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Summary

An accurate indoor localization for mobile robotic platforms is fundamental to
accomplish autonomous navigation tasks. The most common source of odometric
signal for wheeled Unmanned Ground Vehicles (UGV) is provided by the wheels’
encoder sensors and an inertial measurement unit (IMU) if present. However, it is
strongly sensible to slip conditions, accumulating error in the robot’s positioning and
becoming inaccurate after a short time since it is done integrating over the encoders’
data. Visual odometry techniques can represent a precise alternative for an indoor
environment with various features and suitable lighting conditions. However, when
the environment offers few or repetitive visual patterns, it is necessary to consider
an alternative for reliable UGV localization. Nonetheless, Ultra-WideBand (UWB)
anchors recently emerged as a promising solution for indoor robot localization.
UWB signals present high precision in Line of Sight (LOS) conditions. On the
other hand, they are heavily subjected to a positive bias error in Non-Line of Sight
conditions (NLOS) due to obstacles obstruction.

This work aims to study a Machine Learning-based solution to correct and im-
prove robot localization techniques, relying only on raw sensor data. In particular,
the study is focused on the correction of two cost-effective sensor signals: wheel
odometry and Ultra-WideBand (UWB) anchors ranges. First, a dataset is collected
running a Jackal UGV at the PIC4SeR (PoliTO Interdepartmental Center for
Service Robotics) laboratory and recording the ROS topics published with the data
measured by wheel encoders, IMU, UWB ranges of four antennas, and an Intel
t265 visual odometry camera, used as ground truth and validated with the use of a
Leica Absolute Tracker AT930. Different neural networks (NN) architectures are
considered to correct the received odometry signals.
A classic feed-forward dense neural network (NN) for the UWB localization and
a Long Short-Term Memory network (LSTM) for the encoder odometry. In both
cases, the temporal sequence of previous N sensor data has been adopted to feed
the NN models, demonstrating better performances than a single data sample. A
grid search for hyper-parameters tuning has been carried out to select the best
models on a validation data set.
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Finally, for both the wheel odometry and UWB, an experimental test set is used
to compare the selected best models with an Extended Kalman Filter (EKF) and
an analogous NN trained with a single input instead of a temporal sequence of
sensor data.
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Chapter 1

Introduction

1.1 Objective of the thesis

Autonomous navigation is one of the most challenging skills to achieve in mobile
robotics, and its success depends on an accurate localization system; in particular, in
indoor localization, high precision and robustness are required. Nonetheless, if the
odometric signal is obtained by wheel encoders or inertial measurement units only,
it lacks robustness and accuracy due to the accumulation of the error, which tends
to explode after a few times making the position data unreliable. Literature offers
many approaches to tackle this problem and mitigate the error, mainly based on Ex-
tended Kalman Filters; however, due to the growth in popularity of Deep Learning,
many Neural Network-based solutions have been proposed. Moreover, during the
development of this work, we decided to try to study simultaneously a localization
system based on Ultra WideBand anchors, which is emerging as a promising solution
for indoor localization. UWB anchors present a high accuracy in conditions of Line
of Sight while suffering a heavy positive bias in case of Non-Line of Sight conditions.

The aim of this thesis consists in mitigating the error of mobile robot localization
in the aforementioned situations through a Deep Neural Network-based solution.
In particular, the use of Long Short-Term Memory Neural Network is explored with
sequence-shaped inputs. The data used to train and test the proposed models are
collected in an indoor environment. In particular, a Clearpath Jackal mobile robot
has been teleoperated in an indoor space to collect the data of the sensors. In par-
ticular, an Intel Realsense tracking camera t265 and a Leica Laser Tracker AT403
have been used as a ground truth reference, meanwhile, a DecaWave TREK1000 kit
has been used to collect UWB data. A particular focus is made on the research and
tuning of the hyperparameters of the Neural Network model. Finally, the results
will be compared with the position signals obtained through Extended Kalman

1



Introduction

Filters.

This project was born at the PIC4SeR (PoliTo Interdipartimental Center for
Service Robotics) in a wider context that focuses on service robotics for the
development of a highly innovative solution for various fields such as precision
agriculture, smart cities, wellbeing, cultural heritage and space applications. In
this context, an accurate localization system concurs in achieving autonomous
navigation tasks, which represents a competitive advantage in all these application
fields.

1.2 Organization of the the work
This thesis is subdivided into the following chapters, which are briefly described in
this section.

Chapter 1 introduces the context and the goal of the thesis, summarizing also
the adopted methodology.

Chapter 2 introduces the localization problem, providing a model for odometric
position and illustrating the main source of error in wheel odometry. Then the
UWB technology is presented by defining regulation, the adapted terminology, the
main ranging methods and the main sources of error.

Chapter 3 offers a broad panoramics of the state of the art of both localization
techniques. In the first section, an overview of the main approaches to localization
is given, and then, in the following section, some examples of Machine Learning
and the respective methodology found in the literature are illustrated.

Chapter 4 introduces the main elements of machine learning, starting from a
historic perspective; subsequently, the main bricks of Deep Learning are explained,
such as architectures and training algorithms. The last part of the chapter focuses
on recurrent neural networks and specifically on LSTM structure.

Chapter 5 describes the robot platform, the sensors used and the software used
to develop this project.

Chapter 6 is devoted to illustrating in detail the development process of this
work. First, the dataset creation and its features are described. Later the grid
search results are analyzed, and finally, the results are presented.

2



Introduction

Chapter 7 ends the thesis, with the conclusions of the work and possible future
developments.
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Chapter 2

Introduction to the
localization problem

This chapter aims at introducing the localization problem, that represents the
core of this work. In the first section, a general overview and context about the
localization are given, with a general mathematical formalism to represent the
odometry of a mobile robot in a plane, its update during the time and its error.
Then, the main causes of wheel odometry errors are introduced. The final section
of this chapter introduces the reader to the UWB technology for localization, the
main ranging techniques and the primary sources of error.

2.1 The localization problem
Navigation is a fundamental task for mobile robot platforms and it consists of four
main phases. [1]

• Perception: the extraction of meaningful data from sensors

• Localization: the determination of the position in the environment

• Cognition: the decision-making process to reach a goal

• Motion control: the actuation of the correct movement to cover a trajectory

The rest of this thesis will focus on the localization problem.

It is possible to classify the localization problems based on the available knowl-
edge of the initial position and face each case with different methods.

4



Introduction to the localization problem

• Position tracking: the initial position is known and the robot is tracked at every
time instance during its navigation in the environment. The robot position
is continuously updated using the previous position by using odometry and
sensors. Therefore, uncertainty should be kept bounded, otherwise, the robot
may not be localized. Furthermore, in this case, the initial position belief is a
normal distribution

• Global localization: the initial position is not known and the robot has to
locate itself within its environment

• Kidnapped robot problem: the robot has to relocate itself in its environment
and uses the match between the current data of the sensors and is knowledge
about its position. An autonomous robot should be able to monitor its pose
and be able to relocate itself when it recognises it has been kidnapped.

To confront these three problems, many strategies have been taken into account:
probabilistic localization strategies, evolutionary strategies, automatic map-based
localization and RFID approaches. [2]

As a mobile robot navigates around an environment, it keeps track of its
movement through odometry, but its uncertainty makes the self-localization of the
robot not reliable. To address this issue, the localization process should take into
account the map of the environment, preventing the error to grow without limits.
Therefore, in addition to wheel odometry, exteroceptive sensors such as lasers,
cameras and ultrasonic sensors, can collect data about the environment. It is not
possible to measure the accurate position directly, but it can only be estimated in
two phases. [1]

• Prediction update phase: during this phase proprioceptive sensors such as
wheel encoders and IMU are used to estimate its position, given a known initial
position x0. During the navigation, the error accumulates and uncertainty
grows.

• Perception update phase: the robot uses exteroceptive sensors to update its
position and correct, if necessary, the position estimated in the previous phase,
reducing the uncertainty.[2]

2.1.1 A model for odometric position
The pose of a mobile robot can be describet with three coordinates.

5



Introduction to the localization problem

Figure 2.1: (a) Prediction phase: the position at the initial time instant is
known, so the probability density function is a Dirac delta. When the motion
starts, the uncertainty starts to accumulate and the p.d.f. changes. (b) Perception
phase: exteroceptive sensors are used to measure the position with respect to the
environment, shrinking the uncertainty. [1]

q =

x
y
θ

 (2.1)

In the case of a differential drive robot, it is possible to define the incremental
travel distances during a fixed sampling interval ∆t.

∆x = ∆s · cos

A
θ + ∆θ

2

B
(2.2)

∆y = ∆s · sin

A
θ + ∆θ

2

B
(2.3)

∆θ = ∆sr −∆sl

d
(2.4)

Where ∆sr and ∆sl are the distances accomplished by the left and right wheel
respectively and d is the distance between the wheels.

So now it is possible to write the equation for the update of the position. [1]
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p′ =

x′

y′

θ′

 =

x
y
θ

+


∆s · cos

A
θ + ∆θ

2

B

∆s · sin

A
θ + ∆θ

2

B
∆θ

 (2.5)

2.2 Error sources in wheel odometry
The error of wheel odometry, if not corrected, rapidly tends to accumulate and
explode. It is possible to compute its value by defining an “error ellipse”, which
describes the region of the uncertainty of the actual position as in the figures 2.2a
and 2.2b. It is shown how its dimensions grow along the trajectory until the error
makes the position value useless and unreliable. It can be seen that in a straight
motion along the x-axis, the uncertainty grows faster along the y-axis: this happens
because of the uncertainty of the orientation θ.

(a) Uncertainty ellipse in straight motion:
the uncertainty grows along the y axis due
to the integration of robot orientation.

(b) Uncertainty ellipse in curve motion:
the uncertainty mainly grows along the di-
rection perpendicular to the motion but
the main axis of the ellipse is not perpen-
dicular to it.

Figure 2.2: Uncertainty ellipses. [1]

If we focus on differential-drive robots, it is possible to divide the sources of
error into two main categories: systematic errors and non-systematic errors. The
main causes of systematic errors, according to Borenstein and Feng, [3] are:

• different mean radius between the two wheels
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• non-constant wheel radius

• non-aligned wheels

• encoder resolution

• encoder sampling rate

• uncertainty of effective wheelbase

The main causes of non-systematic errors are:

• uneven surfaces

• unexpected objects on the surface

• wheel-slippage due to slippery surface, acceleration, skidding, external forces
and wheels not touching the floor

Systematic errors can cause the worst effect if not corrected, due to their
integration. Nonetheless, it is possible to measure and correct them easily.

2.3 Ultra-Wideband for mobile robot localization
2.3.1 Definition of UWB signals and regulations
According to the IEEE 802-15a standard, an ultra-wideband signal satisfies one of
the following two conditions: [4]

• its simultaneous bandwidth B is equal to or greater than 500 MHz.

B ≥ 500MHz (2.6)

• its fractional bandwidth fr, defined as in formula (2.7), is larger than 20 %. fu

and fl are the upper and lower frequencies where the power spectral density
is 10dB below its maximum, and fc is the central frequency.

Br = fu − fl

fc

(2.7)

Each country has different regulations concerning the spectrum mask of UWB
signals which define the application of UWB technology, emissions level (Power
Spectral Density), interference mitigation and allocated frequency ranges. The first
country to release UWB regulation was the United States, in 2002, through the
Federal Communication Commission (FCC), followed by European Union in 2006
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Figure 2.3: UWB spectral masks in USA and EU [4]

through European Communication Commission (ECC). American and European
regulations are summarized in figure 2.3.

The maximum emission level is very low in all cases (−41.3dBmMHz), but
the ultra-wideband allows to realize high data rates (> 100Mbit/s); thus, to fulfil
regulations, UWB commercial applications are limited to short-range applications
only. Two main approaches are used to exploit the spectrum characteristics:

• Impulse Radio (IR) UWB is based on ultra-short pulses radiated directly from
the antenna. It is not efficient in the exploitation of the mask and is subject
to the effects of the noise but can be achieved with simple analog components.

• Orthogonal Frequency Division Multiplexing (OFDM), where the UWB spec-
trum is divided into a set of broadband OFDM channels. In this case, the
orthogonality of subcarriers avoids cross-talks, which leads to more efficient
exploitation of the band and more robust transmission in the case of noise,
but it is more complex to achieve in terms of signal processing.
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2.3.2 Terminology
Before explaining the different techniques used to estimate the position of a mobile
robot using UWB signals, it is necessary to introduce a typical experimental
scenario with specific terminology. [5]

• An anchor is a fixed UWB transmitter/receiver which is used as the reference
point. Usually, several anchors are used to obtaining a 2D or 3D position.

• The tag is the moving UWB transmitter/receiver attached, in this case, to
the mobile robot platform to locate. It communicates with the anchors.

• The direct path is the straight line from a tag to an anchor

• An obstacle obstructs is an object that may interrupt the direct path between
an anchor and the tag.

• Multipath components are the non directs signal paths originating from reflec-
tions in the environment.

2.3.3 Ranging methods
Several techniques can be used to estimate the distance between two UWB sensors:
the ranging estimation is then used to estimate the position of the tag in an
environment. [4]

Received Signal Strenght (RSS)

As the signal travels in space, going further from its source, it becomes weaker.
Knowing the initial transmitted power, it is possible to estimate roughly the distance
between the transmitter and the receiver. Despite the ease of implementation, this
method suffers from poor accuracy, especially for an indoor environment where it
is not possible to assume free space propagation. The first approach to mitigate
this problem and exploit RSS is the so-called fingerprint, which consists in creating
a map of the power of the received signals in the environment. However, this
approach’s main flow is a poor generalization, since a new map should be done
for every considered space. Another approach that can be used is trilateration,
considering at least the received power from three anchors, estimating their distance
from the tag and obtaining the position.

Time of Arrival (TOA)

The time of arrival ranging technique consists in measuring the time employed
by the signal to travel from the transmitter to the receiver, also called Time of
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Flight (TOF), and estimating the distance between them. Time of Flight can be
computed since the received messages contain the sending time: this technique
is highly error-prone in case of a non-perfect synchronization of the transmitter
and the receiver. Two Way Ranging (TWR) protocol can solve the problem of
device synchronization, measuring the time only on a single device: a signal is sent
from the tag to the anchor, which after a known time of reply sends the message
back. Given the time of a round Tround and the time of replay Treply it is possible
to calculate the time of flight Ttof .

Ttof = 1
2(tround − treply) (2.8)

However, this method is sensitive to the bandwidth and Non Line of Sight (NLOS)
conditions. As the RSS, computing the distance between the anchors and the
tag allows for the application of a trilateration algorithm to locate the tag in the
environment.

Time Difference of Arrival (TDOA)

Time difference of arrival (TDOA) measurement, contrary to the TOA case, requires
only the synchronization of the anchors themselves, which are placed in known
positions. Measuring the difference in the arrival time of two signals allows us to
calculate a hyperbola, a set of points indicating a constant distance between two
anchors, where the tag can be located. Since the hyperbola is a 3D surface, it is
necessary to place at least three anchor nodes to intersect at least two hyperboloids,
to find the point where the tag is positioned. The TDOA approach, as TOA,
heavily suffers from Non Line of Sight conditions.

Angle of Arrival (AOA)

The measurement of the angle of arrival (AOA) provides the direction of the
incoming signal, that is the angle between two nodes. This means that if the tag
measures the angles from two anchors, it is enough to estimate the tag’s position
in a 2D environment, without the need for synchronization. . On the other hand,
the hardware needed to carry out angle measurements is more complex, such as
antennas array.

