the sub-product.
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3.7 The multiplier

In this chapter, the architectures developed are explained in detail. The goal is
to illustrate the different multipliers that have been designed and analyze the
functioning. For each architecture, there is an analysis of the different operating
modes and the outputs provided.

Figure 3.9: Multi-precision multiplier block diagram

The following examples show which are the different multiplications executed
by the multi precision multiplier depending on the value of "SEL".

Figure 3.10: EX M=32 N=4

Figure 3.11: EX M=64 N=4

23



Architecture

3.8 Components analysis
In this section, the main components of the multiplier are analyzed. The multiplier,
depicted in a different configuration in the previous sections, is mainly based on
the following listed blocks: The logic block, the Core Multipliers, the adders, and
the multiplexers

3.8.1 Logic Block
The logic block is situated before the small core multipliers. It is in charge of
taking the inputs ( A and B) and, depending on the "SEL" signal, providing the
inputs for each core multiplier.

Figure 3.12: Logic Block

According to what was explained before, each multiplication is made of a sum of
sub-products. The sub-products needed to change depending on the multiplication.
The role of the Logic block is to provide the right inputs to each multiplier, to
allow the correct execution of the computation. Here, in the signed and mixed
version, the inputs of N-bit are converted into a bit of N+1 bit.
The logic block takes as inputs the two-bit vectors which are the main inputs of
the entire circuits( A and B). It edits them and outputs two bits vector, which is
the concatenation of the inputs of the core multipliers. In all the computations,
except for the one which needs the use of all multipliers, there are some bits of
the output equal to zero. For example, in the case of the computation of the 2
multiplications 8x8 which means that Sel=00, in the multiplier configuration with
M=32 and N=8, the only multipliers which have to be used are the 2 on the left.
The other 2 multipliers will receive all zeros as input as it is shown in the image.
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Figure 3.13: Logic block example

3.8.2 Core multipliers

The core multipliers are the all blocks in charge of doing a partial multiplication in
the architecture. The number of multipliers depends on the configuration and they
can be 4,16 or 64. They receive the inputs from the Logic block and their outputs
are placed into the circuit to compute the multiplications.
In the Unsigned version, the core multipliers are standard multipliers described in
the High-Level code. They execute multiplication NxN and their result is 2N-bit.
The logic signals used inside are "std logic".
In the Signed and Mixed version the core multipliers have to execute multiplications
of (N+1)x(N+1), due to the negative weight of the MSB in the 2’s complement
codification. These multipliers take as inputs two vectors of (N+1)-bit and they
output a vector of 2N+1 bit.
There are two different versions of this multiplier: the Booth version and the "High
Level" version HL.
The Booth version is based on a Booth multiplier Radix-4. Booth’s Algorithm
consists of the editing of multiplied numbers according to Booth’s encoding. It is
possible to reduce the number of partial products by half by using radix-4 Booth
Encoding if compared to other encoding techniques.
The Booth multiplier’s hardware block is shown in the image. It is composed of
three main components: a multiplexer 5 to 1, an adder, and a three-bit encoder.
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Figure 3.14: Booth multiplier block diagram

The numbers of the components and the hardware complexity of the multiplier
vary according to the bit number, following the rules: the number of multiplexers
is equal to N/2, the number of decoders is equal to N/2, and the number of adders
is equal to N/2 -1. This implies that for larger multiplications, more adders are
necessary and the critical path increases.
The HL multiplier is described in High-Level code. This means that implementation
depends on the synthesizer. The logic signals used inside are "signed".
During the project stage, other types of multipliers have been tested. Radix-2,
Carry sparse Tree, and Dadda.

