
POLITECNICO DI TORINO
Master’s Degree in Mechatronics Engineering

Master’s Degree Thesis

Model Predictive Control and
Reinforcement Learning for Quadrotor

Agile Flight Control

Supervisors

Prof. Luciano LAVAGNO

Postdoc Dirk REINHARDT

Prof. Sebastien GROS

Candidate

Giacomo DEMATTEIS

October 2022





Summary

The work presented in this master thesis project is related to the control aspects
of fast and agile drone trajectory tracking. Aerodynamic forces make quadrotors
trajectory tracking at high-speed extremely challenging. At high speeds these
complex effects have a major impact in performance loss, measured in terms of
large position tracking errors.

Model Predictive Control (MPC) together with Reinforcement Learning (RL)
is used to tackle the problem. We propose to use RL to offline tune the MPC
formulation using the data obtained from the system. MPC is an optimal control
method with a well-established theory that exploits a dynamic model of the
platform and provides constraint satisfaction. RL methods allow solving control
problems with minimum prior knowledge about the task. RL automatically trains
the decision-making process via trial and error and maximize the performance
through a given reward function. In our approach, RL is used for adjusting the
MPC parameters, through a Q-learning technique by exploiting MPC as a function
approximator. Indeed, unlike Deep Neural Networks (DNN), MPC as a function
approximator for RL, can explicitly achieve constraints satisfaction, stability, and
safety. Therefore, the goal is to combine the advantages of both methods: the ability
of MPC to safely control a physical robot through well-established knowledge and
the power of RL to learn complex policies using experienced data. The resulting
control framework can handle large-scale inputs, reduce human intervention in
design and tuning, and eventually achieve optimal control performance.

The method is verified through precise and extensive simulation environment.
This work is the result of a seven months period at the Norwegian University of

Science and Technology (NTNU), Trondheim, Norway under the group of Professor
Sebastein Gros, supervised by Postdoctoral fellow Dirk Reinhardt.
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Chapter 1

Introduction

Quadrotors trajectory tracking at high speeds and high accelerations with good
accuracy is still far from being a solved problem. Autonomous robots are gaining
more and more popularity every year. The variety of industries touched by these
robots ranges from transport to infrastructure, military, agriculture, security,
entertainment and search and rescue. They provide a series of advantages, as
they provide reliable, innovative, affordable and efficient aid. For instance, the
risks associated with human intervention can be deeply lowered by the use of this
kind of technology. However the general belief is that they still do not exploit
their full capabilities of maneuver. A higher control precision would allow to
prevent situations where even small deviations from reference have catastrophic
consequences, besides having faster flights in known-free environments.

There is not much work on agile flight of quadrotors for speeds beyond 5m/s and
accelerations above 2g. Most of the popular applications require not to go beyond
this kind of velocities and accelerations. Identifying a dynamics model capable of
thoroughly describing the aereodynamic effects while still being light enough for
real time performance is the main challenge, especially at high speeds. [1]

The most common control implementation in the industry is the classical
Proportional Integral Derivative (PID) control. A PID controller is a control
loop mechanism employing feedback through the use of three different gains. The
proportional gain is used to minimize the tracking error. It is responsible for a
quick response and thus should be set as high as possible, but without introducing
oscillations. If the P gain is too high we get high-frequency oscillations, if too low
the vehicle will react slowly to input changes. The D (derivative) gain is used for
rate damping. If the D gain is too high the motors become twitchy (and maybe
hot), because the D term amplifies noise, if too low we see overshoots after a
step-input. The I (integral) gain keeps a memory of the error. The I term increases
when the desired rate is not reached over time. The PID control provides a reliable
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Introduction

and effective control strategy for a vast number of applications. It is also cheap and
relatively simple to implement and mantain. So, for most common applications it
is still the best option. But if we need to push the performance of our vehicle out
of the ordinary, then PID is shown to have big limitations, and thus it does not
allow to perform task that would require extreme accuracy and precision. Tasks
that are, arguably, also the most interesting and with the most potential.

Model Predictive Control (MPC) has been shown to be a powerful model-based
approach for solving complex quadrotor control problems. MPC is increasingly
rising in popularity in many robotic domains, thanks to its capability of simultane-
ously dealing with complex nonlinear dynamic systems while satisfying different
state and input constraints. However, many MPC applications still experience
significant challenges, such as the need of an accurate mathematical model and
the necessity of solving trajectory optimization problems online with the limited
computational resources of embedded systems. This two requirements are opposite,
since an accurate model often leads to computational overload.

On the other hand, Reinforcement Learning (RL) methods allow solving control
problems with minimum prior knowledge about the task. The key idea of RL is to
automatically train the policy via trial and error and maximize the task performance
measured by the given reward function. While RL has achieved incredible results
in a wide range of robot applications, the lack of interpretability of a controller
trained using RL is of significant concern by the control community. Basically it
lacks the intrinsic safety of MPC, crucial for most of critical applications.

Ideally, the control framework should be able to combine the advantages of
both methods: the ability of model-based controllers, like MPC, to safely control
a physical robot using the well-established knowledge in dynamic modeling and
optimization and the power of RL to learn complex policies using experienced data
automatically, in order to compensate the mismatch coming the dynamical model.
[2]

The structure of this thesis is as follow: Chapter 2 contains all the fundamental
theory knowledge, in preparation for the following parts of the work. Chapter 3 is
the chapter that contains most of the work developed in the project. It encompasses
the whole of Simulation structure, development and flow, together with a result
preview. Chapter 4 shows a possible real implementation of the drone flight in
a Motion Capture Laboratory. Initially, this part was intended to be a second
main part of the project. Due to a major knee injury and relative surgery of the
writer (making the in-person experiments a dream), the plan was shifted towards
a simulations oriented project. So this part of the thesis remained to show the
possibility for further investigations. Finally, the last two chapters are Results and
Conclusion, where the fundamental outcomes are showed and explained.
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Chapter 2

Theory

In this chapter, the theory foundations are presented. First we introduce the
dynamics model of the quadrotor, with relative variables and state equations. After
that, a brief discussion on the main characteristics of MPC is introduced. The
relative mathematical representation is shown. Lastly, the RL theory is introduced.
Starting from the very basics to end up with our innovative approach, this part
represent the core of the theory chapter.

