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Abstract
The main result of this thesis is a geometric bound which allows us to quantify the
viability of quantum algorithms, in a simple yet effective way. On top of that, it can
be used to understand if a path from an input state to a target state is optimal or
not, allowing us to optimize the programming strategies used nowadays in quantum
computing.

Quantum computers promise a huge improvement on our ability to solve hard and
complex problems, but the technical challenges they present need new methodologies
to deal with them. In this thesis we will focus our attention on different methodologies
to bound the experimental costs (the energetic cost and the size) of quantum prepara-
tion algorithms. The approach we are going to focus on is a purely geometrical one,
totally independent from the actual realization of the system since it is derived from
the quantum mechanics postulates, thus, completely general.

The first part of our discussion will review the quantum mechanics formalism and
geometric properties that can be defined on the state-space. In detail, the main topic
of discussion is focused on the definition of distance (or metric) between states. The
concept of metric defined on a space (the euclidean space or the Hilbert one) has as
main purpose to help us understand how far the objects of the space are one from the
other. Even if the mathematical world is full of different definitions of distances, each
one has its well defined properties and usefulness. It turns out that the one defined in
quantum mechanics struggles with N-particles systems, which are key ingredients when
we deal with quantum computations for obvious reasons. To avoid such, not trivial, de-
tail we employ a newly introduced metric called Weighted distance, which can be easily
proven to be way more informative that its un-weighted counter part. The behaviour
of the weighted distance is way more close to the concept of describing how far objects
are the one from the other we stated before, making it a useful tool.

Once the weighted distance has been defined, we list its properties and discuss how
to use it to bound the experimental cost of a transformation. When we talk about
transformations, one must remember that they can always be divided into two com-
ponents: a classical part and a quantum part. Since the classical part can be carried
out in a well known way, we forget about it and suppose it costless, focusing on the
quantum part alone. The first step is to define clearly the distance between the input
and output state. It turns out that a good choice is the Bures length. From this result,
we first discuss the discrete case in which we implement a generic unitary as a series
of quantum gates (each involving a given number of qubits). It can be proven that
the experimental cost in terms of quantum resources (taking into account energy cost,
dimension of the gates and time needed for the transformation) is bounded from below
by the, previously introduced, weighted Bures length. Once proved for discrete time
transformations, we generalized the result to continuous time transformations obtaining
a more general result. The bound we obtained is very powerful because: it is an exact
bound; it works both for pure and mixed states; it has been obtained from the quantum
mechanics postulates so it is independent on the actual realization of the system. For-
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mally such bound can also be reinterpreted as: the ability to perform a transformation
from a given input state to a different output state is never greater than the ability to
distinguish them.

Last topic of our discussion is devoted to a closely related concept, the quantumness
of a process. As said above, every process can be decoupled in a classical component
and in a quantum component. The ability to quantify the energy cost of the latter can
be used to optimize quantum algorithms, finding the optimal path from a given input
state to a target state. The quantumness can be defined as the minimum energetic
cost to perform a transformation. Since the quantumness it is obtained minimizing the
quantum energetic cost, it can be find minimizing it on the set of all possible isospectral
free states and all possible path from the input to the output. Even if this procedure
seems very complex through geometrical properties we are able to bound the quantum-
ness, as we did for the experimental cost. Once obtained such bound, we show a simple
application of such result to find the optimal path. In detail, we focus on the best path
from a state (a|0⟩ + b|1⟩)|0⟩⊗N to an high entangled state restricting the dimension of
the gates we use for the transformation.
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1 Quantum information basics

Quantum mechanics: Real Black
Magic Calculus

Albert Einstein

In this chapter we will focus on the basics of quantum mechanics and the useful
tools for the later development of the subsequent topics.

1.1 Quantum mechanics postulates

Before the formal statements of the postulates, it is important to remember that quan-
tum mechanics is a mathematical framework necessary to the development and the
understanding of physical systems. The postulates below provide a connection between
the laws which govern a system behavior and the math behind them[1].

Postulate 1: Any isolated physical system is associated to a complex vector space
with an inner product known as state space. The system is completely described by

its state vector, which is a unit vector in the system’s state space.

Quantum mechanics does not state which is the state space or the space vector. Finding
them usually is a very hard task. For the following discussion it is not really needed the
actual computation of them, so we will focus on the most general possible framework
and stick with our assumptions.
The simplest quantum system, and the most interesting one for quantum computation,
is the qubit. A qubit state has two dimensional state space where for simplicity we
identify |0⟩, |1⟩ as the element of the orthonormal basis. It follows that any qubit can
be written as linear combination of the two:

|Ψ⟩ = a|0⟩+ b|1⟩

Since |Ψ⟩ must be a unit vector, we have that |a|2 + |b|2 = 1. The qubit, we just
described, resembles a classical bit of information but there is a key difference between
the two: a classical bit can only exists in one of the two possible states 0 or 1. On the
other hand its quantum counter part can exist in a superposition of the two states. The
states’ superposition is one of the biggest differences between a classical environment
and a quantum one.

Postulate 2: The evolution of a closed system is described by a unitary
transformation. That is, if |Ψ⟩ is the state of the system at time t2 and |Ψ′⟩ is the

state of the system at time t1, then

|Ψ⟩ = U |Ψ′⟩ with U only depending on t2 − t1.

As before quantum mechanics does not state how U must be computed, the only im-
portant information is that U must be unitary. It is important for the later discussion
to better explain a little detail about the second postulate. All closed system can be
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thought as a system, on which we actually perform experiments and measurements, and
the environment in which it is embedded. The postulate states clearly that a closed
system will evolve through a unitary transformation U , but this does not imply that
its components will do the same. So in a general scenario, we will have that the system
under study will not evolve through a unitary transformation because it is coupled with
the environment. The second postulates seems a bit difficult to apply when we consider
that it is limited to closed systems which in practice can not be realized. Nevertheless in
the quantum computation’s environment, and not only, we can manage to approximate
many physical systems to closed ones, which allows to simplify the description of the
system under study.
The second postulate has also an alternative formulation which extend our knowledge
on the dynamical evolution of our system.

Postulate 2(bis): The evolution of the state of a quantum system is described by
the Schrodinger equation

iℏ
d

dt
|Ψ⟩ = H|Ψ⟩

In the previous equation we introduced ℏ, which is the Planck’s constant (for our
purposes will be set to 1, since it is a constant parameter which can be absorbed in
H) and H which is the Hamiltonian of our system. H is an hermitian operator. The
postulate does not differ from its previous form when we talk about closed systems
since H can only be written for closed systems. Solving the equation is not simple, but
once it is done we have a dynamical formulation for |Ψ⟩.
To see the connection between the two statements we can simply verify that:

|Ψ(t2)⟩ = e
−iH(t2−t1)

ℏ |Ψ(t1)⟩ = U(t2, t1)|Ψ(t1)⟩

is a solution of the Schrodinger equation in the case H is time independent.
The matrix U(t2, t1) is called time propagator and it satisfies the following equation

iℏ
d

dt
U = H(t)U with U(t1, t1) = I

where a general solution can be written as

U(t2, t1) = e−
i
ℏ
∫ t2
t1

H(t′)dt′

The two versions of the second postulate coincide since it easy to prove that U is a
unitary operator given that H is hermitian. Up to now we have stated the formal
definition of our state vector and its evolution in the case the system does not interact
with the outside world. We can create systems which are very similar to a close system
but for a series of purposes it will be necessary to measure some of their properties at
some point. In that case we can no longer treat our system as a close one. In this cases
we need another postulate which clarifies the behavior of our system in response to a
measure.

Postulate 3: quantum measurements are described by a collection {Mm} of
measurement operators. These are operator acting on the state space of the system
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being measured. The index m refers to the measurement outcomes that may occur in
the experiment. If the state of the quantum system is |Ψ⟩ immediately before the

measurement, then the probability that result m occurs is

p(m) = ⟨Ψ|M †
mMm|Ψ⟩

and after the measurement the state of the system will be |Ψ′⟩

|Ψ′⟩ = Mm|Ψ⟩√
⟨Ψ|M †

mMm|Ψ⟩

The measurement operators satisfy completeness relation∑
m

M †
mMm = I

The completeness relation is just a consequence of the normalization of the probability,
since ∑

m

M †
mMm = I ⇐⇒ 1 =

∑
m

p(m) =
∑
m

⟨Ψ|M †
mMm|Ψ⟩

This postulate simply states that measuring a property of our system has a direct effect
on it. Let us make an example on a practical system like a qubit. As said before we
can write a qubit as:

|Ψ⟩ = a|0⟩+ b|1⟩

In the moment we perform a measure on the state of our system we modify it making
it or |0⟩ or |1⟩. This behavior by itself it is peculiar of quantum mechanics. As said
before, quantum superposition is a very fundamental concept in quantum computation,
and it can be simply destroyed by performing a measurement on the system.
The last postulate deals with a very interesting topic. Up to now we have only consid-
ered one system at the time, but in general we have to study multiple system at the
time. We need a mathematical tool to describe them effectively.

