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Prof. Clément Nizak, Collège de France
Prof. Guillaume Stirnemann, IBPC

Author:
Salvatore Di Marco

Academic year 2021–2022





Abstract

Allostery is a biological phenomenon which is displayed in many different pro-

teins, and consists in any kind of coupling between the active site of the protein

and a distant site. There is no unique way to identify allosteric sites, even with

experimental analyses. This work, by means of Molecular Dynamics simula-

tions, will focus on dihydrofolate reductase (DHFR). We attempt to identify a

link between two different classes of amino acids. The first are called sectors:

they were obtained by evolutionary data and have been shown to have strong

superpositions to allosteric sites. The second ones display a coupling to the

catalytic activity of the protein, and were obtained in this work by means of

molecular dynamics simulations. We show that the couplings in the second

class of amino acids are quite small, but we obtain that coupled sites are con-

nected, in a network-like way, to sectors.

Moreover, we analysed, by means of simulations, the first hydration shell of

DHFR, in order to verify if sectors show peculiar hydration properties. We

show that there exists a strong connection between amino acids around which

the reorientational times of water are largest, and sectors. If the results can

be generalized to other proteins, it would be possible to make predictions of

allosteric sites only by analyzing the protein hydration shells by means of sim-

ulations.
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1 Background

1.1 Allostery

Enzymes are proteins which can catalyze reactions by reducing their activation

energy. They are composed of an active site, where they react with molecules

specific to the enzyme itself, called substrate. Moreover, enzymes can some-

times manifest the so-called allosteric regulation (Bowerman and Wereszczyn-

ski 2016; Guo and Zhou 2016), meaning that they can bind with molecules

different from the substrate, and not in the active site, modifying the catalytic

rate or the conformation of the protein itself.

The sites where this interaction takes place are called allosteric sites.

Allosteric regulation plays an important role in many different biological pro-

cesses, and it is present in many different proteins. Haemoglobin is an example

of an allosteric protein (Ahmed, Ghatge, and Safo 2020). It is a protein which

is composed of four subunits, and the interaction of one subunit with oxygen

leads to conformational changes for the remaining three.

In general, there therefore must be some information exchange between the

active site and the allosteric one, but the distance over which the information

travels can be quite large (e.g. 20Å): a mediated long-range interaction seems

to be taking place.

This long-range interaction is puzzling for the physicist, since the molecular

mechanism through which the information spreads is not yet clear (Wodak

et al. 2019).

More generally, the definition of allostery is broad. It is not just related to

molecules binding to a specific site, but to any kind of long-range perturbation

which will influence the catalytic or conformational properties of the protein.

In this work, we will indeed interpret allostery as any kind of coupling between

one site and the active site, given that these two sites are not close to each

other.

This second kind of allostery is defined as latent. DHFR, the protein which

will be analysed, is indeed not allosteric in the conventional view, but it experi-

mentally shows allosteric properties (Reynolds, McLaughlin, and Ranganathan

2011). Understanding allostery would facilitate the synthesis of drugs (Grover

2013) which can target specific sites across the proteins, directly influencing

their catalytic activity. Moreover, it would be possible to engineer special
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allosteric proteins which could act as bio-sensors (Villaverde 2003).

Models As already mentioned, the exact mechanism which allows the spread

of the allosteric information is not yet completely clear.

Many models have been developed in order to characterize some aspects of al-

losteric transitions, like Monod-Wyman-Changeux (MWC) model (Changeux

2012).

We may say that two different classes of models have been developed: the

first class attempts to characterize allosteric transitions, without going into

molecular detail, by looking at its conformational impact. Models belonging

to the second class aim to identify allosteric sites and/or networks over which

the interaction propagates.

The MWC model, belonging to the first class, describes the cooperativity of

subunits present in the protein and it is a phenomenological model of allosteric

transitions. It assumes that the protein can be into two or multiple states, and

the population of these states can be influenced by the binding of a ligand:

each state has a different propensity of binding with it.

The ligand therefore modifies the equilibrium population. By inducing a mod-

ification of the free energy of these states it can also induce a conformational

change in the protein.

MWC has been regarded as an Ising model in the context of biology (Garcia

et al. 2011), due to its simplicity and ”unreasonable effectiveness”. Despite

its effectiveness in explaining allosteric transitions for many different classes of

proteins (under certain hypotheses), it has to be stressed that MWC model is

only phenomenological. It does not explain the underlying mechanisms which

lead to the transmission of the information from the allosteric site to the ac-

tive site. MWC model also fails to explain allostery for proteins which are less

structured and display a strong disorder.

Models which view proteins in a more statistical way have been developed:

they explain MWC model and other phenomenological models within them-

selves and provide different explanations of allostery (Motlagh et al. 2014;

Swain and Gierasch 2006). These models consist in assuming that proteins

always shift between conformations, according to their free energy landscape:

the action of the ligand modifies the energy and can then induce a modification

of the minima of the energy, in their value or in their position, so that proteins

may equilibrate into these other configurations.
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There are many models which belong to the second class (Feher et al. 2014),

for instance topology analyses - analyses produced by means of molecular dy-

namics - and elastic network models.

Computational techniques Molecular dynamics (MD) is one of the most

used techniques for trying to understand the microscopic mechanisms of many

biological samples.

From these simulations it is possible, for instance, to extract allosteric sites

(Bowerman and Wereszczynski 2016), and atomistic properties of allostery

(Gomez et al. 2022). There are different properties through which these sites

can be extracted, since, as we have already mentioned, the concept of allostery

is quite general and we can therefore look at different dynamical properties of

the protein.

An example of such models are Elastic Network Models, (Togashi and Flechsig

2018), which consist of a coarse-grained model of a protein, where each amino

acid is connected to other ones through harmonic interactions. The pertur-

bation of a site would then propagate, vibrationally, towards the amino acids

constituting the active site.

These models are quite effective in predicting allosteric sites and networks.

Nevertheless, by reducing a protein into a network of springs, they simplify it

considerably and it is not possible to really understand the propagation of the

allosteric signal.

Goals The purpose of this work will not be to unify the two classes of models,

but we will rather analyze correlation of fluctuations of some key observables

in the protein, to spot allosteric sites, by means of Molecular Dynamics simu-

lations.