3.8.3 Adders

The adders are in charge of executing the sums of sub-products. They are arranged
on different levels and they execute additions of different sizes.
The first version of the adder was made starting from the theoretical explanation
of the sub-products. According to the theory, previously analyzed, the adder has
to compute a sum of four sub-products to compute the result. It takes as inputs,
the four sub-products which have already been extended.
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Figure 3.15: Addition representation

The adder, therefore, can be described in High-Level language as :

Result <= A + B + C + D; (3.15)

From the perspective of synthesis, it is composed of four adders that do a standard
addition. The partial result of each addition is summed to the next operand.
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Figure 3.16: Adders chain

To improve the architecture and the performance, the following changes have
been made. The addition has been reduced from 4 to 3, by taking advantage of
the mathematical rules. Indeed, looking at the sub-products AH*BH and AL*BL,
it is straightforward to understand that the two sub-products can be concatenated
to form a single addend. This allows to decrease the critical path and save area,
by cutting one adder and the hardware circuit in charge of extending the two
sub-products.
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Figure 3.17: Addition improvement

After this improvement, there has been a focus on changing the addition strategy:

• One way consisted of trying to compute a smaller addition and then do a
concatenation. Indeed, observing the addition representation, it is clear that,
the least significant bits of the results, are precisely the lower part of the Sub-
products AL*BL. Therefore, it is possible to compute a smaller size addition
of 3/4 N Bits instead of N bits. After it, the lower part can be concatenated
with the partial result to obtain the final result.

Figure 3.18: Addition improvement : concatenation

• Another way consisted of using a chain of Full Adders(FA in the figure) to
reduce the 3 addends to 2 and then doing simple addition.

A = (a4, a3, a2, a1, a0) (3.16)
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B = (b4, b3, b2, b1, b0) (3.17)

C = (c4, c3, c2, c1, c0) (3.18)

Figure 3.19: Addition improvement : FAs chain

• The last way was a mixture of the two previous ones. The addition executed
is ¾ N bit and the lower part of the result is concatenated at the end.
Furthermore, the three addends are reduced to 2 thanks to the Full Adders
chain.

The second strategy showed the best result from latency and area points of view.
Therefore, this one was integrated into every version of the multipliers

3.8.4 Multiplexers

The multiplexers are used to select the right result to be output by the multiplier.
It outputs a different value depending on the “SEL” signal. The number of possible
outputs depends on the configuration.
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Figure 3.20: Multiplexer 5 to 1

In the configuration N=4 M=64 and N=8 M=128, the multiplexer 5 to 1 is
implemented, as the possible results are:
N=8:

• 8 multiplications 8x8;

• 4 multiplications 16x16;

• 2 multiplications 32x32;

• 1 multiplication 64x64;

• 2 multiplications 16x16 and 1 32x32;
N=4

• 8 multiplications 4x4;

• 4 multiplications 8x8;

• 2 multiplications 16x16;

• 1 multiplication 32x32;

• 2 multiplications 8x8 and 1 16x16;

Figure 3.21: Multiplexer 4 to 1
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In the configuration N=4 M=32 and N=8 M=64, the multiplexer 4 to 1 is imple-
mented, as the possible results are:
N=8:

• 4 multiplications 8x8;

• 2 multiplications 16x16;

• 1 multiplications 32x32;

• 2 multiplications 8x8 and 1 16x16;

N=4

• 4 multiplications 4x4;

• 2 multiplications 8x8;

• 1 multiplications 16x16;

• 2 multiplications 4x4 and 1 8x8;

Figure 3.22: Multiplexer 2 to 1

In the configuration N=4 M=16 and N=8 M=32, the multiplexer 2 to 1 is imple-
mented as the possible results are:
N=8:

• 4 multiplications 8x8;
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• 1 multiplications 16x16;

N=4

• 4 multiplications 4x4;

• 2 multiplications 8x8;

• 1 multiplications 16x16;

• 2 multiplications 4x4 and 1 8x8;

3.8.5 Parameters
The different versions of the multiplier are distinguished by 2 main parameters: N
and M.
N indicates the size of the multiplication executed by the core multipliers which
compose the whole structure. If the "core multiplications" are 4x4, N is equal to 4.
If the "core multiplications" are 8x8, N is equal to 8.
M indicates the number of bits at the multiplier’s output. This parameter imposes
a constraint on the multiplier’s structure. Indeed, the number of multiplications of
different sizes that can be performed in parallel is set by this parameter.
These two parameters were defined at the beginning of the project to be able to
define the different configurations of the multiplier.
Let’s do a simple example to clarify the meaning of the parameters: M is equal
to 32, the number of the multiplications 8x8 executed in parallel will be 2, the
number of multiplications 4x4 executed in parallel will be 4, and the number of
multiplications 16x16 will be only 1. This is because the sum of the output bits
has to be equal to 32 in all cases.

