
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering
A.y. 2021/2022

Master’s Degree Thesis

New Path Planner Methods
for Planetary Explorations

Supervisors:

Prof. Marcello Chiaberge
Ing. Andrea Merlo

Candidate:

Gabriel Palcau

October 2022

Abstract

In this thesis a new path planner method based on NURBS (Non Uniform Rational
Basis-Splines) geometric curves is presented and applied in the context of planetary
surface exporation. A review on robot navigation and path planner algorithms is
done with particular focus on exploration rovers tecniques, used by NASA and ESA.
After that, NURBS technicalities and integration in a new path planner algorithm
are explained in detail. Last, a comparison between classical path planner algo-
rithms, like A*, and NURBS path planner is discussed, focusing on the advatages
and results of the latter.

The methodologies used are several, form NURBS mathematics, which is a kind
of parametric curves with particular properties, to computer vision and C++ al-
gorithms. The designed path planner is composed by three differents parts. The
first is the obstacle detection algorithm, that takes a top-view surface image (such
as moon or mars surface) of the surrounded robot environment, and detects the
obstacles based of computer vision and perception algorithms. The second is the
path planner algorithm based on NURBS matematics and SISL (Sintef Spline
Library) library; the last is a grafical viewer based on OpenGL (Open Graphics
Library) that renders obstacles, rover and paths. This last one is also used for a
dynamic simulation of the rover along the path with a continously re-planning of
the trajectory in the waypoints.

Finally, results, simulation and tests are provided and explained. Comparison
with A* is carried out and advatages/disadvantages of NURBS path planner are
discussed. Advangates can be found in the peculiar properties of NURBS geometric
curves. It is possible to define curves (i.e. rover trajectories) having lower com-
plexity and grater accuracy, which is indipendent from the number of obstacles
and few points, called control points, can express and completely characterized the
NURBS. These properties will lead to benefits in term performace, usage memory
and smoother trajectories. This will hand up on having easier curve to manipuate
since very low degree can be imposed independently, less memory to save the
generated trajectory respect to mesh approximation, and smoother trajectories are
achieved, that are optimal in the planetary exploration context.

ii

Acknowledgements

First of all, I would like to thank Thales Alenia Space Italia for giving me the op-
portunity of doing the thesis with them, in such a interesting context. In particular,
I would like to thank Andrea Merlo, my thesis advisor in Thales, and specially
Marco Lapolla who followed me throughout the thesis.
Moreover, I would like to thank my thesis coordinator Prof. Marcello Chiaberge of
DET at Politecnico di Torino and the Pic4Ser members of Politecnico di Torino.

Finally, I express my gratitude to my parents and brother for providing me with
support and continuous encouragement throughout my years of study.
Thank you to all.

iii

Table of Contents

List of Figures viii

1 Introduction 1
1.1 Space Robotics . 1
1.2 Planetary Explorations . 2
1.3 Thesis Outline . 6

2 Navigation 7
2.1 Introduction on robot navigation 7
2.2 Classical localization . 9
2.3 Planetary exploration localization 11

2.3.1 Global Localization . 11
2.3.2 Relative Localization . 12

2.4 Coordinate Systems . 15
2.4.1 Rotation Matrix . 15
2.4.2 Homogeneous transformation 17

2.5 Environment Representation . 19
2.6 Distance graph . 19

2.6.1 Quadtree . 21
2.6.2 Visibility graph . 22

2.7 Traversability Map . 24
2.7.1 Traversability Map and Traversability Index 24
2.7.2 Basic path planning using Traversability index 26
2.7.3 Advance path planning using Traversability index 27

3 State of the Art 31
3.1 Path planner Algorithms . 31

3.1.1 Dijkstra’s Algorithm . 32
3.1.2 A⋆ Algorithm . 36
3.1.3 Potential Field Method . 38
3.1.4 Wandering Standpoint Algorithm 40

v

3.1.5 Bug Algorithms . 41
3.2 Path planner with NURBS . 42

4 NURBS mathematics 43
4.1 Background notions on curves . 43

4.1.1 Mathematical form of curves 43
4.1.2 Methematical methods for creating curves 45

4.2 Evolution of curves . 48
4.2.1 Bernstein Polynomial . 48
4.2.2 Bézier Curve . 49
4.2.3 B-Spline Basis Functions . 51

4.3 NURBS theory . 55
4.3.1 The importance of NURBS curves 55
4.3.2 Definition and Properties of NURBS curves 56

5 Algorithms and Methods 61
5.1 Obstacle detection . 61

5.1.1 Implementation . 62
5.2 Graphic Viewer based on OpenGL 67

5.2.1 Introduction to OpenGL . 67
5.2.2 Integration with the path planner 68

5.3 Path Generation . 75
5.3.1 Introduction on SISL library 75
5.3.2 Assumption and Personal choice 76
5.3.3 Robot dimension in the environment 77
5.3.4 Path planner implementation 79
5.3.5 State 1 . 88
5.3.6 State 2 . 102

6 Test and Simulations 105
6.1 Simulation of NURBS path . 105
6.2 Comparison between NURBS and A* 107
6.3 Dynamic path re-calculation . 110
6.4 Real surface planetary paths . 112

6.4.1 Moon surface test . 112
6.4.2 Mars surface test . 114

7 Conclusions 117

Bibliography 119

A Obstacle Detection Algorithm 123

vi

B NURBS path planner Algorithm 127

vii

List of Figures

1.1 Perseverance rover on Mars . 4
1.2 Rosalind Franklin illustration . 5
1.3 3D map generated by Rosalind Franklin in test environment 5

2.1 Global positioning systems [9]. 10
2.2 Examples of positioning of beacons sensors [9]. 11
2.3 Dead Reckoning [9] . 13
2.4 Reference systems . 15
2.5 Global and Local coorsinate systems Transformation 18
2.6 Basic environment representations 19
2.7 Node distance graph derivation [8]. 20
2.8 Quadtree graph . 21
2.9 Distance graph from Quadtree . 22
2.10 A more complex Quadtree example 22
2.11 Node selection process for visibility graph 23
2.12 Rule set for Traversability Index τ [16]. 26
2.13 Rule set for Local Traversability Index [16]. 28
2.14 Rule set for Regional Traversability 28
2.15 Traversability map of a mountain or hill [16] 29
2.16 Traversability grid on a map [16]. 30

3.1 Dijkstra’s algorithm step 0 in step 1 33
3.2 Dijkstra’s algorithm from step 2 to step 5 34
3.3 Shortest path calculation . 35
3.4 A⋆ example . 37
3.5 Potential Field . 38
3.6 Combination of repulsive and attractive potential 40
3.7 Wandering standpoint [8]. 40
3.8 Bug1 (left) and Bug2 (right) comparison [24]. 41
3.9 DistBug algorithm [24]. 42

viii

4.1 Circle of radius 1 in a xy plane . 45
4.2 Interpolation examples. 46
4.3 Bernstein polynomial basis (3th degree) 49
4.4 Bernstein Polynomial Curves . 49
4.5 3th degree Bézier curve with four control points 51
4.6 A piecewise cubic polynomial curve with three segments [28]. 52
4.7 B-Spline basis and curve . 54
4.8 Comparison between cubic NURBS and cubic B-Spline Basis 59
4.9 Comparison between cubic NURBS and cubic B-Spline curve 59

5.1 Flowchart of the Obstacle Detection Algorithm. 62
5.2 Gaussian Blur filter on the Hardley crater, martian’s surface. . . 63
5.3 Hysteresis threshold in canny detection. 64
5.4 Canny Detection and Canny dilate for robustness. 65
5.5 Flowchart of getObstaclePosition function. 65
5.6 Convex hull of the detected obstacle, in black. 66
5.7 Detected obstacle with next to it the txt file. 67
5.8 Main function of the program. 69
5.9 Window displayed from OpenGL [29]. 70
5.10 Double buffer mechanism for higher FPS. 71
5.11 Timer/Timer0 function. 73
5.12 Timer2 function. 74
5.13 Convex polygon (START-P2-GOAL) and NURBS curve in blue. . . 77
5.14 Effect of the robot dimension on the obstacle radius. 78
5.15 Flowchart of the path planner algorithm. 79
5.16 NURBS intersections in points: A,B,C,D. 84
5.17 Interval to belong in the obstacle’s circumference. 86
5.18 State 1 flowchart . 88
5.19 Arrangement of the paraOrder vector. 90
5.20 Inversion of control points (a). 91
5.21 Inversion of control points (b). 91
5.22 Projection of control points and the relative paramOrder vetor . . . 92
5.23 Invertion of control points correction. 92
5.24 Construction of freeControlPoint P2. 93
5.25 Gometric construction for NURBS in obstacles. 94
5.27 Table for evaluating where the NURBS have to pass 96
5.26 Three near obstacles detected but only two are used. 97
5.28 Obstacle C1 treated as isolated. 98
5.29 One pair obstacles . 98
5.30 Two pair obstacles having in common the first obstacle detected, C1,

case 2. 99

ix

5.31 Two pair obstacles not having in common C1, case 3. 100
5.32 State 2, already visited obstacle. 102
5.33 Intersections in the same obstacle. 103

6.1 NURBS iterations . 105
6.2 NURBS trajectory . 106
6.3 NURBS trajectory . 106
6.4 Detected obstacles and NURBS/A* trajectory 107
6.5 Detected oobstacle and NURBS/A* trajectory 108
6.6 Memory usage between A* and NURBS 109
6.7 Dynamic path step 1 . 110
6.8 Dynamic path step 2 . 111
6.9 Moon surface and obstacles . 112
6.10 Trajectory on Moon surface . 112
6.11 Trajectory on Moon surface . 113
6.12 Trajectory on Moon surface . 113
6.13 Trajectory on Moon surface . 114
6.14 Mars surface and obstacles (Hardley Crater). 114
6.15 Trajectory on Mars surface . 115
6.16 Trajectory on Mars surface . 115
6.17 Trajectory on Mars surface . 116

x

Chapter 1

Introduction

In this chapter we will contextualize and introduce the problem of autonomous
navigation related to rover planetary explorations. An overview on robot and rover
applications on space is done.

1.1 Space Robotics
Space robotics is a fascinating field born in the context of space exploration. The
use of this technology is essential to conduct space missions, where human has its
limit that are related to human physical endurance. Long duration of flights and
missions together with hostile environment in space limits human involvement [1].
Autonomous missions became necessary to successfully complete an exploration
mission.

Space robotics had a great increase from the last decades of the 20-th century, and
their continuous evolution has allowed humans to explore the solar system with
probes or rovers. An emerging application has been the use of robotic arms for the
International Space Station (ISS) or for Moon and Mars surface exploration.

There are three types of robots used in space: manipulators, mobile, and fly-
ing robots. Manipulators are robotic arms used in space operation, assembly, and
servicing. The second group are the mobile robots such as rovers and autonomous
group vehicles (AGV). The third category are flying robots or drones known as
unmanned aerial vehicles (UAV) [2].

The rovers are designed to explore hostile environments in “search of life” or
for study purpose. The primary task of rover in to navigate autonomously generat-
ing a path and localize itself using cameras. The other tasks that the rover has to

1

Introduction

do are those for which it was designed, from those that have to search for life on
an extra-terrestrial body, to others that have to acquire data’s to have a greater
knowledge of the birth of the solar system and the cosmos.
Depending of the tasks for which the rover was designed, different instruments are
present to achieve the misison, such as drill or rope analysing soil samples on site
and sending data’s to the Earth.

Rovers which land on extra-terrestrial bodies, such as Mars, cannot be remotely
controlled in real-time due to the large distances from Earth and consecutively to
the big delays in real-time communication. For example, sending a signal from
Mars to Earth takes up to 3 to 20 minutes. These rovers must be capable of
operating autonomously using cameras and sensors.

1.2 Planetary Explorations
During years, several rover exploration programs have been launched to explore
firstly the Moon and Mars planet next, and technologies have improved at every mis-
sion, in particular the level of autonomy of a rover, ranging from remote-controlled
to autonomous navigation.

Robotic planetary explorations missions started in the last quarter of 20-th century
with Lunokhod 1 deployed on November 1970 on the Moon as part of Luna 17
Soviet mission. Lunokhod 1 and Lunokhod 2, launched on January 1973, were the
first remote-controlled rovers to freely move on an extra-terrestrial body. These
rovers could take pictures and measure the physical and chemical properties of the
lunar soil.

A more advanced rover was deployed on Mars in July 1997, with the Mars Pathfinder
mission by NASA. The mission was composed of the lander, Pathfinder, and the
rover called Sojourner. It was the first rover that was able to move in autonomy
from its position to the arrival point. The rover communicated with Earth once
per sol (a sol corresponds to a solar day on Mars ∼ 1.02 Earth day) receiving
the coordinates of the arrival point with the command “Go to Waypoint”. An
appropriate strategy for overcoming obstacles autonomously was implemented. The
path generation algorithm implemented on the on-board computer attempted to
reach the arrival point in straight line, if an obstacle is detected with the laser
emitter different strategies were present. Basically to avoid obstacles the rover turn
left or right until the obstacle is no longer in sight and proceed in that direction
from 30 centimetres and recalculates the path with a straight line [3]. The main
tasks of the rover is analysing Mars rocks composition and taking images while

2

1.2 – Planetary Explorations

moving.

In 2003 the NASA’s Mars Exploration Rover (MER) mission started. It was
a robotic mission involving two Mars rovers, Spirit and Opportunity. The move-
ments of the rovers were planned based on the returned images; simulation and
tests were performed before in a simulated Mars environment on Earth, with the
aim of letting the rover conduct the commands autonomously in the real Mars
environment. Opportunity has the primate of the longest distance travelled by any
rover (45.16 km) and for the most days operated (14 years and 140 days).

A more advanced navigation technique was experimented with Curiosity rover
in the mission of Mars Science Laboratory (MSL). The rover landed on Mars
surface on 6 August 2012, and was design to explore Gale crater, since offers envi-
ronment condition favorable for microbial life, and planetary habitability studies
in preparation for human exploration.
The navigation system uses two pairs of black and white navigation cameras (nav-
cams) used to acquire stereoscopic 3D images. The autonomous navigation, or
autonav, analyses the images taken during a drive to calculate a safe driving path.
Curiosity takes several sets of stereo pairs of images, and the rover’s computer
processes that information to map any geometric hazard or rough terrain [4]. The
rover considers all the paths it could take to get to the designated endpoint and
chooses the best one. Curiosity was the most autonomous and advanced rover
ever designed landed in an extra-terrestrial body, it proved how power and in-
dependent rover can be and their enormous potentiality in the exploration of planets.

In 2021, Perseverance rover landed on MARS as part of NASA’s Mars 2020
mission. This rover, figure 1.1, is the most advanced one currently operating on a
extra terrestrial body, in this case Mars. Perseverance has the dimension of a car
(2.9m x 2.7m x 2.2m) and is very similar to its predecessors Curiosity, with more
advanced technologies. NASA’s Perseverance rover drives autonomously on Mars
using an enhanced auto-navigation system, AutoNav. According to NASA, the
technology lets Perseverance take control of its wheels and drive by itself across
the red planet, without rely on commands from Earth [5].
AutoNav system is equipped with an upgraded technology respect Curiosity rover.
Perseverance can make 3D maps of the terrain ahead, identify obstacles, and
establish a path in completely autonomy. This means a complete and more inde-
pendent rover able to drive more and at much faster speeds. The AutoNav limit
the human intervention to few commands, such as the final destination, it just
increases the rover’s autonomy. As the rover drives this path, it uses the map to
identify which paths are safe to drive. Perseverance’s self-driving software is a
significant improvement over previous rovers which also had self-driving capabilities.

3

Introduction

Figure 1.1: Perseverance rover on Mars

Perseverance is able to process and analyse images while the wheels are still in
motion.
A key objective for Perseverance’s mission on Mars is astrobiology, including the
search for signs of ancient microbial life. The rover will investigate the planet’s
geology and past climate, and will be the first mission to collect and cache Martian
rock [5].

The European Spacae Agency (ESA) together with the Russian Space Agency
(Roscosmos) will also participate in planetary exploration missions with rovers in
the coming years, with the ExoMars mission. The mission is an astrobiology and
exobiology program, which allows the rover, Rosalind Franklin figure 1.2, to search
for signs of past and present life on Mars, to investigate the Martian water and
geochemical environment, to investigate the atmospheric gases, and to demonstrate
the technologies for a future Mars sample-return mission [6]. To achieve this, the
rover contains a highly autonomous navigation system capable of planning a safe
and drivable path across the terrain. The rover will be controlled and monitored
by the Rover Operations Control Centre (ROCC), located in Turin, Italy.
Two stereo camera pairs (NavCam and LocCam) allow the rover to acquire images

to generate a 3D model of the next six meters of observable terrain, figure 1.3.
The 3D map is analysed to understand which area are the most traversable for
the rover. A “navigation map” is generated and the navigation systems plans a
safe path of 2 meters long in the direction of the final destination specified by the
ROCC. To enable more rapid progress, the ExoMars Rover’s Guidance, Navigation

4

1.2 – Planetary Explorations

Figure 1.2: Rosalind Franklin illustration

and Control (GNC) system uses vision-based methods to autonomously traverse
Martian terrain without the aid of ground controllers [7].

Figure 1.3: 3D map generated by Rosalind Franklin in test environment

5

Introduction

1.3 Thesis Outline
We have an introduction of the main rovers used by different Space Agency to
explore extra-terrestrial body, and what are the techniques used in autonomous
navigation for planetary explorations.

This master thesis is organized as follows: in chapter 2 the navigation prob-
lem of robots and rovers is presented, analysing how from an image the robot
localize itself and all the obstacles. The mainly methodologies on navigation eighter
is space or not is presented; chapter 3 the State of the Art on path planning
is discussed. Chapter 4 will present all the mathematics needed to understand
and apply NURBS curves for path planning; chapter 5 will deeply analyse the
implementation of a new path planner algorithm based of NURBS mathematics.
Finally chapte 6 will show results, simulations and comparison between NURBS
algorithm and A*, while chapter 7 will draw conclusions.

6

Chapter 2

Navigation

2.1 Introduction of mobile robots navigation

Navigation is the most important task for mobile robots and its non-realization
will lead the robot to not carry out the activities for which it was designed and
conceived. A relevant example, one of the most fascinated, may be the planetary
exploration of a non-terrestrial body, in search of traces of life and for a greater
understanding of the birth of the cosmos.
The robot needs to know where it is for reaching the desired final destination (goal),
and often a match between the real-world environment and a map is established.
A map is created where the robot and obstacles’ position are mapped to have a
unique representation of the surrounded environment. After introducing maps for
mobile robots, a completely known environment or in a partial/unknown can be
presents. Based on this, different methods of path algorithm are used.

A navigation algorithm without a map, such as Bug1, Bug2, and DistBug, is
often used in a continuously changing environment or if a path has to be travelled
only once and therefore does not necessarily has to be optimal. Contrary, if a
map is provided, algorithms like Dijkstra or A∗ can be applied to find the shortest
path offline, before the robot starts driving. Navigation algorithms without maps
operates in direct interaction with the robot’s sensors while in movement, while
with maps require a nodal distance graph that has to be either provided or needs
to be extracted from the environment, such as Quadtree method.

Depending on the condition, the mobile robot/rover while travelling must be
able to go to any selected place, trying to minimize a cost function, such as time
or energy. First, the robot must be able to move fast enough, under control, and
safely, avoiding static and moving obstacles (Motion Control problem), to collect

7

Navigation

knowledge of the environment (Word Modelling problem) and know where it is
placed (Localization problem). Finally, it has to move optimally in a large area
and some planning is necessary (Planning problem).

A first distinction on what the navigation algorithm exploits or just what fea-
tures are used in navigation of robots can be made; the mainly two approaches are
Geometric navigation or Topologic navigation [8].

1. Geometric navigation: All the environment, such as robot position, start,
goal, and obstacles are defined by their own coordinates. The robot position is
calculated by odometry (odometry is the use of data’s, from motion sensors, to
estimate the change in position over time), and often Kalman Filter techniques
are used to estimate the position relative to a starting location. It is natural
to think that this method generates some errors since the sensors are affected
by noise.
The environment is represented by occupancy grids and geometric maps,
where elements such as doors, walls, and rocks are modelled. These maps
are generated by robot sensors, fusing different images from different robot
positions.
The robot position has error due to the non-ideal sensors that will propagate to
the map, leading to a non-perfect localization of the robot in the map. A way
to solve this problem is to use a sort of prior information of the environment,
such as satellite images or landmarks maps.

2. Topologic navigation: This kind of navigation is based on qualitative
aspects. The information of the environment is mapped into a graph, where
the nodes represent places in which the robot can pass through, while arcs
represent a property that the robot owns by passing between the two respective
nodes, such as speed or time.
This kind of navigation focus more on the qualitative aspects of the objects,
such as its colour or its shape, is more like humane-kind, we recognize something
by its shape and colour.

A second important distinction on how navigation works can be made; it is based on
the considered size of the environment. Mainly three different techniques are used:
local navigation, global navigation and the latter is fusing the two previous
techniques, hybrid navigation [8], [10].

• Local navigation is defined as local since uses only sensors and cameras
capabilities of viewing the environment to navigate. The robot will have
only a partial understanding of the surrounded unknown environment. Only
particular algorithms of path planning can be used, since the path from start

8

2.2 – Classical localization

to goal is not known. Animals in general has this ability, eyes give us a
perception of the local enviroment till where they can see. Often it is based
on recognize obstacles or places by qualitative features, such as colour, shape,
and so on. In this way, robots can have some memory of the passed objects
and on the moving direction. Navigation based on this features is called local
qualitative maps, and are used to generate a path through the environment
using a technique called traversability.
Traversability is a technique that given a map of the environment, possible
traversable areas in which the robot can pass safety are identified based on
analysing the terrain slope and roughness.

• Global navigation is used in a perfectly known environment to create a
global map and find out a sort of graph, where the nodes stand for places.
In general, roadmaps are used and the most important are the visibility
graphs. These are in general methods that analyse the connectivity between
free spaces in a map, which use prior information.

• Hybrid navigation combines the best quality of the local and global naviga-
tion to better optimize the path.

So far, a general introduction on robot navigation is done, and a complete path
planner combines of two parts: localization and path planning.

2.2 Classical localization
Before imposing a trajectory to be followed, from the initial point (start) to the
final one (goal), the robot must know where it is. The problem of addressing
robot’s position is called localization.

Localization depends on the physical environment and on the available technology,
e.g., planetary exploration environment is different from classical application on
earth. In an outdoor environment, satellite-based GPS to locate the position of
the robot is available, while in an indoor one only local positioning systems such
as infrared, sonar, laser or radio beacons can be used.
Robots are equipped with sensors to observe and sense the surrounded environment
and monitoring its motion.
A distinction between localization on the earth and planetary exploration is pre-
sented. I will refer to the first type as Classical localization and to the latter as
Planetary exploration localization.

Classical localization is the one used on earth applications, uses GPS, bea-
cons or antennas technology to find the global position of the robot in outdoor

9

Navigation

environment, while in an indoor, infrared, sonar, laser sensors are used.
In an outdoor environment a simply GPS signal will provide to the robot its
global position, while in indoor the use of sensors make possible to find the robot
coordinates knowing where the sensors are placed, as shown in figure 2.1.

Knowing the location of the beacons and supposing they send sonar or radio

Figure 2.1: Global positioning systems [9].

signals at the same time with different frequencies, the robot can determine its
position by evaluating the time difference of the signal’s arrival time. It is notable
to see that with three beacons is possible to perfectly locate the robot position.
This method is useful to find position coordinates but not the orientation of the
robot. Orientation can be found considering two consecutives’ positions, like a
vector, where its origin can represent a previous position and its arrow the actual
one, this will give the direction of motion. Comparing the vector with a predefined
one, degree difference is extrapolated and so the orientation. This is exactly the
method used in GPS technique.
Another idea is to use light emitting homing beacons instead of sonar beacons, e.g.,
the equivalent of a lighthouse [9].
Depending of the on-board sensors and from the localization system present in the
environment, different cases of positioning and orientation are derived, figure 2.2.

10

2.3 – Planetary exploration localization

Figure 2.2: Examples of positioning of beacons sensors [9].

2.3 Planetary exploration localization
In planetary exploration environment such as Mars or Moon, the robots cannot rely
on the previous explained approaches since they do not have any satellite providing
GPS signals, any constellation of orbiting satellites, any sensors, or fixed antennas,
like here on Earth.
Possible approaches for localization of the robot in an extra-terrestrial environment
are based on using orbiter, lander, and rover sensors.
Two possible approaches are present: global localization and relative localiza-
tion.

2.3.1 Global Localization
Global localization was not investigated as much as the relative one, and it is used
predominantly for global path planning. During years, many approaches have been
studied, such as Skyline-Based or Particle Filter.