Moreover, the previously mentioned models completely neglect the influence

of water on the protein, which has proven to be important for different phe-

nomena (Royer et al. 1996; Leitner, Hyeon, and Reid 2020).

The goal of this work will then be to verify if there exists a link between al-

lostery and peculiar hydration properties in our selected protein: DHFR.
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1.2 DHFR

The protein which will be analyzed in this work is Escherichia coli dihydro-

folate reductase (DHFR), shown in Fig. (1). It is an enzyme which reduces

dihydrofolic acid (DHF) to tetrahydrofolic acid.

Inside the active site, a cofactor, Nicotinamide adenine dinucleotide phosphate

(NADPH), interacts with DHF directly and allows the transfer of the hydride

related to the mentioned reduction.

The reason why it has been chosen is the fact that there are many studies

available for this protein: some of these are molecular dynamics studies (Maf-

fucci, Laage, Stirnemann, et al. 2020; Boekelheide, Salomón-Ferrer, and Miller

2011), and some other are statistical/experimental (Reynolds, McLaughlin,

and Ranganathan 2011; McCormick et al. 2021).

We will use some of these papers for comparison or we will employ some results

which were obtained in them, as we will see in later sections.

The protein shows two main conformations, which are called open and closed.

The main difference between these structures is the behaviour of a loop (called

Met20 loop). In order to quantify these differences, the distance between the

Cα1 of the amino acids 18Asn and 45His is used, shown in Fig. (1). As can be

seen from Fig. (2), the distance is higher in the open configuration and large

deviations can be observed.

Since a short distance (less than 8Å) is observed in the closed configuration,

water is less likely to get inside the active site, and the reaction between

NADPH and DHF can take place.

The Met20 loop has indeed a strong catalytic importance, because it can

change the electrostatic environment around the ligands (due to higher or

smaller amounts of water molecules). A higher distance of the Met20 loop

will then increase the free energy barrier of the reaction, and this is why the

closed configuration is the one which shows higher catalytic activity (Maffucci,

Laage, Sterpone, et al. 2020).

Higher Met20 loop distances also translate into a larger distance between the

two carbon atoms (later called CC distance) involved in the reaction between

NADPH and DHF, as it can be seen from Fig. (3), thereby directly changing

the reaction free energy barrier.

1A Cα atom in a biomolecule is the first carbon atom connected to a functional group.
The latter is an atom or a group of atoms which causes the peculiar chemical properties of
the biomolecule.
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Figure 1: Closed configuration of DHFR with NADPH and DHF. The red
parts highlight both the Met20 loop and 45His. Atoms of the protein are
not shown, except for 18Asn and 45His, through which we arbitrarily define
the Met20 loop distance. In blue, the carbon atoms relevant for the catalytic
reaction, for which we compute the CC distance.

CC distance consequently has a quite strong molecular importance, because it

is a direct indicator of the catalytic activity of the protein. Indeed, if the dis-

tance between the two carbon atoms are small, we expect a small free energy

barrier for the reaction.

This is the reason why we will later compute correlations between the average

oscillations of the Cα of the amino acids and the oscillations of this distance.

A high correlation between these two quantities would imply that perturba-
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Figure 2: Distance between the Cα atoms of 18Asn and 45His, in the closed
and open configurations.

Figure 3: Distance between the carbon atoms relevant to the reaction, one
from NADPH and the other from DHF, in the closed and open configurations.

tions to a given amino acid would translate into a modification of the catalytic

activity of DHFR. We would therefore find allosteric sites in the protein.

Only the closed configuration will be analyzed for correlation analyses related

to the active site, since the open configuration shows strong fluctuations. It

is moreover not possible to identify a single equilibrated value of the CC dis-
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tance in the case of the open configuration, since even in a 100ns trajectory,

the value around which the CC distance oscillates changes. There are indeed

at least two plateaus where the quantity is equilibrated, only to change after

a lot of nanoseconds.

Since it was computationally intensive to sample all of these configurations,

and to verify if there were any others, the observables we extracted for the

open configuration are not expected to be physically meaningful.

1.3 Sectors and allostery

There are different methods to understand the relationship between function

and structure in proteins. One of them is Statistical Coupling Analysis (SCA).

Through this method (Lockless and Ranganathan 1999; Halabi et al. 2009), it

is possible to find amino acids which co-evolve in a protein.

The basis of the algorithm is the assumption that proteins are always subject

to random mutations, but these can happen under the constraint that the

function remains largely unvaried.

A single protein can indeed be present in different species, but there will be

some random variations in the chain of amino acids. Therefore, by analyzing

a large amount of genomic data, it is possible to obtain the frequency of each

amino acid in the protein.

If a residue2 shows a very large frequency compared to all other possible ones,

we can therefore infer that the site has some kind of functional relevance.

Nevertheless, cooperativity plays an essential role between amino acids in the

formation of secondary or tertiary structures, therefore it is more interesting

to understand how different amino acids are linked between them. This can be

done by observing if a mutation of one amino acid is correlated to the variation

of another one.

For instance, when a residue is mutated and another one tends to show high

mutation frequency, we can say that these two amino acids are co-evolving.

By operating in this way, it is possible to create a map of sectors : residues

which can even be quite far, both in the sequence of the protein and even physi-

cally far from each other, which cannot mutate independently from each other,

2The residue is defined as the monomer of a generic chain: in all the cases here it is then
an amino acid of the protein.
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since their contemporary presence is necessary for the correct functionality of

the protein itself.

Relation between sectors and allostery It has been shown experimen-

tally (Reynolds, McLaughlin, and Ranganathan 2011) that there exists a

strong statistical correlation between allosteric sites and sectors situated in

the surface of DHFR.

The experimental analyses, in order to identify (latent) allosteric sites in DHFR

consist of engineering a library of chimeric DHFR where, for each surface site,

a light-sensitive module is inserted. Measuring then the variation of the activ-

ity of the enzyme due to the exposure to the light in a specific site will allow

to assess whether the site can be considered to be allosteric or not.

Since allosteric sites and sectors show great superpositions, for future analyses

we will make many comparisons to the sectors obtained by SCA in the previ-

ously cited paper.