2.1 Dynamics Model
The aerodynamics of rotors was extensively studied during the mid 1900s with the
development of manned helicopters, and detailed models of rotor aerodynamics are
available in the literature. [3] [4]

The most popular multirotor aerial machine is the quadrotor vehicle. It has a
very simple design. It consists of four individual rotors attached to a rigid cross
body structure, as shown in 2.1. Control of a quadrotor is obtained by differential
control of the thrust produced by each rotor. As all aerial vehicles, quadrotors
have six Degree of freedom (DOF). Three corresponding to the movement along
the three dimensions x-y-z, respectively Surge, Sway and Heave. The other three
related with the rotation along the same axis, respectively Roll, Pitch and Yaw. In
our quadrotor case, pitch, roll and heave controls are easily conceptualized. Further,
as shown in 2.1, rotor i rotates anticlockwise (positive about the z axis) if i is even
and clockwise if i is odd. Yaw control is obtained by adjusting the average speed of
the clockwise and anticlockwise rotating rotors. Only these four DOFs are directly
actuated and controlled. Thus, the system is underactuated and the remaining
two DOFs corresponding to the translational velocity in the x-y plane must be
controlled through the system dynamics. [4]

As for notation, we denote scalars in lowercase s, vectors in lowercase bold v,
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Figure 2.1: Diagram of the quadrotor model with the world and body frames and
propeller numbering convention.[1]

and matrices in uppercase bold M. We define the World W and Body B frames
with orthonormal basis i.e. {xW , yW , zW }. The frame B is located at the center
of mass of the quadrotor. Note that we assume all four rotors are situated in the
xy-plane of frame B, as depicted in [1]. A vector from coordinate p1 to p2 expressed
in the W frame is written as: W v12. If the vector’s origin coincide with the frame
it is described in, we drop the frame index, e.g. the quadrotor position is denoted
as pW B. Furthermore, we use unit quaternions q = (qw, qx, qy, qz) with ∥q∥ = 1 to
represent orientations, such as the attitude state of the quadrotor body qW B.

The 6-DOF nonlinear dynamics of the quadrotor can be then represented
by a state vector containing position, attitude and linear/rotational velocities:
x = [p, q, v, ω]T . The attitude representation is in quaternion form, thus leading for
a total of 13 state variables. The control inputs u are the four quadrotor individual
thrusts Ti ∀i ∈ (0, 3). We assume that the quadrotor is a 6 degree-of-freedom rigid
body of mass m and diagonal moment of inertia matrix J = diag(Jx, Jy, Jz). We
write the nominal dynamics ẋ up to second order derivatives. The state space is
thus 13-dimensional and its dynamics can be written as [1]:

ẋ =


ṗW B

q̇W B

v̇W B

ω̇B

 = fdyn(x, u) =


vW

qW B ·
5

0
ωB/2

6
1
m qW B ⊙ TB + gW

J−1 (τB − ωB × JωB)

 , (2.1)

where gW = [0, 0, −9.81 m/s2]⊺ denotes Earth’s gravity, TB is the collective thrust
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and τB is the body torque as in:

TB =

 0
0q
Ti

 and τB =

dy(−T0 − T1 + T2 + T3)
dx(−T0 + T1 + T2 − T3)
cτ (−T0 + T1 − T2 + T3)

 (2.2)

where dx, dy are the rotor displacements and cτ is the rotor drag torque constant.
To incorporate these dynamics in discrete time algorithms, we use an explicit
Runge-Kutta method of 4th order fRK4(x, u) to integrate ẋ given an initial state
xk, input uk and integration step δt by [5]:

xk+1 = fRK4(xk, uk, δt). (2.3)

2.2 Model Predictive Control
Model Predictive Control has its roots in optimal control. The basic concept of
MPC is to use a dynamic model to forecast system behavior, and optimize the
forecast to produce the best decision/the control move at the current time. Models
are therefore central to every form of MPC.

MPC is a form of control in which the control action is obtained by solving
online, at each sampling instant, a finite horizon optimal control problem in which
the initial state is the current state of the plant. Optimization yields a finite
control sequence, and the first control action in this sequence is applied to the
plant. Open-loop optimal control problems often can be solved rapidly enough,
using standard mathematical programming algorithms, to permit the use of MPC
even though the system being controlled is nonlinear, and constraints on states
and controls must be satisfied. [6]

Figure 2.2: Simplified block diagram of a MPC-based control loop.[7]
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Baseline Approach. As in 2.2, at each time step:

• A prediction over a given time horizon is performed, using a model of the
plant

• The command input is chosen as the one yielding the “best” prediction (i.e.,
the prediction closest to the desired behavior) by means of some optimization
algorithm. Typical algorithms are Non-Linear Program(NLP) solvers, a class
of solvers that tackle a specific class of problems of the form similar to 2.4.

In its most general form, MPC stabilizes a system subject to its dynamics
ẋ = f(x, u) along a reference xr(t),ur(t) by minimizing a cost ℓ(x, u) as in:

min
u

Ú
ℓ(x, u) (2.4)

subject to ẋ = fdyn(x, u) x(t0) = xinit

r(x, u) = 0 h(x, u) ≤ 0

where x0 denotes the initial condition and h, r can incorporate (in-)equality
constraints, such as input limitations.

For our application, and as most commonly done, we specify the cost to be of
quadratic form ℓ(x, u) = ∥x− xr∥2

Q + ∥u− ur∥2
R = ∥xd∥2

Q + ∥ud∥2
R and discretize

the system into N steps over time horizon T of size dt = T/N . We account for
input limitations by constraining 0 ≤ u ≤ umax.

min
u

xd
N

⊺Qxd
N+

NØ
k=0

xd
k
⊺Qxd

k + ud
k
⊺Rud

k (2.5)

subject to xk+1 = fRK4(xk, uk, δt)
x0 = xinit

umin ≤ uk ≤ umax

To solve this quadratic optimization problem we used the same previous work
done by [1], where they constructed it using a multiple shooting scheme [8] and
solve it through a sequential quadratic program (SQP) executed in a real-time
iteration scheme (RTI) [8]. All implementations are done using ACADOS [9] and
CasADi [10]. Later on for more information on these two software packages for
optimization.

So, overall, Model Predictive Control is a general and flexible approach to
nonlinear system control that allows us to deal with input/state/output constraints
and to manage systematically the trade-off performance/command effort.
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2.3 Reinforcement Learning

2.3.1 Basics
The idea that we learn by interacting with our environment is probably the first
to occur when we think about the root of learning. Learning from interaction
is a fundamental idea upon which nearly all theories of learning and intelligence
are build. Reinforcement learning problems involve learning what to do (or more
specifically: how to map situations to actions) so as to maximize a numerical
reward signal.

A basic characteristics of reinforcement learning problems is simply to capture
the most valuable aspects of the problem facing a learning agent interacting with
an environment to achieve an objective.

Obviously, such an agent has to be able to sense the state of the environment
to some extent and must be able to take actions that have an effect upon the
state. The agent also must have a goal or goals in relation with the state of
the environment. The formulation is intended to include just these three aspects
(sensation, action and goal) in their simplest possible forms without trivializing
any of them.

Figure 2.3: The agent-environment interaction in reinforcement learning.[11]

Beyond this elements, one can identify four other sub-elements in a reinforcement
learning framework: a policy, a reward signal, a value function and, optionally, a
model of the environment.

A policy specifies the learning agent’s way of behaving or decision process at a
certain time. Roughly speaking, a policy is a mapping from sensed states of the
environment to actions to be taken while being in those states. The policy is the
central part of a reinforcement learning agent in the sense that it alone is sufficient
to determine behavior.

A reward signal defines the objective in a reinforcement learning problem. Every
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time step, the environment sends to the reinforcement learning agent a simple
number, a reward. The agent’s only goal is to maximize the total amount of reward
it receives in the long run. The reward signal thus defines what are the good and
bad events for the agent.