Postulate 4: The state space of a composite system is the tensor product of the
state spaces of the components of such system.

Let us make an example to better understand the hidden meaning of the postulate.
Suppose we have two systems described by the Hilbert spaces

H1 : {|Ψ1⟩, ..., |ΨN⟩} and H2 : {|Φ1⟩, ..., |ΦM⟩}

then the Hilbert space that describes the joint system is written as

H =

{
|Ψi⟩ ⊗ |Φj⟩ : i ∈ {1, ...N, }, j ∈ {1, ...,M}

}
It follows that a generic pure state that describe the joint system can always be written
as:

|Ψ⟩ =
N∑
i=1

M∑
j=1

cij|Ψi⟩|Φj⟩ such that
N∑
i=1

M∑
j=1

|cij|2 = 1
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1.2 POVM measurements

Postulate 3 gives a rule about measurements’ statistics and the state of the system after
we observe it. However, for some specific cases information about the post-measurement
state of the system is very interesting. We are going to discuss now a mathematical
tool called POVM (povitive operator valued measure) formalism, which is a very elegant
way to approach such a problem.
Suppose a measurement described by Mm is performed upon a quantum system in the
state |Ψ⟩. From postulate 3 we know that the outcome m of a measurement has a
probability p(m) = ⟨Ψ|M †

mMm|Ψ⟩. Let us define now Em = M †
mMm then we have

p(m) = ⟨Ψ|Em|Ψ⟩ and
∑
m

Em = I

Em are positive operators and by definition are sufficient to determine the probabilities
of different measurement outcomes. The operators Em are known as the POVM ele-
ments associated to the measurement and the set {Em} is known as POVM[1].
As an example, let us consider the projective measurement operators Pm, where we
have that

PmPm′ = δm,m′Pm and
∑
m

Pm = I

In this peculiar case, all the POVM elements are the same measurement operator
themselves, since Em = P †

mPm = Pm.
It is possible to show that there is a set {Mm} of measurement operators defining a
measurement described by the POVM {Em}. Define Mm =

√
Em we have that∑

m

M †
mMm =

∑
m

Em = I

and therefore the set Mm describes a measurement with POVM {Em}. For this reason
it is convenient to define a POVM to be any set of operators {Em} such that:

• each operator Em is positive

• the set {Em} satisfies the completeness relation

POVM are really powerful tool when we are interested in distinguish different states
only from measurement statistics, that is why we are going to make use of them in the
following discussion.

1.3 The density operator

Up to now we have discussed all the postulates of quantum mechanics focusing only
on the state vector formalism. There is an equivalent version which is based on the
so called density matrix operator. It is important to state that both descriptions are
equivalent, but the density matrix operator provides a more general mathematical tool
to deal with than the other.
Suppose a quantum system is in one state |Ψi⟩ with i ∈ {1, ..., n} with respective
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probabilities pi. The set {pi, |Ψi⟩} is an ensemble of pure states. The density operator
is defined as :

ρ =
∑
i

pi|Ψi⟩⟨Ψi|

The postulates of quantum mechanics can be reformulated in terms of the density
operator matrix.
If the time evolution of a system is described by a unitary transformation U such that:
|Ψi⟩ =⇒ U |Ψi⟩ then we have that

ρ =
∑
i

pi|Ψi⟩⟨Ψi| =⇒ UρU † =
∑
i

piU |Ψi⟩⟨Ψi|U †

Measurements are also easily described in the density matrix formalism. Suppose we
perform a measurement described by a measurement operators Mm. If the initial state
was |Ψi⟩, then the probability of getting m as a result is:

p(m|i) = ⟨Ψi|M †
mMm|Ψi⟩ = Tr(M †

mMm|Ψi⟩⟨Ψi|)

By simply applying the laws of probability we have that :

p(m) =
∑
i

p(m|i) =
∑
i

Tr(M †
mMm|Ψi⟩⟨Ψi|) = Tr(M †

mMmρ)

After the measurement the state of the system will simply be

|Ψm
i ⟩ =

Mm|Ψi⟩√
⟨Ψi|M †

mMm|Ψi⟩

So in terms of our density operators we will have:

ρm =
∑
i

p(m|i)|Ψm
i ⟩⟨Ψm

i | =
∑
i

pi
Mm|Ψi⟩⟨Ψi|M †

m

⟨Ψi|M †
mMm|Ψi⟩

=
MmρM

†
m

Tr(M †
mMmρ)

So the first three postulates can be rewritten also in this formalism, and also the fourth
one, but before doing it, we need to clarify a bit the jargon.

A quantum system whose state |Ψ⟩ is known exactly is said to be a pure state. In
this case ρ = |Ψ⟩⟨Ψ|. If this is not the case, we call it a mixed state. Suppose we now
prepare a system in the state ρi with probability pi. The density matrix will have the
form

∑
i piρi and we say that ρ is a mixture of the states ρi with probabilities pi.

The density matrix ρ satisfies the following properties:

• Tr(ρ) = 1;

• ρ is Hermitian;

• ρ is positive semi-definite.
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Figure 1: It is important to remember that the two approaches describe both fully
the system and there is no additional information hidden in the matrix formalism.
As shown above, once we choose a basis for the vector space and find the coefficients
cα ∈ C, such that they satisfy the normalization condition, we can derive the density
matrix and viceversa.

There is also another property which is interesting to recall : for pure state Tr(ρ2) = 1
while for mixed state Tr(ρ2) ≤ 1 (it is saturated when a pure state is written a trivial
mixed state).

Last concept we will introduce about density matrix is the reduced density ma-
trix. This tool is fundamental to the study of composite systems.
Suppose we have two physical systems A and B, whose composite state is described by
ρAB. Then the reduced density matrix for system A is defined as:

ρA = TrB(ρAB)

where we introduced TrB(·) which is the partial trace over state B and is defined as:

TrB(|a1⟩⟨a2| ⊗ |b1⟩⟨b2|) = |a1⟩⟨a2| · Tr(|b1⟩⟨b2|)

with |a1⟩, |a2⟩ state vector of A and |b1⟩, |b2⟩ state vector of B.
As defined, it is not obvious that the reduced matrix ρA is a good description for A, but
it can be proven that it provides the correct measurement statistics for measurements
made on system A[1].

1.4 The Schmidt decomposition and purifications

Theorem: Suppose |Ψ⟩ is a pure state of a composite system AB. Then there exist
orthonormal states |iA⟩ for system A and orthonormal states |iB⟩ for system B s.t.
|Ψ⟩ =

∑
i λi|iA⟩|iB⟩ with

∑
i λ

2
i = 1 where the λi are called Schmidt coefficients

The above theorem is called Schmidt’s decomposition theorem and by itself provides
a wide range of powerful result. For example let |Ψ⟩ be state vector of the composite
system AB. Then we can rewrite the two reduced density matrices as follows:

ρA =
∑
i

λi|iA⟩⟨iA| and ρB =
∑
i

λi|iB⟩⟨iB|

So we have that the eigenvalue of A and B are identical, and as we know, eigenvalues
determine many property of a physical system. This implies that if a composite system
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is described by a pure state then both A and B must share some properties.
The two bases |iA⟩, |iB⟩ are called Schmidt bases for A and B respectively and the
number of non zero λi is called Schmidt number for |Ψ⟩. The Schmidt’s number
is a very important property of a composite system which allows us to quantify the
entanglement between the two[1].
Another vital concept related to quantum computation are purifications. Suppose we
introduce a state ρA of a quantum system A. It is possible to introduce another system,
we denote it by R, and define a pure state |AR⟩ for the joint system AR such that
ρA = TrR(|AR⟩⟨AR|).
The above procedure is pure math, which allows us to associate pure states to mixed
states. It is known as purification. We will call the system R the reference system with-
out any physical meaning. It can be proven that purification can be done for any state
thanks to Schmidt’s theorem. Suppose that A can be written as ρA =

∑
i pi|iA⟩⟨iA|.

