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Summary

Manipulating sensory cues in the environment or changing the animal’s task sometimes
leads to hippocampal remapping of the spatial representation: a phenomenon whereby the
preferred location of all place-cells changes [global remapping (Muller and Kubie 1987)].
Recent evidence in humans suggests that hippocampal remapping is correlated with
switches between different behaviours (Julian and Doeller 2021). Remapping can thus
be viewed as evidence of recognizing that “something has changed enough” to require us-
ing a different spatial representation. Despite extensive research into the conditions and
mechanisms of pattern separation in the hippocampus, the rules that determine whether
a specific manipulation will cause remapping are currently unknown. Recently, it was dis-
covered that a phenomenon akin to global remapping occurs even when no manipulation
is made to the environment, to the state of the animal or to the behaviour it performs
(Sheintuch et al. 2020).
The aim of this thesis is to uncover principles underlying mixed of contextual information
with hippocampal spatial representations.
In the first part of the thesis, we studied a well-known model frequently used to describe
remapping phenomena in the hippocampus: the Hopfield model. We initially analysed
this model because, even though the steady state description has been well studied (Hop-
field 1982), the transient dynamics was analysed only in particular cases. The aim was to
develop a useful method that would have allowed us to efficiently study an extension of
the Hopfield model.
We analysed the dynamics initialised on a line connecting two attractors, where, in this
scenario, each attractor represented a different environment. We developed an analogous
1-dimensional model to describe the dynamics along this line.
In the second part, we built a Hopfield-type model which couples together different pat-
terns in order to represent the same environment in different contexts. Our assumption
was that if the cortical inputs to the hippocampus are precise enough to initialize the net-
work in the “correct” basin of attraction, then map multiplicity, discovered by Sheintuch
et al. 2020, was not random but rather represented contextual variables.
Firstly, we analysed the steady-state of the generalized Hopfield model. We showed the
emergence of multiple fixed points within the same environment. Ultimately, we modelled
the dynamics along different lines connecting all the fixed points within the same envi-
ronment and across different environments with a stochastic machine.
This model allowed us to obtain information on the precision and the dimensionality of
inputs, which the hippocampus receives from cortical areas, that can induce transitions
between attractors and, analogously, between different contextual representations.
Our model of transitions between different representations can be interpreted as a first
step to understand the minimal mechanisms supporting the process of learning mixed
spatial and contextual representations.
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Chapter 1

Introduction

Memory and sensory cues from multiple modalities allow real life navigation which in-
volves dynamic transitions between multiple environments. The seminal work of O’Keefe
and Dostrovsky 1971 and O’Keefe and Nadel 1978 demonstrated that the hippocampus
maintains a “cognitive map”: the network exhibits neuronal activity patterns in a lo-
cation specific manner. Multiple experimental results (Aronov, Nevers, and Tank 2017,
Radvansky et al. 2021, Ito et al. 2015, O’Keefe 1999, Sheintuch et al. 2020) describe a rich
phenomenology where spatial and contextual representations are mixed (“multiplexed”)
in the hippocampus. The switches made by the brain between spatial maps, as a result
of changes in non-spatial variables, make these representations distinctive. These may
underlie animals’ ability to perform different tasks while also navigating, e.g. working
memory and sensory discrimination (Ito et al. 2015, Nieh et al. 2021). The way cross-
talk between cortical and hippocampal networks fuses spatial and contextual information
is considered a major knowledge gap. Specifically the factors, which determine whether
hippocampal spatial representations will remain either stable to support perceptual per-
manence of the environment or remap to support identification of changes to it, have
limited understanding.

1.1 Experimental results

1.1.1 Place cells
O’Keefe and Dostrovsky 1971 discovered the existence of "place cells". They claimed that
the hippocampus was the anatomical locus of a “cognitive map”, i.e. a holistic neural
representation of the environment that permits rats and mice to efficiently solve spatial
problems. Anatomically, place cells are pyramidal neurons of the hippocampus in rats
(O’Keefe 1979) and mice (Rotenberg et al. 1996, McHugh et al. 1996). They are found
in both the CA1 and CA3 regions of the hippocampus (O’Keefe 1979). Recordings of
place cells have been performed in both the dorsal (septal) hippocampus and the ventral
(temporal) hippocampus, suggesting that the entire structure participates in mapping
(Poucet, Thinus-Blanc, and Muller 1994, Jung, Wiener, and McNaughton 1994).

5



Introduction

Functionally, each place cell is selectively active only when the rat is in a certain part of the
environment, called “firing field” or “place field". In other words, they are characterized
by location-specific firing. When the rat is outside the field, the firing rate of that place
cell is zero or indistinguishable from the baseline activity (Muller 1996).
Figure 1.1 shows an illustration of the firing rate properties of a representative place cell
from region CA1 of the hippocampus. Firing fields are cell specific. In a fixed environment,

Figure 1.1. (A) Color-coded map of the positional firing rate of a place cell for a 16
minutes session; the circular area is an overhead view of a cylindrical apparatus 76
cm in diameter with a 51 cm high wall. The firing field is the dark region at the top
left of the figure. Outside the firing field, the cell fires sporadically. The yellow pixels
encode firing rate equal to zero.
(B) The two diagrams show individual passes of the rat through the field; the paths
are black lines and action of the cell are depicted by red dots (image from Fenton
and Muller 1998).

each place cell has a stable field that is characteristic of that particular place cell. Taking
into account all the place cells together, O’Keefe and Dostrovsky 1971 hypothesized the
existence of a "cognitive map" in the hippocampus.

