
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Zero Trust Architectures

Supervisor

Prof. Riccardo SISTO

Ivan AIMALE, Blue Reply

Candidate

Andrea SCOPPETTA

October 2022

To everyone that stayed with me along the path
and made it a wonderful adventure.

ii

Table of Contents

List of Figures vi

Acronyms ix

1 Introduction 1

2 Background concepts 3
2.1 Cloud Computing . 3
2.2 Advantages and disadvantages of Cloud Computing 5
2.3 Service Mesh . 6
2.4 Istio . 8
2.5 Zero Trust Model . 14

3 Design of the Proof of Concept 16
3.1 Cluster creation . 17
3.2 Sample application development . 17
3.3 Service Mesh installation and configuration 22
3.4 Application exposition . 28
3.5 Authorization server installation and configuration 30
3.6 External services access . 32

4 Implementation of the Proof of Concept 36
4.1 EC2 machine creation . 36
4.2 Minikube installation . 37
4.3 Istio inside Minikube installation 37
4.4 Development and deployment of BookInfo application 38
4.5 Ingress Gateway and end-users policies implementation 43
4.6 Intra-services policies implementation 47
4.7 MetalLB configuration . 48
4.8 Nginx configuration . 48
4.9 Keycloak configuration and deployment 49

iv

4.10 Egress Gateway configuration . 51

5 PoC results validation 54
5.1 Zero Trust paradigm correctness . 54
5.2 Ingress Gateway correctness . 59
5.3 Egress Gateway correctness . 60
5.4 Keycloak correctness . 62

6 Real case scenario: Upgrading to a Service Mesh 64
6.1 Components description . 64
6.2 Architecture description . 65
6.3 Azure . 66
6.4 IAM on-premise . 67
6.5 Architectural flaws . 68
6.6 Upgraded architecture . 68

7 Real case results validation 70
7.1 Zero Trust paradigm correctness . 70
7.2 Ingress Gateway correctness . 72
7.3 Egress Gateway correctness . 73

8 Conclusions and future works 75

Bibliography 77

v

List of Figures

2.1 Summary of service models . 4
2.2 Service Mesh structure . 7
2.3 Proxies communication example . 7
2.4 Istio Security Architecture example 9
2.5 Peer Authentication example . 11
2.6 Request Authentication example . 12
2.7 Virtual Service example . 13
2.8 Zero Trust Principles . 14

3.1 PoC Layers . 20
3.2 BookInfo Application Structure . 20
3.3 Get book details - Sequence diagram 21
3.4 Post new book details - Sequence diagram 22
3.5 Post new review - Sequence diagram 22
3.6 Details service Authorization Policy 27
3.7 BookInfo structure using Istio . 28
3.8 PoC Intermediate Structure . 29
3.9 PoC with Keycloak . 32
3.10 Egress Gateway example . 33
3.11 PoC Final Structure . 35

4.1 Kiali dashboard . 37
4.2 Product Page products controller 39
4.3 Product Page Dockerfile . 40
4.4 Details Deployment YAML . 41
4.5 Details Service YAML . 42
4.6 Details Service Account YAML . 43
4.7 Ingress Gateway YAML . 44
4.8 Ingress Gateway Virtual Service YAML 45
4.9 Ingress Gateway Request Authentication YAML 46
4.10 Authorization Policy for Admins - GET 47

vi

4.11 Peer Authentication - STRICT mode 48
4.12 Reverse Proxy configuration . 49
4.13 Keycloak dashboard . 49
4.14 Postman REST request to obtain JWT 50
4.15 Keycloak Service YAML . 50
4.16 Egress Gateway YAML . 51
4.17 Egress Gateway Virtual Service YAML 52
4.18 WorldtimeAPI Service Entry . 53

5.1 Encrypted response example . 55
5.2 Clear text response example . 55
5.3 Service to Service Authentication steps 56
5.4 Service to Service Authorization steps 56
5.5 Least privilege example . 57
5.6 Least privilege test . 57
5.7 Least privilege test part 2 . 58
5.8 Prometheus dashboard example . 58
5.9 Custom observability pipeline example 59
5.10 Ingress Gateway logs - Authorization policy example 60
5.11 Error 403 test . 60
5.12 External service test . 61
5.13 Egress Gateway - External service logs 62
5.14 Decoded JWT example . 63

6.1 User Account Logic Architecture 66
6.2 User Account Technical Architecture 66
6.3 Logic Architectures using Istio . 69

7.1 Clear text response example . 71
7.2 Encrypted response example . 71
7.3 Least privilege test . 72
7.4 Curl success test . 72
7.5 Ingress Gateway logs . 73
7.6 Error 403 test . 73
7.7 Curl on-premise service . 73
7.8 Egress Gateway logs . 74

vii

Acronyms

API
Application Programming Interface

AWS
Amazon Web Services

CA
Certification Authority

DB
Database

EC2
Elastic Compute Cloud

HTTP
Hypertext Transfer Protocol

IaaS
Infrastructure as a Service

IAM
Identity and Access Management

IT
Information Technology

JWKS
JSON Web Key Set

ix

JWT
JSON Web Token

mTLS
Mutual Transport Layer Security

OIDC
OpenID Connect

PaaS
Platform as a Service

PoC
Proof of Concept

SaaS
Software as a Service

SQL
Structured Query Language

SSO
Single Sign On

TLS
Transport Layer Security

VM
Virtual Machine

VPN
Virtual Private Network

x

Chapter 1

Introduction

In the last two decades, public cloud has taken hold more and more so that an
increasing number of companies has decided to migrate their workflows from their
own private datacenters to a public cloud provider. Application development
needs to be more adaptable as we transition to cloud solutions, creating a new
cloud native approach consisting of microservice instead of monoliths. This led to
important security challenges such as workload authentication. Following the
cloud’s growth, new tools and models arose, like the Service Mesh and the Zero
Trust paradigm. The first one is a dedicated infrastructural layer that can be
added to applications, allowing to transparently add capabilities like observability,
traffic management, and security, without adding them to the application’s code.
The second one is an IT security approach that assumes that no network perimeter
is safe so every communication must be authenticated. The idea behind it is that
security must be developed with the strategy "Never trust, always verify in mind
because implicit trust is always a risk.

With these concepts in mind, the goal of the thesis is to understand how a Zero
Trust architecture can be designed, which PROs and CONs it may have and in
which cases it can be applied, especially in the enterprise environment.

To dig deeper, a Proof of Concept was realized to test whether a Zero Trust
architecture can be achieved using a Service Mesh, in particular a product called
Istio. It consisted in a sample Spring Boot application deployed in a Kubernetes
cluster created using Minikube. On top of the application, Istio was installed and
configured to fulfill the Zero Trust model. Furthermore, Istio’s additional features
such as the Ingress Gateway and the Egress Gateway were used to obtain the
highest security level possible. A simple authentication server was included in the
PoC as well, realized using Keycloak. After realizing the whole architecture, a
series of tests were carried out to verify whether the Zero Trust model and the
security requirements were achieved or not. The results showed that a Service
Mesh could be used to achieve a Zero Trust architecture, so the focus shifted on

1

Introduction

a real case scenario: implementing the Service Mesh in an already up and running
application, that provides a critical workflow in a big company.

This was possible thanks to the help of Blue Reply, my internship company.
The application already implemented the Zero Trust model without the use of
the Service Mesh but this implementation had some flaws and disadvantages like:
an excess of utility code in the microservices, no observability tools and little
maintainability. Its implementation involved the use of a JWT exchange from the
original user request throughout the whole transaction. After shutting this feature
down, implementing and configuring Istio, a series of tests were carried out to
test the improvements compared to the initial structure. The results confirmed
the initial intentions so we can affirm that the Service Mesh is a very useful tool
to obtain a high level of security and observability even in an already running
application.

The following chapters will talk about the two main parts of the thesis: the
Proof of Concept and the real case scenario. They will help us understand how
a Zero Trust architecture can be achieved thanks to the Service Mesh and which
may be the guidelines to implement it.

In the first part I’ll go into details of how the Proof of Concept was designed
and implemented in all its parts: the cloud environment in which it’s deployed,
the sample application used to test the Service Mesh, and Istio’s installation and
configuration, which is the main focus. At the end, various tests are reported to
prove the validity of what has been done before. The second part is about the
real case scenario. Its architecture and the original way it implemented the Zero
Trust paradigm will be described and explored as well as the flaws it originally
had. Then, I’ll move onto describing what changes have been done and how they
affected and improved the original architecture. Finally, like in the case of the PoC,
various test will be reported to confirm that implementing the Service Mesh was a
good choice and served the purpose of creating a Zero Trust architecture even in
an already up and running enterprise application.

2

Chapter 2

Background concepts

The goal of this chapter is to give a brief explanation of the background concepts of
the thesis. It will talk about Cloud Computing and its diffusion now days, focusing
also on its security challenges. Then it will introduce the concept of Service Mesh
and how it can be exploited to mitigate security risks in a cloud environment.

2.1 Cloud Computing
Delivering hosted services through the internet is referred to as "cloud computing"
in general. It can be mainly divided into three categories: Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).

• IaaS : Infrastructure as a Service is supplied by cloud providers such as Amazon
Web Services (AWS), Google Cloud Platform or Microsoft Azure. They provide
virtual machines or other kinds of services, usually accessible by simple browser.
The company owns the physical server but the problems about scaling, load
balance and firewalls are in charge of the customer.

• PaaS : In the Platform as a Service model development tools are hosted on
cloud service providers’ infrastructures. Using APIs, web portals, or gateway
software, users can access these tools online. PaaS is utilized for the creation
of all types of software, and numerous PaaS service providers host the finished
product. Salesforce’s Lightning Platform, AWS Elastic Beanstalk, and Google
App Engine are examples of popular PaaS platforms.

• SaaS : Software as a Service is a method of software delivery that made available
web services, or software applications, across the internet. Users can use a PC
or mobile device with internet connectivity to access SaaS applications and
services from any location. They can also access to databases and application

3

Background concepts

software under the SaaS model. The productivity and email capabilities
provided by Microsoft 365 are a typical example of a SaaS application.

Figure 2.1: Summary of service models

A cloud can be deployed in multiple ways:

• Public: Is provided by a so called cloud provider, such as Amazon, Microsoft
or IBM, and it’s accessible by everyone through a subscription or a pay-to-use
format.