To purify it we introduce a system R and define the pure state of the combined system

|AR⟩ =
∑
i

√
pi|iA⟩|iR⟩

We can now evaluate the reduced density matrix for system A corresponding to the
state |AR⟩:

TrR(|AR⟩⟨AR|) =
∑
i,j

√
pipj|iA⟩⟨jA| · Tr(|iR⟩⟨jR|) =

∑
i,j

√
pipj|iA⟩⟨jA|δi,j = ρA

So |AR⟩ is a purification of ρA.
It must be noticed the closed relation between the two mathematical tools we intro-
duced. Purifying a mixed state of a system A consists of defining a pure state whose
Schmidt’s basis for system A is just the basis in which the mixed state is diagonal,
with the Schmidt’s coefficients being the square root of the eigenvalues of the density
operator being purified.
It is interesting to notice a little detail about purification and mixed state. When we
gave the definition of mixed state it seemed obvious to think that to describe the system
A, we had an ensemble of states {|Ψi⟩}, in which every states had its probability to be
generated {pi}. This allowed us to write ρ =

∑
i pi|Ψi⟩⟨Ψi|. The problem can also be

seen from a different prospective using the Schmidt’s decomposition. Let us consider a
purification of A, such that:

|AB⟩ =
∑
i

√
pi|Ψi⟩|Φi⟩

Performing a measurement on system B will generate the same ensemble we started
from in our discussion, even if a purification is purely a mathematical tool. Or in other
words, taking the partial trace over the system B will generate the same ensemble:

TrB

(
|AB⟩⟨AB|

)
=
∑
i,j

√
pipj|Ψi⟩⟨Ψj|TrB

(
|Φi⟩⟨Φj|

)
=
∑
i

pi|Ψi⟩⟨Ψi| = ρ

This allows us to have a way clearer interpretation of what a purification really stand
for and how to think about it.
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1.5 CPTP maps

When we defined the density matrix operator and its properties, we stated that is
semi-definite positive and its trace is unitary. So it is obvious that any quantum trans-
formation should preserve these properties. Such transformations are called positive
and trace preserving or PTP maps. But it is not true that all the PTP maps are valid
quantum operations. This can be easily proven with an example.
Let us consider two subsystem such that the joint system |Ω⟩ = 1√

d

∑
i |i⟩|i⟩ (with d a

normalization factor) and let us apply the so called partial transpose I ⊗ T (we apply
the identity operator on the first subsystem and transpose the second).

(I ⊗ T )|Ω⟩⟨Ω| = 1

d

∑
i,j

|i⟩⟨j| ⊗ |j⟩⟨i|

The resulting matrix is not positive semi-definite, which implies that it is not a density
matrix. We need to impose a further constrain on the set of possible operations. We
need to enforce not only that the operation is positive by itself but also that the result is
a positive matrix. This set of operation is called CPTP maps (completely positive
trace preserving maps) and by definition all the quantum operations belong to this
class of mapping.
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2 Quantum Distances

Quantum theory was split up into
dialects. Different people describe
the same experiences in remarkably
different languages. This is
confusing even to physicists.

David Finkelstein

In this section we are going to introduce some really useful tools needed for the rest
of the discussion. Many of them require a formal mathematical demonstration which
will be given in the Appendix A. Distance is a numerical or occasionally qualitative
measurement of how far apart objects or points are. In math this is an abstract concept
which bases its existence on formal definition which makes it not unique. Once we state
the formal definition of distance we are going to use, it will be clear that each definition
has its clear meaning and well defined property which can (as we will show later) go
beyond the geometry definition we give.

2.1 Classical Distances

Before introducing the correct way to measure distances in a quantum environment, it
is useful to recall some classical methods.

2.1.1 Trace distance

Given p and q two probability distributions defined on the same subset X, then the
trace distance D(p, q) is defined as:

D(p, q) =
1

2

∑
x∈X

|px − qx|

This quantity is also known as L1 Kolmogorov distance and it is a proper metric, so it
satisfies the usual properties (it is symmetric in its arguments, it is zero if and only if
p=q and it satisfies the triangular inequality).
The trace distance has a clearly defined physical interpretation: it can be proven that

D(p, q) =
1

2
max

S
|p(S)− q(S)| = 1

2
max

S

∣∣∣∣∑
x∈S

px −
∑
x∈S

qx

∣∣∣∣
where S is a subset of X. So the trace distance can be interpreted as the maximum
distance between the probability that the event S occurs if it is drawn from the proba-
bility distribution p and the probability that the same event occurs if drawn from the
probability distribution q[1].

2.1.2 Fidelity

Given p and q two probability distributions defined on the same subset X, then the
fidelity D(p, q) is defined as:

F (p, q) =
∑
x∈X

√
pxqx
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Figure 2: Given two probability distributions p and q (randomly generated in the image
above), we can clearly see that the fidelity and the trace distance behave in different
way. The choice of one with respect to the other is connected with the properties they
have, as we will see in the next chapter.

This quantity is not a metric although later we will define a metric closely related to
the fidelity.

2.2 Quantum Trace Distance

The quantum trace distance is a generalization of its classical counterpart and shares
with it some nice properties. Before introducing it, we define |A| =

√
A†A and let ρ

and σ be two density matrices. Then the quantum trace distance between ρ and σ is
defined as[1]

D(ρ, σ) =
1

2
Tr|ρ− σ|

A peculiar case is the one in which ρ and σ commute:

ρ =
∑
x

px|x⟩⟨x| σ =
∑
x

qx|x⟩⟨x|

So we have that the quantum distance coincide with its classical counter part :

D(ρ, σ) =
1

2
Tr

∣∣∣∣∑
x

(px − qx)|x⟩⟨x|
∣∣∣∣ = 1

2

∑
x

∣∣∣∣px − qx

∣∣∣∣ = D(p, q)

Even if it is an abstract concept in the simplest case of a quantum bit, we can use the
Bloch sphere representation to grasp a deeper understanding of the properties of D.
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Given ρ1 and ρ2 two density matrices and σ⃗ the usual Pauli matrices vector, we can
write

ρ1 =
I + r⃗1 · σ⃗

2
ρ2 =

I + r⃗2 · σ⃗
2

=⇒

D(ρ1, ρ2) =
1

2
Tr

∣∣∣∣ρ1 − ρ2

∣∣∣∣ = 1

4
Tr

∣∣∣∣(r⃗1 − r⃗2) · σ⃗
∣∣∣∣ = |r⃗1 − r⃗2|

2

where we use the fact that σ⃗ has two eigenvalues ±1.
The result states that the trace distance between two single qubits is half the Euclidean
distance on the Bloch sphere[1].
Once shown the intuitive geometric representation of the trace distance we can deal
with its properties:

• D(ρ, σ) = D(UρU †, UσU †)
The trace distance is invariant under unitary transformation

• Let ϵ be a trace preserving quantum operation, then

D(ϵ(ρ), ϵ(σ)) ≤ D(ρ, σ)

• Strong convexity of the trace distance

D

(∑
i

piρi,
∑
i

qiσi

)
≤ D(p, q) +

∑
i

piD(ρi, σi)

• Given P a positive operator

D(ρ, σ) = max
P

Tr(P (ρ− σ))

This is a generalization of the classical case. We can look at the result in another
light recalling that POVMs are positive operators so we have that: The trace dis-
tance is equal to the difference in probability that measuring the POVMs element
P may occur depending on whether the state is ρ or σ and maximized over all
P[1].

2.3 Fidelity

The fidelity of the state ρ and the state σ is defined as[1]

F (ρ, σ) = Tr

(√
ρ

1
2σρ

1
2

)
There are two interesting cases

• ρ =
∑

i ri|i⟩⟨i| , σ =
∑

i si|i⟩⟨i| (ρ and σ commute) =⇒ F (ρ, σ) =
∑

i

√
risi =

F (r, s)

• Given |Ψ⟩ a pure state and an arbitrary density matrix ρ, we have

F (|Ψ⟩, ρ) = Tr
√
⟨Ψ|ρ|Ψ⟩⟨Ψ|Ψ⟩ = Tr

√
⟨Ψ|ρ|Ψ⟩

14



The fidelity as its classical counter part satisfies some useful properties:

• F (UρU †, UσU †) = F (ρ, σ)
The fidelity is invariant under unitary transformation of its arguments

• Ulhmann’s Theorem: Suppose ρ and σ are states of a quantum system Q. Intro-
duce a quantum system R which is a copy of Q . Then

F (ρ, σ) = max
|Ψ⟩,|Φ⟩

|⟨Ψ|Φ⟩|

where |Ψ⟩ and |Φ⟩ are the purifications of ρ and σ from R into Q.

• Strong concavity

F

(∑
i

piρi,
∑
i

qiσi

)
≥
∑
i

√
piqiF (ρi, σi)

• Suppose ϵ is a trace preserving quantum operation. Let ρ and σ be density
matrices. Then

F (ϵ(ρ), ϵ(σ)) ≥ F (ρ, σ)

This is also called the monotonicity of the fidelity.