1.1.2 Remapping
It has been discovered that the firing patterns of place cells were frequently altered in
response to changes in sensory or cognitive inputs (Muller, Kubie, et al. 1991, Lever et al.
2002, Leutgeb et al. 2005). Such changes in firing activity constitute a ‘remapping’ of
the place cell representation of space. This phenomenon is usually named "global remap-
ping" (Latuske et al. 2018). Place fields and firing rates change drastically such that the
activity patterns of hippocampal place cells observed in two different environments are
not correlated (Muller and Kubie 1987). Remapping can thus be viewed as evidence of
recognizing that “something has changed enough in the environment” to require using a
different spatial representation, i.e. a different set of associations between sensory inputs
and neuronal outputs.
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1.1 – Experimental results

Figure 1.2 shows an example simultaneous recording of place cells that remapped in re-
sponse to a change in a sensory cue. It has recently been discovered that a phenomenon

Figure 1.2. Firing rate maps for hippocampal place cells recorded in a cylinder containing
either a white or a black intra-maze cue card.
(a) An example place cell recorded across four sessions in a cylinder with either the white
or black cue card (as indicated above).
(b) Three additional cells recorded in the cylinder for white and black cue card sessions.
Place fields changed location or disappeared in response to the cue card substitution
(Colgin, E. Moser, and M. Moser 2008,Bostock, Muller, and Kubie 1991).

akin to global remapping occurs even when no manipulation is made to the environment,
to the state of the animal or to the behavior it performs (Sheintuch et al. 2020). In other
words, these reversible transitions between population-level modes of activity appear to be
random. Subsequent studies from other labs have reproduced similar findings for different
areas of the brain (Low et al. 2021 in the entorhinal cortex).
In the work by Sheintuch et al. 2020, hippocampal place cells were imaged as mice ex-
plored the same environment, over many repeated visits, both within the same session, and
across multiple sessions spanning weeks. More precisely, each imaging session consisted
of multiple separate three-minute visits to the same environment. During each particular
visit, each mouse ran freely back and forth to collect water rewards at both ends of the
track. With a three-minute inter-trial interval, the mice were placed in an opaque bucket
near the track, in order to disconnect them from the testing environment. Overall, for
each mouse, they collected data from 25 − 40 trials within the same environment.
They found that multiple stable maps coexistence over weeks in the mouse hippocampus.
Once a given map was retrieved, it persisted throughout the trial until the mouse was
dissociated from the environment. In this way, the network reset, which possibly allowed
it to switch to a different spatial representations upon entering the linear track on the
next visit.
Furthermore, they claimed that a low variability in the network’s initial conditions could
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result in convergence to the same attractor on different visits, which might lead to the
stabilization of a single attractor state. Conversely, an higher variability could result in
convergence to different attractors, which might lead to the stabilization of multiple sep-
arate attractor states, corresponding to multiple stable maps of the same spatial context.

1.1.3 Hypothesis

Despite the extensive research into spatial maps in the hippocampus, the conditions un-
derwhich remapping occurs are still not well understood. Recent evidence in humans
suggests that hippocampal remapping is strongly correlated with switches between differ-
ent behaviors (Julian and Doeller 2021). Remapping can thus be interpreted as a major
change in the environment that requires using a different spatial representation.
Nonetheless, Sheintuch et al. 2020 experiment suggests that remapping may still occur
without any spatial manipulation of the environment. Subsequently, we hypothesize that
remapping occurs due to a major change in the animal’s internal state, which is repre-
sented in the pre-frontal cortex. We interpret it as a switch of contextual information
which leads to a joint hippocampal and cortical representation of space and context. We
further hypothesize that attractor dynamics in the hippocampus support efficient multi-
plexed representations of spatial and behaviorally relevant contextual information.
Furthermore, Sheintuch et al. 2020 experiment suggests that the variability on the net-
work initial state might be responsible for the existence of multiple representation in
the hippocampus. Consequently, we hypothesize that cortical inputs endow hippocampal
neuronal populations with a reliable encoding of contextual variables. That is to say, the
pre-frontal cortex is responsible for setting the network in the ’correct’ initial condition
that allows the attractor dynamics to converge on the desired spatial and contextual rep-
resentation of the state.
We built a theoretical attractor model of mixed hippocampal representations, constrained
with Sheintuch et al. 2020 experimental data (chapter 3).

1.2 Previous modelling
Evidence from experimental studies suggests that hippocampal circuits generate attractor
dynamics, i.e. specific patterns of neuronal activity which are: stable to perturbations;
correlated with variables in the external world (e.g., the animal’s position); persistent in
the absence of sensory input (Knierim and Neunuebel 2016). Despite this progress, the
link between attractor dynamics and hippocampal representations of non-spatial informa-
tion is missing. In other words, the rules that determine whether a specific manipulation
will cause remapping (“jumping to a different attractor”) are currently unknown.
The most adopted model to describe hippocampal attractor dynamics is the Hopfield
model. It was originally proposed by Hopfield 1982 and it provides a useful and successful
formalism for understanding attractor dynamics. We will describe in more details this
model in chapter 2. However, it is important to mention that the Hopfield model is not
consistent with the results obtained by Sheintuch et al. 2020. For example, it is indeed
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1.2 – Previous modelling

impossible to guarantee that changing the animal’s task without changing the environ-
ment will result in a state representing that specific environment. Furthermore, each
environment is reduced to a single point. In chapter 4, we will discuss how to extend the
fixed-point attractor to a continuous attractor model by following the formalism proposed
by Battaglia and Treves 1998. To solve this discrepancy, in previous literature, differ-
ent modification of the Hopfield model were considered. We mention the work by Haga
and Fukai 2019 where they introduced cross-coupling between every pair of “neighboring
states”, based on their position in a sequence. By contrast, in this thesis, we will propose a
different approach which cross-couples only the "within-environment" states (chapter 3).
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Chapter 2

Hopfield network

Our aim is to understand whether the switches between neuronal spatial representations
can arise from attractor dynamics of a generalized Hopfield model. Before studying the
extended model describing the coexistence of multiple maps for each single environment
representing different contexts, we studied a well-known model frequently used to describe
remapping phenomena in the hippocampus: the Hopfield model.
We initially analyze this model because, even though the steady state description has been
well studied (Hopfield 1982, Wilson and McNaughton 1993, Hopfield 1984), the transient
dynamics was analyzed only in particular cases.
As we discussed in subsection 1.1.3, we assume that cortical inputs to the hippocampus
are precise enough to initialize the network in the “correct” basin of attraction. We hy-
pothesize that relatively small amounts of noise in specific directions can be sufficient
to induce transitions between different contexts. Conversely, in other directions of the
activity space, we assume that the network is more robust to noise. Therefore, we ana-
lyze the dynamics initialised on a line connecting two attractors. If the pre-frontal cortex
initialization of the network is reliable, then we expect it to induce transitions between
different contexts.
Nonetheless, as we will discuss in the following chapter, the Hopfield network does not
explain the coexistence of multiple contexts for each single environment. The attractors
are uncorrelated with one another and, therefore, they produce uncorrelated representa-
tions of the same environment, which is consistent with the lack of correlations between
spatial representations of different environments. Consequently, in the Hopfield model,
we interpret each pattern as a population level representation of a single environment.
To remedy this discrepancy, we latterly extend the same approach when attractors are
coupled with each other (chapter 3).