• Private: Is hosted in a proprietary network or a data center that provides
services with specific access and authorization settings to a small group of
users.

• Hybrid: is made with both public and private resources. In terms of legacy or
security, this may be quite useful.

Additionally, enterprises are adopting a multi-cloud approach more frequently,
which involves using multiple IaaS providers. This makes it possible for workloads
to move between several cloud providers or even run simultaneously across two or
more of them.

It heavily relies on virtualization and automation in order to get abstraction
and easy provisioning and to obtain the minimum effort from IT staff. These two
concepts are tied together by the concept of orchestration which provides an high
degree of scalability, fault resilience.

Lately, virtualization is made by containers which are essentially lightweight
virtual machines, without a full fledged operating system, that are usually used

4

Background concepts

in a microservice architecture. They allow efficient orchestration since they can
be started up quite quickly, they can be easily replaced since their state is usually
backed in a persistent external database and they allow horizontal scaling to handle
more requests as they grow in number.

2.2 Advantages and disadvantages of Cloud Com-
puting

First of all we’ll describe it’s characteristics, which will then be analysed to point
out the advantages and the disadvantages.

Elasticity is one of the main characteristics, companies can scale up or down
the resources based on the needs and this goes along with the Pay-per-Use billing
mode. In this way companies pay only for the exact amount of resources they use.

Cloud providers ensure resilience due to an high number of servers, usually
spanning across multiple regions, allowing redundancy and ensuring that workloads
are always up and running.

Furthermore, it’s fairly easy to move workloads on or off the cloud, or to move
from a cloud provider to another, allowing migration for cost savings or to use new
services as they roll out. In conclusion, it is designed to support multi-tenancy,
which enables a large number of users to share the same physical infrastructures or
applications while maintaining the confidentiality and privacy of their own data.

All of these characteristics, as we can imagine, lead to multiple important
advantages for modern businesses:

• Cost management: Companies don’t have to buy and maintain their own
datacenters, cutting the costs of the hardware, the bills, and the whole infras-
tructure as well as the cost of an IT staff to maintain everything. Additionally,
the companies can grow without worrying about enlarging their IT resources,
they just have to ask for more to their cloud providers. Cloud computing also
cuts costs related to downtime, since it rarely happens thanks to the reasons
told before.

• Data and workload mobility: Every resource stored in the cloud can easily be
accessed through the internet by every device. This enables remote employees
to stay up to date with co-workers and customers. It also makes it simple for
end users to process, store, retrieve, and restore resources. Additionally, cloud
vendors immediately supply all upgrades and updates, saving time and effort.

• Business continuity and disaster recovery (BCDR): Thanks to the intrinsic
infrastructure of the cloud, organizations don’t need to worry about data
loss. Even if the user’s device is inoperable all the data is safe in the cloud,

5

Background concepts

safely stored, redundantly, by the providers that have well structured disaster
recovery techniques. This is important to BCDR and ensures that workloads
and data are accessible even in the event of damage or disruption to the
organization.

Despite all the benefits described, cloud computing creates new challenges:

• Cloud security: This is also the main focus of the thesis. Organizations who
rely on the cloud run the risk of data breaches, API and interface hacks,
compromised passwords, and authentication problems. Security necessitates
paying close attention to corporate practices, cloud setups, and policy. In
particular, the thesis is more focused on the intra-cluster security.

• IT governance: Since there is no control over the provisioning, deprovisioning,
and management of infrastructure operations, the cloud computing model’s
emphasis on do-it-yourself capabilities can make IT governance challenging. It
may be difficult to manage risks and security, IT compliance, and data quality
effectively as a result.

• Cloud performance: The organization purchasing cloud services from a provider
has little control over performance factors like latency. If firms do not have
backup plans in place, network and provider disruptions can hinder productiv-
ity and interfere with business operations.

• Vendor lock-in:Changing cloud providers can frequently result in serious
problems. Technical incompatibilities, legal and regulatory restrictions, and
high expenses associated with big data migrations are some examples of this.

2.3 Service Mesh
Modern applications are built as a collection of microservices deployed altogether
on a cluster, this allows to apply the separation of concerns paradigm, to improve
modularity and performance optimization.

The drawback of this architecture is that it might be challenging to manage
as it increases in size and complexity. Service discovery, load balancing, failure
recovery, metrics, and monitoring are just a few examples of its requirements. This
is where the Service Mesh comes in handy. It is a dedicated infrastructure layer
that can be adde to the applications, allowing to transparently add capabilities like
observability, traffic management, and security, without adding them to its code.
It is placed at the level of service to service communications through the use of a
proxy.

Basically, a Service Mesh in made by a Control Plane and a Data Plane.

6

Background concepts

Figure 2.2: Service Mesh structure

The Control Plane receives all the configuration resources and then pushes them
to the Data Plane. The first is made by the core components of the mesh while
the latter is made by the collection of proxies attached to every microservice. As
said before, it allows to abstract the so called Cross Cutting Concerns from the
microservices in order to put them inside the proxy, so that it’ll create a common
base for all the actual microservices and the future ones.

Every incoming or outgoing communication is intercepted by the proxy, which
then forwards it to the proper destination. In a Kubernetes environment the
proxy is another container, known as sidecar, inside the pod that contains the
microservice.

Figure 2.3: Proxies communication example

7

Background concepts

There are three main categories of features offered by a Service Mesh:

• Traffic control: Altogether, the proxies know every connection happening in
the mesh and has the power to control it. This allows to apply routing inside
the mesh, circuit breaking, quotas and other features depending on the Service
Mesh implementation that is been used.

• Observability: Service mesh can provide data about the health and the be-
haviour of the services, collecting and aggregating telemetry data such as
latency, distributed tracing, logs and traffic. All of this data gets collected by
the Control Plane and can be visualized by integrated tools like Prometheus,
Elasticsearch, Grafana, Jeager and Kiali.

• Security: It can automatically encrypt communications inside the mesh using
mTLS, guaranteeing also mutual authentication. Thanks to this, authorization
policies can also be defined. These policies are centrally managed, by the
Control Plane, and are applied to service to service communications and to end-
users requests. These security features allows to implement the Zero-Trust
paradigm, which will be discussed later.

2.4 Istio
Istio is a open source implementation of the Service Mesh, supported by the major
actors in the cloud. Is the first and most widely used open source project and offers
all the advantages of a classic Service Mesh plus some other features like an Ingress
Gateway.

It is made by a Control Plane, to define and implement the way microservices
communicate with each other, and a Data Plane composed by Envoy proxies
deployed as sidecars in each microservice’s pod.

Its Control Plane is composed by a single component called istiod which gathers
several other components: Pilot, Citadel and Gallery.

Pilot transforms the Control Plane’s rules for traffic behavior into configurations
that Envoy will use.

Citadel is the center of security; it manages identity management and authenti-
cation between services.

User-specified configurations for Istio are taken by Gallery and transformed into
legitimate configurations for the other control plane elements.

Being a Service Mesh, it offers a lot of benefits. In this work we’ll focus on
the security ones. First of all, it offers an automatic implementation of mTLS
between microservices. It stands for Mutual Transpot Layer Security and it is a
process that establishes an encrypted TLS connection in which both parties use

8

Background concepts

X.509 digital certificates to authenticate each other. This can be done by automatic
issuing to proxies certificates signed by Istio’s CA, built in Citadel, which are
also automatically rotated. Thanks to mTLS, connections are encrypted and the
services are mutually authenticated, this can be used to enforce authorization
polices centrally managed by the Control Plane. This will be a key point in
building a Zero Trust Architecture as we will see.

In figure 2.4 we can see an example of the concepts just explained. We can
also see the Ingress and the Egress gateways, which are components that manage
incoming and outgoing traffic into and from the mesh, respectively. They also
implement security features using JWT to authenticate and authorize end-users
making requests to the mesh.

Figure 2.4: Istio Security Architecture example

Security features, as every feature in Istio, are configured using YAML files to
deploy the proper resources. There are three main resources to configure those
features: Authorization Policy, Peer Authentication and Request Authentication.
The first one handles the authorization policies for both service to service commu-
nications and end-users requests, while the other two handle authentication policies
for, respectively, service to service communications, using certificates assigned to
every service, and end users requests, using JWTs.

The most important resources, and the ones that are mostly used in this thesis,
are then:

• The Authorization Policy resource

• The Peer Authentication resource

• The Request Authentication resource

9

Background concepts

• The Virtual Service resource

Since I’m going to cite them in the next chapters, I’ll explain how each of them
work.

The Authorization Policy resource gives the possibility to choose for every
microservice a set of rules and the action to perform when at least one rule is
matched. The rules match requests from a list of sources that perform a list of
operations subject to a list of conditions and a match occurs when at least one
source, one operation and all conditions matches the request.

The main fields of the rules are:

• A set of sources: they can be microservices, end users, namespaces or IPs.

• A set of operations: they can be a list of HTTP methods, a list of paths, a
list of hosts or a mix of them.

• A set of conditions: they may be mainly a list of headers, JWT claims or a
mix of them.

While the action can mainly be:

• ALLOW : the request is allowed into the microservice.

• DENY : the request is denied to go into the microservice.

Here’s an example to clarify these concepts:
The Peer Authentication resource defines how traffic will be tunneled (or

not) to the sidecar. It’s very basic and it’s mainly used to apply the STRICT mode
to the mesh, a namespace or a single workload. STRICT mode means that all the
traffic that interests that particular scope must be mTLS traffic, clear text traffic
is not allowed. By default all the mesh is in PERMISSIVE mode, which allows
also the clear text traffic, and it’s convenient in case of legacy services that aren’t
inside the mesh and don’t have the sidecar yet.

10

Background concepts

Figure 2.5: Peer Authentication example

In the example above, the STRICT mode is applied to the namespace foo,
this means that all the inbound and outbound traffic of the services inside that
namespace must use mTLS. More than one of this resource can be concatenated in
order to obtain more complex situations.