11

Navigation

Skyline-Based

Skyline-based approache is the first approach used to estimate the global position
of a robot in a planetary exploration context, where skyline matching is done. The
method consists in matching a perceive skyline provided by the rover or lander
camera with a database of skylines pre-computed on the basis of DEM (Digital
Elevation Map). The database encodes skyline signatures, that are matched with
the skyline extracted from a panoramic image taken by the rover. This method
is very useful to find the global position of the robot in a lost in space situation,
when no initial position information is provided. The accuracy is in the order of
150 meters, depending on the resolution of the DEM.

Particle Filter

Particle Filter is a well-known framework used to estimate the global position of a
robot, and is provided by Monte Carlo Localization (MCL) (Dellarert et al. 1999).
In this method, the posterior probability density function, corresponding to the
robot global position, is approximated by a set of samples, the so-called particle.
By doing this, MCL can consider the multiple possible positions that arise in the
lost-in-space problem. Particles are associated to weights which are computed using
an observation model and a prior global map of the environment [13].
The key idea, in particle filters, is to represent the robot’s belief as a set of N particles,
collectively known as M, where each of them consist on a robot configuration x and
a weight w ∈ [0,1]. Moving, the robot updates the j-th particle’s configuration xi

by first sampling the PDF (probability density function) of p(xj | d, x
′
j); typically

a Gaussian distribution. After, the robot assigns a new weight wj = p(s | xj) for
the j-th particle, the weight normalization occurs such that the sum of all weights
is one. Finally, resampling occurs such that only the most likely particles remain.

2.3.2 Relative Localization
This kind of localization is the most important and the most used in the plane-
tary exploration. Different methodologies have been studied: Dead Reckoning,
Feature-Based or Visual Odometry (VO).

Dead Reckoning

Dead reckoning is one of the most important and used technology to understand
locally in which direction the robot is moving. Using this kind of localization the
robot must rely on its sensors, in particular the use of wheel encoders and/or gyro-
scopic sensors and calculate the current position by using a previously determined

12

2.3 – Planetary exploration localization

position time, incorporating estimates of speed, heading direction, and course over
elapsed time. Naturally, little discrepancy between real and estimated position
due to the uncertainty/noise present in all the sensors affects the localization po-
sition. This is the reason why this method is applied only for short-term localization.

A particular type of Dead Reckoning is the Inertial navigation system (INS) [14].
The INS is a self-contained navigation technique in which measurements provided
by accelerometers and gyroscopes are used to track the position and orientation
of an object relative to a known starting point, orientation, and velocity. INS
typically contains three orthogonal gyroscopes and three orthogonal accelerometers,
measuring angular velocity and linear acceleration respectively. By processing
signals from these devices, it is possible to track the position and orientation of a
robot on which the INS device is mounted.

Figure 2.3: Dead Reckoning [9]

Feature-Based

Feature-based approach compares the images provided from the stereo cameras of
the rover with images provided from an orbiter for matching of larges rocks, valley,
and another unique feature of the environment. Surface rocks are extracted from
3D points cloud produced by the on-board stereo camera and the rover position
is determined by finding 2D transformation that gives the maximum number of
matches between the rocks detected from the two sources. This method suffers
of poor result when the environment has few rocks or is surrounded by many of them.

Visual Odometry

Visual Odometry (V0) is based on analysing the images provided by the stereo
cameras. The VO is mainly characterized by two steps:

13

Navigation

• Mapping makes extensive use of dense stereo matching and subsequent merging
of partial maps.

• Visual Localization refers to the use of images, in particular the succession of
frames to determine and estimate position and orientation of the robot, this
kind of localization refers to visual simultaneous localization and mapping
(vSLAM).

This kind of method is more robust and accurate since no sensors are used to
estimate position of GPS signal or IMU data.

These kind of techniques are used by European Space Agency in the SPAR-
TAN (SPAring Robotics Technologies for Autonomous Navigation) and SEXTANT
(Spartan EXTension Actibity - Not Tendered) programs. These programs were
born to develop computer vision algorithm for visual navigation, mapping and
localization.
An example of application is seen in the ExoMars mission [11].
The localisation on board of the ExoMars rover is composed of the Absolute
Localisation (AbsLoc) and Relative Localisation (RelLoc) modules.

• The Absolute Localisation (AbsLoc) module updates the on-board at-
titude estimate when the rover is stationary, e.g. before starting to follow a
commanded path. The module is capable of performing a gravity (roll and
pitch) update of the estimated attitude using the accelerometer measured
average acceleration as an estimate of the gravity vector. AbsLoc does not
have the capability to estimate the heading autonomously, but it can perform
a heading update with a heading value provided from ground.

• The Relative Localisation module is responsible to update the estimates
of the position and attitude of the rover relative to the MLG frame while it
is driving. The rover defines a Mars Local Geodetic (MLG) frame, with its
origin at the rover’s initial location, z axis pointing up, the x-y axes in the
local horizontal plane, the x axis pointing east. Motion of the rover is tracked
in this frame.

14

2.4 – Coordinate Systems

2.4 Coordinate Systems
In several applications it is important to establish a map or to plan a path. The
path is generally specified in global or world coordinates, while the robot’s position
and orientation refers usually in its local coordinates.
Since the path is specified in global coordinates, a method to convert the robot
local coordinates in a global one is needed and Rototranslation matrices are
used, since every transformation in the plane can be expressed as translation +
rotation, this kind of representation is called Homogeneous Transformation.

2.4.1 Rotation Matrix
Firstly, let’s analyse the rotation between two frames, in particular consider two
orthonormal frames (three perpendicular axis with three respective unit vector
i,j,k).
Consider two frames Rb and Ra, figure 2.4(a):

Ra = Oaiajaka Rb = Obibjbkb

Frame Ra and Rb are related by the so called Rotation Matrix, that gives the

(a) Rotation of two frames. (b) Rototranslation.

Figure 2.4: Reference systems

possibility of switching from one frame to the other, referring coordinates of frame
B in frame A and vice versa. Frame B axis can be expressed in frame A by:

15

Navigation


ib = α1

1ia + α1
2ja + α1

3ka

jb = α2
1ia + α2

2ja + α2
3ka

kb = α3
1ia + α3

2ja + α3
3ka

→ Ra
b =

α1
1 α2

1 α3
1

α1
2 α2

2 α3
2

α1
3 α2

3 α3
3


Matrix Ra

b stands for the Rotation Matrix that converts coordinate of points of
frame B in frame A.
Let’s see how the process works. Consider a vector defined in frame B, its coordinates
in the frame A are found by using the following passages:

v = vb
xib + vb

yjb + vb
zkb = (α1

1vb
x + α2

1vb
y + α3

1vb
z)ia+

(α1
2vb

x + α2
2vb

y + α3
2vb

z)ja+
(α1

3vb
x + α2

3vb
y + α3

3vb
z)ka = va

xia + va
yja + va

z ka

Vector a and b will be related the the formula below:

va =

va
x

va
y

va
z

 =

α1
1 α2

1 α3
1

α1
2 α2

2 α3
2

α1
3 α2

3 α3
3


vb

x

vb
y

vb
z

 = Ra
b vb

There are three fundamentals rotation in a 3D environment and every Rotation
matrix can be expressed as a rotation about the three fundamental axis of a frame,
x,y,z or i,j,k:

• Rotation of α◦ about z axis (k):

Rot(z, α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


• Rotation of α◦ about y axis (j):

Rot(y, α) =

 cos(α) 0 sin(α)
0 1 0

− sin(α) 0 cos(α)


• Rotation of α◦ about x axis (i):

Rot(x, α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1


A rotation R in the 2D or 3D plane can be expressed by a summation of the three
fundamental rotations:

R = Rot(z, α) + Rot(y, α) + Rot(x, α)

16

2.4 – Coordinate Systems

2.4.2 Homogeneous transformation
Homogeneous Rototranslation Matrix (T a

b) is an operation that joins a rotation
and a translation.

Consider now a point P in frame B, its coordinates in frame A can be found
through a Rotation matrix Ra

b (Rot(α)) and a translation tab (Trans(rx, ry)).
I will make explicit reference to the figure 2.4 b.
Let’s define Oa and Ob the origin of frame A and B respectively, coordinates of
point P in frame A are given by a simple formula:

OaP = OaOb + ObP

where,
ObP = xb

P ib + yb
P jb + zb

P kb

OaP = xa
P ia + ya

P ja + za
P ka

Now, Homogeneous Rototranslation Matrix (T a
b) comes out as sum of these

two components.

xa
P

ya
P

za
P

 = t
a
ab + Ra

b

xb
P

yb
P

zb
P

 →


xa

P

ya
P

za
P

1

 =
C
Ra

b t
a
ab

0 1

D
ü ûú ý

T a
b


xb

P

yb
P

zb
P

1


where, Ra

b is the Rotation Matrix 3x3 to transforms vector’s coordinates, defined
also as (Rot(α)), while T a

b is the Homogeneous 4x4 matrix for trasforming coordi-
nates of points.

Example
After introducing the previous notation, let’s apply it to a real case for switch local
coordinates to global one.
Assume a robot global position [rx,ry] and a global orientation ϕ. Suppose the
robot senses an object in its local coordinates at [Ox′ , Oy′], the global coordinates
of this object [Ox,Oy] will be given by:

[Ox, Oy] = Trans(rx, ry) + Rot(ϕ) · [Ox′ , Oy′]

Consider the exemple in figure 2.5. The local object P, marked with the + symbol,
has local coordinate [0,3]. The global robot’s position is [4,2.5] and its global
orientation is α = 30◦. Applying the theory seen above, we can write the global
position of the object as:

17

Navigation

Figure 2.5: Global and Local coorsinate systems Transformation

[Ox, Oy] = Trans(4,2.5) + Rot(30◦) · [0,3]
= Trans(4,2.5) + [−1.5,2.6]

= [2.5,4.6]

Below all the detailed computation are present.

Proof. Since we are in 2D enviroment, in the above case, a 3x3 matrix is sufficient:Ox

Oy

0

 =

 4
2.5
0

+

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 ·

0
3
0


Ox

Oy

0

 =

 4
2.5
0

+

−3 sin(α)
3 cos(α)

0


for α = 30◦ this comes to:Ox

Oy

0

 =

 4
2.5
0

+

−1.5
2.6
0

 =

2.5
4.6
0



18

2.5 – Environment Representation

2.5 Environment Representation
In a 2D environment there are mainly two basic representations; configuration
space and occupancy grid. In configuration space, dimensions of the environment
and position (coordinates) of the obstacles are given, and so a 2D environment
can be created. In the other hand, in occupancy grid the 2D environment is not
"continuous" with line segments but is represented in a discreate way, by a given
resolution, where a single grid correspond to a portion of the real environment,
white pixels represent free space while the black pixels obstacles. In figure 2.6 the
two representations can be seen.
These two formats can be easily transformed into each other, by simply a dis-

Figure 2.6: Basic environment representations

cretization or combination of pixels.

Many algorithms work directly on the environment description (configuration
space or occupancy grid), some others, such as Dijkstra or A⋆, require a node
distance graph as input.
A discussion of the two mainly methods for path planning is done: node distance
graph and traversability maps.

2.6 Distance graph
A Distance graph, figure 2.7, is a description environment at a higher level, not
all information is retained, but only elements useful to describe a path from initial
to the final position. A node distance graph is simply composed of two elements,
nodes, identifying position in the environment, and the weighted arcs, representing
the distances between two nodes.

19

Navigation

Figure 2.7: Node distance graph derivation [8].

Many algorithms can work directly taking as input the configuration space or
occupancy grid, but the majority work taking as input a Node Distance Graph.

First, let’s analyse how a distance graph from the environment representation
can be derived.
An intuitive and easy way to proceed is to use occupancy grid to find out our
distance graph. In the distance graph each node corresponds to a particular location
in the grid, so, a brute force is to treat each pixel of the grid as a node in the graph.
If the input is represented by a configuration space a conversion in occupancy grid
is done by "printing it" on a canvas at the desired resolution.
Anyway, this approach has some problems, first due to the high number of the
nodes obtained the graph will be very huge, for large environment this method
is not feasible that means slower algorithm and high computational complexity.
Second, the path generated will be suboptimal since the algorithm may stack in
one of the many local optima present. Third, constraints on steering angle are
present, since pixels are like a matrix only turning angles that are multiples of 45◦

are possible [8].
More efficient methods are presented for constructing a distance graph from the
environment representation:

• Quadreee

• Visibility Graph

20

2.6 – Distance graph

2.6.1 Quadtree
To avoid the previous problems, a method called Quadtree can be used. A shorter
graph will be created, and no steering constraint will be present.
A quadtree is a tree data structure in which each internal node has exactly four
children. Quadtrees are the most often used to partition a two-dimensional space
by recursively subdividing it into four quadrants or regions.

To generate a quadtree, the 2D environment is recursively divided in four quadrants,
where each of them become a node or a leaf. If the quadrant is free or full of obsta-
cles, it becomes a terminal node, a leaf, while if the quadrant is partially full, it will
be divided in another four quadrants recursively, until each quadrant becomes a leaf.

Example
I have created an example showing the procedure of recursively division in four
quadrants, which can be seen in picture 2.8. After constructing the quadtree

Figure 2.8: Quadtree graph

graph, we can pick all the free nodes and use them into the distance graph. The
construction of the distance graph is made by linking each free node to the others,
by the way, only nodes that can be link without intersecting an obstacle (in the
example link c-e is not put in the graph).
We can observe the mentioned passages in the picture 2.9.
After constructing this graph, a path planning algorithm can be applied to find a

21

Navigation

Figure 2.9: Distance graph from Quadtree

Figure 2.10: A more complex Quadtree example

route, like A⋆.

Another example of quadtree construction is shown below (2.10).

2.6.2 Visibility graph
A visibility graph is a graph of intervisible locations, typically for a set of points
and obstacles in the Euclidean plane. Each node in the graph represents a point
location, and each edge represents a visible connection between them.

While in the Quadtree the nodes represent free spaces in the environment, in
Visibility graph the nodes are chosen in a different way. In particular, corner points
of obstacles, start and goal position are used as nodes, and lines represent a free
path between the two nodes.

22

2.6 – Distance graph

As shown in figure 2.11, a graph is constructing by linking each node to the
others, deleting thus lines that intersect an obstacle. The remaining lines, represent
which paths can the robot follow to reach the goal. In red are represented thus
lines that intersect an obstacle and so cannot be followed, while in green only the
free paths.

Figure 2.11: Node selection process for visibility graph

23

Navigation

2.7 Traversability Map
Let analyse another method to understand from an image where the robot can pass
through. In general, in planetary exploration context, there are many trajectories
that a robot can follow from the start to the goal, for examples the one that
minimizes the distance or the time. Usually, in planetary context environment, a
path is choosing taking into account which is the safest for the robot.

A safety path can be chosen among different properties, such as less obstacles, less
steep slopes and climbs or consistency of the terrain. Terrain consistency is very
important since the robot may get stuck in soft soil, despite a harder terrain is
preferable since more grip for the robot’s wheel is present.

Traversability Map can help us in choosing which path is the safest for the robot.

2.7.1 Traversability Map and Traversability Index
Traversability Map are based on analysing the images provided by the cameras
and constructing a sort of grid map using some logics based on the so called
traversability index, which marks which areas are more traversable for the robot,
and pick those grids that are the safest for the robot. The generated trajectory
will be located within these grids.

First time, traversability index was introduced form mobile robots (rovers) by [16],
where a detailed and advance explanation is done.

Traversabilty index is developed using the framework of fuzzy logic and is ex-
pressed by linguistic fuzzy sets that quantify the suitability of the terrain for
traversal based on its physical properties, such as slope and roughness. The
Traversability Index is used for classifying planetary surfaces and provides a simple
means for incorporating the terrain quality data (out to about 10 meter) into the
rover navigation strategy. A set of fuzzy navigation rules is developed using the
Traversability Index to guide the rover toward the safest and the most traversable
terrain. In addition, another set of fuzzy rules is developed to drive the rover
form its initial position to a user-specified goal position. The two rules’ sets are
integrated in a two-stage procedure for autonomous rover navigation without a
priori knowledge about the environment [16].

Traversability index was firstly used in in-door mobile robots operating in struc-
tured environments [17], [18], and only to the end of the 90’s was apply to outdoor
unstructured environments like planetary exploration [16].

24

2.7 – Traversability Map

A basic approach is to evaluate the terrain by consider two parameters, α and β,
representing respectively terrain slope and terrain roughness.

• Terrain slope α is measured by stereo camera mounted on the rover [19].
Given the slope of the terrain in degrees, four linguistic fuzzy sets, represented
by α, can be produced; {LOW, MEDIUM, HIGH, VERY HIGH}. Each
linguistic word refers to a specific degree range and can be either positive
and negative, representing a mountains/hills or craters. With this kind of
discretization, the precise slope of terrain is not needed since a single linguistic
word represents a range of possible slopes.

• Terrain Roughness β can be estimated by using onboard stereo camera based
of range map methods [19]. A simpler alternative approach is based collecting
the information regarding the dimension and concentration of rocks [16]. Using
images from cameras, estimation of rock concentration (density) and sizes,
produces an average of the rock-size in the terrain. Rock density is defined
over the set {LOW, HIGH}, while rock sizes by {SMALL, LARGE}.
Combining the two previous set, parameter β is defined by the following fuzzy
set: {SMOOTH, ROUGH, BUMPY, ROCKY}.

Now, having α and β, which represents the terrain properties, a fuzzy table is
constructed, and will gives us the traversability index τ . Defining with A =
{A1, A2, A3, A4} the discrete output α and with B = {B1, B2, B3, B4} the discrete
output β, a cartesian product T = AxB can be obtained, where T is the output
linguistic set representing the traversability of the terrain {POOR, LOW, MEDIUM,
HIGH}.
The resulting traversability table can be seen in figure 2.12, where a sixteen fuzzy
table representing the traversability index is present. From this table we can
understand that a terrain in non-traversable when is ROCKY or when slope is
VERY HIGH and can be traversable for LOW slopes and SMOOTH terrain.
The four linguistic fuzzy sets for τ can be interpreted depending primary on the
characteristics of the rover, since a rover with larger wheel can traverse grater rocks,
means that the traversable output can be different, and secondary considering
some personal interpretation of how safety is a soft terrain or which kind of slope
is defined as LOW:

• POOR −→ Highly-Impassable terrain

• LOW −→ Impassable terrain

• MEDIUM −→ Passable terrain

25

Navigation

• HIGH −→ Highly-Passable terrain

Figure 2.12: Rule set for Traversability Index τ [16].

2.7.2 Basic path planning using Traversability index
Traversability index is used for imposing rover heading and speed velocity, which
are fundamental for controlling and for navigate the rover to the safest and most
traversable terrain. Velocity v and heading angle change δθ are determined by an
another fuzzy table involving as input the traversability index [16].

Definition of parameter v and heading angle δθ

• First of all, a partition of the terrain around the rover is executed up to a radius
r, usually 10 meters, in particular five different sectors are identified; front,
front-right, front-left, right, left. The front one is straight to the rover, front-
right and front-left are at ±45◦ while left and right at ±90◦. Traversability
index τf , τfl, τfr, τr, τl are computed for the five regions, higher index repre-
sents higher safety and traversable area. The rover chooses the higher index
and will turn the wheel for that region, if two or more regions have equal
value, closest region and so smallest turn angle is preferable. Since five regions
are present around the robot, a fuzzy table with five fuzzy linguistic sets is
establish; HARD-LEFT, LEFT, ON-COURSE, RIGHT, HARD-RIGHT.

• Velocity v is chosen based on the value of τmax of the Traversability Index
τ in the chosen region. Depending on the values of τ different velocity are
imposed:

26

2.7 – Traversability Map

– If τmax is POOR, then v is STOP

– If τmax is LOW, then v is SLOW

– If τmax is MEDIUM, then v is MODERATE

– If τmax is HIGH, then v is FAST

2.7.3 Advance path planning using Traversability index

Advanced treatments were done in literature, where distinction between local,
regional, and global Traversability are made [20]. Local traversability is related
with obstacle detection and surface softness with the use of the sensors, regional
traversability despite uses camera images for categorize the terrain, while global
traversability index is obtained from the terrain topographic map, based on recog-
nition of mountains, crates and so on, like in topological navigation, nature-feature
are used.
All of this three Traversability index has got four linguistic labels {POOR, LOW,
MODERATE, HIGH}, corresponding to: unsafe, moderately-unsafe, moderately-
safe, safe.

• Local Traversability is used up to 0.5 meters, so very close to the robot.
It has got four fuzzy sets POOR, LOW, MODERATE, HIGH that depend
of the two paramenters: distance do from the closest obstacle, categorized as
VERY-NEAR, NEAR, FAR, and surface softness γ represented by SOFT,
MEDIUM, HARD [20]. The combination of these two inputs give the Local
index represented in figure 2.13.

• Regional Traversability Index covers a zone up to 5 meters and takes
into account pysical properties of the terrain, such as slopes and roughness,
that are extracted from camera images. As told before Terrain Roughness is
defined using two parameter, rocks size and rocks concentration, that gives us
four output fuzzy sets SMOOTH, ROUGH, BUMPY, ROCKY, figure 2.14(a).
Now, combining terrain roughness and terrain slopes, regional traversability
Index is find, figure 2.14(b).

27

Navigation

Figure 2.13: Rule set for Local Traversability Index [16].

(a) Rule set for Rocks Concentration. (b) Regional Traversability Index.

Figure 2.14: Rule set for Regional Traversability

• Global Traversability Index operates up to tens of meters resolution and
is based on terrain map. From an image representing all the environment,

28

2.7 – Traversability Map

position of obstacles such as mountains, crates and in general natural features
are extracted. Detection of hill/mountain peaks are identified by algorithm,
like counter detection and so on [21]. This information are translated into a
fuzzy linguistic sets for constructing the Global Traversability Map, that for
each area is classified as POOR, LOW, MODERATE, HIGH, that indicates
the quality of the traversable area. An important consideration can be made
on global map, since they are global every obstacle is detected in a whole,
different traversability index to the same obstacle can be present. For examples
a mountain has a POOP traversability on the peak, while getting down the
traversability index increases because of the decreasing slope, figure 2.15.

Figure 2.15: Traversability map of a mountain or hill [16]

Conclusion

Making data fusion between prior and posterior data’s, a construction of a global
map of the obstacles and of the area around the robot is created. In the global
map representing the obstacles, a grid of the image is extracted and each grid is
classified based on the lowest Traversability Index in that area, figure 2.16.

Having the map in figure 2.16, we can run a path planning algorithm where
only the high traversable area are considered and the low/poor one are considered
as obstacles.
Reconducting the problem of path planning on a grid map we can use all the
algorithm based on node distance graph, remember that having the occupancy
grid or space configuration representation both can be easily convert in a node
distance graph.

29

Navigation

Figure 2.16: Traversability grid on a map [16].

30

Chapter 3

State of the Art

In this chapter, we are going to review the state-of-the-art approaches to the
methods and algorithms used for path planning.
Navigation of robots and rovers are done by following the two mainly steps of
localization and path planning. The first one, localization, was deeply discussed in
chapter 2, while the second, path planning, is deeply investigated in this charter.

The path planning is firstly done by evaluating the obstacles position and then
create a path that avoid them. In chapter 2 the mainly methods to localize the
obstacle and the rover were presented, from the environment representation and
node distance graph to traversability map used to created a 2D map grid where
each grid is basically evaluated as traversable or not for the rover.

In this chapter a review and a study on NURBS methods for path planning
algorithm generation is presented. There will be algorithm that works directly
in the configuration space and others that use occupancy grid for generating the
distance graph as input to the algorithm.
Despite, the method that will be presented in chapter 5 will used directly the
configuration space to detect the obstacle and to create a sort of traversability map,
in which regions that need to be avoided are highlighted.

3.1 Path planner Algorithms
Let’s now analyse how a path is generate by an algorithm and which kind of
algorithms are mainly used for this purpose. A path planning algorithm can work
in different ways, what distinguish one from the other is what kind of input is the
algorithm taken. In the following pages we will analyse different algorithms with
different inputs, such as maps of the obstacles or distance graphs or eighter sensors.

31

State of the Art

3.1.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is an algorithm for finding the shortest path between nodes in
a graph. Dijkstra’s original algorithm find the shortest path between two given
nodes, moreover in literature there are many versions and modifications of this
algorithm.

The algorithm requires as input a node distance graph with all the information
regarding the distances between nodes. Time complexity of the implementation
is O(e + v)2, where e are the edges and v are the nodes. Additional requirement
is memory for storing the found path, bigger graph imply higher complexity and
more memory space.