One could ask why the direct comparison to experimental data is not per-

formed. It has to be specified that both evolutionary and experimental results

have their own drawbacks and limitations.

For instance, SCA data is exposed to statistical errors, and experimental data

is only performed at the surface of the proteins. The analyses which will be

present in later sections are related to properties of both solvent-exposed and

non-solvent-exposed amino acids.

For this reason, we decided to make comparisons to sectors and not to direct

experimental data, even if these analyses may be a bit more indirect.

1.4 Water and allostery

In the previously mentioned models for allostery, the hydration shell of the

protein has been completely neglected. Different earlier works have found out

that water outside the protein, or water confined inside of it, plays a role in

the propagation of the allosteric signal (Buchli et al. 2013; Mackay and Wilson

1986). In the first paper, for example, the propagation of the allosteric signal

seems to be completely controlled by the variation of water density around

PMZ itself.

Some näıve mechanisms have been proposed (Mackay and Wilson 1986), ac-

cording to which water could work as a proxy for the transmission of the
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allosteric information.

For instance, the rearrangements of water dipoles, mediated by protein mo-

tions, could be able to immediately transmit the relevant information across

sites which are quite far in the protein.

Nevertheless, it is not known yet if this behaviour is shown in all proteins, and

how to predict with some kind of model how the mechanism takes place.

It is not yet clear if a characteristic behaviour of water around allosteric sites

may be a cause or an effect of allostery itself.

It would be quite surprising if water is discovered to be a direct cause for al-

losteric regulation, due to the fact that the time-scales for water reorientation

are much shorter (scale of picoseconds) than the ones related to conformational

changes in the protein (millisecond scales).

There is not a clear answer for the link between water and allostery, and this

work partially tries to investigate for the existence of a connection between

hydration shell dynamics and allosteric regulation.

We will indeed verify if sector residues, mentioned earlier, display peculiar hy-

dration dynamic properties.

If this were the case, generalizing this to all proteins, we would be able to

identify allosteric sites just by looking at hydration dynamic properties of

each protein.

1.5 Molecular dynamics

Molecular dynamics consists in integrating Hamilton’s equations of motion for

each particle contained in the system.

The tool which has been used in this work is GROMACS (Abraham et al.

2015), which includes all the methods described below. The integration is

generally performed by means of the Velocity Verlet algorithm (Swope et al.

1982). The interactions cannot clearly be known exactly, as normally, at the

atom-level, there are many quantum effects which have to be considered. In

order to overcome this problem, these interactions are stored in the so-called

forcefields, where quantum effects are taken into account by approximating

them by simple interactions among atoms. It is not clearly possible to extract

quantum properties by only using the forcefields, as everything will only involve

classical mechanics, but these have proved to be quite effective in extracting

observables which match to experiments.
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Since we are just integrating Hamilton’s equations, the energy is going to be

conserved throughout the trajectory, but we have no control whatsoever on

the temperature and the pressure.

These parameters are of critical importance in biological systems and it is

necessary to have means of controlling them. For this reason thermostats and

barostats have been developed.

Thermostats and barostats There are many possible algorithms which

are employed to keep the temperature constant on average. These algorithms

have different purposes and pros and cons depending on the physical quantities

which have to be extracted from the trajectory.

The thermostat algorithm which is employed in our simulations is velocity

rescaling(Bussi, Donadio, and Michele Parrinello 2007). The velocities of the

particles are adjusted so that the average value of the temperature is the de-

sired one. It has the advantage that the distribution of the velocities (and of

the total kinetic energy) is the one which we would expect from the canonical

ensemble.

For what concerns the barostat, we are using two different algorithms (for tech-

nical reasons): Berendsen’s (Berendsen et al. 1984) and Parrinello-Rahman’s

(M. Parrinello and Rahman 1981). They consist in varying the volume of the

cell inside which is system is contained, so that the average pressure can reach

the desired value.

Restraints During the equilibration phases, the system is subject to large

fluctuations. This happens because the solvent and the protein are initially at

0K and therefore the increase of the temperature, and therefore of the average

velocity of the particles will have abrupt oscillations.

It is therefore necessary to add the so-called restraints, which consist in adding

a strong force to all heavy atoms3, so that the initial equilibrium structure is

not destroyed completely.

The algorithm which is used to enforce these restraints is called LINCS (Hess

et al. 1997).

Analysis The analyses of the trajectories have been performed by using

MDAnalysis (Michaud-Agrawal et al. 2011; Gowers et al. 2016).

3By heavy atoms, we mean all atoms except hydrogen ones.
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2 DHFR correlation analysis

2.1 Introduction

In this section we will analyze the correlations between the oscillations of the

CC distance and the ones of the position of the Cα atoms of each residue.

The distance between these two carbon atoms, shown in blue in Fig. (1), as

said in the background section, is extremely important for the reaction. If a

coupling between a residue and the distance between those two carbon atoms

is present, we may expect that this site could display allosteric properties.

Indeed, a strong coupling between them would imply that a given site, if per-

turbated, would directly affect catalytic properties of the protein, which is

exactly what we mean by allostery.

What we should then hope to find are residues which are far from the active

site, and that also show some kind of coupling to the CC distance.

Once we identify them, we see if there is some kind of correspondence between

them and residues identified as sectors, described in previous sections.

The open conformation of DHFR has been neglected, because in that confor-

mation the CC distance is significantly bigger and there are water molecules

which can get inside the active site, which considerably increase the reaction

free energy barrier. We therefore do not observe significant results in that

configuration.

We should make some clarifications regarding this kind of analysis: a small

correlation (as defined earlier), between the residue and the CC distance will

not imply that the given residue is not allosteric. This occurs because there

are many different ways to probe experimentally an enzyme and, depending

from the perturbation, different results could be found.

Moreover, we are only looking at equilibrium properties of a single conforma-

tion of DHFR, therefore it is not obvious that all relevant quantities to allostery

will be present in our trajectories. The timescales we are sampling are indeed

much shorter than the ones related to changes in conformation (which could

also be induced through allosteric effects).

What we find is that the previously mentioned correlations are very small in

value, but it is possible to observe that the residues which showed higher cor-

relations to the CC distance are quite likely to be connected to sectors.