As already told the fidelity is not a metric but we can turn into one using a geometric
arguments. From Ulhmann’s theorem we derive an interesting information: the fidelity
is the maximum inner product between purifications of those states. This suggests that
we can define an angle between ρ and σ such as

B(ρ, σ) = arcos(F (ρ, σ))

B satisfies symmetry of the inputs, non negativity and B(ρ, σ) = 0 ⇐⇒ ρ = σ. The
last property needed to define a metric is the triangular inequality, which can be proven
using Ulhmann’s Theorem. This is also called Bures length (or Bures angle) and
we will see later an improved version of it. It is important, since it is often used in
literature, that the Bures length is different from the Bures distance. Given two density
matrices ρ and σ, the Bures distance is defined as:

D(ρ, σ) = 2

(
1−

√
F (ρ, σ)

)
It can be proven that is a proper metric (as the Bures length).

2.4 N-particles distance

Up to now we have only dealt with the formal definition of distances in a quantum
environment. It is important to state that we never stated any property of our system,
so the definitions are totally general. It is necessary to introduce a little example to
better understand why this distances (even if formally correct) are not fully informative.
Let us consider for example the case of three different states:

|Ψ1⟩ = a|0⟩⊗N + b|1⟩⊗N |Ψ2⟩ = |0⟩⊗N |Ψ3⟩ = |1⟩|0⟩⊗N−1
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From the practical point of view it seems obvious that |Ψ2⟩ and |Ψ3⟩ are similar states,
but our definition of distances will return the maximum possible distance between
them, since their overlap is zero (independently on the system size N). The theory we
described up to now claims that |Ψ1⟩ is closer to |Ψ2⟩ and |Ψ3⟩ than they are one to
the other. So we need to introduce a new mathematical tool to distinguish N-particles
quantum systems.

2.4.1 Weighted distance

In this section, it will be developed a theory which is fully general and does not depend
on the choice of the actual measure dcl we are going to use in the following sections.
Let ρN and σN be arbitrary density matrices of a N-particles quantum systems and
suppose we can perform all the possible POVMs on the system such that

M =

{
Mi ≥ 0 :

∑
i

Mi = IN

}

and let M̃ = {M̃i} the set of most informative measures. Then we define

d(ρN , σN) = max
M

∑
i

dcl

(
Tr[MiρN ], T r[MiσN ]

)
=
∑
i

dcl

(
Tr[M̃iρN ], T r[M̃iσN ]

)
with dcl a classical statistical distance.
Given our definition of weighted distance, it is to prove that it inherits all the properties
of the unweighted one:

• Non-negativity: d(ρN , σN) ≥ 0

• Faithfulness: ρN = σN ⇐⇒ d(ρN , σN) = 0

• Contractivity: d(ρN , σN) ≥ d(Λ(ρN),Λ(σN)) with Λ a trace preserving quantum
operation

• Triangular inequality: d(ρN , σN) ≤ d(ρN , τN) + d(τN , σN)

We ask furthermore that our distance is normalized

Tr(ρNσN) = 0 ⇐⇒ d(ρN , σN) = Md

Which means that it exists a value Md such that our distance will always be lower than
it, so it has a maximum.
The contractivity under trace preserving operations implies that d(ρN , σN) ≥ d(ρk, σk)
in which ρk and σk are the states of k ≤ N particles. So in other words, since the
distance is not increasing under partial trace, the ability to extract information from a
quantum system depends on the size of the measurement setup[2].
Let us now consider a general scenario, in which we define a set of cooperating observers
that want to discriminate between ρN and σN . Each of them performs the optimal
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measurements M̃kα to discriminate ρkα and σkα of subsystems composed by kα ≤ N
particles, then computing d(ρkα , σkα). The setup defines a partition Pkα such that

Pkα :=

{
M̃kα :

∑
α

kα = N

}
Recall that the measurements defined on different subsystems are independent one from
the other and compatible:

[M̃kαi , M̃kαj ] = 0 for M̃kαj , M̃kαi ∈ Pkα

Now it seems obvious to write a new distance as maxPkα

∑
α d(ρkα , σkα). This choice is

indeed not correct because it does not take into account that the measures are taken on
subsets of particles of different dimensions[2]. So the idea is to add a weight to consider
this last detail. We define the weighted quantum distance between the two states ρN
and σN as

Dd(ρN , σN) := max
Pkα

∑
α

d(ρkα , σkα)

kα

This new distance inherits the properties of the dcl we used to define it and, on top of
that, it can be bounded both from above and below

d(ρN , σN)

N
≤ Dd(ρN , σN) ≤ Nd(ρN , σN) ≤ NMd

It is interesting to notice that the importance of the largest measurement setup does not
increase under trivial extensions of the system. To be clearer let us make an example:
let us consider an N particles system and two possible states |0⟩⊗N and |x1, ..., xN⟩ and
let us add to both of them a register of dimension Q-particles such that we end up with
|0⟩⊗N+Q and |x1, ..., xN⟩|0⟩⊗Q. We have that

(N +Q)d(ρN+Q, σN+Q) ≥ Nd(ρN , σN)

Dd(ρN+Q, σN+Q) = Dd(ρN , σN)

So the new distance is not affected by the addition of a new register since the measure-
ment setup is such that an N-particles detection is still maximally informative[2].

2.4.2 Bures weighted length

After introducing the weighted distance, we can make use of the Bures length to exploit
some useful result. We define

DB(ρN , σN) := max
Pkα

∑
α

1

kα
B(ρkα , σkα)

In the following table, it is shown in a few relevant examples the difference between the
Bures length and its weighted counterpart. In general the full knowledge of the quantum
state under study is required for exact calculation of both of them, but statistical
methods for extimating the standard distance from incomplete data can be used to
overcome this problem.
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ρN σN B(ρN , σN) DB(ρN , σN)

|0⟩⊗N |1⟩⊗k|0⟩⊗N−k π
2

k · π
2

|0⟩⊗N ghzk|0⟩⊗N−k cos−1(|a|) k · cos−1(|a|)
|0⟩⊗N ghz⊗k

l |0⟩⊗N−kl cos−1(|a|k) k · l · cos−1(|a|)
|0⟩⟨0|⊗N classk ⊗ |0⟩⟨⊗N−k cos−1(|a|) k · cos−1(|a|)
|0⟩⟨0|⊗N class⊗k

l ⊗ |0⟩⟨⊗N−kl cos−1(|a|k) k · l · cos−1(|a|)
|0⟩⊗N |dickeNk⟩ π

2
N · cos−1(1− k

N
)

|0⟩⟨0|⊗N Ik/2
k ⊗ |0⟩⟨0|⊗N−k cos−1( 1√

2k
) k · cos−1( 1√

2
)

|ghzN⟩⟨ghzN | IN/2
Nwith|a|, |b| ≠ 1√

2
cos−1( |a|+|b|√

2N
) N · cos−1( |a|+|b|√

2
)

classN IN/2
Nwith|a|, |b| ≠ 1√

2
cos−1( |a|+|b|√

2N
) N · cos−1( |a|+|b|√

2
)

|ghzN⟩⟨ghzN | IN/2
NwithNeven|a|, |b| = 1√

2
cos−1( 1√

2N−1
) Nπ

16

classN IN/2
NwithNeven|a|, |b| = 1√

2
cos−1( 1√

2N−1
) Nπ

16

classN |ghzN⟩⟨ghzN | cos−1(
√
a4 + b4) cos−1(

√
a4+b4)

N

Where we adopted the following : |ghzk⟩ = (a|0⟩⊗k + b|1⟩⊗k) , classk = (|a|2|0⟩⟨0|⊗k +
|b|2|1⟩⟨1|⊗k), |dickeN,k⟩ = 1√

(Nk)

∑
i Pi|0⟩⊗N−k|1⟩⊗k[2].

As we can see from the table above, the weighted distance carries an amount of infor-
mation which is greater than its counterpart. In the next section we will also prove that
it can be used to bound the experimental cost of a given (quantum) transformation.
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3 Quantum Bound to state transformation

The art of doing mathematics
consists in finding that special case
which contains all the germs of
generality.

David Hilbert

As shown in the previous chapter, the weighted Bures length has a clear metrologi-
cal interpretation, which allows us to better discriminate different states of N-particles
systems. In this section we will also shown that the weighted Bures length provides
a bound to the cost of generating different configurations of our system. In particu-
lar turning an initial state |0⟩⊗N in a very different state is a basic requirement for a
quantum algorithm. Providing a lower bound to the experimental cost can show the
physical limits of quantum programming.