The algorithm starts with initializing all the distances between nodes to infin-
ity, while the start node for definition has got distance equal zero. The second step
is to store in a vector all the nodes already visited to not visit them again, and
finally to loop on all the neighbours of each node for finding the closest.
A basic algorithm can be seen below [9]:

1 %1 Step (I n i t i a l i z a t i o n)
2 Set s t a r t d i s t anc e to 0 , d i s t [s] = 0
3 Set a l l the other d i s t c n c e s to i n f i n i t e , d i s t [i] = i n f i n i t y
4 Set a vec to r c a l l e d p r edec e s s o r to 0 , pre [i] = 0
5

6 %2 Step (Create v a r i a b l e f o r s t o r i n g nodes)
7 Ready = {}
8

9 %3 Step (loop f o r ne ighbors)
10 FOR loop u n t i l a l l nodes are in Set_nodes
11 S e l e c t node n with s h o r t e s t d i s t ance that i s not in Ready
12 Ready = Ready + n
13

14 FOR each neighbor node m of n
15 IF d i s t [n]+edge (n ,m) < d i s t [m] %eva luate s h o t e s t path
16 d i s t [m] = d i s t [n]+edge (n ,m)
17 pre [m] = n

Let’s apply the previous algorithm in a real node distance graph, analysing all
the passages. Let’s start by analysing figure 3.1 and figure 3.2 images that show in
order all the steps and updates that the algorithm makes to each node [9].

32

3.1 – Path planner Algorithms

Figure 3.1: Dijkstra’s algorithm step 0 in step 1

At the begin, the Ready set is empty and the algorithm stats imposing the Start
node distance equal to zero and the others to infinity. Then, as show in step 1,
the closest node S is taken, which will be the Start node with zero distance for
definition. Node S is added to Ready set to not consider it again and a loop in its
neighbour is performed to calculate the distances from it to nodes; a, c, and d by
recording its predecessor and the relative distance by taking into account the sum
of the edges needed to get to that node.

Next, in step 2, it is to consider which among the nodes not yet present in
Ready is the closest, considering nodes a, b, c, and d. The closest will be c with
distance 5, Ready = {S,c}. The table is updated according to the node c evaluating
the distances from it and updating the predecessor accordingly. In step 3 we repeat
the same steps as before, choosing the node d as closest, Ready = {S,c,d}. In step
4, since al the neighbours were visited, the algorithm returns to its predecessor,
in this case node c, and evaluates the closest from it, following the same passages.
The algorithm terminates when all nodes are present in Ready.

33

State of the Art

Figure 3.2: Dijkstra’s algorithm from step 2 to step 5

34

3.1 – Path planner Algorithms

When all nodes are present in Ready we found out a table like in figure 3.3,
where all nodes S,a,b,c,d with their shortest distance to its predecessor are stored.
In figure 3.3 an examples of path from node S to node b in presented [9].

Figure 3.3: Shortest path calculation

35

State of the Art

3.1.2 A⋆ Algorithm
A⋆ algorithm is very similar to Dijkstra. It is a heuristic algorithm for computing
the shortest path from a given start node to a given goal node.
Drawbacks similar to Dijkstra are present, storing intermediate paths, variables,
and nodes take up memory. Complexity becomes O(k · logk(v)) for v nodes with
branching factor k and in worst case becomes quadratic.
The algorithm, in addition to the distance graph, requires a parameter called lower
bound, which represents a heuristic value that estimates the cost of the cheapest
path from a node n to the goal.
For this reason A⋆ is an informed search algorithm, or best-fit search. It is
formulated in terms of weighted graph, which aims to find a path having the
smallest cost (least distance travelled). The calculation of the cost is done summing
two terms; cost of the path to reach a node n plus an estimate of the cost required
to extend the path all the way to the goal from that specific node n.
In mathematical terms:

f(n) = g(n) + h(n)

where:

• n is the next node of the path.

• g(n) is the cost of the path from the start node to n.

• h(n) is a heuristic function that estimates the cost of the cheapest path from
node n to the goal.

The heuristic function is problem-specific and is always underestimate, and if it is
admissible, so is never overestimates the cost, it will return a least-cost path from
start to goal.

A⋆ has three mainly properties:

• Admissible: If a solution exists, it is an optimal one.

• Complete: A⋆ is also a complete algorithm, meaning if a solution exists the
path is found in a finite amount of time.

• Optimal: A⋆ is optimally efficient for a given heuristic optimal search algo-
rithm. No other optimal algorithms will expand fewer nodes and find a better
solution.

Consider figure 3.4, where a distance graph is represented with their relative
distances and each node has its own lower bound distance to goal, notice that such
lower bound is always an underestimate of the real distance to the goal b.

36

3.1 – Path planner Algorithms

First step is to consider all distances from the start node S to its nearby nodes, in
particular starting from S we have three choices:

• {S,a} with min. length 10 + 1 = 11

• {S,c} with min. length 5 + 3 = 8

• {S,d} with min. length 9 + 5 = 14

Since we are using a "best-first" algorithm, the shortest estimated path will be
{S,c}, the next expansion from node c will be:

• {S,c,a} with min. length 5 + 3 + 1 = 9

• {S,c,b} with min. length 5 + 9 + 0 = 14

• {S,c,d} with min. length 5 + 2 + 5 = 12

It turns out that {S,c,a} is the closest, so the expansion from node a is:

• {S,c,a,b} with min. length 5 + 3 + 1 + 0 = 9

Figure 3.4: A⋆ example

The algorithm terminates when goal node b is reached. The shortest possible path
is {S,c,a,b}, and the corresponding distance is: dist = 9

The timing complexity of the algorithm depends of the estimate of the lower
bound, closer is the estimates to the real distance shorter will be the execution
time.

37

State of the Art

3.1.3 Potential Field Method
The previous two algorithms take as input a node distance graph, let’s take a look
to methods that use directly as input the environment representation, in particular
configuration space representation.

Potential Field Method or PFM generates a map with virtual attracting and
repelling forces. Start point, obstacles and walls are repelling forces since the
robot must avoid these objects, while goal position is attracting; force strength is
inversely proportional to object distance. Robot simply follow the force field, such
as a charge particle moves in an electric field.
Figure 3.5 represents the distribution of a potential field in the environment. In

Figure 3.5: Potential Field

general PFM generates a total force on the robot depending of its location, it can
be expressed as:

U(q) = Uatt(q) + Urep(q)
where,

U(q) = artificial potential field
Uatt(q) = attractive field
Urep(q) = repulsive field

38

3.1 – Path planner Algorithms

We can pass from the potential field to the force by considering physics formula.
The above potential field generates a force F (q):

F (q) = −∇U(q) = −∇Uatt(q) · ∇Urep(q)

F (q) = Fatt(q) + Frep(q)

where,
F (q) = artificial force

Fatt(q) = attractive force

Frep(q) = repulsive force

PFM can be seen as sum of an attractive component and a repulsive one [15]:

Attractive Potential: It is like a convex set, a positive paraboloid that tends to
zero when the robot gets closer to the goal, figure 3.6(a):

Uatt(q) = 1/2ξ∥q − qgoal∥2

Fatt(q) = −ξ(q − qgoal)

Repulsive Potential: Creates a potential barrier around obstacles that cannot
be crossed by the robot, figure 3.6(b):

Urep(q) =
1/2η(1/p(q) − 1/p0)2 if p(q) ≤ p0,

0 if p(q) > p0.

Frep(q) =
η(1/p(q) − 1/p0)1/p2(q)∇p(q) if p(q) ≤ p0,

0 if p(q) > p0.

where,
η −→ Positive scaling factor

p(q) = minq∈Cobstacle
∥q − q

′∥ −→ Distance from postion q to obstacle C

p0 −→ Positive constant of the Obstacle C

In figure 3.6 [15], the total potential field is represented.
This method has an important drawback, sometimes the robot can get stack in

local minima. Local minima are points that has zero force, where the attractive
and repulsive total force is zero. In these regions the robot will stop and will never
reach the goal.

39

State of the Art

Figure 3.6: Combination of repulsive and attractive potential

3.1.4 Wandering Standpoint Algorithm

It is an algorithm for local path planning that uses as input distance sensor measure-
ments. The algorithm is very simply, the robot simply try to reach the goal point
in a direct line and when an obstacle is detected with the robot’s sensors, turns
left or right depending of the smallest angle and continue with boundary-following
around the obstacle until goal direction is free, figure 3.7.
A drawback arises when the environment has many obstacles, the robot continues
with boundary-following and never reaches the goal.

Figure 3.7: Wandering standpoint [8].

40

3.1 – Path planner Algorithms

3.1.5 Bug Algorithms
Bug algorithms have mainly three kind of versions: Bug1 [22], Bug2 [22] and
DistBug [23].

These algorithms for local path planning guarantees converges and will return
a path if exits or reports if the goal is unreachable. Inputs for algorithms are
Odometry (sensor such as encoder wheel), goal position, and touch sensors for Bug1
and Bug2, while distance sensor for DistBug.

Bug1 working principle: The robot drives straight towards the goal until
an obstacle is hitted (hit point), then it proceeds into boundary-following recording
the shortest distance to goal (leave point) and when the hit point is reached again
it drives to the leave point continuing straight to the goal, figure 3.8.

Bug2 working principle: The robot traces an imaginary straight line M from
the start position to the goal and follows it until an obstacle is touched (hit point),
then boundary-following is executed until a point on the M line is reached (leave
point) and finally continue following the straight line M, figure 3.8.

DistBug working principle: Drive straight toward the goal until an obsta-
cle is reached, then boundary-following until the goal is visible again or there is
sufficient space toward the goal, continue straight for that point (leave point). If
no point is found (leave point) the robot will reach the hit point, meaning the goal
is unreachable, figure 3.9.

Figure 3.8: Bug1 (left) and Bug2 (right) comparison [24].

41

State of the Art

Figure 3.9: DistBug algorithm [24].

3.2 Path planner with NURBS
NURBS are a particular kind of curves where their shape can be controlled by
particular points, a detail explanation is presented in the next chapter.
The algorithm will take as input a top-view image of the environment, and an
obstacle detection algorithm will find the obstacles directly using the configuration
space representation. Finally, a sort of traversability map, where the robot cannot
pass is created, and a path is generated through an algorithm using NURBS curves.
The algorithm uses some features of the previous methods, such as boundary-
following, imaginary curves, or attractive/repulsive effects.

42

Chapter 4

NURBS mathematics

In this chapter, NURBS mathematics will be introduced and used as basis for a
new Path Planner Method in the context of planetary exploration rover.
Path Planners based on these generalized curves have important properties, such
as lower complexity, less usage memory to store the curve, greater accuracy respect
to other curves of same degrees, and very smooth trajectory which always admits
derivative on the curve.

NURBS, states for Non Uniform Rational Basis Splines, is a mathematical
model using basis splines (B-splines) for representing curves and surfaces.
NURBS is one of the most recent and advanced methods for interpolation of points
based on spline interpolation, which generates curves with smooth and speedy
features.

4.1 Background notions on curves
Before introducing NURBS, the most generic parametrization, a review on math-
ematical curve representations and on the main methods for creating them are
presented. These concepts are fundamental to fully understand the mathematics
behind NURBS and why they can be so important.

4.1.1 Mathematical form of curves
In geometric modelling, a mathematical branch for the representation of an object’s
geometry, there are maily three forms for representing curves: parametric, implicit
and explicit form.

43

NURBS mathematics

• Parametric form: A parametric curve is defined by its parametric equations.
The number of parametric equations that express the curve depends on the
space dimension in which the curve lives.
For simplicity let’s consider a 2D plane, a curve can be expressed by the
following two parametric equations:

x = f(t) (4.1)
y = g(t) a ≤ t ≤ b

where the x-coordinate and the y-coordinate of a point on the curve are
expressed as a mathematical function of a parameter t, that takes value in a
closed interval t ∈ [a, b], usually normalized as t ∈ [0,1].
It is intuitive to understand that by changing the parametric value t is possible
to move along the curve, from the start point (t = 0) to the end (t = 1), this
will set the direction of travel.

Consider the circle in figure 4.1, having radius 1, the parametric form would
be:

x = cos(t) (4.2)
y = sin(t) 0 ≤ t ≤ 2π

The parametrization is not unique and many more can be found.
Equation (4.2) can be written in a more compact notation:

F = (x(t), y(t)) = (cos(t), sin(t)) 0 ≤ t ≤ 2π (4.3)

where F represents a function which express the pair of coordinates of a point
on the curve.
Using parametric form, derivatives of equation (4.3) become:

F ′ = (x′(t), y′(t)) = (− sin(t), cos(t)) 0 ≤ t ≤ 2π (4.4)

Functions x(t) and y(t) are assumed to be continuous with a sufficient number
of continuos derivatives. A parametric curve is said to be of class F r if the
function F has continuous derivatives up to order r.

• Implicit form: The curve is expressed by an implicit equation of the form:
f(x, y) = 0, representing an algebraic equation.
f(x, y) represents the implicit relation between x and y, and can have different
degrees: linear, quadratic, and so on.
Let’s have a look on how the same circle can be expressed in implicit form:

f(x, y) = 0 −→ x2 + y2 − 1 = 0 (4.5)

44

4.1 – Background notions on curves

• Explicit form: Explicit form is a particular case of the two previous repre-
sentations. The independent variable t can be expressed as a function of x
and y. The coordinates of a point will take an explicit form:

y = H(x) or x = K(y) (4.6)

Figure 4.1: Circle of radius 1 in a xy plane

The parametric and implicit form will often be used to represent B-Spline polyno-
mials and generic curves.

4.1.2 Methematical methods for creating curves
Different mathematical methods for creating curves are present, depending on the
cases.
If the shape of the curve is already known, a prior equation can be directly asso-
ciated, like for the circle example above. In the other hand, often only points in
2D or 3D plane are present and tracing a curve that interpoletes or approximates
them is necessary.

The need for interpolation of points comes out and four mainly classes of interpo-
lation exist in mathematical modelling:

• Piecewise constant interpolation: It is the simplest method and consists in
taking as estimate of a point its specific value, assigning it to its neighbourhood.
It is preferable in terms of speed and semplicity.

45

NURBS mathematics

• Linear interpolation: It is the mainly method used when a straight line
need to pass between two points.
This kind of interpolation takes as input two different points, Pa(xa, ya) and
Pb(yb, yb), and traces a straight line through them using two terms: offset and
angular coefficient.

The general form of a line on a xy-plane is; y = ax + b, where a repre-
sents the angular coefficient while b the offset. To find it out consider two
points, Pa and Pb, and the following passages:

y = ya + (yb − ya) x − xa

xb − xa

(4.7)
y − ya

yb − ya

= x − xa

xb − xa

y − ya

x − xa

= yb − ya

xb − xa

Linear interpolation is a good choice to represent linearly the points.
Drawbacks appear when the degree is higher than one, low approximation
is present, and no differentiable points are found where two different slops
intersect.
The above drawbacks can be seen in figure 4.2, where a sin function is interpo-
lated. The linear function is the sum of different linear functions over different
intervals with non-differentiable points at the junction of two linear functions.

(a) Linear interpolation of a sin function. (b) Polynomial/Spline interpolation of a sin
function.

Figure 4.2: Interpolation examples.

46

4.1 – Background notions on curves

• Polynomial interpolation: Linear interpolation uses a linear function
while polynomial uses higher degree to interpolate points, leading to a lower
approximation error. Despite, this kind of interpolation is more complex
and computationally slower.
In figure 4.2, the sin function in now interpolated with a 6th degree polynomial
function [Wikipedia]:

f(x) = −0.0001521x6−0.003130x5+0.07321x4−0.3577x3+0.2255x2+0.9038x

• Spline Interpolation: Since interpolation of complex curves or functions
leads to high degree polynamial function, spline interpolation can solve this
problem.
In fact, using spline interpolation, single polynomial functions are used to
interpolate only finite intervals, which will then be sum up to obtain the entire
curve. This method will lead to a lower polynomial degree.
An example is shown below, when trying to interpolate the same sin function:

f(x) =



−0.1522x3 + 0.9937x, if x ∈ [0,1]
−0.01258x3 − 0.4189x2 + 1.4126x − 0.1396, if x ∈ [1,2]
0.1403x3 − 1.3359x2 + 3.2467x − 1.3623, if x ∈ [2,3]
0.1579x3 − 1.4945x2 + 3.7225x − 1.8381, if x ∈ [3,4]
0.05375x3 − 0.2450x2 − 1.2756x + 4.8259, if x ∈ [4,5]
−0.1871x3 + 3.3673x2 − 19.3370x + 34.9282, if x ∈ [5,6]

It is easy to see the differences between the two types of interpolation, polyno-
mial and spline, where the first has a degree of six while the second has got a
maximum of three.
In practice, the same interpolation with a lower degree is archive.

• Parametrization: Another method used to generate curves is to parametrize
points with an independent variable, constrained in an interval. Same operation
seen before in section 4.1.2

47

NURBS mathematics

4.2 Evolution of curves
After introducing in which way curves are generated, I will focus on spline interpo-
lation and parametrization since are the most flexible in term of computational
effort, complexity, speed, degree, and very low approximation error. These are the
reason why generic curves, and in particular NURBS, are important.

Before introducing NURBS curves, Bernstein polynomial, Bèzier curve and B-
Spline parametrization are introduced since NURBS are a generalization of these.

4.2.1 Bernstein Polynomial
Bernstein polynomials are a kind of polynomial interpolation based on a linear
combination of Bernstein basis polynomial.
Bernstein basis polynomial are polynomials of different degree with general expres-
sion:

bi,n(x) =
A

n

i

B
xi(1 − x)n−i for i = 0, . . . , n

↓

bi,n(x) = n!
i!(n − i)!x

i(1 − x)n−i for i = 0, . . . , n (4.8)

Now, Bernstein polynomial Bn can be computed using the formula below:

Bn(x) =
nØ

i=0
βibi,n(x) (4.9)

where n represents the degree of the Bernstein polynomial curve, which is given by
n + 1 basis sum of degree at most n, while βi are called weights coefficients.

Example of 3rd degree Bernstein curve
Let’s start writing its basis using the previous formulas:

b0,3 = (1 − x)3, b1,3 = 3x(1 − x)2, b2,3 = 3x2(1 − x), b3,3 = x3

As expected for a 3rd, 4(n + 1) basis are present, figure 4.3
Bernstein polynomial will be given by the summation of its basis, weighted by

beta coefficients:
Bn(x) = β0b0,3 + β1b1,3 + β2b2,3 + β3b3,3

Figure 4.4 shows a demostration of two possible Bernstein curves (3rd degree)
created using two distinct vectors as coefficients beta (weights) in an interval
between [0,1], generated by a MATLAB script:

48

4.2 – Evolution of curves

Figure 4.3: Bernstein polynomial basis (3th degree)

(a) Bernstein Curve with β =[0.1 0.9 0.1
0.3]

(b) Bernstein Curve with β =[0.8 0.1 0.6
0.1].

Figure 4.4: Bernstein Polynomial Curves

4.2.2 Bézier Curve
Bézier curves are parametric curves that use Bernstein polynomial as basis and a
set of discrete points, called control points, to weight the curves. They are expressed
by a function that uses an independent variable t ∈[0,1].
Often, Bézier curves are used to approximate real shape or to give a mathematical

49

NURBS mathematics

formulation of such curves that are too complex.
General expression of Bézier curve can be defined as follows:

q(t) =
nØ

i=0
Pibi,n(t) 0 ≤ t ≤ 1 (4.10)

where Pi are the control points, called also Bézier points, which are defined in the
space’s curve, while bi,n are the Bernstein basis defined in section 4.2.1, figure 4.3.
By connecting consecutively all the control points, the control polygon is ob-
tained, where inside can be found the parametric curve. The control polygon is a
convex polygon, this property will be inherited from NURBS.

Example of Bézier parametric curve:
From (4.10) is intuitive to understand that for a nth degree Bézier curve, n + 1
points and n + 1 Bernstein basis are needed.
Consider now a 3th (n = 3) degree Bézier curve q(t), it will be given by the
summation of four terms Pi · bi,n, where:

b0,3 = (1 − x)3, b1,3 = 3x(1 − x)2, b2,3 = 3x2(1 − x), b3,3 = x3

and
P0 = (0,0.25) P1 = (0.33,0.75) P2 = (0.67,0.33) P3 = (1,0.58)

Bézier curve q(t) will be:

q3(t) = P0b0,3 + P1b1,3 + P2b2,3 + P3b3,3

Final result can be seen in figure 4.5.

Two important properties can be seen from figure 4.5:

1. Start and end curve points always coincide with P0 and Pn, and can be written
in mathematical form as:

q(t = 0) = P0 and q(t = 1) = Pn

2. The obtained Bézier curve is always contained in the control polygon. The
control polygon is always a convex hull set.
Definition of convex hull: A set is defined as convex, if for any pair of
points, the straight line connecting them is always inside the set. In particular
if the connecting line is strictly inside the set, means that no point of the line
(except the start and the end) touches the control polygon’s contour, a strictly
convex set is present.

50

4.2 – Evolution of curves

Figure 4.5: 3th degree Bézier curve with four control points

Control points, introduced with bézier curves, gives the possibility of modifying a
curve shape by moving their position. This method is computationally easier and
simpler, both for visualizing and future changes. Despite moving one point will
modify all the curve and this is one of the mainly drawbacks. NURBS curves will
change only locally and so all the process is more controllable.

4.2.3 B-Spline Basis Functions
In sections 4.2.1 and 4.2.2, polynomial curves (Bernstein polynomial) and parametrized
polynomial curves (Bézier curve) are introduced. They offer several benefits, in
particual a simpler concept of curves and a more reliable way, despite these two
methods has some drawbacks:

• The two previous representation don’t show a local variation when changing
the β coefficients or the control points, but only a global one. Often this is an
undesirable effect.

• To pass through n points, a nth degree curve both Berstein and Bézier is
necessary. When the number of points become huge, a high degree is needed
and obviously this directly affects the computational complexity.

• Often a high degree is needed to approximate real or needed shape.

B-Spline method, as cited in the section 4.1.2, is useful to lower the degree by
considering a lower degree polynomial in a specific limited interval and then sum

51

NURBS mathematics

up to obtain the entire curve.
A cubic polynomial with three segments is shown below in figure 4.6. A spline

Figure 4.6: A piecewise cubic polynomial curve with three segments [28].

can be defined as: a composite curve created by joining with continuity polynomial
curves.
In general, to join different curves a C2 continuity is applied; last point of the first
curve must coincide with the fist point of the second curve and so on till the last,
in addition same tangent (first derivative) and same curvature (second derivative)
are imposed.

B-Spline can be divided in three types:

• Uniform B-Spline: parametrized on a [0,1] interval.

• Non Uniform B-Spline: parametrized on different intervals.

• Non Uniform Rational B-Spline (NURBS): defined as a ratio between
polynomial curves.

Let’s analyze what uniform and rational means in B-spline.

Rational or non-rational is associated with the weights of the control points.
When a curve’s control points have all the same weight, usually 1, the curve is
non-rational. Otherwise, the curve is rational.
Uniform is related with to the knot vector, this vector represents the points
where the different segments join. It is uniform when is equally spaced between its
elements, while non-uniform in the other case.
Knot vector [0,0,0,1,2,3,4,4,4] is uniform since the vector is equally spaced, while
[0,0,0,1,2,4,7,7,7] is non-uniform. NURBS can be eighter uniform or not.

52

4.2 – Evolution of curves

General definition of a B-Spline is:

S(t) =
nØ

i=0
PiNi,k(t) (4.11)

where:

• Pi : i = 0, . . . , n are the control points that control the shape of the curve.

• Ni,k(t) are the normalized B-Spline basis function, described by a degree
k, and by a non-decreasing sequence of real number, called knot vector, where
each element its denoted as knot and represents the junction points of the
different segments that generates the spline.

• k represents the degree of the Basis Spline Ni,k, while the order of the
polynomial is k + 1 (order = degree + 1).

B-Spline curves are constructed by joining different Bézier curve with a slightly
modification, the basis spline Ni,k are not the same, in particular are not Bernstein
basis but other kind of basis calculated with recursive formulas (4.12) and (4.13):

for k = 0,

Ni,0(u) =
1 if u ∈ [ui, ui+1]

0 otherwise
(4.12)

for k > 0,

Ni,k(u) = u − ui

ui+k − ui

Ni,k−1(u) + ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k−1(u) (4.13)

B-Spline basis are defined on a vector called knot vector, that will be indicated
with the letter U, which contains a sequence of non-decreasing real numbers called
knots and indicated with ui.

Fundamental constraint
The degree k, number of knots m + 1, and the number of control points n + 1 are
related by the following equation:

m = n + k + 1 (4.14)

Equation 4.14 is an important relation and it must always be satisfied for existence
of the B-Spline curve.

53

NURBS mathematics

Example
Consider a quadratic B-Spline defined on the knot vector:

U = [0,0,0,
1
5 ,

2
5 ,

3
5 ,

4
5 ,1,1,1]

and the following seven control points:

P0 = [0,1] P1 = [0.5,5] P2 = [3,2] P3 = [2,7]
P4 = [8,5] P5 = [6.5,1] P6 = [10,3]

First of all, calculation of B-Spline basis Ni,k for k = 0,1,2 is done. After, the
formula (4.11) is applied to create the B-Spline curve using the above control
points.
Results can be seen in figure 4.7, generated by a MATLAB script.