Whereas the reward signal specifies what is good in an immediate sense, a value
function specifies what is good in the long run over a vast horizon. Roughly speaking,
the value of a state is the total reward an agent is expected to accumulate in the
future, starting from that specific state. Whereas rewards determine the immediate,
intrinsic desirability of the states, values indicate the long-term desirability of
states after taking into account the states that are likely to follow, and the rewards
available in those states. It is values with which we are most concerned when
making and evaluating decisions.

Action choices are made taken upon value judgments. We look for actions that
head towards states of highest value, not highest reward, because these actions
obtain the greatest amount of reward for us eventually. The derived quantity
called value is the one we cared most about. Unfortunately, it is much more
difficult to determine values than rewards. Rewards are basically given directly
by the environment, but values must be estimated and re-estimated from the
sequences of observation an agent makes over its entire lifetime. In fact, the most
valuable component of almost all reinforcement learning algorithms is a method
for accurately estimating values.

The fourth and final element of some reinforcement learning frameworks is a
model of the environment. This is something that simulates the behavior of the
environment, or more generally, that allows inferences to be made about how the
environment will behave. Models are used for planning, that is any way of deciding
on a course of action by considering possible future situations before they are
actually experienced. This is usually referred to as model-based Reinforcement
Learning. [11]

So, the reinforcement learning problem is meant to be a direct framing for the
problem of learning from interaction to achieve a goal. The learner and decision-
maker is called the agent. The thing it interacts with, comprising everything
outside the agent, is called the environment. These interact continually, the agent
selecting actions and the environment responding to those actions and presenting
new situations to the agent.

More specifically, in a discrete time framework, the agent and environment
interact at each of a sequence of discrete time steps, t = 0, 1, 2, 3, .... . At each
time step t, the agent receives a characterization of the environment’s state, St ∈ S,
where S is the set of possible states, and on that basis selects an action, At ∈ A(St),
where A(St) is the set of actions available in state St. One time step further, in part
as a consequence of its action, the agent receives a numerical reward, Rt+1 ∈ R,
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and finds itself in a new state, St+1. Figure 3.2 diagrams the agent-environment
interaction.

At each time step, the agent implements a mapping from states to probabilities
of selecting each possible action. This mapping is called the agent’s policy and is
denoted πt, where πt(a|s) is the probability that At = a if St = s. Reinforcement
learning methods defines how the agent varies its policy according to its experience.

The Markov Property and Markov Decision Process

In a reinforcement learning system, the agent makes its judgment as a function
of the environment’s state. In this section we discuss what are the requirements
of the state signal, and what kind of information it should provide. In particular,
we formally identify a property of environments and their state signals that is of
specific interest, called the Markov property. Ideally, what we would like is a state
signal that summarizes past sensations compactly, so that all relevant information
is retained. This normally requires more than the immediate sensations, but never
more than the complete history of all past sensations. A state signal that is able
to retaining all relevant information is said to be Markov, or to have the Markov
property. We formally define the Markov property for the reinforcement learning
problem. To keep the mathematics simple, we assume here that there are a finite
number of states and reward values. This enables us to work in terms of sums and
probabilities rather than integrals and probability densities, but the approach is
similar for continuous states and rewards. Let’s consider how a general environment
might respond at time t + 1 to the action taken at time t. In the most general,
causal case this response could be dependent on all that has happened earlier. In
this case the dynamics can be defied only by specifying the complete probability
distribution:

Pr{Rt+1 = r, St+1 = s′|S0, A0, R1, ..., St−1, At−1, Rt, St, At} (2.6)

for all r, s′, and all possible values of the past events: S0, A0, R1, ..., St−1,
At−1, Rt, St, At. If the state signal has the Markov property, on the other hand,
then the environment’s response at t + 1 depends only on the state and action
representations at t, in which case the environment’s dynamics can be defined by
specifying only

p(s′, r|s, a) = Pr{Rt+1 = r, St+1 = s′|St, At} (2.7)

for all r, s′, St, and At. In other words, a state signal has the Markov property,
and is a Markov state, if and only if 2.7 is equal to 2.6 for all s′, r, and histories,
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S0, A0, R1, ..., St−1, At−1, Rt, St, At. In this case, the environment and task as a
whole are also said to have the Markov property.

If an environment has the Markov property, then its one-step dynamics 2.7
enable us to predict the next state and expected next reward given the current
state and action. One can show that, by iterating this equation, one can predict
all future states and expected rewards from knowledge only of the current state
as well as would be possible given the complete history up to the current time. It
also follows that Markov states provide the best possible basis for choosing actions.
That is, the best policy for choosing actions as a function of a Markov state is just
as good as the best policy for choosing actions as a function of complete histories.

Even when the state signal is non-Markov, it is still convenient to think of
the state in reinforcement learning as an approximation to a Markov state. In
particular, we always want the state to be a good basis for making predictions
on future rewards and for selecting actions. In cases in which a model of the
environment is learned, we also want the state to be a good basis for predicting
subsequent states. Markov states provide an outstanding basis for doing all of these
things. To the extent that the state approaches the ability of Markov states in
these ways, one will obtain better performance from reinforcement learning systems.
For all of these reasons, it is useful to think of the state at each time step as an
approximation to a Markov state, although one should remember that it may not
fully satisfy the Markov property.

A reinforcement learning task that satisfies the Markov property is called a
Markov decision process, or MDP.

2.3.2 Our approach

The key idea for this part of the project is the use of Reinforcement Learning based
on Model Predictive Control for the control of the drone. RL is basically used for
adjusting the MPC parameters, using a Q-learning technique.

Reinforcement Learning is a powerful tool for tackling Markov Decision Process
without prior knowledge of the process to be controlled. Indeed, RL attaches a
reward function to each state-action pair and tries to find a policy to optimize the
discounted infinite rewards labelled performance. Dynamic Programming (DP)
methods can be used to solve MDP. However, DP requires a knowledge of the MDP
dynamics, and its computational complexity is unrealistic in practice for systems
having more than a few states and inputs [6]. Instead, most investigations in RL
have focused on achieving approximate solutions, not requiring a model of the
dynamics. Deep Neural Networks (DNN) are a common choice to approximate the
optimal policy. However, analysing formally the closed-loop behavior of a learned
policy based on a DNN, such as stability and constraints satisfaction is challenging.
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[12]
Model Predictive Control is the well-known model-based control method de-

scribed above, that employs a model of the system dynamics to build an input
sequence over a given finite horizon such that the resulting predicted state trajectory
minimizes a given cost function while respecting the constraints imposed on the
system. The first input is applied to the real system, and the problem is solved at
each time instant based on the latest state of the system. The advantage of MPC
is its ability to explicitly support state and input constraints, while producing
a nearly optimal policy. However, model uncertainties can severely impact the
performance of the MPC policy.

In this work, we propose to use RL to offline tune the MPC formulation using the
data obtained from the real system. Unlike DNN, MPC as a function approximator
for RL, can explicitly handle constraints satisfaction, stability and safety.