2.3.4 Main sources of error
It is possible to identify the main sources of error in UWB ranging measurements,
focusing mainly on the Non-Line of Sight problem [5].
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• Multipath propagation: in a multipath environment the reflection of the signal
may lead to errors since the TOA estimation is based on the time shift of
a template signal. Fortunately, this error is mitigated by the large band of
UWB without the need for a complex algorithm.

• Multiple access interference: it happens when more than one nodes are active
and their signals interfere with and degrade the ranging performance. This
error can be mitigated by a training code that sets up the transmitters and
the receiver.

• High-time resolution: the practical implementations of UWB sampling above
the Nyquist frequency are impractical since it requires a sampling frequency
around the tens of GHz. Moreover, clocks drift and jitter affect the accuracy.

• Non-Line of Sight: if the direct path is obstructed by obstacles, which could
be static such as a wall or a piece of furniture, or dynamic, such as a person. In
this case, two situations are possible: soft NLOS, when the obstacle weakens
the strength of the signal which is received with a lower amplitude, and hard
NLOS, when the signal does not reach directly the receiver, so the reflections
are detected.
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Chapter 3

State of the art

The localization of a mobile robot is a fundamental step in the autonomous
navigation process, and in literature, many studies and approaches can be found.
The first section of this chapter illustrates to the reader the main techniques
employed nowadays, including the most used sensors and their advantages and
drawbacks. Since this work focuses on the exploitation of Deep Learning for
localization, the second section of this chapter focuses on the affine works to the
subject of this thesis that can be found in the literature.

3.1 Mobile robot localization: sensors and tech-
niques

Two main classes of localization approaches can be identified: probabilistic ap-
proaches and autonomous map building. In the first case, Markov localization and
Kalman Filter (KF) are the main techniques that can be found in the literature
and can be applied to a wide variety of sensor data.

3.1.1 Probabilistic approaches
Markov localization

At the beginning, the robot can locate itself starting from an unknown position, and
then track multiple possible positions, so it is possible to recover from ambiguous
situations. It is necessary to represent the state space in a discrete way, such as a
topological graph or a grid, in order to update the probability of possible positions.
The available information about the previous position and the odometry input is
used during the update of the predicted localization. Therefore, considering the
previously estimated position Sbest(xt−1) and the proprioceptive data, which are
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used as a control input u, the current state Sbest(xt) is evaluated. The following
equations cover respectively the discrete (3.1) and the continuous (3.1) case.

sbest =
Ø

xt−1
p(xt)|ut, xt−1)Sbest(xt−1) (3.1)

sbest =
Ú

p(xt)|ut, xt−1)Sbest(xt−1)dxt−1 (3.2)

In case the measurement is done using exteroceptive sensors data zt combined
with the earlier estimated positionSbest(xt), the Bayes rule is used to compute the
robot’s new state Sbest(xt).

Sbest = ηp(zt|xt, M)Sbest(xt) (3.3)
Where xt is the robot position and p(zt|xt, M) is the probabilistic model, which

represents the probability of the observation of zt given the robot poses xt and
the map M . Moreover, the noise-free measurement function h depends on XT

and M . Finally, a noise term is added to the measurement function h, to derive
the probabilistic measurement model, such that the probabilistic distribution
p(zt|xt, M) has a peak at h(xt, M). Considering the noise to be a gaussian function,
the following function is derived.

p(zt|xt, M) = N(h(xt, M), Rt) (3.4)
Where N is a multivariate normal distribution with mean h(xt, M) and covariance
matrix Rt. [2]

Kalman Filter

The Kalman Filter (KF) approach is an efficient and precise method to solve the
tracking problem: the position is tracked from an initial known position with an
optimal sensor fusion approach. Generally, this method can be used in a continuous
state representation, with some exceptions in case the uncertainty is too large:
in this case, the position is lost and cannot be recovered anymore. Kalman filter
can be considered a particular case of Markov localization, where Gaussians are
used to represent the robot position assumption Sbest, the motion model and the
measurement model. In the first phase, namely the prediction update, a motion
model with a Gaussian error is applied to the measured encoder data. The second
phase, namely the perception update, consists of the following four steps:

• Observation step: different features are extracted from sensor data.

• Measurement/Perception step: a measurement prediction is produced, contain-
ing the expected features to be observed from the predicted position during
the prediction step.
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• Matching step: the best match between observed features and expected features
evaluated during the prediction step is computed.

• Estimation step: KF fuses the matching information to update the robot’s
belief state during the estimation step.

The normal probability density function (PDF) for a Gaussian distribution is
defined as follows.

p(x) = 1
σ
√

2π
exp

A
−(x− µ)2

2σ2

B
(3.5)

Where x is a scalar random value, µ is the mean of the scalar random value x
and σ2 is its variance.
In case x is a multidimensional vector, with k dimensions, it is possible to define a
multivariate normal distribution.

p(x) = 1---√Σ
--- k
√

2π
exp

A
− (x− µ)T

Σ−1(x− µ

B
(3.6)

Where µ is the vector of the mean values and Σ is the covariance matrix, which
is symmetric and positive-semidefinite.

Even though Kalman Filter is an optimal solution for the tracking problem, it
does not solve the kidnapped robot problem and global localization problem. Many
robotics applications require a non-linear system: in this case, the Extended Kalman
Filter (EKF) is used, which linearizes around the estimate of the current mean
and covariance. This can be considered the standard approach for localization
problems.

3.1.2 Simultaneous Localization and Mapping (SLAM)
The previous probabilistic approach required an environment map, which is, in
most cases, hand-made: the robot uses environment features, that must be included
in the map, to locate itself. Having a previously designed map can be challenging
for complex, large or dynamically changing environments. Thus, automatic map
building is a solution to this problem: the robot starts the navigation from a random
point and explores the environment through its sensors gaining knowledge of the
environment and building the map. [1]

The main issue consists in creating the map and modifying it automatically,
which in robotics is called simultaneous localization and mapping (SLAM). The
environment map is built by obtaining accurate information about the robot’s path,
which estimation requires a precise map: the whole process is done by collecting
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data from proprioceptive and exteroceptive sensors. Generally, the robot path is
obtained from the odometry data and environment features, collected by sensors
such as cameras, ultrasonic sensors or LiDaRs. Usually, the formulation of the
SLAM problem is probabilistic and the map is represented as a probability distri-
bution: the objective is to estimate the robot’s position and the map from sensors’
observations during the time.

We’ll denote the robot path as XT , its relative motion as UT and the environment
map as M .

XT = {xi|0 ≤ i ≤ T} (3.7)

UT = {ui|0 ≤ i ≤ T} (3.8)

M = {mi|0 ≤ i ≤ n− 1} (3.9)

The initial position x0 is known, and the motion during a time step, namely
between t− 1 and t, is indicated as ut. The sequence of observations in the robot’s
reference frame is defined as:

ZT = {zi|0 ≤ i ≤ T} (3.10)

Thus, the SLAM process consists of obtaining the map model M and the robot
trajectory XT given the odometry UT and the data observations ZT . It is possible
to face the problem in two ways:

• full SLAM : the full path is updated, consisting of the estimation of the joint
posterior probability of XT and M , namely p(XT , M |ZT , UT ).

• Online SLAM: at every timestep, the robot current position xy and the map
are updated, namely p(xt, M |ZT , UT ).

The SLAM process can be addressed using extended Kalman filter (EKF) or
unscented Kalman filter (UKF) approaches. [2]

3.1.3 Sensor for indoor localization
The traditional localization techniques mainly rely on GPS signal, which works well
for open outdoor environments, but is not suitable for indoor spaces, where the signal
is reflected or impeded by walls and its accuracy is too large. In robotics literature,
many studies about self-contained odometry methods and simultaneous localization
and mapping (SLAM) can be found: these techniques can be implemented relying
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on data obtained from onboard sensors. In this case, odometry uses local sensors to
estimate the pose of a mobile robot starting from a known position. The following
part of the section offers a broad panoramic view of the main types of sensors and
sensor fusion used to estimate the odometry of mobile robots, all their features are
summed up in the table 3.1. [6]

real time power accuracy robustness dimensions
GPS soft low-power semi-accurate high 2D
WO hard low-power non-accurate low 2D
IO hard low-power non-accurate high 3D
LO hard high-power accurate medium 3D
VO firm high-power accurate low 3D
FB VIO firm high-power accurate medium 3D
OB VIO soft high-power accurate medium 3D
LC VIO firm high-power non-accurate low 3D
TC VIO soft high-power accurate medium 3D

Table 3.1: Comparison of common odometry techniques [6]

Wheel odometry (WO)

It is one of the simplest forms of odometry, applied to many differential robots,
such as two or four-wheeled platforms. The number of revolutions made by each
wheel is measured by wheel encoders and then integrated through a dynamic model
to obtain the current position. This method is subjected to drift and slippage, and
it is not suitable for long-term reliable localization.

Inertial odometry (IO)

It uses the measurement from the IMU sensor to determine the position and
the orientation of the robot in a 3D space: the inertial sensor consists of a 3-
axis accelerometer and a 3-axis gyroscope. As the wheel encoder odometry, this
method is subjected to drifting during the time, due to the IMU inaccuracy,
and is not suitable for long-term localization. To contain this problem, often a
double-integration based on an Extended Kalman Filter (EKF) is used.

Laser odometry (LO)

Laser odometry is based on tracking the laser speckle patterns reflecting on the
surrounding environment on a 2D observation plane. A 3D space is reconstructed
by superposing several 2D images. This method is not addressed in this work.
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Visual odometry (VO)

It estimates the pose of the mobile robot by analyzing the changes in the frames of
the camera over time. The main features of an image are extracted using an image
feature detector. Three main techniques are used to evaluate visual odometry:

• Direct approach, where raw measurements (i. e. pixels) are used to estimate
the position of the robot, detecting the change in the different frames. This
solution requires many equations.

• Feature-based approach, where only the movement in the points of interest,
such as corners or edges, are considered. The pose of the robot is estimated by
minimizing the geometric error to calculate the transformation matrix: this
allows for considering only a few features.

• Hybrid approaches: the feature-based approach can lack robustness in low-
textures environments because they manage to extract only a few features.
Hybrid approaches tackle this problem by merging the two previous methods.

Visual-laser odometry

In this case, LiDaR and visual odometry are fused to avoid the problem generated
by the limitation of the laser, such as motion distortion, and the camera, such as
low-texture environments.

Visual-inertial odometry (VIO)

Integrating visual and inertial odometry helps to overcome the limitation of both
approaches: IMU sensor is not affected by the surrounding conditions while camera
data do not deteriorate with time. The resulting visual-inertial odometry (VIO)
is characterized by great robustness and accuracy. VIO can be categorized as
filter-based and optimization-based, which depends on how the data are fused, and
in loosely-coupled and tightly coupled.

• Loosely-coupled approach (LC): the position and the orientation of the robot
are obtained by merging the estimation of the two isolated systems. Generally,
the data fusion takes place through a Kalman Filter.

• Semi-tightly coupled approach: it consists in fusing the estimation provided by
visual odometry with the row data from the IMU to achieve accuracy.

• Tightly-coupled approach (TC): the main tracked features extracted from
images are fused with raw measurements of the IMU. This leads to better
performances than other coupling methods.
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• Filter-based approach (FB): this approach was one of the first to tackle VIO
and SLAM problems. It consists of two parts: the prediction step and the
update step. It is possible to consider them as a maximum a posteriori (MAP)
technique, where the proprioceptive measures (IMU) are used as prior distri-
bution of the position and the exteroceptive sensors contribute to constructing
the likelihood distribution. Three types of filters are used: Extended Kalman
Filter (EKF), Multi-State Constraint Kalman Filter (MSCKF) and Unscented
Kalman Filter (UKF).

• Optimization-based approach (OB): it consists in estimating the position by
optimizing main features extracted from camera images and inertial measure-
ments jointly. This technique is based on iteratively minimizing the least
square function.

3.2 Machine learning for robot localization
3.2.1 Machine learning for wheel odometry
Estimating the Odometry Error of a Mobile Robot by Neural Networks
(H. Zu, J. J. Collins, 2009) [7]

This work presents different approaches to differential mobile robot localization
which can correct both systematic and non-systematic errors through a neural
network. The robot’s actual trajectory, used as ground truth, is captured via a
laser scanner which measures the position and motion of a marker, which consists
of a white tube placed on top of the robot. The two-layer perceptron is fed with the
data provided by a generic third-party localization module. The dataset consists
of samples of eight (x, y) points; 80 % of the data is used to train the network
and the remaining 20 % to test it using cross-validation. The testing phase has
been carried out by making the robot follow different trajectories (a straight line, a
rectangle and a curve): the evaluation is based on computing the Mean Absolute
Percentage Error (MAPE) on the samples of eight points and then compared to
the UMBmark proposed by Borenstein and Feng [3].

Learning Uncertainties in Wheel Odometry for Vehicular Localisation in
GNSS Deprived Environments (U. Onyekpe, V. Palade, S. Kanarachos,
S. Christopoulos, 2020) [8]

This work does not address mobile robots but vehicle localization, in particular the
position update in case of GNSS outages using wheel encoders instead of the Inertial
Navigation System (INS). An LSTM network has been used, fed with wheel speed
and GPS data taken from different datasets recorded in different environments and
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driving conditions, with a time window of 11 s, with a sampling frequency of 1 Hz.
The performance of the proposed method has been tested on a part of the dataset
not used for training and comparing the cumulative Root Squared Error (CRSE)
with the traditional INS method in different situations.

Learning Wheel Odometry and IMU Errors for Localization (M. Brossard,
S. Bonnabel, 2019)[9]

This work uses a differential robot dataset [10] recorded in an outdoor environment
to train a Gaussian Process (GP) to learn the residual between ground truth
data and a position estimation calculated using a deterministic model based on
wheel encoders or IMU. A machine learning approach has been used to ensure
scalability. Finally, an Extended Kalman Filter that uses the corrected model with
automatic differentiation for the computation of the Jacobians is used to compute
the robot’s position. A part of the dataset is left for the testing phase: when the
proposed approach is compared to the physical model analyzing the mean Absolute
Trajectory Error (m-ATE) and the cumulative Absolute Trajectory Error (c-ATE)
on position and orientation.

Drift Compensation of a Holonomic Mobile Robot Using Recurrent
Neural Networks(K. O. Canbek, H. Yalcin, E. A. Baran, 2022)[11]

This work focuses on correcting the odometry error of a mobile robot platform
with four mechanum wheels through a GRU neural network, using the raw data
from wheel encoders and accelerometers and the ground truth is provided via
an optoelectronic motion tracking device. The sensor data rate is equal to 1000
Hz and the yaw motion is not provided. To identify the best structure of the
network a grid search has been done and the best model is then tested over some
specific trajectories. A Kalman Filter-based solution has been used as a benchmark
comparing the root mean squared error over all the points of the trajectory.

3.2.2 Machine learning for UWB localization
Robust ultra-wideband range error mitigation with deep learning at
the edge (S.Angarano, V. Mazzia, F. Salvetti, G. Fantin, M. Chiaberge,
2021)[12]

This paper proposes a solution to mitigate the error given both in LOS and NLOS
cases, collecting data in different situations, with different kinds of obstacles and
different rooms. The channel input response (CIR) obtained from the tag is given
as input to a feedforward neural network, which is used for range mitigation The
ground position is collected through a total station. A focus on weight quantization,
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hardware characteristic and computational lightness is then introduced. The
obtained result is compared to the case without mitigation.