Figure 4.7: B-Spline basis and curve

54

4.3 – NURBS theory

4.3 NURBS theory
NURBS states for Non Uniform Rational Basis Splines, is a mathematical
model using basis splines (B-splines) for representing curves and surfaces.

NURBS are based on B-Spline theory, in fact they are parametric curves that use
B-Spline as basis. They are the most generic curves possible, and for this reason
are the most flexible.

4.3.1 The importance of NURBS curves
The advantages of NURBS curves are many:

• They took all the advantages present on Bèzier parametrization and B-Spline
curve, such as lower degree, control points, basis parametrization on a vector
(knot vector) and normalized B-Spline basis.

• It can interpret irregular surfaces, and very accurately depict most of the
geometry forms to achieve smooth flow effects of curves and surfaces. NURBS
gives to the designer a concept of freeform curves and surfaces.

• The NURBS curve has the advantage of inserting the new control point into
the curve segment that only affects the insertion area, and has no effect on
other line segments.

• Smooth trajectories are archive, in particular for autonomous navigation, like
planetary exploration.

• Less memory is used to store the curve, in particular respect to mesh approxi-
mation, since only its control points need to be stored.

• Grater accuracy is achieved using the same degree respect to other kind of
curves.

• Different trajectories are obtained respect to A∗ path planning algorithm.
Smooth trajectories and lower degree curves are archieved.

NURBS curves and surfaces are used in many fields, from geometry representation
in mechanical design (CAD), to engineering such as robotics and self-driving cars.
In particular areas that deal with geometry representation, both curves and
surfaces, that requires trajectory generation and smoothing.

Example of applications
In literature, many applications to real world cases are present, such as industrial

55

NURBS mathematics

design, where CAD software based on NURBS technology is a primal and funda-
mental tool for industrial designers [25].
With years, NURBS technology was applied in different area, such as mathematical
optimization, where finding a way of modifying curves and surfaces is extremely
important in terms of aerodynamics or energy consumption [26]. In company
where smooth trajectories or trajectories optimization are required, NURBS play
an important role in terms of costs, time, and resources. A relevant example is
spying industry, where autonomous robot must track a trajectory for spraying the
colour in an optimized way, optimization of colour quantity, cost, and time are
keys of such kind of applications [27].

Now, in this thesis, NURBS curves are applied to design and draw new tra-
jectories in the context of autonomous planetary exploration rover. These
curves give the possibility to achieve smooth trajectories with lower degree curves.

4.3.2 Definition and Properties of NURBS curves
NURBS curves are defined as a ratio between two polynomial curves:

r(u) =
qn

i=0 wiPiNi,k(u)qn
i=0 wiNi,k(u) (4.15)

where:

• Pi : i = 0, . . . , n are the control points that control the shape of the curve.

• wi represents the weight associated to a control point Pi, this recall the
Rational in the NURBS definition.

• Ni,k(u) are the normalized B-Spline basis function, described by a degree
k, and by a non-decreasing sequence of real number, called knot vector, where
each element is denoted as knot and represents the junction points of the
different segments that generates the Spline.
These basis are the same of the B-Spline:

for k = 0,

Ni,0(u) =
1 if u ∈ [ui, ui+1]

0 otherwise
(4.16)

for k > 0,

Ni,k(u) = u − ui

ui+k − ui

Ni,k−1(u) + ui+k+1 − u

ui+k+1 − ui+1
Ni+1,k−1(u) (4.17)

56

4.3 – NURBS theory

• k represents the degree of the Basis Spline Ni,k and of the NURBS curve,
while the order of the polynomial is k + 1 (order = degree + 1).

Formula 4.15 is defined over a knot vector U:

U = [a, . . . , a, uk+1, . . . , um−p−1, b, . . . , b] a ≤ ui ≤ b

with usually a = 0 and b = 1. As in the B-Spline, the degree k, number of knots
m + 1, and number of control point n + 1 are related by the following formula:

m = n + k + 1 (4.18)

This constraint must be satisfied to design the NURBS curve.

A more compact notation can be used, incorporating the weights and the de-
nominator in a factor called rational basis function Ri,k(u), and leave only the
dependency on the control points:

r(u) =
nØ

i=0
Ri,k(u)Pi where: Ri,k(u) = wiNi,k(u)qn

i=0 wiNi,k(u) (4.19)

Properties of the knot vector U
This vector defines shape and behaviour that the basis Ni,k(t) need to possess in
their own interval. It is a sort of weight for the basis, and it is very complex to
manipulate since a little change in its values can produce a totally different curve.
The simplest way to manipulate this vector, since its size and values depends on
the formula (4.18), and must be a non-decreasing vector, is to impose a new integer
value in an increasing way.

Another important property is the so called multiplicity of a knot value in
the knot vector. The multiplicity is the number of times a knot repeats itself
consecutively in the knot vector. Depending on it, the properties of the curve
changes, especially the curve’s class F r that define the continuity of its derivatives.
Another property that NURBS curve must have in the context of trajectories
generation is that the initial point and the end point of the curve must correspond
to the start and goal point of the robot’s path. These constraints are imposed by
the multiplicity of the first and last value of the knot vector, that has be equal to
the order of the generated NURBS.
Having a NURBS’s degree of thre, means order four, the knot vector U:

U = [0,0,0,0, x1, x2, ..., xn,1,1,1,1]

57

NURBS mathematics

must have this shape, the zero’s and one’s are repeated exactly four times, as the
order.

It is intuitive to see that B-Spline and NURBS are more efficient and complete.
It can be easily manipulated to adapt the curve by changing the control points
position (B-Spline) and their relative weights (NURBS). Since NURBS has got
the advantage of changing the curve’s shape without changing the control points
position it is clearly a more reliable and efficient method, which gives one more
degree of freedom in manipulating the curve.

Example and comparison between B-Spline and NURBS

I developed a MATLAB code that shows the advantages of using NURBS de-
spite of B-Spline.
Both curves use the following knot vector U:

U = [0,0,0,0,
1
4 ,

2
4 ,

3
4 ,1,1,1,1]

and the same control points position. Moreover, NURBS has one parameter more
that represents the weights of the control points, W = [1,1,0.5,1,1,1,1].
A degree of three is chosen and the NURBS generated will have order four, in fact
the multiplicity of the first and last knot is four.

Image 4.8 shows the NURBS/B-Spline Basis, while figure 4.9 the two curves.
Since in the NURBS basis the factor qn

i=0 wiNi,3 is present, the i-th weight will
affect the i-th Ni,3 base in its shape. In particular, since the weight vector has got
only ones with only 0.5 in the third position, all the bases will be the same except
for the third one.

A similar discussion can be made on the two curves, figure 4.9, B-Spline curve
represented in red has got all the control points weights equal to 1, while the blue
one, the NURBS curve, since has got 0.5 on the 3rd position of W, will be less
affected by the 3rd control point, the one in position (3,2).

This slightly modification can be useful in case around of the third point (po-
sition (3,2)) there is a massive object or valley or a particular soft terrain, in
general every situation that can put the rover into a dangerous situation. To avoid
the region, the weight associated with that specific point can be changed without
changing its position.
The idea is to put the control points exactly on the obstacles or in specific regions
around them. The control points as can be seen in figure 4.9 has two effects, the
first is to attract the curve to its neighbourhood, and the second is to have a

58

4.3 – NURBS theory

Figure 4.8: Comparison between cubic NURBS and cubic B-Spline Basis

Figure 4.9: Comparison between cubic NURBS and cubic B-Spline curve

repulsive effect on the curve. By playing with two kind of behaviour the curve can
be adapted for path planning purpose, avoiding obstacles.

59

60

Chapter 5

Algorithms and Methods

This charter will discuss about methods and algorithms developed for implementing
a completely new path planner for planetary exploration rover, that can be eighter
applied in normal robot navigation.

The implementation of the new path planner method is based on three subsystems:

1. Obstacle detection algorithm.

2. Graphic Viewer (based on OpenGL).

3. Path generation algorithm based on NURBS mathematics.

5.1 Obstacle detection
The implementation of the algorithm is based on standard computer vision, in
particular using the OpenCV library and is written in C++.

OpenCV is an image processing library. It contains a large collection of image
processing methods. Typically these functions are used to manipulate images with
several types of transformations.

The algorithm takes as input a top-view image of the surrounded environment
around the rover and provides as output a txt file, which contains for each row the
information of a single obstacle. In particular, three parameters that describe the
position of an obstacle: x-coordinate and y-coordinate of the obstacle’s center and
its radius.

61

Algorithms and Methods

5.1.1 Implementation
The working principle is very simple, the images is read, saved and manipulated as
a matrix, encoded inside a Mat object variable.

Mat object is basically a class with two data parts: the matrix header (containing
information such as the size of the matrix, the method used for storing, at which
address is the matrix stored, and so on) and a pointer to the matrix containing
the pixel values (taking any dimensionality depending on the method chosen for
storing). The matrix header size is constant, however the size of the matrix itself
may vary from image to image and usually is larger by orders of magnitude.

Each cell of the matrix represents a specific pixel of the image.
A flowchart of the implementation method is showed below in figure 5.1, and a
detailed analysis is done in the following pages.

Figure 5.1: Flowchart of the Obstacle Detection Algorithm.

Procedural passages

The algorithm is developed in mainly five steps:

1. Read and Save the image: First of all, the image is read and save directly in
a Mat object. If the operation doesn’t return an error, the algorithm proceed
further, otherwise it will end with a failure error.

2. Gaussian Blur Filter: Now a Mat variable will represent our image in a
matrix format, where each position of the matrix corresponds to a pixel of the
image, and takes a value between0 0 to 255. A Gaussian Blur filter is applied

62

5.1 – Obstacle detection

to the image, means that depending on the specified parameter’s filter, it will
filter out the high frequencies in the image, and distortions will be reduced.
The Gaussian Filter works like a low pass filter, deleting the high frequencies
depending on its cut frequency. Gaussian Blur will return a grey-scale image.

In figure 5.2, the gaussian blur is applied to an image of mars surface, Hardley
crater taken from ESA.
The produced Blur image has less noise since the high component are reduced.
This kind of operation is based on gaussian function distribution:

G(x, y) = 1√
πσ2

exp− x2+y2
2σ2 (5.1)

where x is the distance from the origin in the horizontal axis, y is the distance
from the origin in the vertical axis, and σ is the standard deviation of the
Gaussian distribution. Having a grey-scale pixel values with a standard
deviation of σi, after a blur filter with a standard deviation of σb, the reduced
standard deviation σf will be:

σf = σi

σb2
√

π
(5.2)

Figure 5.2: Gaussian Blur filter on the Hardley crater, martian’s surface.

3. Edge Detection: This step will detect the edges in the image, Canny
function of OpenCV is used to detect this kind of features. Canny Edge
Detection is an edge detection operator that uses a multi-stage algorithm to
detect a wide range of edges in images. It detects the pixels at which the
image brightness changes sharply, or discontinuities are present. Depending on
the parameters passed to the canny function, different edge can be detected,

63

Algorithms and Methods

in particular edge length and intensity detection can be tuned to only detect
the needed edges.

The canny algorithm works in four steps:

(a) Find the intensity gradients in the image, means discontinuities and
brightness changes.

(b) Apply a gradient magnitude thresholding to get rid of spurious response
to edge detection.

(c) Apply double threshold to determine potential edges.
(d) Track edge by hysteresis, suppressing all the other edges that are weak

and not connected to strong edges. This stage decides which are all edges
are really edges and which are not. For this, we need two threshold values,
minVal and maxVal. Any edges with intensity gradient more than maxVal
are sure to be edges and those below minVal are sure to be non-edges,
so discarded. Those who lie between these two thresholds are classified
edges or non-edges based on their connectivity. If they are connected
to "sure-edge" pixels, they are considered to be part of edges [Canny
documentation]. Otherwise, they are also discarded, figure 5.3.

Figure 5.3: Hysteresis threshold in canny detection.

The edge A is above the maxVal, so considered as "sure-edge". Although
edge C is below maxVal, it is connected to edge A, so that also considered
as valid edge and we get that full curve. But edge B, although it is above
minVal and is in same region as that of edge C, it is not connected to any
"sure-edge", so that is discarded. So it is very important that we have to
select minVal and maxVal accordingly to get the correct result [Canny
documentation].

64

5.1 – Obstacle detection

Example of application applied to gaussian blur image obtained in the
previous step is show in figure 5.4.

Figure 5.4: Canny Detection and Canny dilate for robustness.

On the left of figure 5.4, a binary image is obtained by applying the canny
algorithm in which are highlighted the edges detected. On the right the same
image is represented, but the edges are wider for robustness purpose, to avoid
the situation of a non-detection of small edges by the rest of the algorithm.

4. getObstaclePosition function: This routine, schematize in the flowchart 5.5,
will save the coordinates of the obstacle’s centers with their own radius on
a txt file. The canny image obtained at the previous step (Binary image)
is the input of the function to extract all the closed contours of obstacles.
Only parental contours are found, means that if an obstacle is contained
within another detected contour it will be ignored since is a fictitious case,
obstacle in an obstacle. After the extraction of all the contours, a for loop is
perform on each contour and a convex hull approximation is made, figure 5.6.
Having a convex hull is more simple to perform the center and the maximum
distance from it thought basis mathematical formula. After computing the
x-y coordinate of the center and its radius, a save is performed into the file.

Figure 5.5: Flowchart of getObstaclePosition function.

65

Algorithms and Methods

Figure 5.6: Convex hull of the detected obstacle, in black.

5. Save an image of the obstacles: Here simply the detected obstacles are
printed on the original image, figure 5.7. In green are highlighted the contours
of the obstacles, then a red star represents the centers and a blue circle the
circumference that inscribes the obstacle. Next to the image can be seen in
what format is the txt file written. In each row of the file we will have three
parameters for each obstacle; x,y and r. The radius values are rounded up
with the ceil function to have an integer value.

This is mainly how the implementation to detect the obstacles works. Obviously,
the algorithm takes care of the image’s dimension, and convert the position of pixels
in the correct format used by the path planner algorithm. The input size image
can be any, the returned position is expressed in a specific size format, 1000x600
used from the path planner. The algorithm internally adapts any size of the input
image to a predefined size, 1000x600, in which the obstacles are detected.

66

5.2 – Graphic Viewer based on OpenGL

Figure 5.7: Detected obstacle with next to it the txt file.

5.2 Graphic Viewer based on OpenGL
OpenGL is an application programming interface (API) that allows the user to
draw and create 2D and 3D graphics. It is used as an external library that can be
imported in the programming environment.
OpenGL has several functions to visualize, render, and manipulate figures and
points.
The library provides a software interface between a programming language, such
as C++ in this case, and the hardware. OpenGL works pretty well for the repre-
sentation of curves and points since it works on manipulating single points, in fact
by joining points it is possible to create complex shapes of any kind.

5.2.1 Introduction to OpenGL
Let’s look to the main function used to visualize the paths, obstacles, and rover’s
position.
For simplicity let’s focus on 2-D representation, since is the main used in this thesis.

There are three mainly library developed for OpenGL programs, which
are used in this thesis:

• OpenGL basic library: It is a collection of functions useful for specifying

67

Algorithms and Methods

graphics primitives, attributes, geometric transformations, viewing transfor-
mations, and many other operations.
Are prefixed with gl letters followed by the function name, with capital first
letter:

glClear glMatrixMode glColor3f glVertex

The above functions require one or more parameter as symbolic constant
specifying, for instance, a parameter name, a value, or a mode. All such
constants begin with the uppercase letters GL, such as:

GL_2D GL_RGB GL_PROJECTION GL_POINTS

The OpenGL functions also expect specific data types. For simplicity, OpenGL
defines data types that have the same size on every machine, totally different
despite integer, double and float in classical definition on programs:

GLboolean GLint GLfloat GLdouble

• OpenGL Utility (GLU): Provides routines for setting up views and projec-
tion matrices, describing complex objects with line and polygon approxima-
tions, surface-rendering operations or other complex tasks. All GLU functions
name start with the prefix glu, like gluOrtho2D(), used to set width and height
of the projected 2D environment.

• OpenGL Utility Toolkit (GLUT): It provides a library of functions for
interacting with any screen-windowing system. The GLUT library functions
are prefixed with glut, and contains also methods for describing and rendering
quadric curves and surfaces.
Since GLUT is an interface to other device-specific window systems, the pro-
grams will be device-independent.
Some examples are:

glutInit glutCreateWindow glutDisplayFunc glutMainLoop

5.2.2 Integration with the path planner
The path planner algorithm and the graphic render are executed within the same
thread, having in common the same main function.
They are executed together for a graphical reason, since without this operation it is

68

5.2 – Graphic Viewer based on OpenGL

impossible to visualize the path and the obstacles. It is important to remark that
the path planner algorithm is completely independent and works without OpenGL.

First, the main function is described in detail, figure 5.8.
The configuration is very simple, details of each block is presented:

Figure 5.8: Main function of the program.

1. Path generation: The algorithm developed in this thesis is executed, and it
will compute the path from the start to the goal using NURBS curves, which
the robot need to follow.

2. OpenGL initialization: First of all, an initialization on the parameters used
to display an OpenGL windows on the monitor screen is done. In this specific
case, the following function was called, using the specified order:

• glutInit function will initialize the GLUT library and negotiate a session
with the window system. Typically, is the first function we call when
rendering with OpenGL.

69

Algorithms and Methods

• glutInitWindowSize(x,y) function is used to tell OpenGL what size
the window should have. The two input parameters, x and y, represent
the width and the height in pixels of the window.

• glutInitWindowPosition(x,y) is used to tell OpenGL the location of
the displayed windows. x and y express the top-left corner position in
pixel.

• glutCreateWindows is the command that tells that a window need
to be created on the screen with given caption for the title bar. All the
previous commands can be seen in the image 5.9.

Figure 5.9: Window displayed from OpenGL [29].

• init2d() is a custom function that collects methods, which will set other
options for the display window, such as buffering, choice of colour modes,
projection type and background window colour.
A RBG (red, green, blue) colour format is used to express which colour
objects in images need to have. Usually every colour is expressed by an
integer value between 0, minimum intensity, to 255, maximum one.

A double buffer render images technique is used to refresh window
pixels, where obstacle, path, and rover position will be displayed. This
solution achieve good performance in term of FPS (frame per second) and
a continuous and smoother video is rendered, since a successive flow of
frames. Double buffer works as storage image.
To achieve high FPS and so a video without perceiving the refresh of the

70

5.2 – Graphic Viewer based on OpenGL

pixels, a refresh rate frequency higher that the human eyes is mandatory.
For this reason, when an image is displayed on the screen, the program
simultaneously evaluates the next frame and saves it in a buffer memory A
and when the next frame needs to be displayed in the screen, OpenGL will
take the image previously computed from the buffer A and in parallel will
be evaluated and saved the next image, putting it in the buffer memory B.
This swap of buffer between A and B will increase in a dramatic way the
video frame rate, otherwise without this technique the displayed video
will be slow, and a lag effect will be visible to the user.

Buffer swapping is done by the command:

glutSwapBuffers()

Double buffer technique is schematize in figure 5.10.

Figure 5.10: Double buffer mechanism for higher FPS.

Other two important settings are done in the init2d function:
Thought the commands:

glMatrixMode(GL_PROJECTION)
gluOrtho2D(0.0, width, 0.0, height)

glClearColor(0.0f, 0.0f, 0.0f, 0.0f) and
glClear(GL_COLOR_BUFFER_BIT)

is set in which way OpenGL should display the images on the screen.
In OpenGL, 2D representation is particular case of 3D, in fact can be

71

Algorithms and Methods

seen as a projection on a plane, it will treat each image as a projection
on a plane, where the plane is represented by the screen. The second
command is used to indicate that the projection area has a particular size,
1000x600.
Thought the last command, the definition of the window background
colour is set. The first three parameters are 0’s and represent the black
colour in a RBG format. This command will save the colour in the buffer
bit and used on the displayed window.

3. glutDisplayFunc: It is an internal OpenGL function that must be used to
display objects on the screen. Command:

glutDisplayFunc(display)

will accept as input a callback function (display callback). Function display
will contain the description of the objects that have to be rendered, such as
path.
This particular function call can be seen redundant since it is a call to a function
nested within another function. This strategy is used because glutDiplayFunc
is a particular function that will be periodically called until the user decides
to end the program.

4. Timer functions: A timer is a function that is called periodically till the
end of the program every x seconds or milliseconds.
Let’s make an example:
Command line:

glutTimerFunc(x,timer,0)

will create a timer that every x milliseconds calls the function timer. Every
x milliseconds OpenGL will execute in parallel the function timer. This
mechanism is very useful and is exploited to change global variables in the
program, that are used from the display function, which actually display on
the screen objects that will change using the timer periodicity.

5. glutMainLoop: This is the function that will put our program in an infinite
loop till the user will stop it. Since the program enters in a loop mode, is
clearly understandable that it has to be the last function called in the program.
When glutMainLoop in executed, OpenGL will remain stack in a loop where
only particular function will be called, such as timers and glutDiplayFunc
functions. Each loop duration depends on the time that the program needs to
completely executes the loop. Is now easy to understand that for dynamic

72

5.2 – Graphic Viewer based on OpenGL

sequence of images, means basically a video, displayed images in high refresh
frequency that are different frame to frame is necessary.
All codes regarding the dynamical change of the image must be put only
in those function that glutMainLoop will call, this the reason why the path
generation algorithm is executed as a function inside the display callback.

In the program there are three different timers; timer, timer1, and timer2.

Timer: The timer function will evaluate when the rover is in a waypoint by
continuously checking, every 10 milliseconds, its position along the path. If the
rover is in a waypoint the global flag wayPointsFlag is set true. The flowchart 5.11
describe clearly the process.

Timer1: The timer1, every 100 milliseconds, will change the displayed dimension
of the rover to obtain a pulse effect of its position.

Timer2: The timer2 continuously checks, every 3 seconds, when the global flag
wayPointsFlag is true. When positive evaluation is obtained the timer2 will call
the path generation algorithm (pathGeneration function) and at the end will set
the previous flag to false.
Flowchart represented in figure 5.12.

Figure 5.11: Timer/Timer0 function.

73

Algorithms and Methods

Figure 5.12: Timer2 function.

74

5.3 – Path Generation

5.3 Path Generation

The core of the program in naturally the path planner algorithm, which is imple-
mented as a function, pathGeneration function.

Due to OpenGL, the algorithm is called as a function by the timers at the start
and in the waypoints.

The algorithm is written in C++ and is based on SISL library, which has
been gradually developed and enhanced for more than three decades by the geom-
etry group at SINTEF in Oslo and on a SISL toolbox developed by Antonino
Bongiovanni.

5.3.1 Introduction on SISL library

SISL stands for Sintef Spline Library and is a geometric toolkit to model with
curves and surfaces. It is a library of C functions to perform operations such as the
definition, intersection, and evaluation of NURBS (Non-Uniform Rational B-spline)
geometries. Since many applications use implicit geometric representation such as
planes, cylinders, etc. SISL can also handle the interaction between such geometries
and NURBS.
This library is written K&R C style for historic reasons and contains a thousand of
function for creating, manipulating, and evaluating curves and surfaces. It is easily
to understand that since thousands of functions are present is difficult to deal with
and for this reason a manual is provided.

In the other hand, SISL toolbox library developed by Antonino Bongiovanni
is built on top of the basic SISL library. It is written in C++ and makes the usage
of basic SISL library easier and more understandable. Creating curves object with
attributes and methods simplifies the management of the library and can be seen
as a translation of the Basic SISL, from C to C++. It it an easy way to manage it
with improved features.

In this thesis, both libraries were used. Primary the Antonino Bongiovanni’s
library is used since classes’ structure in C++ are more reliable, understandable,
and manageable. Basic SISL functions are used in particular cases when the toolbox
does not provide it.

75

Algorithms and Methods

5.3.2 Assumption and Personal choice
A first assumption in the algorithm is to consider only circular obstacles. This
choice is done because it is easier to deal with circle for three mainly reasons:

1. From an obstacle detection point of view. It is easier to inscribe any
obstacle’s shape in a circle, finding the barycenter and the maximum distance
of the obstacle from the latest. Barycenter will become the center of the circle
and the maximum distance the radius.
This method is a brute approximation by excess, which is very conservative.
In the other hand, the best possible solution is to inscribe the obstacle is a
convex hull that will minimize the area and a better optimization of the space
environment is obtained.

2. From a fast SISL computation. In fact, SISL routines provide a description
of circles in SISL parametrization. This will end up in a very compact data
structure easily manageable and controllable by SISL routines. This is not
true for convex polygons, SISL routines does not provide any representation of
them, and a own creation will produce a complicated data structure difficult
to create and manage.