3.1 Quantum process dynamic

A quantum dynamics from an N-qubit input state ρN to a final state σN is a path in
the space of N-particles density matrices. We can rewrite ρN,t using its spectral decom-
position :

ρN,t =
2N∑
r=1

λr(t)|r(t)⟩⟨r(t)| ∀t ∈ [0, T ]

with ρN,0 = ρN , ρN,T = σN and T the time required to the transformation .
We can define the rate of change as the time derivative of our density matrix ρN,t.
This is a reminder of classical processes in which the rate of change is associated to the
first derivative of the position, or in other words to the velocity. Let us also define the
distance measure between two quantum states ρN and σN as:

min
ρ̇N,t

∫ T

0

∥ρ̇N,t∥ dt for a given norm

In particular the input/output Bures length can be written as follows:

B(ρN , σN) = min
ρ̇N,t

∫ T

0

∥ρ̇N,t∥F dt

where we introduced the Fischer norm as follows:

∥ρ̇N,t∥2F :=
∑
r

λ̇2
r(t)

4λr(t)
+
∑
r<s

|⟨r(t)|ρ̇N,t|s(t)⟩|2

λr(t) + λs(t)

Where the former term is a classical contribution, while the latter is a purely quantum
term[2].
The classical term takes into account the eigenvalue change which can be carried out
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by a classical algorithm, which is not interesting for our purpose. So from now on we
will assume that the classical computations are free in terms of resources.
The quantum term is, on the other hand, responsible for the eigenbasis transformation.
The transformation from ρN =⇒ τN =⇒ σN , in which

τN =
∑
r

λr(T )|r(0)⟩⟨(0)|

can be implemented via two steps :

• eigenvalues change: which can be assumed free from the point of view of the cost;

• eigenbasis change.

The second step can be implemented through a unitary path[2] τN,t such as :

τN,0 = τN and τN,T = σN

For a unitary process the first step is redundant, so ρN = τN . Then the quantum cost
for a transformation ρN =⇒ σN (even if not unitary) is defined as:

Bq(ρN , σN) := min
unitary path :τN,t

∫ T

0

∥τ̇N,t∥Fdt

3.2 Discrete case

Let us now suppose to carry out the eigenbasis transformation through a sequence of
unitary quantum gates:

U =
∏
l

Ul =
∏
l

e−iHlTl

with Tl the running time of each gate.
The spectral decomposition of each time independent Hamiltonian is:

Hl =
2xl∑
xl=1

hxl
|hxl

⟩⟨hxl
| with hxm ≥ hxl

if m > l

Note that each HamiltonianHl acts on kl ≤ N particles. Let’s call τ lN,tl
the intermediate

state at time tl ∈ [0, Tl] while implementing Ul with:

τ lN,0 = τ lN and τ 1N,0 = τN

Since a time independent Hamiltonian gives rise to a constant speed process we have
that

Bq(ρN , σN) ≤
∫ ∑

l Tl

0

∥τ̇N,t∥Fdt =
∑
l

∫ Tl

0

∥τ̇N,tl∥Fdt =
∑
l

∥τ̇N∥FTl

The inequality can be saturated when σN (and τN) is a pure state[2]. The squared
speed of the process lower bounds the variance of the generating Hamiltonian, which is
also constant in time:

Vτ lN
(Hl) := Tr

{
H2

l τN

}
− Tr2

{
HlτN

}
≥ ∥τ̇N∥2F ∀l
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Let us introduce El :=
1
2

(
hxl=2kl − hxl=1

)
and we can quantify the experimental cost

of the process which transform ρN in σN in terms of physical resources:

RUl
:= klElTl =⇒ RU =

∑
l

RUl
with kl the size of the U ′

ls gate

It must be noticed that :
E2

l ≥ Vρl(Hl) ∀l
It is important to be able to factorize the gate size, since a single qubit Hamiltonian
is easier to implement in some given Tl than a k >1-particle interaction, even if the
eigenvalue gap El is the same. Now we can retrieve a powerful result using some
properties of the weighted Bures Length:

RUl
≥ klB

q(τ lN , τ
l+1
N ) ≥ DB(τ

l
N , τ

l+1
N ) ∀l

So we have that:

• if the process is unitary: RU ≥ DB(ρN , σN);

• for a generic process: RU ≥ DB(τN , σN).

Figure 3: We proved that the weighted Bures Length DB(ρN , σN) is a lower bound
to quantum transformation experimental cost. The bound is also valid for nonunitary
quantum processes.

The bounds above allow us to relate the cost to implement a transformation to the dis-
tance between the initial and the final state. Note that for unitary processes [ρN , σN ] =
0 ⇐⇒ DB(ρN , σN) = 0 , i.e. the cost is zero if it exists a classical transformation
from the initial state to the final one (coherent with our assumption of zero cost for
classical transformations). Note that RUl

is maxed out for the most sensible states to
unitary perturbations, i.e. if they are coherent superpositions. The above result has
many implications:
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• it provides a lower limit to the difficulty of running quantum computations in
terms of an exact analytical bound, rather than an order of magnitude;

• it is not limited to pure states: it also works in the case of mixed states and non
unitary processes;

• the right hand-side of the inequality, DB, is not only a mathematical tool but it
has a clear physical meaning;

• the inequality is independent of the way the actual physical system is realized,
thus completely general.

Being able to know at priori the cost of a quantum algorithm, without even looking to its
physical realization, will make us able to analyze even better the possibility of quantum
computing. On top of that, the result is not only related on quantum computing. This
result has been obtained from quantum mechanics knowledge, thus totally general.

3.3 Continuous case

We can now extend the previous result to continuous processes. To do so we first state
the theorem:
Theorem: Let f be a Lebesgue integrable function defined over the interval [a, b].
Then it exists a set t0, t1, ..., tn+1 such that

a = t0 < ... < tn+1 = b such that δ = max
i

(ti+1 − ti) and ϵ > 0

Then we have that:

lim
δ→0

[ ∫ T

0

f(t)dt−
n∑

i=0

f(ti)(ti+1 − ti)

]
≤ ϵ

Proof : Suppose f a Lebesgue integrable function defined over [a, b] and let us call
Rt[f, t0, ..., tn+1] its Riemann sum such that

a = t0 < ... < tn+1 = b with δ = max
i

(ti+1 − ti)

Rt[f, t0, ..., tn+1] =
n∑

i=0

f(ti)(ti+1 − ti)

Rt is not guaranteed to be a good approximation of
∫ b

a
f(t)dt in the limit δ → 0, since

the Riemann integrability is not required. Let us introduce the set s0, ..., sn+1 such that

sj = tj + t if t ∈ [0, b− a]

where we suppose sj + t ̸= b and sj + t− (b− a) if sj + t ≥ b. Let us substitute f with

f(s) = f(t− (b− a)) : b ≤ t ≤ 2b− a

So we can introduce a new Riemann series

Rt′ [f, s0, ..., sn+1] =
n∑

i=0

f(si)(si+1 − si)
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Then it is trivial to verify that

lim
δ→0

∫ b−a

0

∣∣Rt −Rt′
∣∣dt = 0

Let ϵ ≥ 0 and fϵ ∈ C0[a, 2b− a] such that∫ 2b−a

0

∣∣∣∣f(t)− fϵ(t)

∣∣∣∣ ≤ ϵ

Then ∫ b−a

0

∣∣∣∣Rt′ −
∫ b

a

f(s)ds

∣∣∣∣dt = ∫ b−a

0

∣∣∣∣Rt′ −
∫ b

a

f(s+ t)ds

∣∣∣∣dt =
≤

n−1∑
j=1

∫ sj+1

sj

ds

∫ b−a

0

∣∣∣∣f(sj+t)−f(s+t)

∣∣∣∣dt ≤ n−1∑
j=1

∫ sj+1

sj

ds

∫ b−a

0

∣∣∣∣fϵ(sj+t)−fϵ(s+t)

∣∣∣∣dt+2ϵ(b−a)

It implies that: ∫ b−a

0

∣∣∣∣Rt′ −
∫ b

a

f(s)ds

∣∣∣∣dt ≤ 2(b− a)ϵ for δ → 0

Since ϵ can be taken arbitrarily near to 0, then Rt′ is a good replacement of Rt. This
implies that must exist a choice of the set s0, ..., sn+1 such that the theorem is satis-
fied[3]. (Q.E.D.)