3.9 Configurations
In the following sections, the different configurations of the designed multiplier
are listed and explained. They are categorized depending on the value of the
parameters M and N, introduced in the previous section.
The goal is to show their structure and to explain the different working modes.

3.9.1 Multipliers with parameter M=16
The following configurations have the parameter M=16, therefore the output is
16-bit long.
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Parameter N=4

Figure 3.23: Multiplier M=16 N=4

This configuration’s output is 16-bit and it is made of four multipliers 4x4, one
adder, and one multiplexer 2 to 1. It can execute multiplication 4x4 and 8x8.
Depending on the "SEL" signal is possible to obtain the following outputs:

• SEL = "00": 2 multiplications 4x4; In this case, the output will be the
concatenation of the results of the 2 multipliers on the left in the picture (blue
path). Each one is 8-bit long.

• SEL = "01": 1 multiplication 8x8 computed by using the four multipliers and
the adder. The principle of the sub-products previously explained is used.
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3.9.2 Multipliers with parameter M=32

The following configurations have the parameter M=16, therefore the output is
32-bit long. Parameter N=8

Figure 3.24: Multiplier M=32 N=8

In this multiplier’s configuration, the output is 32-bit long and it is made of four
multipliers 8x8, one adder, and one multiplexer 2 to 1. It can execute multiplication
8x8 and 16x16. Depending on the "SEL" signal is possible to compute the following
outputs:

• SEL = "00": 2 multiplications 8x8; In this case, the output will be the
concatenation of the results of the 2 multipliers on the left in the picture (blue
path). Each one is 16-bit long.

35



Architecture

• SEL = "01": 1 multiplication 16x16 computed by using the four multipliers
and the adder. In this case, the result will be the sum of the four sub-products
(red path).

Parameter N=4

This configuration’s output is 32-bit and it is made of 16 multipliers 4x4, 4
adders, and 1 multiplexer 4 to 1. It can execute multiplication 4x4,8x8 and 16x16.
Depending on the "SEL" signal is possible to compute the following outputs:

• SEL = "00": 4 multiplications 4x4; The output is composed of the concatena-
tion of the results on the 4 multiplications. Each one is 8 bits.

• SEL = "01": 2 multiplication 8x8 computed by using the 8 multipliers and 2
adders. Each one is 16 bits.
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Figure 3.25: Multiplier M=32 N=4

• SEL = "10": 1 multiplication 16x16 computed by using 16 multipliers and 5
adders.1 multiplication 16x16 computed by using 16 multipliers and 5 adders.
To compute this output all sub-products are used.

• SEL = "10": 1 multiplication 8x8 concatenated with 2 multiplication 4x4.
This is the mixed precision case.
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3.9.3 Multipliers with parameter M=64

Parameter N=8

This configuration’s output is 64-bit. It is made of 16 multipliers 4x4, 4 adders,
and one multiplexer 4 to 1. It can execute multiplication 8x8,16x16 and 32x32.
Depending on the "SEL" signal is possible to compute the following outputs:

Figure 3.26: Multiplier M=64 N=8

• SEL = "00": 4 multiplications 8x8; The output is composed of the concatena-
tion of the results on the 4 multiplications. (orange path).

• SEL = "01": 2 multiplication 16x16 computed by using the 8 multipliers and
2 adders. In this case, the output is composed of the concatenation of the two
results of the sub-products sum made by using the 2 adders on the left. (blue
path)
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• SEL = "10": 1 multiplication 32x32 computed by using 16 multipliers and 5
adders. This is the main multiplication and it is computed by calculating 16
sub-products and then by doing two levels of additions. The first level is com-
posed of four adders, each one respectively is under four multipliers, and the
second level is composed of the adder that is situated in the center. (green path)

• SEL = "11": 1 multiplication 16x16 and 2 8x8 computed by using 6 multipliers
and 1 adder. This mixed case is the result of the concatenation of the
multiplications of different precision.

Parameter N=4

This configuration’s output is 64-bit. It is made of 64 multipliers 4x4, 17 adders,
and 1 multiplexer 5 to 1. It can execute multiplication 4x4,8x8,16x16 and 32x32.
Depending on the "SEL" signal is possible to compute the following outputs:

• SEL = "000": 8 multiplications 4x4;

Figure 3.27: Multiplier M=64 N=4
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• SEL = "001": 4 multiplication 8x8 computed by using the 16 multipliers and
4 adders.