UWB indoor localization using deep learning LSTM networks (A. Poulose,
D. S. Han, 2020)[13]

In this work, a deep learning-based system is used to calculate the position of the
tag with three anchors. First, a TOA-distance model is implemented, and then the
resulting ranging distances from anchors to the tag are fed as input to a two-layer
LSTM neural network which estimates the position of the tag. An investigation
over hyperparameters has been carried out and the best model has been evaluated
in a simulation environment and compared with other techniques such as linearized
least square estimation (LLSE), fingerprint estimation (FPE), maximum likelihood
estimation (MLE) and weighted centroid estimation(WCE).

Feature-based deep LSTM network for indoor localization using UWB
measurements (A. Poulose, D. S. Han, 2021), [14]

In this work, a method based on feature extraction on the time of arrival (TOA)
data is used to feed an LSTM network which outputs the position of the receiver.
The system extracts minimum, maximum and quantile at 25%, 50% and 75% from
time sequences obtained from data. Then, the network is trained and the method
is validated through a simulation in which anchors send Gaussian pulses. This
approach is then compared with other deep learning models.

Learning-Based bias correction for time difference of arrival ultra-
wideband localization of resource-constrained mobile robots (W. Zhao,
J. Panerati, A. P. Schoeling, 2021) [15]

This work focuses o correcting the positive bias in the case of TDOA-based (Time
Difference of Arrival) UWB localization. The proposed solution consists of a
learning-based bias correction within different and unobserved anchor constellations
using bias correction and M-estimation. Then, this approach is implemented on a
nano-quadcopter, showing how the method can run in real-time in a closed loop on
the drone board. The M-estimation technique is then used as a benchmark for the
comparison of the results, in particular, the Root Mean Square Error (RMSE) is
compared.
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Deep gated recurrent unit-based 3D localization for UWB systems (D.
Nguyen, J. Joung, X. Kang, 2021) [16]

This work proposes a 3D localization method with 8 anchors in the environment.
The signals received by the receiver anchor are then downsampled and fed to a
two-layer GRU neural network which outputs directly the position of the receiver.
The algorithm is then simulated in different conditions of Signal to Noise Ratio
(SNR) and the root mean squared error is compared with other approaches such as
convolutional neural network-based (CNN) methods and trilateration.
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Chapter 4

Machine learning

Since ancient times, man always dreamt about creating an autonomous thinking
machine, and nowadays the technology innovation is moving in this direction.
But first, to introduce a distinction between the most common terms, such as
Artificial Intelligence (AI), Machine Learning (ML), Neural networks (NN) and
Deep Learning (DL), in order not to confuse. According to A. Moore: “Artificial
intelligence is the science and engineering of making computers behave in ways that,
until recently, we thought required human intelligence”. Just to mention a few,
recognition, prediction, translation and making decisions are examples of machine
learning. This task can be accomplished by traditional programming, written
through human coding, or machine learning, which is the ability of a machine
to extract its knowledge from raw data. Neural networks are a subsystem of the
machine learning universe and are characterized by their structure inspired by the
human brain. Deep learning is characterized by a neural network with multiple
hidden layers, hence the adjective "deep". In summarising, it is possible to see this
hierarchy as nested Russian dolls, each one as a subsystem of the other. [17]

The rest of the chapter contains a brief panoramic on the history of neural
networks, an overview of the main elements of neural networks, including the
feedforward neural network architecture, activation functions, stochastic gradient
descent algorithm and ADAM optimizer, and a simple introduction to recurrent
neural networks.

4.1 Brief history of neural networks
The history of deep learning is characterised by several peaks and valleys. The first
attempts date back to the 1940s, from a discipline known as cybernetics, where a
simple linear model was designed to imitate brain functions.
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Figure 4.1: Nested russian dolls representing the AI hierarchy. [17]

The McCulloch and Pitts neuron (1943) aimed at imitating the brain cell func-
tioning with a linear model, where n inputs x1, . . . , xn were associated with an
output y through a linear function f(x, w) = x1w1 + · · ·+ xnwn, where the weights
w1, . . . , wn were set by a human operator. Checking the sign of its output it is
possible to distinguish the input into two categories. Rosenblatt’s perceptron (1958)
was the first evolution step, being able to learn the weight to divide inputs into
categories, given a series of examples. Widrow’s and Hoff’s adaptive linear element
(ADALINE) (1960), has a similar structure to the perceptron but is able to output
a real number as f(x) learning the weight from data. Its training algorithm, called
stochastic gradient descent is still the most used nowadays. The previously listed
models are called linear models and are still extensively used, with different training
techniques. The first obstacle that deep learning faced was its inability to learn
the XOR function, considering the simple linear models that were developed. This
problem was raised in a paper by Minsky and Papert (1969) that caused a negative
response against neuron-inspired learning and started the "first winter" of deep
learning, a period when researchers lost interest in it.

During the 1980s a new rise in neural network research happened thanks to the
connectionism movement, born in the field of cognitive science and psychology to
explain symbolic reasoning. Its core principle is that complexity can be achieved
by networking together a huge number of simple computational units. Nowadays
many ideas that were developed during this "second wave" are still used. The first
one is the concept of distributed representation by Hildon and al. (1986), which
means that inputs should be represented by their shared features, inspired by
symbolic reasoning. Another important achievement that is still largely in use is
the back-propagation algorithm for neural networks with hidden layers, developed
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by Rumelhart et al (1986) and LeCun (1987). The neocognitron, developed by
Fukushima (1980) was a type of architecture used to process images and inspired
the convolutional neural networks, developed by LeCun and al. (1998). Long
short-term memory (LSTM) neural networks were developed by Hochreiter and
Schmidhuber (1997), after the studies of Hochreiter (1991) and Bengio et al. (1994)
about the mathematical difficulties of modelling long sequences; this kind of network
is still used nowadays to accomplish many tasks, including the natural language
process. The “second winter” of deep learning arrived in the mid-1990s when the
physical hardware could not execute all the computation needed to fulfil the ambi-
tious expectations, so investors were disappointed and removed funds from research.

The “spring” of deep learning started in 2006 when the combination of the
improvement of the computing capacity and the development of a more efficient
models made it possible to outperform other AI systems. Since then, the term
“deep” has been emphasised to highlight the capability to train deeper networks
that was not possible before. Thanks to the contribution of many researchers such
as Hinton, Bengio, LeCun, Delleau, Pascanu and many others, it was possible for
the deep neural network to outperform many other techniques of machine learning
and hard-programmed functionalities.

Another factor that made the outbreak of deep learning possible is the avail-
ability of a large amount of data: due to the digitalization of society, it is easy
to record and organize in datasets many human activities. A role rule of thumb
suggests that, in a supervised learning algorithm, 5000 examples are enough to
obtain satisfactory performance, while at least 10 million examples are needed to
overcome human results. The first recorded datasets were all compiled by hand
and studied by statisticians, while the first models of machine learning, around
the 1950s, were trained on small and synthetic ones. Later, around the 1980s, it
was possible to handle bigger datasets with thousands of samples, for example, the
MNIST dataset (a collection of hand-written digits). Finally, in the 2010s, datasets
consist in thousands or millions of examples, such that deep neural networks are
properly trained.

The availability of faster CPUs and GPUs is one of the most important boosts in
deep learning history: it makes it possible to handle deep neural networks without
limitations (roughly, since the introduction of the hidden layers, they have doubled
every 2.4 years).[18]
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Figure 4.2: Biological neuron. [19]

4.2 Main elements of deep neural networks
The idea of the primitive computational units, such as the perceptron was inspired
by biology, specifically from the brain cells of animals. Neurons have a rather
unusual structure compared to other types of cells. They are composed of:

• the soma, which is the body of the cells and contains the nucleus

• the dendrites, extensions of the main body

• the axon, an extension of the body cell that can reach the length of thousands
of times the width of the body cell; its task is to carry nerve signals

• the axon terminal, located at the end of the axon, where synapses are located:
they are responsible for releasing neurotransmitters and are connected to the
dendrites of other neurons.

Thus, roughly speaking, neurons are connected in a network-like structure and
exchange signals among each other through electrochemical processes. Let’s follow
the path of the signal: if it arrives at the axon terminal, a certain amount of
neurotransmitter is released from the synapses towards the dendrites of other
neurons. Its quantity can weaken or boost the strength of the transmission, acting
like a weight. This chemical is then transformed into a very small electric current
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that flows from the dendrites to the cell body and, if the sum of all the currents
received in a very small amount of time (in the order of milliseconds) is enough,
the neuron fires its own signal and so on. This behaviour, organized in a network
structure made up of billions of neurons, allows the brain to perform highly complex
computations. [20]
Although this is an extremely simplified model of biological behaviour, that is still
studied today, it is useful to explain the working principle of the first artificial
neurons that were conceived.

4.2.1 McCulloch and Pitts neuron
The structure of McCulloch and Pitts’s first artificial neuron is strongly inspired by
the biological model. The n inputs x1, . . . , xn are constituted by signals that can
assume only binary values. Inputs can either be inhibitory or excitatory. Inhibitory
inputs have the strongest effect on the output: if one of them is equal to zero, the
output will be equal to zero, while excitatory inputs are multiplied by a weight
wi and summed; if the sum is greater than a threshold θ, the output will be 1,
otherwise it will be equal to 0. [21]
The behaviour of this neuron can be described by the following formula.

y =


1 if

nØ
i=1

wixi > θ ∧ !inhibiton

0 if inhibition
(4.1)

Complex logical expressions can be computed if many artificial neurons are
connected to form a network. [20]

4.2.2 The perceptron
The perceptron, also known as threshold logic unit (TLU), was invented in 1957
by F. Rosenblatt and it is one of the simplest ANN architectures, it represents an
evolution of McCulloch’s and Pitts’s artificial neuron. The main innovation was
an algorithm able to train iteratively the parameters of the neurons from data.
The main differences are that there are no inhibitory inputs and every neuron has
different positive and negative weights and biases.
Given a set of N examples, let’s suppose it is possible to distinguish them into two
classes, by their n input features. So, it is possible to identify a hyperplane H that
can divide the examples into two classes.

H = {x ∈ Rn : wT x + b = 0} (4.2)
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Therefore, H separates the space Rn in two subspaces H+ and H−.

H+ = {x ∈ Rn : wT x + b ≥ 0} H− = {x ∈ Rn : wT x + b < 0} (4.3)

So, it is possible to discriminate the features based on H as a discrimination
surface: the hyperplane H is therefore a decision boundary and the output of the
perceptron can be a binary value, depending on the class the input is associated
to. The thresholding function can output values in [0, 1] or [−1, 1], depending if a
Heaviside step function (4.4) or a sign function (4.5) is chosen.

heaviside(z) =
1 if z ≥ 0

0 if z < 0
(4.4)

sign(z) =


+1 if z > 0
0 if z = 0
−1 if z < 0

(4.5)

Thus, the final formula of the single neuron perceptron with a bias term b, using
the sign function can be written as in (4.6); in case the Heaviside function is used,
it can be derived similarly.

y =


1 if

nØ
i=1

wixi + b ≥ 0

−1 otherwise

(4.6)

Thus, the objective of the learning algorithm of the perceptron is to find a
hyperplane H that minimizes the distance of misclassified points to the decision
boundary. If a sample that should be classified with y(i) = 1 is misclassified, then
x(i)w + b < 0, and viceversa for misclassified y(i) = −1.
Thus, it is possible to define a cost function L(w, b) that needs to be minimized.

L(w, b) =
NØ

i=1
[−yi(xiw + b)]+ (4.7)

In formula this formula the [·]+ operator is defined as:

[x]+ =
x if x > 0

0 otherwise
(4.8)

Thus, the contribution in the cost function for the correctly classified points is
null, while it is proportional to their distance from the decision boundary otherwise.
The cost function L(w, b) is piece-wise linear and can be minimized iteratively. [22]
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Algorithm 1 Perceptron’s algorithm
w = 0, b = 0
while not all classified well do

if −yi[wixi + b] < 0 then
w ← w + yixi

b← b + yi

end if
end while
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Figure 4.3: Example of decision boundary in binary classification problem.

4.2.3 Feedforward neural networks architecture
Feedforward neural networks, also called multilayer perceptrons, are composed of
multiple layers of neurons. The first layer is called the input layer, the last one
output layer and the ones in the middle are hidden layers. The layers near the
input are called lower layers, while the ones near the output, upper layers. Each
layer is fully connected with the next one, meaning that the outputs of all the
neurons of a layers are the inputs of all the neurons in the next one. This kind of
network is called feedforward because the signals only flow in one direction and no
loops are present.

The following notation will be used

• nℓ: number of layers

• Lℓ: ℓ-th layer, with ℓ = 1, . . . , nℓ

• (W, b) = (W (1), b(1), . . . , W (nℓ−1), b(nℓ−1)): parameters of the network
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Figure 4.4: Example of a structure of a feedforward NN. [23]

• W
(ell)
ij : weight associated with the link between unit j in layer ℓ and unit i in

layer ℓ + 1

• b
(ℓ)
i : bias associated with unit i in layer ℓ + 1

• sℓ: number of nodes in layer ℓ (not counting the bias)

• a
(ℓ)
i : the activation, or output value, of unit i in layer ℓ.

• hW,b(x): hypothesis, output of the neural network

For all the layers ℓ = 1, . . . , nℓ − 1 it is possible to write the shapes of the
matrices.

W ℓ ∈ Rsℓ+1,sℓ (4.9)

bℓ ∈ Rsℓ+1 (4.10)

If ℓ = 1, it is possible to write a
(1)
i = xi to indicate the i-th input, so it is possible

to derive a general formula to calculate activation at any layer, using a non-linear
recursion. [24]

z(ℓ+1) = W (ℓ)a(ℓ) + b(ℓ) (4.11)

a(ℓ+1) = f(z(ℓ)) (4.12)
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4.2.4 Activation functions
Considering the learning principle, which consists in making small adjustments
in the value of the weights depending on the discrepancy between the network’s
output and the desired output, in order to finely tune the parameters of the network
to obtain greater accuracy, it would be great that a small change in the weights
and biases causes only a small change in the output. In the case of perceptron,
where the activation function is a Heaviside step or a sign function, a very little
alteration of the parameters can lead the output to change switch, for example
from 1 to −1. This phenomenon can lead the network to behave in a complicated
way and to unexpected consequences. Later on, the most important activation
functions will be briefly introduced.[23]

Sigmoid function

In order to overcome this problem, the sigmoid (or logistic) function can be used as
an activation function. It is smooth, differentiable and saturates at 0 for z → −∞
and at 1 for x→ +∞. The only problem is that it is hard to compute.

σ(z) = 1
1 + e−z

(4.13)

Figure 4.5: Sigmoid and Heaviside step function compared.
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Hyperbolic tangent

The hyperbolic tangent has the same features as the logistic function, except that
it saturates at −1 for z → −∞. They can be used equivalently, depending on the
application.

tanh(z) = ez − e−z

ez + e−z
(4.14)

Figure 4.6: Hyperbolic tangent and sign function compared.

Rectified linear unit

The rectified linear unit function (ReLU), defined basically as a linear ramp, is one
of the most popular activation functions in feedforward neural networks. A linear
function would make the network lose all the non-linear properties transforming
it into a linear function itself, whereas the ReLU’s output yields a nonlinear
transformation. Being, in reality, made of two linear pieces, it preserves many
properties of linear units such as the easy optimization with gradient descent based
methods, the capacity of generalization and the computation lightness. [18]

ReLU(z) = max(0, z) (4.15)
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Figure 4.7: ReLU function.