2.1 Steady State description
The steady state description of the Hopfield network has been extensively studied. In the
following subsections, we will briefly analyze all the known results, such as the storage
capacity and the energy function of the model; subsequently, in the next section, the

11



Hopfield network

unknown transient dynamics on the line connecting two attractors.

2.1.1 The Model
The goal is to store a set of p patterns ξµ

i , where µ = 1,2, . . . , p. When introduced
with a new pattern, the network responds by producing the stored pattern that most
closely resembles it. Each pattern in the network is composed by units which we label
by i = 1,2, . . . , N , where N is the total number of neurons in the network. Each one of
the units xi can be either +1 (representing an active neuron whose firing rate is above a
certain threshold) or −1 (inactive neuron).
Within the configuration space described by all the possible states of the network, the
stored patterns ξµ are attractors of the network.
The dynamics of the network is described by the following update rule

xi(t + 1) = sgn

 NØ
j=1

Jijxj(t)

 (2.1)

where sgn(x) is the sign function defined as

sgn(x) =
I

1 if x ≥ 0
−1 if x < 0

and xi(t) ∈ {−1, +1} represents the state of neuron i at time t. The update will be done
asynchronously, i.e. updating each xi one at the time. Asynchronous update is preferred
since not all the neurons have the same fixed delay (t → t + 1), nor they are updated
synchronously by a central clock. At each time step, we select at random a unit xi to be
updated, and apply the rule in Equation 2.1. The network eventually settles into a stable
configuration, one for which no xi changes (Hertz, Krogh, and Palmer 1991). Technical
details on how this is accomplished can be found in section 2.2.1.
To store the patterns ξµ , the connectivity matrix Jij is defined based on the following
rule

Jij = 1
N

pØ
µ=1

ξµ
i ξµ

j (2.2)

This mimics "Hebbian learning", since it can be interpreted as a weight term for which
the connection between neuron i and neuron j switches from excitatory to inhibitory and
vice versa as more patterns are added.
This model presents a well-defined energy function as well

Eij = −1
2

NØ
i=1

NØ
j=1

Jijxixj (2.3)

The combination of the update rule Equation 2.1 and 2.2 is usually named Hopfield
network.
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2.2 – Transient dynamics

2.1.2 Storage Capacity
We defined a dynamical system that has attractors at the desired points ξµ

i , but those are
not the only attractors. The network also exhibits: reversed states, mixture states and
spin-glass states.
The reversed states −ξµ

i are minima and have the same energy as the original patterns
since both the dynamics and the energy function have a perfect symmetry ∀i. Mixture
states correspond to linear combinations of an odd number of patterns (Amit, Gutfreund,
and Sompolinsky 1985a). For instance, for p = 3, the network will also store

ξmix
i = sgn (±ξµ1

i ± ξµ2
i ± ξµ3

i )

Similarly any number of odd patterns may be combined. The system does not choose an
even number of patterns because they can add up to zero on some sites, whereas the units
xi have to be ±1 (Hertz, Krogh, and Palmer 1991).
For large p, spin-glass states are local minima that are not correlated with any finite
number of the original patterns ξµ (Amit, Gutfreund, and Sompolinsky 1985b).
Generally, mixture states and spin-glass states are called spurious states. They tend to
have rather small basins of attraction compared to the retrieval states and it can be
reduced even more when N ≫ p, i.e. for small α (Hertz, Krogh, and Palmer 1991).
It is useful to define a load parameter

α = p

N
(2.4)

which describes how many patterns can be stored in the network. It can be evaluated an-
alytically, using a mean field approximation (Amit, Gutfreund, and Sompolinsky 1985a),
that, for large α, the network does not retrieve correctly the stored memories anymore.
The theoretical value obtained by Amit, Gutfreund, and Sompolinsky 1985a, for the Hop-
field network with the Hebbian learning rule, in the large N limit, is αmax = 0.138.
Numerically, we can obtain the same result by imposing perfect memory retrieval, setting
a threshold Perr < 1

N to describe the average difference between the retrieved and the
stored pattern (Krotov and Hopfield 2016). Nonetheless, the network has finite size N
therefore Perr would not reproduce the theoretical result. Consequently, we set an arbi-
trary small threshold Perr = 0.02 to evaluate αmax (Hertz, Krogh, and Palmer 1991). The
result is shown in Figure 2.1. Here, we show the numerical tool to evaluate the maximum
capacity since it will be applied again in chapter 3.

2.2 Transient dynamics
We are interested in studying the dynamics on the line connecting two attractors. All
attractors are built statistically equivalent, therefore we analyze the dynamics in pairs,
for simplicity ’Pattern 1’ and ’Pattern 2’.
The following simulations are all performed with a fixed number of neurons N = 1000.
We study the effect of the various free parameters of the model and obtain an equivalent
1-dimensional dynamical system. The single dimension is the line connecting the two

13
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Figure 2.1. Probability to retrieve a memorized pattern depending on parameter α (2.4).
The blue dashed line is the theoretical value of maximum capacity α = 0.138. Numerically
the memorized pattern was considered incorrect when the pattern obtained was different
from the stored memory by a factor 0.02 (red dashed line).

patterns. For the future application in chapter 3, this can be qualitatively interpreted as
the line where the cortical inputs to the hippocampus act to initialize the network in the
“correct” basin of attraction.