The theorem simply states that under some minor regularity conditions, every con-
tinuous process can be approximated to a discrete one. This result is particularly
useful since we can rewrite :∣∣∣∣ ∫ T

0

k(t)E(t)dt−
n∑

i=0

k(ti)E(ti)(ti+1 − ti)

∣∣∣∣ = O(ϵ)

As stated before, it is true that RUl
≥ DB(τ

l
N , τ

l+1
N ), then it follows that

n∑
i=0

k(ti)E(ti)(ti+1 − ti) ≥
n∑

i=0

DB(τ
i
N , τ

i+1
N ) ≥ DB(τN , σN)

where the last inequality is just a consequence of the triangular inequality. Then∫ T

0

k(t)E(t)dt ≥ DB(τN , σN) +O(ϵ)

We extended the bound to time continuous processes. The bound we derived allows
us to compute, independently from the physical realization and the way the process is
carried out (time dependent or not), the minimal/optimal cost of a process.
So in conclusion we proved that the weighted Bures length not only is a better way to
distinguish between quantum physical systems, but also bounds the size of preparation
algorithm. This leads to a nice consequence: the ability to prepare a given transfor-
mation to an initial state ρ to a final one σ will never be better than the ability to
distinguish them.
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4 Quantum state preparation complexity

Geometry is almost the only subject
as to which we find truths wherein
all men agree; and one cause of this
is, that geometers alone regard the
true laws of demonstration.

Blaise Pascal

In this section we will focus on the difficulty of driving a quantum state into a
given target state. In particular we will focus our attention on the problem of finding
the optimal path which leads to the minimum experimental cost through a geometric
method. This allow us to find the most efficient path independently from the actual
realization of the system, thus in a completely general way. As said before, the ability
of predict the cost of a transformation can be used to measure the performance of a
preparation algorithm, thus its efficiency.

4.1 Quantumness

Let us introduce a useful concept that will help us in finding the optimal path. As
already said before, the energy cost for a quantum process (from an initial state ρ to a
final state σ) can be written as

Eγt =

∫ T

0

||γ̇t||2dt :
{
γt(0) = ρ, γt(T ) = σ

}
= Eγt

classical(ρ, σ) + Eγt
quantum(ρ, σ)

where the classical contribution takes into account the eigenvalues evolution and the
quantum one the eigenvectors change. The definition is valid for any norm induced by
a Riemannian Fisher metric, but we will focus on the Fisher norm introduced before.
As already stated, the classical contribution can be neglected. So we introduce the
quantity Qρ(σ) called the quantumness of a computation from ρ to σ as

Qρ(σ) := Eγt
q (ρ, σ)

Eγt
q (ρ, σ) := min

γt,ρ
Eγt

q (ρ, σ), such that γt : ρ −→ σ, ρ ∈ M̃iR

The quantumness measures the minimum quantum energy cost to drive a system from
an initial state into a given target state in a given time T. The definition of the energy
cost is, as it was for the rate of change of the process, a reminiscence of the classic
definition of the work–energy principle (where our first derivative acts as a velocity of
the process, so its modulo square acts as an energy). If we define Γ(γt) : Γ(ρ) −→ Γ(σ)
the dynamics of a state under a CPTP map at any time, then the quantumness is
contractive, i.e. Qρ(σ) ≥ QΓ(ρ)(Γ(σ))[4]. As said in the previous section, the quantum
part of the process can be carried out through unitary gates, so we have that

Eγu
t (ρu, σ) = Eγu

t
q (ρu, σ)
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Given a target state σ of a d-dimensional system with spectrum multiplicity mi, there
are d!∏

i mi!
isospectral free states which can transform freely one into the other via

permutation of the eigenvalues. So the minimum cost of the quantum part is obtained
by minimizing through the states isospectral to the target

Qu
ρ(σ) := Eγu

t
q (ρu, σ)

Eγu
t

q (ρu, σ) = min
γu
t ,ρ

u
p

Eγu
t

q (ρup , σ), such that γu
t : ρup −→ σ

Figure 4: The optimal path γt to drive a system from ρ ∈ MiR into τ is the one that

minimize the quantum cost Qρ(τ) = E
γt
q (ρ −→ τ) over all the possible free states, since

classical computation costless. The unitary path γu
t generates the energy minimizing

path from a free state ρu isospectral to the target.

By construction we have Qu
ρ(σ) ≥ Qρ(σ). This bound also satisfies contractiv-

ity (Qu
ρ(σ) ≥ Qu

Γ(ρ)(Γ(σ))), faithfulness (Qρ(σ) = 0 ⇐⇒ σ ∈ MiR) and invariance

(Qu
ρ(σ) = Qu

ρ̃(σ), ∀ρ̃ ∈ MiR). Note that the two-step, classical-quantum split is optimal
by construction. A classical map is, by definition, a transformation in MiR . Hence, the
path corresponding to an arbitrary sequence of multiple classical and quantum steps
returns to MiR multiple times, requiring more energy.
It is interesting to notice that for time independent Hamiltonian

T · Vρ(H) ≥ Eγu
t (ρ, σ) with Vρ(H) := Tr

{
H2ρ

}
−
(
Tr

{
Hρ

})2

4.2 Optimal path

Our goal is now to compute the best path γu
t to reach the target from an isospectral

free state. Let us recall from chapter 2 the definition of Bures length

DB(ρ, σ) = cos−1

(
Tr

∣∣∣∣√ρ
√
σ

∣∣∣∣)
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The map between two states which minimizes the energy Eγt(ρ, σ) is the length min-
imizer at constant speed. The energy minimizing path from a pure isospectral state
ρu = |Ψρu⟩⟨Ψρu| to a target pure state τ = |Ψτ ⟩⟨Ψτ | is the length minimizing uni-
tary. In this specific case the Bures length reduces to the Fubini-Study Distance
DFS(Ψρu ,Ψσ) := cos−1|⟨Ψρu|Ψσ⟩|. The closest free pure state to the target is, of course,
the one with maximal overlap. This allows us to write the energy minimizing constant
speed path:

γu
t = |Ψγu

t
⟩⟨Ψγu

t
| with |Ψγu

t
⟩ =

(
cosθ − sinθ

tan(d)

)
|Ψρu⟩+

(
sinθ

sin(d)

)
|Ψσ⟩

where d = DFS(Ψρu ,Ψσ) and θ = d t
T
[5, 6, 7].

It can be proven that the energy minimizing path is unique up to affine transformations
t −→ t′ = at+ b with a, b ∈ R. The problem is way more challenging for a target mixed
state, but the previous result for pure states yields a lower bound to the quantumness
Qu

ρ(σ) for arbitrary target states. This is a consequence of the fact that the distance
between two mixed states is the minimum distance between their purifications. The
closest isospectral free state to the target is then the one whose purification |Ψpuri

ρu ⟩ is
closer to the target purification |Ψpuri

σ ⟩. We can write them in a compact form

|Ψpuri
ρu ⟩ =

∑
i

√
ρu|iR⟩ ⊗ |iR⟩

|Ψpuri
σ ⟩ =

∑
i

1√
ρu

√√
ρuσ
√

ρu|iR⟩ ⊗ |iR⟩

The length/energy minimizing (generally not unitary) path between two mixed
states is obtained by partial trace along the shortest (unitary) path between the closest
purifications. So we have that Qu

ρ(σ) ≥ Q|Ψpuri
ρu ⟩(|Ψpuri

σ ⟩), which is saturated when the

target is a pure state. The above bound satisfies by construction faithfulness, invariance
and monotonicity.[4]

We can make use of the fact that the variance of the generating Hamiltonian acts as
a upper bound to the energy cost. So let us consider a process carried out by a series of
quantum gates described by an Hamiltonian Hl such that each of the acts on kl qubits
for an interval of time tl. Then we have that∑

l

E2
l tl ≥

∑
l

V (Hl)tl ≥
∑
l

tl||τ̇l||2 = Eγt
quantum(ρ, σ)

Where El is the halved seminorm associated to Hl. This result can be easily recast in
the continuous form remembering the theorem used in chapter 3. So we end up with

min
γt

{∫ T

0

E2(t)dt : γt = ρ −→ σ

}
≥ Qu

ρ(σ) ≥ Q|Ψpuri
ρu ⟩(|Ψ

puri
σ ⟩)

This gives also an upper bound to the quantumness of a process.
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4.2.1 Qubit example

Let us consider a single example in which we drive a simple qubit from an input state
ρ = 1

2

(
I + q0σz

)
given q0 ̸= 0, to a target state τ = 1

2

(
I + r⃗ · σ⃗

)
. The isospectral free

state to the target share the property |r⃗| = q0. Which leads to

Q|Ψpuri
ρu ⟩(|Ψ

puri
τ ⟩) = 1

T

{
cos−1

[√
f+ +

√
f−

2

]}2

with f± = 1 + q0rz ± (q0 + rz).