Ideally, as already introduced, the control framework should able combine the
advantages of both methods: the ability of MPC to safely control a physical robot
using the established knowledge and the power of RL to learn complex policies
using data automatically. Therefore, the resulting control framework can handle
large-scale inputs, reduce human-in-the-loop design and tuning, and eventually
result in optimal control performance. However, designing such a system remains a
significant challenge. [12] [2]

2.3.3 Q-learning framework
Reinforcement Learning considers that the real system is described by a Markov
Decision Process (MDP) with state transitions having the underlying conditional
probability density P[s+|s, a] where s, a is the current state-input pair and s+
is the subsequent state. The control literature typically uses the notation s+ =
f real(s, a, ζ), where ζ is a random disturbance and f real is the discretized real
system dynamics (2.1) and s = [pW B, qW B, vW B, ωB].

We will label L(s, a) as the baseline stage cost associated to the MDP at each
transition. The optimum action-value function Q⋆, optimum value function V⋆ and
optimum policy π⋆ associated to the MDP are defined by the Bellman equations
[12]:

V⋆(s) = min
a

Q⋆(s, a), (2.8a)
Q⋆(s, a) = L(s, a) + γE[V⋆(s+)|s, a], (2.8b)

π⋆(s) = arg min
a

Q⋆(s, a) (2.8c)

where γ ∈ (0,1] is the MDP discount factor.
Q-learning is a classical model-free RL algorithm that tries to capture the

action value function Qθ ≈ Q⋆ via tuning the parameters vector θ ∈ Rn. The
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approximation of the value function Vθ and parametric optimal policy πθ can then
be extracted from the Bellman equations. Q-learning uses the following update
rule for the parameters θ at state sk:

δk = L(sk, ak) + γVθ(sk+1)−Qθ(sk, ak) (2.9a)
θ ← θ + αδk∇θQθ(sk, ak) (2.9b)

where the scalar α > 0 is the learning step-size, δk is labelled the Temporal-
Difference (TD) error and the input ak is selected according to the corresponding
parametric policy πθ(sk) with possible addition of small random exploration.

Using MPC as a way of supporting the approximations Vθ and Qθ has been
proposed and justified in [13]. Hereafter, we detail how this can be done for the
specific choice of MPC proposed here. [12]

2.3.4 MPC as a function approximator for RL
We propose to use the action-value function approximate Qθ ≈ Q⋆ obtained from
the following MPC scheme parameterized by θ [13]:

Qθ(s, a) = min
x,u

γNV f (xN , θ) +

N−1Ø
i=0

1
γil (xi, ui, θ)

2
(2.10a)

s.t. ∀i = 0, ..., N − 1,

xi+1 = f(xi, ui, θ) (2.10b)
g(ui) ≤ 0 (2.10c)
x0 = s (2.10d)
u0 = a (2.10e)

(2.10f)

where x = {x0, . . . , xN} and u = {u0, . . . , uN−1} are the primal decision variables,
N is the prediction horizon, f is the model dynamics, l and V f are the stage and
terminal costs, respectively.

Constraint (2.10c) represents the input inequality constraints.
In (2.10), θ is the parameters vector that can be modified by RL to shape the

action-value function. Under some mild assumptions (see [13] for the technical
details), if the parametrization is rich enough, the MPC scheme is able to capture
the true optimal action-value function Q⋆, value function V⋆ and policy π⋆ jointly,
even if the MPC model f does not capture the real system dynamics (2.1).
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One can verify that the parameterized value function Vθ that satisfies the Bellman
equations can be obtained by solving (2.10) without constraint (2.10e). Moreover,
the parameterized deterministic policy πθ reads as follows:

πθ(s) = u⋆
k,0(s, θ) (2.11)

where u⋆
k,0(s, θ) is the first element of u⋆, solution of the MPC scheme (2.10) when

constraint (2.10e) is removed.
Therefore, the value function Vθ(s) can be acquired together with the policy

πθ(s) by solving a classic MPC scheme, while the action value function results from
solving the same MPC scheme with its first input constrained to a specific value a.

The sensitivity ∇θQθ(s, a) required in (2.9b) is given by [13]:

∇θQθ(s, a) = ∇θLθ(s, a, y⋆) (2.12)

where L is the Lagrange function associated to the MPC (2.10), i.e.:

Lθ(s, a, y) = Φθ + λ⊤Gθ + µ⊤Hθ (2.13)

where Φθ is the cost (2.10a), Gθ gathers the equality constraints (2.10b), (2.10d),
(2.10e), Hθ collects the inequalities (2.10c) and λ, µ are the associated dual variables.
Argument y reads as y = {x, u, σ, λ, µ} and y⋆ is the solution to (2.10). [12] [5]

hyperref
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Chapter 3

Simulation

In this section we go through the main work of this master thesis. We start by
some introduction of the software packages used for optimization and for the MPC
definition. CasADi and Acados have been used. Then all the aspects relative to
the implementation, workflow and results of simulation are presented.

3.1 Optimization: CasADi and Acados
From a practical point of view, optimization is finding the best solution to a
problem. Mathematically, it is basically finding the minimum (or maximum) of
a function, in most cases subject to constraints. Optimization is an extremely
important discipline in most fields (physics and engineering; economy, finance and
management; ...)

MPC control design is an optimization problem: we have to design the controller
in order to:

• minimize the tracking error;

• minimize the command effort;

• minimize the effects of disturbances.

Thus, optimization is fundamental in Model Predictive Control.

3.1.1 CasADi
CasADi is an open-source software framework for numerical optimization. It is a
general-purpose tool that can be used to model and solve optimization problems
with a large degree of flexibility. In particular, problems constrained by differential
equations such as optimal control problems are of special interest. CasADi is
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written in self-contained C++, but is most easily used through its interfaces to
Python and MATLAB. In our case, the implementation is done in Python. Since its
creation, it has been used successfully in applications from multiple fields, including
process control, robotics and aerospace. [10]

CasADi started out as a tool for algorithmic differentiation (AD) using a syntax
similar to a computer-algebra system (CAS), explaining its name. While state-of-
the-art AD is still a key feature of CasADi, the focus has since shifted towards
optimization. In its current form, CasADi provides a set of general-purpose building
blocks that drastically decreases the effort for implementation of a large set of
algorithms for numerical optimal control, without sacrificing efficiency. [10]

The symbolic framework

The core of CasADi is made of a symbolic framework that permits to build ex-
pressions and utilize these to specify automatically differentiable functions. These
general-purpose expressions have no relation with optimization. First the expres-
sions are created, then they can be utilized to efficiently obtain new expressions for
derivatives using AD or be evaluated efficiently, either in CasADi’s virtual machines
or by using CasADi to generate self-contained C code. CasADi uses a MATLAB
inspired “everything-is-a-matrix” type syntax, i.e., scalars are treated as 1-by-1
matrices and vectors as n-by-1 matrices. Besides, every matrix is sparse and stored
in the compressed column format. For this kind of symbolic structure, having to
do with a single sparse data type makes the tool simpler to learn and maintain.

