
POLITECNICO DI TORINO

Master of Science in Mechatronics
Engineering

Master Degree Thesis

Motion control for an inflatable robotic arm using
ROS

Supervisor Candidate
Prof. Stefano Mauro Matteo Barisione
Pierpaolo Palmieri
Matteo Gaidano

Academic year 2021-2022

Abstract

Nowadays, soft robotics is becoming increasingly significant, it is a subfield of
robotics that focuses on the development of devices made of light, flexible materials
that perform better when interacting with humans and their surroundings. Soft
robots have a considerable range of applications such as surgery, prosthetics, pain
management, and space exploration. Soft robots are suitable in space applications,
where may perform and provide considerable benefits.

There are different categories of soft robots including inflatables, which thanks
to their lightweight nature allows them to be easily contained in a small pack-
age and deployed when required. This characteristic indirectly lowers the cost of
launching the manipulator into orbit because it takes up less space and weighs less
than a rigid robot.

Due to their flexible elements, certain type of soft robots can only exert a lim-
ited amount of force. Furthermore, under stress, they might exhibit deformations
that are difficult to compensate. As a result of their highly non-linear dynamics,
rigid robotics control cannot be successfully applied to soft robots. Furthermore,
in the case of the aerospace industry application, it is necessary to carry out an
in-depth study of the materials used for the construction of the manipulator in
order to make it resistant to hostile environments such as space.

The goal of this thesis is to control a three-degree-of-freedom robot using the
robotic software ROS 1.0. The robot to be controlled, the POPUP robot, is a soft
manipulator developed for space applications in the laboratories of the Politecnico
di Torino, it is made up of two inflatable links and three rigid joints.

The robotic software ROS 1.0 used to control the manipulator is an open-
source robot meta-operating system. It offers several services such as hardware
abstraction, low-level device control, implementation of commonly-used functional-
ity, message passing between processes, and package management. It also includes
tools and libraries for obtaining, constructing, writing, and running code across
multiple computers. Using this library tool, it was feasible to create complete
robot control, allowing for the integration of other devices and the creation of a
modular framework.

The application and the entire system have been configured and designed to
be versatile and modular, allowing for easy integration both in terms of hardware,
with the addition of sensors and motors on the manipulator, and software with
the use of tools for simulating and monitoring the POPUP robot.

Acknowledgements

I would like to thank my supervisors prof. Stefano Mauro, Pierpaolo Palmieri and
Matteo Gaidano for accepting me into their team and for all of their assistance
and advise during my dissertation.

My deepest gratitude go to all of my family members for their encouragement and
support throughout my studies, without which this would not have been possible.
Lastly, I would like to thank all my friends who supported me during this journey,
especially I want to thank Margherita, Marco, Giovanni and Luca for being not
only classmates but also great friends over these years.

Sincerely, thank you
Matteo

iii

Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Description POPUP robot . 1

2 Robotic framework 5
2.1 Introduction . 5
2.2 Robotic framework comparison . 7
2.3 ROS 1.0 vs ROS 2.0 vs micro-ROS 9
2.4 ROS1 vs ROS2 performance evaluation 13

2.4.1 Scheduling latency . 14
2.4.2 Task periodicity . 14
2.4.3 Message loss . 16

2.5 Final evaluation . 17

3 ROS 1.0 19
3.1 History . 19
3.2 Distribution . 19
3.3 What is ROS (Robot Operating System) 19
3.4 Ros basic functionalities . 20

3.4.1 Communication between nodes 21
3.4.2 ROS package . 23
3.4.3 IDE - Visual Studio Code 24
3.4.4 Visualization . 24
3.4.5 Simulation . 25

3.5 Rosserial . 26
3.5.1 Rosserial package . 26
3.5.2 Rosserial protocol . 27

v

4 Popup robot devices 29
4.1 Actuator AK80-80 Robotic Actuactor 31

4.1.1 Controller Area Network (CAN) 33
4.1.2 Actuator - PID schematic 35

4.2 Microcontroller STM32H7 . 36
4.3 PC/Raspebrry Pi4 . 38

5 STM32H7 configuration 39
5.1 UART3 configuration . 39

5.1.1 UART: Hardware Communication Protocol 40
5.2 FDCAN configuration . 43
5.3 Timer configuration . 43
5.4 Rosserial configuration . 45

5.4.1 STM32H7 . 45
5.4.2 PC . 46

5.5 Basic publisher/subscriber on STM32H7 48

6 STM32H7 firmware 51
6.1 main.c . 52

6.1.1 Function description . 53
6.2 mainpp.cpp . 55

6.2.1 Publisher/subscriber functions 57

7 ROS workspace 61
7.0.1 Basic publisher/subscriber functions on ROS 63

8 ROS node development 65
8.1 Position controller . 65
8.2 One motor control - ROS node . 66

8.2.1 Terminal Interface . 67
8.2.2 Graphical Interface . 67

8.3 Continous comunication . 68
8.3.1 GUI motor control . 72

8.4 Three motor control - ROS node . 74

9 Message latency comparison 77
9.1 One motor at time - (single mode) 77

9.1.1 Time analysis - script python 79
9.2 Three motor at time - (matrix mode) 81

9.2.1 Time analysis - script python 83

vi

10 Popup speed control 87
10.1 Gamepad control . 89
10.2 GUI - speed control . 90

11 PID firmware 93
11.1 PID funciton . 93
11.2 PID in C . 94
11.3 PID tuner . 98

12 Conclusion 103

vii

List of Tables

1.1 Robot links dimensions and operating pressure 3

2.1 ROS 1.0 and ROS 2.0 comparison 10

11.1 PID parameters . 98

viii

List of Figures

1.1 POPUP robot . 1
1.2 POPUP robot deflated . 2
1.3 Link exploded . 3
1.4 POPUP robot - Actuator AK80-80 3
1.5 Microcontroller STM32H743 . 4

2.1 Middleware . 6
2.3 Frameworks/middleware comparison 7
2.2 Robotic framework and middleware comparison 8
2.4 Middleware structure ROS 1.0 and ROS 2.0 12
2.5 Middleware structure micro-ROS 13
2.6 Software stack architeture of ROS 1.0 and ROS 2.0 14
2.7 ROS 1.0 and ROS 2.0 latency comparison 14
2.8 Timeline of a ROS node . 15
2.9 Periodicity of ROS node . 15
2.10 Table node periodicity . 16
2.11 Scheme of the environment used to test the ROS node communication 16
2.12 Maximum communication latency on varying data size 17

3.1 Message communication . 20
3.2 Topic message communication . 22
3.3 Message communication between nodes 23
3.4 ROS’s package folder . 24
3.5 VS Code: ROS node development environment 24
3.6 ROS Visualization (RViz) . 25
3.7 Gazebo ROS simulator . 25
3.8 rosserial server (for PC) and client (for embedded system) 26
3.9 Rosserial frame format . 27

4.1 Robot ecosystem diagram . 29
4.2 POPUP devices connection . 30

ix

4.3 Structural design actuator AK80-80 31
4.4 Motor’s abbreviation . 31
4.5 Motor AK80-80 USB configuration 32
4.6 CAN data frame . 34
4.7 CAN data frame . 34
4.8 Data frame - Actuator AK80-80 . 35
4.9 Schematic of the PID controller inside the actuator’s driver 36
4.10 Microcontroller STM32H7 . 36
4.11 Raspberry Pi4 or PC - POPUP controller 38

5.1 UART packet . 40
5.2 USART3 & DMA - IDE configuration 41
5.3 Example IDE configuration . 42
5.4 FDCAN - IDE configuration . 43
5.5 TIM2 & TIM8 - IDE configuration 44
5.6 STM32H7 firmware file . 45
5.7 ROS distribution . 47
5.8 Terminal output ros command . 49

6.1 Flow chart main.c . 52
6.2 The following figure summarises all the topics and message types

that have been implemented to control the robot 57

7.1 controller popup package’s folder 62
7.2 rosserial python package’s folder 62
7.3 Terminal output $ rosserial_python command 62

8.1 Graph - kp value . 66
8.2 Motor control - terminal interface 67
8.3 Motor control - Graphical interface 69
8.4 Flow chart ROS node . 70
8.5 GUI - Three motor position controller 73
8.6 Scheme communication - one motor 73
8.7 Scheme communication - three motor 75

9.1 Scheme measured transmission time - single mode 78
9.2 Terminal output - ROS node time analysis 79
9.3 Time response - one motor at time 80
9.4 Histogram time response - one motor at time 81
9.5 Scheme measured transmission time - matrix mode 82
9.6 Time response - three motor at time 84
9.7 Histogram time response - three motor at time 85

x

10.1 POPUP robot - speed controller . 87
10.2 Gamepad speed control command 90

11.1 PID scheme . 94
11.2 Complete firmware’s flow chart . 97
11.3 GUI - PID tuner . 99
11.4 Movement POPUP robot . 100
11.5 Motors feedback - position . 100
11.6 Motors feedback - speed . 101
11.7 Motors feedback - current . 101

xi

xii

Chapter 1

Introduction

1.1 Description POPUP robot
The object examined in this project is a robotic manipulator called POPUP robot,
developed by engineer Pierpaolo Palmieri as part of his PhD. The purpose of this
project is to control the robot entirely through software. The manipulator is made
up of three 3D printed rigid joints which contain the three AK80-80 actuators giv-
ing the manipulator 3 DOF, ands two inflatable links made-up of PVC material.
Due to the inflatable links, the manipulator is now classified as a soft robot.

Figure 1.1: POPUP robot

Soft robotics is a subfield of robotics that concerns the design, control, and
fabrication of robots composed of compliant materials, instead of rigid links. In
contrast to rigid-bodied robots built from metals, ceramics and hard plastics, the

1

Introduction

compliance of soft robots can improve their safety when working in close contact
with humans.1

An advantage of inflatable links is the lightness of the robot itself since the links
are filled with air. Another positive aspect of inflatable links is the possibility of oc-
cupying a very small space when they are deflated, as shown in the figure 1.2. The
robot with these features can be used in various applications such as aerospace,
collaborative robotics and biomedicine. For example the robot can be used in
an aerospace environment due to its light weight allowing easier transportation,
and the softness of the links favours application in collaborative robotics, reducing
damage caused in the event of a collision.

Figure 1.2: POPUP robot deflated

The structure of the POPUP robot shown in the figure below can be divided
into several parts:

• links: generally, links are defined as follows links are the rigid members that
connect the joints, in this case links connect the joints, but cannot be consid-
ered rigid, since when the robot is operational there are only air inside them.
The inflatable links have cylindrical shape and are made out PVC fixed to
a 3D printed support which connect the link to the actuator, that allow the
robot to move.

1https://en.wikipedia.org/wiki/Soft_robotics

2

https://en.wikipedia.org/wiki/Soft_robotics

1.1 – Description POPUP robot

Figure 1.3: Link exploded

In order for the robot to be able to make movements, the air pressure inside
the links must be about 1 bar. The links are inflated via a pneumatic line,
and the pressure inside is controlled via a pressure gauge at the base of the
two links.

Dimension Link 1 Link 2
Length (mm) 600 600
Radius (mm) 85 55
Pressure (kPa) 30 30

Table 1.1: Robot links dimensions and operating pressure

• Actuators: Three motors (ID: 1,2,3) were chosen to allow the robot to move.
The actuator consists of a BLDC motor directly connected to a high-precision
planetary gearbox with a reduction ratio of 80:1; the model of the actuator
is: AK80-80 Robotic Actuator.

Figure 1.4: POPUP robot - Actuator AK80-80

The AK series module is a high-end actuator with a brushless DC motor,
integrated planetary gear, encoder and driver. It can be widely used in ex-
oskeletons, walking robots, automation equipment, scientific research and ed-
ucation and other fields. The driver adopts a field-oriented control algorithm
(FOC), and cooperates with a high-precision angle sensor to achieve precise
position and torque control. The design of 36N42P, rare earth magnets and

3

Introduction

high-precision planetary gears can make the motor more stable and more
torque. AK80 series motors support a variety of communication protocols,
and provide a human-machine interface through communication with PC, al-
lowing users to control the motor faster and more accurately.
It also integrates the inverter and the controller that receives and transmits
data and commands via the CAN communication protocol.

• Microcontroller STM32H7: Robot movements are controlled by a micro-
controller that communicates with the motors via CAN. The microcontroller
is used both to communicate with the motors and to communicate with the
PC. The high performance microcontroller STM32H743 was chosen to com-
plete this tasks.
This MCU represents the highest-performance ARM Cortex-M core imple-
mentation on the market today. The STM32H7 microcontrollers are ideal for
industrial gateways, home automation, telecommunications equipment and
smart consumer products, as well as high-performance motor controls, home
appliances and small devices with complex user interfaces.
The STM32H743 chip integrates 35 communication peripherals that support
protocols and standards such as CAN FD, SDCARD (4.1), SDIO (4.0) and
MMC (5.0). There are also 11 advanced analogue functions including low-
power 2Msample/s 14-bit ADC, 12-bit DAC, op-amp, as well as 22 timers,
including a high-resolution timer running at 400MHz.
Therefore, the following board was chosen as the robot’s main controller be-
cause it guarantees high performance and reliability, and finally, it was con-
figured to communicate via the CAN protocol thus enabling the sending and
receiving of data from the motors.

Figure 1.5: Microcontroller STM32H743

• Pneumatic line: allows the links to be inflated by switching on a compressor,
thus enabling the robot to be used. Furthermore, the advantage is that once
the pressure inside the links has been reached, it is no longer necessary to
supply air to the links.

4

Chapter 2

Robotic framework

2.1 Introduction
As described earlier, the POPUP robot is composed of three motors which are
operated by a microcontroller. Initially the board was in charge of managing all
the movements of the robot, so within the firmware there were all the functions for
the complete control of the robot. Functions like position control, speed control,
inverse kinematic, and the functions for sending and receiving commands via CAN
protocol, were present within the firmware and were called up periodically to move
the robot.

This solution was not so flexible, as each time a new movement or trajectory
had to be executed, the robot had to be stopped and the firmware on the board
had to be reloaded with the new trajectory.

In order to have a more dynamic solution and thus to have more flexibility in
the control of the robot, obtaining the possibility of executing different trajecto-
ries, it was necessary to modify the firmware and add new devices and software to
control the robot.

The paper listed in the bibliography suggested the use of a middleware to con-
trol a robot:
Middleware is a type of computer software that provides services to software ap-
plications beyond those available from the operating system. It can be described as
"software glue"1

1https://it.wikipedia.org/wiki/Middleware

5

https://it.wikipedia.org/wiki/Middleware

Robotic framework

Figure 2.1: Middleware

Starting from this paper [1], an in-depth research
was carried out to find out which robotic middle-
ware, was the best to use in order to meet the re-
quirements listed above, i.e. the possibility of exe-
cuting different trajectories, creating a modular envi-
ronment allowing easier integration of sensors on the
robot, and ensuring great flexibility of the whole sys-
tem.

Robotic systems require a high degree of specialisa-
tion and large number of different scientific fields are involved. Software is there-
fore needed to enable easy integration between the different modules, allowing the
robotic system to work fluently. For this reason, there are a large variety of frame-
works and middleware that offer different methods for integrating the different
modules.

As described in [1], since robots are becoming complex systems with more sen-
sors and elements to control, a single software is no longer sufficient to perform this
task, so frameworks are used. A robotic framework is a collection of software tools,
libraries and conventions, aiming at simplifying the task of developing software for
a complex robotic device.

Instead the Robotic middleware is a type of computer software that provides
services to software applications beyond those available from the operating system.

After determining what was required for the project, an examination and com-
parison of the various robotic frameworks and middleware on the market was
carried out. In [2] are listed as the most used robot software platforms:

• MSRDS2 Microsoft Robotics Developer Studio, Microsoft - U.S.

• ROS Robot Operating System, Open Robotics12 - U.S.