2.2.1 Dynamics parameters dependence
Initial condition

As mentioned before, we want to study the dynamics on the line connecting two attractors.
We define it as

xi (t = 0) = (1 − ϵ) ξµ1
i + ϵ ξµ2

i ∀i (2.5)
where ϵ ∈ [0,1]. Differently from Equation 2.1, where xi ∈ {−1, +1}, here xi ∈ [−1, +1].
Introducing a non-linearity to map all xi into binary values would not have allowed us
to explore all the values along the line connecting the two attractors. Changing ϵ is then
equivalent to move the initial configuration x(t = 0) between the two attractors. Explic-
itly, for ϵ ∼ 0 and ϵ ∼ 1, the probability to converge, respectively, to ξ1 and ξ2 is large.
For ϵ = 0.5, the probability to converge to ξ1 is equal to the probability to converge to ξ2.
In order to precisely measure this effect, we evaluate the projection of the evolving con-
figuration x(t) on the stored patterns ξµ. We can define it as

z(t) = 1
N

(x(t) · ξµ) (2.6)

Even though we fixed the initial condition, the network has an intrinsic noise which is
due to asynchronous update. The order with which we update the single neurons xi leads
to different dynamics, as shown in Figure 2.2. The first approach, studied to carry out
the update specified by Equation 2.1, is selecting a certain random permutation for each

14



2.2 – Transient dynamics

Figure 2.2. Multiple trajectories starting in the same pattern configuration ξµ and initial
condition defined by ϵ. The effect of the asynchronous update is shown above. The order
with which the neurons are updated influence the dynamics but not the retrieved memory.

simulation and then update the neurons in that order. This approach is leading to a
linear-like dynamics of z with respect to t. In other words, these asynchronous updates
without replacement adds variability similar to synaptic delay.
We then introduce replacements in the update rule. At each time step, we select at random
a unit xi to be updated, and apply the rule 2.1. This leads to the dynamics shown in
Figure 2.2. Since the probability to update a certain neuron xi is lower with replacements,
the simulation time is longer as well. These asynchronous updates with replacement are
like synaptic delays with a heavier tail.
All the simulations we discuss from now on are performed using an asynchronous update
rule with replacements.
For the sake of completeness, another strategy to obtain a similar dynamics to the one
shown in Figure 2.2 is modifying the update rule as follows

xi(t + 1) = tanh

g
NØ

j=1
Jijxj(t)


The update is performed again asynchronously but without the need of replacements.
However, this approach introduces a new parameter g ∈ R. In order to get an exponential
behaviour which we can model, we need to fit, for each p, g accordingly. Therefore, the
previous approach is more convenient.
We also study whether there is an effect due to orthogonal directions (with respect to the
main direction) that are not included in Equation 2.5. Explicitly

xi (t = 0) =
31 − ϵ1

2

4
ξµ1

i + ϵ1

2 ξµ2
i + ϵ2

p − 2

pØ
k=3

ξk
i ∀i
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where ϵ1 ∈ [0,1] and ϵ2 ∈ [0,1]. Here, ϵ1 has the same role as ϵ in the previous initial
condition, while ϵ2 is now keeping into account the other N −1 directions. For any value of
ϵ2, there are no meaningful effect on the dynamics. We assume that the direction between
the two attractors is indeed the principal direction. This somehow falls in the known
picture of Hopfield basin of attraction for which each attractor has a certain "pulling
area".
All the simulations shown from now on are performed with the initial condition defined
in Equation 2.5 and the asynchronous update rule with replacements.
As shown in subsection 2.1.2, α characterizes the memory load of the network. Since we
fixed the number of neurons N , the number of stored patterns p will be our main focus.
This will be studied in the next section.

2.2.2 1-dimensional approach
Our goal is to create an equivalent dynamical system capable of capturing the main
features of the transient dynamics of the Hopfield network. Subsequently, apply the
obtained results to study the extension of the Hopfield model.

In the Hopfield model, the state of the network is an N dimensional vector quantity.
A set of initial conditions along orthogonal directions had no effect on convergence, which
justifies the assumption that the system is effectively one dimensional. Consistently, we
study the projection z defined in Equation 2.6. The convergence of the neural state to
the attractor is analogous to a ball subject to a potential energy function. We can write
the energy conservation for that kind of classical mechanics problems as

U := mgh = 1
2mv2

where m and g are emptied of their classical meaning, as mass and acceleration, and are
only used as constants to fit the data. We want to obtain an equivalent representation for
the velocity v from which derive a potential energy and, ultimately, an equivalent ODE.

First of all, we notice that z(t) ∼ ϵ
N . For instance at t = 0, assuming perfect orthogo-

nality between patterns (true in the limit of N → ∞ and p finite or, vice versa, for p → ∞
and N finite), the projection on Pattern 2 is the following

z(t = 0) = 1
N

(x(t = 0) · ξµ2)

= 1
N

((1 − ϵ)ξµ1 + ϵξµ2) · ξµ2

= ϵ

N

where we used the definition in Equation 2.5 and the definition of orthogonality

ξµi · ξµj = δij =
I

1 if i = j

0 otherwise

Numerically, it can be shown that this holds at any time t. Therefore, given a certain
ξµ and an initial condition on the direction defined by Equation 2.5, the dynamics to
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2.2 – Transient dynamics

reach convergence follows a similar average path independently of the initial condition.
Therefore we can consider z(t) and ϵ as equivalent variables.
Furthermore, if we consider ϵ as a position, then dϵ

dt ∝ dz
dt

:= v. The result is shown in
Figure 2.3

(a) velocity profile

(b) multiple dynamics

Figure 2.3. (a) Average velocity profile for p = 2. The colored dots represent specific
initial conditions for which the dynamics is shown below.
(b) Multiple dynamics for different values of initial condition chosen accordingly to
their position on the velocity profile. When the velocity is maximum (red curves),
there is Prob = 0 to escape from the closest pattern. As for velocities slightly below,
the probability to escape convergence from the closest pattern increases further (green
curves). For ϵ = 0.5, 50% of the trajectories converge to pattern 1 and 50% to pattern
2 (orange curves).

Observation 1 We do not observe spurious states in Figure 2.3 since, in this case, α =
2

1000 = 0.002, therefore two order of magnitude smaller than maximum capacity.