The subsequent code shows a procedure to load CasADi into the workspace,
create two symbolic primitives x ∈ R2 and A ∈ R2,2 and finally the creation of an
expression for e := Asin(x) [10]:
# Python

from casadi import ∗
x = SX.sym(’x’, 2)
A = SX.sym(’A’, 2, 2)
e = mtimes(A, sin(x))
print(e)
Output: @1 = sin(x0), @2 = sin(x1), [((A0 ∗@1) + (A2 ∗@2)), ((A1 ∗@1) + (A3 ∗

@2))]
The output should be interpreted as the definition of two shared subexpressions,

@1 := sin(x0) and @2 := sin(x1) followed by an expression for the resulting column.
In CasADi, the symbolic expressions can be used to define function objects,

classes that behave like conventional functions but are instantiated at runtime.
In addition to supporting numerical evaluation, CasADi function objects support
symbolical evaluation, C code generation and also derivative calculations. They
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can be created by giving a display name and a list of input and output expressions
[10]:

# Python
F = Function(’F’,[x,A],[e])

This snippet defines a function object by the name “F” with two inputs (x and
A) and one output (e), as defined in the previous code segments.

The creation of a function object in CasADi essentially sums up to topologically
sorting the expression graph, turning the directed acyclic graph (DAG) into an
algorithm that can be assessed. Differently from traditional tools for AD there is
no relation between the order in which expressions were created and the order in
which they are shown in the sorted algorithm. Instead, CasADi uses a depth-first
search to topologically sort the nodes of the DAG. Provided the sorted sequence
of operations, CasADi implements two register based virtual machines (VMs),
one for each graph representation. The VMs in CasADi are designed in order to
achieve high-speed and low overhead; for example, by avoiding memory allocation
during numerical evaluation. In such a framework, that is often used for rapid
prototyping with many design iterations, fast VMs are important not only for
numerical evaluation, but also for symbolic processing, which can amount to a
significant part of the total solution time.

C-code generation

However, as an alternative way to evaluate symbolic expressions in CasADi, user
can generate C code for the function objects. When compiled with the correct
compiler flags, the generated code can be significantly faster than the VMs. Given
that the generated code is self-contained C and has no dynamic memory allocation,
it is suited to be deployed on embedded systems.

CasADi thus merges together support for modeling with support for optimization.
Two classes of optimization problems are supported: nonlinear programs (NLPs)
and conic optimization problems. The latter class includes both linear programs
(LPs) and quadratic programs (QPs). [10]

3.1.2 Acados
Acados software package is an ensemble of solvers for fast embedded optimization
intended for fast embedded applications. Its interfaces to higher-level languages
make it useful for quickly designing an optimization-based control algorithm. This
is achieved by combining together different algorithmic components that can be
readily connected and interchanged. Since the core of Acados is written on top
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of a high-performance linear algebra library, it does not sacrifice computational
performance. Thus, it is able to give both flexibility and performance through
modularity, without the need to rely on automatic code generation, which facilitates
maintainability and extensibility. The main features of acados are: efficient optimal
control algorithms targeting embedded devices implemented in C, linear algebra
based on the high-performance BLASFEO library, user-friendly interfaces to Matlab
and Python, and compatibility with the modeling language of CasADi.

One challenge in developing software for embedded optimal control is found in
the trade-off between flexibility, memory usage and speed. Many of the software
packages are built on automatic code generation (such as Acado, the precursor
of Acados). One reason for that is to have self-contained efficient linear algebra
routines. Often however, the size of the problem and the choice of algorithms are
then fixed for one specific optimal control instance. This leads to a loss of flexibility,
other than more expenses and harder maintenance. The recently developed high-
performance linear algebra package BLASFEO often outperforms code-generated
routines. Given that the linear algebra operations usually amount for most of
the computational complexity, Acados based on BLASFEO represents a better
trade-off. [14]

Another relevant aspect of embedded optimal control software that affects
flexibility, memory and run-time is the choice of the modeling language and
corresponding automatic differentiation tool. Several modeling languages exist,
such as Mathematica, sympy or the MATLAB Symbolic Toolbox. Commonly,
these languages utilize expression trees to represent mathematical functions. This
leads usually to a large code size, high memory usage and slow evaluation of
higher-order derivatives. For simple models, they are usually good. But as soon
as the complexity of the model gets larger, they start to face problems. On the
opposite, CasADi modeling language is based on expression graphs. This in many
cases leads to shorter instruction sequences and to smaller, usually faster code,
which makes it more suitable for embedded applications. Also, it is free and open-
source software. For all this motivations, CasADi is chosen for modeling nonlinear
functions and differential-algebraic equations. Furthermore, Acados supports the
use of hand-written or code-generated dynamic models as C source files.

Main Features

In summary, acados is a quite new software package for embedded optimal control
that offers the following main features:

• efficient optimal control algorithms implemented in C.

• modular architecture enabling rapid prototyping of solution algorithms.
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• interfaces to Python (our choice) and Matlab.

• high-performance linear algebra based on BLASFEO.

• compatible with CasADi expressions.

• deployable on a variety of embedded devices.

• publicly available as permissively licensed free and open-source software.

[9]

Python Interface

Acados is built in order to be user-friendly at a high level and efficient at a low
level. To achieve a balance of these properties, it is structured on a base library
written in C which provides functionality to the Python and Matlab interfaces.
The core library of Acados contains for the most part an ensemble of modules.
Every module has corresponding data types and variants of solvers, together with
helper functions for memory management. To build applications by utilizing the
core library directly can be cumbersome and error-prone, since a lot of details need
to be considered. This is because it is designed in order to be efficient and flexible.
To fully serve the specific needs of the end user, different interfaces are possible to
the core of Acados. Our project is based on the Python interface.

In order to define the Optimal Control Problem (OCP) through the Acados
modules (cost, constraints and dynamics), the main challenge is to pass the generally
nonlinear functions and their derivatives to these modules. The Python and Matlab
interfaces of Acados use CasADi as a modeling language. Basically, CasADi is used
to define all the nonlinear portions of the OCP. The Acados high level interfaces
can use CasADi’s code generation and algorithmic differentiation to generate the
C functions that are required for each Acados module. One of the most important
advantages of using CasADi as a modeling language is that the solution behavior
of Acados can be easily compared with the solutions coming from the numerous
optimization tools interfaced with CasADi.