The Request Authentication resource defines the rules for the requests that
have a JWT, coming from the end-user outside of the mesh. It is usually applied to
the Ingress Gateway, since it’s the first component that get the requests and it can
stop the unauthorized requests as early as possible. The rules are basically based
on the issuer and on the signature of the JWT. In order to verify the signature a
JWKS url can be configured. Note that this is only a first authentication made on
the JWT if the request has one, after this the Authorization Policies step in and
really decide what to do with that.

Here’s an example of a common configuration:

11

Background concepts

Figure 2.6: Request Authentication example

The Virtual Service resource, when a host is addressed, specifies a set of traffic
routing rules that must be followed. Each routing rule outlines the requirements
for traffic of a particular protocol that must match. When a match is made, the
traffic is routed to one of the identified destination services (or a subset or version
of it) listed in the service registry.

It contains the following fields to specify the traffic affected by it:

• hosts: The destination hosts to which traffic is being sent. Could be a DNS
name with wildcard prefix or an IP address.

• gateways: The names of gateways that should apply these routes.

• http: An ordered list of route rules for HTTP traffic.

Then the http rule can contain:

• gateways: The names of gateways where the rule should be applied.

• route: The actual route to apply to the traffic matching the rule

In the figure below, for example, the resource is applied to the Ingress Gateway,
so affects all the traffic going to it. For every request there are two routes that
it can match: example-route-1 and example-route-2. The first route is taken if
the request’s uri has one of those two prefixes and it forwards the request to the
example-service. The second route is taken if the request’s uri is exactly that and
it forwards the request to the bar-service.

12

Background concepts

Figure 2.7: Virtual Service example

13

Background concepts

This is a brief overview but this resource is quite complex and rich of possible
configurations, more information can be found here [1, Virtual Service]

2.5 Zero Trust Model
It’s an IT security strategy that operates under the presumption that no network
perimeter is secure and that every communication needs to be verified. The idea of
"Zero Trust Security" was developed on the premise that implicit trust is always a
weakness and that security must be established using the strategy "Never Trust,
Always Verify." Zero Trust restricts access to IT resources in its most basic form
by utilizing rigorously enforced identity and device verification procedures.

It’s based on four principles, summarized in picture 2.8.

Figure 2.8: Zero Trust Principles

In this case we are focused on enforcing this model inside a cluster. All of these
principles can be implemented using a Service Mesh, creating in this way a Zero
Trust Architecture inside a cluster:

• Verify always: Thanks to the application of authentication and authoriza-
tion policies to service to service communications, every communication will
undergo a process of verification.

• Least privilege and default deny: These can be easily implemented using
authorization policies. We can let communicate the minimum set of services,
useful to fulfill the business logic. This is usually inferred by the application
architecture, created by someone who knows exactly the communications
topology.

14

Background concepts

• Full visibility and inspection: A Service Mesh, thanks to the proxies, allows
to create and collect logs about every single HTTP request made inside the
mesh.

• Centralized management: Every configuration is implemented in the Control
Plane, which is the control center of the Service Mesh. It then sends the
proper configurations to every proxy which enforces them.

Zero Trust model aims to solve a weakness that have evolved as network
topologies and usage have changed. Network security used to be described by
a perimeter with distinct lines separating the corporate network’s "inside" from
"outside". This approach granted users and devices inside the network perimeter
the full set of privileges.

Nowadays, however, computing devices are widely dispersed thanks to cloud,
mobile, edge, and IoT components, which have blurred the lines of demarcation and
made it harder to protect the perimeter. This issue is resolved by the Zero Trust
paradigm, which operates under the assumption that nothing, inside or outside the
perimeter, can be trusted and that every communication must be authenticated.
Zero Trust identification is based on logical attributes rather than the IP address,
such as virtual machine names.

The work of thesis, as said, is then based on implementing a Zero Trust Archi-
tecture in a cluster that contains multiple microservices. This can be done using
a Service Mesh, Istio in this case, and we’ll see in the next chapters how it was
implemented.

15

Chapter 3

Design of the Proof of
Concept

The main idea was to dive into the concept of the Service Mesh and use it to create
a Zero Trust Architecture, that is a cluster architecture where microservices follow
the Zero Trust paradigm, in order to understand how it can be created and define
some guidelines.

After studying the background concepts the thesis work proceeded with the
design of the architecture which was done in a few steps:

1. Creating a cluster: this had to be a base step since the Service Mesh, and
the microservices inside it, has to be deployed in a Kubernetes cluster.

2. Developing and deploying a sample application: since a Service Mesh
acts on microservices, a sample application had to be deployed in order to
apply a Service Mesh to it.

3. Installing and configuring the Service Mesh: obviously, this was a
mandatory step.

4. Exposing the application to internet: in order to test a component of
the Service Mesh and its security features.

5. Installing and configuring an authorization server: in order to authen-
ticate end-users and give them a JWT, which would be used to access the
application through the Service Mesh.

6. Accessing external services: in order to test another component of the
Service Mesh and its security features.

Now we will go into details of every design choice for the various steps while the
implementation details will be described in the next chapter.

16

Design of the Proof of Concept

3.1 Cluster creation
Early on, the cluster of choice was Openshift, an enterprise PaaS Kubernetes
platform made by Red Hat, but given the goal of the PoC it would have been an
overkill also because of its price. I then decided to use "vanilla" Kubernetes and
moved on to compare the various offers by the cloud providers such as Google,
Amazon, Microsoft and IBM. They each offer a managed Kubernetes PaaS service,
where all of the platform complexity like the installation and the management of
the control plane is handled by the provider.

The various offers by the cloud providers are basically the same and differ a little
in cost, a comprehensive analysis was done to individuate the most advantageous
one.

In the end, the research showed that the setup effort would have been too much
for our use case scenario so the choice fell on Minikube, a lightweight Kubernetes
implementation that creates a VM on your local machine and deploys a simple
cluster containing only one node.

In order to allow the PoC to be accessible also by the tutor, an online machine
was needed and the cheapest and easiest choice was an EC2 machine on AWS,
provided by Blue Reply.

In this way I had an entire online machine where I could install Minikube, thus
creating a small but fully functional cluster well suited for tests and for this PoC.

Minikube requires a driver, which means a way to deploy it. It can be deployed
as VM, a container, or bare-metal. My choice was to deploy it as a container, using
Docker, which is the best and preferred choice on Linux.

3.2 Sample application development
As said, in order to test a Service Mesh a sample application was needed and it had
to be divided into microservices. Since the application had no special needs and
had to be a simple web application, no particular framework was needed. Thus,
my first and quick choice was to use Kotlin and the Spring Boot framework,
which is widely used in the enterprise environment because of its versatility and
ease of use. Furthermore, it’s the framework I know best, considering also that
I have some experience with it thanks to a couple of projects that I made for a
university course.

In order to have a few microservices I thought to a simple portal in which
books are inserted with their descriptions and on which reviews can be made. The
structure of this application recalls a demo application provided by Istio but my
goal was to rewrite it from scratch to be able to have full control on what it does.

The application was then designed to be composed by four microservices:

17

Design of the Proof of Concept

1. Product Page

2. Reviews

3. Details

4. Ratings

Product Page is the main component and it receives all the requests from the
users, it then gathers information from Reviews and Details in order to get all the
book info. The other services are not exposed to the internet so their endpoints
are used only by the other services.

In order to test a specific feature of the Service Mesh, the application has
to consider three kind of users: Admin, User, and non-authenticated users. The
authentication and authorization mechanisms will be done by other two components,
the Ingress Gateway and Keycloak, discussed later in this chapter.

The endpoints for every service are the following
Product Page

• /products [GET] - allows to retrieve the titles of all the books available. This
can be used by every kind of users.

• /products/{bookTitle} [GET] - allows to retrieve the details and the reviews
of the book with such title. This can be used by every kind of users.

• /details [POST] - allows to post a new book and its details, passing a JSON
representation of the new book. This can be used only by admins.

• /reviews [POST] - allows to post a new review passing a JSON object con-
taining the book title and the review information, like a text and the number
of stars. This can be used only by authenticated users.

Details

• /details/{bookTitle} [GET] - allows to retrieve the details of a specific
book. It’s not accessible by the outside, only the Product Page service uses it.

• /details [POST] - allows to post the details of a new book. It’s not accessible
by the outside, only the Product Page service uses it.

Reviews

• /reviews/{bookTitle} [GET] - allows to retrieve the review of a specific
book. It’s not accessible by the outside, only the Product Page service uses it.

• /reviews [POST] - allows to post a new review of a book. It’s not accessible
by the outside, only the Product Page service uses it.

18

Design of the Proof of Concept

Ratings

• /ratings/{reviewId} [GET] - allows to retrieve the rating of a specific review.
It’s not accessible by the outside, only the Reviews service uses it.

• /ratings [POST] - allows to post the rating of a new review. It’s not accessible
by the outside, only the Reviews service uses it.

Each microservice will then have to be connected to a database, so the easiest
choice was a single MySQL instance containing more databases. This choice is
called SQL server consolidation and should be subject of analysis as it can decrease
the level of security. For example, some points to be checked:

• Who has Admin Access? Is it justified?

• Which are SQL logins permissions?

• Which services uses the SQL server?

The points above for this small example application are quite trivial because the
MySQL instance is accessed only by me and the microservices. So to answer those
questions:

• There’s only one user with admin privileges and I’m the only one that knows
username and password. It’s justified because I manage the whole architecture.

• I’m the only one with admins permissions. The services only have the minimum
set of permissions needed to fulfill their job, such as read and write permissions
only for their own database.

• Only the four services of the sample application use the server. No other
service has the credentials.

So, the PoC is made by "layers" and can be visualized like so:

19

Design of the Proof of Concept

Figure 3.1: PoC Layers

Whilst, the application structure can be schematized as follows:

Figure 3.2: BookInfo Application Structure

As said, Product Page is the main component, it gets all the requests coming

20

Design of the Proof of Concept

from the users and aggregates the information to return. To do that, it asks for
the details of a specific book through the endpoint /details/{bookTitle} [GET]
exposed by the Details service. It also asks to the Reviews service all the reviews
of a specific book through the endpoint /reviews/{bookTitle} [GET], which in
turn asks to the Ratings service the rating of a specific review using the endpoint
/ratings/{reviewId} [GET]. Then, Product Page composes a JSON containing
all these information and returns it to the user.