• OROCOS Europe

• other middleware are MRPT, CARMEN, LCM, Player, Microsoft RDS

Most of the time, the negative aspect of the robotics software are: language sup-
port limitations, unoptimized communication between processes, lack of support
for various devices which is arguably the hardest problem to fix.

2https://www.microsoft.com/robotics/

6

https://www.microsoft.com/robotics/

2.2 – Robotic framework comparison

2.2 Robotic framework comparison
Several papers listed in the bibliography were read comparing the various mid-
dleware on the market. The choice of middleware was guided by the following
parameters:

• Open source: the middleware must be open source so all material can be
found online without buying software.

• Practical to use: middleware must make it possible to develop software
easily, even without the use of advanced knowledge; allowing whoever to
learn.

• Flexibility: the middleware sought must guarantee that the system can be
easily modified, while also providing flexibility in modifications.

• Packages and lessons available: Another important parameter that was
taken into account when choosing the middleware is the presence/availability
of guides and tutorials.

• no advanced systems required: The middleware chosen must not re-
quired the use as super computers to run. It must in fact be possible to run
the robotics software on commercial devices. In this way, the flexibility and
modularity of the entire system is maintained.

The tables below compares the various middleware according to their main char-
acteristics; a more in-depth description of the various middleware can be found in
the following papers [1]:

Figure 2.3: Frameworks/middleware comparison

7

Robotic framework

Figure 2.2: Robotic framework and middleware comparison

After a careful analysis of the different middleware, made by reading the fol-
lowing papers[3] [4] [5], , it was concluded that ROS is the most advantageous
middleware to use. As also reported in [6] ROS has several advantages including:

• High-end capabilities: ROS presents many ready-to-use features within its
packages, enabling faster software development. For example, packages for

8

2.3 – ROS 1.0 vs ROS 2.0 vs micro-ROS

SLAM are present in Ros, as well as packages for AMCL and control. Further-
more, these packages have the possibility of changing the main parameters so
that they can be used for different applications.

• A great variety of tools: There are simulation and debugging tools such
as Rviz, Gazebo, MoveIT

• Inter-platform operability: The ROS message-passing middleware allows
communication between different programs. In ROS, this middleware is
known as nodes. These nodes can be programmed in any language that
has ROS client libraries. We can write high-haveance nodes in C++ or C and
other nodes in Python or Java.

• Modularity: Ros allows modular software to be created through the use of
nodes, thus guaranteeing two advantages over middleware on the market: in
the event of a node crash, the internal software can continue to function, and
it also allows greater flexibility by allowing nodes developed by outsiders to
be integrated.

• Active community: Finally, over the years a large online community has
emerged that has enabled and improved the middleware, creating new pack-
ages and resources for the beginners

Similar advantages are also reported in the books [2] [6].

2.3 ROS 1.0 vs ROS 2.0 vs micro-ROS
The Robot Operating System (ROS) is a set of software libraries and tools that
help build robot applications. ROS provides functionality for hardware abstrac-
tion, device drivers, communication between processes over multiple machines,
tools for testing and visualization, and much more.

There are different types of ROS, in fact there is ROS 1.0, ROS 2.0 and
micro-ROS. Originally developed by Willow Garage in 2007, ROS1 has become
a household name in the open source robotics community.

The team behind ROS1 has years of experience in understanding which key
features are missing and which can be improved. Unfortunately, adding all these
modules to ROS1 required a lot of breaking changes and made ROS1 very unsta-
ble. So ROS2 was redesigned from the ground up and is a brand new ROS.

At present, ROS is not very popular in the industry, and it lacks some important
requirements such as real-time, security, authentication, and security. One of

9

Robotic framework

the goals of ROS2 is to make it compatible with industrial applications. In the
following part of the paragraph, the two middlewares were compared, evaluating
their performance and characteristics.
The main differences between ROS 1.0 and ROS 2.0 are listed in the table 2.1.

ROS 1.0 (since 2007) ROS 2.0 (released 2017)
Provide the software tools for users who
need to R&D projects with the PR2
also designed ROS to be useful on other
robots.

Provide new features: robot Security,
real-time control, increase distributed
processing

C++ 03; C++ 11; Python 2 C++11; C++14; C++17; Python 3.5

Ubuntu OS X Ubuntu Xenial Windows 10 OS X

Linux Mac Linux Windows MAC RTOs

Not possible to create more than one
node in a process

Possible to create multiple nodes in a
process

The powerful community has accumu-
lated rich and stable packages, debug-
ging tools and a complete tutorial help
beginners to quickly understand the use
cases and methods of ROS

- Minimal dependencies
- Better portability
- Greater reliability and persistence
- Strong real-time

- Beginner/Students
- General developer
- Robotics Algorithm Developer

- Computer professional learners
- Developer who value real-time

Table 2.1: ROS 1.0 and ROS 2.0 comparison

Starting from the following papers [7] [8], an analysis will be performed on the
different characteristics of ROS 1.0 and ROS 2.0:

ROS 1.0
The most used and widely spread mobile robotics middleware. Has a large active
community and a wide support for various sensors, actuators and mobile robots.
Many companies support ROS by providing and maintaining interfaces to their

10

2.3 – ROS 1.0 vs ROS 2.0 vs micro-ROS

products. Modular design with separate execution and data management, encap-
sulated into nodes. Communication is performed using message passing over TCP
(nodes) or shared memory (nodelets). The system provides both a publisher/-
subscriber paradigm for asynchronous communication, as well as a client/server
paradigm to enable synchronized executionon desired input data.
A central server maintains discovery and connection handling between nodes, while
the actual node connections are implemented in a peer-to-peer fashion. ROS sup-
ports a large variety of programming languages, and includes both the commu-
nication interface infrastructure, as well as a software packaging, building, and
release toolchains.

ROS 2.0

The successor of ROS, where the key difference lies in the communication. ROS
utilize a custom designed communication via TCP/IP. ROS2 instead utilize DDS
(Data Distribution Service), which is a standardized way that has been used in a
plethora of different systems and applications. DDS is the mechanism that han-
dles the discovery between nodes in ROS2, which allows for a fully decentralized
system. In ROS the mechanism of handling node communication is centralized
and takes place through the roscore software which acts as a master where nodes
can ask the master to discover other nodes for them. In ROS2 this discovery
mechanism is instead embedded in each node (via DDS), and there is no master
used in ROS2. This is, for example, helpful in multi-robot setups. Apart from
these underlying changes, the overall functionality of ROS and ROS2 is similar.
To transfer from ROS to ROS2 requires that the underlying code that builds up
the nodes has to be modified. Overall, ROS2 is gaining momentum but many
packages are still only available for ROS.

The Robot Operating System (ROS), open-source middleware, has been widely
used for robotics applications. However, the ROS is not suitable for real-time em-
bedded systems because it does not satisfy real-time requirements and only runs
on a few OSs.

This represents one of the main drawbacks of ROS1, so a version has been
developed to solve these problems, ROS 2. ROS 2 uses DDS, DDS is middleware for
data-centric systems (from the Anglo-Saxon data-centric systems), i.e., distributed
systems whose operation is based on the exchange of real-time data from multiple
sources to multiple destinations.

11

Robotic framework

Figure 2.4: Middleware structure ROS 1.0 and ROS 2.0

Another type of ROS has emerged in recent years and is micro-ROS, which was
created to bridge the gap between resource-limited microcontrollers and larger
processors in robotics applications based on the Robot Operating System. The
architecture of the micro-ROS stack follows the ROS 2 architecture.

micro-ROS
micro-ROS is a framework developed on the basis of ROS2. It aims to integrate
microcontrollers with limited resources into the system that would otherwise not
be able to use ROS2. The micro-ROS was created due to the large number of
microcontrollers in a robot that manage almost the entire hardware layer. This
makes software development very time-consuming and difficult to manage and ex-
pand. The micro-ROS succeeds in integrating a structure of layers down to the
application level while requiring a minimum amount of resources from the system
on which it is installed.
micro-ROS is compatible with Robot Operating System (ROS 2.0), the de facto
standard for robot application development. In turn, it puts ROS 2 onto micro-
controllers. micro-ROS enables the interoperability of traditional robots with IoT
sensors and devices, creating truly distributed robotic systems using a common
framework. micro-ROS empowers these computational devices with constrained
resources to become first-class participants of the ROS ecosystem, allowing the
creation of smaller robots using the same tools as well as taking advantage of the
increasing overlapping between robotics, smart embedded devices, and IoT.micro-
ROS follows the ROS 2 architecture and makes use of its middleware pluggability
to use DDS-XRCE, which is suitable for microcontrollers.

12

2.4 – ROS1 vs ROS2 performance evaluation

Figure 2.5: Middleware structure
micro-ROS

The dark blue components shown in the
architecture are developed specifically for
micro-ROS. The light blue components, on
the other hand, are taken from the stan-
dard ROS 2 stack.
The whole stack that is necessary to imple-
ment ROS features in microcontrollers that
are lacking an operating system like Linux
or Windows, which are prerequisites to op-
erate ROS2, is being developed in a partic-
ular stack that is interoperable with ROS
2, totally and fully integrated.

If you are dealing with real-time, with microcontrollers, or extremely resource-
constrained environments, micro ROS will offer what you need to implement stan-
dard solutions that avoid continuous implementation of ad-hoc features.

micro-ROS presents a viable solution for this project, it has not been used as
it is still under great development and and very complex to work with.

2.4 ROS1 vs ROS2 performance evaluation

Since ROS 1 does not meet the requirements for real time, it was decided to
compare the performace of ROS1 and ROS2 starting from this paper [8] [9]. To
benckmark two middleware empirically is complicated since a middleware can
perform better in some applications and worse in others. So what has been tried
to figure out is taken the same task to perform what is the difference in latency
between ROS 1.0 and ROS 2.0.
ROS enables easy and rapid software development with various tools, libraries,
and rules to implement complex control algorithms in various robot platforms.
However, since the robot shares the working environment with humans in real-
time, it can cause physical damage to the user if malfunctions occur due to system
latency. Therefore, real-time constraints must be satisfied for stable operation.

The paper [9] reports a hemipirical study comparing the two versions of ROS;
ROS 1 Melodic compared with ROS 2 Dashing.

In order to evaluate the performance of the two middlewares, the same task
is launched on both PCs on which the two versions of ROS are installed. The
implemented software stack architecture is shown in Fig. 2.6.

13

Robotic framework

Figure 2.6: Software stack architeture of ROS 1.0 and ROS 2.0

2.4.1 Scheduling latency
The first test is evaluating the scheduling latency in an idle environment. The
scheduling latency is defined as the time difference between the actual task ac-
tivation time and the configured period. The figure 2.7 represents the latency
difference between ROS 1 and ROS2 given a single task to execute in 1 ms. It can
be seen that ROS 2 has a maximum latency of 11 µs, in contrast ROS 1 has a much
higher latency, 290 µs. Therefore, the ROS 2.0 system provided higher real-time
performance than ROS 1.0 and operated stably.

Figure 2.7: ROS 1.0 and ROS 2.0 latency comparison

2.4.2 Task periodicity
Then, the periodicity of the nodes were compared. Four nodes with different pri-
ority were defined, the nodes were executed to start approximately at the same
time, and then, they were experimented on for 30 minutes. Two nodes were then

14

2.4 – ROS1 vs ROS2 performance evaluation

initialised with different periodicities. Node 1 is executed every 5 ms for 30 min-
utes, while node 2 is executed every 10 ms for the same period of time. This
experiment compares the ability and accuracy of the two middleware to execute
tasks periodically. The figure 2.8 shows the execution behaviour of a node.

As shown in the figure, the initialisation of a node does not coincide with the
start of its execution; the time between the release of the node and execution is
called jitter, this time period may vary depending on the version of ros and the
type of node. the node has finished executing, there is a period of time during
which no action is taken, before the next node is initialised; again, this time period
varies depending on the node type and middleware version.

After running the test for 30 minutes, the results are shown in the table 2.10.
Again, the node running on ROS 2 turns out to be more efficient.

Figure 2.8: Timeline of a ROS node

As can be seen from the figure 2.9, the best results are obtained for nodes run
on ROS2. Node execution in the set period is much more precise in nodes run on
ROS2, on the contrary, nodes run on ROS 1 have a less precise periodicity. This
result worsens by increasing the CPU load, as described in the paper [9].

Figure 2.9: Periodicity of ROS node

15

Robotic framework

Figure 2.10: Table node periodicity

2.4.3 Message loss
Finally, the cited paper evaluates message loss as a function of dimension of the
message and sending frequency. The test is performed for 30 minutes, sending
packets of different size from the PC to the RPi3 with different frequency. This
test is very similar to what was done in this project. As will be described later in
this project, the node on the PC will communicate and send messages of different
size and frequency, to the microcontroller via USB.

Figure 2.11: Scheme of the environment used to test the ROS node communication

The results are shown on the graph 2.12. As can be seen in both ROS 1 and
ROS 2 as the packet size increases the latency increases. By increasing the size
of the message sent, the latency in both cases increases slightly. As can be seen

16

2.5 – Final evaluation

from the graph, a constant latency is always present between ROS1 and ROS2, so
in any case ROS2 has a lower latency and better performance.

Figure 2.12: Maximum communication latency on varying data size

Given the analysis done above, it can be concluded that ROS 2 performs better
than ROS 1 in terms of real time and thus latency. A more in-depth evaluation
in detail is described in the following paper [8]. Also in this study, the latencies
of ROS 1 and ROS 2 are compared by evaluating message loss and transmission
throughtput. Again, though, ROS 2 appears faster and with less loss.

From the research done and as reported in the various papers listed in the
bibliografy, it can be concluded that in most cases ROS2 performs better than
ROS1. In that, as the graphs show, ROS2 is better in terms of latency and
precision in task execution, as well as being optimised to occupy less memory. In
the following, the two middlewares will be evaluated in the specific case of this
project.

2.5 Final evaluation
As demonstrated in the previous section ROS 2 presents a better and more op-
timised solution for robotic software development. However, it is necessary to
emphasise the negative aspects of the latter. Being developed after ROS1, ROS2
has some improvements, but it is more complex to use and to learn; moreover,
being still under great development, there is a lack of study material, and there
are no clear books or documentation that allow a complete understanding of the

17

Robotic framework

middleware. For the purposes of the project, it was therefore decided to use the
ROS 1 middleware.

Finally robotics companies such as ABB, Fanuc, Universal Robots, Robotiq,
Omron and Staubli have ROS controllers, software packages and drivers for their
robots in the Github repository. They provide ROS-1 support and solutions that
enable integration of their tools with other industry platforms, leveraging the ROS
ecosystem.

Summary of the advantages and disadvantages of ROS 1.0.

Pros
• ROS is general, it can be used for almost any robot. Gives to the user a large

number of packages to start the project

• Open source: that’s the end of all-proprietary systems. It can be used some
code with a permissive license (BSD) which is great for a company.

• Big community: ROS is now 10 years old, and its community is growing
exponentially. It can be can find the community on github (mostly ROS
packages are on github), on ROS Answers.

• Documentation: There are many tutorials and packages descriptions on Doc-
umentation - ROS Wiki. There are still some big holes in the documentation,
but it is really improving over time.

Cons
• Lack of support for some packages. Example: Some guys in a university or

company have a project to do, and for this project they realize they can share
their code with the ROS community by creating a library.

• Real-time computation. ROS is mainly running on Ubuntu, which is not
a hard real-time OS. When it is necessary to deal with industrial robotics
applications, there are quite a few chances that it is needed a real-time system

• Support for embedded systems. There is actually no real support for micro-
controllers and other embedded chips. ROS must run on a computer.

The list above shows the pros and cons of the two middleware, the biggest
disadvantage that can be considered in ROS 2 is the lack of material and books
that explain in detail how it works and also it is more complex than ROS 1.

Therefore it was decided to use ROS 1 as it is useful for the purpose of the
project although not optimally.