Even though it falls outside the experimental neuroscience relevance, where the animals
are usually trained in a small number of environments, for sake of completeness, we extend
this approach from any value of p, even close to maximum capacity. In Figure 2.4(a), it
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is shown the velocity profile both for a small p and for p close to maximum capacity.
In Figure 2.4, since we are interested in the velocity profile leading to convergence to the

(a) velocity profile (b) energy landscape

Figure 2.4. (a) Velocity profile for a small number of pattern p = 7 and a number of
pattern for which the model is closer to maximum capacity p = 70. Independently of p,
closer to the pattern to be retrieved, the velocity’s magnitude is very similar. Farther
from the attractor, the velocity is strongly dependent on the number of patterns.
(b): Potential energy with error bars

closest pattern, we are only considering the values after the maximum ϵmax in Figure 2.3.
In this context, ϵmax represents the largest ϵ that still assures convergence to the closest
pattern.
When p increases, both the maximum value of the curve, the basin of attraction and the
velocity dz

dt decrease, leading to a smaller value of ϵmax.
As a first approximation, we assume m = 1. The potential energy, i.e. the energy

landscape of the Hopfield network on the line connecting two attractors, is shown in
Figure 2.4(b).

Generalizing ∀p, we obtain fitting values listed in Table 2.1. At last, we obtain an
equivalent 1-dimensional problem described by the following stochastic differential equa-
tion (SDE)

dz(ϵ, p, t)
dt

= −∇U(ϵ, p) + σ(ϵ, p)dWt (2.7)

= 2az − 3bz2 + (2a − 3b) + (σ1z2 + σ2z + σ3)dWt (2.8)

where dWt describes a Wiener process, a(p) and b(p) are the fitted parameters for the
average behaviour while σ1, σ2, σ3 are the fitted parameters for the noise. Explicitely,
a(p) = a1p2 + a2p + a3 and b(p) = b1p2 + b2p + b3.
The model has been solved using the Euler method. In Figure 2.5, it is shown a fit for
p = 15.
An important tool given by the 1-dimensional model described in Equation 2.7 is that

the unstable fixed point of the model is fitted in such a way to be similar to ϵmax.
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2.2 – Transient dynamics

Figure 2.5. Comparison between the obtained SDE and the Hopfield model
with error bars for p = 15. The model is consistent with the original Hopfield
network for any value of p.

a1 a2 a3 b1 b2 b3

−1.21e−9 1.78e−7 1.72e−6 −4.17e−10 5.96e−8 8.18e−7
σ1 σ2 σ3

−1.25e−6 1.29e−6 −5.12e−8

Table 2.1. Values of the fitting parameters

Physical interpretation

The convergence of the neural state to the attractor is analogous to a ball subject to a
potential energy function. The 1 dimensional approximation we created can thus be inter-
preted as a simple mechanics problem of a ball rolling downhill with position dependent
friction. At the minimum energy, the velocity is equal to 0 and the acceleration is constant
(Figure 2.4). In other words, in order to stop at the minimum, the dynamics over ϵ needs
friction, which is enforced by U(ϵ).
This result is consistent with how the Hopfield energy landscape is usually depicted. More
precisely, the Hopfield network has a well-defined energy function defined in Equation 2.3
whose central property is to be (not strictly) decreasing. The attractors are its local
minima. This is usually sketched in a similar way, as a ball which slides downhill until it
comes to rest at one of the local minima, thanks to the decreasing energy function.
The main difference is that Equation 2.3 describes a complex energy landscape on a N
dimensional space which only, as a first approximation, can be thought as a mechanics
problem.
For the sake of this thesis, formalizing a precise reduction to a 1 dimensional dynamical
system is a good approximation that allows a better understanding of the generalized
Hopfield network described in chapter 3.
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Chapter 3

The extension of the
Hopfield’s model

Our hypothesis is that map multiplicity (Sheintuch et al. 2020) is not random but rather
represents contextual variables (subsection 1.1.2). This implies that cortical inputs to
the hippocampus are precise enough to initialize the network in the “correct” basin of
attraction. Experiments suggest that indirect projections from the medial prefrontal cor-
tex, via the thalamic nucleus reuniens, to CA1 in the hippocampus indeed enable the
hippocampus to encode contextual variables robustly (Ito et al. 2015, Wirt and Hyman
2019, Griffin 2021). While coding of space is robust to noise (subsection 2.1.1), relatively
small amounts of noise can be sufficient to induce transitions between different contexts.
We hypothesize that the choice of context by external inputs is robust to noise in specific
directions of the activity space, and less robust in other directions.

Our goal is to show that it is indeed possible to transition between different contexts
within the same environment. In order to accomplish this, we will work with a generalized
Hopfield network which couples together different patterns in order to represent the same
environment in different contexts. Such phenomena were previously identified in Hopfield-
type networks using mean-field-theory techniques (Pereira and Brunel 2018,Tirozzi and
Tsodyks 1991), but these techniques have not been applied to the generalized Hopfield
network we propose here.

3.1 Steady-State description
In the following section, we provide a general description of the steady-state properties of
the generalized Hopfield network. Differently from its counterpart described in chapter 2,
we approach the model without prior knowledge.

3.1.1 The Model
In its original formulation, expressed by Equation 2.2, the Hopfield network attractors
are uncorrelated with one another and orthogonal to each other, consistently with the
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The extension of the Hopfield’s model

lack of correlations between spatial representations of different environments (Wilson and
McNaughton 1993). Conversely, it is impossible to guarantee that, for example, changing
the animal’s task without changing the environment will result in a state representing
that specific environment. Based on the results obtained by Sheintuch et al. 2020, we
generalize the Hopfield model to remedy the discrepancy by introducing the cross-context
coupling coefficient, denoted a.
The goal is to store a set of p patterns in k contexts ξµ,ν

i , where µ = 1,2, . . . , p and
ν = 1,2, . . . , k, representing, in this scenario, p environments in k contexts.
Each pattern in the network is composed as before by units labelled by i = 1,2, . . . , N ,
where N is the total number of neurons in the network.
The connectivity matrix Jij between neuron i and neuron j now reads

Jij = 1
N

 pØ
µ=1

kØ
ν=1

ξµ,ν
i ξµ,ν

j + a
pØ

µ=1

kØ
ν=1

kØ
ρ=1
ρ /=ν

ξµ,ν
i ξµ,ρ

j

 (3.1)

where k is the number of contexts for each environment p. ξµ,ν
i is now the stored pattern

representing environment µ in context ν. The first term is the "Hebbian learning" we
previously discussed and applied in the Hopfield model. The second term corresponds to
binding of states across contexts since ρ is summed over all contexts not equal to ν.