Figure 3.3: Get book details - Sequence diagram

Furthermore, there are two other scenarios: an admin wants to add a new book,
a user wants to add a new review. All the checks are not done by the application
but by the Ingress Gateway.

In the first scenario, the admin sends a JSON representation of a new book to
the endpoint /details [POST] and the Product Page first saves its title in its own
database and then passes the information to the Details service using the endpoint
/details [POST].

21

Design of the Proof of Concept

Figure 3.4: Post new book details - Sequence diagram

In the second scenario, the user sends a JSON representation of a new review
to the endpoint /reviews [POST], the Product Page forwards it to the Reviews
service using its endpoint /reviews [POST] and then the Reviews service saves all
the information except for the rating one which is forwarded to the Rating service
along with review ID using the endpoint /ratings [POST].

Figure 3.5: Post new review - Sequence diagram

The deployment phase will be described in the implementation chapter.

3.3 Service Mesh installation and configuration
The Service Mesh of choice is Istio, which was already described in the background
chapter. Istio is the de-facto standard in the Service Mesh world and is used
in production by many companies such as Adobe, Baidu, and Google. As an

22

Design of the Proof of Concept

opensource project is backed up by a large community. Its competitors are Linkerd
and Consul but, as seen in this comparison [2, Service Mesh comparison], it has the
most features and flexibility of any of the other Service Mesh by far. This makes it
the perfect choice.

Here’s a table that compares the three products [2, Service Mesh comparison]:

23

Design of the Proof of Concept

24

Design of the Proof of Concept

25

Design of the Proof of Concept

After creating the cluster and deploying the application it was the turn of Istio.
The installation phase was straightforward and didn’t require any design process

while the configuration phase required some thought.
This paragraph exposes the design of the "internal" mesh configuration, while

the configuration for the incoming traffic using the Ingress Gateway and the
outgoing traffic using the Egress Gateway will be explored later.

As we said earlier, the four main points to achieve the Zero Trust paradigm
are: Verify always, Least privilege and default deny, Full visibility and Centralized
management. So the goal is to configure Istio in order to fulfill Zero Trust paradigm
characteristics.

Istio control plane acts through centralized management and the proxies
always verify the authentication polices before service to service communications,
so in the configuration phase I only had to take care of "least privilege and default
deny" principle and TLS configuration.

TLS is enabled by default in Istio in the so called PERMISSIVE mode, which
means that a workload accepts both TLS and plain traffic. Therefore the only
step needed was to switch to STRICT mode so that workloads only accept TLS
traffic. Furthermore, Istio implements mutual TLS, so microservices are mutually
authenticated, which is another key point in the Zero Trust paradigm. This can be
done using the Peer Authentication resource.

On the other hand, least privilege and default deny paradigm needs to be
implemented through the Authorization Policy resource, enforced by the proxies.
An explanation about how these two resources work can be found in the paragraph
about Istio in chapter 2.

It can be used to enforce the schema proposed in the figure 3.2, so for example
the Details microservice can only be contacted by the Product Page microservice
and only using the GET and POST verbs.

26

Design of the Proof of Concept

Figure 3.6: Details service Authorization Policy

In this case this Authorization Policy is applied to the Details microservice and
I only need to specify one source, the Product Page service, specified as a principal
which means the service name in Istio conventions, and the methods allowed. The
action is ALLOW and it’s omitted because it is the default one. This is because if
a workload has at least one Authorization Policy then if any request coming to that
workload doesn’t match any of them then it’s automatically denied. This applies
the default deny principle.

As we will see in the implementation chapter, where we’ll go deeper into the
code, the other Authorization Policies will be very similar to this one because the
goal is mostly the same.

It’s important to note that the least privilege property is totally left to the
operator that configures Istio. He’s the one who must translate the communication
topology into the proper Authorization Policies, ensuring that every service can
talk only to the services that it needs to contact. If he makes any mistake then it
would leave open routes that do not strictly serve the functioning of the application,
increasing the attack area.

After Istio installation the application structure can be updated like so:

27

Design of the Proof of Concept

Figure 3.7: BookInfo structure using Istio

We can now notice the Envoy proxies. As said, these are the proxies that Istio
uses to enforce its configuration and they form the data plane. Editing the IP tables
of the microservices they can intercept all the traffic outgoing from the service as
well as the incoming one, applying rules or security policies like the authorization
ones we have just seen. In practice, from now on the services won’t talk directly
anymore but only through their proxies, which are capable of enforcing all the
configurations that we send to Istio’s control plane.

3.4 Application exposition
Once the application and Istio are setup, the next step was to make the whole
infrastructure reachable by the outside. This requires two components:

• A software load balancer since Minikube doesn’t have one. This is needed
to expose IPs outside the cluster and is done by MetalLB.

• A component that makes the application accessible from outside the cluster
but inside the EC2 machine. This is done by the Ingress Gateway.

• A component that is exposed outside of the EC2 machine and forwards
the requests to the Ingress Gateway. This is done by a reverse proxy.

MetalLB is a software load balancer that assign Load Balancer type IPs to any
service that needs one. This is the case of the Ingress Gateway, since it needs to be
reachable from the outside.

The Ingress Gateway is basically a service offered by Istio that gets exposed,
receives all the requests and then routes them inside the mesh. In this way there’s

28

Design of the Proof of Concept

only one entry point, allowing to implement authentication and authorization
controls thus improving the security.

After its "activation" the only route we need is the one to the Product Page
microservice, so every request only needs to be authorized, authenticated and
then routed directly to it. The authentication and authorization are based on
information that will be described later, when the authorization server will be
presented.

The Gateway obviously cannot be reached outside the EC2 machine, this is the
job of the reverse proxy. The most common reverse proxy is Nginx, it listens to a
port and forwards every request to the local Gateway. The request in this case is
forwarded as it is, in order to preserve especially the headers which contain, among
the other things, the JWT.

It’s important to notice that for security reasons I set the firewall of the EC2
machine to only allow Reply’s VPN IPs.

Ultimately, we now have a fully functional application, inside an Istio Service
Mesh, that can be reached from outside the EC2 machine. The architecture is now
in this state:

Figure 3.8: PoC Intermediate Structure

29

Design of the Proof of Concept

3.5 Authorization server installation and
configuration

The authorization server (Identity and Access Management) is needed to create
users and display endpoints through which users could receive a JWT access
token to be used later to authenticate with the application and test the Ingress
Gateway security features.

I used Keycloak which is an open source software product that enables Single
Sign-On (SSO) with Identity Management and Access Management for modern
applications and services. It is written in Java and supports identity federation
protocols such as SAML v2 and OpenID Connect (OIDC) / OAuth2. It is
licensed by Apache and supported by Red Hat.

Its main competitors are Okta Single Sign-On and PingOne Cloud Platform.
They are all cloud native and offer similar features but Keycloak stands out because
it’s opensource, which also means free, has a lot of documentation and it’s easier
to install and configure. These characteristics made me choose Keycloak. Despite
all of its powerful features, my goal was only to create some users with different
roles and give them a way to authenticate and get a JWT. This is done by all the
three products cited above but Keycloak, after looking through the guides of each
product, seemed to be very easy to configure as we’ll see in the next chapter. It is
also one the most popular cloud native IAM right now, being supported by Red
Hat, and it’s been used in many production environments, as Blue Reply confirmed
based on its clients. My tutor was also very expert in Keycloak, more than the
other products, so his support also played a significant role in the choice.

I needed to deploy it in the cluster in order to be accessible by the users and I
needed to connect it to an external database to simulate a production environment.
Fortunately, Keycloak is well suited for this kind of deployment and has a prebuilt
image that can be easily deployed in a cluster. After that you just need to configure
the DB and add the users.

I chose to deploy it in a separate namespace for the separation of concerns
principle and also because I don’t think that is a good idea to place it inside the
mesh if we wanted to simulate a real environment. In a production environment
the authorization server could be deployed in a completely different place respect
to the application and handled by another company, so it couldn’t be included in
the mesh even if we wanted to.

It’s important to note that Keycloak doesn’t adhere to the Zero Trust principles
because it is a separate component from the application. Being an authentication
server it allows already registered users to authenticate and it responds to them
with a JWT, used later to contact the application. Keycloak does not communicate
with any other component but only with users, so it has no one to "verify first".

30

Design of the Proof of Concept

Theoretically, it may be handled by a completely different entity and it may reside
on unknown servers, and this is very common in the modern internet. Since only
the users must communicate with it, there’s no need to include it in the Zero Trust
architecture. The only verification that the application does is on the signature of
the JWT that it issues and is being used by the users, and this is enough.

Once installed, deployed and attached to a database inside the MySQL server,
the configuration consisted in configuring the client, which is the application, adding
the roles within the client, which are Admin and User, and creating some users
with a certain username, password and role.

Finally, Keycloak exposes various endpoints, the ones that we need are the
access token and the JWKS endpoints:

• http://<base_url>/realms/<realm>/protocol/<protocol>/token

• http://<base_url>/realms/<realm>/protocol/<protocol>/certs

The first one receives various parameters in the body of the request:

• client_id: a unique client ID that identifies a single client inside a realm, it is
set during the client configuration phase.

• grant_type: the type of Access Grant Flow for authenticate the user. In
this simple case the password type will always be used.

• scope: the protocol used to verify the identity of the user. In this case it will
always be openid that stands for OpenID Connect.

• username: user’s username, required if the grant_type is password.

• password: user’s password, required if the grant_type is password.

It responds, among the other things, with an access token that can be then used
to authenticate to the application.

The second one corresponds to the JWKS uri, which is the location of the
JWKS, a set of keys containing the public keys used to verify any JSON Web
Token (JWT) issued by the authorization server. This one is used by the Ingress
Gateway during its checks.

The architecture is now improved with this new component:

31

Design of the Proof of Concept

Figure 3.9: PoC with Keycloak

3.6 External services access
The last Istio’s main component to use and test is the Egress Gateway. It
allows microservices to reach external services using a dedicated and centralized
component.

This allows to apply Istio features, for example, monitoring and route rules, to
traffic exiting the mesh.

For example, take into account a company with a stringent security policy
dictating that any traffic leaving the service mesh must pass via a specific set of
dedicated nodes. These nodes will operate independently from the cluster’s other
nodes that are running applications on dedicated machines. These unique nodes
will be more closely watched than other nodes in order to enforce the policy on
egress traffic and each of them will implement the Egress Gateway.