18

Chapter 3

ROS 1.0

3.1 History
The first version of ROS was released in 2007 by Willow Garage. ROS started as an
open source framework, other people participated in the development. ROS caught
on because the main problem with robotic platforms was having to rimplement
algorithms every time you wanted to build a more complex infrastructure. For this
reason, to overcome this problem ROS offers different features, like an easy process
communication, code reuse and software modularity. Today, ROS represents the
standard for robot programming and it is already integrated in many robots and
used by many universities and companies.

3.2 Distribution
ROS updates are released with new ROS distributions. A new distribution of ROS
is composed by an updated version of its core software and a set of new/updated
ROS packages. ROS follows the same release cycle of Ubuntu Operating System:
a new version of ROS is released every six months. Typically, for each Ubuntu
LTS (Long Time Support) version, an LTS version of ROS is released. LTS stands
for Long Term Support and means that the released software will be maintained
for long period time (5 year in case of ROS and Ubuntu). The version used in this
project is ROS Noetic, and it’s supported by Ubuntu 20.04.

3.3 What is ROS (Robot Operating System)
Ros is defined as follows:
"ROS is an open-source, meta-operating system for your robot. It provides the ser-
vices you would expect from an operating system, including hardware abstraction,

19

ROS 1.0

low-level device control, implementation of commonly-used functionality, message-
passing between processes, and package management. It also provides tools and
libraries for obtaining, building, writing, and running code across multiple com-
puter"1.

3.4 Ros basic functionalities
In ROS1 the essential element are nodes, which can be described as different pro-
gramme parts working in parallel and communicating with each other using the
publisher-subscriber paradigm. All communication of the various parts of the pro-
gramme is handled by the main node: master. All the components in ROS and
the communication between them will be listed and described below.

ROS is composed by different element:

Figure 3.1: Message communication

• Node: Computation in ROS occurs in small units called nodes. Instead of
writing a heavy program, ROS divides it into smaller units-namely, nodes.
A single node can, for example, take care of the conversion of received co-
ordinates, or the publication of the engine encoder. in fact, these nodes
communicate with each other by sending messages. A node can function as
a publisher, subscriber, server or client.

• Package: A package is the basic unit of ROS. The ROS application is de-
veloped on a package basis, and the package contains either a configuration

1https://www.ros.org/

20

https://www.ros.org/

3.4 – Ros basic functionalities

file to launch other packages or nodes. The package also contains all the files
necessary for running the package, including ROS dependency libraries for
running various processes, datasets, and configuration file.

• Master: The master acts as a name server for node-to-node connections
and message communication. The connection between nodes and message
communication such as topics and services are impossible without the master.

3.4.1 Communication between nodes
Two processes (ROS Nodes) can communicate in different ways. The first com-
munication protocol discussed here is an asynchronous communication protocol
based on the publish/subscribe paradigm in which a process streams a series of
data that can be read by one or more processes. This communication relies on
an entity called topic. In particular, each message in ROS is transported using
named buses called topics. When a node sends a message through a topic, then it
can be say the node is publishing a topic, while when a node receives a message
through a topic, then it can be say that the node is subscribing to a topic.

The following list specifies the concept described above:

• Message: A node sends or receives data between nodes via a message. Mes-
sages are variables such as integer, floating point, and boolean.

• Topic: The topic is literally like a topic in a conversation. The publisher node
first registers its topic with the master and then starts publishing messages on
a topic. Subscriber nodes that want to receive the topic request information
of the publisher node corresponding to the name of the topic registered in the
master. Based on this information, the subscriber node directly connects to
the publisher node to exchange messages as a topic.

• Publish and Publisher: The term "publish" stands for the action of trans-
mitting relative messages corresponding to the topic. The publisher node
registers its own information and topic with the master, and sends a message
to connected subscriber nodes that are interested in the same topic. The
publisher is declared in the node and can be declared multiple times in one
node.

• Subscribe and Subscriber: The term "subscribe" stands for the action of
receiving relative messages corresponding to the topic. The subscriber node
registers its own information and topic with the master, and receives publisher
information that publishes relative topic from the master. Based on received
publisher information, the subscriber node directly requests connection to the

21

ROS 1.0

publisher node and receives messages from the connected publisher node. A
subscriber is declared in the node and can be declared multiple times in one
node

The topic communication is an asynchronous communication which is
based on publisher and subscriber, and it is useful to transfer certain data. Since
the topic continuously transmits and receives stream of messages once connected,
it is often used for sensors that must periodically transmit data. The figure 3.2
shows how the communication between publisher and subscriber works. In this
project, several topics were created and the main message stream is linked to the
engines of the robot.

Figure 3.2: Topic message communication

ROS Services ROS also supports a synchronous communication protocol:
ROS services. It establish a request/response communication between nodes. One
node will send a request and wait until it gets a response from the other. This
type of communication protocol should be used when a node is specialized in doing
a specific tasks, like some complex calculation. For example, this node could be
responsible to calculate the inverse of a matrix. In this way, all the other modules
of the system that need to invert a given matrix could directly use this service,
without replicate the inversion operation in their source code.

• Service: The service is synchronous bidirectional communication between
the service client that requests a service regarding a particular task and the
service server that is responsible for responding to requests.

• Service server:The "service server" is a server in the service message com-
munication that receives a request as an input and transmits a response as
an output.

22

3.4 – Ros basic functionalities

• Service client: The "service client" is a client in the service message com-
munication that requests service to the server and receives a response as an
input.

The figure 3.3 represents all methods of communication between nodes; present in
ROS. In this project, it was decided to make the nodes communicate using only
the publisher-subscriber paradigm.

Figure 3.3: Message communication between nodes

3.4.2 ROS package
ROS packages are the basic units of ROS programs.
The following folder created within the workspace will contain all files relating to
the project. The package can be created by running the following command from
the terminal:
$ catkin_create_pkg package_name [dependency1] [dependency2]

The benefit of organising a project within a package is the possibility to share
and transfer it.

The following are the main folders that the user creates within the package:
• config: All configuration files that are used in this ROS package are kept in

this folder. This folder is created by the user and it is a common practice to
name the folder config as this is where the configuration files are saved.

23

ROS 1.0

• include/[package_name]: This folder contains the headers and libraries
that are needed to use inside the package.

• script: This folder contains executable python scripts.

• src: This folder stores the C + + source codes.

• launch: This folder contains the launch files that are used to launch one or
more ROS nodes simultaneously.

Figure 3.4: ROS’s package folder

3.4.3 IDE - Visual Studio Code

Figure 3.5: VS Code:
ROS node development
environment

Once the package has been created and integrated into
the ROS environment, the development of the nodes
that will create the application is started. In this
project, all nodes on ROS were developed using the
python programming language, and Visual Studio Code
was used as the IDE for writing the nodes. When the
IDE is opened, a file with the extension .py is created
and saved in the package’s script folder, and the ROS
node is created. In this way, the node was created. The
image 3.5 shows the IDE (VS Code) during the devel-
opment of a node.

3.4.4 Visualization
ROS provides a variety of tools to assist developers.
Among these tools, Ros Visualization (RViz) is very useful. It is a 3D visualizer to
graphically display the contents of a topic using viualization_markers messages.
RViz can visualize robot models, the environments they work in,and sensor data
directly from ROS topics. Built-in and custom plugins can be loaded on RViz to
add additional functionalities like motion planning or motion control.

24

3.4 – Ros basic functionalities

Figure 3.6: ROS Visualization (RViz)

3.4.5 Simulation

Another important feature of ROS is the simulation. In particular, ROS is strictly
integrated with Gazebo simulator http://gazebosim.org/, a multi-robot simulator
for complex indoor and outdoor robotic simulation. In the Gazebo environment
can simulate complex robots, robot sensors, anda variety of 3D objects. Gazebo
already has simulation models of popular robots, sensors, and a variety of 3D
objects in their repository. In addition, several plug-in already exists to interact
with the simulated using ROS. Using Gazebo it can be simulate the real sensor
mounted on our robots receiving exactly the same stream of data (thanks to the
same ROS message definition between the real and simulated sensors). An example
of the Gazebo interface is shown in Fig. 3.7, where a wheeled mobile robot is
simulated.

Figure 3.7: Gazebo ROS simulator

25

http://gazebosim.org/

ROS 1.0

3.5 Rosserial
Finally, the most important package used in this project is the rosserial package.
This package enabled communication between the ROS node and the microcon-
troller, USB-connected.

3.5.1 Rosserial package
Rosserial is a package that converts ROS messages, topics, and services to be
used in a serial communication. Generally, microcontrollers use serial communi-
cation like UART rather than TCP/IP which is used as default communication
in ROS. Therefore, to convert message communication between a microcontroller
and a computer using ROS, rosserial should interpret messages for each device.
In this project, the rosserial package was used for UART communication with the
microcontroller.

Figure 3.8: rosserial server (for PC) and client (for embedded system)

For example, if the analog sensor connected to the microcontroller is read and
converted its analog value into a digital value and then transmitted to the serial
port, the "rosserial server" node of the computer receives this sensor data and
converts it to a topic used in ROS. Conversely, if motor control value from other
node is received as a topic in the "rosserial server" node, the "rosserial server" node
converts the value and sends it to the microcontroller in serial format to control
the connected motor. In order to have communication via UART, as shown in
Fig. 3.8 there are: rosserial server and rosserial client.

The rosserial server for PC is a node which relays communication with rosserial
protocol between embedded devices and a PC running ROS. Depending on the
programming language implemented, up to three nodes are supported as of now.

• rosserial_python This package is implemented with Python language and
is commonly used to use rosserial. This node was used inside this project
since all other nodes were developed in python

26

3.5 – Rosserial

• rosserial_server Although the performance has been improved with the
use of C++ language, there are some functional limitations compared to
rosserial_python.

• rosserial_java The rosserial_java library is used when a Java-based module
is required, or when it is used with the Android SDK.

The rosserial client library is ported to the microcontroller embedded platform
in order to use it as a client for rosserial. The library supports Arduino platform.
Therefore, any board that supports Arduino can use the library, and the open
source code makes it easy to port to other platforms.

• rosserial_arduino This library is for the Arduino board that supports Ar-
duino UNO and Leonardo board, but it can also be used on other boards
through source modification. The OpenCR board used in TurtleBot3 has a
modified rosserial_arduino library.

• rosserial_mbed This library supports mbed platform, which is an embed-
ded development environment, and enables the use of mbed boards.

• rosserial_stm32 This library supports STM32 devices; this library was used
in this project

3.5.2 Rosserial protocol
The rosserial server and rosserial client send and receive data in packets based on
serial communication. The rosserial protocol is defined in byte level and contains
information for packet synchronization and data validation.

The rosserial packet includes the header field to send and receive the ROS
standard message and the checksum field to verify the validity of the data. The
packet representation is shown next:

Figure 3.9: Rosserial frame format

• Sync Flag : This flag byte is always 0xFF and indicates the start of the
packet.

27

ROS 1.0

• Sync Flag/ Protocol version : This field indicates the protocol version of
ROS where Groovy is 0xFF and Hydro, Indigo, Jade, Kinetic are 0xFE

• Message Length : This 2 bytes field indicates the data length of the message
transmitted through the packet. The Low byte comes first, followed by the
High byte.

• Checksum over message length : The checksum verifies the validity of
the message length and is calculated as follows.

255 - ((Message Length Low Byte + Message Length High Byte) % 256).

• Topic ID : The ID field consists of 2 bytes and is used as an identifier to
distinguish the message type. Topic IDs from 0 to 100 are reserved for system
functions. The main topic IDs used by the system are shown below and they
can be displayed from ‘rosserial_msgs/TopicInfo’.

• Serialized Message Data : This data field contains the serialized messages.

• Checksum over topic ID and Message Data : This checksum is for val-
idating Topic ID and message data, and is calculated as follows.
255 - ((Topic ID Low Byte + Topic ID High Byte + Data byte values) % 256)

• Query Packet: When the rosserial server starts, it requests information such
as topic name and type to the client. When requesting information, the query
packet is used. The Topic ID of query packet is 0 and the data size is 0. The
data in the query packet is shown below.

0xff 0xfe 0x00 0x00 0xff 0x00 0x00 0xff

A negative aspect of the rosserial protocol is the memory constraints. The
microcontrollers used in the embedded system have a considerably smaller memory
compare to standard PCs. Therefore, the memory capacity has to be considered
in advance before defining the number of publishers, subscribers, and transmit
and receive buffers. By launching the following command, the rosserial server is
initialised and it is possible to communicate with the device via UART.

$ rosrun rosserial_python serial_node.py _port:=/dev/ttyACM0 _baud:=115200

[INFO] [1495609829.326019]: ROS Serial Python Node
[INFO] [1495609829.336151]: Connecting to /dev/ttyACM0 at 115200 baud
[INFO] [1495609831.454144]: Note: subscribe buffer size is 1024 bytes
[INFO] [1495609831.454994]: Setup subscriber on led_out [std_msgs/Byte]

28

Chapter 4

Popup robot devices

A general introduction to the project and the various devices and software used was
given in the previous chapters. In the following chapter, the various components
used will be described in detail. The following diagram in the Fig. 4.1 illustrates
the robot ecosystem.

Figure 4.1: Robot ecosystem diagram

As illustrated in the figure 4.1, the ecosystem is represented by three different
macro components:

• PC: Used to communicate with the user and provide commands to the micro-
controller. Ubuntu 20.04 operating system is installed on it, which is necessary

29

Popup robot devices

for the operation of the ROS1 Noetic. Using ROS1, python nodes were devel-
oped to control the robot. On the PC are present the nodes that implement
the graphic interface for controlling the robot and the communication with
the microcontroller

• STM32H7: This board has the task of "mediating" communication between
the PC and the robot’s motors. The board communicates with the three mo-
tors using the CAN protocol, while it is connected with the PC via USB and
communicates using the rosserial protocol (communication protocol present
in ROS 1)

• Popup robot: The main components of the popup robot are the three AK80-
80 BLDC motors, which are necessary for the movement of the robot. They
are arranged as follows: the motor at the base marked ID 1, above it is
the ID 2 motor, and finally at the end of the first link is the motor marked
ID 3. These three motors are connected in series to the board, the exchange
of information between these two devices being carried out via CAN protocol.

The various components used and how they were configured will be described
in detail below. The Fig. 4.2 show the connection between the various devices.

Figure 4.2: POPUP devices connection

30

4.1 – Actuator AK80-80 Robotic Actuactor

4.1 Actuator AK80-80 Robotic Actuactor

Figure 4.3: Structural design actuator AK80-80

Figure 4.4: Motor’s ab-
breviation

The most important part of the robot are the actuators,
since they are specific motors for robotic applications
therefore present integrated planetary gear reducer, en-
coder and driver.

The various motor model are distinguished from each
other by their abbreviation, as shown in the Fig. 4.4.
In this application, the AK80-80 model was chosen as
motor.

The physical dimensions of the motor and the various
physical components are shown in the figure 4.3. There are several mounting holes
on the motor, which were used to attach the motors 3D printed joints. The motor

31

Popup robot devices

has three different inputs:

• Power line: power supply is attached to the center connector. The motor
can be powered by 24 V or 48 V, depending on the value of the power supply
the motor will have different speed and maximum torque. In this project the
motor are supplied with 24 V, since no high torque or speed is required.

• CAN Port: After configuration, the motor can be controlled by the micro-
controller via this port. The motor sends and receives commands using the
CAN protocol. The CAN port has two pins with which it is connected to the
microcontroller. Connecting the motor to the board consists of two cables,
on which the H signal and the L signal will pass. Messages travelling on the
CAN protocol are called data frames.