For simplicity, we reduce the number of contexts for each environment µ to k = 2. The
connectivity matrix can now be written in an equivalent form as

Jij = 1
N

 2pØ
µ=1

ξµ
i ξµ

j + a

2

pØ
µ=1

1
ξ2µ−1

i ξ2µ
j + ξ2µ−1

j ξ2µ
i

2 (3.2)

The update rule remains unmodified (Equation 2.1).
Within the configuration space described by all the possible states of the network, the
attractors of the network are not well-defined anymore, given the presence of the cross-
context coupling term.

3.1.2 Dependence on the coupling parameter
In this subsection, we study the effect of the cross-context coupling term a on the network.
We aim at finding a range of values for the parameter a that is consistent with our previous
assumption. We hypothesize that, for small a, the network will behave similarly to the
Hopfield network, while, for large a, the contextual representation will collapse and each
environment representation will not be differentiated across contexts.
In Figure 3.1, it is shown the overlap between two attractors as a function of a. It exists

a narrow range of the parameter a, that we call arange, identified by the two blue dashed
lines, which is consistent with our assumption. We found that the range defined by arange

is dependent on α. We therefore selected a value of overlap = 0.2 and chose a accordingly.
We call this value across. In Table 3.1, we display the dependence of across with respect
to α.
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3.1 – Steady-State description

Figure 3.1. We can identify three regions: the leftmost region, for which we have
overlap ≃ 0, can be interpreted as a region with similar behaviour as a Hopfield net-
work. The rightmost region, where overlap > 0.3, leads to the contextual representa-
tion collapse and the merging of the two coupled fixed point into a superposition state.
The central region, where 0.1 < overlap < 0.3, is indeed where we measure a mod-
erate coupling effect that leads to the emergence of coupled fixed points. Simulation
obtained for p = 20 and N = 3000

α across

0.0010 0.984
0.0020 0.894
0.0033 0.786
0.0066 0.693
0.0130 0.607

Table 3.1. Values of α and across when overlap = 0.2

3.1.3 Storage Capacity
As we mentioned in subsection 2.1.2, above a certain value of αmax = p

N , the network
does not retrieve correctly the stored memories. We studied that, in the Hopfield network,
αmax is well defined and the transition between correctly and incorrectly stored patterns
occurs sharply (Hopfield 1982). However, a priori, we cannot make the same claim about
the generalised Hopfield model. In Figure 3.2, it is shown the transition depending on
different p. Unlike the Hopfield model, the transition appears to be smoother and with
a strong dependence on the number of patterns p. Unlike our previous approach, we are
not aware of the maximum capacity for this network. Therefore, we perform multiple
simulations with large N and set a threshold value Perr < 1

N in order to obtain perfect
memory retrieval. Specifically, we set Perr = 0.005. We observe that the coupling modifies
the fixed point continuously, therefore defining memory retrieval is indeed problematic.

As it is shown in Figure 3.2, the value of αmax for which the patterns are retrieved
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The extension of the Hopfield’s model

(a) Storage capacity p = 10 (b) Storage capacity p = 15

Figure 3.2. (a) Probability to retrieve a memorized pattern depending on parameter
α for p = 10 and (b) for p = 15

correctly is lower than its Hopfield counterpart for any value of p. More specifically, it is
quickly decreasing the larger p gets. It is shown in Figure 3.2 that, for p = {10,15}, αmax

halves its value. As a result, in order to maintain correct memory retrieval, N must scale
incredibly fast with respect to p.
Nonetheless, even for small p, the analyses of the model becomes computationally expen-
sive since we continuously modify the fixed point due to the introduction of the coupling
term. Subsequently, we analyze the model exclusively for small p. In particular, we
mainly focus on the case p = 4 for which αmax is similar to the Hopfield model, namely
αmax ≈ 0.13.

3.1.4 Coexistence of orthogonal and non-orthogonal fixed points
As we discussed in subsection 2.1.1, in the Hopfield network, the patterns are defined as
orthogonal to each other (Figure 3.3(a)). By contrast, the addition of the cross-coupling
term a, defined in subsection 3.1.1, partially breaks this symmetry. In particular, even
though the stored patterns ξµ are always defined and initialized orthogonal to each other,
the network can converge to fixed points which are different from ξµ ∀µ. Henceforth,
following the definition of the connectivity matrix Jij (Equation 3.1), we hypothesize that
the introduction of the cross-coupling term a would lead to the appearance of new non-
orthogonal, with respect to the patterns initialized by the network, fixed points within the
same environment while, at the same time, maintaining the orthogonality between fixed
points representing different environments.
Based on Equation 2.6, we define

zµ(t) = x(t) · ξµ

where x(t) is the configuration at time t and ξµ represents the stored patterns. We define
tc as the time for which the network reaches convergence. Henceforth, we can write

zµ(tc) = x(tc) · ξµ := ξnew · ξµ
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3.2 – Transient dynamics

where zµ(tc) now represents the correlation between the patterns initialised by the network
ξµ and the fixed point the network actually converges to ξnew. We then compute

c = max
µ∈{1,...,p}

zµ(tc)

ρ = arg max
µ∈{1,...,p}

zµ(tc)

If c = 1 then ∃µ : ξnew · ξµ = 1, i.e. the network converges to the stored pattern ξρ. If
0.7 ≤ c < 1 then ξnew represents a new fixed point which differs from all the stored pat-
terns ξµ. The stored pattern which mostly resembles ξnew is by definition ξρ. To keep into
account this information, we use a compact notation ξρ

new. From now on, we will use ξµ
new

only to denote the new fixed point generated by the introduction of the cross-coupling
term which differs from all the stored patterns ξµ. Consequently, ξµ will simply be the
stored patterns initialized by the network.
For example, we can identify µ = {1,2} as the representation of the same environment in
two different contexts, while, µ = {3,4} as the representation of a different environment
in two different contexts. Since Jij is symmetric for attractors representing different en-
vironments, we would obtain the same results for any other µ. Anyhow, we reduced our
description to p = 4 therefore the description is comprehensive.
Our goal will be to describe the dynamics on the line connecting two attractors; conse-
quently, we define separately different pairs of fixed points. More specifically, we define as
’NOFP’ the line connecting ξ1

new and ξ2
new (or, equivalently, ξ3

new and ξ4
new). Similarly, we

define as ’OFP’ the line connecting ξ1 and ξ2 (or, equivalently, ξ3 and ξ4). Ultimately,
we define as ’UOFP’ the line connecting ξ1

new and ξ3
new (or, equivalently, ξ2

new and ξ4
new,

or ξ1
new and ξ4

new, or ξ2
new and ξ3

new). We will also call UOFP the line connecting ξ1 and ξ3

(or, equivalently, ξ2 and ξ4, or ξ1 and ξ4, or ξ2 and ξ3). We will explain in the following
section why we are not distinguishing the last two cases.
The results produced by the model partially confirm our hypothesis. More specifically,

each context is now represented by two fixed points: the stored pattern ξµ, enforced by the
Hebbian learning rule, and a new fixed point ξµ

new, enforced by the cross-coupling term.
Differently than before, the dynamics within the same environment is now characterized
by the coexistence of four different fixed points. In Figure 3.3(b), a schematic illustration
of the fixed points and the lines connecting them is shown. We will study the dynamics
in the next section.