Softmax

The softmax activation function is generally used as an output layer in case of
classification problems. Summing all the activation of this layer they will be equal
to one: it can be seen as a probability function for each class represented by each
output neuron j.

softmax(zj) = ezjØ
j

ezj
(4.16)

4.2.5 Gradient descent algorithm
In order to properly train the network, we need to define a function that quantifies
the discrepancy e between the output value hW,b(x), given an input x, and the
expected value y.

eW,b(x) = hW,b(x)− y (4.17)
We can define the error over a set of m training examples (x1, y1), . . . , (xm, ym)

and define an overall measure of mismatch. A common choice is the Mean Squared
Error (MSE), which in the case of scalar output is in the form:

MSE(W, b) = 1
m

mØ
t=1

1
2
---eW,b(x(t), y(t))

---2 = 1
m

mØ
t=1

1
2(hW,b(x(t))− y(t))2 (4.18)
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Another option is the Mean Absolute Error (MAE).

MAE(W, b) = 1
m

mØ
t=1

---eW,b(x(t), y(t))
--- = 1

m

mØ
t=1

---hW,b(x(t))− y(t)
--- (4.19)

In the case of multiple outputs, for the MSE the formulation becomes

J(W, b) = 1
m

mØ
t=1

1
2 ||W,b(x(t))− y(t)||22 (4.20)

Since the objective is to predict the values on unseen data, in order to prevent
overfitting it is common to add a regularization term on the magnitude of the
weights that reduces their magnitude; λ controls the relative importance of the two
terms. [24]

J(W, b) = 1
m

mØ
t=1

1
2 ||W,b(x(t))− y(t)||22+

λ

2

nℓ−1Ø
ℓ

Ø
i=1

Ø
j=1
|W (ℓ)

ij |2 (4.21)

Considering the form of the quadratic cost function (4.20) without the weights
regularization, we see that J(W, b) is non-negative since all the terms are non-
negative. Moreover, its value gets smaller as hW,b approximates the expected
value for all the training examples. Therefore, the objective of the training is to
minimize the value of the cost function, which means in other words to find a set
of parameters which makes its value as small as possible for obtaining the best
predictions. It can be done through the gradient descent algorithm and this cost
function suits perfectly for this task: a function of the parameters is chosen to
understand how to change them to obtain better results.

Let’s step out from the specific problem of neural networks for a while and
suppose we want to minimize a real-valued function of two variables f(z1, z2),
where z1, z2 are the variables. The first option is to use calculus and find the
minimum analytically, which works great in cases like this, where there are only a
few variables, but it becomes computationally impossible when there are millions or
billions, like in the case of neural networks. Another option is the gradient descent
algorithm. Since it is still possible to visualize a two variables function, it can
be imagined as a valley-shaped surface with an absolute minimum. Let’s imagine
putting a ball at a random point and simulating its descent to the bottom due to
gravity: it can be done just by computing derivatives to know the local shape of
the surface. The objective, in this case, is to choose a law to make the ball always
roll to the bottom of the valley. We can start by writing that, if we move the ball
of ∆z1 along z1 direction and ∆z2 along z2 direction, the function changes by ∆f .

∆J ≈ ∂J

∂z1
∆z1 + ∂J

∂z2
∆z2 (4.22)
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Figure 4.8: f(z1, z2) [23]

So we need to find the value of ∆z ≡ (∆z1, ∆z2) in order to make ∆f negative.
We also define the ∇ as the gradient of the function.

∇J ≡
A

∂J

∂z1
,

∂J

∂z2

BT

(4.23)

So that we can use the compact notation and rewrite the formula (4.22).

∆J ≈ ∇J ·∆z (4.24)
Given this equation, it is possible to choose ∆z = η∇J where η is called the

learning rate. Replacing, we obtain ∆J ≈ −η∇J · ∇J = −η||∇J ||2 Being the
square of the gradient ||∇J ||2 equal to or greater than zero, it is guaranteed that
∆J ≤ 0, which means that J will never increase if we change z according to this
rule. So the ‘law of motion’ of our ball will be:

z → z′ = z − η∇J (4.25)

Applying it iteratively will bring the ball to the global minimum. Obviously,
this model does not take into account the friction and the momentum of the ball,
but only the necessary elements for the sake of the explanation of the gradient
descent. In order to make this algorithm work properly, a suitable value for the
learning rate η should be chosen. Its value has to be small enough in order not to
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make ∆J > 0 according to (4.24), which would cause the algorithm’s divergence.
Concurrently, it should not be too small, which would lead to very slow convergence.

Figure 4.9: On the left the learning rate η1 is too big and does not lead to
convergence. On the right η2, slowly leads to convergence.

We can extend this working principle to m variables z1, . . . , zm using the same
formulation. Therefore, it is possible to apply the same update rule with great
results: it turns out to be a powerful method to minimize a convex cost function J
.

Therefore, it is possible to apply the same gradient descent algorithm to the
neural network’s cost function J(W, b) as a way to find the best weights w and
biases b that minimize it. So now the gradient vector has components ∂J

∂W ℓ
ij

and ∂J
∂bℓ

i

and it is possible to apply the same update rule.

W ℓ
ij ← W ℓ

ij − η
∂J(W, b)

∂W ℓ
ij

(4.26)

bℓ
i ← bℓ

i − η
∂J(W, b)

∂bℓ
i

(4.27)

4.2.6 Stochastic gradient descent
Looking at the structure of the input, it has the form J(W, b) = 1

m

q
xj

Jxj
, that

is essentially an average over the cost function over the m input examples. This
requires a huge number of computation, which can make the training very slow. The
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stochastic gradient descent algorithm was devised in order to reduce the training
time, requiring less calculation. It consists in choosing at each training step a
random subset, or mini-batch of n elements, of training inputs, X1, . . . Xn large
enough to be representative for all the input examples. It follows that the average
value of ∇JXj

will approximate the average value of ∇Jx over all the input samples.

1
n

nØ
j=1
∇JXj

≈ 1
m

mØ
i=1
∇Jxi

= ∇J (4.28)

Thus, it is possible to apply the same rule directly to the update rule of neural
network’s weights and biases.

W ℓ
ij ← W ℓ

ij −
η

m

Ø
X

∂JX(W, b)
∂W ℓ

ij

(4.29)

bℓ
i ← bℓ

i −
η

m

Ø
X

∂JX(W, b)
∂bℓ

i

(4.30)

In summary, in order to train a neural network:

• a minibatch is chosen among the training inputs

• the weights are updated with the update rule

until all the training samples are used. this is called an epoch of training. Then,
another training epoch starts again. [23]
The number of epochs required to train a neural network may change according to
the network size, mini-batch dimension, learning rate and many other parameters.
If a mini-batch with a size equal to one is chosen, the learning process is called
online or incremental and can be done directly while data are generated, similarly
to human learning.

4.2.7 Backpropagation
Once we have defined a cost function and the gradient descent algorithm, needed for
training, it is necessary to find a way to compute the gradient of the cost function
and backpropagation is a solution for this problem. In a few words, it consists in
evaluating how the modification of the value of weights and biases can change the
cost function. We consider the quadratic cost function, also called mean square
error, in the form (4.20), such that it was written as an average J = 1

m

q
x Jx

over the cost function of the individual training samples and it is written as a
function of the outputs of the network. This is necessary because backpropaga-
tion evaluates the partial derivatives for the single examples and then averages them.
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We define δℓ
j as the error of the j-th neuron in ℓ-th layer: it is possible to

compute it through backpropagation and relate it to the partial derivatives ∂J
∂W ℓ

ij

and ∂J
∂bℓ

i
. To better understand how backpropagation works, let’s imagine to apply

a little change ∆zℓ
j to the weighted input of a neuron, such that its output is equal

to σ(zℓ
j + ∆zℓ

j) instead of σ(zℓ
j). Evaluating the output, given the small change ∆zℓ

j ,

the overall cost function will be altered by a value equal to ∂J

∂zℓ
j

∆zℓ
j . The objective

is to find a ∆zℓ
j that reduces the value of the cost function: if ∂J

∂zℓ
j

has a large value,

it can be decreased by choosing ∆zℓ
j with the opposite sign. If, on the contrary,

the value of ∂J

∂zℓ
j

is near zero, it can not be improved a lot. In conclusion, the error

δℓ
j can be defined as:

δℓ
j ≡

∂J

∂zℓ
j

(4.31)

Backpropagation offers a way to compute δℓ for every layer and relate it to ∂J
∂W ℓ

ij

and ∂J
∂bℓ

i
: the algorithm consists in four main equations that are required to compute

both the error and the gradient of the cost function.

Equation 1.

δL
j = ∂J

∂aL
j

σ′(zL
j ) (BP1)

The equation allows evaluating the error for the output layer δL. The ∂J

∂aL
j

part

calculates how the cost function changes as a function of the activation of the j-th
output, the σ′(zL

j ) part measures how the activation function σ() changes at a
variation of zL

j . It is possible to write the matrix form of (BP1) equation as in the
following formula, where ⊙ indicates the element-wise operation.

δL = ∇aJ ⊙ σ′(zL) (BP1a)

Where ∇a is the vector of partial derivatives of ∂J

∂aL
j

.

Equation 2.

δℓ = ((W ℓ+1)T δℓ+1)⊙ σ′(zℓ) (BP2)
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This equation evaluates the error δℓ as a function of the error of the next layer:
this allows moving the error ‘backwards’ through the network. Combining this
equation and (BP1) it is possible to measure the error δℓ for every layer.

Equation 3.

∂J

∂bℓ
i

= δℓ
i (BP3)

This equation measures the rate with which the cost function varies with respect
to any bias.

Equation 4.

∂J

∂W ℓ
ij

= aℓ−1
j δℓ

i (BP4)

This equation measures the rate with which the cost function varies with respect
to any weight.

Given all the four equations, it is possible to explicitly write the backpropagation
algorithm.

1. Input: set the input x as activation a1 of the input layer.

2. Feedforward: for each layer ℓ = 2, . . . , nℓ compute zℓ = W ℓaℓ−1 + bℓ and
aℓ = σ(zℓ.

3. Output error: compute δL using equation (BP1a).

4. Backpropagate the error: for each layer δℓ is computed using (BP2).

5. Output: the gradient of the cost function with components ∂J

∂W ℓ
ij

and ∂J

∂bℓ
i

is

computed using (BP3) and (BP4).

From the formulation of the algorithm, the origin of the name backpropagation
is clear: the error, as a function of the outputs, is propagated until the lower layers
after the output is evaluated from the input, therefore the training process consists
in a back-and-forth movement through its structure. [23]
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4.2.8 ADAM optimizer
The ADAM optimization algorithm, which stands for adaptive moment estima-
tion, is a first-order gradient-based optimization algorithm for stochastic objective
functions; it is based on estimating low-order moments. Even though stochas-
tic gradient descent (SGD) is still the most popular algorithm for deep learning
training and optimization, ADAM is gaining popularity due to its straightforward
implementation, computational efficiency and memory requirements. Moreover,
this algorithm will be used in this work.

The ADAM algorithm combines the advantages of the AdaGrad method (Duchi
et al., 2011), which is suitable for sparse gradients, and RMSProp (Tieleman and
Hildon, 2012), which is suitable for online and non-stationary settings. ADAM
needs only first-order gradients, so only a few memory is needed; moreover, the
magnitude of parameter update is invariant to gradient rescaling and stepsize is
bounded by a hyperparameter.

Before explaining the algorithm working principle, let’s introduce the concept
of the moment of order n of a random variable X: it is defined as the expected
value of the variable at the power of n, namely E [Xn]. Then, let f(θ) be the noisy
objective function to minimize, differentiable with respect to the parameters θ: the
first moment of this function can be defined as the mean of its realizations, while
the second moment as its variance. Defining the gradient of the current mini-batch
as gt = ∇θft(θ), the algorithm consists in updating the moving average mt and
variance vt.

mt = β1mt−1 + (1− β1)gt (4.32)

vt = β2vt−1 + (1− β2)g2
t (4.33)

Where β1 and β2 are constant hyperparameters in the interval [0, 1), which
control the exponential decay rates of the moving averages. Their usual value is
typically beta1 = 0.9 and β2 = 0.999. Since the moving averages are initialized
equal to zero, this leads the moments to be biased towards zero, but this can be
easily corrected by obtaining the values m̂t and v̂t.

m̂t = mt

1− βt
1

(4.34)

v̂t = vt

1− βt
2

(4.35)
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Therefore, defining the learning rate as ηt = η · 1− βt
2

1− βt
1
, it is possible to define

the update rule.

θt ← θt−1 − ηt ·
mt√
vt + ϵ

(4.36)

The complete ADAM algorithm from the original paper from D. P. Kingma and
J. L. Ba [25] is reported below.

Algorithm 2 ADAM optimization algorithm
Require: α: stepsize
Require: β1, β2 ∈ [0, 1): decay rates for moment estimation
Require: f(θ): stochastic objective function with θ parameters
Require: θ0: initial parameter vector

m0 ← 0 ▷ (1st moment estimate set to 0)
v0 ← 0 ▷ (2nd moment estimate set to 0)
t← 0 ▷ (timestep set to 0)
while θt not converged do

t← t + 1
gt ← ∇θft(θt−1) ▷ compute gradients with respect to parameters θ at t
mt ← β1 ·mt−1 + (1− β1) · gt ▷ (update of biased first moment estimate)
vt ← β2 · vt−1 + (1−β2) · g2

t ▷ (update of biased second raw moment estimate)
m̂t ←

mt

1− βt
1

▷ bias-correction of first moment estimate

v̂t ←
vt

1− βt
2

▷ bias-correction of raw second moment estimate

θt ← θt−1 −
η · m̂t√
v̂t + ϵ

▷ (update of parameters)
end while
return θt ▷ (resulting parameters)

4.3 Recurrent neural networks
Until now in the dissertation on the neural network fundamentals only feedforward
neural networks have been examinated: for the sake of the objective of this thesis,
since temporal sequences are considered, the fundamentals of the recurrent neural
networks (RNN) will be studied. Thus, in contrast to multilayer perceptrons where
only connections towards a higher layer were allowed, in recurrent neural networks,
cyclical feedback connections are present. This leads to the capacity of RNN to
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process temporal sequences with a memory from the previous time steps that
persists in the internal network’s state. [26]

Figure 4.10: Structure of a recurrent neural network. [26]

A recurrent neural network can take a sequence as input and produce another
one as output: in this case, the network is denominated sequence-to-sequence
network; it can be used to predict series such as stock prices or trajectories. In
other cases, even if the network is fed with a sequence of inputs, only the last
output is taken into consideration: this model is called a sequence-to-vector network.
Moreover, the same input can be fed to the network over and over again at each
time step and the network will predict a sequence, this kind of network is referred
to as vector-to-sequence. Finally, it is possible to connect a vector-to-sequence
network right after a sequence-to-vector, called respectively decoder and encoder :
this structure allows to do translation from one language to another.[20]

4.3.1 Simple RNN working principle
It is possible to create a layer of recurrent neurons that receives, at each time step
t both the input xt and its outputs from the previous instant at−1; this requires
that each neuron has two weights wx and wy. We can write in matrix form the two
sets of weights of all the layers as Wx and Wy. Therefore it is possible to compute
the output of the neuron similarly to the multilayer perceptron, just adding the
feedback contribution.
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at = f(W T
x xt + W T

y at−1 + b) (4.37)
It can be said that the output of the single neuron is a function of all the inputs

in the previous time steps: it constitutes a sort of internal memory of the cell and is
stored in a state variable, denoted as ht that is a function of the input for the present
and previous time steps. The output of a memory cell is, then, a function of the
current input and previous output. It is possible to evaluate recursively the value of
the hidden state value starting from t = 1. At t = 0 generally the value is set to zero.