• UART: The following port is used to configure the motor using the R-link
device. Configuration of the motor is done by connecting it to the PC via USB
and using the software provided. Using the motor configuration software, it
is possible to set the maximum speed and torque of the motor, calibrate the
encoder on the motor, set the type of communication with which commands
are sent and received, and finally, it is possible to assign a unique identifier
to the motor, ID. If there are several motors connected together, they must
be assigned an ID to identify them. In this project there are three motors,
which have been assigned IDs 1 to 3 respectively.
Finally, being composed of a driver (containing a uC of the ST family) it is
possible to carry out the firmware update through a procedure provided by
the manufacturer that involves opening the back of the motor.

This output shown in Fig. 4.5 appears automatically on the terminal once the
motor is linked to the PC via USB and turned on. Through this terminal it is
possible to configure engines. Once the configuration is done it can be controlled
by the SMT32H743 with the CAN protocol.

Figure 4.5: Motor AK80-80 USB configuration

32

4.1 – Actuator AK80-80 Robotic Actuactor

4.1.1 Controller Area Network (CAN)
In this project the engine receives messages processed by the STM32H7, messages
sent via CAN must have a well-defined formatting; starting from the following
notes [10] follows a brief general description of the CAN protocol and how the
engine driver handles this communication.

The CAN protocol is a set of rules for transmitting and receiving messages
in a network of electronic devices. It defines how data is transferred from one
device to another in a network. The Controller Area Network was developed by
Robert Bosch GmbH for automotive applications in the early 1980s and publicly
released in 1986. CAN is a serial, multimaster, multicast protocol, which means
that when the bus is free, any node can send a message (multimaster), and all
nodes may receive and act on the message (multicast). The node that initiates
the message is called the transmitter; any node not sending a message is called
a receiver. Messages are assigned static priorities, and a transmitting node will
remain a transmitter until the bus becomes idle or until it is superseded by a
node with a higher priority message through a process called arbitration. A CAN
message may contain up to 8 bytes of data. A message identifier describes the
data content and is used by receiving nodes to determine the destination on the
network. Bit rates up to 1Mbit/s are possible in short networks (≤ 40 m). Longer
network distances reduce the available bit rate (125kbit/s at 500 m, for example).
"High speed" CAN is considered to be 500kbit/s.

There are four types of CAN messages, or “frames:” Data Frame, Remote
Frame, Error Frame and Overload Frame.

• The data frame is the standard CAN message, broadcasting data from the
transmitter to the other nodes on the bus.

• A remote frame is broadcast by a transmitter to request data from a specific
node.

• An error frame may be transmitted by any node that detects a bus error.
• Overload frames are used to introduce additional delay between data or re-

mote frames.
The CAN data frame is composed of seven fields: Start of frame (SOF),

arbitration, control, data, cyclical redundancy check (CRC), acknowledge (ACK)
and end of frame (EOF). CAN message bits are referred to as “dominant” (0) or
“recessive” (1). The SOF field consists of one dominant bit. All network nodes
waiting to transmit synchronize with the SOF and begin transmitting at the same
time. An arbitration scheme determines which of the nodes attempting to trans-
mit will actually control the bus.

33

Popup robot devices

Figure 4.6: CAN data frame

Figure 4.7: CAN data frame

The control field of the data frame consists of 6 bits (of which only the
lower 4 are used) that indicate the amount of data in the message. Since up to 8
bytes of data may be sent in one message, the control field may take values ranging
from 000000 to 000111. The data to be transmitted are contained in the data field.
The most significant bit (MSB) of a data byte is sent first.

CAN provides a robust, simple and flexible network solution for manufactur-
ing, automotive and many other applications. The major drawback to CAN is
that message latency is non-determinant (due to the existence of Error Frames,
Overload Frames and retransmissions), and latency increases with the amount of
traffic on the bus. In general, bus utilization should not exceed 30messages do not
experience unacceptable delay. Bus utilization is defined as total bit consumption
over thr total bits available, and is calculated as follows:

utilization = 47 bits × number of transmissions/unit_time × 1.1
total bits available
34

4.1 – Actuator AK80-80 Robotic Actuactor

Finally, after this brief introduction on CAN in order to communicate correctly
with the motor’s driver, the data frame transmitted via CAN must be formatted as
shown in the figure 4.8. The sending and receiving of data via CAN is carried out
by the STM32H7 board, it was therefore necessary to create a function that would
format the commands to be sent to the motors in the correct way, the following
functions were written in C and are present in the board’s firmware. An important
feature of the motor driver is the automatic sending of motor feedback immediately
after receiving a command via CAN. They were therefore created respectively: the
CAN_TX_AK8080() function, which takes the float variables as input and creates the
data frame to be sent to the motor, the unpack_motor_FB() function performs a
similar function but for the feedback received from the motors, again via CAN

Figure 4.8: Data frame - Actuator AK80-80

4.1.2 Actuator - PID schematic
After having described how communication via CAN with the motors takes place,
it is necessary to define what kind of commands to send to the latter in order to
perform the rotation. The presence of the driver with a uC allows these motors
to have internal control. Inside the driver is present a PID control which allows
greater control of the motor.

The figure 4.9 shows the logical scheme of the PID present inside the motor,
so in order to make the motor move five different parameters must be sent to the
driver:

• id: identifies the engine to which the command will be sent

• desired position: indicates the final position (in rad) at which the motor
will stop,

• desired speed: indicates the motor’s rotational speed (if set to zero the
motor will stop),

35

Popup robot devices

• kp value: parameter referring to position can take a value between 0 and 500
(the relationship between kp and desired posion will be described in detail
below),

• kd value: paramenter referring to speed between 0 and 5,

• desidered torque: converted into current, indicates the motor’s torque to
reach.

For only position or speed or torque control loop only the corresponding variable
must be set, the other parameter required by the driver must be set to zero.

Figure 4.9: Schematic of the PID controller inside the actuator’s driver

4.2 Microcontroller STM32H7

Figure 4.10: Microcontroller STM32H7

36

4.2 – Microcontroller STM32H7

Another important component of the robot is the microcontroller, necessary to
control the motors and the sensor present on the robot. A microcontroller is de-
fined as follows:
A microcontroller is a compact integrated circuit designed to govern a specific op-
eration in an embedded system. A typical microcontroller includes a processor,
memory and input/output (I/O) peripherals on a single chip.

The microcontroller used for this project is the STM32H7.
STM32 is a family of 32-bit Flash microcontrollers developed by ST Microelec-
tronics. It is based on the ARM Cortex-M processor and offers a range of 32-bit
products that high performance, real-time functionality, digital signal process-
ing, and low-voltage operation. The STM32 H7-series is a group of high perfor-
mance STM32 microcontrollers based on the ARM Cortex-M7F core with double-
precision floating point unit and optional second Cortex-M4F core with single-
precision floating point. Cortex-M7F core can reach working frequency up to 480
MHz, while Cortex-M4F - up to 240 MHz. Each of these cores can work indepen-
dently or as master/slave core.

The STM32H7 Series is the first series of STM32 microcontrollers in 40 nm
process technology and the first series of ARM Cortex-M7-based microcontrollers
which is able to run up to 480 MHz, allowing a performance boost versus previ-
ous series of Cortex-M microcontrollers, reaching new performance records of 1027
DMIPS and 2400 CoreMark 1.

A high-performance microcontroller was chosen for motor management in order
to guarantee the management of three motors simultaneously. As briefly mentioned
before the microcontroller performs the function of "mediator" between the PC and
the motors. The node in the PC manage all the part related to sending commands
and receiving the feedback; on the PC is also present the graphical interface that
allows interaction with the robot.
The board is connected to the PC via USB, through which receives commands to
be sent to the motors. The motors exchange data with the microcontroller using
the CAN protocol. They are connected to the board via two wires on which the
data frames travel. The microcontroller is then responsible of "translating" the
commands received from the PC into data frames to be sent to the motors.

1https://en.wikipedia.org/

37

https://en.wikipedia.org/

Popup robot devices

4.3 PC/Raspebrry Pi4

Figure 4.11: Raspberry Pi4 or PC - POPUP controller

After describing the motors that make up the robot and the board that manages
them, it is necessary to describe who is the device that defines the value of the
input depending on the current position of the robot. This task is performed by a
PC on which Ubuntu 20.04 has been installed. The same task can be done using
a Raspberry Pi4.

The robot control was fully developed using ROS 1 Noetic, which as described
in previous chapters is a middleware that presents several tools for robotic soft-
ware development. The verision of ROS used must be installed on the operating
system Ubuntu 20.04. All the node used for controlling the robot and display data
was developed using python 3.10. The PC is then connected to the STM32H7
board via USB, all data processing concerning the robot is done by python scripts
running on the PC. Using python, it was possible to create several nodes on ROS
that control the robot and manage the data received. The following nodes were
created with python: for position and speed control of the motors, for plotting
real-time graphs on the status of the motors, for creating a GUI used to sending
commands to the motor. A GUI have also been developed using python in order
to make the control of the motors easier and more immediate.

The use of ROS 1 and python made it possible to control the robot in a simple
and effective way, creating a modular structure that can be easily integrated with
other devices.

38

Chapter 5

STM32H7 configuration

In the previous chapters, the various components and devices that constitute the
POPUP robot ecosystem have been described. The main features of these com-
ponents have been illustrated.

In this chapter, a more in-depth description will be given, illustrating the con-
figuration made on the STM32 board. As described above, the high-performance
STM32H7 board was chosen for controlling the robot. The board’s firmware was
written using the STM32CubeIDE.
STM32CubeIDE is an all-in-one multi-OS development tool, which is part of the
STM32Cube software ecosystem. It is an advanced C/C++ development plat-
form with peripheral configuration, code generation, code compilation, and debug
features for STM32 microcontrollers and microprocessors. The peripheral config-
uration made on the board will be described below.

• LEDs: Used to understand the status of the programme during execution.
Used for debugging purposes

• Timers (TIM2, TIM8): Used for periodic monitoring of motors and reception
of commands from the PC

• FDCAN: peripheral for communication between microcontroller and motors

• USART3: peripheral for communication between PC and microcontroller

5.1 UART3 configuration
In order to enable the exchange of data between the PC and the board, it is nec-
essary to configure the UART.

39

STM32H7 configuration

A universal asynchronous receiver-transmitter is a computer hardware de-
vice for asynchronous serial communication in which the data format and trans-
mission speeds are configurable. It sends data bits one by one, from the least
significant to the most significant, framed by start and stop bits so that precise
timing is handled by the communication channel 1.

5.1.1 UART: Hardware Communication Protocol
As described in the book [11] UART, or universal asynchronous receiver-transmitter,
is one of the most used device-to-device communication protocols. The transmit-
ting UART is connected to a controlling data bus that sends data in a parallel
form. From this, the data will now be transmitted on the transmission line (wire)
serially, bit by bit, to the receiving UART. This, in turn, will convert the serial
data into parallel for the receiving device.

Figure 5.1: UART packet

Data Transmission:
In UART, the mode of transmission is in the form of a packet. The piece that
connects the transmitter and receiver includes the creation of serial packets and
controls those physical hardware lines. A packet consists of a start bit, data frame,
a parity bit, and stop bits.

Start Bit:
The UART data transmission line is normally held at a high voltage level when it’s
not transmitting data. To start the transfer of data, the transmitting UART pulls
the transmission line from high to low for one clock cycle. When the receiving
UART detects the high to low voltage transition, it begins reading the bits in the
data frame at the frequency of the baud rate.

Data Frame:
The data frame contains the actual data being transferred. It can be five bits up
to eight bits long if a parity bit is used. If no parity bit is used, the data frame
can be nine bits long. In most cases, the data is sent with the least significant bit
first.

1wikipedia

40

5.1 – UART3 configuration

Parity:
Parity describes the evenness or oddness of a number. The parity bit is a way
for the receiving UART to tell if any data has changed during transmission. Bits
can be changed by electromagnetic radiation, mismatched baud rates, or long-
distance data transfers. After the receiving UART reads the data frame, it counts
the number of bits with a value of 1 and checks if the total is an even or odd
number. If the parity bit is a 0 (even parity), the 1 or logic-high bit in the data
frame should total to an even number. If the parity bit is a 1 (odd parity), the
1 bit or logic highs in the data frame should total to an odd number. When
the parity bit matches the data, the UART knows that the transmission was free
of errors. But if the parity bit is a 0, and the total is odd, or the parity bit is a
1, and the total is even, the UART knows that bits in the data frame have changed.

Stop Bits:
To signal the end of the data packet, the sending UART drives the data trans-
mission line from a low voltage to a high voltage for one (1) to two (2) bit(s)
duration.

Figure 5.2: USART3 & DMA - IDE configuration

In the STM32H7 several pins allow communication via UART, in this case for
convenience UART3 has been configured, which refers to the micro-USB port on
the board. The figure 5.2 shows the configuration of USART3 and DMA, the
complete detailed configuration of the board can be found in the project report.
In this case, in order to have a faster data exchange between PC and board, US-
ART3 was set to interrupt, and also DMA was enabled for both input and output
data.

The Interrupt Method: Using interrupt signals is a convenient way to

41

STM32H7 configuration

achieve serial UART data reception. The CPU initializes the UART receive hard-
ware so that it fires an interrupt signal whenever a new byte of data is received.
And in the ISR code, we save the received data in a buffer for further processing.

This way of handling the UART data reception is a non-blocking way. As the
CPU initiates the receiving process and it resumes executing the main code. Until
an interrupt is received, then it freezes the main context and switches to the ISR
handler to save the received byte to a buffer and switches back to the main context
and resume the main code. Finally, by setting DMA (direct memory access) on
UART3 it is able to increase the speed of communication via USB.

The DMA Method: Using the DMA unit in order to direct the received
serial UART data from the UART peripheral directly to the memory is considered
to be the most efficient way to do such a task. It requires no CPU intervention at
all, you’ll have only to set it up and go execute the main application code. The
DMA will notify back the CPU upon reception completion and that received data
buffer will be in the pre-programmed location.

The DMA can prioritize the channels, decide on the data width, and also the
amount of data to be transferred up to 65536 bytes. Which is amazing in fact,
and all you’ve got to do is to initialize it like this.

Finally, a crucial parameter that can be changed is the baud rate, which in
this case is set to 115200. The baud rate is the speed at which information is
transferred to a communication channel. In the context of the serial port, the set
baud rate will serve as the maximum number of bits per second to be transferred.

Using STM32CubeIDE, it was possible to configure this peripheral. It was only
necessary to set the baud rate and enable DMA, after which the IDE automatically
generated the C code containing the configuration made. The configuration of the
all board’s peripheral was made via the graphic interface is shown in the Fig. 5.3.

Figure 5.3: Example IDE configuration

42

5.2 – FDCAN configuration

5.2 FDCAN configuration
The configuration of the FDCAN peripherals is also highly significant., which
are essential for the board’s communication with the motors. The configuration
is shown in the Fig. 5.4. An important parameter to take into account when
configuring this peripheral is the size of the FIFO, (size of the message queue),
because with three different engines to which messages containing different values
are sent, it is important that they are not lost. By setting the FIFO to 5, it was
possible to communicate at a high speed with the engines, without losing data.
When configuring the board’s CAN, it must also be borne in mind that the motors
are connected in series and that whenever an input is sent, the driver of the motor
that received the message automatically sends feedback to the board.

Figure 5.4: FDCAN - IDE configuration

5.3 Timer configuration
Finally, two timers of different periods were used in order to have a constant con-
trol and exchange of data between the various devices. Specifically, the TIM2 and
TIM8 were used. The TIM8 whose configuration is shown in the figure 5.5 period-
ically calls up the function for sending data to the motors, the CAN_TX_AK8080()

function is the main function for sending data to the motors; in particular this
function takes as input the variables to be sent to the motor and return the data
frame which will be sent to the drivers via CAN. As a result, the motor driver sends
back the status of the motor via CAN every time it receives input data. Then the
TIM8 periodically calling up the function for motor control, it is possible to send
each motor a command.