• SEL = "010": 2 multiplication 16x16 computed by using 32 multipliers and 6
adders.

• SEL = "011": 1 multiplication 32x32, to compute this output the all sub-
products are used.

• SEL = "100":1 multiplication 16x16 concatenated with 2 multiplication 8x8.
This is the mixed precision case.

3.9.4 Multipliers with parameter M=128
This configuration’s output is 128-bit. It is made of 64 multipliers 4x4,17 adders
and one multiplexer 5 to 1. Depending on the "SEL" signal is possible to compute
the following outputs:

• SEL = "000": 8 multiplications 8x8; The output is composed of the concate-
nation of the results on the 8 multiplications. Each one is 8 bits.
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• SEL = "001": 4 multiplication 16x16 computed by using the 16 multipliers
and 4 adders;

• SEL = "010": 2 multiplication 32x32 computed by using 32 multipliers and 6
adders;

• SEL = "011": 1 multiplication 64x64, to compute this output all sub-products
are used;

• SEL = "100": 1 multiplication 32x32 concatenated with 2 multiplication 16x16.
This is the mixed precision case.

41



Chapter 4

Results and analysis

In this chapter, the results obtained are analyzed and commented on.

4.1 Experiment description
All configurations created have been simulated using the software Xilinx Vivado
Logic Simulator . In particular, they were simulated in an FPGA zynq-7000 clg848.
In the following paragraphs, the different configurations of the multiplier explained
in the previous chapters, are compared.
For each configuration there are the 3 versions of the multiplier: unsigned, signed,
and mixed. Furthermore, There are two versions of the signed and mixed version:
one is made with the implementation of Booth multipliers, and the other is made
with a generic multiplier. described in High-Level Language using the signal
type "signed". Both of them use the same mechanism for solving sign operations,
explained in the third chapter.
The versions to be compared are:

• 1)Unsigned version: it is made with High-level multipliers with "std logic"
signals;

• 2)Signed Booth version: it is made with booth multipliers;

• 3)Signed HLM version: it is made with multiplier described in High-Level
way;

• 4)Mixed Booth version: it is made with booth multipliers;

• 5)Mixed HLM version: it is made with multiplier described in High-Level way;
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4.1.1 Unsigned, Signed, Mixed

The three versions of the multiplier, as it was expected, are different in terms of
Area, Latency, and power consumption. The Unsigned version shows the best
results from every perspective. It turns out to have the lowest latency, the smallest
area needed, and it consumes less than the other two versions, both with Booth
and HLM multiplier. This is in line with expectations since the unsigned version
is composed of core multipliers that operate only with N bits, while in the other
versions the core multipliers operate with N+1 bits.
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In addition, the sub-products extension, in the unsigned version, consists of only
adding “zeros”, while in the other versions it is necessary to extend the number
according to its sign. Therefore the circuit’s block in charge of doing it is simpler
and, consequently, smaller and faster compared to the other versions. This trend is
observable in all the configurations, and it is more visible in the bigger ones.
The mixed version contains a more complex logic than the signed version. Indeed,
the mixed version’s logic block is able to provide the input for both unsigned and
signed computation, this requires a more complex logic. Indeed, it has an additional
block in charge of handling the sign bits depending on the selected mode. It follows
then that, for both the Booth version and HLM version, the mixed multiplier has
a larger area, higher latency, and higher power consumption.

4.1.2 N=4 vs N=8
The different configurations have been designed with N=4 multipliers and N=8
multipliers. In particular, the configurations M=32 and M=64 have been imple-
mented by using both of them.
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The 2 configurations are both able to execute a 16x16 multiplication, with M=32,
and 32x32 multiplication, with M=64. The version with N=4 can also execute 4x4
and 8x8 while, the N=8 version, can only execute 8x8.
The results show that the N=8 versions are faster and they need less area. This is
in line with expectations since the N=4 version uses more hardware to compute the
same precision multiplication. The M=32 N=4 multiplier contains 16 multipliers
and 5 adders arranged on two levels, while the M=32 N=8 multiplier contains only
4 multipliers and 1 adder. Consequently, the critical path of the N=4 version is
longer and the necessary area is larger. However, it should be kept into account
that the N=4 version can perform more types of multiplication.
It is a different matter for power consumption. The N=4 configurations consume
less than the equivalent with N=8. The 8-bit core multipliers consume a lot more
than the 4-bit core multipliers and this is visible experimentally.
Finally, comparing the multiplier version with the same parameter M, the N=4
version has the ability to perform a wider range of multi-precision multiplications
but it has worse performance in terms of area and latency, however, it has a lower
power consumption.