Workflow

Once the OCP to be solved is described through the domain-specific language
implemented by the high-level interfaces, a human readable self-contained C project
that makes use of templated code can be generated. The generated structure
contains all the C code that is needed for function and derivative evaluations.
These are generated through CasADi and the C code necessary to set up the NLP
solver using the Acados C interface. Furthermore, a comprehensive system for its
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compilation is generated. Be aware that this kind of code generation is inherently
different from the one in ACADO, the precursor of Acados. This is because the
templated code uses only the functions exposed by the C interface of Acados. In
contrast to this, ACADO generated solvers are standalone C projects that are
extremely problem specific and do not rely on a common library. So, basically,
the advent of a new high-performance dense linear algebra package for embedded
computations, BLASFEO, makes it possible to circumvent or even repell the need
for the code generation. The highly efficient linear algebra routines, optimized for
a range of computer architectures, often outperform code generated linear algebra.
[14]

With the workflow described above, it is fairly possible to achieve a self-contained,
high-performance solver that can be easily deployed on embedded hardware starting
from a description of the OCP in a high-level language.[9]

So, to sum up, Acados is a fast and embedded solver for nonlinear optimal
control. It is the successor of the ACADO software package developed at KU
Leuven and University of Freiburg by the team of Prof. Moritz Diehl [9]. It provides
an ensemble of computationally efficient building blocks suited for optimal control
and estimation problems. Among others, it implements: modules for the integration
of ordinary differential equations (ODE) and differential-algebraic equations (DAE),
interfaces to state-of-the-art QP solvers like HPIPM, qpOASES, qpDUNES and
OSQP, condensing routines and nonlinear programming solvers based on the real-
time iteration framework. The back-end of Acados uses the high-performance
linear algebra package BLASFEO, in order to boost computational efficiency for
small to medium scale matrices typical of embedded optimization applications.
MATLAB and Python interfaces can be used to conveniently describe optimal
control problems and generate self-contained C code that can be readily deployed
on embedded platforms.[14]

3.2 Code implementation and Simulation Envi-
ronment

This is the part of the project where I have been spending most of my time and
work. To make it quick: programming, and a lot of it. The first goal of this step
was to have a simulation drone up and running with an MPC controller able to
successfully target aggressive trajectories, so that then we could transfer everything
into reality in the laboratory and have some real flight experimental data. The kind
of trajectory considered for agile flight was the lemniscate shape (infinity shape),
together with the circle trajectory. Both the trajectories are shown in figure 3.1.
As already discussed previously, due to the writer knee injury and relative surgery
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in the middle of the work, the real flight experiments became an unfeasible dream
eventually. So in the end the whole project shifted towards extensive simulation
validation.

Figure 3.1: Examples of circle and lemniscate trajectories

The second goal was to then try to implement the Reinforcement Learning on
top of the MPC, thus having some parameters of the MPC learned from experience.

All the code implementation can be found on my Github, at the following link:
https://github.com/DematteisGiacomo/mpc_rmf_ws.

3.2.1 MPC implementation
Let’s first focus on the first part, the implementation of the MPC. Basically, I
had two code bases, both with some complementary relevant aspect to my project,
that I needed to thoroughly understand, modify according to my needs and finally
merge together for the final result. The first code base comes from [1]. It contained
everything related to the implementation of the MPC and relative optimization,
Acados, Casadi. The accompanying Github repo to the paper was quite constructive
with guidelines on how to simulate their code, which was entirely implemented
in Python. So what I first did was to try to get that up and running (with no
modifications, their drone and model) in order to have a solid baseline with MPC
following the types of trajectories we talked about above. At this stage, basically
what I could do was make the drone follow circle/lemniscate trajectory, and showed
tracking performance before and after. The challenge then was to adapt the case
we were simulating to the platform that the NTNU drone group was providing:
take the MPC for fast trajectory tracking developed by [1] and mount it on our
drone setup, a drone made for navigation with a simple PID as controller and keep
track of the results in terms of performance.

So here comes the second code base resulting from all the implementations and
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relative infrastructure/hardware of the NTNU drone group. It contained all the
relevant information of our drone, used for navigation, equipped with a PID as
controller and with all the necessary links once it was needed to move into the
laboratory. Roughly speaking, what I did was take the NTNU code and replace
the PID with the MPC.

The final implementation makes use of both C++ and Python. It is built on
ROS Noetic, Gazebo, Ubuntu 20.04, Python 3.8. The code is a combination of
C++ and Python. The code regarding the MPC was implemented in Python, since
it makes use of the related Acados interface.

Simulation Workflow

The MPC computes the series of reference state and reference input along the whole
trajectory, to be accounted at runtime in the cost function. As a result, as we can
see from the figure 3.2, we obtain the reference state (position, velocity, attitude,
rate) in the three dimensions and the reference input (the four rotor thrusts) for
the duration of the whole simulation. Additionally in the figure, it is showed a plot
of the target lemniscate trajectory (loop trajectory can also be an option).

After this, the simulation is ready to run. The simulation environment used is
Gazebo (figure 3.3). Gazebo is a 3D robot simulator. Its objective is to simulate a
robot, giving you a close substitute to how your robot would behave in a real-world
physical environment.

Another tool used for simulation is Rviz. Rviz (short for “ROS visualization”)
is a 3D visualization software tool for robots, sensors and algorithms. It enables
you to see the robot’s perception of its world (real or simulated). The purpose
of Rviz is to enable you to visualize the state of a robot. It uses sensor data to
try to create an accurate depiction of what is going on in the robot’s environment.
From figure 3.4, the left panel is the Displays panel. It has a list of plugins. These
plugins enable you to view sensor data and robot state information.

A lot of times the two of Gazebo and Rviz get confused one with the other.
After all, both programs enable you to view a simulated robot in 3D and both are
two popular software tools that are used with ROS.

The difference between the two can be summed up in the following excerpt from
Morgan Quigley (one of the original developers of ROS) in his book Programming
Robots with ROS:

“Rviz shows you what the robot thinks is happening, while Gazebo shows you
what is really happening.”

At the end a whole trajectory simulation, results are given, providing the
performance in terms of mismatch between reference and simulated values of state
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Figure 3.2: Plot of the reference state (position, velocity, attitude, rate) in the
three dimensions and of the reference input (the four rotor thrusts), together with
a plot of the desired trajectory (lemniscate in this case)

and input. Root Mean Square Error (RMSE) is considered as error metric. Plots
can be given, that show the results of simulation comprehensive of the plot of the
reference state versus the simulated, RMSE, and the input difference.

ROS

The Robot Operating System (ROS) is a set of software libraries and tools that
help to build robot applications. The ROS runtime "graph" is a peer-to-peer
network of processes (nodes), potentially distributed across machines, coupled
using the ROS communication infrastructure. ROS implements several different
styles of communication, including synchronous communication over services and
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Figure 3.3: Gazebo simulation environment.

Figure 3.4: Rviz 3-D visualization software tool and relative user interface.

asynchronous streaming of data over topics (what I mostly used).
In figure 3.5, the ROS graph during simulation is showed.

Let’s have a closer look at the picture and explain further. At the beginning
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Figure 3.5: ROS graph of the ongoing processes (nodes) and the channels of data
communication between them (topics).

of the simulation the reference trajectory is computed (by /ref_gen node ) and
fed to the MPC (through the /reference topic). At this point the drone starts
moving. The MPC node (/mpc_wrapper) is fed with the odometry (current
state: position, attitude, velocity, rate) by gazebo (through /odometry topic) and
computes the body rates and total thrust commands. In principle it can also
directly compute the four single thrusts of the rotors, but that would not be feasible
when the hardware comes into play for safety reasons (it would require to by-pass
some safety mechanism of the real autopilot). The MPC then passes the body
rates and thrust commands (through /rate_thrust topic) to a body rate controller
(/rate_controller_node). This controller basically simulates the real autopilot
hardware and would be replaced by it in the lab implementation. This controller
then feeds gazebo with the four motor speeds (equivalent to the single thrusts).
To close the circle, gazebo feeds again the MPC with a new odometry and keep
looping.