The TIM2 has a much faster period than the TIM8. The TIM2 was imple-
mented at a later stage after communication with the engines was stable. The

43

STM32H7 configuration

TIM2, the configuration of which is shown in the figure 5.5, periodically calls up
the PIDcal() function, the following function written in C implements a PID con-
trol for the three motor. This function has the task of calculating the torque to
be sent to the motors based on their feedback speed, in order to compensate the
load on the motors. The PID function, being called up periodically at a very high
frequency, guarantees immediate compensation on the motors.

The configuration of the timers was done via the graphical interface as in the
previous case. To set a timer, it is necessary to specify the period, the prescaler
and to enable the use of the timer in interrupts. The timer period was calculated
as follows:

Tout = PSC × CounterPeriod
FCLK

TIM8 = 75 × 65535
240 MHz = 20.5 ms

TIM2 = 60 × 1000
240 MHz = 250 us

(5.1)

- Prescaler: it divides the timer clock by a factor ranging from 1 up to 65535
(this means that the prescaler register has a 16-bit resolution). For example, if the
bus where the timer is connected runs at 48MHz, then a prescaler value equal to
48 lowers the counting frequency to 1MHz.
- CounterMode: it defines the counting direction of the timer. Some counting
modes are available only in general purpose and advanced timers. For basic timers,
only the TIM_COUNTERMODE_UP is defined.
- Period: sets the maximum value for the timer counter before it restarts counting
again. This can assume a value from 0x1 to 0xFFFF (65535) for 16-bit timers,
and from 0x1 to 0xFFFF FFFF for TIM2 and TIM5 timers in those MCUs that
implement them as 32-bit timers. If Period is set to 0 × 0 the timer does not start.

Figure 5.5: TIM2 & TIM8 - IDE configuration

44

5.4 – Rosserial configuration

Finally, three GPIO as led were configured. These three LEDs are used to pro-
vide feedback on the status of the programme by only looking at the board. For
example based on the led that is switched on, can be tell if the board is performing
a certain task.

Once these peripherals have been configured with the graphical interface pro-
vided by IDE, the C code that will be loaded onto the board is generated. This
just described represents the configuration required to operate the board. How-
ever, it is necessary to modify a few more parameters in order to make the board
able to recive the command from the PC through USB. By adding a few files to
the firmware’s board, it will be able to receive data from ROS, via the rosserial
protocol, these steps will be described later.

5.4 Rosserial configuration
5.4.1 STM32H7

Figure 5.6: STM32H7
firmware file

In order to receive data from the PC via USB using
the rosserial protocol, the board requires additional
configuration. Once the parameters for the peripherals
have been defined, the IDE automatically generates the
.c code containing all the peripheral information. The
code for motor control was also written to this file.

The IDE automatically generates the main.c file,
which contains the code that defines the peripheral con-
figuration and code developed to control the robot. As
can be seen from the image 5.6, the /src folder also
contains files with the extension .cpp, meaning that the
files are written in C++. Files with the extension .cpp

are externally imported files on which parameters for
communication with ROS are defined, and on which
publishers and subscriber are defined.

• main.c: The following file contains the peripherals configuration and the
functions for sending commands to the motors via CAN. The functions used
to communicate with the motors have the task of correctly creating the data
frame to be transmitted via CAN. This file contains the code for communi-
cation with the engines.

• mainpp.cpp: The following file was imported and is required for communica-
tion via the rosserial protocol. Within this file, the publishers and subscribers
that will communicate with the python node on the PC are defined. The files

45

STM32H7 configuration

needed for communication with ROS have the extension .cpp because ROS
nodes can only be written in C++ or in python. This file contains the code
for communication with the ROS nodes.

• main.h, mainpp.h: The following files represent the headers of the main.c
and mainpp.cpp, in which the function definitions are listed.

• ros.h, STM32Hardware.h, node_handle.h: Finally, the following header
files are imported and contain the re-configuration of the UART port in order
to be able to use it with the rosserial protocol. Modifying these files it is
possible to specify the maximum number of publishers and subscribers, the
buad rate of the USB port and the buffer size of each publisher and subscriber
and other technical parameters related to communication. In addition, the
node_handle.h end contains all the functions necessary for formatting the
message according to the parameters defined by the rosserial protocol.

After importing these files into the project folder (/src), a further modification of
project parameters is necessary; these modifications are reported in the appendix.

5.4.2 PC
With this configuration, made using the IDE, the microcontroller is able to com-
municate with the two devices, i.e. receive and send commands via CAN to the
motors, and receive input and communicate the status of the robot to the PC. In
this section will describe how the PC or RPi must be configured to allow POPUP
control via ROS.

As described above, ROS is an open-source middleware that brings together
various tools for robotics software development, but requires an operating system
to run. By construction ROS 1 is based on the linux operating system Ubuntu,
each ROS distribution requires a certain version of Ubuntu. A ROS distribution
is a versioned set of ROS packages.
For this project it was decided to use the latest ROS 1 distro: ROS Noetic
Ninjemys released in May 23rd, 2020, which it is based on Ubuntu 20.04. For the
purposes of the project, the previous distribution could also be used: ROS Melodic
Morenia, based on Ubuntu 18.04. It was decided to use the latest distribution in
order to have support for longer period, (shown in the figure as EOL).

It was therefore necessary as a first step to install Ubuntu 20.04 on the PC.
Initially all the development part of the ROS nodes was done with the PC on
which a virtual machine was installed there. In this way through one PC it was
possible to write the firmware for the board, using the STM32CubeIDE software,
installed on Windows 10, as well as develop the ROS nodes in python using ROS

46

5.4 – Rosserial configuration

Figure 5.7: ROS distribution

installed on the virtual machine present on Win 10.
The installation of the virtual machine and and configuration of Ubuntu was done
by following the guide at this link 2.

Once the installation of the operating system is finished, the installation of the
middleware is carried out. The procedure for installing ROS Noetic was done by
following the guide in this book [6].
Finally, once these installations have been successfully completed, the rosserial
package must be installed in order to enable communication between the PC and
the microcontroller. Rosserial 3 is a protocol for wrapping standard ROS serial-
ized messages and multiplexing multiple topics and services over a character device
such as a serial port or network socket. The installation of this package was done
by following the guide in this book [2].
Once the installation of this package is complete, the entire environment is ready
for the node development.

Below are some basic commands used within ROS, other commands are col-
lected within the ROS cheat sheet:

$ roscore : A collection of nodes and programs that are pre-requisites of a ROS-
based system.roscore must run in order for ROS nodes to communicate.
$ rostopic:A tool for displaying debug information about ROS topics, including
publishers, subscribers, publishing rate, and messages
$ rosrun: rosrun allows you to run an executable in an arbitrary package without
having to cd (or roscd) there first.

2https://linuxhint.com/install_ubuntu_vmware_workstation/
3http://wiki.ros.org/rosserial

47

https://linuxhint.com/install_ubuntu_vmware_workstation/
http://wiki.ros.org/rosserial

STM32H7 configuration

$ roslaunch: Starts ROS nodes locally and remotely via SSH, as well as setting
parameters on the parameter server.

5.5 Basic publisher/subscriber on STM32H7
Once the installations of all components were completed, a basic script was cre-
ated to check their functioning. In order to verify the communication between the
board and PC, a publisher and a subscriber were written into the mainpp.cpp file
and then loaded into the STM32H7 microcontroller. Once the board is connected
via USB to the PC, it is possible to control the board from Ubuntu’s terminal.
The code to verify the correct communication between the PC and the microcon-
troller has:
the publisher which publish the string: "Hello world from STM32!" on the topic
"chatter", while the subscriber waits for the message sent by the terminal to the
topic "toggle led", once the message is received, the LED on the microcontroller
changes state.

The following code represents the initialisation of the publisher and subscriber
in the mainpp.cpp file. This code will be loaded onto the STM32H7 using the
STM32CubeIDE.

ros::NodeHandle nh;
void messageCb(const std_msgs::Empty& toggle_msg);

std_msgs::String str_msg;
//initialization of the ros publisher to the topic "chatter"
ros::Publisher chatter("chatter", &str_msg);
char hello[] = "Hello world from STM32!";

ros::Subscriber<std_msgs::Empty> sub("toggle_led", &messageCb);

After writing the publisher and subscriber functions, the code is uploaded to
the board, which is then connected to the PC via USB. To check the operation of
the publisher and subscriber four different command are launched from Ubuntu’s
terminal:

(a) terminal 1: $ roscore: the following command is essential for communication
between nodes in ROS 1. Enable the master node.

(b) terminal 2: $ rosrun rosserial_python serial_node.py /dev/ttyACM0
115200: the command that calls the rosserial_python node is launched, al-
lowing communication between the board and the PC. If the board is detected
correctly by the terminal, the output will be as shown in the figure below.

48

5.5 – Basic publisher/subscriber on STM32H7

(c) terminal 3: $ rostopic echo /chatter: this command reads the messages
on the topic "/chatter", as shown in the figure 5.8. This verifies that the board
periodically sends messages, so the publisher function works correctly.

(d) terminal 4: $ rostopic pub toggle_led std_msgs/Empty −−once: by is-
suing this command, it can be check whether the board also works as a sub-
scriber, i.e. is able to receive commands from the terminal and subsequently
execute them. In this case the board receives a empty message on the topic
"toggle_led", once the message is received the the led on the board changes
state.

(a) $ roscore (b) $ rosrun rosserial_python

(c) $ rostopic echo /chatter (d) $ rostopic pub toggle_led

Figure 5.8: Terminal output ros command

With this code it was verified that the communication between the board and
PC works. It was verified that through the configuration made the latter is able
to publish, then send data to the PC and subscribe, then receive input from the
PC. Instead, the verification that all motors were correctly receiving data from the
board was done by entering a position command directly into the firmware using
the function CAN_TX_AK8080(). This verified that the function in the firmware

49

STM32H7 configuration

correctly formatted the values to be sent to the motors.

The firmware for controlling the robot was developed starting from this con-
figuration. Inside the robot’s firmware, two publishers have been defined, one
publishes strings reporting the robot’s status to the topic "statusRobot" , the sec-
ond publisher publish the float vector containing the feedback from the motor to
the topic "motorFeedback", finally, the subscriber receives the commands to be
sent to the engines to the topic "motorInput". In the following chapters will be
described the firmware to control the robot.

50

Chapter 6

STM32H7 firmware

In the previous chapters, the general configuration of the entire ecosystem was
described, specifically how the engines, the microcontroller and the PC must be
configured. The code on the microcontroller will be described in detail in the fol-
lowing chapter, outlining the functions required to interface with the motors and
the PC.

The code on the board aims to be as essential as possible, thus having as its
only task to mediate communication between the motors and the PC. In fact, the
computation performed by the board is as minimal as possible. In this project,
in order to have more computational capacity and also to have a better control
over the data it was chosen to leave the computational part to the PC/Rpi. The
firmware on the board is written in C programming language using the HAL li-
brary provided by the ST manufacturer. In order to function optimally, the code
constituting the firmware must have well-optimised functions, since the micro-
processor’s computational capacity is limited. Furthermore, the C language does
not easily allow the creation of graphical and real-time plot interfaces. For this
reason, it was decided to have the microcontroller perform only the intermediary
task, while the control/interface part was written in python on ROS. Using python
allows more freedom in software development, and integrating nodes within ROS
adds flexibility to the software.

Once the configuration of the STM32 has been completed using the STM32CubeMX
software, the .c file containing all the configuration previously made can be gen-
erated. By generating the file from the IDE used for configuration, a /src folder
will be automatically created in which the files automatically generated by the
IDE will be located, and then .cpp files will be imported for use of the board with
ROS.

51

STM32H7 firmware

6.1 main.c
The complete flow chart of the firmware loaded on the STM32H7 microcontroller
for the initial motor control is shown in Fig. 6.1.

Figure 6.1: Flow chart main.c

52

6.1 – main.c

As mentioned above, the firmware inside the microcontroller contains the es-
sential code for communicating with the motors and the board, there is also a
function that implemets a PID; it is implemented on the board to control the
motor’s torque in order to guarantee better stability.

Timers are essential in the operation of the robot because they call up all func-
tions for communication with the various devices on a regular basis. As mentioned
above, two timers were created with different periods. All operations are performed
within the timer callbacks.

6.1.1 Function description
The firmware flow chart is shown in the Fig. 6.1. The various functions that are
called up are described in detail below.

When switched on, the microcontroller calls up the functions for initialising the
peripherals, which were previously activated via the STM32CubeMX. Next, the
publishers and subscribers for communication with the ROS node are initialised;
these are defined in the mainpp.cpp file.

In order to be able to transmit messages over CAN, it is necessary to ini-
tialise functions that act as filters, thus filtering both transmitted and received
messages. This task is performed by the functions CAN_TxHeader_Config() and
CAN_RxHeader_Config() initialised after the pub/sub of the ROS node.

Once the initialisation of the peripheral devices is complete, the following two
functions are called up. POPUP_system_check() this function is used to check the
status of the manipulator before starting to use it, then the following function:
POPUP_activate_motors() it is used to initialise CAN communication with the

three motors.
Finally via the publish_status_robot(. . .) function; communicated to the

ROS node the status of the robot, also reporting any errors in the initialisation of
peripherals.

After ensuring that all manipulator components are operational, the main rou-
tine that allows the robot to move can begin.

The CAN_TX_AK8080() function is used to communicate with the motors through
CAN. This function is called up on a regular basis by the TIM8 callback in order
to maintain continuous communication with all three motors.

void CAN_TX_AK8080(int id, float p_des, float v_des, float kp, float kd,
float t_ff){

. . .

53

STM32H7 firmware

//re-formatting motor input
CAN_tx_buffer[0] = p_int >> 8; //Motor position 8H
CAN_tx_buffer[1] = p_int & 0xFF; //Motor position 8L
CAN_tx_buffer[2] = v_int >> 4; //Motor speed 8H
CAN_tx_buffer[3] = ((v_int & 0xF) << 4) | (kp_int >> 8); //Speed 4L
CAN_tx_buffer[4] = kp_int & 0xFF; //KP 8L
CAN_tx_buffer[5] = kd_int >> 4; //KD 8H
CAN_tx_buffer[6] = ((kd_int & 0xF) << 4) | (t_int >> 8); //KD 4L
CAN_tx_buffer[7] = t_int & 0xFF; // Torque 8L

//Send message over CAN
HAL_FDCAN_AddMessageToTxFifoQ(&hfdcan1, &pTxHeader, CAN_tx_buffer);

}

This function is used to format and transmit CAN messages to the engines.
Motors can receive commands via CAN if they are prepared according to the
criteria stated in the documentation. This function accepts as input the five values
that must be SEND to the motor driver in order to make it move.

• id motor: The integer number between 1 and 3 denotes the motor to which
the command is to be sent.

• desired position [rad]: is expressed in radians and shows the position that
the motor should reach (if the same position is sent more than once the motor
remains stationary in that position)

• desired speed [rad/s]: specifies how fast the motor should move; if the speed
is zero, the motor remains motionless

• kp: is a parameter required for the motor to move into position (below is a
graph showing the relationship between the KP value and the displacement
angle)

• kd: is a number between 1 and 5 that must be greater than zero to allow for
motor speed variation.

• torque [Nm]: is a parameter that is converted to current and allows motor
movement

To accomplish the movement appropriately, the motor must receive the data
within a vector with the properties indicated on the datasheet. This function
generates and transmits the vector to the motor with the commands.

The publisher on the ROS node sends the data given as input to the CAN_TX_AK8080()
function.

Since when the motor driver receives an input, it automatically sends back the
motor feedback via CAN. The unpack_motor_FB() function performs the task of
reformatting the data frame holding the engine feedback.

54

6.2 – mainpp.cpp

void unpack_motor_FB(){
//save motor feedback into C variable
int motor_id = CAN_rx_buffer[0];
int pos_int = CAN_rx_buffer[1] << 8 | CAN_rx_buffer[2];
int vel_int = CAN_rx_buffer[3] << 4 | CAN_rx_buffer[4] >> 4;
int current_int = (CAN_rx_buffer[4] & 0xF) << 8 | CAN_rx_buffer[5];

}

This function reallocates the individual bytes of the data frame into variables that
are usable by C code.