3. From a path planner point of view. It is easier to put control points
around a circle respect to a convex polygon, since a constant radius is present.

At the beginning can be difficult to deal with NURBS, since the control points
must be chosen in such a way to control the direction of the curve.

Important property: Remember from section 4.2.2, that a NURBS curve can be
inscibed in a convex polygon defined by its control points. This is a fundamental
concept that ensure the possibility of undestanding where the NURBS will go.

Figure 5.13 shows two examples of control polygons formed by the vertices; START,
P2 and GOAL. These polygons are convex and the NURBS can be found inside it.
In the first example, by controlling the weights of P1 and P2 it is possible to
avoid the obstacle. In the other hand, the second example shows a different convex
polygon; START, P3 and GOAL. Its easy to undestand that for any weights of P1
and P3 the NURBS cannot avoid the obstacle since it will be constrainted inside
the convex polygon.

In this thesis, an external circle, around each obstacle, has been added. These
external circles make possible to add control points, such as P2, that bring the
NURBS curve outside the obstacle. The external radius are initialize at a value

76

5.3 – Path Generation

Figure 5.13: Convex polygon (START-P2-GOAL) and NURBS curve in blue.

that makes the NURBS to be smooth and possibly stay away from the obstacles.
The position of P2 is not chosen at random but optimized in such a way to minimize
the number of control points. It will be explained in details later.

The latter assumption considers a divisible obstacles in the environment. Means
that each obstacle does not intersect any, overlap of obstacles are avoided.
This kind of distinction can be done in the obstacle detection algorithm. When
two or more obstacles intersect each other a bigger circle radius can be inscribed
inside these obstacles resulting to the path planner only a big one obstacle.

5.3.3 Robot dimension in the environment
To better optimize the trajectory, the robot dimension can be taken into account.
This step can be done in two different ways:

1. Radius enlargement: This can be eighter considered in the obstacle detection
algorithm or in the path planner algorithm.
In the obstacle detection, when detecting the radius, means the maximum
distance of the obstacle from its barycenter, a delta can be added to consider
the robot dimension. No more a radius r but r + delta is considered, where
delta can be the robot width. By doing this passage the real radius would

77

Algorithms and Methods

be r while the path planner will see the bigger one. The trajectory will be
evaluating taking into account a bigger obstacle and when the rover will pass
close to an obstacle, the real distance will be bigger since the real obstacle is
actually smaller.
In the path planner algorithm, the same passage can be done when reading
the .txt file and adding the same delta to the original radius.

2. Control point less sensitive: By reducing the effect of the control point,
the trajectory will be further away from the obstacle. This method is harder
since not always reducing the weight the NURBS will stay farther from the
obstacle.

An example is shown in figure 5.14, the red NURBS is affected by the position of
the red point while the blue one by the blue.

Figure 5.14: Effect of the robot dimension on the obstacle radius.

78

5.3 – Path Generation

5.3.4 Path planner implementation

The main steps of the algorithm can be summarize in the following flowchart.

Figure 5.15: Flowchart of the path planner algorithm.

79

Algorithms and Methods

In the following pages, a detail explanation of the implementation is present. The
explanation will refer to the previous flowchart and will be organized in sub-sections
to have a better organization respect to list of states.

Reading file and Initialization

As cited in section 5.1.1, the path generation algorithm takes as input a .txt file
containing crucial information regarding position and radius of each obstacle. The
output is a pointer to a NURBS object containing all the information describing
the object, like degree, knot vector, weights, control points and another pointer to
the SISL NURBS curve.

The pathGeneration algorithm is executed ones at the beginning and periodi-
cally called in the Waypoints along the trajectory.
First time, the obstacle centers and radius are read and saved in the following
variable:

1 s t a t i c vector<Eigen : : Vector3d> c t r l P o i n t s _All ;

ctrPoints_All will contain all the obstacles centers, in x-y-z coordinates. It is
defined as a local variable since only this function has to access it, and as static
since the function is called periodically and its past values need to be recorded,
otherwise a non-static variable will be destroyed at the end of the function and the
information will be lost. The variable type is a vector of Eigen::Vector3d, vector
since dynamic allocation of memory is needed and Vector3d since each center is
seen as a point in three coordinates, where x and y express the position of the
obstacle while z is set to zero.
The respective radius are saved in:

1 s t a t i c vector<int > obs\ _radius {} ;

In the other hand, when pathGeneration is called in the Waypoints a comparison
between the .txt file and the old (ctrlPoints_All) obstacles is done. If new obstacles
are detected, the local flag flagDynamicPath is set to true otherwise it will
remain false.

Flags evaluation

It this part, the algorithm will evaluate two flags; wayPointsFlag and flagDy-
namicPath. Remember that the first one, wayPointsFlag, is set true by a timer0

80

5.3 – Path Generation

function when the rover position will match with a Waypoint and consequently the
pathGeneration is called. At this point, if wayPointsFlag is true, the algorithm
will evaluate an additional flag, flagDynamicPath, set in the previous subsection,
depending if new obstacles are detected.
If flagDynamicPath is true, the algorithm will substitute the start point with the
waypoint just found, and a path will be generated from the new start to the goal.

1 c t r lPo in t s_Al l . at (0) = wayPoints . at (0) ;
2 RobotPosit ion = 0 ;

Otherwise, if false, the algorithm terminates. The pathGeneration will return
without generating any kind of path. This is done because the trajectory that
would have been generated would be the same as before.

SISL curves initialization

At this point the algorithm is ready to instantiate in memory the SISL curves
representing the obstacles and their relative external circumferences, and all the
variables for generating the NURBS. Let’s analyse the command and the variable
used for generating a NURBS SISL curve:

1. Dimension: Means the dimension where the NURBS lays, in this case three
and not two since some SISL function will only works in three dimensions.

1 const i n t dimension = 3 ;

2. Knot Vector: Having the first two control points, the knot vector can have
a predefined size m, depending on the number of control points n and on the
degree k. Remember the fundamental formula:

m = n + 1 + k

To find a knot vector that respect the previous formula, with the constraint
n = 2, degree k must be imposed:

• With degree 1, means order 2: k = 1 → m = 2 + 1 + 1 = 4.
Now the multiplicity of the knots of the vector need to be imposed, for let
the NURBS pass in the start and goal points. Having order 2 and m = 4,
and a non-decreasing vector will be: [0,0,1,1]. This vector satisfies all the
properties.

81

Algorithms and Methods

• If for absurd a degree of 2 or higher is imposed: k = 2 → m = 2+1+2 = 5.
Five values are needed in the knot vector, but the multiplicity now becomes
equal to the order, means 3, so a minimum of 3 + 3 values are needed, in
contrast with the dimension m = 5.
Is not possible to find another knot vector having only two
control points as constraint.

1 vector<double> knots {} ;

3. Degree: From the previous consideration the degree is 1.

1 i n t degree = 1 ;

4. Weights: The weights of the two control points are imposed equal to 1, and
never will be changed, since they represent start a goal position.

1 vector<double> weights {} ;
2 weights . push_back (1 . 0) ;
3 weights . push_back (1 . 0) ;

5. Degree: From the previous consideration the degree is 1.

Next, the generation of the obstacles and the external circumference are generated.
Data structure in SISL format are created, SISL objects representing the obstacle
are created defining all the variable needed, such as center, radius, degree and
dimension.

1 i n t degree = 1 ;
2 obs . push_back (make_shared<CircularArc >(2 ∗ 3 .1415926 , ax i s ,

obs_points . at (i) + Eigen : : Vector3d {(double) obs_radius . at (i) , 0 . 0 ,
0 . 0} , obs_points . at (i) , dimensionObs , orderObs)) ;

In the second line, obs is a vector that contains the pointers to each obstacle circle.
The same operation is done for creating the external circumference with the differ-
ence that the radius is: obs_radius.at(i)+safety_distance, where safety_distance
represents the gap between the two radius.

82

5.3 – Path Generation

Optimization of the external circumference

This passage is done to have only two or three near obstacles, means that the external
circumference of each obstacle intersects a maximum of one or two obstacles. An
obstacle is considered near to another if the two external circumferences intersect.
This is done to consider only small group of obstacles, since many near obstacle will
become difficult and complex to manage. Remember that external circumference is
added to optimize the path, bringing the curve away from the obstacles.
A group of maximum 3 near obstacle is the best for the algorithm.

Iterations

A for loop iteration is done until no more intersections are found. If intersections
still present after a number of safety iteration, means that probably the environment
is too complex to generate a path, and a more advanced concept of path generation
is needed.

Update NURBS curve

Update NURBS means generation of the NURBS curve using the actual variable
saved in memory. It will generate, in the first iteration, and update, in the next
iterations, effectively the SISL NURBS curve in memory with the defined variable;
degree, dimension, knot vector, control points and weights.

1 UpdateNurbs (degree , knots , weights) ;
2 gener icCurve = make_shared<GenericCurve >(degree , knots , c t r l P o i n t s ,

weights , c o e f f , dimension , degree + 1)

UpdateNURBS is a function that returns the updated knot vector given the degree
and the control points. Contains a simple logic to create a non-decreasing vector
of a predefined size.
The genericCurve variable is the NURBS object. The coeff variable is an empty
vector that is used internally from the NURBS. At each cycle the variables describing
the NURBS are updated based on the intersected obstacle and an update of the
NURBS is done.

Intersection evaluation

The updated NURBS is used to evaluate if intersections with obstacles are presents.
All the intersections are found and saved in intersections_All vector, in casual order.

83

Algorithms and Methods

1 i n t e r s e c t i o n s . c l e a r () ;
2 i n t e r s e c t i o n s = genericCurve−>I n t e r s e c t i o n (obs [j]) ;
3

4 i f (! i n t e r s e c t i o n s . empty ())
5 p o s i t i o n . push_back (j) ;
6

7 f o r (const auto &e l e : i n t e r s e c t i o n s)
8 i n t e r s e c t i o n s _ A l l . push_back (e l e) ;

In figure 5.16 are highlighted, in color yellow, an example of four points (A,B,C,D)
intersected.
Vector intersections_All will contain all four points in casual order, i.e. C,D,B,A.

Figure 5.16: NURBS intersections in points: A,B,C,D.

If intersections_All is empty, means a path from start to goal is generated avoiding
all the obstacles and no more intersections are detected, the for loop is brake and
the Waypoints are calculated from the approximative Waypoints.
Since the NURBS at each iteration changes its shape by a little variation (fig-
ure 5.22), because of the addition of control points, can happen that the previous
Waypoints calculated are no more in the path. The closest points in the path from
the approximative Waypoints are taken as definitive Waypoints.

FirstIntersectionPoint calculation

If intersections are present, the algorithm will evaluate which among all is the
first one, saving it in FirstIntersectionPoint variable, using the firstIntersection
function.
Procedure of firstIntersection function: The function will take as input the
intersection_All vector and will evaluated which among its points is the first that
the NURBS intersects, based on a geometric decision.

84

5.3 – Path Generation

Making explicit reference to figure 5.16, the function will compute four distances
measures. Point K will move along the curve, thought its parametrization, and
four distances are computed at each point K: KA, KB, KC, KD. Point K moves
along the curve and there will be one time instant where one of the four distances
will become very small (small than a defined epsilon), in this case point A.
This process is done since the intersection points are saved randomly. After point
A is detected, the function will delete point A from intersections_All vector, that
will become {C,D,B}.
Point A will be saved in FirstIntersectionPoint and its parametrization value along
the curve in the vector paramOrder.

1 Eigen : : Vector4d temp1 = f i r s t I n t e r s e c t i o n (i n t e r s e c t i o n s _ A l l ,
gener icCurve , f a l s e) ;

2 F i r s t I n t e r s e c t i o n P o i n t = {temp1 . x () , temp1 . y () , temp1 . z () } ;
3 paramOrder . push_back (temp1 .w()) ;

The above procedure can be applied recursively to find the order of the intersec-
tion points. If another run of the function is performed, point B will end up as
SecondIntersectionPoint, it will be deleted from the vector and only {D,C} will
remain, and so on.

Finally, the algorithm will evaluate throught FindObstacleFromPoint function,
to which obstacle does FirstIntersectionPoint belong, saving it for later computa-
tion.
Procedure of FindObstacleFromPoint function: It is a function that takes
as input a point and an obstacle and returns a flag depending if the point belong
to the obstacle’s circumference or not. The passage is done verifying that the
point belong in the interval: [obstacle.radius + eps; obstacle.radius − eps], like in
figure 5.17.
When the returned flag is true, the obstacle passed as input is the one that intersects
the point, point A or B in figure 5.17, the first detected obstacle is saved in a
variable called pos_first.

Evaluating obstacle

Each intersected obstacle is saved in a vector called visited. If the actual intersected
obstacle is not present in this vector, means that the NURBS intersects for the first
time this obstacle and State 1 is executed. Otherwise, if already visited, State 2
is executed.

85

Algorithms and Methods

Figure 5.17: Interval to belong in the obstacle’s circumference.

1 auto itV = f i n d (v i s i t e d . begin () , v i s i t e d . end () , p o s _ f i r s t) ;

itV is an iterator vector that returns the position of the searched element in a
vector. If the returned iterator is equal to the end of the vector, means that the
element is not present and State 1 is executed.
State 1 is executed if the following condition is verified otherwise State 2 is executed.

1 i f (itV != v i s i t e d . end ())

Approximative wayPoints calculation

When the algorithm exits from State 1 or State 2, some control points were added
to avoid an obstacle or a group of nearby obstacles that was previously detected
as first intersection and a single Waypoint is calculated and saved in variable
wayPointsClosest. Waypoints are defined in particular position along the path,
they are put immediately after overcoming an intersected obstacle or a group of
obstacles, so the path is re-calculated after passing an obstacle.
They are called approximative since they are not definitive. The NURBS curve will
change its shape iteration by iteration, and previous Waypoints may not belong
anymore to the new path.
Only at the end, when the final NURBS is generated, the definitive Waypoints will
be calculated.

86

5.3 – Path Generation

Print NURBS information

In this state, simply the information regarding the NURBS are printed to the user.
The information are: degree, knot vector, control points and weights.

This is how in general the algorithm works during the iterations. Now the process
of adding a control points from a new obstacle or to an already visited is discussed.

87

Algorithms and Methods

5.3.5 State 1
In State 1, the algorithm enters when the intersected obstacle is visited for the first
time.
The flowchart can be seen in figure 5.18.

Figure 5.18: State 1 flowchart

88

5.3 – Path Generation

Control point addition process

The first operation is to add the detected obstacle in the visited vector:

1 v i s i t e d . push_back (p o s _ f i r s t) ;

where pos_first refers to the first detected obstacle’s number.
After that, the FirstIntersectionPoint needs to be added to the control points
vector with the respective weight equal to 0.8. A weight lower that one is assign to
those points that need to have a repulsive effect on the curve.

1 c t r l P o i n t s . i n s e r t (i t + index , F i r s t I n t e r s e c t i o n P o i n t) ;
2 weights . i n s e r t (i t 1 + index , 0 . 8) } ;

The it variable stands for an iterator, pointing to the first element of the vector.

1 i t = c t r l P o i n t s . begin () ;

A function that finds the correct index where to insert the control point and its
weight in the respective vectors; ctrlPoints and weights is called.

Let’s now see how a control points is added in the ctrlPoints vector in the right
index position, done by IndexParameterOrder function.
IntexParameterOrder is a function that takes as input a vector called paramOrder
that contains all the orthogonal projections of the control points as parameters
values on the curve, and returns the index position where to add a new control point.

1 index = IndexParameterOrder (paramOrder) ;

When a new control points has to added in the vector, the algorithm firstly calcu-
lates its parametrization thought a projection on the curve, and will put this value
as last element of the paramOrder vector, figure 5.19.

The function takes the paramOrder vector as input and mainly two tasks are
done:

1. Arrangement in a non-decreasing way: Means the function will take
the last value of the paramOrder vector, that correspond to the new control
points that as to be added, and will evaluate its position in the vector thought
a comparision of each element. A non-dereasing vector is obtained:

89

Algorithms and Methods

Figure 5.19: Arrangement of the paraOrder vector.

In figure 5.19 is represented the paramOrder vector containg all the parametriza-
tion of the control points added up to here, in the last position the number
1.12 represents the control points which still needs to be added and for this
reason the function IndexParameterOrder is called, to understand the index
and to reorder the vector.

2. Return: The function return the paramOrder vector ordered in a non-
decreasing way as can be seen in figure 5.19. A second parameter is returned,
the index position where to insert the control points associated with the
parameter 1.12, in this case 3, remember that in C/C++ the starting counting
number is 0.

Finding out the index, the control point and its weight is added to the respective
vectors. After that, the UpdateNURBS is called, that will evaluate the new knot
vector based on the degree and the control points, and a new NURBS curve will
be generated with the command seen before.
Finally, a re-calculation of the paramOrder is done since the curve has changed its
shape with the addition of a new control point, and so the parametrization values
saved before are no more acceptable, since error and inversion points can occur.

paramOrder update problem: The paramOrder vector is very important.
It defines the order of the control points, and so the shape of the curve. If for
absurd two control points are swapped, a totally different curve is obtained, often
wrong.
In figure 5.20 an example of the wrong order of the control points is shown. In
the second example, figure 5.21, the grey NURBS intersects the second obstacle
while intrinsically avoiding the first. The algorithm will put two control points in
order to avoid the obstacle but doing this the updated NURBS in red will now
interest the first obstacle. A reasonable way is to do the same think by adding to
the vector other two control points. The ctrlPoints vector will have P1, P2, P3, P4
in that specific order and this will produce the blue NURBS, totally wrong, the

90

5.3 – Path Generation

Figure 5.20: Inversion of control points (a).

Figure 5.21: Inversion of control points (b).

control of the NURBS is lost.

To avoid this kind of behaviour an update of the ctrlPoints vector has to be
done, and in particular the parametrization of the projection of the control points
in the curve need to be saved. When a new NURBS is generated, the projection
process has to be repeated to update the parametrization values of the points,
figure 5.22. By doing this updating process, the control points will invert their
position base of thier parameter values (increasing way), and a smooth NURBS is
obtained, figure 5.23.

91

Algorithms and Methods

Figure 5.22: Projection of control points and the relative paramOrder vetor

Figure 5.23: Invertion of control points correction.

FreeControlPoint calculation

Here the freeControlPoint is calculated and added. It was indirectly introduced in
the images above. Let’s analyze its importance.
From image 5.24, the freecontrolPoint P2 is added to bring the NURBS in the

opposite direction.
Firstly, a projection of the center C on the curve is done to find the closest point
K. Now a segment CK is found and from it, the angular coefficient is extrapolated

92

5.3 – Path Generation

Figure 5.24: Construction of freeControlPoint P2.

to create a longer segment CQ. The intersection between segment CQ and the
external circumference is found in point P2.
The above passages are preferred because are in some sense optimal. Point K
represents how close the curve pass from C and the freeControlPoint is added
exactly in that direction to bring the closest point away fron the obstacle. This
kind of operation will minimize the number of points needed to avoid the obstacle.
The associated weight must be a number greater than 1 to attract the curve in
that direction, my choice is to put 2.

Since a new control point has be added, the algorithm will executes the same
routines as for FirstIntersectionPoint: find parametrization, find out the index,
addition of the control point, updating the NURBS and finally recalculation of the
paramOrder.

The freeControlPoint is added only if it is not contained in any obstacle. It
is an important check specially when nearby obstacles are present. This check is
done calling the function EvaluatePointInObstacle.
Procedure of EvaluatePointInObstacle: The function will take a point as
input and internally will recall the function FindObstacleFromPoint for every obsta-
cle. If for a particular obstacle FindObstacleFromPoint returns true, the obstacle’s
number is saved and the EvaluatePointFromObstacle will return that number,
otherwise if the flag will always return false, the returned parameter remains 0
from the initialization.

93

Algorithms and Methods

Evaluating the number of obstacles around

The algorithm will set two flags; flagFirstMediumPoint, flagSecondMediumPoint
and a couter cnt. Let’s refers to the image 5.25.

Figure 5.25: Gometric construction for NURBS in obstacles.

When the algorithm evaluates this kind of operation, it knows exactly what is
the first intersected obstacle (pos_first), calculated before.
In figure 5.25 the curve detects C1 as first obstacle, and put the first two control
points; P1 as FirstIntersectedPoint, and O as to freeControlPoint. From now on,
when considering nearby obstacles, the freeControlPoint is not added to the control
points vector since there are sufficient and optimize points to create a path through
the obstacles, it will add only noise.

Now intersection between external circumference C1 with the other obstacles
is performed. As can be seen in figure, C1 intersects C2 and C3. This two obstacles
are saved in a vector called VecObstacleIntersection used for next computation.
Next, segments creation is done, joining the centers; C1C2, C1C3 only.

94

5.3 – Path Generation

Flag setting: The red NURBS is figure 5.25 represents the curve that inter-
sects an obstacle when trying to reach the goal, is the fundamental passage to
understand if intersections are still present or not.
The red curve intersects segment C1C2 in M1 and C1C3 in M2, from this is clearly
understandable that the NURBS needs to pass on the half-right of the C1 obstacle
through two pairs of obstacles, C1-C2 and C1-C3.
Through firstIntersection function the algorithm understand what is the first point
intersected, M1, and so the first pair of obstacle, C1-C2, while M2 and C1-C3 will
represents the second pair. The first pair obstacle is saved in FirstMedianObstacle
variable, used for later computation.

• flagFirstMediumPoint represents that the NURBS has to pass between the
first obstacle intersected C1, and the first pair obstacle C2.

• cnt represents how many times the NURBS intersects a segments that starts
form C1, such as C1C2 and C1C2, it can be 0,1 or 2.

• flagSecondMediumPoint represents that the NURBS has to pass between the
first pair obstacle, C1-C2, and between the pair of obstacles saved in the
VecObstacleIntersection, means C2-C3.

Referring to figure 5.25, the NURBS intersects a the segment from C1, means
the flag flagFirstMediumPoint is set to true, and a counter cnt is set to 1 or 2
depending if only one or two segments are intersected, in this case 2.

If the vector VecObstacleIntersection contains more than one obstacle, the al-
gorithm will evaluate the additional flag flagSecondMediumPoint. For doing this,
intersection between NURBS and segment C2C3 is evaluated. If no intersection is
present, means the NURBS is not going in that direction, the flag will remain false,
otherwise it will be set true.

flagSecondMediumPoint is very important, and very important is to set it true
only when cases similar to figure 5.25 arises. In figure 5.26, there are two examples
where the first detected obstacle (C1) intersects two obstacles while the NURBS
has to pass only between two of them and not three.

Referring to figure 5.26 left, C1 represents the first intersected obstacle, and
when evaluating which obstacle does the external circumference intersects, two
obstacle are detected, C2 and C3. As can be seen, the NURBS must pass through
only a pair of obstacles (C1-C2), but three were detected.
The NURBS intersects only one segment from C1, so the cnt will be set to one and

95

Algorithms and Methods

the flagFirstMediumPoint is true. Despite, flagSecondMediumPoint seems to be
true since the curve intersects the other segment (C2-C3), but this behaviour is
wrong. To adjust this behaviour in the left picture the parametrization is involved,
means that point B must always be found for first, and then point A. Looking at the
parameter A and B along the curve is easy to impose as condition; parametrization
value of B must be lower that A.

Now, another case can arise, picture on the right. The pametrization of the
two point A and B seems to be fine, but this condition is not sufficient and one
more condition to turn true the flagSecondMediumPoint is necessary. This condition
considers whether the two obstacles in the VecObstacleIntersection intersects each
other, in particular if at least one of the two external circumferences intersect the
other obstacle.
The condition that has to be satisfied to turn true the flagSecondMediumPoint will
become:

1 i f (! i n t e r s e c t i o n s . empty () && (temp1 .w() >= FirstMedianParameter) &&
(! i n t e r s e c t i o n s 1 t o 2 . empty () | | ! i n t e r s e c t i o n s 2 t o 1 . empty ()))

intersections refers to the point given by the intersection between NURBS and the
segment created by joining the centers of the obstacles present in VecObstacleInter-
section. temp1.w() refers to the parameter of the previous point that has to larger
that the FirstMedianParamter point. intersections1to2 and intersections2to1 refer
to the intersections between C2 and C3.
In figure 5.27, a table representing the condition for turning on the two flag and

set the counter is shown, refers to image 5.25.

Figure 5.27: Table for evaluating where the NURBS have to pass

96

5.3 – Path Generation

Figure 5.26: Three near obstacles detected but only two are used.

If the algorithm ends up in the 5th case of table 5.27, the obstacles is treated as
isolated as is shown in image 5.28. This choice is done based on the red NURBS
that not intersects any segment, and have to pass on the half-left of C1.