To train an RNN the backpropagation algorithm can be used, in the same way
as the multilayer perceptron; the only difference is that the network has to be
unfolded in time. This variation of the original algorithm is called backpropagation
through time (BPTT).

Figure 4.11: An unfolded neural network: each node represents the same layer in
different time steps. It can be noticed that the weights are the same. [26]

As in the common backpropagation, as a first thing, the output of the network
is evaluated given an input sequence with a length of T time instants. The cost
function J(a1, a2, . . . , aT ) is then evaluated, considering all the output sequences,
if the sequence-to-sequence case is considered, otherwise in the case of sequence-to-
vector only the last one is considered. Since the network is unrolled for along time,
always the same weight is considered for every time instant. [26]
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4.3.2 The vanishing/exploding gradients problem
If long sequences are used to train a recurrent neural network, it is necessary to
unroll it many times making it a very deep network subjected to unstable gradient
problems and may take a lot of time to train. It is shown that in deep neural
networks, the gradient gets smaller as the backpropagation algorithm moves forward
to the lower layers, not allowing their weight to be trained properly. This is called
the vanishing gradient problem. In some cases, the opposite situation may happen:
the gradients’ values tend to be infinite causing the exploding gradients problem. It
was later found, in a paper by X. Glorot and Y. Bengio [27] that using the sigmoid
activation function combined with a random weight distribution with zero mean
and standard deviation equal to one may cause this problem. They have shown
how the variance of the outputs of a layer with those characteristics is greater than
the one of its inputs. So, when a signal goes forward in the network, its variance
tends to grow until it causes the saturation of the activations of the last layers.
The logistic function worsens this issue because its mean value is equal to 0.5 and
not 0 as the hyperbolic tangent function. [20]

Figure 4.12: The vanishing gradient problem in RNN. [26]

4.3.3 Long short-term memory neural networks
A solution to the vanishing gradients problem and the loss of information due to
the length of the sequence is represented by Long Short-Term Memory (LSTM)
cells. From its name, it can be deduced that it tackles both the long-term memory
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problem and the short-term one. If considered as a black box, an LSTM cell is
similar to a classic RNN one, it has one input gate xt, and an output gate yt and
the only difference is that the state is split into two vectors, ht and ct. ht can be
considered the short-term state and ct as the long-term one.

Figure 4.13: The internal structure of a Long Short-Term Memory neuron. [20]

As it can be seen in figure 4.13, the input vector x(t) and the short-term memory
state h(t−1) from the previous step are the input of the cell and are fed to four
different fully connected layers, with four different goals: the first one goes directly
in the outputs y(t) and h(t), the other three are gate controllers.

• g(t) is the main one and analyzes the current input x(t) and the previous
short-term state h(t−1).

• f(t) controls the forget gate, which establishes which part of the long-term
state c(t−1) should be removed.

• i(t) controls the input gate, which establishes which part of g(t) should be
added to the long-term state c(t)

• o(t) controls the output gate, which establishes which part of the long-term
state c(t) should be output to y(t) and h(t).
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The long-term state c(t−1) goes through a forget gate, where it loses some memory
and is updated with information selected by an input gate. The resulting c(t) is
used as an output of the cell. The short-term state h(t) output is generated by the
filtering of the hyperbolic tangent of the long-term state through an output gate.
The output y(t) of the cell is equal to h(t). [20]

The main feature of an LSTM cell is the ability to recognize the significant
inputs and store them in the long-term state.

The following equations summarise the behaviour of the LSTM cell.

i(t) = σ(W T
xix(t) + W T

hih(t−1) + bi) (4.38)

f(t) = σ(W T
xfx(t) + W T

hfh(t−1) + bf ) (4.39)

o(t) = σ(W T
xox(t) + W T

hoh(t−1) + b0) (4.40)

g(t) = tanh(W T
xgx(t) + W T

hgh(t−1) + bg) (4.41)

c(t) = f(t) ⊗ c(t−1) + i(t) ⊗ g(t) (4.42)

y(t) = y(t) = o(t) ⊗ tanh(c(t)) (4.43)

Where:

• Wxi, Wxf , Wxo and Wxg are the weights matrices of the fully connected layers
with the x(t) input.

• Whi, Whf , Who and Whg are the weights matrices of the fully connected layers
with the h(t−1) input.

• bi, bf , bo and bg are the biases vectors.

Sometimes, it is better to use as input to the connected layers also the long-term
state c(t−1) in order to give them a ’bit more context’ about the past of the sequence.
This extra connections are called peephole connections. [20]
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Chapter 5

Robot platform

This chapter is devoted to illustrating to the reader the experimental instruments
used during the development of this work. Since wheeled robots are just a small
part of the robotic universe, the first section offers a simple panoramic classification
of the main categories of mobile platforms and a simple kinematic model for
differential drive robots. The rest of the chapter describes in detail the sensor used
for the data collection, the used mobile robot and the software employed in the
development of the work.

5.1 Introduction to mobile robots
The design of a mobile robot involves a consistent variety of knowledge fields,
thus every aspect of this process can be faced by different disciplines with the
specific aim of accomplishing a specific task: it can embrace mechanics, automatics,
computer science, bio-engineering and electronics. [1]
Two main components can be identified in a robot: the hardware, that consists in all
the mechanical joints, links, actuators, sensors and the electronics, and the software,
that controls the robot. Since robots are used for many different applications, they
can be classified in many categories that can partially overlap. [28]

• Industrial robots, which mimic the structure of a human arm and wrist, made
by a rigid mechanical structure made by a chain of joints and links. They can
handle high payloads and precision tasks.

• Service and exploration robots, which are made to work in different environ-
ments: indoor (flat surfaces) and outdoor (land, air, water) and can be divided
in to three main categories based on their locomotion system:

1. Wheeled robots or UGV (Unmanned Ground Vehicles, which are charac-
terized by several configuration of wheel locomotion, are usually employed
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for logistic and exploration.
2. Drones or UAV (Unmanned Aerial Vehicles), aerial vehicles that are

becoming popular for civilian applications.
3. Legged robots, which can be used in harsh environments and can mimic

animals.

• Humanoid robots, which are inspired from human body, with a torso, two arms
and hands with fingers. Their structure is very complex in order to ensure a
stable bipedal motion and can not handle high payloads.

• Others: bio-mimetic robots, soft robots, etc., which aim to mimic a wide variety
of animals, can have two or more legs or wings and can be designed for different
environments.

In this thesis, only UGV with indoor purposes will be taken into account.

5.1.1 Kinematics of mobile robots
In order to determine a model for mobile robot’s motion, it is necessary to use
a bottom-up process, starting from the contribution and the constraints of each
wheel. Then, taking into account the chassis geometry, an overall motion law can
be defined. It is particularly important to map the robot and its component in
proper local and global reference frames. [1]
The robot can be considered as a rigid body with wheels in a plane, therefore its
dimensionality is equal to three: we need two coordinates for its position (x, y) and
one for its orientation θ to describe it. For the sake of simplicity, other internal
joints and degrees of freedom are ignored. As in figure 5.1, to establish the position
of the robot, we need to define:

• an arbitrary fixed inertial reference frame OIxIyI , defined by the basis orthog-
onal axes XI and YI , and its origin O : {XI , YI}

• a point P on the robot’s chassis as its position reference

• a local reference system OLxLyL integral with the chassis, denoted by the axes
{XL, YL} with origin in P

As a consequence, the pose of a robot in the global reference system will be
described by a three coordinate vector qI .

qI =

x
y
θ

 (5.1)
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Figure 5.1: The global inertial frame OIxIyI and the local frame OLxLyL referred
to the mobile robot. [1]

In order to map the motion observed in the global reference along the local one,
it is necessary to apply a transformation: this is realized through a orthonormal
transformation matrix R(θ).

qL = R(θ)qI R(θ) =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 (5.2)

5.1.2 Kinematic model of a unicycle
A unicycle is a vehicle with a single steerable wheel; even though it has only a few
practical applications, focusing on its kinematic can be useful to better understand
the kinematic of differential mobile robots, which will be considered in this thesis.
Its configuration can be described by q =

è
x y θ

éT
where (x, y) are its cartesian

coordinates of its contact point and θ is the orientation with respect to the x
axis. It is subjected to the pure rolling constraint expressed through the following
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formula (5.3), which means that in the contact point the velocity along the axis
orthogonal to the motion direction is null. The line passing by the contact point
along the transverse axis is called the zero motion line. [29]

ẋsinθ − ẏcosθ =
è
sinθ −cosθ 0

é
q̇ = 0 (5.3)

From (5.3) we derive that all admissible velocities are a linear combination of v
and ω, which are the driving velocity and the steering velocity.ẋ

ẏ

θ̇

 =

cosθ
sinθ

0

 v +

0
0
1

ω (5.4)

5.1.3 Kinematic model of a differential drive vehicle
In the case of a differential robot, we can derive its forward kinematic model in a
similar way to the unicycle. Considering a differential robot with two non steerable
wheels, each with radius equal to r and with a distance from each other equal to d,
a point P is taken in the middle of the two wheels, such that the distance from P

to each wheel is equal to d

2. The physical inputs are the rotational velocities of
the two wheels ωl and ωr, respectively the left and the right one. We can the find
the direct correspondence between the inputs and the driving velocity v (5.5) and
steering velocity ω (5.6). [28]

v = r(ωr + ωl)
2 (5.5)

ω = r(ωr − ωl)
d

(5.6)

In another way, we could have first calculated the contribution of each wheel in
the local frame OLxLyL: considering the motion of each wheel separately, supposing
the other one fixed, since P is located halfway, its instantaneous motion will have
half the speed such that ẋL = rωl

2 and ẋL = rωr

2 . In a differential robot we can
simply add the contribution to obtain the motion in the local reference system.
The value of ẏL is necessary zero, none of the contribution can make the robot
vehicle move sideways. Finally, the angular motion along the local vertical axis is
considered: the right wheel spinning forward will contribute with a counterclockwise
rotation ωL = rωl

d
, while the other one with a clockwise rotation ωL = −rωr

d
. If

one of the two wheels moves alone, the robot will be pivoting around the contact
point of the fixed wheel: the resultant motion happens around an arc with a d
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Figure 5.2: Linear velocity v(t), angular velocity ω(t) and trajectory of a differ-
ential drive robot in the plane. [1]

radius. Combining the two contribution for linear and angular velocity, it leads to
the same results obtained in formulas (5.5) and (5.6).

It is possible, then, to transform the obtained velocities in the inertial frame
OIxIyI .

q̇I =

ẋI

ẏI

θ̇I

 = R(θ)−1


r(ωr + ωl)

2
0

r(ωr − ωl)
d

 (5.7)

5.2 Sensors

5.2.1 Intel Realsense tracking camera T265

The Intel Realsense tracking camera T265 has been used to measure the ground
truth position for the machine learning algorithm. The principle of working of
this tracking camera consists in using the inputs from dual fisheye cameras and
IMU to output its six degrees of freedom position, processing the data on a VPU
processing ASIC.
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Figure 5.3: Intel Realsense tracking camera T265. [30]

Component Description
BMI055 IMU accelerometer and gyroscope
OV9282 Fisheye Camera monochrome wide wiew image sensor
Movidius MA215x VPU processing ASIC
Stiffener reinforcement housing
other components IR cut filter, voltage regulators, etc.

Table 5.1: Component description of Intel Realsense T265 [30]

Parameter Properties
Degrees of freedom 6
Acceleration range ±4g
Accelerometer sample rate 62.5 Hz
Gyroscope range ±2000 deg/s
Gyroscope sample rate 200 Hz

Table 5.2: Inertial measurement specifications of T265 sensor [30]
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Parameter Camera sensor properties
Active pixels 848 × 800
Sensor aspect ratio 1.06
Format 8 bit, 10-bit raw
Filter type IR cut filter
Focus fixed
Shutter type global shutter
Signal interference MIPI CSI-2, 2 X lanes

Table 5.3: T265’s Fisheye image sensor properties [30]

5.2.2 Leica Laser Tracker AT403

The Leica Laser Tracker AT403 is a portable coordinate-measuring machine, able
to guarantee high precision. At the beginning of this work, it was taken into
consideration to collect the ground-truth data but was later discarded due to the
difficulty of communication with the ROS environment and synchronization issues.
Leica AT403 registers its data on its software Leica Tracker Pilot, converting
them into a text log file at the end of a measurement session, referring them to
a chosen reference frame. Moreover when the target is moving the sampling may
be not constant. Nonetheless, at the beginning of the work, a calibration of the
ground-truth data has been carried out, measuring the same data using the Intel
Realsense Tracking Camera T265 and the Leica Laser Tracker and calibrating the
data output from the camera. The prism used to measure the position of the robot
was placed on the top of the Jackal UGV.
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Figure 5.4: Leica Laser Tracker AT403[31]

Parameter Properties
Sensor dimensions 290 × 221 × 188 mm
Weight 7.3 Kg
Horizontal rotation ±360°
Vertical rotation ±145°
Dinamic measurement speed 10 Hz
Measurement volume 320 m
Operative temperature from 0°C to 40 °C
Laser class 2
Resolution 0.1 µm
Accuracy ± 15 µm + 6µm/m in SMR mode

± 200 µm in B-probe mode

Table 5.4: Leica Laser Tracker AT403 technical specifications [32]
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5.2.3 DecaWave TREK1000

Decawave TREK1000 is an UWB positioning evaluation kit, which includes four
Decawave EVB1000 boards, which can be used both as an anchor or as a tag.
Each EVB1000 is equipped with Decawave1000 IEEE802.15.4-2011 UWB wireles
transceiver integrated circuit, a STM32 ARM Cortex M3 processor and a LCD
display and an antenna. The TREK1000 systems uses a TWE Time of Flight
measuring techniques, and it reaches an accuracy of ±10 cm in LOS conditions,
while the minimum guaranteed accuracy in LOS conditions, is equal to ±30 cm for
a moving tag. A proprietary software provided by Decawave allows to save data
about the rangings, while positioning methods should be implemented with ad-hoc
solutions. Further specifications can be found in table 5.5.
In our work four EVB1000 were used as anchor, in fixed position in the four corners
of the room and a fifth was used as tag, placed on the mobile robot.

Figure 5.5: Integrated Circuit EVB1000 and the external antenna.
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Parameter Properties
Operating band frequency bands

from 3.5 GHz to 6.5 GHz
U.S. FCC compliant

Center frequency Ch. 2: 3993.6 MHz
Ch. 5: 6489.6 MHz

Max. power spectral density -41.3 dBm/MHz
Tx power -14 dBm / -10 dBm
Tx power density -14dBm/MHz
Preamble lenght 64 µs to 4 ms
Board dimensions 120 × 70 mm
Weight 39 g
Antenna WB002 Omni-directional planar antenna
Ranging techniques Pulsed TWR (Two Way Ranging)
Positioning update rate 5 Hz
Ranging precision ±10 cm

Table 5.5: DecaWave TREK1000 technical specifications [33]

5.3 Jackal UGV

In this work, the Clearpath Jackal UGV four wheels mobile robot was used to collect
data. It is a small robot, suitable for indoor applications, and didactic robotics.
It is integrated with an onboard computer, with a dual-core Intel i3-4330TE chip
that runs at 2.4 GHz and 4 Gb of RAM, GPS, IMU and WiFi adapter. Fully
integrated with ROS Kinetic and compatible with many accessories. It is made
with an aluminium chassis and high torque 4x4 drivetrain.