It therefore seems like that there is no direct coupling between the catalytic
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activity of DHFR and the fluctuations of each Cα atom. Nevertheless, the

ones which have a bigger coupling show to be directly linked to sectors.

2.2 Correlation

The correlation which has been chosen in this work, for simplicity, has been

the highly employed Pearson correlation coefficient. It is computed in the

following way:

ci,j =
< (r⃗i− < r⃗i >) · (r⃗j− < r⃗j >) >q
< (r⃗i− < r⃗i >)2) < (r⃗j− < r⃗j >)2)

, (1)

where r⃗i,j indicate the positions of two atoms and the averages are performed

over time. The systems we analyzed are assumed to be equilibrated, and the

ergodic hypothesis may be assumed to hold.

The value of the correlation will then be, by definition, in-between +1 and -1.

The drawback of calculating correlations in this way is that two positions could

be correlated, but their movements could happen on opposite planes. Accord-

ing to this definition, in these cases, the two positions would be uncorrelated.

Moreover, this correlation assumes that our variables are linearly correlated

and that the information is instantaneously propagated in time.

The reason why this correlation has been employed is because it is simple to

implement and faster than other tools.

There are better ways to compute the correlations, and this work may proba-

bly underestimate the values of the correlations for many sites.

What could be employed, in order to solve the mentioned issues, are corre-

lations defined through the estimations of mutual information, and therefore

the probability distributions of the observables we are interested in (Kraskov,

Stögbauer, and Grassberger 2004; Lange and Grubmüller 2005).

2.3 Analysis

The preparation of the system is described in appendix A.

We computed the correlations ci between the deviation of an i-th Cα atom

from its average position and the CC vector distance, in the following way,
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just like defined in Eq. (1):

ci =
< (r⃗i− < r⃗i >) · (d⃗− < d⃗ >) >q
< (r⃗i− < r⃗i >)2) < (d⃗− < d⃗ >)2)

, (2)

where r⃗i is the position of the Cα atom in each time frame, and d⃗ is the CC

distance vector, defined as follows:

d⃗ = r⃗CDHF
− r⃗CNADPH

, (3)

where r⃗CDHF/NADPH
indicate the positions of the two carbon atoms involved in

the reaction, described in previous sections.

We have chosen to adopt a vector distance in order to keep more information

while averaging. We have indeed obtained that employing only the modulus

of the vectors in the correlations would yield much smaller correlations.

From this correlation, we can identify the residues which show an absolute

value of the correlation larger than a certain threshold. We tried different

thresholds, and we chose the value of 0.06. A residue which has a ci larger

than this threshold will be later identified as ’highly correlated residue’ (HCR).

Clearly we mean high in a relative sense, as the obtained correlations are not

high, in a strict sense.

As said before, our purpose is trying to understand if there are any residues

which are more correlated than others and that are at large distances from the

active site.

The constraint for the distance is important, because, as described before,

allosteric regulation takes place between sites which are far from the active

site.

To do so, we can then compute, for each Cα atom of each residue, its average

distance from the position of the middle-point between the two carbon atoms

involved in the reaction.

We then obtain the graph shown in Fig. (4), where we plotted the absolute

value of the correlation, for each residue, as a function of the distance from

the active site.

We can notice that most of the residues which show high correlations are

indeed close to the active site, and we see that the correlation is decreasing as

a function of the distance. This is indeed quite reasonable.
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Nevertheless, we are able to identify many residues which have a quite large

distance, bigger than 10 Å(this value is justified in the Correlation Matrix

section) from the active site.

We can also visualize these residues by looking at the 3D structure of DHFR,

to better see how they are distributed, as shown in Fig. (6).

We can indeed notice that that a lot of HCRs are close to the active site (shown

at the center, where the ligands are represented), but there many which are

quite far from it.

Given our correlations, our purpose is then to verify if the HCRs are close or

show some kind of connectivity to the sector residues.

Figure 4: Correlations, computed as in Eq. (2), as a function of the distance
from the active site. The latter is defined as the distance between the middle-
point between the two relevant carbon atoms of the ligands, and the Cα atoms
of each residue. These quantities are averaged over the trajectory.

Sector connectivity analysis In order to assess if an amino acid is con-

nected to another one, we will compute the average distances among all Cα

atoms of each residue. We will say that two residues are connected if the dis-

tance between their Cα atoms is less than 4Å.

The connectivity analysis will only be run over the HCRs and the sector

residues: residues which do not belong to this category will not be involved in

the connectivity.
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Our assumption is that most of the HCRs are connected to sectors, in a

network-like way. The reason why we look at network properties between

HCRs is that correlation is more or less the same for close residues, therefore

it is not really meaningful to look at connections between single amino acids:

our networks will serve the purpose of a kind of coarse-graining.

If we also identify HCRs which are far from the active site, we may infer that

these sites have some kind of allosteric significance.

These networks will be constructed iteratively in the following way: starting

from each sector, we see if there exist HCRs which are connected to them, and

in that case we add them to the network. Then, we proceed by checking if

there are new HCRs which are connected to the ones added in the previous

iteration, and we keep going until no HCR is added in the last step.

We can alternatively define the connectivity in the following way: we consider

a graph where the vertices are only HCRs and sectors. there exists an edge

between two vertices if the average distance between their associated Cα atom

is less than 4 Å. We then say that an HCR is connected in a network-like way

to a sector if there exists a path in the graph which leads its vertex to a sector

vertex. We can notice that, among the 30 HCRs we identified (the identity of

these residues is elicited in Appendix C), all of them except two appear to be

connected to these networks, as shown in Fig. (5), obtaining a value around

93% for the connectivity. In order to verify if these thresholds, according to

this model, would always produce a high connectivity, a p-value4 study has

been performed.

Given the correlations which we have obtained, we shuffled all the values and

assigned them to random residues.

We then computed the connectivity for this random case and we repeated these

calculations many times.

It has to be noted that, by doing these random permutations, we are adopt-

ing the hypothesis that each computed correlation can be equally distributed

among each residue. This is probably not the case in proteins, as we should

expect smaller correlations for residues which are far from the active site. We

then obtain a histogram, in Fig. (7), through which we can notice that the

event of obtaining 93% of HCRs connected to sectors is extremely unlikely.