TwoPointsExternal calculation

For two points external calculation, I refer to the calculation of important two
control points; the first to enter in group of obstacles and the last to exit from the
group. Depending of the table 5.27 different cases arise.

1. Case 1: A single pair of obstacles is present. It end up in calculating the
intersections points between external radius, figure 5.29

Since the red NURBS intersects only one segment, in this case in M, the
cnt is 1 and the flagFirstMediumPoint is true. Intersection between the two
external radius are found and reordered based on their parametrization is
done, to understand which of them is the first to be put in the ctrlPoint vector.
Point O represents the freeControlPoint and is easy to see that is inside of C2,
for this reason when consider near obstacle this point is not considered, it will
be overwritten be the Entry Point.

97

Algorithms and Methods

Figure 5.28: Obstacle C1 treated as isolated.

Figure 5.29: One pair obstacles

98

5.3 – Path Generation

2. Case 2: In this case, cnt is 2 since the red NURBS intersects two segments
from C1 in M1 and M2. Here obviously the flagSecondMediumPoint remains
false.

In figure 5.30, to detect the entry point and the correct exit point, the
algorithm saves in a vector the points obtained intersecting the first obstacle
detected (C1) with the elements of the VecObstacleIntersection which contain
C2 and C3.
The entry point is found by considering the distances between FirstIntersection
point P1 or freeControlPoint (depending if this last one is inside of an obstacle)
and the points of intersections. The minimum distance will turn on to be P2.
The exit point works in the same way, considering now distances from the
goal.

Figure 5.30: Two pair obstacles having in common the first obstacle detected,
C1, case 2.

3. Case 3: The red NURBS now intersects only once the segments from C1,
means cnt equal 1, and will cross segment C2C3 in point M2, means flagSec-
ondMediumPoint is true, figure 5.31.

99

Algorithms and Methods

The procedure for detecting the two external points is the same as before, but
the points are different. In this case intersections between C1 and C2, and be-
tween the two element of the VecObstacleIntersection, C2 and C3, is considered.

Figure 5.31: Two pair obstacles not having in common C1, case 3.

4. Case 4: This case is an error, since it is impossible that the NURBS will exit
from both passages.

5. Case 5: Since the Q1 and Q2 already has been added to the ctrlPoint vector
and since the NURBS will pass on the left-half side of C1, no more points
have to be considered, the algorithm will return in the for loop for evaluating
next obstacle intersection.

After considering the correct case, the algorithm will follow the same procedure of
adding control point to the cltrPoints vector. After that the entry point will be
considered in the NURBS generation.

100

5.3 – Path Generation

freeMediumPoint1 calculation

Referring to figure 5.30, 5.29, 5.28 and 5.31, no matter in which case the NURBS
is, the next point to be added is the same, in this case point P3, called freeMedi-
umPoint1. For the computation of P3, points S1 and S2 are found by considering
intersections between the segment C1C2 and C1, and C1C2 and C2 obstacles.
P is simply the medium point between S1 and S2:

Px = S1x + S2x

2 Py = S1y + S2y

2
Now point P3 is added to the control points following the update NURBS procedure.
If P3 were to be found within an obstacle, means no space between two obstacles
is present, the algorithm through an exception, since can pass between them.

Evaluation if it is a group of two or three obstacles

Two more control points are decided to be added based if the NURBS is the 2th

or 3rd case of table 5.27, basically when three nearby obstacles are detected. The
condition that verifies the previous cases is:

1 i f (cnt==2 | | flagSecondMediumPoint) ;

Basically, when cnt is equal 2 or the flagSecondMediumPoint is true, the algorithm
needs to add two more points; the barycenter B and the freeMediumPoint2 P4 or
P6.

Barycenter calculation

Barycenter B between the three centers is calculated using geometry formula:

Bx = C1x + C2x + C3x

3 By = C1y + C2y + C3y

3
This procedure works always because the flagSecondMediumPoint is set only in
particular condition and only when three near obstacles are close each other.
The point B is then added to the control point vector and the update procedure of
the NURBS starts.

freeMediumPoint2 calculation

The freeMediumPoint2 corresponds to point P4 or P6 depending on which cases
the NURBS enters. The above points are calculated taking into consideration the
correct pair, C1-C3 for P4 and C2-C3 for P6. This point is calculated in the same
way as freeMediumPoint1 by taking the medium of F1F3 or F2S3.

101

Algorithms and Methods

Addition of Exit Point

Finally, the last control point is added to the control points vector. The last
point represents the exit point found in the passages above from the two external
intersection. Update procedure for adding a control point is executed.

State 1 ends here.

5.3.6 State 2
State 2 represents the state when the NURBS intersect an already visited obstacle.
A NURBS can intersect many times the same obstacle for different reason. It can
happen that the freeControlPoint is not enough to bring the NURBS away from
the obstacle.
The general flowchart, in figure 5.32, shows the passages that are executed in this
state. Below, in figure 5.33, is illustrated the procedure of adding Q1 and Q2 as

Figure 5.32: State 2, already visited obstacle.

new control points.
The construction of these point is very easy. P1 is the firstIntersectionPoint for
the grey straight NURBS, and P2 the freeControlPoint. Both are added to the
control points vector, after that the orange NURBS is obtained. Iteration and
intersections are performed and K1 if found as firstIntersectionPoint for the orange
curve. A straight line starting from C that pass through K1 and intersects the
external circumference in Q1 is created. Q1 is now simply added to the con-
trol points vector and after that the update procedure of NURBS starts. Finally,
the previous Waypoint is deleted since the NURBS was not able to pass the obstacle.

The passages above, of adding a point Q1, are continuously done at each it-
eration if an already visited obstacle is intersected. For examples, in figure 5.33, if
the red NURBS created by adding the Q1 control points still intersects the obstacle,
another point Q2 is added with the same passages.

102

5.3 – Path Generation

Figure 5.33: Intersections in the same obstacle.

103

104

Chapter 6

Test and Simulations

In this section, it will be presented some images of the path planning with NURBS,
directly taken from the OpenGL render. Next, a comparison with A* is done, and
after a dynamic simulation of the path, with a re-planning in the Waypoints is
shown. Finally a real-case simulation using Moon and Mars surfaces is done.

6.1 Simulation of NURBS path
Some examples of NURBS paths are presented.
Figure 6.1, shows the iterations that the NURBS algorithm does to avoid the
obstacles, with the final NURBS from start to goal.

Figure 6.1: NURBS iterations

105

Test and Simulations

Figure 6.2: NURBS trajectory

Figure 6.3: NURBS trajectory

Figure 6.2 and 6.3 show two examples of NURBS path generation.

106

6.2 – Comparison between NURBS and A*

6.2 Comparison between NURBS and A*
Two examples of NURBS and A* path are presented.

Example 1

Figure 6.4: Detected obstacles and NURBS/A* trajectory

Figure 6.4 shows the obstacles detected using the Obstacle Detection Algorithm
seen in section 5.1, chapter 5, based on Computer Vision. The NURBS path in
blue shows a very smooth flow respect to the A* path, in red. The blue squares
dots represent the control point of the NURBS, and only fifteen points are needed
to describe the path. In the other hand, the A* is the closest possible path from
start to goal but passes near obstacles. A totally different behaviour is present on
the NURBS, it tends to stay equally spaced from the obstacle, in particular when
near obstacles are present, such as C1 and C2.

107

Test and Simulations

Example 2

Figure 6.5: Detected oobstacle and NURBS/A* trajectory

In figure 6.5 another example is presented. Similar consideration can be made
between the blue NURBS and the red A*.

Using the theoretical formula 4.15, to complete compute the NURBS show in
the previous examples, only the control points and the degree of the curve are
needed. Storing these variables, the NURBS can be recomputed when needed in
the machine.

108

6.2 – Comparison between NURBS and A*

Memory usage comparison

A* and NURBS show a different behaviour from a point of view of the memory
usage.

Figure 6.6: Memory usage between A* and NURBS

Figure 6.6 left, shows that the runtime memory needed to compute a NURBS
trajectory is greater that A* but almost constant when the image size or the number
of obstacles increases. The memory for computing a NURBS trajectory becomes
independent from the environment complexity. Despite A* usage memory depends
of how big is the generated graph from the input image, bigger and high resolute
image may take up more memory that NURBS.

In the other hand, figure 6.6 right, shows the memory needed to store the generated
trajectory. Saving the control points, weights, and the degree of the NURBS
it is possible to store the trajectory. Despite, the A* algorithm needs to save
each "pixel" or "grid node", with the relative predecessor. It is understandable
that having a bigger graph, more nodes have to be store and the memory usage
becomes dependent from the image size and obstacles, different from NURBS that
is independent.

109

Test and Simulations

6.3 Dynamic path re-calculation

In this section, a dynamic re-calculation of the path in the Waypoints is executed.
Basically the rover moves along the trajectory and when a Waypoint is reached,
the rover will re-executed the path calculation based on another acquired image, if
new obstacles are detected the rover will follow the new path, if not it will proceed
with the previous one.

Figure 6.7: Dynamic path step 1

Figure 6.7 shows the obstacles detected and the path generated. The NURBS
path is shown in red, while the blue curve shows the piece of the route already
made from the rover, the red square. The black squares along the path represents
the Waypoints in which a re-calculation of the path is executed if new obstacles
are detected.
Figure 6.8 shows two re-calculations of the paths based on the new detected
obstacles, first C1 and next C2-C3.

110

6.3 – Dynamic path re-calculation

Figure 6.8: Dynamic path step 2

No new obstacles are detected and the path will remain the same till the goal.

111

Test and Simulations

6.4 Real surface planetary paths
In this section, the algorithms are tested on real surface images of Mars and Moon.

6.4.1 Moon surface test
Figure 6.9 shows the obstacles detected in a moon surface. The environment is
very complex and it is a very challenging case for the NURBS path planner.

Figure 6.9: Moon surface and obstacles

Some examples of trajectory generation is shown in the figures below.

Figure 6.10: Trajectory on Moon surface

112

6.4 – Real surface planetary paths

Figure 6.11: Trajectory on Moon surface

Figure 6.12: Trajectory on Moon surface

113

Test and Simulations

Figure 6.13: Trajectory on Moon surface

The above images show the trajectories generated using different start and goal
positions. The external circumference and the control points are not printed to
make the pictures more clean.

6.4.2 Mars surface test

Now, a mars surface image is used to test the two algorithms. Results can be seen
below.

Figure 6.14: Mars surface and obstacles (Hardley Crater).

114

6.4 – Real surface planetary paths

Figure 6.15: Trajectory on Mars surface

Figure 6.16: Trajectory on Mars surface

115

Test and Simulations

Figure 6.17: Trajectory on Mars surface

116

Chapter 7

Conclusions

In this thesis, an alternative path planner method for mobile robots and rovers
has been created and analysed in detail. An algorithm that implements such path
planner is applied in the context of planetary explorations. The algorithm, written
in C++, uses Computer Vision to detect the obstacles and NURBS theory to trace
the trajectory. The algorithm is developed starting from SISL library, developed
by a researcher group at SINTEF in Oslo, and SISL toolbox library, created by
Antonino Bongiovanni.

NURBS path planner algorithm has been compared with a A* algorithm using the
same environment and same obstacles; the results show that NURBS trajectories
achieve very smooth paths, no sharp turns are present and no point-turn maneuvers
are present, despite A* shows an opposite behaviour, it finds the closest path,
but 90 degrees angles are present in the trajectories. In the other hand, NURBS
generates a curve of degree three independently from the environment and from
the number of obstacles, it is fixed a priori. Very smooth trajectories, no point-turn
maneuvers, low degree complexity and constant memory usage independent from
the environment make this kind of method a very alternative in path planning for
planetary explorations.

A* analyses each pixel of the image, or each grid that composed it, and so the
computational complexity depends on how much resolute the image is and so how
big would be the generated graph. The complexity is proportional to the sum of the
nodes and branches. For big resolute image, the A* becomes heavily and memory
consumed. The complexity of NURBS algorithm depends on how many times the
NURBS intersects the obstacles, it is totally independent from the resolution or
from the grid image since it does not use a graph as input.

Few variables are needed to save a NURBS curve, degree, and control points;

117

Conclusions

using these variables a NURBS curve can be calculated in any time. More memory
is needed in real-time processing of the NURBS, since temporary variable are
needed to evaluate geometry properties for generating the NURBS. It is important
to remark that the total amount of memory needed during the NURBS path
generation is almost fixed, independent from the cases in which the path must be
generated.

Future Works

• Optimization of the algorithm, from a point of view of C++ programming
techniques, control points positioning and from a usage total memory.

• ROS implementation with NAV2 plugin for real simulation in the rover to be
used and test in ROXY facility at TASI (Thales Alenia Space Italia).

118

Bibliography

[1] Sasiadek, J. (2014). Space robotics - Present and past challenges. 2014 19th
International Conference on Methods and Models in Automation and Robotics,
MMAR 2014. 926-929. 10.1109/MMAR.2014.6957481.

[2] Sasiadek, J.Z., 1992 and Sasiadek, J.Z. 1994.

[3] Matijevic, J., 1998, "Autonomous Navigation and the Sojourner Microrover".

[4] "Mars Science Laboratory Rover in the JPL Mars Yard". NASA/JPL.

[5] NASA site

[6] "The ExoMars Programme 2016–2018". European Space Agency (ESA). 2015.
Retrieved 16 March 2016.

[7] "ExoMars Rover Vehicle Perception System Architecture and Test Results"
McManamon, K, ASTRA 2013.

[8] Salichs, Miguel. (2001). NAVIGATION OF MOBILE ROBOTS: LEARNING
FROM HUMAN BEINGS.

[9] Thomas Bräunl. EMBEDDED ROBOTICS.

[10] Lee, Gim & Jr, Marcelo. (2008). Mobile Robots Navigation, Mapping, and
Localization Part I. 10.4018/9781599048499.ch158.

[11] Bora, Leanardo & Lancaster, Richard & Nye, Ben & Barclay, Chris & Rubio,
Sergio & Winter, Matthias. ExoMars rover control, localisation and path
planning in a hazardous and high disturbace environment.

[12] Van Pham, Bach & Maligo, Artur & Lacroix, Simon. Absolute map-based

119

Bibliography

localization for planetary rover.

[13] Lourakis, Manolis & Chliveros, Georgios & Xenophon, Zabulis. Autonomous
visual navigation for planetary exploration rovers.

[14] Robert D. Christ, Robert L. Wernli,Chapter 17 - Navigational Sensors,
Editor(s): Robert D. Christ, Robert L. Wernli, The ROV Manual (Second
Edition), Butterworth-Heinemann, 2014, Pages 453-475.

[15] POTENTIAL FIELD METHODS AND THEIR INHERENT PPROACHES
FOR PATH PLANNING. Sabudin E. N, Omar. R and Che Ku Melor C. K. A.
N. H.

[16] H. Seraji, "Traversability index: a new concept for planetary rovers,"
Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), 1999, pp. 2006-2013 vol.3, doi:
10.1109/ROBOT.1999.770402.

[17] A. Saffiotti: "The use of fuzzy logic in autonomous robot navigation", Journal
of Soft Computing, vol. 1, no. 4, 1997.

[18] W. Blochl: "Fuzzy control in real-time for vision quided autonomous mobile
robots", Proc. Austrian Conf. on Fuzzy Logic in AI, pp. 114-125, 1993.

[19] D. B. Gennery: "Traversability analysis and path planning for a planetary
rover", To appear in Journal of Autonomous Robots, 1999.

[20] H. Seraji, "Traversability indices for muti-scale terrain assessment".

[21] LS. Kwoen: "Extracting topographic terrain features from elevation maps",
CGGIP: Image Understanding, vol 59, no. 2, pp.171-182, 1994.

[22] Lumelsky, Stepanov 1986.

[23] Kamon, Rivlin 1997.

[24] Ng. Bräunl 2007.

[25] B. Zhao, P. Ai and J. Han, "Study on the control method of NURBS
curve quality for computer aided industrial design," 2012 7th International
Conference on Computer Science & Education (ICCSE), 2012, pp. 658-661,

120

Bibliography

doi: 10.1109/ICCSE.2012.6295160.

[26] X. Liu, "Geometric Features Modification of NURBS Curves via Energy
Optimization," 2009 First International Workshop on Education Technology
and Computer Science, 2009, pp. 929-932, doi: 10.1109/ETCS.2009.211.

[27] H. Chen, C. Guo, Z. Wang, T. Wen, Z. Zeng and Z. Lin, "The trajectory
planning system for spraying robot based on k-means clustering and
NURBS curve optimization," IECON 2020 The 46th Annual Conference
of the IEEE Industrial Electronics Society, 2020, pp. 5356-5361, doi:
10.1109/IECON43393.2020.9255172.

[28] Piegl L, Tiller W. The NURBS book[M]. 2nd, Springer, 1997.

[29] “Computer Graphics with Open GL”, Hearn Baker Carithers, Fourth Edition,
2014

121

122

Appendix A

Obstacle Detection
Algorithm

Link to my GitHub account: GitHub account
Link to the NURBS path planner on GitHub: NURBS path planner algorithm

Code A.1: Obstacle Detection Algorithm
1 // ******************************

//
3 // Obstacle detection algorithm (C++)

//
5 // @ Copyright 2022 , Gabriel Lucian Palcau

//
7 // ******************************

9 # include <opencv2 /core/core.hpp >
include <opencv2 / highgui / highgui .hpp >

11 # include <opencv2 / imgproc .hpp >
include <iostream >

13 # include <fstream >

15 using namespace cv;
using namespace std;

17
const string pathFile [] = {"C:/ Users/palca/ Desktop / FileProgrammiTesi /

Obstacle_Position .txt"};
19 const string path = "C:/ Users/palca/ Desktop / FileProgrammiTesi / Ostacoli1 .bmp

";

21 int heightInitial = 0;
int widthInitial = 0;

23 const int heightTarget = 600;
const int widthTarget = 1000;

123

https://github.com/GabrielPalcau
https://github.com/GabrielPalcau/Path-Planner-based-on-NURBS-curves

Obstacle Detection Algorithm

25
void getContours (const Mat& imgCanny , const Mat& img , const Mat& img_copy);

27
int main ()

29 {
Mat img , imgCanny , imgDil , imgMod , imgGrid ;

31 img = imread (path , IMREAD_COLOR);

33 // Check for failure
if (img.empty ())

35 {
cout << "Could not open or find the image" << endl;

37 cin.get (); // wait for any key press
return -1;

39 }
resize (img , img , Size (600 ,400) , INTER_LINEAR);

41 heightInitial = img.rows;
widthInitial = img.cols;

43
imshow (" Original Image", img);

45
img. copyTo (imgGrid);

47 cvtColor (img , imgMod , COLOR_BGR2GRAY);

49 GaussianBlur (imgMod , imgMod , Size (5, 5), 25, 25);
Canny(imgMod , imgCanny , 50, 160);

51
Mat kernel = getStructuringElement (MORPH_RECT , Size (3, 3));

53 dilate (imgCanny , imgDil , kernel);

55 getContours (imgDil , img , imgGrid);

57 imwrite ("C:/ Users/palca/ Desktop / FileImmaginiTesi / immagineOBS .png", img)
;

59 imshow (" Detected Obstacles ", img);
imshow (" GaussianBlur Image", imgMod);

61 imshow ("Canny Detection ", imgCanny);
imshow (" DilateCanny ", imgDil);

63 imshow (" GridMap 0/1 Obstacle /Non - Obstacle ", imgGrid);
waitKey (0);

65
return 0;

67 }

69 void getContours (const Mat& imgCanny , const Mat& img , const Mat& img_copy)
{

71 vector <vector <Point >> contours ;

124

Obstacle Detection Algorithm

vector <Vec4i > hierarchy ;
73

findContours (imgCanny , contours , hierarchy , RETR_EXTERNAL ,
CHAIN_APPROX_NONE);

75 drawContours (img , contours , -1, Scalar (0, 255, 0), 2);

77 ofstream File;
File.open(pathFile [0], ios :: out);

79
// Fill contours

81 vector < vector <Point > > hull(contours .size ());

83 for (int i = 0; i < contours .size (); i++)
convexHull (Mat(contours [i]), hull[i], false);

85
fillPoly (img_copy , hull , Scalar (0, 0, 0));

87
// Center computation

89 vector <Point > centers ;
for (int i = 0; i < contours .size (); i++) {

91 Moments M = moments (contours [i]);
Point center (M.m10 / M.m00 , M.m01 / M.m00);

93 centers . push_back (center);
circle (img , centers [i], 1, CV_RGB (255 , 0, 0), 5);

95 }

97 // Max distance from center
float max_dist = 0.0;

99 float max_dist1 = 0.0;
float dist = 0.0;

101 float dist1 = 0.0;

103 vector <Point > perimeter ;
for (int i = 0; i < contours .size (); i++) {

105 perimeter = contours [i];
int x = 0;

107 int y = 0;
max_dist = 0.0;

109
for (int j = 0; j < size(perimeter); j++) {

111 x = perimeter [j].x;
y = perimeter [j].y;

113
dist = sqrt(pow(x - centers [i].x, 2) + pow(y - centers [i].y, 2)

);
115 dist1 = sqrt(pow(x * widthTarget / widthInitial - centers [i].x

* widthTarget / widthInitial , 2) + pow(y * heightTarget /
heightInitial - centers [i].y * heightTarget / heightInitial
, 2));

125

Obstacle Detection Algorithm

if (dist > max_dist) {
117 max_dist = dist;

max_dist1 = dist1;
119 }

}
121

circle (img , centers [i], max_dist , CV_RGB (0, 0, 255) , 2);
123 File << (int)ceil(centers [i].x * widthTarget / widthInitial) << " "

<< (int)ceil ((heightInitial - centers [i].y) * heightTarget
/ heightInitial) << " " << (int)ceil(max_dist1) << endl;

125 }

127 File.close ();
}

126

Appendix B

NURBS path planner
Algorithm

Link to my GitHub account: GitHub account
Link to the NURBS path planner on GitHub: NURBS path planner algorithm

Code B.1: NURBS path planner Algorithm
1 // ******************************
2 //
3 // NURBS path planner algorithm (C++)
4 //
5 // @ Copyright 2022 , Gabriel Lucian Palcau
6 //
7 // ******************************
8
9 # include <iostream >

10 # include " generic_curve .hpp"
11 # include "curve.hpp"
12 # include " circular_arc .hpp"
13 # include <vector >
14 # include "sisl.h"
15 # include " straight_line .hpp"
16 # include <fstream >
17
18 #ifdef _WIN32
19 # include <GL/glut.h>
20 #elif defined (_APPLE_)
21 #endif
22
23 # define CURVE_EVALUATIONS 500
24 using namespace std;
25
26 bool flag3d = false;

127

https://github.com/GabrielPalcau
https://github.com/GabrielPalcau/Path-Planner-based-on-NURBS-curves

NURBS path planner Algorithm

27 static int wayPointsFlag = 0;
28 int cntFile = 0;
29
30 // ------------------ Global Variable ------------------
31
32 shared_ptr < GenericCurve > genericCurve = nullptr ;
33 vector <Eigen :: Vector3d > ctrlPoints {};
34
35 vector <shared_ptr < CircularArc >> obs;
36 vector <shared_ptr < CircularArc >> obs_external ;
37 vector <Eigen :: Vector3d > obs_points {};
38
39 vector <Eigen :: Vector3d > pathRobot {};
40 vector <Eigen :: Vector3d > wayPoints {};
41
42 vector <Eigen :: Vector3d > pathRobotGlobal {};
43
44 int RobotPosition = 0;
45 int initSizePulse = 5;
46 int statePulse = 1;
47
48 static Eigen :: Vector3d START {0 ,0 ,0};
49 static Eigen :: Vector3d GOAL {0 ,0 ,0};
50
51 // -- OpenGL drawing prototype functions --
52 void DisplayCtrPoints ();
53 void init2d ();
54 void DrawSinglePoints (const vector <Eigen :: Vector3d >& points);
55 void DrawObs (const shared_ptr < CircularArc >& ob , const bool flag);
56 void Draw2dNURBS ();
57 void DrawpathRobotGlobal ();
58
59 // -- Prototype Function for Manimulation of the SISL curve --
60
61 void UpdateNurbs (int& degree , vector <double >& knots , const vector <double >&

weights);
62 Eigen :: Vector4d firstIntersection (vector <Eigen :: Vector3d >& intersections ,

const shared_ptr < GenericCurve >& nurbs ,
const bool flag);

63 int FindObstacleFromPoint (const shared_ptr < CircularArc >& pc1 , const Eigen ::
Vector3d & point);

64 int UpdateParameterOrder (vector <double >& paramOrder);
65 double UpdateParameterDistance (const Eigen :: Vector3d & Point , const

shared_ptr < GenericCurve >& nurbs);
66 Eigen :: Vector3d FindCenterMedian (const shared_ptr < CircularArc >& C1 , const

shared_ptr < CircularArc >& C2);