The data frame RECEIVED from the driver contains the following motor
information:

• id motor: (value between 1 and 3) shows which motor provided the feedback.
• position: represents the engine’s current location in radians
• speed: represents the engine’s current speed in radians/second
• current: indicates the amount of current used by the motor to keep the

position stable.

This function, unlike the preceding one, gets recalled into the FDCAN’s call-
back. The FDCAN is set to interrupt because motor feedback is not constantly
received by the board but is only delivered when a command is given as input
to the motor, this configuration improves the board’s performance; recalling the
unpack_motor_FB() function only when necessary and not periodically.

Finally, motor feedback is transmitted to the ROS node via a microcontroller
publisher.

Using these two functions (CAN_TX_AK8080() and unpack_motor_FB()), the mi-
crocontroller can fully control and monitor the three motors, allowing CAN com-
munication to be built. The functions required for communication with the ROS
node on the PC are defined in the firmware’s mainpp.cpp file.

6.2 mainpp.cpp
The preceding section described the functions that enable CAN communication
with the motors. Instead, the following section will go through the rosserial pro-
tocol, which is used to communicate between the microcontroller and the PC. As
mentioned in the previous chapter, the board’s code includes a number of C++
libraries necessary for implementing functions utilising ROS.

To have full control and monitoring of the POPUP robot data on the micro-
controller, two publishers (one transmits motor feedback to the ROS node, while

55

STM32H7 firmware

the other publishes the robot status) and one subscriber (which receives motor
commands supplied by the ROS node) are defined.

The following publishers/subscribers were defined in the mainpp.cpp file, inside
the firmware’s folder.

• Publisher #1: The following publisher send a string-type message on the
topic "/statusRobot". The following messages are sent from the microcon-
troller to the ROS node, and contain information on the status of the manip-
ulator and the operation of the transmission, reporting any errors if necessary.
Initially, messages sent from the microcontroller to the board were read from
the terminal using the command:

$ rostopic echo /statusRobot
Subsequently, a window was added to the GUI showing the status of the ma-
nipulator.

• Subscriber #1: This subscriber receives float vectors on the topic "/mo-
torInput" The received vector contains the five values that will be delivered
through CAN to the motor driver. These parameters are set and transmitted
by a publisher (linked to the topic "/motorInput") on the ROS node.

• Publisher #2: Finally, this publisher provides engine feedback to the ROS
node’s subscriber. The message is a float vector that is sent to the topic
"motorFeedback". The vector transmitted will have the following data: id
motor, actual position, actual velocity, and actual current consumed by the
motor.

The code below shows the initialisation of publishers/subscribers described ear-
lier. It can be observed that in the case of the subscriber, a function indicating the
operations to be performed once the data has been received is required, whereas
for the publishers, simply the vector to be delivered is required.

ros::NodeHandle nh;

void motorInputCallback(const std_msgs::Float64MultiArray&
motor_input_value);

//Publisher used to sent info to ROS node
std_msgs::String str_msg;
ros::Publisher chatter("statusRobot", &str_msg);
//Publisher used to sent motors feedback to ROS node
std_msgs::Float64MultiArray motor_fb_value;
ros::Publisher pub("motorFeedback" ,&motor_fb_value);
//Subscriber used to receive motors input from ROS node
ros::Subscriber<std_msgs::Float64MultiArray> sub("motorInput",

&motorInputCallback);

56

6.2 – mainpp.cpp

6.2.1 Publisher/subscriber functions
The following section will go through in detail the functions specified inmainpp.cpp
that will be called inside main.c, allowing communication between the microcon-
troller and the PC. The figure below shows an overview of the functions that are
called up by the various devices. In this section, all functions referring to the mi-
crocontroller have been described as reproduced in the figure 6.2. Also shown are
the topics on which communication takes place as well as the messages contained.

Figure 6.2: The following figure summarises all the topics and message types that
have been implemented to control the robot

The motorInputCallback() function is linked to the subsciber, sub. It is exe-
cuted whenever the microcontroller receives a new message on the topic "/motor-
Input".

The publisher on the ROS node transmits a float vector with six values (five
values that must be supplied to the motor driver in order to make it move plus one
values necessary for sync message). This function copies the incoming data into
variables defined inside main.c. These received values will then be passed as input
to the function CAN_TX_AK8080(), which will deliver the command to the engines
via CAN.

void motorInputCallback(const std_msgs::Float64MultiArray&
motor_input_value){

id_can_tx_8080 = motor_input_value.data[0]; //id
value_can_tx_8080[0] = motor_input_value.data[1]; //pos
value_can_tx_8080[1] = motor_input_value.data[2]; //speed
value_can_tx_8080[2] = motor_input_value.data[3]; //kp
value_can_tx_8080[3] = motor_input_value.data[4]; //kd
value_can_tx_8080[4] = motor_input_value.data[5]; //curr
id_transaction = motor_input_value.data[6];

nh.spinOnce();
}

After the function unpack_motor_FB() has been executed, this function is invoked

57

STM32H7 firmware

within main.c. It has the task of publish to the ROS node the feedback of the
engines. Publish the values on the topic "motorFeedback".

The values sent to the ROS node are as follows: motor id, actual position speed
and current of the motor plus the variable "id_transaction" which is used to sync
messages.
void publish_FB_motor(float id, float pos, float speed, float curr)
{

motor_fb_value.data[0] = id;
motor_fb_value.data[1] = pos;
motor_fb_value.data[2] = speed;
motor_fb_value.data[3] = curr;
motor_fb_value.data[4] = id_transaction;

pub2.publish(&motor_fb_value);
nh.spinOnce();

}

In addition to the motor status data, both vectors contain an additional variable
called id transaction. This variable, which is a randomly generated number, is
added to each vector containing input to be sent to the engine. The following
variable is used to differentiate a message from the next one, in this way it is
possible to check if the message sent by the PC has been correctly received by the
board. In fact, as described above, each time the engine receives a command it
automatically sends back a feedback, through the publisher this data is also sent
to the PC, and the variable id transaction is added to the vector. In this way, if
the transaction id received by the board is equal to the transaction id sent by the
PC, it means that the data transmission has taken place correctly without losses.

This variable was added to distinguish one transmission from the next between
the PC and the microcontroller (send motor input, receive motor feedback). Each
time the ROS node sent a message to the microcontroller the value of this variable
is updated with a random number. This variable is added to the vector containing
the parameters to be sent to the engines, so that each command vector is uniquely
defined. Then, when the microcontroller sends the message containing the motor
feedback to the ROS node, it will add the random number received with the
motor input to the vector. In this case, if the microcontroller’s feedback contains
the same id transaction value as the command published by the ROS node, the
transmission was successful.

Furthermore, by using this variable, it is possible to transmit the next message
only after the previous one is correctly received, eliminating data overlapping or
loss. Finally, if the engine feedback is not received within a specified time frame,
the transaction related to that message is deemed KO, and the next message is sent.

58

6.2 – mainpp.cpp

Finally, the following function publish on the topic "/statusRobot" a message of
type text reporting information. This function is called up within the main.c and
sends information on the programme’s progress, reporting any errors, the task of
this function can be compared to the function performed by a logger.

void publish_status_robot(char sample[])
{

str_msg.data = sample;
chatter.publish(&str_msg);
nh.spinOnce();

}

This chapter has laid out and discussed all of the functions on the microcon-
troller, which is responsible for mediating communication between ROS and the
motors. The functions used in the ROS node developed in python will be detailed
in the following chapter.

59

60

Chapter 7

ROS workspace

In the previous chapters, the entire microcontroller firmware, the configuration
required for communication both with the PC via USB and with the motors via
CAN was described. Now it is necessary to explain the ROS nodes, used to control
the robot.

As mentioned above, the ROS Noetic middleware was used in this project,
which requires Ubuntu 20.04 as its operating system. For convenience, a virtual
machine with Ubuntu 20.04 was installed on the PC with Windows 10 as its na-
tive operating system. Once the installation of ROS is complete, the controller
popup package was created, which contain the nodes for controlling and commu-
nicating with the robot.

Packages: The ROS packages are a central element of the ROS software. They
contain one or more ROS programs (nodes), libraries, configuration files, and so
on, which are organized together as a single unit. Packages are the atomic build
and release items in the ROS software [2].

The image 7.1 shows the folders inside the controller popup package, the
folder /scripts is the most important one, it contains the python files that define
the nodes. Several node have been created to allow different control of the robot,
for example there are scripts created only to measure the latency of communication,
while others allow only the control of the motors in position through the graphical
interface.

61

ROS workspace

Figure 7.1: controller popup package’s folder

The second package inside the ROS workspace is the package referred to the
communication with Rosserial. This package is automatically placed inside the
workspace once the installation of rosserial is complete. Inside the nodes folder is
the python file serial_node.py that is called up by the command:

$ rosrun rosserial_python serial_node.py /dev/ttyACM0 _baud 115200

The following file (serial_node.py) defines the USB communication parame-
ters, running the file from Ubuntu’s terminal enable the communication with the
microcontroller. As shown in the figure 7.3, this command reads the publishers
and subscribers written on the microcontroller connected via USB to the PC.

Figure 7.2: rosserial python package’s folder

Figure 7.3: Terminal output $ rosserial_python command

62

ROS workspace

After the creation/installation of this two packages (referring to the book [2]),
simple nodes were developed in python in order to verify correct operation of the
publisher and subscriber. It was previously illustrated, how the rosserial commu-
nication work (using the terminal command), i.e. by reading the messages in the
topic or by publishing messages from the command line. The following will show
how the same task can be performed automatically by creating a python node.

7.0.1 Basic publisher/subscriber functions on ROS
The following code is used to initialise a publisher which publishes on the topic
"/motorInput". The publisher is a Float64MultiArray type, which means that
message on the topic is a float vector of N elements. This publisher is used to
send commands to the motor, in fact, as can be seen from the example, the data
contained inside the message corresponds to the commands required to make the
motor move. Thus, the commands to be sent to the engine are defined with this
function; will then be integrated into the robot control code.

import rospy
from std_msgs.msg import Float64MultiArray, MultiArrayDimension

def talker():
pub = rospy.Publisher('/motorInput', Float64MultiArray)
rospy.init_node('publish_to_controller', anonymous=True)
rate = rospy.Rate(1) # 10hz

msg = Float64MultiArray()
msg.data = [3.0,1.57,0.0,15.0,0.0,0.0]

while not rospy.is_shutdown():
rospy.loginfo("sent command")

pub.publish(msg)
rate.sleep(1)

Similarly, the following function implements a subscriber subscribed to the topic
"/motorFeedback". When a message is received (again, a float-type vector con-
taining the four values on the motor feedback is received), the callback function is
executed, which in this case prints out the received data.

import rospy
from std_msgs.msg import Float64MultiArray, MultiArrayDimension

def callback(data):
rospy.loginfo(rospy.get_caller_id() + 'I heard %s', data.data)
rospy.loginfo('I heard %s', data.data)

63

ROS workspace

def listener():
rospy.init_node('listener', anonymous=True)
rospy.Subscriber("/motorFeedback", Float64MultiArray, callback)
rospy.spin()

Combining the two functions written above, there is a complete cycle of commu-
nication with the engine. Described more in detail, the user define the command
to be sent to the motor with the GUI on ROS. The following values published with
the ROS node will be received by the subscriber present on the microcontroller,
which will copy the values and format them into data frames and then send them
over CAN.

Then, the driver automatically sends back to the microcontroller the feedback
from the engine; by performing the reverse process the board reformats the data
frame into variables, in this way the publisher present on the board will publish
the data that will be received by the subscriber present on the ROS node. Once
the feedback of the command sent to the engine is received the transaction related
to that command is closed. Similar function was developed for receiving messages
referring to the status of the robot, so a subscriber was created that prints the
information/error messages sent by the microcontroller on the screen.

64

Chapter 8

ROS node development

8.1 Position controller

As a first method for controlling the motors, it was decided to use position control.
In order to implement this type of control, the motors AK-8080 must be received
the data frame with the following information :[motor id, position, speed, kp, kd,
torque]. To have only position control, it is necessary to specify only three of the
six parameters listed above, which are: motor id, position and kp.

During the tests, it was realised that a different kp value is required for each
shift of the motor angle; if, for example, the motor must reach a position closely
to it actual position, the kp value must be very high otherwisethe motor does not
move. Conversely, if the kp value is too high, the motor will reach the specified
position more precisely but with greater overshoot.

It was therefore necessary to understand the relationship between the position
of the motor (expressed in radians) and the correct kp value, which allows the
motor to move smoothly, with as little overshoot as possible. The following rela-
tionship (motor displacement angle vs kp value) was found by creating a python
scripts.

Launching the script a displacement angle (ex. 1.57 rad) must be defined and
automatically a for cycle present in the script increase the kp value sending the
same position. The kp value is increased until the motor return non-zero feedback,
this indicates that it did not move.. Once the motor reached the position specified,
the kp value that allowed the movement was saved in a .txt file.
By repeating this process for different angles of movement, it was possible to create
the graph shown in the figure 8.1.

65

ROS node development

The script has the only purpose of finding the relationship between the displace-
ment of the motor in position and the value of kp. It consists of two nested for
loops, the first one cycles over all possible kp values (from the motor datasheet
the kp value must be between 0 and 500), the second for loop instead changes the
starting position of the motor, but keeping the same displacement angle, this is
done in order to have more data to be analyse.

Consulting this graph, it is then possible based on the desired displacement
angle, to set the correct kp so that the move takes place with as little overshoot
as possible.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

150

200

250

300

Figure 8.1: Graph - kp value

In order to control the motor specifying only the position, it is therefore neces-
sary to send a single message from the PC to the microcontroller containing the
desired position, the kp relative to the position and the id of the motor. Sending
the same position value to the motor once it has already reached it, the motor
remain stationary. Conversely, for speed or torque control, the motors must re-
ceive the respective command at constant intervals. Next, it will be described how
commands are sent from the ROS node to the microcontroller for all three motors
at constant intervals.

8.2 One motor control - ROS node

The main functions of ROS nodes and how they communicate with the microcon-
troller were explained in the previous chapter. This chapter gives a full description
of how the robot is controlled.

66

8.2 – One motor control - ROS node

8.2.1 Terminal Interface
As mentioned above, various scripts for controlling and testing the robot were
created within the controller popup package. The first node that has been de-
veloped is the one for controlling a single motor, specifying only the final position.
The user specifies which motors to move and and what position it must reach,
using the menu’ printed on the Ubuntu’s terminal after the node boots. The menu
that is proposed to the user to control the motor is shown in Fig. 8.2.

To control a single motor in position, the driver requires the following data: the
id of the motor to which the command will be sent, the desired final position to be
reached by the motor, and finally the value of the kp tied to the position in order to
have overshoot low as possible, all other variables will be automatically set to zero.

Using this script, it is possible to send the selected engine more than one position
at time. The following script calls up the send_data_motor() function, which
publish to the microcontroller the data entered by the user, and once the motor
reaches the sent position, the ROS node re-proposes the menu. In this way a new
position can be sent to the motor. In addition, the following script checks the
validity of the values entered by the user, thus avoiding sending incorrect inputs
to the robot’s motor

Figure 8.2: Motor control - terminal interface

8.2.2 Graphical Interface
Later, to improve and facilitate sending commands to the engine, a graphical in-
terface was created shown in Fig. 8.3. The input sent to the engine can be edit by
moving a slider.
The graphical interface was created using the python tkinder library. It is the
standard python interface to the Tk GUI toolkit, and is python’s de facto stan-
dard GUI.