4The p-value is a measure used to indicate the statistical significance of a hypothesis.
The smaller it is, the less likely it is to measure the obtained value by chance, under a certain
null hypothesis. In biology, a measure is considered to be significant when the p-value is
smaller than 0.05.
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Figure 5: Pearson correlation, as in Eq. (2), as a function of the residue index.
This means that we are numbering each amino acid in the protein, from 1
to 159: the protein is indeed a chain of amino acids. The chosen distance
threshold for connectivity is 4Å.

Indeed, after 50,000 random permutations, it never occurs that the matching

is higher or equal than 93%. We can then say that the p-value is less than

2× 10−5.

Assuming then that the available data is correct, this should reinforce the fact

that the model is relevant and we can then infer that most HCRs, in DHFR,

are close to these sectors.

We must clarify that, despite the fact that all HCRs are connected to sectors,

the opposite is not true. There is not a one to one correspondence and this

is also what occurs for residues with other properties (Reynolds, McLaughlin,

and Ranganathan 2011).

Since many of the HCRs are close (distance less than 10 Å) to the active site,

it may be interesting to perform this analysis only for the residues which are

far from the active site.

By starting from the already performed connectivity analysis, we can consider

only the residues which are further than a certain distance, for example 10 Å.

This distance has been chosen because the scale over which the correlation as

a function of the distance decreases by about two thirds is indeed about 5 Å,
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Figure 6: 3D visualization of DHFR in the closed configuration with high-
lighted HCRs (in orange), sectors (light blue) and residues which are both
among the HCRs and sectors (green). It can be seen that the most HCRs are
close to the active site, and almost always close or matching to sectors.

as shown later in Fig. (9).

By restricting our analysis to these residues, we obtain a matching of about

88%, and we again obtain an upper bound for the p-value equal to 2× 10−5.

The obtained connectivity value is therefore significant and we conclude that,

according to this analysis, most of the residues which show high correlations

and are also far from the active site are connected, in a network-like way, to

sectors.

From this analysis, we should not infer that each HCR, on its own, is more

likely to be connected to a sector: the connections among the residues which

show higher correlations are essential to be connected to sectors. The result

is though hard to interpret from an experimental point of view. Starting from

this analysis it could although be possible to identify allosteric pathways for

DHFR, by analyzing the connections which are present among HCRs. By al-
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Figure 7: Histogram obtained after 50,000 random permutations of the corre-
lations over the residues. We notice that the percentage value of 0.93 is never
obtained over these attempts. We can then infer that the p-value is less than
1/50000 = 2× 10−5

losteric pathway we would mean the path of connected HCRs starting from an

HCR far from the active site towards the active site itself. Through this site,

the information could propagate, and we partially could explain a mechanism

for the propagation of the long-range interaction between an HCR and the

catalytic activity of DHFR.

In the following section, we will address the question of the relevant spatial

scale for the correlations. Indeed, we have stated here that a distance of 10 Å

is said to be large, but we must motivate it.

2.4 Correlation matrix analysis

The purpose of this section is to study DHFR to identify a peculiar distance

scale over which correlations decrease significantly, and to see if any explicit

long-range correlations are present. Correlations will be computed for all Cα

atoms of the residues, and the heavy atoms of the two ligands, in the same

way defined in Eq. (1).

We will then compute all the correlations ci,j, and we can then produce the

correlation matrix, showed in Fig. (8a). We also compared this matrix to the

one produced in literature, finding quite similar results (Boekelheide, Salomón-

Ferrer, and Miller 2011).
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(a) Correlation matrix

(b) Distance matrix

Figure 8: (a) Correlation matrix, obtained by considering the correlation of
the deviation from the average position of all Cα atoms of the residues and all
heavy atoms of the ligands, as in Eq. (1).
(b) Distance matrix, computed by considering the same atoms used in the
correlation matrix, averaged over the trajectory.

We straightforwardly expect that atoms which are close to each other should

display high correlations: in order to verify this we also plotted the distance
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matrix, in Fig. (8b), where each entry di,j is simply equal to the average

distance between the i-th and j-th atom in question.

We can compare the two matrices and we notice that indeed there are very

similar patterns between them.

In order to better analyze if there exist some residues which show a large

correlation at large distances, we can perform a scatter plot for each couple of

distances and the absolute value of the correlations (di,j, |ci,j|), which can be

seen in Fig. (9). We obtain, as we might have expected, that correlations decay

Figure 9: Scatter plot of the entries of the absolute value of the correlation
and distance matrices, in Fig. (8). The trend appears to be exponentially
decreasing and can then be fit with it (in orange). There are some large-
distance correlations, but they are very small. The graphs make explicit how
the correlations are most likely related only to close residues and we infer the
typical length d over which these correlations decay.

as a function of the distance, and we can fit the points with an exponential in

the following way:

c(x) = e−
x
d , (4)

where c is the correlation, x a given distance and d will be regarded as the

typical length scale after which correlations start to become negligible (about

one third), which has to be fit.

We have then obtained that d is around 4.8 Å.

This value justifies our previous distance threshold of 10 Å, which we used to
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separate residues far from the active site and close to it.

We do not identify strong correlations at large distances, but some large dis-

tance weak correlations are displayed.

Principal component analysis To see if there are any relevant features

which would allow us to understand if there exist any characteristics (specific

of correlations) which differentiate HCRs from other residues, we decided to

perform a Principal Component Analysis (PCA) of the correlation matrix.

The first two principal components have about 40% of the explained variance,

therefore a 2D plot should be able to catch many of the relevant features.

The projection of the correlation matrix over its two first principal components

Figure 10: Principal component analysis over the first two principal compo-
nents of the correlation matrix. The criteria for the selection of HCRs are the
same ones which were mentioned in the Connectivity Analysis.

is shown in Fig. (10).

We can notice that the ligands and the residues of the protein seem to occupy

quite separate regions. We see indeed that there is a cluster of mostly uncorre-

lated residues, a cluster for each of the ligands and an intermediate behaviour

which is associated to HCRs.
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From the figure, it may seem like that HCRs display a similar correlation be-

haviour to the one of the ligands, and especially the cofactor (in purple).