Note that in the real implementation, the gazebo simulator disappears. Instead,
the four motor speeds are fed to the Electronics Speed Controller (ESC) of the
motors for the Pulse Width Modulation (PWM) commands. And the odometry is
given by a Motion Capture (Mocap) system.
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Code example

Figure 3.6: Sample of CasADi snippet containing the definition of the model
dynamics 2.1

In figure 3.6 there is an example of the CasADi code in the implementation
of the optimizer. The sample contains the definition of the model dynamics as
described in 2.1 in CasADi Python-interface symbolic language.

MPC simulation results

The results coming from this simulation setup validate the use of an MPC as
controller for agile drone flight control. For this kind of application, the performance
achieved are quite satisfactory from a wide range of top velocities. In simulation,
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we can achieve top velocities of 15 m/s, without compromising the stability of the
system and without having a drastic decrease in performance. This is valid for
both lemniscate and loop trajectories.

Briefly, as a general result of these extensive simulations, we come to the
conclusion that MPC represent already a very good technology for this kind of
problem, confirmed by our specific model dynamics.

Further details will be shown in the results chapter. Just to give the reader a
general idea of the performance achieved, the RMSE for the lemniscate trajectory
with 10 m/s as top speed is about 0.20 m. Similar results are achieved in the loop
case, with a RMSE close to 0.23 m.

3.2.2 RL implementation
Once set up the MPC simulation environment, the next step in the project was to
try to set up a Reinforcement Learning framework, in order to see if the performance
could be improved even further. As discussed in the theory chapter, the basics of
this method is to adjust some specific parameters of the MPC formulation through
learning based on the data collected experimentally. In our case, the choice on
the parameters to be learned from experience fell on the values of the diagonal
matrices (Q and R) specified in the cost function. This two matrices identify the
trade-off between performance and input effort. Their choice heavily impact the
behaviour of simulation. They are naturally subject to manual tuning. But they
comprise a large number of parameters, so the tuning can be cumbersome and it is
not guaranteed to provide optimal results.

The two matrices dimensions are related to the state and input dimension. So,
for the state matrix Q, the dimensions is 13x13 diagonal. Whilst for the input
matrix R is 4x4 diagonal. This amounts to a total of 17 parameters subject to
tuning. This should provide a parametrization vast enough in order to justify the
use of the RL framework described previously. Theoretical foundations can be
found in [13].

Another set of parameters that could be subject to training could be the
parameters belonging to the model dynamics. This study could be interesting,
since the model dynamics is of course subject to approximation and mismatches.
In this work, we haven’t implemented the RL on the model parameters. This is
something that could be left for future work as well.

A curious entity to be specified in this framework is the reward function. In
reinforcement learning problems, this is a pivotal choice. Reward function can have
many shapes and forms. In our case, a common choice is to chose a reward function
of the same form of the cost function in the definition of the MPC. Basically, we
are given rewards on the basis of the performance in the reference tracking and
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on the basis of the input effort. The smaller the effort and the better the tracking
error, the higher is the reward. In figure 3.7, an example of reward plot of one
simulation experiment is shown.

Figure 3.7: The pictures shows the trend of rewards across one simulation
experiment.

The workflow of this simulation environment is quite straightforward. Basically,
on top of the MPC simulation, a RL procedure is instantiated upon completion of
every trajectory tracking experiment. Parameters are updated accordingly and a
new experiment can be undertaken. So the flow is the interleaving of experiment
and training, mutually influencing each other.

Regarding the practical implementation, Python code containing the definition
of the training function, lagrangian and sensitivity computation plus other relevant
functionalities, was added to the original MPC code base.

To sum up, what we get eventually is a well functioning framework, that allows to
easily iterate between simulation with data collection and training with parametrs
update.

RL simulation results

Regarding the results of this framework, things start to get a bit shaky. The imple-
mentation of the whole framework was quite challenging in terms of development
and many things were to be taken under account. This fatiguing implementation
was followed by an even more nasty debug phase. Unfortunately, some bug is still
to be fixed, and the correct behaviour is not perfectly achieved yet. Basically we

27



Simulation

cannot really appreciate a performance increase due to learning. The RMSE is
not decreased, and a feasible parameter update require a too small learning rate
such that barely any learning is present. However, it must be taken under account
that the behaviour of the drone at high speeds looks more stable. So, this may be
indicative of the fact that we are anyway in the right direction.

So, the results of this part are not satisfactory yet. More debugging is needed.
Unfortunately due to a lack of time, this work is not able to show that learning
is actually happening in the right direction. Anyway, results coming from this
framework are shown in the results chapter, for the curious reader to explore.
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Lab experiments

Lastly, we here explain the part of the project related with real flight experiment.
As already discussed, this part became unfeasible eventually, but anyway a lot of
work was put in preparation for this step. So, we left here following a discussion of
the method we would have been used to tackle the problem. One could also look
at it as a guide for a possible future work.

The goal is to compare the performance of our RL/MPC on a real quadrotor.
We use a custom quadrotor. We run the controller on a laptop computer and
send control commands in the form of collective thrust and desired body rates
to the quadrotor through wifi. The quadrotor flies in an indoor arena equipped
with an optical tracking system that provides pose estimates at 100 Hz. As in
the simulation experiments, we compare the tracking error along both circle and
lemniscate trajectories.

4.1 Setup

4.1.1 Drone

The type of drone used for the experimental part is the Resilient Micro Flyer
(RMF) (figure 4.1), a new type of collision-tolerant small aerial robot tailored
to traversing and searching within highly confined environments. The robot is
particularly lightweight and agile, while it implements a collision-tolerant design
which renders it resilient during forcible interaction with the environment. It weighs
less than 500g and is capable of 15min of endurance. [15]
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Figure 4.1: Resilient Micro Flier [15].

4.1.2 PX4 autopilot and Khadas vim3

Px4

The "brain" of the drone is called an autopilot. It consists of flight stack software
running on vehicle controller ("flight controller") hardware, often a Pixhawk (also
in our case). In our case it implements the body rate controller. It receives the
body rates commands from the MPC via wifi and computes the motors speed to be
fed to the ESCs. PX4 is a professional autopilot for drone control. It is developed
by world-class developers from industry and academia, and supported by an active
world wide community. It powers various kinds of vehicles from racing and cargo
drones to ground vehicles and submersibles. [16]
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Figure 4.2: Px4 autopilot module

Offboard Control: On-board processor and wifi link to ROS

The idea behind off-board control is to be able to control the PX4 flight stack
using software running outside of the autopilot: a small computer mounted onto
the vehicle connected to the autopilot through a UART to USB adapter while
also having a wifi link to a ground station running ROS. This is done through the
MAVLink protocol and MAVROS package.

MAVlink and MAVROS

MAVlink MAVLink is a very lightweight messaging protocol that has been
designed for the drone ecosystem. PX4 uses MAVLink to communicate with
the ground station and as the integration mechanism for connecting to drone
components outside of the flight controller: companion computers, MAVLink
enabled cameras etc. The protocol defines a number of standard messages and
microservices for exchanging data.