For the sake of collecting data for our application, a DecaWave EVB1000 UWB
transceiver has been placed in the geometrical center of the upper platform and a
Intel Realsense T265 has been placed in the front of the vehicle as in the picture
5.10a and 5.10b. The detailed mechanic, hardware and software specifications are
summarized in the table 5.6.
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Figure 5.6: Top view Figure 5.7: Side view Figure 5.8: Front view

Figure 5.9: Technical specification of the Jackal UGV. [34]

(a) Side view (b) Top view

Figure 5.10: Arrangement of the T265 camera and UWB IC on the mobile robot
used for experiments.
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Size and weight
External dimensions 508× 430× 250 mm
Internal storage dimensions 250× 100× 85 mm
Weight 17 kg
Ground clearance 65 mm

Speed and performance
Max. payload 20 kg
Max. speed 2.0 m/s
Drive power 500 W

Battery and power system
Battery chemistry Lithium ion
Capacity 250 Watt hours
Charge time 4 hours
Run time heavy usage: 2 hours

basic usage: 8 hours
Interfacing and communication
Control modes Velocity, angular velocity

Voltage
Wheel Velocity Commands

Feedback Battery and motor current
Wheel velocity and travel
Integrates GPS receiver
Integrate gyroscope and accelerometer

Communication Ethernet, USB 3.0, RS232
Drivers and APIs Packaged with ROS Kinetic
Supported OS Ubuntu, Windows
Integrated accessories Wireless Game controller

GPS
IMU
In-Board Computer
WIFI Adapter
Accessory Mounting Plates

Table 5.6: Technical specifications of Jackal UGV [34]

5.4 Software platforms
The software development tools used during the development of this work are
described in this section. All the software ran on a machine with the Ubuntu
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operative system, in particular the 20.04 (LTS) Focal Fossa version. For the real-
time data collection from the Jackal UGV, the second version of ROS (Robotic
Operating System), that is ROS2; in particular the ROS2 Foxy distribution was
used. The motivation behind the choice of using ROS2 is that some packages
developed at PiC4SeR which compute the UWB Extended Kalman Filter odometry
were developed using this version. However, the Jackal UGV employs the first ROS
version to publish its topics, so it was necessary to use the rosbridge_suite package
to convert all the topics to ROS2. The code for the development of the Machine
Learning part of the thesis has been written in Python, a high-level programming
language, extensively used for its flexibility.

5.4.1 ROS
The Robotic Operative Systems (ROS) consists of a set of libraries designed to
develop robotic applications; it is free and open source. It is a middleware, basically
a set of tools that lies between the hardware and the real software, to abstract
the hardware layer and manage packages. Despite the low latency, ROS is not
a real-time operating system, even though it can be integrated with real-time
modules. Its libraries and development tools are independent of the programming
language: C++ and Python can be used.

It is based on anonymous publishers/subscribers communication, which allows
the passage of information among the various processes. Looking at the big picture,
the core concept behind its functioning is the ROS graph, a network of nodes and
their connections processing data one at a time. Each node is a stand-alone. All
the ROS graph is controlled by a process called ROS Master, which sets up all
the communication through topics and services between nodes and controls the
parameter server updates. Effective communication, which involves messages and
service calls, does not pass directly through the ROS master, it sets up peer-to-peer
communication. The adoption of decentralized architecture allows the nodes to
be stand-alone processes, with the possibility of running on different hardware
platforms, allowing off-board heavy calculations.

Information can be exchanged in different ways, among all, the principal ones
are topics and services. Topics are buses, which are characterised by a unique
namespace. The communication on them relies on the publisher/subscriber stream
mechanism: the publisher node continuously sends data on a specific topic, while
the subscriber, a node that needs to access the messages published on a topic,
needs to subscribe to it. Services are different from topics and are based on a
call/response mechanism: information is provided only when requested. A client
node requests an action, that is served from a server node. [35]
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5.4.2 Python machine learning tools
TensorFlow 2

Tensorflow is an end-to-end open-source library for machine learning which provides
optimized modules for designing and implementing algorithms, initially developed
by Google in 2015. It is mainly focused on training and inference for deep learning.
Tensorflow consists of a set of tools implemented to provide a full pipeline to
develop deep neural networks that can run on different CPUs and GPUs. Its main
features include AutoDifferentiation (computing the gradients), eager execution (so
that the code can be analyzed runtime), distributed computation among different
devices, a set of loss functions, metrics and optimizers and a module to build neural
networks. In this work, TensorFlow Keras was used to implement machine learning
models.

Keras

Keras is a high-level deep learning API that runs on top of the TensorFlow 2
library, which is used as the backend. It was designed to offer the user simplicity
of use, flexibility and powerful performance. It provides the high scalability and
cross-platform capabilities of Tensorflow 2, as the model can be trained on many
computing units such as a cluster of GPUs or TPUs, and later exported to other
devices.
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Machine learning for
localization

This chapter aims to describe thoroughly the experimental process conducted to
validate the methods proposed in this thesis, that is using deep learning applied
to temporal sequences of input to mitigate the odometric error in mobile robots.
Two different kinds of sensors are used as inputs of the neural network, namely
proprioceptive sensors, such as the wheel encoders and inertial measurement unit,
and wireless sensors, such as ultra-wideband anchors and tags. A mobile robot has
been teleoperated to record data, and the obtained dataset was used to train a
NN model, which was tested afterwards and compared to other traditional methods.

The rest of the chapter contains a detailed description of the dataset creation,
the model selection process and the achieved results.

6.1 Dataset creation
The first step of the experimental process consists of the creation of a dataset
which will be used afterwards to train the NN model and to validate the obtained
results. Even though the objective of the dataset creation is to make two different
collections of data, respectively one for proprioceptive sensors and one for UWB,
all the data flow was recorded at once and split afterwards.

6.1.1 Measurement environment and instrumentation
The dataset was recorded in the PIC4SeR (Polito Interdipartimental Center for
Service Robotics) laboratory, which is a 10.20× 7.50 m room, teleoperating the
Clearpath Jackal four-wheeled robot around with different and irregular trajectories.
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For the sake of simplicity, a fixed starting point has been established as in figure
6.1, which coincides with the fixed inertial reference frame we considered for our
measurements. At the beginning of every recording run, the geometric centre of
the robot has been placed in this spot, with the same orientation pointing forward,
along the x-axis.

anchor x y z
0 -1.712 m 1.745 m 2.463 m
1 8.063 m 1.449 m 2.469 m
2 8.110 m -2.654 m 2.492 m
3 -1.119 m -3.296 m 2.522 m

Table 6.1: Positions of the four anchors in the room referred to the established
reference frame.

Figure 6.1: Floor plan of the lab room of PIC4SeR. The reference represents the
established global inertial frame, while the four red dots represent the fixed UWB
anchors.

We used four UWB anchors, placed in the four corners of the room, and the
detailed positions are available in the table 6.1, with respect to the reference frame.
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The main part of the room, where the robot has been driven the most, is in Line
of Sight (LOS) with the four anchors as in figure 6.1.

In order to cover all the possible situations when a differential skid-drive four-
wheeled robot loses the most accuracy, the driving of the vehicle included hard
brakings, tight curves, sharp acceleration and turning on itself. In addition, the
linear and angular speed have been limited according to table 6.2. Moreover, even
though the central space, where the most measurements were taken is totally in
Line of Sight, during the measurement session some people were moving in the
lab, introducing some disturbance element; moreover, a table football was present
in different positions, introducing more variations in the measurements. The test
dataset, on the contrary, contains several traces obtained in controlled conditions,
with specific trajectories aimed at testing a different kinds of conditions and with
controlled disturbance elements that will be explained later on.

speed limit
linear 0.4 m/s
angular 0.2 m/s

Table 6.2: Speed limitations imposed to the mobile robot.

The geometric centre of the Jackal mobile robot is considered as the origin of
the local mobile frame attached to the robot, considering the x-axis along the
travel direction, the z-axis along the vertical direction pointing up, and the y-axis
completing the frame according to the right-hand rule. The UWB tag has been
placed in the geometric centre of the Jackal robot, while the Intel Realsense T265
tracking camera is placed in the front, at 20 cm from the centre pointing towards
the travel direction as in figures 5.10a and 5.10b. To obtain the measurement of
the visual inertial odometry referred to the local frame a transformation (6.1) has
been applied to the data.

x
y
θ

 =

cosθt265 −sinθt265 xt265
sinθt265 cosθt265 yt265

0 0 1


−ℓ

0
1

 =

−ℓcosθt265 + xt265
−ℓsinθt265 + yt265

1

 ℓ = 20cm

(6.1)

6.1.2 Data acquisition
The data acquisition process took place in different sessions, teleoperating the robot
around the room in several runs, each one lasting several minutes. The acquisition
of the data has been carried out by recording the ROS2 topics published. Since
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the Jackal board computer has installed the first version of ROS and the program
used to compute the odometry and UWB localization using the Extended Kalman
Filter, it was necessary to use the rosbridge_suite to establish communication
between the two versions.

The following topics have been used to carry out this work:

• /imu/data_raw: contains the raw data measured from the IMU, such as the
linear velocities and linear accelerations along the three axes.

• /joint_states: contains the position, measured in meters, and the velocity,
measured in m/s, of each one of the four wheels.

• /encoder/odometry (called /jackal_velocity_controller/odom in the test
set): contains the odometry obtained from the encoder data evaluated through
an Extended Kalman Filter by the Jackal itself. Precisely, only the position
on the bi-dimensional plane (x, y) and the orientation were used.

• /odom: contains the visual inertial odometric position obtained from the Intel
Realsense t265 camera. As in the encoder odometry, only the position on the
plane and the orientation along the z-axis, which is given by a quaternion,
is considered. The data is transformed from the t265 position to the local
reference frame and published on the /odom/base_link topic.

• /uwb_ranging: contains the ranging distance, the first peak power and the
received power from each one of the four anchors.

• /uwb_ekf_position: contains the estimated position obtained filtering through
an EKF the ranging data of the anchors. It will be used later as a comparison
of the obtained results.

The recording is done on SQL database file, which is later parsed using a Python
script and the content of each topic is then subdivided into comma-separated values
(CSV) files. So, for each run, several CSV files are obtained, each one containing
as columns the different data and as rows the single data acquisitions with their
UNIX-16 timestamp (that is the time past from the midnight of the 1st of January
1970, measured in nanoseconds).

6.1.3 Data synchronization
The final objective of the dataset creation consists in making two different groups
of files with all the necessary topics to train and compare the NN models for both
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topic frequency data description
/imu/data_raw 30 Hz angular_velocity x, y, z

linear_acceleration x, y, z
/joint_states 15 Hz position 4 wheels position (4)

velocity 4 wheels velocity (4)
/encoder/odometry 15 Hz position x, y

orientation quaternion (w, z)
/odom/base_link 50 Hz position x, y

orientation quaternion (w, z)
/uwb_ranging 5 Hz range_mes ranging distances (4)

first_peak_pwr first peak power (4)
rx_pwr received power (4)

/uwb_ekf_position 5 Hz position x, y

Table 6.3: Summary of the collected topics.

situations, namely the UWB localization and the wheel odometry.

The first problem that emerged during a check of the recorded data is that
the T265 odometric data suffers from a non-calibration of the scale: the position
reported along a trajectory appears to be off by 20-30 % of the real scale. The
trace of the trajectory, when plotted on a bi-dimensional plane, appears to be
proportional to the real ground truth value, collected by the Leica laser tracker
AT 403, but on a different scale for each trace. This problem was solved with
subsequent data post-processing. During the trajectory, the mobile robot is placed
along a line parallel to the starting line, placed 5 m in front of the starting point.
During post-processing this was used to calibrate the trajectory: the scale factor
was obtained by multiplying the (x, y) position by a scale factor.

dreal = α · dmeasured α = refreal

refmeasured

(6.2)

The second problem that occurred is the synchronization of the ground truth
obtained from the Laser Tracker Leica AT403: in contrast to all the other data, the
obtained position does not have a UNIX-16 timestamp and they are not published
on a ROS topic. Moreover, even if the position is extremely accurate, the sampling
frequency is not constant: it reaches a maximum of 10 Hz when the robot does
not move but is highly irregular during motion. The fact that the resolution of the
time is equal to 1 s and the frequency variability does not make it suitable for the
synchronization of other data for the learning process. However, superposing the
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traces of the corrected visual inertial odometry and the sequence of the measured
points by the laser tracker, shows how the VIO is extremely precise, namely with a
3 cm tolerance, and can be used as ground truth in the learning process.

A third problem that arose during a first check on the data recorded by Intel
Realsense T265: in case of a sudden change of light intensity or the presence of
someone walking in front of the camera, an instantaneous shift along the horizontal
plane, perpendicularly to the travel direction occurs. The entity of these shifts can
vary, from a few centimetres to several tens of centimetres. This problem, which
affects the smoothness of the trace and compromises the learning process is ad-
dressed in two ways. The first solution consists in smoothing the trace by averaging
it along 25 measured points, which correspond to about 0.5 s: it helps to flatten
the smaller shifts, namely the ones smaller than 10 cm, without compromising the
trace. The second solution, adapted for the shifts larger than 10 cm, is to cut the
trace of the visual-inertial odometry, preventing the compromised data to spoil the
learning process.

To solve the issues related to the visual inertial odometry, a Python script has
been written. First of all, the value of the three coordinates of the robot, the
position x, y and the orientation theta, are plotted along the time. Then the time
interval in which the robot has been placed on the 5 m line is selected, and the value
of the position is averaged and used to obtain a scale factor to rescale the entire
trace. By doing so, the trajectory with the correct proportion is obtained. After-
wards, the trajectory is plotted on an x− y plane and the aforementioned shifts are
shown together with their absolute value. Later on, the trajectory averaged along
25, 35, and 50 data points are shown, to display the improvement of the smooth-
ing. If necessary, the trace can be cut at an optional point. In this work, it was
decided to cut the traces in case of a shift larger than 10 cm and to average 25 points.

Finally, the real synchronization process takes place: the objective of this place
is to obtain two sets of comma-separated values files, namely one for encoder
odometry and one for UWB localization, to load directly onto the training and
testing program.
For the wheel odometry, the topics used were:

• /imu/data_raw

• /joint_states

• /encoder/odometry

• /odom/base_link
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Since it can be seen, by analyzing the timestamps of the data, that even if IMU
and encoder topic messages display a constant frequency, the time interval between
arrival time is largely irregular. Therefore, the data values were interpolated by a
linear spline and sampled at 10 Hz.
In the case of UWB localization, the considered topics were:

• /uwb_ranging

• /uwb_ekf_position

• /odom/base_link

In contrast to the encoder odometry case, here the arrival time of the topics of
UWB ranging and the respective position obtained through EKF is regular, about
5 Hz, since no bridge between ROS and ROS2, and the second one is evaluated
right after the receiving of the first one. Therefore, the time of the EKF position is
used as a deadline for synchronization: the last message sent on the other topics
before the deadline is taken into consideration for the synchronization purpose.

In the following table 6.4, the properties of the two obtained datasets are
summarized: these datasets were used to train the two models of neural networks
and to compare the results in the following sections of this chapter.

UWB encoder
n. traces 35 36
n. samples 28.09 · 103 62.15 · 103

time 5.62 · 103 s 6.23 · 103 s

Table 6.4: Summarizing table of the datasets’ properties

6.2 Neural Network model selection
After the creation of the dataset, the following stages in the development of this
work consisted in creating a training environment and carrying out a gridsearch
over a set of hyperparameters, to identify the best ones for each application. It
consists of training a network with all the combination of predefined values of
parameters, and establish the best considering the minimum value achieved by
the loss function or other metrics. These activies were developed using Jupyter
Notebook, with a GPU running in the PIC4SeR laboratory. This section describes
in detail the methodological procedure.
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6.2.1 Training procedures
As a first step, the datasets are split up into overlapping time sequences of npoints

elements, by shifting a time window one-time step per time. So it is possible to
model the problem as if the output yt at time t, does not depend only on the input
xt but also on the previous xt−1, . . . , xt−npoints

inputs. Thus, the NN model will be
fed as input with a time sequence, the received output will be related to the last
time instant and the final trajectory is then reconstructed at the end, losing just
the npoints initial instants.