Another use case, which is very similar to the one of my PoC, is a cluster where
the in-mesh services cannot connect to the Internet because the application nodes
do not have public IP addresses. The application nodes are able to access external
services in a regulated manner by defining an Egress Gateway, routing all egress
traffic through it, and assigning public IP addresses to the egress gateway nodes.

In my case in-mesh services may have public IP addresses but, for security

32

Design of the Proof of Concept

reasons, in order to regulate the access to external services, they are forced to pass
through the gateway.

In order to use the Egress Gateway we need to route all the traffic going outside
the mesh to it, this is done creating routing rules through the Virtual Service Istio’s
resource. Then, from the Gateway we need another routing rule in order to send
that traffic to the right external service.

Figure 3.10: Egress Gateway example

An explanation of this resource can be found in the paragraph about Istio in
chapter 2, instead the code of the Virtual Service for contacting the external service
through the Egress Gateway will be in the implementation chapter.

Istio can also be configured to automatically deny connection to services external
to the mesh, thus reducing the attack surface if a pod is compromised. An attacker
couldn’t contact an arbitrary service under his control to deal more damages.

Now another great feature comes in handy, the Service Entries. They allow
to include extra entries to Istio’s internal service registry, permitting access
and routing to them, from services already in the mesh. A Service Entry lists a

33

Design of the Proof of Concept

service’s attributes, including its DNS name, VIPs, ports, protocols, and endpoints.
These services may not be internal to the mesh and that’s the main point because
Istio can deny connection to external services unless they are inside its internal
registry, that is they are inserted as Service Entries.

In order to test all of the above, I needed to block the connection to unknown
external services through Istio configuration and add a request to an external
service from the sample application. The call is a bit useless and it’s made by
Product Page to a timestamp service, called worldtimeapi.com, which returns
the current local time for a given timezone as JSON. The microservice just gets
the timestamp JSON and places it in the response to the client, only for testing
purposes.

To allow this, that service must be inserted as a Service Entry so that Istio
won’t block the call.

It’s important to note that the Egress Gateway is a "secondary" component
compared to the rest. It was inserted to test all of Istio’s components but it has not
been used to provide mutual authentication with an external service. Configuring
an external service that supports mTLS is not trivial since it should be done by
hand. The connection is not automatically established by Istio, and would require
two certificates, one for the Egress Gateway and one for the external service, so
this has not been investigated.

Finally, with this last piece of the puzzle the architecture is done and can
summarized like this:

34

Design of the Proof of Concept

Figure 3.11: PoC Final Structure

In the chapter 5 the verification of the achievement of Zero Trust will be
illustrated.

35

Chapter 4

Implementation of the Proof
of Concept

The goal we wanted to achieve was to install an Istio service mesh in a Kubernetes
cluster in order to implement the Zero Trust ideology among the microservices
within the cluster. Briefly, this was implemented on an EC2 machine on AWS,
using Minikube to create a cluster locally with one master and one worker node.
Once the cluster was created, a simple Spring Boot application called BookInfo
was created. This application works using a MariaDB database installed directly
on the machine. The service mesh was then installed via the Istio CLI. Subsequently,
MetalLB, a software load balancer that can be installed as a Minikube addon,
was installed in order to assign external IP addresses to the cluster services. To
then make the cluster available outside the EC2 machine, Nginx was installed
on the machine and used as a reverse proxy. The last step was the deployment of
Keycloak on the cluster. It is an open-source IAM and is used to provide JWT
tokens in order to interact with the application deployed on the cluster. In the
following paragraphs, each one of these steps will be described in more detail.

4.1 EC2 machine creation
The machine was created on AWS using an XLarge format instance with Ubuntu
20 operating system. Once created, it was possible to connect to the machine via
SSH using the default user ubuntu. As a good practice, I subsequently created the
user andreascopp and, to make my life easier, I enabled access via an asymmetric
challenge using a private key. A security group was also created, that is firewall
rules, that allows access to the machine only through the IP of Reply’s VPN using
port 22, i.e. SSH.

36

Implementation of the Proof of Concept

4.2 Minikube installation
Minikube was installed using apt, following an online guide [3, Minikube Guide].
Then Kubectl and Docker were installed. In particular, Minikube configuration
assigns 8 GB of RAM and 4 vCPUs to the cluster, necessary to make Istio work
properly. Furthermore, Minikube is started using Docker as Driver and in this way
a container is created, which contains Minikube and therefore the whole cluster.

4.3 Istio inside Minikube installation
Istio was installed following an online guide [4, Istio Guide]. It was then installed
by downloading the CLI and using the install option. This allows you to install
Istio using one of the profiles provided, in this case I used the demo profile which
provides the components istiod (the core of Istio), Ingress Gateway and Egress
Gateway.

I also installed all the addons made available by Istio in the form of YAML files
in one of the folders of Istio’s source files. These addons can be used for statistics
or to have other useful information about the status of the mesh. For example,
Kiali is one of the main addons and it provides a dashboard that gives you an
overview of the mesh, showing the service graph, the health of the services and the
health of the connections between them. It also provides a useful tool that detect
the basic errors in Istio configuration files.

Figure 4.1: Kiali dashboard

After the installation, a new namespace called Istio-system is created, within
which all the Istio components are installed. Since by default the injection of

37

Implementation of the Proof of Concept

the Envoy proxy is automatic, in each namespace where you want to perform
the injection and then install the mesh, just apply an istio-injection=enabled
label.

It must be specified that due to incompatibility problems with MariaDB [5,
Server First Protocols], all calls made to the DB are not intercepted from prox-
ies but are done directly by microservices. This was done by adding the –set
values.global.proxy.includeIPRanges = "10.96.0.0/12" flag during the in-
stall command. This specifies the proxy to intercept only communications in that
IP range, which is the Minikube range. Various resources made available by Istio
were then used and they will be discussed later.

4.4 Development and deployment of BookInfo
application

The application is the heart of the PoC because it allows to experiment with all
the other tools. As said, it is an application written in Kotlin using Spring Boot
and represents a portal in which books are inserted with their descriptions and on
which reviews can be made.

I used IntelliJ IDEA which has a lot of nice features for the Spring Boot
framework, as well as for Kotlin since Jetbrains, IntelliJ’s developer, is the company
that developed it.

For each project, I initialized it using Spring Initializr inside IntelliJ adding the
librarySpring Boot Starter Data JPA and the MySQL driver. Then, I created the
following directories to organize the classes of the source code:

• controllers: contains the controllers classes.

• domain: contains the entities.

• dto: contains the DTOs (Data Transfer Objects).

• exceptions: contains the custom exceptions, useful for each service.

• repositories: contains the repositories to communicate to the DB.

• services: contains the services, the core of the business logic.

Each class is quite simple since the application doesn’t do a lot of work, it only
serves the purpose of testing Istio. For example, here’s the controller of the Product
Page service for the /products endpoints:

38

Implementation of the Proof of Concept

Figure 4.2: Product Page products controller

For the application’s deployment, I wrote four Dockerfiles to create four
Docker images, one for each service, which were then uploaded to Docker Hub.
Each Dockerfile simply starts from an OpenJDK imagine, copy the jar of the service
inside the image and then starts it. Here’s the Product Page Dockerfile but the
other ones are the same, it only changes the name of the jar file:

39

Implementation of the Proof of Concept

Figure 4.3: Product Page Dockerfile

Next, four YAML file was created. Each describes three resources for needed by
the microservices: Deployment, Service, and Service Account.

The Deployment indicates how the pod should be structured, then specifies,
among other things, the image to use, the number of replicas and the ports exposed.

The Service indicates how that Deployment should be exposed. In this case,
they are all exposed only within the cluster via ClusterIP so that the services can
only be contacted among themselves.

The Service Account is used to identify the services and therefore to be able
to specify authorization policies when the services talk to each other.

Here’s the Details service YAML file. The other ones are similar but the structure
is almost the same since they need the same resources:

40

Implementation of the Proof of Concept

Figure 4.4: Details Deployment YAML

41

Implementation of the Proof of Concept

Figure 4.5: Details Service YAML

42

Implementation of the Proof of Concept

Figure 4.6: Details Service Account YAML

All these files were then grouped into a single file for convenience, so that the
whole application could have been deployed using the command kubectl apply
-f bookinfo.yaml.

4.5 Ingress Gateway and end-users policies im-
plementation

The Ingress Gateway is provided by Istio, is exposed outside the cluster, receives
the requests and then do the routing to internal services based on rules. It is
deployed within the istio-system namespace and is configured with a specific Istio
resource called Gateway that configures the port where the Gateway "listens" and
the protocol used.

43

Implementation of the Proof of Concept

Figure 4.7: Ingress Gateway YAML

Subsequently, internal routes are created using a resource called Virtual Service,
in this case the requests are all sent to the Product Page service. This rule is
specifically for all the traffic that matches the prefix path /api/v1/, it rewrites
the prefix to / and then sends the request to the port 8080 of the productpage
Kubernetes service

44

Implementation of the Proof of Concept

Figure 4.8: Ingress Gateway Virtual Service YAML

The gateway also implements end-users authorization policies via JWT using
the Request Authentication resource. It specifies that all those who contact the
Gateway by specifying an Authorization header, which therefore indicates a JWT,
must have a JWT issued by Keycloak, while for requests without JWT this policy
does not apply and will be the authorization policies to to decide what to do.

45

Implementation of the Proof of Concept

Figure 4.9: Ingress Gateway Request Authentication YAML

End-user authorization policies are implemented through Authorization Poli-
cies resources that take the metadata extracted from requests through Request
Authentications and use them to take decisions.

In particular, policies have been implemented to give permissions to users as
follows:

• Admins: can get the books list, add and remove new books.

• Users: can get the books list and post new reviews for existing books.

• Unauthenticated users: can only get the books list.

This is done by reading the role that has been assigned to the user among the
claims of the JWT, if there’s no JWT it means that the user is not authenticated.