MAVROS MAVROS is a ROS package that enables MAVLink extendable com-
munication between computers running ROS for any MAVLink enabled autopilot,
ground station, or peripheral. MAVROS is the "official" supported bridge between
ROS and the MAVLink protocol.
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Lab experiments

Figure 4.3: Scheme of Offboard Control.

Khadas Vim3 companion computer

PX4 can connect to companion computers (Khadas Vim 3 in our case) using any
configurable serial port. Message are sent over the link using the MAVLink protocol.
In order to receive MAVLink, the companion computer needs to run some software
talking to the serial port. In our case it runs the MAVROS node to communicate
via wifi to ROS nodes of the ground station.

The VIM3 single board computer (SBC) is the latest addition to the popular
Khadas VIM series. It has a powerful Amlogic A311D SoC: x4 Cortex A73
performance-cores (2.2Ghz) and x2 Cortex A53 efficiency-cores (1.8Ghz) are merged
into a hexa-core configuration and fabricated with a 12nm process to maximise
performance, thermal and electrical efficiency. It is the size of a credit-card with
everything already built-in.

4.1.3 Motion Capture
Computer vision techniques enable computers to use visual data to make sense
of their environment. PX4 uses computer vision systems in order to support
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Figure 4.4: Khadas vim3 board

pose/velocity estimation. Motion Capture (MoCap) is a computer vision technique
for estimating the 3D pose of a vehicle using a positioning mechanism that is
external to the vehicle. It is primarily used for indoor navigation. It is commonly
used to navigate a vehicle in situations where GPS is absent (e.g. indoors), and
provides position relative to a local coordinate system. MoCap systems most
commonly detect motion using infrared cameras, but other types of cameras, Lidar
or Ultra Wideband (UWB) may also be used. In general, it is highly recommended
to send motion capture data via an onboard computer for reliable communications.

4.1.4 ROS
We can explain how all what is said before translates into the ROS graph at runtime
when running the experiment in the MoCap lab. Body rates are sent to mavros
node which then sends via mavlink to autopilot. Note that mavros node runs
onto the companion computer. And the MoCap provides the odometry through a
/qualisys odometry topic.
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Figure 4.5: Picture of a typical Motion Capture laboratory setup
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Chapter 5

Results

5.0.1 MPC results
As already noted, the results deriving from the simulation setup with the MPC
prove the validity of the utilization of an MPC as controller for agile drone flight
control. For the specific application considered, we are able to achieve more than
satisfactory performance with top velocities up to 15 m/s. This is obtained with
great stability properties of the system under inspection and with performance
that do not see drastic decreases. All this is proven for both types of trajectories.

Figure 5.1: The picture shows the trend of RMSE in relation with different top
speed simulations.
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As discussed, the main observation to be casted is that MPC represent an
extremely valid type of controller for this kind of problem. It is proven that MPC
is able to guarantee all the characteristics than it possesses, such as reliabilty,
performance, safety. All this while satisfying constraints on the input.

Further details are here shown by means of some simple plots. Note that the
results for the lemniscate trajectory are presented, but a very similar discussion
can be obtained from the results of the loop trajectory. We start by examining
the RMSE at different velocities for the lemniscate trajectory. As we can see from
figure 5.1, the overall errors are quite good in term of precision and performance.
It can be clearly observed how the performance decreases at higher speeds. This
comes directly from the fact that at high speeds, the turbulences and disturbances
coming from unknown effects to the models have an increasing impact.

Figure 5.2: The picture shows a comparison between the reference trajectory and
the simulated one in the x-y plane.

An another interesting plot is the one in figure 5.2 where the reference trajectory
in the x-y plane is compared with the simulated one. In orange we have the
reference, while the simulated trajectory is in blue. The trajectory shown here
is computed for a top speed of 10 m/s. Note that the simulated trajectory has
multiple loops since it start from having zero velocity up to top velocities and
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then decelerates back to zero. The whole execution may take a few loops before
completion.

Overall, we can conclude that the performance of the MPC is really satisfying
since we have to take into account the fact that the drone is moving at extremely
high speeds and accelerations compared to the standard application. The drone
is normally employed for navigation task that are not concerned with extreme
performance at high speeds. Small errors of about 0.25m on average are something
far more than acceptable.

5.0.2 RL results
As already stated, the results of the RL framework are not really achieving the
desirable outcome yet. The first desired outcome would be to have an MPC that
trains itself from experience updating its parameters. Further, the second desired
outcome would be to actually observe an improvement in the performance of our
simulation. The first outcome is achieved. We obtained a nice running framework
for training an MPC through RL by using experimental data. The second objective,
however, is not observable yet. More debugging is probably still needed in order to
appreciate an increase in the performance.

The implementation of the whole framework was quite challenging in terms of
development and many things were to be taken under account. On top of this tiring
construction, a lot of debugging was needed for it to work properly. Unfortunately,
some bug is still to be fixed, and the correct behaviour is not perfectly achieved
yet. However, it must be noted that the behaviour of the model at high speeds
seems to have a more stable behaviour. So, this may be proof of the fact that we
are heading in the right direction.

To sum up, we are not really able to see a performance increase due to the
learning process. The RMSE is not improved over the learning iterations. Further,
in order to make the training feasible for the solvers, it is required a too small
learning rate such that barely any learning can be considered to be present.

So, the results of this part are not satisfactory yet. More work would be needed
in order to fix the code. Due to lack of time however, this work is not able to show
that learning is actually happening in the right direction.

Anyway, results coming from this framework are shown in figure 5.3. We can
see how the RMSE is barely affected after five training instances. This is true also
for a larger number of training iterations.
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Figure 5.3: The picture shows the trend of the RMSE during across 5 training
iterations.
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Chapter 6

Conclusion

Aerodynamic forces make quadrotors trajectory tracking at high-speed extremely
challenging. High-speed turbulences have in fact a major impact on performance
loss.

Learning based MPC has been proven to be powerful for tackling different control
problems. The goal of this work was to see if performance could be improved by
adopting this kind of framework. MPC together with RL is used to tackle the
problem. We make use of RL to offline tune the MPC formulation using the data
obtained from the system.

We have been proven that MPC alone is a suitable solution for this kind of
applications, providing good and satisfactory results. We prove that MPC is an
optimal control method that exploits a dynamic model of the platform and provides
constraint satisfaction.

Further, a great amount of work was related with optimization. Optimization is
a central tool for many modern applications in technology, industry and research.
So, having the privilege to learn how to identify, formulate and solve complex
non-linear constrained optimization problems is something that should not go
unnoticed.

Regarding the learning part of the project, conclusions are a bit harder to
be come by. The framework is extremely challenging and provides in theory an
extremely interesting tool to deal with problems facing an agent with goals cast
into an environment. In relation to our specific application, the drone behaviour
at high speed does look more stable. However, the performance on trajectory
tracking is not perceptible yet. So, practical results proving the effectiveness of the
framework are not reached.

Anyway, the objective of implementing a running RL/MPC framework was
achieved, which is maybe the most relevant thing for a master thesis project.
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Possible future work could be related with the real-flight implementation, as
described in chapter 4, and with the fixing/tuning of the RL code.
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