4.1.3 Booth vs HLM

For each configuration, either a version with Booth multipliers, either one with
HLM multipliers has been done. The two versions show different results depending
on the parameter N.
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Analyzing the configurations with N=4, the Booth multiplier version turns out
to have lower latency, but a larger area than the version made with HLM multipliers.
This trend is visible in all the configurations M=16, M=32, and M=64.
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Analyzing the configurations with N=8, the opposite situation is observed. The
HLM multiplier, synthesized by Xilinx, turns out to have lower latency, but a larger
area than the multiplier made with HLM. Once again, this trend is observable in
all the configurations M=16, M=32, and M=64.
The Booth multiplier’s architecture, explained in the previous chapter, is made
of a chain of adders, where each one is in charge of doing a partial sum. The
number of adders grows linearly with the number of bits and, as a result, the
critical path increases. The critical path’s increment of the HLM turns out to be
less fast compared to the BOOTH. However, the Area shows the opposite trend.
The HLM Area, in version N=8, is larger and the area’s increment appears faster.
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From the perspective of power consumption, the Booth version appears to be
the best option in every configuration. The Booth version consumes less than the
signed version in both N=4 and N=8, and with all the values of M., This is valid
for the Mixed case as well.
In many cases, even the Mixed Booth multiplier consumes less than the signed
HLM multiplier.

4.2 Comparison with previous work for Hardware
Accelerator

In the state of art other solutions have been implemented for this specific application.
In particular, in [7], in the PEs is present a multi-precision multiplier. It is made
of different multipliers, able to execute multiplication of different sizes, which work
in parallel to compute matrix product and multi-precision results.
To make a comparison between this architecture and the designed multi-precision
multiplier, a multi-precision parallel multiplier (MPPM) has been designed. This
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multiplier is able to execute signed multi-precision multiplications. An equivalent
configuration of the MPPM has been designed for every configuration of our
architecture.
Subsequently, each configuration has been synthesized under the same conditions
to get results about the area, latency, and power consumption.

In this section, the following are analyzed and compared:

• 1)Booth version: signed Booth version;

• 2)HLM version: signed HLM version;

• 3)MPPM: multi-precision parallel multiplier from previous work;
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4.2.1 N=4

The MPPM multiplier turns out to have a lower latency in every configuration
compared to both Booth and HLM versions. This is in line with the expectations
since the MPPM’s critical path is represented by the core multiplier able to execute
the largest multiplication( 32x32 in this case), while our multiplier’s critical path
is longer and composed of the core multiplier and the adders.
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From the area perspective, the MPPM is smaller than both Booth and HLM
versions in the configurations M=16 and M=32, while it is larger in the configuration
M=64. In the biggest configuration M=64, the hardware re-utilization, in both
versions of the multiplier, leads to a better result than the MPPM, whose area
increases due to the core multiplier 32x32. In this case, the Area of Booth(2393)
and HLM(2231 LUTs) versions are 2.4% and 9.9% less than MPPM(2454).
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The power consumption of the different architectures appears to be compa-
rable for the configuration M=16 and M=32, while, in the configuration with
M=64, the power consumption of the MPPM(75.336mW) is 20.9% larger than
Booth(59.562mW) version and 18.1% larger than HLM(61.684) version.
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4.2.2 N=8