67

ROS node development

In order to move the motor the following operation must be performed: First of
all a motor must be selected from the list displayed on the GUI, then the position
and the equivalent kp can be set-up moving the slider; once the values have been
defined, the vector containing all the data will be sent to the microcontroller and
then to motor by pressing the Move! button at the top. In the following GUI,
position is represented in rad, speed in rad/s and torque in Nm.
Once the movement has been executed, the feedback values sent by the motor will
appear at the bottom of the window.

With this GUI it is also possible to send more than one command. An advan-
tage of using the graphical interface for sending commands is the control over the
data sent, the sliders have a maximum and a minimum limit, prevents the sending
of incorrect commands.

Through this graphical interface, however, it is only possible to select one engine
at a time and therefore it is not possible to send the command to three engines
at the same time. This script was used in the development phase to understand,
manage communication between the various devices, and to check the performance
of the individual motors. A script is then implemented that allows commands to
be sent to all three engines simultaneously.

With this node it is only possible to control and sent the position of the motor,
since to control motor in speed or in torque it is necessary a continuos communica-
tion between the devices. In order to send a speed or torque command, continuous
communication with the motor is required, so the speed or torque command must
be sent to the motor at a certain frequency, whereas if only the position is speci-
fied, only a command indicating the end position to be reached is required.
Initially, the following graphical interface was only used to send a single message
to the microcontroller, after pressing the Move! button, this only allowed position
control, subsequently messages will be sent from the PC to the microcontroller at
constant intervals, thus allowing controlling the speed and the torque of the motor.

8.3 Continous comunication
Once defined and verified the functioning of the whole ecosystem. In fact, using
the GUI, it was possible to verify the operation of the three motors separately,
making sure that all of them were able to receive the commands and send-back
the correct feedback.
Starting with this node, the next step was to write a script that continuously

68

8.3 – Continous comunication

Figure 8.3: Motor control - Graphical interface

communicated with the microcontroller so that it could control the speed or the
torque of the motor.

The most complicated part of having continuous communication with the mi-
crocontroller and consequently with the motors was the synchronisation of the
various messages between the devices.

In fact, the message published, via USB, by the ROS node must be read by
the microcontroller and then sent via CAN to the correct motor, after which the
feedback from of motor must be sent to the ROS node passing through the board.

This cycle of sending and receiving messages must have a certain frequency and
must be synchronised between the various devices, so that when an input is sent
from the node, the feedback of the given input is received within a short time.

A problem that can be found is the possibility of the message to be lost or
overwritten by the next command. This can happen, since communication via
CAN is half duplex, so it is only possible to receive or transmit data, but the two
operations cannot be done simultaneously.

Furthermore, in both communications there is a bandwidth limit that can be
occupied, so the timer can send up a max value of bits/s, this limit is present in
both USB transmission and CAN transmission.

Furthermore, as will be discussed further below, a PID was added to the

69

ROS node development

firmware, which permits simultaneous control of the motors and so improves the
robot’s stability. It is only present inside the code on the board, but it must be
taken into account because it sends at constant intervals (TIM2 period) commands
to the motors based on their feedback speed. This control occupies CAN band-
width.

This section will then describe the various timer periods that allow communica-
tion with both the ROS node and the motors, avoiding data loss and synchronising
the various commands with their respective feedbacks

Development
At this point it is necessary to develop continuous communication with the three
motors. However, the CAN protocol only allows one command at a time to be
sent to the selected motor via ID, and the feedback is sent back over the same
communication line.

The flow chart shown in the figure summarises the ROS node operations.

Figure 8.4: Flow chart ROS node

Originally, the commands rospy.rate, rospy.spin present in ros were used
to continuously publish message. rospy provides a rospy.rate convenience class
which makes a best effort at maintaining a particular rate for a loop.

70

8.3 – Continous comunication

r = rospy.Rate(10) ## 10hz , with this command a message is publish every
1/10 second.

With this command there is no control over individual messages and no way
to know if they were received correctly by the engine or if they were lost due to
communication problem. Setting the rate to a high value allows continuous com-
munication with the motor without significant data loss, but this method does not
achieve the maximum communication speed between devices.

In order to have constant communication at regular intervals at high speed
with all three motors, a for loop inside the node was used. The idea is to cycle the
commands to the motors, starting with motor 1, this is done with a for loop. It
increases the id at each round, so starting from 1 the node publishes the command
that will be received by motor 1, on the second round the id is increased to 2, the
command for motor 2 will then be published, the loop increases the id so as to
send a command to all motors present, in this case the maximum id is 3. Once
the command for the last engine is published, the cycle starts over from 1.

However, with the above idea, all messages are lost because there is no synchro-
nization between different messages and the for loop is faster than data transfer.
It was therefore necessary to develop something allowing synchronisation between
the various messages.

It was decided to assign a randomly generated number (called ID transaction
in the vector) to each command sent. The next command will not be sent until
the node receives a response from the engine containing the same random numbers
in the vector.

In this way each transmission (command sent to the motor and feedback re-
ceived by the PC) is uniquely defined and if the feedback for the command sent
does not arrive within a certain time interval an error is reported and the following
message is transmitted.

Therefore, the for loop above must wait for feedback from the motor to be
received before incrementing the value of ID and continuing to send commands.
In this way, the next command is sent as soon as the response arrives, so there
is no waiting time and thus maximum transmission speed can be achieved. This
method frees up bandwidth and also ensures that no messages are overlap when
sending or receiving messages.

The code shown below represents a for loop that can continuously send messages
to all three engines. The function send_data_motor() recalled into the for loop,
publish the motor value on the topic "/motorInput". The data sent were specified

71

ROS node development

using a graphical user interface.

def motor_input(id):
while True:

for i in range(1, 4, 1):
send_data_motor(i, pos_motor[i],speed_motor[i],kp_motor[i],

kd_motor[i], torque_motor[i])
print("-----------------------")

Instead, the following function continues looping until it receives the ID trans-
action of the command sent (for loops cannot increment). Motor feedback is
received in the vector fb_motor which also contains a number that uniquely iden-
tifies the communication. If this number is not received within 500 ms, an error
is reported and the next command is sent.

timeout = time.time() + 0.5 # 500ms from now
while(fb_motor[4]!=id_trans):

if(time.time() > timeout):
print("Transmission KO")

break

So, with the above two functions, the command is sent to the next motor as
soon as the motor’s feedback is received, so messages can be sent periodically to
the motors with maximum frequency.

The send_data_motor(...) function calls a publisher which is used to send a
message to the "/motorInput" topic. Messages are received by the microcontroller
participants and sent to the motors via CAN.

Motor feedback follows a similar but opposite path, with data sent via the topic
"/motorFeedback". A subscriber function resides in his ROS node to receive feed-
back data and copy it to the fb_motor[] vector.

8.3.1 GUI motor control
The image 8.5 shows how the originally displayed graphical user interface has
changed. Each motor has two sliders, one for setting the position and one for
setting kp.

As can be seen from the image, starting the node initiates continuous commu-
nication with the three engines. Having therefore implemented continuous com-
munication with the engines, it is possible to set the final position of the engines
via the GUI and move the robot by pressing the Move! button

The engines will move almost simultaneously in order to reach the set position.
Once the desired position has been reached, it is possible to set a new position

72

8.3 – Continous comunication

for all three motors. Sending the same position once it has reached it, the motor
remains stationary at that point.

Figure 8.5: GUI - Three motor position controller

A button has been added to the GUI: Demo! By pressing the following button,
the motors move to different positions, remaining in each of these for 10 seconds.
The following buttons have been added for demonstration purposes so that the
user does not have to manually send new positions to the motors. The positions
of the motors are saved in a file; the function called by pressing the Demo! button
reads the file line by line and sends the read positions to the microcontroller via
the publisher.

Figure 8.6: Scheme communication - one motor

73

ROS node development

8.4 Three motor control - ROS node
In the previous part, it was discussed the various nodes in ROS, how the user
sends commands to all three engines, how commands are read and processed by
the board, and how synchronization between devices occurs.

At each cycle the command for the respective motor is published, so starting
from motor 1 the command is sent from the PC to the microcontroller, then waited
for the corresponding feedback, once the feedback from motor 1 is received by the
PC the next command is sent to motor 2 and then waited for the feedback, the
same thing is done for motor 3. Sending and receiving each command can take
some time, the transmission between microcontroller and ROS node lengthens the
period between the sending of commands.

It was therefore decided to reduce the number of communications between the
PC and the microcontroller in order to increase the speed of communication be-
tween the devices. A duplicate of the previous publisher and subscriber was cre-
ated, but the key difference between them is the amount of data sent in each
communication and the frequency of those communications. In fact, to increase
speed, commands are sent to the motors in a single vector, just as the feedback
from the motors is stored in vectors and published all at once.

Instead of sending a command and receiving the corresponding feedback, in
this case a single vector containing the commands for all three motors is published
by the ROS node, then the microcontroller will publish a vector containing the
feedback of all three motors. This solution increases the speed of communication
between PC and microcontroller, avoiding waiting for feedback from each individ-
ual motor.

Again, communication between the various devices must be continuous in order
to ensure constant control of the motors. The ROS node constantly publishes a
vector containing commands to be sent to all three engines using a for loop. Syn-
chronization between one command packet and the next is done using ID transac-
tion. A vector containing the motor feedback must be received from the PC before
issuing the next command vector. The same while loop that exists in ROS nodes
and used to communicate with individual engines is reused here. In the previous
mode, a different ID transaction is assigned to each individual command; in this
case, a different ID transaction is assigned to each command packet (the messagge
containing the command for all the three motors).

The figure 8.7 represents the topics on which the various messages are published,

74

8.4 – Three motor control - ROS node

and what information is contained inside them. As you can see in the image, the
message contains 3 ids related to 3 different engines and 5 commands required for
each engine. The bandwidth occupied for communication between the node and
the microcontroller will therefore be greater than in the previous case, since the
message must containing the data of the three motor, so the vector published have
greater dimension. It is necessary to set the baud rate carefully so as not to have
any data loss.

Figure 8.7: Scheme communication - three motor

A message containing the commands to be sent to the three engines is published
by the ROS node. The board receives the message published by the ROS node
on the topic "/motorMatrixInput". Unlike previous modes, received commands
cannot be immediately executed by the engine and must be processed. Since the
motors are serially connected via CAN, only one command can be sent at a time.

Therefore the received message containing all motor commands is unpacked and
the various motor commands are split into the different variables; in order to be
sent via CAN one at a time. The same is done for the feedback of the motors,
sending a command to the motors via CAN one at a time so that the feedback is
received one at a time.

Unlike previous modes, received feedback is not immediately published, instead
feedback from a single motor is stored in a vector. If the vector contains all three
motor feedbacks, it will be published on the "/motorMatrixFeedback" topic to which
the node is subscribed. As soon as the vector containing the motor feedback is
received, the PC will send a second command packet. To check if the received
feedback is related to the sent command packet, check if the ID transaciton sent
in the command packet is the same as the one received in the message containing
the motor feedback.

A negative aspect of this mode, compared with the previous one, is the pos-
sibility of message loss. In the previous case if the message was lost, only the
command or feedback referring to a single motor was lost, on the contrary if in
this mode one message is lost, the commands of all three motors or the three
motor feedbacks are lost, so there is a greater loss of information and less control
over the motor commands, since it is not possible to tell which motor had problems.

75

ROS node development

The graphical interface shown above in Fig. 8.5 is employed for engine position
control, despite the fact that the content of the messages has changed. The user via
the sliders sets the final position of the three different motors, pressing the Move
button! these values are inserted inside the vector that will be published on the
topic "/motorMatrixInput". The GUI developed for the previous mode was reused.

In order to compare the two modes (either sending one command from the PC
to the microcontroller or sending all three commands), a script was developed to
compare these two modes over time. These scripts and data analysis are described
in the next chapter.

76

Chapter 9

Message latency comparison

The previous chapter explained how these two types of communication between
the PC and the microcontroller work. This chapter compares the two methods
measuring the time required for the communication. Several functions have been
added both in firmware and in ROS nodes to calculate message transfer latency.
A script was then developed to calculate the transmission times at various points
and save the data to a file.
From these files, graphs of transmit and receive times between various devices were
created. This makes the comparison of the two modes of control motor more clear.

9.1 One motor at time - (single mode)
As mentioned earlier in this communication method, ROS nodes send a message on
the "/motorInput" topic containing only single-motor commands. This com-
mand is received by a subscriber on the board and sent over CAN to the motor
specified via the ID variable.

Then the motor driver send via CAN the motor feedback to the board; the
publisher present on the board will send the data to the PC on the topic /motor-
Feedback.

To compare the two different communication modes, some functionality (to
measure elapsed time) has been added to the firmware and ROS nodes.

The firmware and the ROS node has been modified to measure the time spent
transferring data between different devices. In the figure 9.1 the letters indicate
the different transmissions on which the times were measured.
The first measurement data transmission takes place between the microcon-

troller and the motor. Specifically, the time is measured from when the subscriber

77

Message latency comparison

Figure 9.1: Scheme measured transmission time - single mode

(present into the MCU) receives a command from the ROS node to when the
MCU publisher publishes the response associated with the received command. In
the Fig. 9.1 the following path has been indicated with the letters B-C. In or-
der to be able to measure transmission times, functions have been added inside
the publisher/subscriber function. Into the motorInputCallback() function, the
getCurrentMicros() function is reclaimed.
void motorInputCallback(){

tick_motor_input = getCurrentMicros();
. . .

}

As described earlier, the motorInputCallback() function is recalled by the micro-
controller when the ROS node publishes a message on the "/motorInput" topic.
The getCurrentMicros() function when called provides a tick value in microsec-
onds. By placing the function inside the motorInputCallback() function, its value
is stored in the tick_motor_input variable when a new message on the topic is
received.
void publish_FB_motor(float id, float pos, float speed, float curr){

. . .
motor_fb_value.data[5] = tick_motor_input;
motor_fb_value.data[6] = getCurrentMicros();
. . .

}

Activating this function inside the publish_FB_motor() function will get the
ticks at which the feedback is sent from the MCU to the node.

78

9.1 – One motor at time - (single mode)

The two ticks, taken at the two different instants (referring to the figure, the
instant taken at the point indicated with the letter B and the one indicated with
the letter C), are sent to the ROS node with the feedback from the motor. The
script implementing the ROS node then performs a subtraction of the two ticks
and the result is saved in a .txt file from which the charts are derived. This opera-
tion determine how long it takes the board to communicate with the motor (send
commands and get responses).

9.1.1 Time analysis - script python
A new python script was developed to measure the communication time between
different points. Starting with the script used for continuous communication with
the three engines, it has been modified to allow measuring and saving different
ticks during transmission.

Upon launching the script, a GUI appears, developed using python’s tkinder
library, on which there is a Time! button as depicted in the figure 9.2. By clicking
on the Time! button, ninety commands are published by the ROS node, which
will be received by the microcontroller and then sent to the motors. The data
transmission time for each message is measured and saved in a file.

When the script is started, it calls the send_data_motor() function which will
publish a command for an engine (ex. engine 3). After publishing, the time.ns
function (present in python library) stores the ticks in the time_tx variable, in this
way the this variable will contain the time at which the command was published
by the ROS node.

Figure 9.2: Terminal output - ROS node time analysis

The message published by the python node is then received by the microcon-
troller and triggers the motorInputCallback() function present in the firmware.
As mentioned above, this tick is stored in a variable.

After that, the microcontroller will send the command to the motor and the
time at which the motor feedback is received will be saved and published. Finally,

79

Message latency comparison

the time.ns function in the python script will save the time at which the python
node receives motor data feedback in the variable time_rx. After saving the instant
at which the node receives the motor feedback, the cycle restarts by sending a new
command and re-measuring all transmission times.

The above cycle is repeated 90 times to get more data. All ticks of various
communication points are saved in a file from which charts are obtained.

The graph in the Fig. 9.3 shows the communication times between the various
points. Points B-C show the sending and receiving time of data between the board
and the motor. Communication is very fast. In fact, as it can be see from the
graph, it takes less than a millisecond to send the command and get the feedback.