In the case of the encoder-inertial odometry dataset, we took into consideration
that all the measurements accomplished by proprioceptive sensors are related to the
local frame of the mobile robot and can not be reconducted to a global reference
frame of the room. Therefore, a transformation was applied to the robot trajectory:
at each time step, the absolute position and orientation were transformed to the
movement, in terms of spatial shift and angle, that were done with respect to the
previous timestep, with respect to the local frame of reference. This procedure
allowed us to easily predict the motion of each time step and reconstruct the whole
trajectory, or part of it, afterwards. In the case of UWB localization, instead, we
considered the global position in the room. Moreover, in order to speed up the
training, all the data were normalized with a standard normalization, i. e. with
mean µ = 0 and standard deviation σ = 1.

The same kind of grid search has been carried out for both datasets, but different
results were obtained: preliminary work was carried out to identify the neural
network type that suits best each problem. It emerged that, if in the case of
the UWB dataset, good results can be achieved using both a feedforward neural
network or a LSTM neural network, in the case of encoder odometry it is necessary
to adopt an LSTM architecture since the multilayer perceptron does not produce
remarkable results. So, we proceeded to run a grid search with both datasets,
taking into account a set of hyperparameters suitable for inference on resource-
constrained applications, that could be the board CPU of a mobile robot. All the
parameters and the best models will be illustrated in detail in the following sections.

6.2.2 Model selection for encoder-inertial odometry
The model selection process for encoder-inertial odometry started by identifying the
model of the neural network and the possible sets of values for the hyperparameters.
At first, some experiments with a dense neural network were carried out, but no
significant results emerged, so an LSTM architecture was tried with considerable
outcomes. The length of the input sequence, the values of the neurons of each
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layer, and the number of the hidden layer itself have been selected taking into
account the training time, which is significantly longer for deep networks or long
sequences. Moreover, the total number of parameters, which is defined by the
number of hidden layers and the number of neurons, needs to be kept low to make
the network run on constrained-resources platforms. The hyperparameter selected
for the grid search is reported in detail in table 6.5.

parameter values set
# hidden LSTM layers {1, 2, 3, 4}
# neurons {16, 32, 64, 96}
learning rate {0.001, 0.0001}
npoints {1, 2, 5, 10, 20}

Table 6.5: Values of hyperparameters tried during the grid search on the encoder-
inertial odometry

We also chose to adopt the mean absolute error as an error function, defined in
Chapter 4 as 4.19, due to its robustness to outliers points and better performance in
a preliminary phase. Moreover, we adopted the ADAM optimizer which according
to [25] is computationally efficient and has little memory requirement. LSTM
neurons are chosen to have a sigmoid recurrent activation function and a ReLU
output activation function while we chose a dense output layer with a linear
activation function. All the neural networks were trained for 50 epochs.

From the grid search results analysis, it is possible to see at first sight 6.2a
that a learning rate η = 0.001 generally performs better than the other values: so
we’ll focus shortly on the performances and the complexity of the models with this
feature. It can be seen 6.2b that the models trained with longer input sequences
perform better, being able to capture the evolution of the motion over time. Also
it can be seen in figure 6.2c and 6.2d that, a larger number of neurons seems to
provide better results, while the opposite can be said with the number of hidden
layers: this allows to keep the number of parameters bounded. Finally, the chosen
model has one LSTM hidden layer with 96 neurons, a learning rate equal to 0.001
and a 20 timesteps-long input sequence.

6.2.3 Model selection for UWB localization
In contrast to the encoder odometry neural network model, during a preliminary
phase it emerged how for UWB localization, in the context of this work, a fully
connected neural network performs as well as LSTM architecture. Therefore the
two kinds of architecture will be considered and tested afterwards.
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(a) Different values of learning rate. (b) Different sequence lenght, npoints

(c) Different values of nneurons (d) Different number of hidden layers nℓ

Figure 6.2: Analysis of the results of the grid search for encoder-inertial odometry
LSTM neural network. The x-axis indicates the number of parameters, the y-axis
the Mean Absolute Error (MAE). Figure 6.2b, 6.2c and 6.2d refer to the value of
learning rate η = 0.001 only.

parameter values set
# hidden dense layers {1, 2, 3, 4}
# neurons {32, 64, 128, 256}
learning rate {0.1, 0.0, 0.001, 0.0001}
npoints {1, 2, 5, 10, 20, 50, 100}

Table 6.6: Values of hyperparameters tried during the grid search for UWB
localization on a FFNN.

First of all we consider a classical FFNN architecture. The explored hyperpa-
rameter space is defined with the same criteria as the other case: for every layer,
a ReLU activation function is chosen, due to its approximation properties. The
Mean Squared Error (MSE) , defined in equation 4.18, is chosen due to the higher
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Figure 6.3: The chosen neural network model for encoder-inertial odometry. It
has one LSTM layer with 96 neurons and a dense output layer. The input sequence
is 20 time steps long

weight that the farther points are given; the ADAM optimizer is used and all the
models are trained for 50 epochs.

As in the previous case, we can see in 6.4a that a learning rate η = 0.001 leads
to better performance, while higher values do not allow a good convergence of the
model: we’ll analyze more in detail the models with this feature. From 6.4b it
emerges how input sequences with a length between 10 and 50 perform better than
longer or shorter sequences: shorter sequences have few parameters but do not
reach perform as well as the aforementioned ones, while longer sequence models are
characterized by many parameters and do not perform as well. Moreover, it can be
seen from figures 6.4c and 6.4d respectively, that a higher number of neurons or
hidden layers are characterized by a higher number of parameters but manage to
achieve better performances. Finally, a four layers model with 256 neurons each
was chosen, with an input sequence which is 20 timesteps long as in figure 6.5.

Later, we focused on the LSTM architecture. In this case, we consider the same
parameter space as the LSTM network for encoder odometry. The only difference
is that only a learning rate η = 0.001 was tried, after considering the results of the
previous grid search processes. All the hyperparameter sets can be found in table 6.7.

From a qualitative analysis of the graphs in figures 6.6a, 6.6b, 6.6c and 6.6d,
the same considerations of the previous cases can be done. In particular, it can be
seen clearly how a higher number of points provides better performance. Also, the
number of neurons influences the accuracy of the result, in fact, more neurons make
the network model achieve a smaller value of the loss function. The number of
layers, instead, seems to not make a great difference in terms of the final score and
keeping the other hyperparameter constant. Finally, since there is less than 0.1%
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(a) Different values of learning rate. (b) Different sequence lenght, npoints

(c) Different number of neurons nneurons (d) Different number of hidden layers nℓ

Figure 6.4: Analysis of the results of the grid search for UWB localization on a
FFNN. The x-axis indicates the number of parameters, the y-axis the Root Mean
Square Error (RMSE). Figure 6.4b, 6.4c and 6.4d refer to the value of learning rate
η = 0.001 only.

parameter values set
# hidden dense layers {1, 2, 3, 4}
# neurons {16, 32, 64, 96}
learning rate {0.001}
npoints {1, 2, 5, 10, 20}

Table 6.7: Values of hyperparameters tried during the grid search for UWB
localization on a LSTM architecture.

of difference between the best model, the one with the fewer parameters is chosen.
The chosen network consists of a three-layer composed of 96 LSTM neurons each,
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Figure 6.5: The chosen neural network model for UWB localization. It has four
dense layers with 256 neurons and a dense output layer. The input sequence is 20
timesteps long.

plus a dense output layer, as in figure 6.7. Moreover, the input consists of a 20-time
steps sequence.

6.3 Results analysis and validation
The previous parts of this chapter were devoted to collecting a training dataset,
finding the best model through a grid search and training it. This part, instead,
focuses on the evaluation of the proposed solution through the collection of a test
dataset and the analysis of its results. Moreover, specific trajectory and scenario
arrangement was employed, to better understand the behaviour of the chosen
approach in different reproducible situations. The different adopted evaluation
methods will be applied to the outcomes of an Extended Kalman Filter and the
eventual differences or discrepancies will be considered and discussed.
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(a) Different values of learning rate. (b) Different sequence lenght, npoints

(c) Different number of neurons nneurons (d) Different number of hidden layers nℓ

Figure 6.6: Analysis of the results of the grid search for UWB localization on a
LSTM neural network. The x-axis indicates the number of parameters, the y-axis
the Root Mean Square Error (RMSE).

6.3.1 Encoder odometry results
To evaluate the error mitigation of our model regarding the encoder odometry
localization system, a test dataset has been collected. The robot was driven in the
same environment and conditions as during the collection of the training dataset,
with the only difference being that the trajectories were planned to highlight some
specific situations. In fact, for the purpose of achieving a reproducible and as
complete as possible evaluation, we considered the conditions when a differential
drives mobile robot loses the most encoder odometry accuracy and teleoperated
the robot along the chosen path. As we assumed in the previous chapters, the
considered type of mobile robot loses accuracy in case of curves, hard-braking or
strong accelerations. So the following types of trajectories were chosen:
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Figure 6.7: The chosen neural network LSTM model for UWB localization. It
has fa single LSTM layer with 96 neurons and a dense output layer. The input
sequence is 20 timesteps long.

• Circle path: this kind of trajectory, since the rotation of the robots happens
only in a single direction, avoids the fortuitous cancellation and compensation
of the error, The main component of the error is expected to be present
mainly on the angle of the robots with respect to the inertial frame, due to its
accumulation.

• Infinite ∞ shaped path: this trajectory consists of a series of curves in the
alternate direction of rotation. This kind of trajectory may lead to casual
compensation of the yaw error: if this phenomenon does not happen in a
balanced way, the encoder odometry is expected to degenerate and lose its
accuracy.

• Casual path: this path is made up of different components such as curves,
brakings and acceleration. The expected result is a rapid loss of accuracy of
the calculated encoder odometry.

To evaluate the performance of the model and compare it with the classical
Extended Kalman Filter approach, the following metrics are used:

• Mean Absolute Error (MAE). In the case of the position error, the MAE is
evaluated over the tracking error in the normal direction, i. e. the mean
value of the length of the segment defined by the ground truth position and
the estimated position at a certain time instant t. If the orientation error
is considered, the MAE is evaluated by averaging the absolute value of the
difference between the ground truth orientation and the estimated orientation.

• Mean Absolute Trajectory Error (m-ATE). In both cases, it is defined as the
average of the absolute value of the error reached during a certain time of
navigation. In this case, we consider the m-ATE during a period of 1 s, which
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n. lenght [s] description
0 150 circle
1 115 circle
2 130 circle
3 110 circle
4 120 circle
5 110 circle
6 110 circle
7 150 circle
8 195 ∞-shape
9 60 ∞-shape
10 195 ∞-shape
11 225 ∞-shape
12 110 irregular
13 130 irregular
14 100 irregular
15 95 irregular
16 120 irregular
17 125 irregular
18 120 irregular

Table 6.8: List of the odometry experiment and their path characteristics.

means the average error after 10 timesteps, since the sampling frequency is
fixed at 10 Hz.

• Cumulative Absolute Trajectory Error (c-ATE). It sums the absolute value
error of every timestep up to a given point in a trajectory. This kind of error
evaluation shows better the trend since is less influenced by fortuitous error
compensations.

The following tables report in detail the outcome of all the conducted experi-
ments. In particular, for each category of experiments, two tables are present: the
first referred to the positioning error and the second referred to the orientation
error. Each table reports a different kind of error related to the proposed NN
model, the EKF and the relative improvement or worsening brought by the NN
with respect to the EKF.

In all the reported graphs the black traces are referred to the ground truth data,
the blue ones to the EKF estimation and the orange ones to the LSTM neural
network estimation. The dashed lines, when present, represent the mean values of
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the considered parameter.

Experiment 1: round trajectories

The round path experiment aims at testing the mitigation of the error since, as said
above, there is no possibility of fortunate compensation. As it is possible to notice
from the experiment graphs and tables, the LSTM neural network can strongly
mitigate the unbounded growth of the orientation error and, as a consequence, of
the positioning error. From table 6.10, it immediately stands out how the m-ATE
error, which can be considered as a short-term prediction error is improved by
around 70 %, which leads to an improvement of the MAE(θ) along the trajectory
and the cumulative error c-ATE(θ). From table 6.9, it emerges how the position
m-ATE has a smaller improvement, around 30 %, thus the strong improvement on
the overall trajectory MAE, can be mainly conferred to the improvement in the
angle.

n. MAE [m] m-ATE [m] c-ATE [m]
NN EKF ∆% NN EKF ∆% NN EKF ∆%

0 0.342 1.029 66.7 0.046 0.077 39.4 4.69 7.77 39.5
1 0.192 0.526 63.5 0.028 0.039 28.1 3.01 4.31 30.1
2 0.193 1.069 81.9 0.032 0.070 54.3 3.65 7.51 51.3
3 0.240 0.691 65.2 0.022 0.033 31.4 2.31 3.33 30.6
4 0.118 0.484 75.4 0.031 0.057 45.3 2.94 5.74 48.6
5 0.570 0.548 -3.9 0.037 0.036 2.95 3.63 3.74 2.9
6 0.317 0.548 42.0 0.035 0.045 20.8 3.14 4.07 22.8
7 0.342 0.698 50.9 0.037 0.044 13.9 4.81 6.37 24.4
mean 0.289 0.746 57.4 0.034 0.051 30.1 31.9

Table 6.9: Results obtained in the evaluation of the position error in round-shaped
trajectory experiments. The last row refers to the overall mean.
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n. MAE [rad] m-ATE [rad] c-ATE [rad]
NN EKF ∆% NN EKF ∆% NN EKF ∆%

0 0.390 1.458 73.2 0.0106 0.0370 71.4 1.23 4.88 74.7
1 0.288 0.969 70.2 0.0101 0.0365 72.3 105.3 3.76 76.2
2 0.178 1.169 84.7 0.0082 0.0362 77.0 0.97 4.30 77.2
3 0.306 0.914 66.5 0.0112 0.0339 66.8 0.88 3.13 71.8
4 0.018 0.429 95.6 0.0055 0.0172 67.6 0.94 2.98 68.1
5 0.050 0.595 91.3 0.0062 0.0234 73.4 0.95 3.00 68.2
6 0.051 0.499 89.7 0.0067 0.0206 67.1 0.86 2.83 69.4
7 0.103 0.610 83.0 0.0063 0.0188 66.5 1.27 3.93 67.4
mean 0.189 0.850 80.5 0.0080 0.0280 70.7 71.6

Table 6.10: Results obtained in the evaluation of the orientation error in round-
shaped trajectory experiments. The last row refers to the overall mean.
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(a) Trajectory on (x, y) plane. (b) Variation of θ during time.

(c) Absolute position error. (d) Absolute yaw error.

(e) Position c-ATE. (f) Orientation c-ATE.

Figure 6.8: Graphs representing the ground truth and estimated trajectory of
the experiment n. 3, a counter-clockwise round-shaped path. It is clearl how the
LSTM-based approach strongly reduces the error on the orientation coordinate.

80



Machine learning for localization

(a) Trajectory on (x, y) plane. (b) Variation of θ during time.

(c) Absolute position error. (d) Absolute yaw error.

(e) Position c-ATE. (f) Orientation c-ATE

Figure 6.9: Graphs representing the ground truth and estimated trajectory of
the experiment n. 4, a clockwise round-shaped trajectory.