3.2 Transient dynamics
After studying the steady state of the model, we will now analyze the dynamics along
different lines connecting all the fixed points within the same environment and across
different environments.
As we discussed in the section above, the model generates a new set of coupled fixed points
ξµ

new within the same environment. We define a fixed point as a global minimum based
on which fixed point is more likely that the network converges to. Our hypothesis is that
those fixed points are stable to perturbations and represent the new global minima of the
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The extension of the Hopfield’s model

(a) Illustration of the energy landscape of the
Hopfield network

(b) Illustration of the energy landscape of the
extension of the Hopfield network

Figure 3.3. Schematic illustration of (a) the energy landscape we sketch for network
dynamics of the Hopfield network and (b) for the extension of the Hopfield network. In
(b), we also show the lines connecting the fixed points defined before.

Figure 3.4. We computed the final state z the network settles on as a function of the
initial condition ϵ on the line connecting the representation of the same environment in
context 1 (blue line) and context 2 (red line). Due to the coupling, the network converges
on average to a non-orthogonal fixed point therefore z(ϵ) /= 1.
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3.2 – Transient dynamics

dynamics. We also expect that it is possible to escape these new global minima, which
we can interpret as a small probability of not recognizing the environment correctly.
We cannot assume a priori that ξµ

new are the global minima of the network therefore, in
the next subsections, we study each case independently. Subsequently, we create a 1-
dimensional approach based on the same method we developed for the Hopfield network.

3.2.1 Dynamics on the line between fixed points
We are considering p = 4. As we previously mentioned, we will call for simplicity µ = {1,2}
the representation of the same environment in two different contexts, and µ = {3,4} the
representation of a different environment in two different contexts.

Dynamics on the line between coupled orthogonal fixed points (OFP)

The first case we distinguish is by moving the initial condition on the line OFP. In Fig-

Figure 3.5. Convergence probability while moving along the line OFP. The orange bars
are describing the probability to convergence to one of the two ξµ

new within the same
environment. The same can be said for the blue bars describing ξµ, which are only
present for the extreme values of ϵ. The green bars, which are representing convergence
to any other fixed point which is not within the same environment, are present for ϵ ≈ 0.5

ure 3.5, we are showing the probability to convergence to any fixed point while moving
on the line OFP.
ξµ are now relative minima of the dynamics. Their convergence probability is negligible
everywhere except when we are close to their attractor basins (for ϵ ≃ 0 and ϵ ≃ 1).
We can also notice that, for ϵ ≈ 0.5, there is a non-negligible probability to convergence
to a fixed point of a different environment (green bars).
The above behaviour is compatible with what we hypothesized. ξµ are local minima while
ξµ

new, describing the existence of two different contexts within the same environment, are
now global minima; they are also stable to perturbation which is given by moving on a line
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The extension of the Hopfield’s model

OFP. Furthermore, there is a small probability of not recognizing the correct environment,
shown by the green bars.

Dynamics on the line between coupled non-orthogonal fixed points (NOFP)

Subsequently, we proceed on analyzing the dynamics along the line NOFP. We obtain
a behaviour, shown in Figure 3.6, not coherent with our hypothesis and underlying a
more complicated energy landscape. Even though we are moving on the line NOFP,

Figure 3.6. Convergence probability while moving along the line NOFP. The blue
bars, describing ξµ, are now present for any value of ϵ. The green bars, representing
convergence to any other fixed point which is not within the same environment,
are now almost zero everywhere.

the probability to convergence to ξµ is not negligible. This behaviour can be explained
considering that the N dimensional space, in which the dynamics is evolving, is not easily
reducible to a lower dimensional space as we previously manage to obtain for the Hopfield
model. This underlying complexity allows a relative minimum with a smaller basin of
attraction to be the fixed point of the dynamics, contrary to what we hypothesized. We
also notice how the probability to convergence to a fixed point representing a different
environment drops to zero.
Following this result, we cannot disregard the existence of ξµ since they are stable fixed
points of the dynamics with a non-negligible probability.

Dynamics on the line between uncoupled orthogonal fixed points (UOFP)

Ultimately, we study the behaviour on the line UOFP, i.e. fixed points belonging to
different environments. Here, the model is following again our hypothesis. ξµ

new are
the global minima of the dynamics while ξµ are not stable (Figure 3.7). This result is
obtained independently whether the line connects two ξµ

new or two ξµ (assuming that they
are representing different environments).
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3.2 – Transient dynamics

Figure 3.7. Convergence probability while moving along the line UOFP. The blue
bars, describing ξµ, are now absent for any value of ϵ. The green bars, representing
convergence to any other fixed point outside the same environment, are now present
again for values of ϵ ≈ 0.5.