These policies are very similar to the one seen in figure 3.6 but in this case they
take decisions based on the JWT claims. For example here’s the policy that allows
Admins to get book details, the other ones are very similar:

46

Implementation of the Proof of Concept

Figure 4.10: Authorization Policy for Admins - GET

4.6 Intra-services policies implementation
The authorization policies for communications between services are implemented
using the Authorization Policies seen before. Now they use the certificate created
by Istio, that contains a name assigned to the service using the Service Account
resource of each service. The policies allow to specify for each service which other
service can call it and with which RESTful verbs.

A resource was therefore created for each service to enforce the communication
scheme shown in figure 3.7.

Also, it should be noted that this works because mTLS is active between
services, implemented by the Envoy proxy. It is active by default in internal
communications between microservices and is automatically implemented using
certificates issued by Istiod, the core of Istio that integrates the old Citadel which
also acted as CA (Certificate Authority). With mTLS, services therefore have a
certificate that also specifies their identity and it is then possible for authorization
policies to make decisions based on it.

Furthermore, as said in the previous chapter, in this case I switched to the
STRICT mode using the Peer Authentication resource:

47

Implementation of the Proof of Concept

Figure 4.11: Peer Authentication - STRICT mode

4.7 MetalLB configuration
MetalLB is a software load balancer that is used in Minikube because, being on
bare metal, it does not have a cloud load balancer that is provided for example
by cloud providers. It is used to assign IP addresses external to the cluster to the
services that require them, in our case Keycloak and the Ingress Gateway.

It was simply installed as a Minikube addon using the command minikube
addons enable metallb. After the installation it requires an IP range that it will
use to assign new IPs to services that require one. In this case, they start from the
Minikube IP up to a range of 20 addresses. After this, every service that requires
an external IP will have assigned the first one free in that range, in ascending order.

4.8 Nginx configuration
Nginx is used as a reverse proxy, which is a proxy that listens on a certain port of
the EC2 machine and forwards requests to the IP addresses within the machine
based on the path to which the initial request refers to. For example, in our case
the proxy listens on port 51999, if an HTTP request arrives with the path /auth,
the request is sent to the IP address to which Keycloak is exposed, which is a Load
Balancer so it’s external to the cluster but internal to the machine. All the other
requests are instead sent to the IP to which the Ingress Gateway is exposed, which
then routes them to the application.

48

Implementation of the Proof of Concept

Figure 4.12: Reverse Proxy configuration

Nginx was installed directly on the machine via apt-get and it is configured
via a configuration file located at the path /etc/nginx/sites-available.

4.9 Keycloak configuration and deployment
Keycloak can be set through the UI where you can create Realms, Clients, or
applications to be protected, and add users and roles that a client manages. Once
the users have been created, they can be assigned a password and one or more
roles within the client.

Figure 4.13: Keycloak dashboard

It has been deployed in a specific namespace called STS via a Deployment
resource and a Service resource, and is exposed directly to the outside via an
external Load Balancer IP set by the Service resource.

49

Implementation of the Proof of Concept

Its deployment was easy since a YAML template of the Deployment, along with
a base Docker image, was already provided by the developers. My main effort
was for the Service resource in order to expose it. After the deployment the basic
configuration was easy thanks to a very intuitive dashboard that allowed me to set
the roles that the users could have in a couple of clicks.

In order to do that, I created a client, which is the application that Keycloak is
serving as authorization server, and I configured that client to have users with the
roles ADMIN or USER. After that, I manually created a couple of users composed
by username and password. These credentials need to be passed to a specific
Keycloak endpoint to obtain a valid JWT:

Figure 4.14: Postman REST request to obtain JWT

Where the body is passed as x-www-form-urlencoded data.
In the figure 4.15 is shown only the Service part of the YAML because it’s

important to notice that Keycloak is directly exposed outside of the cluster. This
is because Keycloak is not part of the Service Mesh, since it doesn’t need to
communicate with other services, so the Gateway cannot route the requests to it.

Figure 4.15: Keycloak Service YAML

By default it uses an embedded H2 database that uses a file in the filesystem,
but it’s not production ready and suffers many security flaws, so I configured it

50

Implementation of the Proof of Concept

to use a database within the MySQL server to store all the data it needs. This is
fundamental for the persistence of the data and allows for scalability, since many
instances of Keycloak may now be deployed having a single source of truth.

4.10 Egress Gateway configuration
The Egress Gateway was added to give completeness to the architecture. For this
reason, a call to an external site was added from within the application.

It is configured through a Gateway resource and in order to define the exiting
routes it also needs a Destination Rule and a Virtual Service.

Figure 4.16: Egress Gateway YAML

In particular, the Virtual Service sets up two routes: from within the mesh to
the gateway and from the gateway to the external service, defined through the host
and the destination port, as represented in figure 3.10

51

Implementation of the Proof of Concept

Figure 4.17: Egress Gateway Virtual Service YAML

It should also be noted that, for better security, changing the
OutboundTrafficPolicy.mode field in Istio’s configmap, services inside the mesh
have been forbidden to contact external services unless they are part of the service
registry [6, External services].

The entries of this registry are defined precisely with the Service Entry resource
which defines the host, the port, the type of protocol, whether the service is internal
or external to the mesh and how the host must be resolved (typically using DNS).

A Service Entry was therefore created for the external service so that this
outbound communication was not blocked by Istio.

52

Implementation of the Proof of Concept

Figure 4.18: WorldtimeAPI Service Entry

As you can see, this policy greatly increases security because if a pod is compro-
mised it cannot contact external services arbitrarily, thus reducing an attacker’s
room for maneuver.

53

Chapter 5

PoC results validation

After everything’s set up, we need to analyze the infrastructure and its characteris-
tics to sum up the obtained results. The main results are to be seek in whether
the Zero Trust paradigm has been correctly applied or not, then we can investigate
about the correctness of the other components like the Ingress Gateway, the Egress
Gateway and Keycloak.

These components are treated as services within the Service Mesh, so also for
them the Zero Trust is verified in the first paragraph.

5.1 Zero Trust paradigm correctness
Summarizing the Zero Trust principles we can analyze if they are fulfilled or not:

• Verify always.

• Centralized management.

• Least privilege and default deny.

• Full visibility.

In every communication between two services the proxies are the ones actively
connected and they verify by default the authentication and authorization policies
before putting those two services in contact. Furthermore, since they use mutual
TLS they both exchange their identity using a certificate called SPIFFE, which
is basically an x509 certificate, so that each of them knows the identity of its
interlocutor. We can verify that a mTLS connection is taking place sniffing
the traffic between two services using tcpdump, included in every Envoy proxy’s
container for debugging purposes, through which we can see the encrypted traffic.

For example, this is the response from the Details service to the Product Page
one, as they work to respond to a normal request made from a user to the application.

54

PoC results validation

This is the traffic sniffed with tcpdump listening from the Envoy container in the
Product Page service’s pod:

Figure 5.1: Encrypted response example

Here we can see that the communication between Details service and Product
Page service is encrypted, this means that the mTLS handshake took place, thus
the two services have exchanged their own certificates and each of them knows
the identity of the other service. This happens before any real communication
starts. In fact, if we disable the proxies the services don’t use mTLS and the
communication happens in clear:

Figure 5.2: Clear text response example

Obviously this example can be repeated in every communication between services,
changing the place from where we start sniffing with tcpdump. This proves
that using the proxies the services are always verifying each other, so in every
communication they both know each other’s identity, as the verify always principle
states. Instead, this doesn’t happen when the communication happens without
the proxies, so directly between the microservices, because the connection is in
clear text. It’s the only necessary test because for this principle we only need to
prove that the services verify each other and this happens as a consequence of the
handshake.

For every communications here are summarized the authentication and autho-
rization phase:

55

PoC results validation

Figure 5.3: Service to Service Authentication steps

Figure 5.4: Service to Service Authorization steps

Regarding the centralizing management, remembering the picture 2.2 the control
plane is the central component that receives all the configuration from the Service
Mesh admin and then propagates them to the proxies in the data plane.

Hence, the first two principles are verified by default by Istio structure so let’s
move onto the other two.

Least privilege and default deny is a principle for which every component
must be able to access only the information and resources that are necessary for its
legitimate purpose. In our case, every microservice can only interact with the one
allowed by the application structure, depicted in figure 3.7. For example if we take
Reviews microservice as a reference, it must only talks to Ratings microservice and
to the MySQL server because its logic depends only on them. Since the application
does not need that Reviews speaks to Details, that route has been blocked with an
Authorization Policy. If it tries to interact with Details microservice, the proxy of

56

PoC results validation

the latter would deny that connection because of the configuration made by the
Authorization Policies.

Figure 5.5: Least privilege example

Here we can see the tests made to verify the example above:

Figure 5.6: Least privilege test

The test is executed from Reviews service. To test the connection from Reviews
service to Ratings and Details services, I used the curl command to execute a GET
request while the echo command is only used to add information to the response.
As stated in figure 5.5, the request correctly receives a response from the Ratings
service, in this case the stars of the review with id 1, while the Details service
blocks that request. RBAC stands for Rule Based Access Control, it means that
the request has been blocked by an Authorization Policy.

57

PoC results validation

As another step for the test, this time I tried to make a DELETE request from
Reviews to Ratings but even if the communication between the two services is
allowed, this REST verb isn’t, so the request is blocked.

Figure 5.7: Least privilege test part 2

Every request that doesn’t match an ALLOW policy is denied, so the caller and
the REST verb must be exactly the ones already authorized. This is exactly what
we expected. This test can be repeated for every microservice that must follow
the application topology depicted in figure 3.7, trying for every service to contact
a service to which it is connected and a service to which it isn’t. Definitely, to
prove this principle we need to prove that the services can only contact the services
they need, using the minimum set of REST verbs they strictly need to use. This is
exactly what we proved in this test.

The last principle is one of the main strength of Istio and the Service Mesh in
general. Visibility and observability are key features and are made possible
by the proxies that intercept every request and send the necessary data to the
control plane so that it could elaborate metrics and provide those information via
standard or custom dashboards. Here’s an example of a Prometheus dashboard, a
third party analytic tool that can also be customised:

Figure 5.8: Prometheus dashboard example

58

PoC results validation

Other than that, if needed, every single request can be investigated to check if
there are anomalies or can be collected and sent through a pipeline that process
them in a custom way to provide further information:

Figure 5.9: Custom observability pipeline example

Ultimately, we have verified all of the four principles and we can affirm that,
using Istio, we have been able to create a Zero Trust architecture in a cluster.