128

NURBS path planner Algorithm

67 vector <Eigen :: Vector3d > ExternalIntersection (const int pos_first , const
vector <int >& VecCenterIntersection , const
Eigen :: Vector3d & Last , const Eigen ::
Vector3d & LastL , const int cnt , const int
Median , const bool Median1);

68 void printNurbsInformation (const vector <double >& knots);
69 void pathRobotCalculation ();
70 int EvaluatePointInObstacle (const Eigen :: Vector3d & point);
71 void ExternalRadiusOpt (vector <int >& radius);
72 void CalculateWayPoints (vector <Eigen :: Vector3d >& wayPointsClosest);
73 void timer(int);
74 void timer1 (int);
75 void timer2 (int);
76 void display ();
77 int pathgeneration ();
78
79
80
81
82
83 // --------------- MAIN ------------------
84
85 int main(int argc , char ** argv) {
86
87 // Acquiring Start and Goal position
88 cout << " ******* Insert Start and Goal position ******* " << endl;
89 cout << " Insert Start position , x and y: " << endl;
90 cin >> START.x();
91 cin >> START.y();
92 cout << " Insert Goal position , x and y: " << endl;
93 cin >> GOAL.x();
94 cin >> GOAL.y();
95
96 // Trajectory printed on OpenGL
97 int x = pathgeneration ();
98 if (x == -10){
99 cerr << "Error , too complex environment ";

100 return -1;
101 }
102
103 glutInit (&argc , argv);
104 glutInitWindowSize (1000 , 600);
105 glutInitWindowPosition (175 , 40);
106 glutCreateWindow (" Trajectory ");
107 init2d ();
108
109 glutDisplayFunc (display);
110 glutTimerFunc (0,timer ,0);
111 glutTimerFunc (0, timer1 ,0);

129

NURBS path planner Algorithm

112 glutTimerFunc (0, timer2 ,0);
113 glDisable (GL_TEXTURE_2D);
114 glutMainLoop ();
115
116 return 0;
117 }
118
119 // ------ OpenGL drawing functions -------
120
121 void DisplayCtrPoints ()
122 {
123 glPointSize (5.0);
124 glColor3f (0.0f, 0.0f, 1.0f);
125
126 glBegin (GL_POINTS);
127 for (const auto& coord : ctrlPoints)
128 glVertex2f ((GLfloat)coord [0], (GLfloat)coord [1]);
129 glEnd ();
130 }
131
132 void init2d ()
133 {
134 glMatrixMode (GL_PROJECTION);
135 glLoadIdentity ();
136 gluOrtho2D (0.0 , 1000 , 0.0, 600);
137 glClearColor (1.0f, 1.0f, 1.0f, 0.0f);
138 glClear (GL_COLOR_BUFFER_BIT);
139 }
140
141 void DrawSinglePoints (const vector <Eigen :: Vector3d >& points)
142 {
143 glPointSize (5.0);
144 glColor3f (0.0f, 0.0f, 0.0f);
145
146 glBegin (GL_POINTS);
147 for (const auto& i : points)
148 glVertex2f ((float)i[0], (float)i[1]);
149 glEnd ();
150 }
151
152 void DrawObs (const shared_ptr < CircularArc >& ob , const bool flag)
153 {
154 int left = 0;
155 auto* discrete = new double [3 * CURVE_EVALUATIONS];
156
157 for (int j = 0; j < CURVE_EVALUATIONS ; j++)
158 {

130

NURBS path planner Algorithm

159 double t = ob -> StartParameter_s () + (ob -> EndParameter_s () - ob ->
StartParameter_s ()) * j / (
CURVE_EVALUATIONS - 1.0);

160 int stat;
161 s1227(ob -> CurvePtr (), 0, t, &left , discrete + 3 * j, &stat);
162
163 if (stat != 0)
164 cerr << "s1227 returned status : " << stat << endl;
165 }
166
167 if (flag3d) {
168 glLineWidth (2.0);
169 glBegin (GL_LINE_STRIP);
170 for (int j = 0; j < CURVE_EVALUATIONS ; j++) {
171 glColor3f (0.0f, 0.5f, 1.0f);
172 glVertex3f ((float) discrete [0 + (3 * j)] * 10 / 1000 , (float)

discrete [1 + (3 * j)] * 6 / 600,
173 (float) discrete [2 + (3 * j)] * 3 / 100);
174 }
175 glEnd ();
176 glFlush ();
177 }
178 else {
179 glLineWidth (1.0);
180 glBegin (GL_LINE_STRIP);
181 for (int j = 0; j < CURVE_EVALUATIONS ; j++) {
182 glColor3f (0.0f, 0.5f, 1.0f);
183
184 if (flag)
185 glVertex2f ((float)ob -> CentrePoint ().x(), (float)ob ->

CentrePoint ().y());
186 glVertex2f ((float) discrete [0 + (3 * j)], (float) discrete [1 + (3

* j)]);
187 }
188 glEnd ();
189 }
190 delete [] discrete ;
191 }
192
193 void Draw2dNURBS ()
194 {
195 glLineWidth (2.0);
196 glBegin (GL_LINE_STRIP);
197 glColor3f (1.0f, 0.0f, 0.0f);
198 for (const auto& j : pathRobot)
199 glVertex2f ((float)j.x(), (float)j.y());
200
201 glEnd ();
202 }

131

NURBS path planner Algorithm

203
204 void DrawpathRobotGlobal ()
205 {
206 glLineWidth (2.0);
207 glColor3f (0.0f, 0.0f, 1.0f);
208 glBegin (GL_LINE_STRIP);
209 for (const auto& ele : pathRobotGlobal)
210 glVertex2f ((GLfloat)ele.x(), (GLfloat)ele.y());
211
212 glEnd ();
213 }
214
215 // ----- Function for Manimulation of the SISL curve -----
216
217 void UpdateNurbs (int& degree , vector <double >& knots , const vector <double >&

weights)
218 {
219 unsigned int nCtrl = ctrlPoints .size ();
220 if (ctrlPoints .size () == 3)
221 degree = 2;
222 else if (ctrlPoints .size () >= 4)
223 degree = 3;
224
225 unsigned int n_knots = degree + 1 + nCtrl; // Mathematical Formula for

NURBS
226
227 int value = 0;
228 knots.clear ();
229 for (int i = 0; i < n_knots ; i++) {
230 if (i < degree + 1) {
231 knots. push_back (value);
232 }
233 else {
234 if ((n_knots - i) > degree + 1) {
235 value ++;
236 knots. push_back (value);
237 }
238 else {
239 value ++;
240 knots. push_back (value);
241 value --;
242 }
243 }
244 }
245 }
246
247 Eigen :: Vector4d firstIntersection (vector <Eigen :: Vector3d >& intersections ,

const shared_ptr < GenericCurve >& nurbs ,
const bool flag)

132

NURBS path planner Algorithm

248 {
249 double min = 9999;
250 double eps = 5;
251 Eigen :: Vector3d temp;
252 Eigen :: Vector4d temp1 = { 0,0,0,0 };
253 shared_ptr < StraightLine > ptr_Line = nullptr ;
254
255 for (int j = 0; j < 10 * CURVE_EVALUATIONS ; j++) {
256
257 double t = nurbs -> StartParameter_s () + (nurbs -> EndParameter_s () -

nurbs -> StartParameter_s ()) * j / (10 *
CURVE_EVALUATIONS - 1.0);

258 nurbs -> FromAbsSislToPos (t, temp);
259
260 if (! flag) {
261 for (const auto& ele : intersections) {
262 ptr_Line = make_shared < StraightLine >(temp , ele , 3, 2);
263 if (ptr_Line -> Length () <= eps) {
264 auto elef = ele;
265 auto it = remove (intersections .begin (), intersections .

end (), ele);
266 intersections .erase(intersections .end ());
267 return { elef.x(), elef.y(), elef.z(), t };
268 }
269 }
270 }
271 else {
272
273 tuple <double , double > closest = nurbs -> FindClosestPoint (

intersections [0]);
274 auto abscissa_m1 = (double)(get <0>(closest));
275 auto ClosestPoint = nurbs ->At(double (abscissa_m1));
276 ptr_Line = make_shared < StraightLine >(ClosestPoint , temp , 3, 2);
277
278 if (ptr_Line -> Length () <= min) {
279 min = ptr_Line -> Length ();
280 temp1 = { ClosestPoint .x(),ClosestPoint .y(),ClosestPoint .z

(),t };
281 }
282 }
283 }
284 return temp1;
285 }
286
287 int FindObstacleFromPoint (const shared_ptr < CircularArc >& pc1 , const Eigen ::

Vector3d & point)
288 {
289 bool inside = false;
290 Eigen :: Vector3d temp = { point.x(),point.y(),point.z() };

133

NURBS path planner Algorithm

291 shared_ptr < StraightLine > line = nullptr ;
292 line = make_shared < StraightLine >(pc1 -> CentrePoint (), temp , 3, 2);
293 shared_ptr < StraightLine > line1 = nullptr ;
294 line1 = make_shared < StraightLine >(pc1 -> CentrePoint (), pc1 -> StartPoint ()

, 3, 2);
295
296 if (line -> Length () <= (line1 -> Length () + 1))
297 inside = true;
298 return inside ;
299 }
300
301 int UpdateParameterOrder (vector <double >& paramOrder)
302 {
303 auto itP = paramOrder .begin ();
304 bool flagP = false;
305 int index = -1;
306 double x = -1;
307
308 if (paramOrder .size () == 1)
309 index = 1;
310 else {
311 x = paramOrder .back ();
312 paramOrder . pop_back ();
313 for (int p = 0; p < paramOrder .size (); p++) {
314 if (x <= paramOrder .at(p)) {
315 flagP = true;
316 index = p + 1;
317 paramOrder . insert (itP + p, x);
318 break;
319 }
320 }
321 if (! flagP) {
322 paramOrder . push_back (x);
323 index = (int) paramOrder .size ();
324 }
325 }
326 return index;
327 }
328
329 double UpdateParameterDistance (const Eigen :: Vector3d & Point , const

shared_ptr < GenericCurve >& nurbs)
330 {
331 float eps = 1;
332 Eigen :: Vector3d temp;
333 Eigen :: Vector3d cPoint = Point;
334 shared_ptr < StraightLine > Line = nullptr ;
335
336 tuple <double , double > closest = nurbs -> FindClosestPoint (cPoint);
337 auto abscissa_m1 = (double)(get <0>(closest));

134

NURBS path planner Algorithm

338 auto ClosestPoint = nurbs ->At(double (abscissa_m1));
339
340 for (int j = 0; j < 5 * CURVE_EVALUATIONS ; j++) {
341
342 double t = nurbs -> StartParameter_s () + (nurbs -> EndParameter_s () -

nurbs -> StartParameter_s ()) * j / (5 *
CURVE_EVALUATIONS - 1.0);

343 nurbs -> FromAbsSislToPos (t, temp);
344 Line = make_shared < StraightLine >(ClosestPoint , temp , 3, 2);
345
346 if (Line -> Length () <= eps)
347 return t;
348 }
349 return -1;
350 }
351
352 Eigen :: Vector3d FindCenterMedian (const shared_ptr < CircularArc >& C1 , const

shared_ptr < CircularArc >& C2)
353 {
354 shared_ptr < StraightLine > ptr_Line = nullptr ;
355 ptr_Line = make_shared < StraightLine >(C1 -> CentrePoint (), C2 -> CentrePoint

(), 3, 2);
356
357 vector <Eigen :: Vector3d > temp {};
358 vector <Eigen :: Vector3d > intersections {};
359
360 temp = ptr_Line -> Intersection (C1);
361 intersections . push_back (temp [0]);
362
363 temp = ptr_Line -> Intersection (C2);
364 intersections . push_back (temp [0]);
365
366 Eigen :: Vector3d Medium {};
367 Medium .x() = (intersections [0].x() + intersections [1].x()) / 2;
368 Medium .y() = (intersections [0].y() + intersections [1].y()) / 2;
369 Medium .z() = 0;
370 return Medium ;
371 }
372
373 vector <Eigen :: Vector3d > ExternalIntersection (const int pos_first , const

vector <int >& VecCenterIntersection , const
Eigen :: Vector3d & Last , const Eigen ::
Vector3d & LastL , const int cnt , const int
Median , const bool Median1)

374 {
375 const vector <shared_ptr < CircularArc >>& circle = obs_external ;
376 vector <Eigen :: Vector3d > Intersections {};
377
378 if (cnt == 2 && ! Median1) {

135

NURBS path planner Algorithm

379 for (const int& ele : VecCenterIntersection) {
380 auto IntersectionsTemp = circle .at(pos_first)->Intersection (

circle .at(ele));
381 for (const auto& ele1 : IntersectionsTemp)
382 Intersections . push_back (ele1);
383 }
384 }
385 else if (cnt == 1 && Median1) {
386
387 auto IntersectionsTemp = circle .at(pos_first)->Intersection (circle .

at(Median));
388 for (const auto& ele1 : IntersectionsTemp)
389 Intersections . push_back (ele1);
390 IntersectionsTemp = circle .at(VecCenterIntersection .at (0))->

Intersection (circle .at(
VecCenterIntersection .at (1)));

391 for (const auto& ele1 : IntersectionsTemp)
392 Intersections . push_back (ele1);
393 }
394 else {
395 Intersections = circle [pos_first]-> Intersection (circle [Median]);
396 }
397
398 shared_ptr < StraightLine > Line = nullptr ;
399 double min = 9999;
400 double max = 9999;
401 Eigen :: Vector3d MinPoint ;
402 Eigen :: Vector3d MaxPoint ;
403
404 for (const auto& ele : Intersections) {
405 Line = make_shared < StraightLine >(Last , ele , 3, 2);
406 if (Line -> Length () <= min) {
407 min = Line -> Length ();
408 MinPoint = ele;
409 }
410
411 Line = make_shared < StraightLine >(LastL , ele , 3, 2);
412 if (Line -> Length () <= max) {
413 max = Line -> Length ();
414 MaxPoint = ele;
415 }
416 }
417
418 vector <Eigen :: Vector3d > TwoPoints {};
419 TwoPoints . push_back (MinPoint);
420 TwoPoints . push_back (MaxPoint);
421 return TwoPoints ;
422 }
423

136

NURBS path planner Algorithm

424 void printNurbsInformation (const vector <double >& knots)
425 {
426 cout << " Generated NURBS:" << endl;
427 cout << " ----- Degree : " << genericCurve -> Degree () << endl;
428 cout << " ----- Control Points : " << endl;
429 cout << " ----- ----- [";
430 for (const auto& ele : ctrlPoints)
431 cout << ele.x() << " ";
432 cout << endl << " ";
433 for (const auto& ele : ctrlPoints)
434 cout << ele.y() << " ";
435 cout << "]" << endl;
436 cout << " ----- Knot Vector : " << endl;
437 cout << " ----- ----- [";
438 for (const auto& ele : knots)
439 cout << ele << " ";
440 cout << "]" << endl;
441 }
442
443 void pathRobotCalculation ()
444 {
445 pathRobot .clear ();
446
447 int left = 0;
448 auto* discrete = new double [3 * 10 * CURVE_EVALUATIONS];
449 double len = 0.0;
450 double lenTemp = 0.0;
451 shared_ptr < StraightLine > line = nullptr ;
452 Eigen :: Vector3d Apoint ;
453 Eigen :: Vector3d Bpoint ;
454
455 for (int j = 0; j < 10 * CURVE_EVALUATIONS ; j++) {
456 double t = genericCurve -> StartParameter_s () +
457 (genericCurve -> EndParameter_s () - genericCurve ->

StartParameter_s ()) * j / (10 *
CURVE_EVALUATIONS - 1.0);

458
459 int stat;
460 s1227(genericCurve -> CurvePtr (), 0, t, &left , discrete + 3 * j, &

stat);
461 if (stat != 0)
462 cerr << "s1227 returned status : " << stat << endl;
463
464 if (j == 1) {
465 Bpoint = { discrete [0 + (3 * j)], discrete [1 + (3 * j)], 0.0 };
466 Apoint = { discrete [0 + (3 * (j - 1))], discrete [1 + (3 * (j -

1))], 0.0 };
467 pathRobot . push_back (Apoint);
468 pathRobot . push_back (Bpoint);

137

NURBS path planner Algorithm

469 len = 1;
470 }
471
472 if (j > 1)
473 {
474 Bpoint = { discrete [0 + (3 * j)], discrete [1 + (3 * j)], 0.0 };
475 line = make_shared < StraightLine >(pathRobot .back (), Bpoint , 3,

2);
476 lenTemp = line -> Length ();
477 if (lenTemp >= (len - len / 8)) {
478 pathRobot . push_back (Bpoint);
479 }
480 }
481 }
482 }
483
484 int EvaluatePointInObstacle (const Eigen :: Vector3d & point)
485 {
486 int ObsToPoint = 0;
487 for (int z = 0; z < obs.size (); z++) {
488 if (FindObstacleFromPoint (obs.at(z), point)) {
489 ObsToPoint = z;
490 break;
491 }
492 }
493 }
494
495 void ExternalRadiusOpt (vector <int >& radius)
496 {
497 vector <Eigen :: Vector3d > intersections {};
498 int times = 0;
499 Eigen :: Vector3d axis = { 0,0,1 };
500 bool limit = false;
501
502 for (int i = 0; i < obs_external .size (); i++) {
503 times = 0;
504 limit = false;
505 for (const auto& ele : obs) {
506 intersections = obs_external .at(i)->Intersection (ele);
507 if (! intersections .empty ())
508 times ++;
509 }
510 if (times > 2) {
511 radius .at(i) = radius .at(i) - 1;
512 if (radius .at(i) <= (obs.at(i)->StartPoint ().x() - obs.at(i)->

CentrePoint ().x()) + 3) {
513 radius .at(i) = (obs.at(i)->StartPoint ().x() - obs.at(i)->

CentrePoint ().x()) + 5;
514 limit = true;

138

NURBS path planner Algorithm

515 }
516 obs_external .at(i) = make_shared < CircularArc >(2 * 3.1415926 ,

axis , obs_points .at(i) + Eigen :: Vector3d { (
double) radius .at(i), 0.0, 0.0 }, obs_points
.at(i), 3, 3);

517 if (! limit)
518 i--;
519 }
520 }
521 }
522
523 void CalculateWayPoints (vector <Eigen :: Vector3d >& wayPointsClosest)
524 {
525 shared_ptr < StraightLine > line = nullptr ;
526 wayPoints .clear ();
527
528 for (auto& j : wayPointsClosest) {
529 for (int i = 0; i < pathRobot .size (); i++) {
530 line = make_shared < StraightLine >(j, pathRobot .at(i), 3, 2);
531 if (line -> Length () < 10) {
532 wayPoints . push_back (pathRobot .at(i + 30));
533 break;
534 }
535 }
536 }
537 }
538
539 void timer(int)
540 {
541 glutPostRedisplay ();
542 glutTimerFunc (1000 / 200, timer , 0);
543
544 if (wayPointsFlag == 0) {
545 for (const auto& ele : wayPoints) {
546 if (ele == pathRobot [RobotPosition]) {
547 wayPointsFlag = 1;
548 pathRobotGlobal . push_back (pathRobot .at(RobotPosition));
549 }
550 }
551 }
552
553 if (wayPointsFlag == 0) {
554 pathRobotGlobal . push_back (pathRobot .at(RobotPosition));
555 RobotPosition ++;
556 }
557
558 if (RobotPosition >= pathRobot .size ())
559 RobotPosition = (int) pathRobot .size () - 1;
560 }

139

NURBS path planner Algorithm

561
562 void timer1 (int)
563 {
564 glutPostRedisplay ();
565 glutTimerFunc (1000 / 10, timer1 , 0);
566 switch (statePulse)
567 {
568 case 1:
569 if (initSizePulse <= 10)
570 initSizePulse ++;
571 else
572 statePulse = 2;
573 break;
574 case 2:
575 if (initSizePulse >= 5)
576 initSizePulse --;
577 else
578 statePulse = 1;
579 break;
580 default :
581 cerr << "Error in switching state Pulse of the robot position " <<

endl;
582 }
583 }
584
585 void timer2 (int)
586 {
587 glutTimerFunc (3000 , timer2 , 0);
588
589 if (wayPointsFlag == 1)
590 {
591 int x = pathgeneration ();
592 wayPointsFlag = 0;
593 if (x == -10) {
594 cerr << "Error too complex environment ";
595 }
596 }
597 }
598
599 void display ()
600 {
601 glClear (GL_COLOR_BUFFER_BIT);
602
603 for (const auto& ob : obs) {
604 DrawObs (ob , true);
605 }
606 for (const auto& ob : obs_external) {
607 DrawObs (ob , false);
608 }

140

NURBS path planner Algorithm

609
610 Draw2dNURBS ();
611 DisplayCtrPoints ();
612 DrawSinglePoints (wayPoints);
613 DrawpathRobotGlobal ();
614
615 glPointSize ((float) initSizePulse);
616 glColor3f (1.0f, 0.0f, 0.0f);
617 glBegin (GL_POINTS);
618 glVertex2f ((GLfloat) pathRobot [RobotPosition].x(), (GLfloat) pathRobot [

RobotPosition].y());
619 glEnd ();
620
621 glutSwapBuffers ();
622 }
623
624 int pathgeneration ()
625 {
626
627 cntFile ++;
628
629 // Defining the path of the obstacles txt
630 string pathObstacleTxT ;
631 try {
632 if (cntFile >= 1)
633 pathObstacleTxT = "C:/ Users/palca/ Desktop / FileProgrammiTesi /

Obstacle_Position .txt";
634 else if (cntFile > 1)
635 pathObstacleTxT = "C:/ Users/palca/ Desktop / FileProgrammiTesi /

Obstacle_Position1 .txt";
636 }
637 catch (...) {
638 cerr << "Error while trying to read the path where the obstacle

position are written !" << endl;
639 return -1;
640 }
641
642 //Pre - Processing for saving the obstacle position from file (control

Points)
643 static vector <int > obs_radius {};
644 static vector <Eigen :: Vector3d > ctrlPoints_All ;
645
646 if (cntFile == 1)
647 ctrlPoints_All . emplace_back (START);
648
649 bool flagDynamicPath = false;
650 bool flagSameObs = false;
651 int x, y, r;
652 Eigen :: Vector3d ctrlTemp {};

141

NURBS path planner Algorithm

653 stringstream ss;
654 string line;
655 ifstream dataIN ;
656
657 dataIN .open(pathObstacleTxT);
658 if (dataIN . is_open ())
659 {
660 while (getline (dataIN , line))
661 {
662 flagSameObs = false;
663 ss.str(line);
664 ss >> x;
665 ss >> y;
666 ss >> r;
667
668 if (r > 5) {
669
670 if (cntFile == 1) {
671 ctrlPoints_All . emplace_back (x, y, 0);
672 obs_radius . push_back (r);
673 }
674 else {
675 for (const auto& ele : ctrlPoints_All) {
676 if ((x == (int)ele.x()) && (y == (int)ele.y())) {
677 flagSameObs = true;
678 }
679 }
680 if (! flagSameObs) {
681 flagDynamicPath = true;
682 ctrlPoints_All . insert (ctrlPoints_All .begin () + 1,

Eigen :: Vector3d { (double)x,(double)y,0 });
683 obs_radius . insert (obs_radius .begin () + 1, r);
684 }
685 }
686 }
687 ss.clear ();
688 }
689 dataIN .close ();
690 }
691 else {
692 cerr << " Unable to open file txt where the position of the

obstacles are saved!" << endl;
693 return -2;
694 }
695
696 if (cntFile == 1)
697 ctrlPoints_All . emplace_back (GOAL);
698
699 // If new obstacles are not detected , return to the original path

142

NURBS path planner Algorithm

700 if (! flagDynamicPath && cntFile > 1) {
701 wayPoints .erase(wayPoints .begin ());
702 return 0;
703 }
704
705 // If new obstacles are found , go to dynamic path
706 if (wayPointsFlag == 1 && cntFile > 1)
707 {
708 ctrlPoints_All .at (0) = wayPoints .at (0);
709 wayPoints .erase(wayPoints .begin ());
710 RobotPosition = 0;
711
712 obs.clear ();
713 obs_external .clear ();
714 obs_points .clear ();
715 }
716
717 const int nAll = (int) ctrlPoints_All .size ();
718 const int nObs = nAll - 2;
719 auto itAll = ctrlPoints_All .begin ();
720
721 // Defining the FISRT parameters for the NURBS , from start to goal , it

will be replaced later
722 const int dimension = 3;
723 int degree = 1;
724
725 ctrlPoints .clear ();
726 ctrlPoints . push_back (* itAll);
727 ctrlPoints . push_back (*(ctrlPoints_All .end () - 1));
728 auto it = ctrlPoints .begin ();
729
730 vector <double > weights {};
731 weights . push_back (1.0);
732 weights . push_back (1.0);
733 auto it1 = weights .begin ();
734
735 vector <double > knots {};
736 const vector <double > coeff {};
737
738 // ---- Defining only the obstacles control points ----
739
740 for (int i = 1; i < ctrlPoints_All .size () - 1; i++)
741 obs_points . emplace_back (ctrlPoints_All .at(i));
742
743 // ---- Defining the SISL curve for obstacle and external_obstacle

circle ----
744
745 const int safetyDim = 15;
746 vector <int > obs_ext_radius {};