3.2.2 Stochastic 1-dimensional approach
We now want to summarize our results in a stochastic 1-dimensional model. We cannot
proceed as before by outlining a single SDE. Therefore, we create a stochastic machine.
The states of the machine are the fixed points of the network. We introduce an initial
state I and a final state F connected to all the other states X, namely UOFP , NOFP
and OFP . Each state represents the evolution on the respective line. The transition
probability from the initial state to any other state a(I,X) is assigned randomly. After the
first steps, the network will likely transit to the state with the highest probability. Within
all the states, the transition probabilities a(X,Y ) are obtained from the heatmaps shown
in Figure 3.9. They describe the number of times the value of the projection z at time t
emerged for each state. Self loops, representing the probability to remain in the current
state a(X,X), are allowed.
At each time step t, we update the transition probabilities accordingly to the value of the
heatmap at z (t − 1) for each state, and then either update to a new state or remain in
the current one depending on the values of a(X,Y ) at that time t. When convergence is
reached, i.e. the probability value for one of the states W is greater than 0.98, we move to
the final state F with transition probabilities a(X,F ) = δX,W where δX,W is the Kronecker
delta.
A state machine similar to the one described above is depicted in Figure 3.8.
The heatmaps shown in Figure 3.9 were used to infer the transition probabilities a(X,Y ) for

each state at each t. Since the number of time steps t is incredibly high before convergence
is reached, we are not showing their values for each t. To obtain a(X,Y ) from the heatmaps,
we superpose the three heatmaps and normalize them obtaining for each value of z(t) the
transition probabilities a(X,Y ) with respect to one of the fixed points, e.g. a ξµ

new since it has
the highest probabilities among all the states to be the fixed point the dynamics converges
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I

UOFP

NOFP OFP

F

a(I ,X)

a(X ,Y )

a(X ,F )

a(X ,X )

Figure 3.8. State machine describing the dynamics evolution

to. The heatmaps are symmetrical on the z-axis with respect to z = 0.5. Henceforth,
z = [0,0.5] is equivalent to z = [0.5,1] since we are representing the convergence to the
other fixed point on the line. In Table 3.2, we list a few values of z(t) (evaluated with
respect to one of the ξµ

new) to convey a better estimate of the order of magnitude of the
transition probabilities aX,Y . Each one of the states has emission probability eX,z(t),

zξµ
new

t NOFP OFP UOFP

0.52 0 0.596 0.115 0.288
0.75 0 0.925 0.075 0
0.95 0 0.894 0.106 0
0.52 22500 0 0.8 0.2
0.75 22500 0.981 0.019 0
0.95 22500 0.937 0.063 0

Table 3.2. Values of transition probability aX,Y for different values of z(t) = x(t) · ξµ.
The values above shows how the NOFP state has the highest probabilities. Nonetheless,
for z(t = 0) ≃ 0.5, i.e. when we are near the midpoint of the line connecting the two
fixed points, the probability to transit to a different environment is no longer negligible.
For t = 22500, the network has almost reached convergence therefore having probability
values similar to 1, independently of the state.

i.e. corresponding to the emission of z(t) when the network is in state X. Each emission
probability is described by a SDE fitted exactly as in subsection 2.2.2 which represents the
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3.2 – Transient dynamics

(a) OFP (b) NOFP

(c) UOFP

Figure 3.9. Heatmaps describing the number of times the value of the projection z at
time t emerged for each state (a) OFP , (b) NOFP and (c) UOFP . An appropriate
normalization of these values leads to the transition probabilities aX,Y

evolution on the different lines. Each state is therefore locally described by a 1-dimensional
model.
The model described here is a good approximation of the dynamics of the extension of
the Hopfield network. In the final chapter, we will discuss possible approaches to improve
this description.

Physical interpretation

Due to the higher level of complexity of the N dimensional space, it was impossible to map
the model directly to an analogous 1-dimensional problem. We therefore created a state
machine that would allow us to locally approximate the problem as 1-dimensional. The
complexity of the space was considered by inferring the parameters for the state machine.
It is indeed harder to sketch a physical interpretation.
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Chapter 4

Conclusion

We started our discussion by analyzing the classical Hopfield model. Based on the remap-
ping phenomenon, the network converged to attractors which represented a collection of
neuronal population states we interpreted as environments. Moreover, based on the re-
sults obtained by Sheintuch et al. 2020, our goal was to show that it was indeed possible
for the hippocampus to support efficient multiplexed representations of spatial and be-
haviorally relevant contextual information, and, consequently, to safely transit between
representations of different contexts within the same spatial representation. Accordingly
to previous literature, we hypothesized that the contextual variables were arising from
the pre-frontal cortex. Henceforth, we proposed a generalized Hopfield network which
couples together different patterns in order to represent the same spatial representation
in different contexts.
Before analyzing the generalized Hopfield network, we focused on the transient dynamics
of the Hopfield model along a line connecting two different attractors. We developed an
analogous 1 dimensional model to describe the dynamics along this line. Subsequently, we
analyzed the steady-state of the generalized Hopfield model. We showed the emergence
of multiple fixed points within the same environment. Ultimately, we modelled the dy-
namics along different lines connecting all the fixed points within the same environment
and across different environments with a stochastic machine.

4.1 Results interpretation
We hypothesized that remapping occurs due to a major change in the animal’s internal
state arising from the pre-frontal cortex. We interpret it as a switch of contextual in-
formation which leads to a joint hippocampal and cortical representation of space and
context. Our aim was to obtain a quantitative description of how switches are induced
inside the brain, in order to understand the minimal manipulations that trigger remapping
and allow to transit between different contextual representation of the same environment.
We developed an analogous 1 dimensional stochastic model to efficiently study the gener-
alized Hopfield model we proposed, which describes mixed representations of spatial and
behavioral contextual information.
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Conclusion

The model allowed us to obtain information on the precision and the dimensionality of
inputs, which the hippocampus receives from cortical areas, that can induce transitions
between attractors and, analogously, between different contextual representations.
Our model of transitions between different representations can be interpreted as a first
step to understand the minimal mechanisms supporting the process of learning mixed
spatial and contextual representations. Nonetheless, as we mention in the next section,
the model can further be improved.

4.2 Future works
In the model investigated thus far, each pattern corresponded to a fixed-point attractor,
i.e., a specific combination of firing-rates of neurons in the population. Based on previous
literature on ring attractor models (Battaglia and Treves 1998), our dynamical system
can be extended to a continuous attractor model with multiple environments and a cross-
context coupling a, similarly to Equation 3.1. More specifically, we can assume that
the animal navigates in a one-dimensional ring-shaped environment where its position is
described by an angle θ. We do not know whether the cross-context coupling a has the
same effect on the dynamics of the continuous attractor network as it did on the network
with fixed-points. It is indeed possible that the sensitivity to input noise we found in the
fixed-point case is remedied here by the smoothness imposed by the continuous attractor
model.
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