5.2 Ingress Gateway correctness
The Ingress Gateway gives the external users a way to access to the application
inside the cluster, providing also authentication and authorization through the use
of an access token in the form of a JWT.

In this case we have to check that:

• The routing from the Gateway to the proper microservice is correct

• The authorization and authentication steps are done and are correct

The routing can be verified by checking the logs of the Ingress Gateway and, banally,
checking that we get the correct response from the application after making a
request to it.

The Ingress Gateway logs every incoming request keeping track of, among the
other things, the HTTP method, the path, the protocol and the response code. The
application logs every incoming request too. Hence, we can make a simple GET
request and check if the Product Page microservices gets it and if the response
code is 200.

59

PoC results validation

Figure 5.10: Ingress Gateway logs - Authorization policy example

While, for the authorization and authentication steps we need to use a custom
JWT that specifies the user’s role and we also need a JWKS uri to check its
signature. This can be done using Keycloak, its correctness will be discussed later.

After setting Keycloak up, we need to get an access token making a request to
its exposed service. Once we have the JWT, we are going to make a request to the
Ingress Gateway and check its response, in this case we are only interested in the
response code.

The following cases will return 200 Success:

Role Method Path
Admin GET /products
Admin POST /details
User GET /products
User POST /reviews
None GET /products

While every other case would return 403 Forbidden, as we can see in this test
where the [POST] /details endpoint is called using a User token:

Figure 5.11: Error 403 test

5.3 Egress Gateway correctness
The Egress Gateway plays a little role in the architecture, it is used only by the
Product Page and only to make a call from it to a single external service. Thus,
the test is quite simple since we only need to check if the service has been called
successfully and if the Gateway has taken part in this process.

To check if the external service gets called we need to remember that Product
Page make a call to it to obtain the current local time for a given timezone as a
JSON and then returns it inside the response to the client. So, we only need to
check if the response is complete and contains that part:

60

PoC results validation

Figure 5.12: External service test

Instead, to check if the Gateway has forwarded the request to the external
service we can watch its logs, like we did for the Ingress Gateway. They contains
every request that goes from the Egress Gateway to the outside, with information
about the destination:

61

PoC results validation

Figure 5.13: Egress Gateway - External service logs

5.4 Keycloak correctness
Keycloak, despite all of its features, is used as an authentication server so it only
keeps track of the users and provides them an access token after a successful
authentication.

We need to add three main things in order to provide a JWT:

• A client: the application that needs an authentication server.

• The roles: the roles that such client can handle.

• The users: the registered users for that application, which can assigned to a
certain role and are composed by username and password.

Everyone of these aspect can be configured using Keycloak’s dashboard so we have
an immediate feedback if we’ve done them right.

Regarding the JWT, it can be obtained through a request containing all the
user’s credentials and it can be verified on the website https://jwt.io where the
JWT get decoded and is shown as a JSON. We can then check if the custom fields
are correct, in this case the roles of that particular user. For example here’s a
snippet of a decoded JWT:

62

PoC results validation

Figure 5.14: Decoded JWT example

Where the noticeable fields are the resource_access.bookinfo.roles and the
user’s details like name, username and email.

Furthermore, we can check if using that JWT we can access the application as
expected. In this way we would check the correctness of the signature of the JWT
and that the JWKS uri works fine since the Ingress Gateway validate the signature
every time a user makes a request.

63

Chapter 6

Real case scenario:
Upgrading to a Service Mesh

During my internship in Blue Reply I was able to really dive into the topic of
the Service Mesh and in particular how it can be used to obtain a Zero Trust
Architecture. Until now we’ve talked about a comprehensive PoC, made in order
to underline all of the Service Mesh features but the final part of the internship
allowed me to get my hands on a real application, called TUAMH, used in a critical
workflow of a big company.

Briefly, the core of the application was deployed as a set of microservices
in a cluster and the Zero Trust Architecture was implemented using the initial
request’s JWT for every service to service connection. This led to more utility code,
less homogeneity between the microservices and more work from the side of the
developers, and nevertheless this solution was still less secure than the one with a
Service Mesh because there was no encryption and the mutual authentication had
be implemented manually.

In this chapter will be explained the initial general architecture of the application,
its flaws and a solution to them, and lastly how the initial architecture was upgraded
thanks to the Service Mesh.

6.1 Components description
Before starting to describe the whole architecture, here is a brief introduction of
its main components.

• Azure Application Gateway Front-end: is the gateway that exposes the User
Account’s services on internet.

• Azure Kubernetes Services (AKS): is a fully managed container orchestration

64

Real case scenario: Upgrading to a Service Mesh

service that can be used to deploy, scale and manage Docker containers
applications in a cluster environment.

• Back-end for Front-end (BFF) Microservices: is a cluster of microservices that
works as a middleware between the client and the identity access on-premises
infrastructure.

• jBPM : is an open-source workflow engine that can automate business processes
and decisions.

• Traefik: is the cluster’s Ingress Controller, in charge of managing the incoming
HTTP requests and routing them to the services. In conjunction with OPA,
Traefik acts as API gateway, and more specifically as policy enforcement
point, blocking unauthenticated or unauthorized requests.

• OPA: Open Policy Agent, open-source component to manage authentication
and authorization policies. It acts as policy decision point in conjunction
with Traefik, checking the security tokens from the incoming requests and
evaluating authentication and authorization for the protected APIs.

• Core Microservices: is a cluster of Microservices the implements the User
Account business logic.

6.2 Architecture description
In figure 6.1 and 6.2 the User Account Architecture is described from respectively
logical and technical point of view. At high level, User Account can be divided
into two big logic blocks: Microsoft Azure and IAM on-premises. These two
main infrastructure components are in completely separated network segments and
communicate over https. Let’s explain the role of each component of both Azure
and IAM on-premises blocks.

65

Real case scenario: Upgrading to a Service Mesh

Figure 6.1: User Account Logic Architecture

Figure 6.2: User Account Technical Architecture

6.3 Azure
Starting from the upper left corner of the figure 6.2, the first component is the
Azure Application Gateway. It is the web traffic load balancer that manages
the traffic from and to the User Account Application. Depending on whether the
request path begins with /api or not, the Azure Gateway routes it to the BFF
microservices or to the Azure AppService respectively.

66

Real case scenario: Upgrading to a Service Mesh

Azure AppService is the User Account’s web hosting service that serves
the (Angular-based) User Account single-page application. All requests to BFF
microservices pass through the Traefik-OPA gateway which, before routing them,
performs the authentication and authorization checks. More precisely: it first
verifies that the request has a valid (Public or User) authorization token and then
that the client has sufficient grants to access the service (i.e. the token must include
the scope valid for the requested API).

The main role of the BFF microservices is to operate like a middleware
between the client and the REST IAM Core (with some exceptions where the BFFs
return directly without routing to the Cores). When a request comes, they first
verify its validity (by validating the access token’s signature), and then, if needed,
they process it (also by the support of a fully dedicated database, as you can see
in the figure 6.1), optionally route it to the IAN Core and, finally, produce and
return a response to the client.

Another component deployed in the AKS environment is jBPM. It is an open-
source, flexible Business Process Management (BPM) suite that offers a complete
authoring, execution, management and monitoring environment to support the
full life-cycle of workflow processes. The Approval workflow is triggered by the
submission of a user request (e.g. Account creation or Account suspension). Based
on the data received, the process is able to determine the next step in which the
request must be placed (Validation, Approval or Declaration). Every request to
jBPM must come from UAW BFF, which is a particular microservice in charge of
exposing the UAW capabilities and brokering the security context between TUAMH
and jBPM. Outgoing requests from jBPM to external services (i.e. IAM Core
services) must be routed trough UAW BFF as well. jBPM also offers a management
dashboard to edit, configure, deploy and administer the bpm workflows. The
cluster exposes such interfaces through a separate interface (back-office) with no
AA enforcement: in order to access the dashboard, users must authenticate directly
on jBPM.

6.4 IAM on-premise
In the previous subsection, we have already mentioned the Core Microservices.
As the name suggests, they implement the IAM Core Service, a full, cross appli-
cation, web API based interface exposing company’s IAM services and capabilities.
In order to do this, they are heavily integrated with IBM Security Identity
Manager (ISIM), which is the core product of the company’s IAM system.

Many TUAMH’s features rely on IAM Core Service, but it is important to
clarify that TUAMH is a client external to IAM, which must be authenticated as
any other third-party client.

67

Real case scenario: Upgrading to a Service Mesh

Finally, figure 6.1 includes the IAM dashboard Global Provisioning Tool
(GPT) because some UAW administrative operations are available on it. Therefore,
GPT acts as a technical client of TUAMH services, authenticating accordingly.

6.5 Architectural flaws
All the custom microservices that compose the described architecture are written
in Spring Boot using the Spring Security module. The user obtains a JWT
after the authentication and it has to be used for every subsequent request, this
token is then forwarded from microservice to microservice for every internal request
in order to try to create a Zero Trust architecture.

As we said about Zero Trust principles, this implementation fulfills only one
of them: verify always. With this implementation is difficult to implement more
principles without a complete change in the architecture with a consequent effort
from the infrastructure and development team.

Unfortunately this was the main way to implement a Zero Trust architecture
before the Service Mesh took hold, so an "upgrade" was needed.

Thanks to the use of it, as we have largely seen before, the Zero Trust architecture
can be fully implemented, even in an existing architecture without a complete
refactoring. The main steps were:

• Install Istio and activate the Egress Gateway.

• Disable JWT forward and check in every microservice.

• Configure Istio and the Egress Gateway.

6.6 Upgraded architecture
After Istio installation the architecture has slightly changed. Every microservice
is now coupled with an Envoy proxy allowing the centralized management
and full visibility principles, the internal REST API uses mTLS and every
communication the on-premise part is done through the Egress Gateway. Even in
this case, though, the connection to the databases need to be remain direct because
of the already discussed problems.

68

Real case scenario: Upgrading to a Service Mesh

Figure 6.3: Logic Architectures using Istio

Now, we need to disable Spring Security in every microservice. That is done
by simply removing the annotation from the main class and commenting the
JWT checks in every microservice controller. After this, the service to service
communications happen without any JWT exchange and instead are made by the
proxies so they are encrypted and mutually authenticated using certificates,
following the verify always principle.