There are indeed some residues, which are mostly HCRs, which appear to be-

have quite similarly to it, since they are very close to it in the graph.

Moreover, in principle, this should not necessarily be related to the fact that

those HCRs are close to NADPH. Indeed all the distances of those residues

are higher than 5 Å, and only two are larger than 10 Å, the previously chosen

threshold to identify HCRs far from the active site.

From this analysis, we may infer that HCRs have in general (global) correla-

tion properties which are more similar to the ones of the ligands, and different

from other residues.This should not necessarily be obvious, because the way

in which we defined the HCRs is quite less informative than computing the

full correlation matrix, where we have computed correlations for each pair of

atom. It has to be said though that most HCRs are close to non-HCRs.

For this reason, it does not seem to be possible to extract an unequivocal rea-

son which explains this behaviour, at least from this analysis.

Finally, we notice that sectors, even less than HCRs, are not well separated

from the rest of the residues. It seems like that the sectors do not display any

peculiar correlation behaviour.
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3 DHFR hydration shell analysis

3.1 Introduction

After having performed a correlation study, we will now focus on some prop-

erties related to water hydration shell dynamics (some details of the MD sim-

ulations are presented in Appendix B.). As mentioned earlier, it is not clear if

water plays a role or not in allosteric regulation.

In this section, we will determine if the residues involved in sectors display

characteristic hydration dynamic properties.

What we will have to do is then to extract the water reorientational times in

the shell around the protein. These observables have been obtained by using

a tool developed at ENS by Élise Duboué-Dijon, using previously developed

strategies (Fogarty and Laage 2014).

We have extracted and analysed these quantities for both the open and closed

conformations of DHFR. In the following sections we have then decided to

present the results for the open configuration of DHFR, but, for the reasons

explained earlier, we do not expect real physical relevance, and we just included

it as a reference for comparison.

3.2 Water hydration dynamics

Water is essential for biological systems and its dynamics is capable of influ-

encing the structure and function of some biomolecules (Ball 2007; Levy and

Onuchic 2006).

Water molecules are forming hydrogen bonds between one another, but water

is not a static solvent. This implies that it continuously breaks and forms new

hydrogen bonds, within a picosecond timescale.

The presence of a protein (or a generic biomolecule) in water will though per-

turb water dynamics, in the sense that water reorientation is much slower

around it.

One well known model has been developed in the past (Frank and Evans 1945):

the iceberg model. According to it, the presence of hydrophobic sites would re-

duce water configurations, because it limits its ability to form hydrogen bonds.

This would in turn translate into a great loss of entropy of water because fewer

configurations are for them available. According to this model, some icebergs

are formed around solutes in water, where water behaves as if it were frozen.
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It has been shown (Laage, Stirnemann, and Hynes 2009) that this is not really

occurring: water molecules can move around the protein and we can measure

both experimentally and also by using simulations their reorientational times.

Water dynamics is therefore slowed around the protein, but it is not frozen.

There are two main static properties which influence water dynamics around

a protein: the geometry of the protein and its chemical properties.

Indeed, the protein is quite inhomogeneous, both geometrically and chemi-

cally, and for this reason water dynamics shows very different characteristics

around it, especially if there are pockets5 in the protein where water is allowed

to enter.

Moreover, since the protein does not fluctuate in the same way around its

surface, there will also be dynamical properties which in turn influence water

dynamics.

In this work, we will limit ourselves to the analysis of the first hydration shell

of the protein.

The definition of the first hydration shell is an arbitrary concept. In gen-

eral, the hydration shell is constituted of the water molecules which are more

perturbed by the presence of a biomolecule. To define it, since we are us-

ing Molecular Dynamics tools to analyze our trajectories, we can introduce

some geometric constraints related to the distance between water molecules

and atoms of the protein.

In order to keep chemical differences into account, we will classify each atom

into three classes: hydrogen bond donor, hydrogen bond acceptor or hydropho-

bic6: each of these classes will have a different distance threshold, usually ob-

tained by considering radial distribution functions, as described in literature

(Fogarty and Laage 2014).

Once we identify the water molecules of interest, we will assign them to the

site to which they are close, and there are some technicalities which are also

discussed in the aforementioned paper.

It is then possible to compute the time autocorrelation function related to the

orientation of the OH-bond vectors7 of each water molecule, in the following

5A protein pocket is a generic cavity inside the surface of a protein.
6A hydrogen bond donor is an atom which is attached to a strong electronegative atom:

it will then have a positive partial charge around it so that it can interact with other more
electronegative atoms. For example the H atoms in water tend to form hydrogen bonds with
oxygen, which is a hydrogen bond acceptor.

7Each water molecule will have two OH vectors: they are the two vectors starting from
the oxygen atom and pointing towards one of the other hydrogen atoms.
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way:

C2(t) = ⟨P2(u⃗(0) · u⃗(t))⟩ , (5)

where P2 indicates the second order Legendre polynomial, and u⃗ is the OH-

bond vector for each water molecule.

The second order Legendre polynomial is adopted because it can be related to

experimentally accessible quantities.

These correlation functions decay over time, as seen in Fig. (11a), and the

main goal will be to estimate the time over which the relaxation occurs.

The decay is non-monoexponential, as can better be seen in the log-y scale

in Fig. (11b).This behaviour is related to initial fast (sub-picosecond) libra-

tional relaxation of the OH vector. For this reason, in order to obtain the

reorientational time, we will fit these curves within an interval between 2 and

10 picoseconds. This is done to avoid fitting the intial multi-exponential be-

haviour and to avoid the strong noise which is present in the final parts of

the curve. By estimating the relaxation time for each OH-bond vector around

the protein, we can obtain a map of reorientational times for each site in the

protein.

3.3 Analyses

We can notice that the two conformations of DHFR have qualitatively similar

reorientational times, but many sites seem to behave quite differently, as it can

be seen from Fig. (12).

This can probably explained by the fact that, despite the fact that both struc-

tures are composed of the same amino acids, they have quite different fluctu-

ations for some key observables, like the Met20 loop. These fluctuations will

considerably affect reorientation of water around these sites.