Experiment 2: ∞-shaped trajectories

As stated above, the∞-shaped trajectory allows some fortunate odometry compen-
sations, because of the consecutive curves in opposite directions. Despite that, if
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the estimation of the change in orientation is not accurate, the consequence is the
total degradation of the odometry estimation, as it can be observed in figure 6.10a,
in the EKF estimated path. As in the previous experiment, the NN proposed model
is able to improve the m-ATE of the orientation of more than 60 %, improving the
Mean Absolute Error of the orientation of more than 65 %. The improvement in
terms of mean absolute position error, (MAE) are evident from table 6.11 and can
also be noticed at first sight in figure 6.10a.

n. MAE [m] m-ATE [m] c-ATE [m]
NN EKF ∆% NN EKF ∆% NN EKF ∆%

8 0.459 1.446 68.2 0.028 0.041 31.3 4.80 7.30 34.1
9 0.110 0.293 62.3 0.054 0.080 32.5 1.95 2.97 34.4
10 0.429 0.916 53.1 0.030 0.040 24.7 5.22 6.83 23.5
11 0.521 1.857 71.9 0.025 0.046 45.5 5.00 9.07 44.8
mean 0.385 1.136 63.8 0.029 0.045 34.4 30.8

Table 6.11: Results obtained in the evaluation of the position error in ∞-shaped
trajectory experiments. The last row refers to the overall mean.

n. MAE [rad] m-ATE [rad] c-ATE [rad]
NN EKF ∆% NN EKF ∆% NN EKF ∆%

8 0.095 0.523 81.7 0.0077 0.0226 65.8 1.60 4.22 62.0
9 0.077 0.186 58.6 0.0105 0.0252 58.1 0.47 1.13 58.3
10 0.151 0.373 59.5 0.0090 0.0208 56.6 1.72 4.05 57.3
11 0.183 0.459 59.9 0.0078 0.0223 64.6 1.83 4.96 63.0
mean 0.124 0.393 66.0 0.0083 0.222 62.3 60.1

Table 6.12: Results obtained in the evaluation of the orientation error in ∞-
shaped trajectory experiments. The last row refers to the overall mean.
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(a) Trajectory on (x, y) plane. (b) Variation of θ during time.

(c) Absolute position error. (d) Absolute yaw error.

(e) Position c-ATE. (f) Absolute orientation error.

Figure 6.10: Graphs representing the ground truth and estimated trajectory
of the experiment n. 11, a ∞-shaped trajectory. From figure 6.10a it is evident
how the LSTM neural network keeps the error bounded, without leading to a
degradation of the odometry. From figures 6.10c and 6.10d, it shows how this kind
of trajectory is prone to fortunate error compensations.
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Experiment 3: irregular trajectories

The irregular trajectory tests can be intended as a more realistic navigation test,
with a non-regular path, brakings and turns on the robot itself. Even though the
different kinds of conditions, the neural network model leads to the same results
and improvement. The strong improvement of the short-term orientation error, and
consequently the average one and the long-term one, cause an overall improvement
of the position error. In general, the Mean Absolute Error is improved by 60 %
with respect to the EKF outcome.

n. MAE [m] m-ATE [m] c-ATE [m]
NN EKF ∆% NN EKF ∆% NN EKF ∆%

12 0.284 0.906 68.6 0.036 0.045 20.4 3.34 4.83 30.7
13 0.220 0.530 58.5 0.029 0.044 34.5 3.52 4.89 28.0
14 0.274 0.720 61.8 0.021 0.041 46.9 2.18 3.51 37.9
15 0.227 0.585 61.0 0.024 0.046 47.1 2.14 3.62 40.9
16 0.189 0.340 44.3 0.028 0.043 32.8 3.15 5.00 36.8
17 0.180 0.253 28.5 0.034 0.047 27.3 3.72 5.36 30.67
18 0.093 0.722 87.0 0.027 0.041 34.6 2.77 4.34 36.1
mean 0.205 0.600 59.7 0.028 0.043 34.7 34.0

Table 6.13: Results obtained in the evaluation of the position error in irregular-
shaped trajectory experiments. The last row refers to the overall mean.

n. MAE [rad] m-ATE [rad] c-ATE [rad]
NN EKF ∆% NN EKF ∆% NN EKF ∆%

12 0.170 0.611 72.0 0.0103 0.0256 59.7 1.30 3.32 60.6
13 0.144 0.186 22.6 0.0097 0.0210 53.5 1.34 3.25 58.6
14 0.159 0.435 63.4 0.0105 0.0253 58.4 1.08 2.65 59.2
15 0.134 0.403 66.5 0.0094 0.0221 57.2 1.03 2.44 57.4
16 0.104 0.198 47.2 0.0085 0.0223 61.9 1.21 3.29 63.0
17 0.028 0.091 68.5 0.0092 0.0212 56.2 1.39 3.06 54.4
18 0.039 0.498 92.1 0.0104 0.0220 52.4 1.14 2.60 55.9
mean 0.108 0.335 61.2 0.0096 0.0226 57.1 58.4

Table 6.14: Results obtained in the evaluation of the orientation error in irregular-
shaped trajectory experiments. The last row refers to the overall mean.
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(a) Trajectory on (x, y) plane. (b) Variation of θ during time.

(c) Absolute position error. (d) Absolute yaw error.

(e) Position c-ATE. (f) Orientation c-ATE.

Figure 6.11: Graphs representing the ground truth and estimated trajectory of
the experiment n. 17.

6.3.2 UWB localization results
To evaluate the error mitigation of our model regarding the UWB localization
system, a test dataset has been collected. During the collection of the training
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dataset, the line of sight and non-line of sight situations were not distinguished
clearly, but both situations were present at the same time, with many people
moving in front of the anchors and some furniture not always in the same position.
On the contrary, during the collection of the test set, we tried to recreate some
distinct situations in which we expect different behaviours. The following types of
situations were chosen:

• Line of Sight: the whole trajectory does not present any obstacle in the direct
line between the tag and the four anchors. In this case, we expect a performance
similar to the Extended Kalman Filter outcome, since it qualitatively achieves
an accurate performance.

• Non-Line of Sight: in this case during almost all the length of the trajectory
at least one out of the four anchors is in NLOS conditions. In fact, a table
football and some metal furniture have been placed in the middle of the room
and the mobile robot was moved around. Moreover, some people were moving
around. Wood and human bodies are known to screen the UWB wavelength,
while metals act as a reflecting material. We expect qualitatively a bit of
improvement with respect to the EKF outputs since the training included
several NLOS situations

• Mixed scenario: the data were collected in the same condition as the training
dataset, in a situation that can be defined as ‘realistic’, with people walking
around. An improvement is expected since it represents the situation the NN
was trained on.

n. lenght [s] description
0 110 Line of Sight
1 115 Line of Sight
2 110 Line of Sight
3 150 Line of Sight
4 100 Non-Line of Sight
5 80 Non-Line of Sight
6 126 Non-Line of Sight
7 255 Dynamic
8 170 Dynamic
9 265 Dynamic
10 125 Dynamic

Table 6.15: List of the UWB validation experiment and their characteristics.

To evaluate the performance of the proposed approach and compare it with the
Extended Kalman Filter output, we used the Mean Absolute Error (MAE) metric,
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which is the mean of the magnitude of the segments defined by the ground truth
position and the estimated position.

The following tables report in detail the results of all the executed experiments.
In particular, every table reports the MAE, referred to as ε, obtained by estimating
the position of the mobile robot through an Extended Kalman Filter (EKF), the
proposed feedforward neural network (FFNN) and the proposed LSTM neural
network. Each MAE value is matched with its standard deviation σ. Finally, the
percentage improvement brought by the FFNN and LSTM is reported.

In all the reported graphs the black traces are referred to the ground truth data,
the blue ones to the EKF estimation, the orange ones to the LSTM neural network
estimation and the green ones to the FFNN estimation, as a comparison. The
dashed lines, when present, represent the mean values of the considered error.

Experiment 1: Line of Sight

In this scenario, as said above, there are no obstacles between the four anchors
displaced in the room and the tag fixed to the mobile robot. Considering the
average value of the error obtained applying the three different solutions, in table ??,
it is immediately evident how both the NN-based solutions bring an improvement
with respect to the EKF-based solution. In particular, the improvement of the
LSTM network is, on average, 20 %. Moreover, even though the FFNN produces a
slight improvement, its standard deviation increases by around 30 %, with respect
to the other solutions, which are characterized by almost the same value.
Looking at figure 6.12b and analyzing it qualitatively, it can be noticed how the
trajectory estimated by the LSTM network is significantly smoother than the other
ones and can follow better the path of the ground truth.

n. εEKF εF F NN εLST M σEKF σF F NN σLST M ∆%
F F NN ∆%

LST M

0 0.171 0.162 0.155 0.097 0.084 0.083 5.3 9.3
1 0.178 0.168 0.150 0.088 0.088 0.091 5.6 15.3
2 0.246 0.225 0.186 0.150 0.158 0.141 8.8 24.5
3 0.156 0.138 0.108 0.077 0.174 0.082 11.8 30.8
mean 0.185 0.177 0.146 0.100 0.129 0.097 8.1 20.8

Table 6.16: Results obtained in the evaluation of the localization error in LOS
trajectory experiments. The last row refers to the overall mean.
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(a) Position error during time. (b) Estimated trajectory.

Figure 6.12: Graph representing the absolute position error during time and the
estimated trajectory of experiment n. 0 in LOS condition.

Experiment 2: Non-Line of Sight

The NLOS situation is expected to be the worst-case scenario: in this case, indeed,
at least one anchor is always covered by an obscale from the tag point of view.
This can be clearly noticed also from the results: the error is much higher (around
50 - 70 %) that the LOS case. Also looking at the estimated position graph, in
figure 6.13a, the EKF has significative overshoots and oscillations. In this case,
both Neural Networks models struggle to achieve significative improvements. In
particular, the FFNN model achieve almost the same results as the EKF, but
the value of the standard deviation is definitely worse, meaning a more sparse
distributon of the error. Nonetheless, the improvement achieved by the LSTM
architecture is about 10 % with a similar value of standard deviation.

n. εEKF εF F NN εLST M σEKF σF F NN σLST M ∆%
F F NN ∆%

LST M

4 0.230 0.214 0.191 0.125 0.209 0.156 6.9 16.6
5 0.193 0.202 0.168 0.124 0.100 0.086 -4.4 12.9
6 0.211 0.211 0.202 0.119 0.145 0.130 0.0 4.3
mean 0.212 0.209 0.189 0.122 0.154 0.126 1.1 10.5

Table 6.17: Results obtained in the evaluation of the localization error in NLOS
trajectory experiments. The last row refers to the overall mean.

88



Machine learning for localization

(a) Position error during time. (b) Estimated trajectory.

Figure 6.13: Graph representing the absolute position error during time and
the estimated trajectory of experiment n. 5 in NLOS conditions. The trajectory
estimated by the LSTM model is clearly less prone to larger errors.

Experiment 3: Realistic situation

This scenario offers a wide diversity of situations, in fact, it was recorded in dynamic
situations with a changing environment, i. e. with moving people. Before looking
at the achieved results, it must be said that, despite the more complex situation, it
is the most similar to the training set of the neural networks and, therefore, the
best improvement is expected. Analyzing the results, it can be noticed how both
the NN models, generate a marked improvement with respect to the EKF outcome.
In fact, the FFNN model brings an improvement of about 15 % while the LSTM
model reaches a value of about 25 %. Also, the values of the standard deviations
of both the NN models are neatly lower than the EKF one, meaning a tighter
distribution of the error.

n. εEKF εF F NN εLST M σEKF σF F NN σLST M ∆%
F F NN ∆%

LST M

7 0.142 0.124 0.102 0.097 0.078 0.079 12.4 28.4
8 0.134 0.102 0.090 0.085 0.069 0.070 23.5 32.6
9 0.127 0.117 0.107 0.081 0.071 0.071 7.8 15.7
10 0.205 0.138 0.127 0.107 0.096 0.107 32.5 37.9
mean 0.145 0.120 0.105 0.169 0.147 0.151 16.4 26.5

Table 6.18: Results obtained in the evaluation of the localization error in mixed
LOS and NLOS trajectory experiments. The last row refers to the overall mean.
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(a) Position error during time. (b) Estimated trajectory.

Figure 6.14: Graph representing the absolute position error during time and the
estimated trajectory of experiment n. 7

(a) Position error during time. (b) Estimated trajectory.

Figure 6.15: Graph representing the absolute position error during time and the
estimated trajectory of experiment n. 8
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Chapter 7

Conclusions and future
works

7.1 Conclusions
Considering the overall result in all the experiments, it is possible to state that
neural networks, and in particular LSTM architectures, are able to estimate the
encoder-inertial odometry and the UWB localization with a smaller error than
the most common methods based on an Extended Kalman Filter. Concerning
wheel odometry, in all the different experiments that were executed, an average
improvement of around 60 % on the absolute positioning error and around 65 %
of the absolute orientation error is achieved. In this case, it is not worthwhile to
consider the absolute value of the error, because the difference between trajectories
leads to highly different results. In all the experiments, the strongest improvement
is observed in the short-term orientation prediction: this is the key to keeping all
the other errors bounded. Since during the description of the problem the orien-
tation uncertainty was identified as the first cause of positioning error and of the
degradation of the whole trajectory estimation, its accuracy becomes fundamental
to keep all the other errors bounded, especially the long-term ones. The final result
is an improvement of around 30 % and 70 %, respectively on the cumulative errors
of the position and orientation.

Regarding the UWB localization, the outcomes of the different experiments are
a bit different among themselves. In every kind of scenario, the LSTM architecture
outperformed the other types of approach. Particularly, even though the feedfor-
ward neural network achieves some slight improvement in the LOS and dynamic
scenarios, it emerges its lacks of ability to tackle all the different situations, with the
consequence that not always the position error improves, but its standard deviation
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increases as well. The LSTM neural network, on the contrary, always achieve to
provide better performance than the EKF. The main flaw of a neural network-based
approach for UWB localization is the total dependence on the environment, which
means that for a new room or a different anchor constellation, new training would
be needed.

In both cases, from the grid search, it was demonstrated how a sequence of
inputs works better than a single value, which implies that this kind of solution is
more robust to outliers or, in UWB localization, biases due to NLOS situations.
On the other hand, this work proved how two simple models (as the two LSTM
networks with a single 96 neurons layer), are able to mitigate the error and offer
an overall better performance than the EKF. For sure, this thesis can be intended
as a starting point for the study of this topic using recurrent neural networks and
time sequences.

7.2 Future works
This work can be intended as the first approach to a broader in-depth analysis or
more concrete applications of the studied topic. Also other kinds of neural networks
such as convolutional neural networks or auto-encoders can be investigated for this
purpose. Regarding the encoder odometry, some future work can be devoted to:

• study and develop an online learning-based solution, to adapt in real-time to
possible scenario changes, such as different floor materials, uneven terrains
and surfaces or changes in the mobile robot’s structure and payload.

• investigate the integration of different sensors’ data, obtaining accurate wheel
odometry during exteroceptive sensors outage or non-ideal conditions, such as
in dark or scarcely illuminated environments for cameras, to provide a more
robust solution for localization.

On the other hand, since the part regarding the UWB has started as side work,
it would be interesting to continue to:

• study more in-depth, with different constellations of anchors and in a more
wide set of Non-Line of Sight situations, the dynamic UWB localization using
neural networks.

• Explore a sensor fusion approach for UWB localization and other kinds of
sensors, to detect and mitigate the Non-Line of Sight conditions, when detected.
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