Comparing the N=8 multiplier version to MMPM, it is observable that the MPPM
latency is lower in all the configurations, as in the N=4 version. However, the
discrepancy between the latency results is lower. In the configuration M=128, the
MMPM latency is 15.526ns, and it turns out to be, respectively, 7.9% and 3.4%
more than Booth(16.767ns) and HLM(15.933ns).
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About Area, both Booth and HLM versions result in smaller in all the config-
urations. The difference increases with increasing parameter M: in the configu-
ration with M=32 Booth(424LUTs) is 11.6% and HLM(426LUTs) 12.5% smaller
than MPPM(480LUTs), in the configuration with M=64 Booth(1663LUTs) is
23.7% and HLM(1728LUTs) 20.8% smaller than MPPM(2182LUTs) and in the
M=128 Booth(6537LUTs) is 32.4% and HLM(7080LUTs) 26.8% smaller than
MPPM(9681LUTs).
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The power consumption of the different architectures appears to be very similar
for the configuration M=16, while, in the configuration with M=64, the power
consumption of the MPPM(90.815mW) is 17.1% larger than Booth(75.236mW)
version and 11.3% larger than HLM(80.497) version and in the configuration with
M=128 MPPM(192.196mW) is 34.4% larger than Booth(143mW) version and
30.7% larger than HLM(147mW).
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Conclusions

In the state of art, several solutions for multi-precision multipliers have been already
proposed. The two main design trends are “low power” and “High-performance”
which, respectively, aim to keep stable the throughput and decrease the power
consumption, and increase the throughput while keeping constant the power
consumption. The solution explained in .. represents a viable road. It is an
architecture that exploits the theory of “sub-products” sum to compute multi-
precision multiplications. Its hierarchical structure, based on the hardware re-
utilization mechanism, is promising from the point of view of area and power
consumption.
Starting from this knowledge, multi-precision multiplier has been designed which
can be a viable and efficient solution in deep learning applications. It has been
designed in different configurations and versions to be able to study its behavior
and draw conclusions.
The multi-precision multiplier is based on the sums of sub-products, it can execute
multi-precision multiplication, matrix product, and mixed precision multiplications.
The different blocks have been designed from scratch and they have been customized
to this specific application.
It has been developed in three different versions: unsigned, signed, and mixed. The
unsigned version can execute only unsigned multiplication, it is made with HL core
multipliers and its logic is simpler than the other versions.
The signed version is able to execute signed multiplications. To achieve this, the
core multiplier has been replaced with the Booth multiplier or signed HL multiplier.
The mixed version can execute both signed and unsigned multiplications. The
working mode can be changed at a run time thanks to an appropriate signal which
can be modified.
Comparing the three versions it has been observed that the area, the latency,
and the power consumption grow with the increasing complexity of the circuit.
The unsigned version has less complex logic and its operations require fewer bits,
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consequently, it is the fastest, the smallest and it consumes less. The mixed and
signed version is more similar, but due to the changing needed in the mixed logic,
the signed version shows better performance from every perspective.
For each version, different configurations based on two parameters: M the output
size, and N the core multipliers multiplications size, have been designed. By
analyzing them, it has been observed that two solutions with the same output
size ( M has the same value) achieve different results depending on N. The version
with N=4, despite having a higher granularity of precision, has a larger area and a
higher latency. Nevertheless, its power consumption is lower.
Furthermore, every multiplier configuration in signed and mixed versions has been
studied with both Booth and HLM core multipliers. By evaluating the results,
it was possible to conclude that the Booth version performs better in terms of
latency in the configurations with N=4, while it has a larger area than the HLM.
In contrast, the opposite situation is observable in the configurations with N=8,
in which the HLM has a lower latency but it has a larger area. Finally, in every
configuration, independently on the value of the parameters N and M, the Booth
version consumes less power than the HLM version.
In order to estimate the proposed solution, a similar architecture, which is supposed
to be applied in a hardware accelerator, has been designed. This architecture
is present in[7]. The multi-precision parallel multiplier is an alternative with
redundant logic instead of hardware reuse. The comparison between the two
different solutions has been made differentiating between N=4 configurations and
N=8. In the first case, the MPPM shows better results except for the configuration
M=64, in which the proposed work needs less Area and consumes less, despite the
higher latency.
In the configurations with N=8, the proposed multiplier achieves a better result
than the MPPM from Area and Power perspective. The multiplier turns out to
be really smaller than the alternative and to consume less power. Furthermore,
its latency appears comparable to the alternative. This result is promising and
could be the way to increase the PEs of a hardware accelerator, for the same area,
keeping power consumption constant but increasing throughput. It could represent
a great opportunity to improve the efficiency of the entire architecture.
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