143

NURBS path planner Algorithm

747
748 for (int i = 0; i < nObs; i++)
749 obs_ext_radius . push_back (obs_radius .at(i) + safetyDim);
750
751 const int dimensionObs = 3;
752 const int orderObs = 3;
753 const Eigen :: Vector3d axis = { 0.0, 0.0, 1.0 };
754
755 for (int i = 0; i < nObs; i++) {
756 obs. push_back (make_shared < CircularArc >(2 * 3.1415926 , axis ,

obs_points .at(i) + Eigen :: Vector3d { (double
) obs_radius .at(i), 0.0, 0.0 }, obs_points .
at(i), dimensionObs , orderObs));

757 obs_external . push_back (make_shared < CircularArc >(2 * 3.1415926 , axis
, obs_points .at(i) + Eigen :: Vector3d { (
double) obs_ext_radius .at(i), 0.0, 0.0 },
obs_points .at(i), dimensionObs , orderObs));

758 }
759
760 // Function for External radius optimization , maximum three obstacles

intersections
761 ExternalRadiusOpt (obs_ext_radius);
762
763
764 // ---- Definition of variables ----
765
766 bool flagEnd = false;
767
768 vector <Eigen :: Vector3d > intersections_All = {};
769 vector <Eigen :: Vector3d > intersections {};
770 vector <int > position {};
771 vector <double > paramOrder ;
772 vector <int > visited ;
773 vector <Eigen :: Vector3d > freeControlObs ;
774
775 Eigen :: Vector3d ClosestPoint = {};
776 Eigen :: Vector3d second {};
777 Eigen :: Vector3d first {};
778
779 int c = 0;
780 int pos_first = -1;
781 int previous = -2;
782 int index = -1;
783 int VectorAdder = 0;
784
785 shared_ptr < StraightLine > ptr_straightLine = nullptr ;
786 vector <Eigen :: Vector3d > wayPointsClosest {};
787
788 // Cicle for the NURBS path generation

144

NURBS path planner Algorithm

789
790 for (int k = 0; k < 20; k++) {
791
792 cout << endl << endl;
793 cout << " Evaluating intersection of obstacle : iteration n." << k <<

endl;
794
795 UpdateNurbs (degree , knots , weights);
796 it = ctrlPoints .begin ();
797 it1 = weights .begin ();
798
799 genericCurve = make_shared < GenericCurve >(degree , knots , ctrlPoints ,

weights , coeff , dimension , degree + 1);
800
801 intersections_All .clear ();
802 position .clear ();
803 pos_first = -1;
804
805 // ---- Calculating all the NURBS points intersection ----
806 for (int j = 0; j < obs_points .size (); j++) {
807
808 intersections .clear ();
809 intersections = genericCurve -> Intersection (obs[j]);
810
811 if (! intersections .empty ())
812 position . push_back (j);
813
814 for (const auto& ele : intersections)
815 intersections_All . push_back (ele);
816 }
817
818 if (! intersections_All .empty ()) {
819
820 // Find the first intersection , the obstacle , and the exit point

from the obstacle
821 Eigen :: Vector4d temp1 = firstIntersection (intersections_All ,

genericCurve , false);
822 first = { temp1.x(),temp1.y(), temp1.z() };
823 paramOrder . push_back (temp1.w());
824 auto itP = paramOrder .begin ();
825 index = UpdateParameterOrder (paramOrder);
826
827 for (int w = 0; w < obs_points .size (); w++) {
828 if (FindObstacleFromPoint (obs.at(w), first)) {
829 pos_first = w;
830 break;
831 }
832 }
833

145

NURBS path planner Algorithm

834 temp1 = firstIntersection (intersections_All , genericCurve ,
false);

835 second = { temp1.x(),temp1.y(), temp1.z() };
836
837 if (! FindObstacleFromPoint (obs.at(pos_first), second)) {
838 second = {};
839 second = first;
840 }
841
842 // Evaluate if the first obstacle (external circle) intersects

others obstacles
843 auto itV = find(visited .begin (), visited .end (), pos_first);
844 vector <int > VecCenterIntersection {};
845 for (int q = 0; q < obs_points .size (); q++) {
846 if (pos_first != q) {
847 auto CenterIntersection = obs_external [pos_first]->

Intersection (obs[q]);
848 if (! CenterIntersection .empty ())
849 VecCenterIntersection . push_back (q);
850 }
851 }
852
853 if (itV != visited .end ()) {
854
855 // --- We already visited this obstacle ---
856 cout << " Obstacle already visited .." << endl;
857
858 ptr_straightLine = nullptr ;
859
860 // Calculation of the point to be added on the external

radius for avoiding the obstacle
861 double x_abs = abs(first.x() - obs_points [pos_first].x());
862 double y_abs = abs(first.y() - obs_points [pos_first].y());
863 double kk = obs_ext_radius [pos_first] / min(x_abs , y_abs);
864
865 if (first.y() <= obs_points [pos_first].y()) {
866 if (first.x() <= obs_points [pos_first].x()) {
867 ptr_straightLine = make_shared < StraightLine >(

obs_points [pos_first], obs_points [pos_first
] + Eigen :: Vector3d { -kk * x_abs , -kk *
y_abs , 0.0 }, 3, 2);

868 }
869 else {
870 ptr_straightLine = make_shared < StraightLine >(

obs_points [pos_first], obs_points [pos_first
] + Eigen :: Vector3d { +kk * x_abs , -kk *
y_abs , 0.0 }, 3, 2);

871 }
872 }

146

NURBS path planner Algorithm

873 else {
874 if (first.x() <= obs_points [pos_first].x()) {
875 ptr_straightLine = make_shared < StraightLine >(

obs_points [pos_first], obs_points [pos_first
] + Eigen :: Vector3d { -kk * x_abs ,kk * y_abs
,0.0 }, 3, 2);

876 }
877 else {
878 ptr_straightLine = make_shared < StraightLine >(

obs_points [pos_first], obs_points [pos_first
] + Eigen :: Vector3d { kk * x_abs ,kk * y_abs
,0.0 }, 3, 2);

879 }
880 }
881
882 intersections .clear ();
883 intersections = ptr_straightLine -> Intersection (obs_external

[pos_first]);
884
885 ctrlPoints . insert (it + index , intersections .at (0));
886 weights . insert (it1 + index , 1.4);
887 UpdateNurbs (degree , knots , weights);
888 genericCurve = std :: make_shared < GenericCurve >(degree , knots

, ctrlPoints , weights , coeff , dimension ,
degree + 1);

889 for (int s = 0; s < paramOrder .size (); s++)
890 paramOrder [s] = UpdateParameterDistance (ctrlPoints [s +

1], genericCurve);
891
892 wayPointsClosest . pop_back ();
893 tuple <double , double > closest = genericCurve ->

FindClosestPoint (ctrlPoints [ctrlPoints .size
() - 2]);

894 auto abscissa_m1 = (double)(get <0>(closest));
895 ClosestPoint = genericCurve ->At(double (abscissa_m1));
896 wayPointsClosest . push_back (ClosestPoint);
897
898 printNurbsInformation (knots);
899 continue ;
900
901 }
902 else {
903
904 // ---- First time we visit this obstacle ----
905 cout << " Obstacle visited for the first time .. " << endl;
906
907 visited . push_back (pos_first);
908
909 ctrlPoints . insert (it + index , first);

147

NURBS path planner Algorithm

910 weights . insert (it1 + index , 0.8);
911 UpdateNurbs (degree , knots , weights);
912 genericCurve = std :: make_shared < GenericCurve >(degree , knots

, ctrlPoints , weights , coeff , dimension ,
degree + 1);

913 for (int s = 0; s < paramOrder .size (); s++)
914 paramOrder [s] = UpdateParameterDistance (ctrlPoints [s +

1], genericCurve);
915
916 it = ctrlPoints .begin ();
917 it1 = weights .begin ();
918
919 // Calculate external point to be addend to bring the NURBS

away from the obstacle
920 tuple <double , double > closest = genericCurve ->

FindClosestPoint (obs_points [pos_first]);
921 auto abscissa_m1 = (double)(get <0>(closest));
922 ClosestPoint = genericCurve ->At(double (abscissa_m1));
923 double x_abs = abs(ClosestPoint .x() - obs_points [pos_first

].x());
924 double y_abs = abs(ClosestPoint .y() - obs_points [pos_first

].y());
925 double kk = obs_ext_radius [pos_first] / min(x_abs , y_abs);
926 kk = kk + 1;
927
928 Eigen :: Vector3d finalPoint1 ;
929
930 if (x_abs < 0.001 || y_abs < 0.001) {
931 if (x_abs < 0.001) {
932 if (ClosestPoint .y() <= obs_points [pos_first].y())
933 finalPoint1 = obs_points [pos_first] + Eigen ::

Vector3d { 0.0, -(double) obs_ext_radius .at(
pos_first) - 10, 0.0 };

934 else
935 finalPoint1 = obs_points [pos_first] + Eigen ::

Vector3d { 0.0, +(double) obs_ext_radius .at(
pos_first) + 10, 0.0 };

936 }
937 if (y_abs < 0.001) {
938 if (ClosestPoint .x() <= obs_points [pos_first].x())
939 finalPoint1 =
940 obs_points [pos_first] + Eigen :: Vector3d { -(

double) obs_ext_radius .at(pos_first) - 10,
0.0, 0.0 };

941 else
942 finalPoint1 =
943 obs_points [pos_first] + Eigen :: Vector3d { +(

double) obs_ext_radius .at(pos_first) + 10,
0.0, 0.0 };

148

NURBS path planner Algorithm

944 }
945 }
946 else {
947 if (ClosestPoint .y() <= obs_points [pos_first].y()) {
948 if (ClosestPoint .x() <= obs_points [pos_first].x())

{
949 finalPoint1 = obs_points [pos_first] + Eigen ::

Vector3d { -kk * x_abs , -kk * y_abs , 0.0 };
950 }
951 else {
952 finalPoint1 = obs_points [pos_first] + Eigen ::

Vector3d { +kk * x_abs , -kk * y_abs , 0.0 };
953 }
954 }
955 else {
956 if (ClosestPoint .x() <= obs_points [pos_first].x())

{
957 finalPoint1 = obs_points [pos_first] + Eigen ::

Vector3d { -kk * x_abs , +kk * y_abs , 0.0 };
958 }
959 else {
960 finalPoint1 = obs_points [pos_first] + Eigen ::

Vector3d { +kk * x_abs , +kk * y_abs , 0.0 };
961 }
962 }
963 }
964
965 ptr_straightLine = nullptr ;
966 ptr_straightLine = make_shared < StraightLine >(obs_points [

pos_first], finalPoint1 , 3, 2);
967 freeControlObs = ptr_straightLine -> Intersection (

obs_external [pos_first]);
968
969 // Evaluating in the freeControlObs is inside another

obstacle
970 if (EvaluatePointInObstacle (freeControlObs .at (0)) == 0) {
971
972 intersections .clear ();
973 intersections . push_back (freeControlObs [0]);
974 temp1 = firstIntersection (intersections , genericCurve ,

true);
975 paramOrder . push_back (temp1.w());
976 intersections .clear ();
977
978 index = UpdateParameterOrder (paramOrder);
979 ctrlPoints . insert (it + index , freeControlObs [0]);
980 weights . insert (it1 + index , 2);
981 UpdateNurbs (degree , knots , weights);

149

NURBS path planner Algorithm

982 genericCurve = std :: make_shared < GenericCurve >(degree ,
knots , ctrlPoints , weights , coeff ,
dimension , degree + 1);

983 for (int s = 0; s < paramOrder .size (); s++)
984 paramOrder [s] = UpdateParameterDistance (ctrlPoints [

s + 1], genericCurve);
985
986 it = ctrlPoints .begin ();
987 it1 = weights .begin ();
988 }
989
990 // Evaluating if we have 2 or 3 near obstacles
991 Eigen :: Vector3d freeMediumPoint = {};
992 int Median = -1;
993 int cnt = 0;
994 bool flagFreeMediumPoint = false;
995 bool Median1 = false;
996
997 if (! VecCenterIntersection .empty ()) {
998 ptr_straightLine = nullptr ;
999 double minParMedian = 999;

1000 Median = -1;
1001 for (const auto& ele : VecCenterIntersection) {
1002 ptr_straightLine = make_shared < StraightLine >(

obs_points [pos_first], obs_points [ele], 3,
2);

1003 intersections .clear ();
1004 intersections = genericCurve -> Intersection (

ptr_straightLine);
1005 if (! intersections .empty ()) {
1006 cnt ++;
1007 flagFreeMediumPoint = true;
1008 temp1 = firstIntersection (intersections ,

genericCurve , false);
1009 if (temp1.w() <= minParMedian) {
1010 Median = ele;
1011 minParMedian = temp1.w();
1012 }
1013 }
1014 }
1015
1016 if (VecCenterIntersection .size () > 1) {
1017 ptr_straightLine = make_shared < StraightLine >(

obs_points [VecCenterIntersection .at (0)],
1018 obs_points [VecCenterIntersection .at (1)], 3, 2);
1019 intersections .clear ();
1020 intersections = genericCurve -> Intersection (

ptr_straightLine);

150

NURBS path planner Algorithm

1021 temp1 = firstIntersection (intersections ,
genericCurve , false);

1022 intersections . emplace_back (temp1.x(), temp1.y(),
temp1.z());

1023 auto intersections1to2 = obs.at(
VecCenterIntersection .at (0))->Intersection (
obs_external .at(VecCenterIntersection .at (1)
));

1024 auto intersections2to1 = obs_external .at(
VecCenterIntersection .at (1))->Intersection (
obs.at(VecCenterIntersection .at (0)));

1025
1026 if (! intersections .empty () && (temp1.w() >=

minParMedian) && (! intersections1to2 .empty
() || ! intersections2to1 .empty ()))

1027 Median1 = true;
1028 }
1029 }
1030
1031 // Evaluating what control point need to be added in the

case of 2 or 3 near obstacles
1032 if (flagFreeMediumPoint) {
1033
1034 freeMediumPoint = FindCenterMedian (obs[pos_first], obs[

Median]);
1035
1036 if (EvaluatePointInObstacle (freeMediumPoint) != 0)
1037 return -10;
1038
1039 Eigen :: Vector3d Last {};
1040 if (EvaluatePointInObstacle (freeControlObs [0]) == 0)
1041 Last = ctrlPoints [ctrlPoints .size () - 3];
1042 else
1043 Last = ctrlPoints [ctrlPoints .size () - 2];
1044
1045 vector <Eigen :: Vector3d > TwoPointsExternal {};
1046 TwoPointsExternal = ExternalIntersection (pos_first ,

VecCenterIntersection , Last , ctrlPoints [
ctrlPoints .size () - 1], cnt , Median ,
Median1);

1047
1048 vector <Eigen :: Vector3d > TempVector {};
1049 TempVector . push_back (TwoPointsExternal [0]);
1050
1051 shared_ptr < StraightLine > LineTemp = nullptr ;
1052 LineTemp = make_shared < StraightLine >(TwoPointsExternal

[0], ctrlPoints [ctrlPoints .size () - 2], 3,
2);

1053

151

NURBS path planner Algorithm

1054 if (EvaluatePointInObstacle (TwoPointsExternal [0]) == 0)
{

1055 if (LineTemp -> Length () < 15) {
1056 ctrlPoints .at(index) = TwoPointsExternal [0];
1057 weights .at(index) = 6;
1058 UpdateNurbs (degree , knots , weights);
1059 genericCurve = std :: make_shared < GenericCurve >(

degree , knots , ctrlPoints , weights , coeff ,
1060 dimension , degree + 1);
1061 it = ctrlPoints .begin ();
1062 it1 = weights .begin ();
1063 }
1064 else {
1065 auto temp4 = firstIntersection (TempVector ,

genericCurve , true);
1066 paramOrder . push_back (temp4.w());
1067
1068 index = UpdateParameterOrder (paramOrder);
1069 ctrlPoints . insert (it + index , TwoPointsExternal

[0]);
1070 weights . insert (it1 + index , 10);
1071 UpdateNurbs (degree , knots , weights);
1072 genericCurve = std :: make_shared < GenericCurve >(

degree , knots , ctrlPoints , weights , coeff ,
1073 dimension , degree + 1);
1074 it = ctrlPoints .begin ();
1075 it1 = weights .begin ();
1076 }
1077 }
1078
1079 for (int s = 0; s < paramOrder .size (); s++)
1080 paramOrder [s] = UpdateParameterDistance (ctrlPoints [

s + 1], genericCurve);
1081
1082 TempVector .clear ();
1083 TempVector . push_back (freeMediumPoint);
1084 auto temp4 = firstIntersection (TempVector , genericCurve

, true);
1085 paramOrder . push_back (temp4.w());
1086
1087 index = UpdateParameterOrder (paramOrder);
1088 ctrlPoints . insert (it + index , freeMediumPoint);
1089 weights . insert (it1 + index , 6);
1090 UpdateNurbs (degree , knots , weights);
1091 genericCurve = std :: make_shared < GenericCurve >(degree ,

knots , ctrlPoints , weights , coeff ,
dimension , degree + 1);

1092 it = ctrlPoints .begin ();
1093 it1 = weights .begin ();

152

NURBS path planner Algorithm

1094
1095 for (int s = 0; s < paramOrder .size (); s++)
1096 paramOrder [s] = UpdateParameterDistance (ctrlPoints [

s + 1], genericCurve);
1097
1098 if ((VecCenterIntersection .size () == 2) && (Median !=

-1)) {
1099 auto itR = remove (VecCenterIntersection .begin (),

VecCenterIntersection .end (), Median);
1100 VecCenterIntersection . pop_back ();
1101 }
1102
1103 // Evaluating if we have 3 near obstacle
1104 if (cnt == 2 || Median1) {
1105
1106 Eigen :: Vector3d Baricenter ;
1107 Baricenter .x() = (obs_points [pos_first].x() +

obs_points [Median].x() + obs_points [
VecCenterIntersection [0]].x()) / 3;

1108 Baricenter .y() = (obs_points [pos_first].y() +
obs_points [Median].y() + obs_points [
VecCenterIntersection [0]].y()) / 3;

1109 Baricenter .z() = 0;
1110
1111 TempVector .clear ();
1112 TempVector . push_back (Baricenter);
1113 temp4 = firstIntersection (TempVector , genericCurve ,

true);
1114 paramOrder . push_back (temp4.w());
1115
1116 index = UpdateParameterOrder (paramOrder);
1117 ctrlPoints . insert (it + index , Baricenter);
1118 weights . insert (it1 + index , 5);
1119 UpdateNurbs (degree , knots , weights);
1120 genericCurve = std :: make_shared < GenericCurve >(

degree , knots , ctrlPoints , weights , coeff ,
dimension , degree + 1);

1121 it = ctrlPoints .begin ();
1122 it1 = weights .begin ();
1123
1124 for (int s = 0; s < paramOrder .size (); s++)
1125 paramOrder [s] = UpdateParameterDistance (

ctrlPoints [s + 1], genericCurve);
1126
1127 // Evaluation path between near obstacles
1128 int from = -1;
1129 if (Median1)
1130 from = Median ;
1131 if (cnt == 2)

153

NURBS path planner Algorithm

1132 from = pos_first ;
1133
1134 freeMediumPoint = FindCenterMedian (obs[from], obs[

VecCenterIntersection [0]]);
1135 TempVector .clear ();
1136 TempVector . push_back (freeMediumPoint);
1137 temp4 = firstIntersection (TempVector , genericCurve ,

true);
1138 paramOrder . push_back (temp4.w());
1139
1140 index = UpdateParameterOrder (paramOrder);
1141 ctrlPoints . insert (it + index , freeMediumPoint);
1142 weights . insert (it1 + index , 5);
1143 UpdateNurbs (degree , knots , weights);
1144 genericCurve = std :: make_shared < GenericCurve >(

degree , knots , ctrlPoints , weights , coeff ,
dimension , degree + 1);

1145 it = ctrlPoints .begin ();
1146 it1 = weights .begin ();
1147
1148 for (int s = 0; s < paramOrder .size (); s++)
1149 paramOrder [s] = UpdateParameterDistance (

ctrlPoints [s + 1], genericCurve);
1150
1151 TempVector .clear ();
1152
1153 if (EvaluatePointInObstacle (TwoPointsExternal [1])

== 0) {
1154
1155 TempVector . push_back (TwoPointsExternal [1]);
1156 temp4 = firstIntersection (TempVector ,

genericCurve , true);
1157 paramOrder . push_back (temp4.w());
1158
1159 index = UpdateParameterOrder (paramOrder);
1160 ctrlPoints . insert (it + index , TwoPointsExternal

[1]);
1161 weights . insert (it1 + index , 5);
1162 UpdateNurbs (degree , knots , weights);
1163 genericCurve = std :: make_shared < GenericCurve >(

degree , knots , ctrlPoints , weights , coeff ,
1164 dimension , degree + 1);
1165 it = ctrlPoints .begin ();
1166 it1 = weights .begin ();
1167
1168 for (int s = 0; s < paramOrder .size (); s++)
1169 paramOrder [s] = UpdateParameterDistance (

ctrlPoints [s + 1], genericCurve);
1170 }

154

NURBS path planner Algorithm

1171
1172 }
1173 else {
1174
1175 // We have only two near obstacles
1176 TempVector .clear ();
1177 TempVector . push_back (TwoPointsExternal [1]);
1178 temp4 = firstIntersection (TempVector , genericCurve ,

true);
1179 paramOrder . push_back (temp4.w());
1180
1181 index = UpdateParameterOrder (paramOrder);
1182 ctrlPoints . insert (it + index , TwoPointsExternal [1])

;
1183 weights . insert (it1 + index , 4);
1184 UpdateNurbs (degree , knots , weights);
1185 genericCurve = std :: make_shared < GenericCurve >(

degree , knots , ctrlPoints , weights , coeff ,
dimension , degree + 1);

1186 it = ctrlPoints .begin ();
1187 it1 = weights .begin ();
1188
1189 for (int s = 0; s < paramOrder .size (); s++)
1190 paramOrder [s] = UpdateParameterDistance (

ctrlPoints [s + 1], genericCurve);
1191 }
1192 }
1193 }
1194
1195 tuple <double , double > closest = genericCurve -> FindClosestPoint (

ctrlPoints [ctrlPoints .size () - 2]);
1196 auto abscissa_m1 = (double)(get <0>(closest));
1197 ClosestPoint = genericCurve ->At(double (abscissa_m1));
1198 wayPointsClosest . push_back (ClosestPoint);
1199
1200 printNurbsInformation (knots);
1201
1202 }
1203 else
1204 break;
1205 }
1206 pathRobotCalculation ();
1207 CalculateWayPoints (wayPointsClosest);
1208 }

155

156

	List of Figures
	Introduction
	Space Robotics
	Planetary Explorations
	Thesis Outline

	Navigation
	Introduction on robot navigation
	Classical localization
	Planetary exploration localization
	Global Localization
	Relative Localization

	Coordinate Systems
	Rotation Matrix
	Homogeneous transformation

	Environment Representation
	Distance graph
	Quadtree
	Visibility graph

	Traversability Map
	Traversability Map and Traversability Index
	Basic path planning using Traversability index
	Advance path planning using Traversability index

	State of the Art
	Path planner Algorithms
	Dijkstra's Algorithm
	A Algorithm
	Potential Field Method
	Wandering Standpoint Algorithm
	Bug Algorithms

	Path planner with NURBS

	NURBS mathematics
	Background notions on curves
	Mathematical form of curves
	Methematical methods for creating curves

	Evolution of curves
	Bernstein Polynomial
	Bézier Curve
	B-Spline Basis Functions

	NURBS theory
	The importance of NURBS curves
	Definition and Properties of NURBS curves

	Algorithms and Methods
	Obstacle detection
	Implementation

	Graphic Viewer based on OpenGL
	Introduction to OpenGL
	Integration with the path planner

	Path Generation
	Introduction on SISL library
	Assumption and Personal choice
	Robot dimension in the environment
	Path planner implementation
	State 1
	State 2

	Test and Simulations
	Simulation of NURBS path
	Comparison between NURBS and A*
	Dynamic path re-calculation
	Real surface planetary paths
	Moon surface test
	Mars surface test

	Conclusions
	Bibliography
	Obstacle Detection Algorithm
	NURBS path planner Algorithm