The process is classical for rx = ry = 0, while it reaches the maximum energy to

be implemented ( π2

16T
≈ 0.6168

T
) when r2x + r2y = 1. The same method applies for system

with d>2, as their states admit a representation in Bloch form as 1
d

[
I + r⃗ · Σ⃗

]
, with Σ⃗

a vector of d⊗ d traceless matrices.[4]

4.2.2 2-Qubits example

Let us consider now a system made of two qubits which must be driven from an initial
state ρ to a final state τ . To keep it general we introduce the vector σ⃗ = (σ0, σ1, σ2, σ3) =
(I2x2, σx, σy, σz), whose element form a basis for the space of 2x2 complex matrices. So
we can write the density matrix of ρ and τ as :

ρ =
1

4

3∑
i,j=0

Rρ
i,jσi ⊗ σj , τ =

1

4

3∑
i,j=0

Rτ
i,jσi ⊗ σj

Where Rτ
i,j = Tr

[
τ

(
σi ⊗ σj

)]
[8]. Consequently we have that R0,0 = 1 and we can

rewrite our state in a more meaningful way as

τ =
1

4

(
I4x4 +

3∑
i=1

xiσi ⊗ I2x2 +
3∑

i=1

yiI2x2 ⊗ σi +
3∑

i,j=1

ti,jσi ⊗ σj

)
=

= 1
4

(
1 + t33 + x3 + y3 t31 + y1 − i(t32 + y2) t13 + x1 − i(t23 + x2) t11 − t22 − i(t12 + t21)

t31 + y1 + i(y2 + t32) 1− t33 + x3 − y3 t11 + t22 + i(t12 − t21) x1 − t13 − i(x2 − t23)
t13 + x1 + i(t23 + x2) t11 + t22 + i(t21 − t12) 1 + y3 − t33 − x3 y1 − t31 + i(t32 − y2)
t11 − t22 + i(t12 + t21) x1 − t13 + i(x2 − t23) y1 − t31 − i(t32 − y2) 1 + t33 − x3 − y3

)
The vectors x⃗ and y⃗ are the Bloch vectors associated with each of the two qubits,

while ti,j are the elements of the correlation matrix T . To be coherent with the previous
example we start from a state ρ = 1

4
(I2x2 + q1σz)⊗ (I2x2 + q2σz) such as

ρ =
1

4


1 + q1 + q2 + q1q2 0 0 0

0 1 + q1 − q2 − q1q2 0 0
0 0 1− q1 + q2 − q1q2 0
0 0 0 1− q1 − q2 + q1q2


So we can introduce a useful notation where

||R||2 = |x⃗|2 + |y⃗|2 + ||T ||22
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Asking that ρ and τ are isospectral reduces to ||Rτ || = ||Rρ|| =
√

q21 + q22 + q21q
2
2.

So as before we have that

Qu
ρ(σ) ≥ Q|Ψpuri

ρ ⟩(|Ψ
puri
σ ⟩) = 1

T

(
DB(|Ψpuri

ρ ⟩, |Ψpuri
τ ⟩)

)2

4.3 Algorithmic complexity

It is important for a quantum computer being able to easily transform |0⟩⊗N in a
high entangled state or in a superposition of state, which are the key features which
allows quantum computer to perform ”better” than their classical counter part. The
quantumness measure can be used to bound the size of preparation algorithms. Suppose
the unitary map γu

t := ρu −→ σ is synthesized by N commuting unitary operations (logic
gates) such that

γu
t = Utρ

uU †
t with Ut = eiHltl :

{∑
l

Hl = H, [Hl, Hk] = 0, ∀l, k
}

Consider the halved semi-norm of each Hamiltonian |Hl| = hl,M−hl,m

2
, already defined

before as the difference between the largest and the smallest eigenvalues. We can
introduce now |H| = 1

N

∑
l |Hl| as the average semi-norm. This allows us to obtain the

following bound

Vρ(H) ≤ |H|2 ≤
(∑

l

|Hl|2
)

So using the previous bound between the speed of the process and the quantumness we
end up with

Qu
ρ(σ) ≤ Eγu

t (ρ, σ) ≤ T · Vρ(H) ≤ TN2|H|
2

The bound is saturated for superpositions of the largest and the smallest eigenstates of
H, which are the most sensitive inputs to the map.
This result can be extended also to the case of time dependent Hamiltonians. If our
Hamiltonian H is time dependent and commute, e.g. [Hl(t), Hk(t)] = 0 (∀l, k, t), then
the path can be approximated by a discrete process such that

γu
t = UρuU † +O(ϵ) with U =

∏
k

e−i
(∑

l Hl(tk)
)
(tk+1−tk)

where (tk+1 − tk) is the interval of time in which our discrete time independent Hamil-
tonian

∑
l Hl,Tk

acts on the system. This is a mathematical consequence of the theorem
used in chapter 3, since the quantity we want to take into consideration are integral
whose argument is a function of γu

t . The correction of order ϵ is negligible since is taken
as ϵ = mink(tk+1 − tk), so we will always consider the limit ϵ −→ 0+. So we have

Eγu
t (ρ, σ) =

n∑
i=1

||τ̇(ti)||2(ti+1 − ti) =
n∑

i=1

Eγu
t (τ(ti), τ(ti+1))

Which leads to

Eγu
t (ρ, σ) ≤

∑
k

Vτ(tk)(tk+1 − tk) ≤
∑
k

|H(tk)|2(tk+1 − tk)
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The last sum can be seen as a Riemann sum which allows us to write∑
k

|H(tk)|2(tk+1 − tk) =
∑
k

N2|H(tk)|
2
(tk+1 − tk) =

∫ T

0

N2|H(t)|
2
dt+O(ϵ)

So in the end we have that

Qu
ρ(σ) ≤

∫ T

0

N2|H(t)|
2
dt+O(ϵ)

So the same bound found for discrete cases can be extended to continuous ones, allow-
ing as to bound from above, even more generally, the energetic cost of a computation.

4.3.1 GHZ preparation

Let us consider a common scenario in which we want to prepare an highly entangled
symmetric state (|Ψρ⟩ = (a|0⟩+b|1⟩)|0⟩⊗N −→ |Ψσ⟩ = a|0⟩⊗N+1+b|1⟩⊗N+1 such that |a|2+
|b|2 = 1), via N-controlled gates between the first and the (l + 1)-th qubit. Such final
state |Ψσ⟩ is also called GHZ state[9] (Greenberger–Horne–Zeilinger state, from the
name of the three physicists who showed first its peculiar non classical behaviour) and
it is used in several protocols in quantum communication and cryptography, for exam-
ple, in secret sharing or in the quantum Byzantine agreement. We are going to prove
that this is the optimal path using N gates.

Figure 5: Quantum circuit representation of the process |Ψρ⟩ = (a|0⟩ + b|1⟩)|0⟩⊗N −→
|Ψσ⟩ = a|0⟩⊗N+1 + b|1⟩⊗N+1 using a series of control not gates.

We can notice a little detail about the result we used in the previous discussion. For
pure states the bound we express before reads as:∫ T

0

||τ̇ ||2dt
∫ T

0

12dt ≥
(∫ T

0

(||τ̇ || · 1)dt
)2

Which is a peculiar case of the Cauchy-Schwarz Inequality for L2 function. The in-
equality states that for all elements u and v of an inner product space is true that:

|⟨u|v⟩|2 ≤ |⟨u|u⟩| · |⟨v|v⟩| = |u|2 · |v|2
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Theorem: given u, v then the Cauchy-Schwarz Inequality is saturated if u and v are
proportional one to the other.
Proof: The case u = 0 (or v = 0) saturates the inequality at priori, so let us assume
v and u both different from zero. Let us write the decomposition of u in a parallel
component to v and an orthogonal to v (let us call it w):

u =
⟨u|v⟩
|v|2

v + w

Then we have that

|u|2 =
∣∣∣∣⟨u|v⟩|v|2

v

∣∣∣∣2 + |w|2 ≥
∣∣∣∣⟨u|v⟩|v|2

∣∣∣∣2
If we multiply both side by |v|2 we retrieve the inequality. The equal sign holds only in
the case w = 0 or in other words u and v proportional the one to the other. (Q.E.D.)
So we can rewrite the bound above as:∫ T