Moreover, the two conformations will in some cases expose different amino

acids to water, and this will also affect water dynamics. What can be done

for the OH bond reorientational times is to see how they are distributed. We

then plotted the histograms in order to infer the distribution, for both confor-

mations Fig. (13). We reproduce similar distributions to the ones obtained in

literature (Sterpone, Stirnemann, and Laage 2012). The distributions of the

reorientational times of the two conformations appear to be quite similar, and

a peak in the range of 2-3ps is displayed.
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(a)

(b)

Figure 11: Autocorrelation function C2(t), as in Eq. (5), for three arbitrary
sites in the closed configuration of DHFR, (a) in linear scale, (b) in log-y scale.
By fitting intermediate intervals of these functions, for example in-between
2-10ps, it is possible to extract OH vector reorientational times.

It is indeed known (Laage, Elsaesser, and Hynes 2017) that this peak is gen-

erally caused by the local topography of the interface between the protein and

water, which limits the rearrangements of the H-bonds.

The tail of the distribution instead generally arises from water molecules which



28 3 DHFR HYDRATION SHELL ANALYSIS

(a) Closed conformation (b) Open configuration

(c) Closed configuration, lateral
view

(d) Open configuration, lateral view

Figure 12: Water colour map of the reorientational times (in picoseconds) for
the closed (a),(c) and open (b),(d) configurations of DHFR, seen from two
perspectives.

are buried inside pockets. This also seems to be the case, since the tails appear

to be longest in the open conformation, where water can also get in the active

site.
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If we perform a Smirnov-Kolmogorov test8, we obtain a small value of 0.065,

but with a p-value of 0.15. It is therefore not clear if the two distributions are

the same or not, despite appearing qualitatively quite similar.

The peak in the distribution appears to be slightly different for the two con-

formations: the closed conformation displays a maximum in the distribution

at about 3.5ps, while 1.9ps is the one found for the open one.

Since we want to verify if sector residues display special hydration dynamic

properties, we could think that some characteristics would be evident even

from the differences in the distributions of reorientational times of sector and

non-sector sites. The distributions are showed in Fig. (14).

We notice that for both distributions, and especially for the closed one, the

peaks seem to be a tiny bit higher for larger reorientational times.

In order to verify if this is quantitatively reproduced, we performed two dif-

ferent Smirnov-Kolmogorov tests.

From this, we do not notice a large quantitative difference: we obtain, in both

cases, a value around 0.1, but p-values are quite high, so the measure is not

significant and we cannot infer much from it.

We therefore cannot conclude from the distributions that sites belonging to

sector residues display characteristic hydration dynamic properties.

Another possible question we might ask is if the slowest sites are physically

located close to sectors. In order to verify if such correspondences exist, we

will therefore perform a similar connectivity analysis to the one performed in

the previous section for HCRs. Before running the connectivity analysis, we

average the obtained reorientational times for each single amino acid. There-

fore each residue will be associated to a single reorientational time for water

around it.

Very naively, we then sum the reorientational times of each site in the single

residue and we then divide by the number of solvent-exposed sites present in

it.

The same connectivity analyses which were performed for the HCRs are now

performed for the aforementioned residues.

In this case we identify a subset of slow sites, the residues around which water

reorientational time is highest (indicated in Appendix C). We set a threshold

8The Smirnov-Kolmogorov test is a statistical test which allows to compare two samples
and it will return a value related to how likely it is that these two samples have been
generated by the same probability density function.
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(a) Closed configuration

(b) Open configuration

Figure 13: Distribution of the reorientational times for water OH vectors in
the closed (a) and open (b) conformations of DHFR, for the first hydration
shell. There are not qualitative differences between the two distributions and
they both follow the behaviour expected from literature.

of 35ps in order to classify them as such. By using the same algorithm, with

the same distance threshold of 4 Å, we now obtain that about 76% and 55%

of the sites are indeed connected to sectors, for the closed and the open con-

figuration respectively.

In reality, we can notice that network connectivity is actually not important

in this case: all slow sites are directly connected to sector ones, without the

need of other intermediate connections among them.

This is reasonable, since slow sites are only in the surface of the protein, and
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(a) Closed configuration

(b) Open configuration

Figure 14: Comparison between the distribution of reorientational times of
water OH vectors for sites belonging to sectors (blue) and non-sector sites (or-
ange), in the closed (a) and open (b) conformations of DHFR. Apparently, it
seems that the closed conformation shows some differences in the behaviour
between sector-sites and non-sector ones, especially in the tails of the distri-
butions.

it is more unlikely for them to be close to one another.

In the correlation study we made, it was straightforward that correlated residues
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should be close to other ones, since we expect that close residues have similar

correlations. On the other hand, in this case, the chemical properties of each

amino acid are relevant. Since the surface of the protein is chemically quite

inhomogeneous, we do not expect that slow sites are close to one another.

Results and p-values for this section are therefore obtained by assuming that

no network of slow sites is formed: for each slow site, we only look if it is

directly close to a sector.

Again, we verify that our results are unlikely to be obtained by chance, mea-

suring the statistical significance through the p-value. The latter has been

estimated by permutating the ’coarse-grained’ times for the solvent-exposed

residues, and by repeating the same calculations many times.

We obtain a p-value of 0.03 for the closed configuration, making the measure

significant.

Moreover, we can also notice that these sectors are now not close to the active

site: for both the closed and open conformation, the strong majority (all of

them, in the closed configuration) of all slow sites shows a distance larger than

10 Å from the active site, as can be seen in Fig. (15) and partially from Fig.

(16). We can then restrict our analysis to sites which show a distance larger

than 10 Å from the active site. We obtain the same percentage of slow sites

which are connected to sectors, for the closed configuration, and the p-value

is estimated to be less than 5× 10−5. This connectivity is therefore even more

significant than the one obtained for all slow sites.

We have therefore obtained that most slow sites are directly connected to sec-

tors: it would be interesting to verify this hypothesis both experimentally and

with other kinds of proteins, to verify if this happens in general or if it is

something peculiar of DHFR.