Then, in order to configure Istio’s security we can proceed in a similar way as we
did before during the implementation of the PoC. The Ingress Controller don’t have
to be modified, the only changes happen inside the mesh. First of all, every routing
rule implemented in Traefik need to be converted in an Istio one, using Virtual
Services in order to properly sort the request to the appropriate BFF service. Then,
every service to service communication has to be enforced with an Authorization
Policy, we can define which service can interact with a certain service and how the
request can be done, following the least privilege and default deny principle.

The last configuration step would be to grant access to the on-premise part
of the architecture. This part could not be modified because it resides on the
company’s server to must be treated as an external service thus can be contacted
through the Egress Gateway. As in the PoC, every other outgoing connection
has been blocked and the only allowed ones are the ones to the company servers.
This is done again through the Service Entries.

69

Chapter 7

Real case results validation

The tests to check whether the Zero Trust paradigm is satisfied or not are quite
similar to the ones done in the case of the PoC in the chapter 5. In this case we
need to check the correctness of the Zero Trust paradigm, the Ingress Gateway and
the Egress Gateway

7.1 Zero Trust paradigm correctness
As we’ve said multiple times, the correctness of the paradigm is based on verifying
the four pillars that it is made of: verify always, centralized management, least
privilege and default deny and full visibility. Like we said for the PoC, the only
pillars we have to verify are verify always and least privilege because the other
ones are already satisfied by design because of the behaviour of Istio. To check
if the proxies really take part in the transaction we can check if mTLS is being
used, that is if the connection is encrypted. Using tcpdump and listening to the
connection between the STS and the Authorization services, two of the most
important ones, we can see that without injecting the proxies the connection is in
clear text:

70

Real case results validation

Figure 7.1: Clear text response example

Instead, injecting the proxies the connection is immediately, and by default,
upgraded to an mTLS connection where the both parties know the identity of each
other:

Figure 7.2: Encrypted response example

This guarantees that the mTLS handshake has taken place, so the services have
verified each other before instantiating the connection.

While, for the least privilege property we can check if the STS service can
communicate with the Authentication service but not with the Application one.
Here’s the test results making a curl request from the STS pod to the other two
services:

71

Real case results validation

Figure 7.3: Least privilege test

Remember that this is possible thanks to the use of the Authorization Policies
that are configured for this specific architecture. Through them, the proxy on the
receiving end of the communication decides which services can allow.

Finally, also in this case we can confirm that using Istio the Zero Trust paradigm
is fulfilled.

7.2 Ingress Gateway correctness
Again, the tests we can make on the Ingress Gateway are to check if we can correctly
reach the services inside the mesh and if the Gateway logs the requests we are
making.

Furthermore, we need to check if the JWT validation and authorization policies
are correct, checking if using the right JWT we can reach the proper service.

Thus, we can make a valid request to the main application using a correct JWT
to check if the request is properly routed and if the JWT is really validated as we
thought:

Figure 7.4: Curl success test

Inspecting the Ingress Gateway logs we can see that the request is received,
matches an Authorization Policy that allows it and then it’s properly forwarded to
the Application service:

72

Real case results validation

Figure 7.5: Ingress Gateway logs

As a final test we can check that using a wrong JWT the result is 403 Forbidden:

Figure 7.6: Error 403 test

7.3 Egress Gateway correctness
The Egress Gateway plays a role a bit different from the PoC because in this case
it calls a service external to the mesh that’s not on the internet but inside the
on-premise part of the architecture, that resides on the company’s servers. The
services on the on-premise part are mostly core microservices, for example the
Application microservice on the Azure cloud receives the requests and then contact
the Application microservice on the on-premise part to execute its core logic.

What we can do to test its functionality is to make a curl request from the
Envoy proxy in the Application’s pod to the Application service on the on-premise
part and check if the response is correct and if the Egress Gateway routed the
request, inspecting its logs.

Figure 7.7: Curl on-premise service

The Egress Gateway logs confirms that the request has passed through it:

73

Real case results validation

Figure 7.8: Egress Gateway logs

74

Chapter 8

Conclusions and future
works

The objective of this thesis was to analyze the implementation of a Zero Trust
architecture in a Kubernetes environment, the de facto container orchestration
standard to which an increasing number of online applications are migrating, in
order to understand how to design it to obtain and manage workload authentication,
in particular using a Service Mesh.

This was done in three main steps: first of all I studied all the documentation
about Zero Trust security, Service Mesh and in particular Istio, then I moved
onto the design of a Proof of Concept to prove what Istio is capable of and to
confirm that a Zero Trust architecture can be achieved thanks to it. This phase
included also the appropriate tests to prove my initial goal. In the end, when I had
the certainty about the level of security and the benefits that the infrastructure
had, I moved onto a real case scenario.

It consisted of an already up and running application, serving a critical workflow
in a big company, customer of Blue Reply, my internship company. This application
had already implemented the Zero Trust paradigm but in an "older" way, without
the use of the Service Mesh. This led to some flaws, already analyzed, that have
been overcome thanks to Istio. I then designed the changes in the architecture
and implemented Istio, deactivating the older mechanisms for the Zero Trust. As
expected, the tests showed big improvements both in security and observability,
with the satisfaction of the customer.

In conclusion, I’ve given two proofs that the Service Mesh can help to achieve
a Zero Trust architecture in a fairly easy way, adding also extra features to the
cluster like observability and traffic management capabilities. Especially the real
case scenario proves that already existing applications can be upgraded to gain
higher levels of security with less effort than before.

75

Conclusions and future works

This, however, is only a first step in the ever-evolving world of cloud computing,
for example the multicloud approach is rapidly gaining ground. Briefly, it consists
in spanning an application between various cloud service providers and we can
already foresee all the challenges that this may create.

An extension of this thesis may be, for example, a deeper analysis of this
incoming approach, to understand if a Zero Trust architecture can be implemented
in that situation and if so, how to do that. Istio is designed to work across multiple
cloud providers so expand my work to the multicloud approach could be very
interesting.

Furthermore, Istio lately is introducing Ambient Mesh, a new data plane mode
that’s designed to simplify operations, widen application compatibility, and reduce
infrastructure cost. With it, users can keep Istio’s essential functions like Zero
Trust security, telemetry, and traffic management while forgoing sidecar proxies
in favor of a mesh data plane that is embedded into their infrastructure. Briefly,
the new data plane is not made by a proxy for each service but a proxy for a
group of services, leading to computational resources reduction and performance
improvements. This may be the next step of the Service Mesh, as many insiders
say, so may be worth to start learning this new paradigm and understand which
real benefits it can bring.

76

Bibliography

[1] Virtual Service. https://istio.io/latest/docs/reference/config/
networking/virtual-service. Accessed: 21-09-2022 (cit. on p. 14).

[2] Kubernetes Service Mesh: A Comparison of Istio, Linkerd, and Consul. https:
//platform9.com/blog/kubernetes-service-mesh-a-comparison-of-
istio-linkerd-and-consul. Accessed: 20-09-2022 (cit. on p. 23).

[3] Run Kubernetes Using Minikube Cluster on The AWS Cloud. https://aws.
plainenglish.io/running- kubernetes- using- minikube- cluster- on-
the-aws-cloud-4259df916a07. Accessed: 18-03-2022 (cit. on p. 37).

[4] Step by Step Guide to install Istio Service Mesh in Kubernetes. https://
dev.to/techworld_with_nana/step-by-step-guide-to-install-istio-
service-mesh-in-kubernetes-d6d. Accessed: 30-03-2022 (cit. on p. 37).

[5] Istio Application Requirements - Server First Protocols. https://istio.io/
latest/docs/ops/deployment/requirements. Accessed: 10-04-2022 (cit. on
p. 38).

[6] Istio Egress. https://www.youtube.com/watch?v=MHKc4hfszUI. Accessed:
20-04-2022 (cit. on p. 52).

77

https://istio.io/latest/docs/reference/config/networking/virtual-service
https://istio.io/latest/docs/reference/config/networking/virtual-service
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul
https://platform9.com/blog/kubernetes-service-mesh-a-comparison-of-istio-linkerd-and-consul
https://aws.plainenglish.io/running-kubernetes-using-minikube-cluster-on-the-aws-cloud-4259df916a07
https://aws.plainenglish.io/running-kubernetes-using-minikube-cluster-on-the-aws-cloud-4259df916a07
https://aws.plainenglish.io/running-kubernetes-using-minikube-cluster-on-the-aws-cloud-4259df916a07
https://dev.to/techworld_with_nana/step-by-step-guide-to-install-istio-service-mesh-in-kubernetes-d6d
https://dev.to/techworld_with_nana/step-by-step-guide-to-install-istio-service-mesh-in-kubernetes-d6d
https://dev.to/techworld_with_nana/step-by-step-guide-to-install-istio-service-mesh-in-kubernetes-d6d
https://istio.io/latest/docs/ops/deployment/requirements
https://istio.io/latest/docs/ops/deployment/requirements
https://www.youtube.com/watch?v=MHKc4hfszUI

	List of Figures
	Acronyms
	Introduction
	Background concepts
	Cloud Computing
	Advantages and disadvantages of Cloud Computing
	Service Mesh
	Istio
	Zero Trust Model

	Design of the Proof of Concept
	Cluster creation
	Sample application development
	Service Mesh installation and configuration
	Application exposition
	Authorization server installation and configuration
	External services access

	Implementation of the Proof of Concept
	EC2 machine creation
	Minikube installation
	Istio inside Minikube installation
	Development and deployment of BookInfo application
	Ingress Gateway and end-users policies implementation
	Intra-services policies implementation
	MetalLB configuration
	Nginx configuration
	Keycloak configuration and deployment
	Egress Gateway configuration

	PoC results validation
	Zero Trust paradigm correctness
	Ingress Gateway correctness
	Egress Gateway correctness
	Keycloak correctness

	Real case scenario: Upgrading to a Service Mesh
	Components description
	Architecture description
	Azure
	IAM on-premise
	Architectural flaws
	Upgraded architecture

	Real case results validation
	Zero Trust paradigm correctness
	Ingress Gateway correctness
	Egress Gateway correctness

	Conclusions and future works
	Bibliography