0

12dt

∫ T

0

||τ̇ ||2dt =
(∫ T

0

||τ̇ ||dt
)2

if ||τ̇ || ∝ 1

Or in other words ||τ̇ || is constant in time (coherent with what we said in section 4.2).
Let us start from the simplest case in which N=1, so we want to transform (a|0⟩+b|1⟩)|0⟩
into a|0⟩⊗2 + b|1⟩⊗2 in a time t0 then we have that:

t0

∫ t0

0

||τ̇ ||2dt = t20||τ̇ ||2 =
(
cos−1|a|2

)2

Which implies ||τ̇ || = cos−1|a|2
t0

. But if ||τ̇ || is constant in time, it implies that must be
carried out through a single gate. The only gate that satisfies the requirement is the
CNOT gate.
Now it is easy to see that once we have the state a|0⟩⊗2 + b|1⟩⊗2 the same approach
can be derived to prove that the best path from |Ψρ⟩ = (a|0⟩⊗2 + b|1⟩⊗2)|0⟩ −→ |Ψσ⟩ =
a|0⟩⊗3 + b|1⟩⊗3 is a CNOT gate between the first and the third gate.
The interest now is focused on proving that any other path carried out with 2 gates
will lead to an higher energetic cost. It is obvious that once we choose the intermediate
state |Ψα⟩ we can find the optimal path from |Ψρ⟩ −→ |Ψα⟩ and |Ψα⟩ −→ |Ψσ⟩. The sum
of the two path will be optimal only if the two are by themselves optimal. If we write
our intermediate state as:

|Ψα⟩ = (α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩)|0⟩

and remember the isospectral condition written before, the maximum overlap is found
for α00 = a, α11 = b, α10 = α01 = 0, which correspond to the state

|Ψα⟩ = (a|00⟩+ b|11⟩)|0⟩

so the qubit entangled state. Which means that the best path can be carried out
through 2 CNOT gates. Then the generalization to N gates can be done in the same
way. As we stated before it is important to focus our attention on the dimension of the
gates we are using. Even if two gates might share the same energy cost a small one
(in the number of involved qubits) is easier to implement than a k-dimensional one in
some given time.
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5 Appendix A

We are going to provide some of the useful proof of the properties discussed before.

5.1 Trace distance

• D(ρ, σ) = D(UρU †, UσU †)
The trace distance is invariant under unitary transformation
Proof

D(UρU †, UσU †) =
1

2
Tr

∣∣∣∣UρU †−UσU †
∣∣∣∣ = 1

2
Tr

∣∣∣∣U(ρ−σ)U †
∣∣∣∣ = 1

2
Tr

∣∣∣∣ρ−σ

∣∣∣∣ = D(ρ, σ)

• Let ϵ be a trace preserving quantum operation then

D(ϵ(ρ), ϵ(σ)) ≤ D(ρ, σ)

Proof
Let us use the spectral decomposition ρ − σ = Q − S with Q and S positive
matrices with orthogonal support, and let P be a projector such that

D(ϵ(ρ), ϵ(σ)) = Tr

[
P

(
ϵ(ρ)− ϵ(σ)

)]
and let’s observe that Tr(Q) − Tr(S) = Tr(ρ) − Tr(σ) = 0 so this implies
Tr(Q) = Tr(S) thus Tr(ϵ(Q)) = Tr(ϵ(S))

D(ρ, σ) =
1

2
Tr|ρ− σ| = 1

2
|Q− S| = 1

2
Tr(Q) +

1

2
Tr(S) =

= Tr(ϵ(Q)) ≥ Tr(P (ϵ(Q))) ≥ Tr(P (ϵ(Q)−ϵ(S))) = Tr(P (ϵ(ρ)−ϵ(σ))) = D(ϵ(ρ), ϵ(σ))

• Strong convexity of the trace distance

D

(∑
i

piρi,
∑
i

qiσi

)
≤ D(p, q) +

∑
i

piD(ρi, σi)

Proof

D

(∑
i

piρi,
∑
i

qiσi

)
=
∑
i

piTr(Pρi)−
∑
i

qiTr(Pσi) =∑
i

piTr(P (ρi − σi)) + (pi − qi)Tr(P (σi)) =≤
∑
i

piD(ρi, σi) +D(p, q)

5.2 Fidelity

• F (UρU †, UσU †) = F (ρ, σ)
The fidelity is invariant under unitary transformation of its arguments.
Proof
Remember that

√
UAU † = U

√
AU † if U is a unitary matrix, so we have :

F (UρU †, UσU †) = Tr

√√
UρU †UσU †

√
UρU † = Tr

√√
ρσ

√
ρ = F (ρ, σ)
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• Strong concavity property

F

(∑
i

piρi,
∑
i

qiσi

)
≥
∑
i

√
piqiF (ρi, σi)

Proof
Let |Ψi⟩ and |Φi⟩ be a purification of ρi and σi such that F (ρi, σi) = ⟨Ψi|Φi⟩.
Introduce now a system which has an orthonormal basis state |i⟩ corresponding
to the index i of the probability distributions. Define

|Ψ⟩ =
∑
i

√
pi|Ψi⟩|i⟩ , |Φ⟩ =

∑
i

√
qi|Φi⟩|i⟩

Note that |Ψ⟩ and |Ψ⟩ are purifications of
∑

i piρi and
∑

i qiσi, respectively. So
we have that

F

(∑
i

piρi,
∑
i

qiσi

)
≥ |⟨Ψ|Φ⟩| =

∑
i

√
piqi|⟨Ψi|Φi⟩| =

∑
i

√
piqiF (ρi, σi)

• Ulhmann’s Theorem : Suppose ρ and σ are states of a quantum system Q. Intro-
duce a quantum system R which is a copy of Q. Then

F (ρ, σ) = max
|Ψ⟩,|Φ⟩

|⟨Ψ|Φ⟩|

where |Ψ⟩ and |Φ⟩ are the purification of ρ and σ from R into Q.
Proof
Fix an orthonormal base |iR⟩ and |iQ⟩ in the systems R and Q. Because R and Q
are of the same dimension the index i may be assumed to run over the same set
of values . Define

|m⟩ =
∑
i

|iR⟩|iQ⟩

Let |Ψ⟩ be a purification of ρ , then the Schmidt’s decomposition will be :

|Ψ⟩ =
(
UR ⊗√

ρUQ

)
|m⟩

For some unitary operation UR and UQ on system R and system Q. Similarly , if
|Φ⟩ is any purification of σ , then there exist unitary operators VR and VQ such
that :

|Φ⟩
(
VR ⊗

√
σVR

)
|m⟩

So in the end we can write

⟨Ψ|Φ⟩ = |⟨m|U †
RVR ⊗ U †

Q

√
ρσVQ|m⟩| = |Tr(V †

RURU
†
Q

√
ρσVQ)|

If we set U = VQV
†
RURU

†
Q we obtain

|⟨Ψ|Φ⟩| = |Tr(√ρσU)| ≤ Tr|√ρσ| ≤ Tr(
√√

ρσ
√
ρ) = F (ρ, σ)
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• Suppose ϵ a trace preserving quantum operation. Let ρ and σ be density matrices
then

F (ϵ(ρ), ϵ(σ)) ≥ F (ρ, σ)

Proof
Let |Ψ⟩ and |Φ⟩ be purifications of ρ and σ into a joint system RQ such that
F (ρ, σ) = |⟨Ψ|Φ⟩|. Introduce a model environment E for the quantum operation
ϵ which starts from |0⟩ and interacts with Q via a unitary matrix U. U |Ψ⟩|0⟩ is a
purification of ϵ(ρ). By Ulhmann’s theorem

F (ϵ(ρ), ϵ(σ)) ≥ |⟨Ψ|⟨0|U †U |0⟩|Φ⟩| = |⟨Ψ|Φ⟩| ≥ F (ρ, σ)

So we have
F (ϵ(ρ), ϵ(σ)) ≥ F (ρ, σ)

5.3 Weighted distance

• Non-negativity : Dd(ρN , σN) ≥ 0
Proof
Since Dd is a weighted sum of the distance measures d which are all non negative,
Dd has to be non negative.

• Faithfulness : ρN = σN ⇐⇒ Dd(ρN , σN) = 0
Proof
If σN = ρN then it must be true that σkα = ρkα ,∀ kα =⇒ Dd(ρkα , σkα) =
0,∀kα =⇒ Dd(ρN , σN) = 0. If on the other hand Dd(ρN , σN) = 0 =⇒
d(ρkα , σkα) = 0,∀kα because Dd is maximal between the possible weighted sums
so ρkα = σkα ,∀kα =⇒ ρN = σN

• Contractivity : Dd(ρN , σN) ≥ Dd(Λ(ρN),Λ(σN)) with Λ any CPTP maps on a
single subsystem.
Proof
Each of the element of the sum satisfies the contractivity property since we chose
d such that it has that property. So the overall sum inherit such property, since
it is a weighted sum in which each weight 1

kα
is positive and greater than zero.

• Triangular inequality : D(ρN , σN) ≤ D(ρN , τN) +D(τN , σN)
Proof
Since d is a proper metric it satisfies the triangular inequality . D is a weighted
sum over distances d, but the weight are all positive numbers which do not modify
the relation

1

kα
d(ρkα , σkα) ≤

1

kα

(
d(ρkα , τkα) + d(τkα , σkα)

)
So in the end D satisfies that relation since all the elements of the sum satisfies
such relation.
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