This is important because since a large amount of slow sites is connected to

sectors, it would be possible to have some hints on where allosteric sites are

situated just by performing molecular dynamics simulations.
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(a) Closed configuration

(b) Open configuration

Figure 15: Average reorientational times around each surface residue as a
function of the distance from the active site, computed as described in the
previous section. We notice that there is not a clear correlation between the
reorientational times and the distance from the active site, differently from
what was observed for the correlations.
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Figure 16: 3D representation of DHFR in the closed conformation. The sites
around which the water reorientational times are highest (orange) are com-
pared to sectors (light blue), in the case when they match, they are represented
in green. The open configuration has not been represented because it shows
low connectivity with large p-values: the measure is not significant.
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4 Conclusions

In this work we have analysed some equilibrium properties of DHFR, such as

correlation properties between the positions of amino acids and the CC dis-

tance which governs its catalytic properties.

We wanted to verify if there existed a matching between sector residues, ob-

tained from evolutionary data, and residues which showed higher correlations.

Even if the obtained correlations are not quite large, we showed that the strong

majority (86%) of residues which displayed higher correlations (HCRs), and

which are far from the active site, are connected, in a network-like way, to

sector residues. This implies that there may exist a relation between networks

of HCRs and catalytic activity, but it has to be clarified that there seems

not to be a direct link between single HCRs and sectors: the matching with-

out network-like connections would be quite small. Additional analyses of the

HCRs and their connections could be useful to identify allosteric pathways.

We have also analysed the first hydration shell of DHFR, by looking at the

reorientational times of OH vectors of water. Our purpose was to verify if sec-

tor residues had peculiar hydration dynamics, but it has not been possible to

infer it from our data. We therefore tried to see if sector residues are directly

connected to residues around which OH vectors have largest reorientational

times (called slow sites). We noticed that slow sites far from the active site

are, most often (76%), directly connected to sectors. This result has stronger

implications than the one obtained for HCRs, because, unlike the latter, it

provides a direct link between slow sites and sectors, even if the matching per-

centage which was obtained is smaller. If this is verified, we could have hints

on where to start looking experimentally for allosteric sites in a protein.

Moreover, it would be interesting to understand the molecular mechanisms

which would lead water to have larger reorientational times around sectors.

It also has to be said that the two analyses which we have performed, identify

different residues, except for two common ones. Additional analyses show that

the two subsets of residues do not even appear to be connected.

In this work we have only looked at equilibrium properties of DHFR and its

hydration shell, and we never investigated on how the information travels

across the protein.

A very promising way to continue the project could be to use other techniques,

such as Nonequilibrium Molecular Dynamics simulations (Oliveira et al. 2021),
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which would allow us to directly verify if, applied a given perturbation, the

information travels across the protein or through the reorientation of water

around the surface of the protein.

These studies could provide a clear answer to the question of a possible role of

water in allosteric transitions.
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VII

A System preparation

The PDB structure 5Z6F (Nagae, Yamada, and Watanabe 2018) has been

used. A mutation was present in the chain and it has been removed by using

Chimera (Pettersen et al. 2004), with the rotamers tool.

The forcefield which has been used is AMBER99SB (Ponder and Case 2003),

and therefore the initial topologies for the ligands have been generated by us-

ing ACPype.

AMBER has been chosen in spite of CHARMM (Brooks, Brooks III, and al.

2009) because there are problems with the generation of the forcefield of the

ligand using CGenFF (Vanommeslaeghe et al. 2010), and there were not many

parameters published online to be used for it.

Also in the case of AMBER, DHF does not behave quite well without proper

ab-initio calculations to obtain the partial charges and atom-atom interactions

within the molecule. For this reason we used the partial charges found in lit-

erature (Liu et al. 2013).

The system was solvated inside a cubic box, where 10205 water SPC/E molecules

are added to the system, and to neutralize the charge, 15 sodium ions are added

to the system.

The system then undergoes energy minimization, in order to start sampling

the system from its lowest possible energy: steepest descent is used for these

steps, and it continues until the maximum force in the system is less than

50 kgmol−1nm−1.

The protein and the ligands are restrained to their initial positions, by apply-

ing a constant force in the 3 directions to all their heavy atoms.

An NVT simulation to equilibrate the system to a given temperature is per-

formed, and the chosen thermostat is velocity rescaling by Bussi-Parrinello.

The temperature is slowly increased from 1K to 300K to avoid large initial

fluctuations in the ligands, which could compromise the correct structure of

the complex itself.

Finally, an NPT simulation is performed, by using Berenden’s algorithm.

The restraints which kept the complex still are then released and the sys-

tem is then simulated for 50ns, using Parrinello-Rahman’s barostat instead of

Berendsen’s.

Most of the values for neighbour searching or interaction approximations in all

the simulations are left to the default values defined in GROMACS.



VIII C DATA TABLES

To analyze the system, the system trajectory is converted so that the system

can go outside of the box (in order to compute distances in the correct way),

and the rotational and translational movement of the system is removed, in

order to avoid artefacts in the analyses.

B System preparation: water analysis

Trajectories have been generated, for both closed and open conformations of

DHFR.

Both systems are equilibrated as described in previous section.

In this case we will store the positions of all particles at intervals of 10 fem-

toseconds, instead of the order of picoseconds.

This is necessary, in order to capture the time-scales related to water. The

systems are then sampled for 10ns and the previously mentioned tool has been

used to extract the water reorientational times.

C Data tables

C.1 HCRs

Connected residues:[4, 5, 13, 14, 15, 16, 27, 28, 29, 31, 33, 45, 46, 54, 94, 95,

96, 97, 98, 99, 100, 101, 102, 103, 104, 123, 124, 125]

Not connected residues: [68, 107]

HCRs obtained as described in the correlation section, with a distance thresh-

old between Cα atoms of 4Å, and absolute value of the correlation larger than

0.06. p-value smaller than 2× 10−5.

C.2 Slow sites

Connected residues: [3, 22, 30, 45, 81, 90, 91, 92, 112, 121, 123, 127, 133]

Not connected residues: [85, 105, 108, 115]

Slow sites obtained as described in the water analysis section, with a distance

threshold between Cα atoms of 4Å, and reorientational time threshold larger

than 35ps. p-value around 0.03.
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