Transmissions, denoted by letters A-D, measure the time it takes for a ROS node
to send a command and receive a response.Commands sent from the ROS node
have to pass through the microcontroller to the motor driver and back, resulting
in a longer send/receive time of around 50 ms. Finally, the letters D-A indicate
how long it takes the ROS node to send a new command after receiving feedback
from the previous one.

0 1 2

100

200

300

400

500

600

700

800

900

1000

1100

0.5 1 1.5

35

40

45

50

55

0.5 1 1.5

0

5

10

15

20

25

Figure 9.3: Time response - one motor at time

80

9.2 – Three motor at time - (matrix mode)

In the figure 9.4 shows the various histograms referring to the various trans-
missions, from the script the total samples. As can be seen from the graphs, each
single command takes a different amount of time to be execute. This is a disad-
vantage of ROS 1, as it is not able to guarantee constant transmission times; this
problem is described in detail in the following paper [9].

As can be see from the picture, the transfer between microcontroller and motor
driver is more constant. In fact, the STM32H7 board guarantees high performance
and enables accurate and stable communication thanks to its high-precision clock.
On the contrary, as can be seen from the figure 9.4 the time distribution is larger
when ROS nodes are present. This temporal distribution can be reduced by using
ROS 2 middleware.

-1000 0 1000 2000

0

2

4

6

8

10

12

14

16

18

20

40 45 50 55 60

0

1

2

3

4

5

6

7

8

-10 0 10 20 30

0

1

2

3

4

5

6

7

Figure 9.4: Histogram time response - one motor at time

The graphs shown above were printed out using MATLAB, reading the file
created by the python node containing all the transmission times.

9.2 Three motor at time - (matrix mode)
As mentioned above, in order to have a comparison between the two different com-
munication methods, a second script was developed to measure transmission times
in the case where commands to the motors are sent all at once from the PC to
the microcontroller, as well as feedback from the motors being received in a single
message. This so-called matrix mode has been implemented in order to reduce the
number of messages and thus increase communication speed.

81

Message latency comparison

Figure 9.5: Scheme measured transmission time - matrix mode

Similar to the above, the firmware code has also been modified to allow time
measurements.

The function called by the microcontroller subscriber (motorMatrixInputCallback())
calls the getCurrentMicros() function which stores the time at which the motor
command was received by the MCU. After receiving the vector containing the com-
mands for all the three motors, the board unpacks the data and deliver a single
command to each motor.

As it can see from this figure 9.6, the time between receiving the command and
receiving the response is longer due to the time it takes to unpack the received
message.

As in the previous mode, the code called up by the subcriber was modified in
order to allow the measurement of times. Furthermore, as can be seen from the
code, there are for loops, which have the task of unpacking the vector received
from the ROS node, and then sending one command at a time to the motors (this
operation takes time).
void motorMatrixInputCallback(){

tick_motor_input = getCurrentMicros();
//for cycle used to unpack the three motor command
for(int i = 0;i<3;i++){

for(int j = 0;j<7;j++){
motor_matrix[i][j] = motor_matrix_input_value.data[i+dstride1*j];

}
}

. . .

82

9.2 – Three motor at time - (matrix mode)

The code below shows the function called up to send the motor feedback from
the microcontroller to the PC. In contrast to the previous case, the motor feedback
cannot be published as soon as it is received. All three motor feedbacks must
be collected within the vector and then published. Depending on the received
feedback id, this function saves the data in a different location of the vector. The
getCurrentMicros() function is also called within this function, in order to save
the tick at which the publishing occurs.

void publish_FB_motor_matrix(float id, float pos, float speed,
float torque){

//add the variable containing the time to the motor feedback vector
motor_matrix_FB.data[12] = id_transaction;
motor_matrix_FB.data[j+5] = tick_motor_input;
motor_matrix_FB.data[j+6] = getCurrentMicros();

}

9.2.1 Time analysis - script python
Starting with the script developed for the previous mode, minor changes were
made to publish all engine commands in one vector and get all feedback in one
message. The timing function remains the same.

The following line of code is present within the python node and is responsible
for saving all the transmission times of the various points into a file. The first
column of the file will report the time taken to complete path B-C.

Inside the variables fb motor[14] and fb motor[13] are the time instants mea-
sured by the microcontroller via the getCurrentMicros() function.

Specifically, the variable fb motor[13] contains the instant of time at which the
command was received, while the variable fb motor[14] contains the instant at
which the motor feedback was published. To get the result of how long it takes to
communicate between the board and the engine, a subtraction of the two values
is performed and saved to a file.
finally, the variables time_tx and time_rx contain the time instant at which the
command was transmitted and the feedback received; each time a new command
is sent, all these variables are reset in order to make a new measurement.

while(fb_motor[12]!=id_trans):
. . .
file_write((fb_motor[14]-fb_motor[13]), (time_rx/1000)-(time_tx/1000),

((time_tx-prec)/1000))
. . .

83

Message latency comparison

In the previous mode, the maximum time it took to complete the B-C pass was
about 1 ms. This mode takes about 55 ms, but during this period commands and
feedback are sent and received from all three motors, whereas in the previous case
there was only one command/feedback. sent and received.

A big difference from the previous mode is the time taken in the A-D path,
(sending and receiving the command and feedback from the ROS node). In the
previous case, in fact, the time taken to send a single command and receive the
respective feedback was about 55 ms, in this case, the time taken to send three
commands and receive the three feedbacks is not three times the previous value,
but is about 100 ms, so the transmission with single message for all the three motor
is faster. Finally, the D-A path (the time taken by the ROS node between the
end of one transmission and the beginning of the next) is similar in timing to the
previous mode, since the python node run on PC.

0.5 1 1.5

54

54.5

55

55.5

56

56.5

57

0.8 1 1.2

98

100

102

104

106

108

110

0.5 1 1.5

0

5

10

15

20

25

Figure 9.6: Time response - three motor at time

Even in this mode, the times linked to ROS 1 are not precise, on the contrary,

84

9.2 – Three motor at time - (matrix mode)

the operations performed by the STM32H7 are precise. As can be seen from the
graph, the B-C path, i.e. the CAN communication between the board and the
motors is uniform.

54 55 56 57 58

0

5

10

15

20

25

30

35

40

45

80 90 100 110 120 130

0

2

4

6

8

10

12

14

-20 0 20 40

0

2

4

6

8

10

12

Figure 9.7: Histogram time response - three motor at time

85

86

Chapter 10

Popup speed control

In the previous chapter, it was discussed how different devices communicate, how
they are configured, and how fast they transfer data.
At this point in the project, it was decided to operate the POPUP robot’s mo-
tors only with speed, rather than sending the position. Velocity control provides
smoother motion, is more suitable for low control frequencies, more robust to con-
trol signal variation, and it reduces collision forces more effectively.

Figure 10.1: POPUP robot - speed controller

Up to this point the motor is controlled only by position. In fact, as mentioned
earlier, it needs five parameters to control the motor, as stated in the datasheet.
For position control, only the final position to be reached and the associated kp
should be sent to the motor his driver, all other parameters (speed, kd, torque)
should be set to zero.

87

Popup speed control

For position-only motor control, there is no need for continuous communication
between motor and board, as the motor remains stationary once it reaches the
desired position even resending the same position, it still remains stationary.

This concept does not apply to engine speed control. Constant communication
between the motor and the microcontroller is required to regulate the speed of the
motor. In this case, the microcontroller mediates communication between PC and
the motors, so the ROS node constantly publish new commands to enable speed
control.

The python script described in the previous chapter was used to control the
position of the engine. This script publish commands to three engines through a
for loop and waits for feedback before sending the next command to avoid data
loss or overload communication line.

Using the same script, the only change that was made was the change of the
transmitted data and the removal of the graphic interface. Similar to position con-
trol, in pure velocity control it must be specified the motor to move by specifying
the ID (1 to 3 in this case), the speed at which the motor is to move, and the
corresponding kd (for actuators AK80-80 it is a value between 0 and 5), setting
all other parameters to zero (position, kp, torque).

In the same way as the position control via the send_data_motor() function, the
speed values of the different motors set by the user will be published on the topic
"/motorInput", and then sent to the motors using the CAN_TX_AK8080() function
on the board, which will correctly format the data to be transmitted via CAN to
the motors. Having developed the script previously, so solving the synchronisation
problems between the various messages, the transition from position motor control
to speed motor control was simple. Only the values sent to the motors had to be
changed.

def motor_input():
while True:

for i in range(1, 4, 1):
send_data_motor(i, pos_motor[i],speed_motor[i],kp_motor[i],

kd_motor[i],torque_motor[i])
print("-----------------------")

However, it is removed the graphical interface that allows setting the final po-
sition of the motor with a slider and a Move! button that sends the position to
the motor. With pure position control, sending the same position multiple times
didn’t matter because the motor would hold it once it was reached. Conversely,
speed control requires constant communication with the motor. This is due to the

88

10.1 – Gamepad control

fact it is necessary to constantly send the motor to the desired speed. Finally, to
stop the motor, it must be send zero speed.

Controlling motors in speed via the GUI is therefore very difficult, since the for
loop publishes the same speed at a much faster rate than the user’s reaction time,
since the user via the GUI would have to set the motor speed, and then reset it to
zero to stop the motor at the desired point.

10.1 Gamepad control
To have quick control over speed, it was decided to use a controller; by moving the
controller’s two analogue sticks, the user may adjust the speed of the motors. The
script used for position control has therefore been slightly modified to allow the
integration of the controller, then the GUI is no longer used to send commands,
but is used to show the speed sent to the motors (via the controller) and their
feedback. The integration of the controller with the python script was possible
thanks to the ps4controller library. When the joystick is connected to the PC via
USB and these libraries are used, tasks can be programmed to run based on which
button is pressed.
The code below shows an example of the use of this library, connecting the con-
troller to the PC via USB and pressing the X button on the controller prints "hello
word" on the IDE terminal.

from pyPS4Controller.controller import Controller

class MyController(Controller):

def on_x_press(self):
print("Hello world")

The following example code has been modified to allow the user to set the speed
of the motors using the controller’s analogue stick, thus removing the sliders on
the GUI. The library allows real-time reading the button controller. By using this
feature, the rotation speed of the motor can be easily controlled, and the above
problem can be solved.

The analog sticks is set up so that when moved from the home position, the
speed_motor variable assumes a non-zero value and the motor moves. Conversely,
when the user releases the analog stick, it will automatically return to its initial
position and the corresponding motor’s speed will be zero. This direct reading of
the controller input allows the speed control of the motors in an easier way. By
moving the analogue sticks forwards or backwards, the user saves a positive or

89

Popup speed control

negative speed value in the variable speed_motor, which will be published in the
topic "/motorInput", thus allowing the motor to be moved forwards or backwards.

Figure 10.2: Gamepad speed control command

Previously, to regulate the motor, only the position was sent, so separate slider
is created for each motor, allowing the user to set different positions for each
motor. It is necessary to connect analogue stick motions with each motor in order
to control the velocity of all three motors. On the controller there are two analogue
stick that can move in all four directions. It was thus established that the forward
and backward movement of the analog stick determines the positive or negative
velocity of a single motor. In this project, it was used the right analog stick to
control motor 2 only. The left analog stick controls motors 1 and 3. Moving the
analog stick back and forth controls motor 3, and moving the same analog button
left and right controls the speed of motor 1.

10.2 GUI - speed control
Having moved the control of the motors to a device and no longer via a graphical
interface, the latter has been modified by removing the sliders used to set the
position of the motors and replacing them with a representation of the speed sent
to the motors and their feedback.

The figure 10.2 shows the graphical interface that appears once the python
script for speed motor control is started. The first three lines show the speed val-
ues read by the controller. The values shown are the same as those published on
the topic "/motorinput" and consequently sent to the motor over CAN (the speed
sent to the motor is rad/sec). Depending on the movement of an analogue stick

90

10.2 – GUI - speed control

relative to each other, the reported value will change on the GUI. As mentioned
above, to control the motor’s speed, the kd must also be sent to the motor driver.
During testing, it was found that by setting a kd value of five, which guarantees
smooth, controlled movement of the motor, the script automatically sets the kd
equal to five for all motors.

The next three lines show the feedback from the three motors at regular inter-
vals. The numbers shown represent in order: motor id (which motor the subsequent
data refers to), current motor position, current speed and current consumption.
Finally, the window at the bottom will display all the messages that will be posted
on the topic "/statusRobot", such as info on the progress of the programme or
any errors reported during communication. In this way, all commands and data
required to control the robot are displayed on a single graphical interface. Collect-
ing feedback from engines in real time, allows to print real-time graphs using the
python library matplotlib.

Finally, via the following graphical interface, it is possible to adjust the maxi-
mum speed that can be sent from the controller to the motors. In fact, the ana-
logue stick is not used as a switch whose state can be ON/OFF, but the controller’s
analogue stick is read by the library as a potentiometer; therefore by moving the
analogue stick forward, the value read by the library increases in value, which can
be used to send a higher speed to the motors. The sliders (at the bottom of the
GUI window) can thus be used to set the maximum value that can be read by
moving the analogue; by setting a high limit, the value sent as speed to the mo-
tors will be higher, allowing the robot to make faster movements. Setting a lower
analogue value will reduce the maximum motor speed.

91

92

Chapter 11

PID firmware

The previous chapter described how the switch from position motor control to
speed motor control was made, as well as the various changes made to the python
script to allow this type of control. As previously stated, the firmware on the MCU
for switching from position control to speed control was not altered in any way
because the function for sending commands via CAN to the motors was already
configured for speed control; the only change was to pass the correct parameters
to the function. To gain more control over the POPUP robot’s motors, it was
decided to implement a PID controller that would run autonomously only on the
microcontroller, allowing commands sent by the user via the controller to be exe-
cuted more smoothly and precisely.

The following chapter will demonstrate how a PID controller works and how it
has been integrated into the firmware for motor torque control.

11.1 PID funciton
PID Control stands for Proportional-Integral-Derivative feedback control and
corresponds to one of the most commonly used controllers used in industry. It’s
success is based on its capacity to efficiently and robustly control a variety of
processes and dynamic systems, while having an extremely simple structure and
intuitive tuning procedures.

Traditionally, control design in robot manipulators can be understood as the
simple fact of tuning of a PD or PID compensator at the level of each motor driving
the manipulator joints. Fundamentally, a PD controller is a position and velocity
feedback that has good closed-loop properties when applied to a double integrator
system. Actually, the strong point of PID control lies in its simplicity and clear

93

PID firmware

physical meaning. Simple control is preferable to complex control, at least in in-
dustry, if the performance enhancement obtained by using complexcontrol is not
significant enough.

The physical meanings of PID control are as follows:

• P-control means the present effort making a present state into desired state.

• I-control means the accumulated effort using the experience information of
previous states.

• D-control means the predictive effort reflecting the information about trends
in future states.

Figure 11.1: PID scheme

After the theoretical operation of the PID had been explained, it was simulated
using Simulink, a MATLAB tool. It was then written in C and included into the
firmware.

11.2 PID in C
Starting from the following equation, C code was created to reproduce the same
result

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

where

• Kp is the proportional gain, a tuning parameter,

• Ki is the integral gain, a tuning parameter,

• Kd is the derivative gain, a tuning parameter,

94

11.2 – PID in C

• e(t) = SP − PV(t) is the error (SP is the setpoint, and PV(t) is the process
variable),

• t is the time or instantaneous time (the present),

• τ is the variable of integration (takes on values from time 0 to the present t).

The following definition was then used to generate the corresponding C code
for computing motor torque. By comparison with the prior formulation for motor
control, the variables were substituted with the values:

• u(t) represents the output of the PID function, which in this case corresponds
to the torque to be delivered to the motor drivers.

• e(t) is the difference in engine speed between desired and actual. The torque
required to feed the motors to maintain a steady position is determined by
the difference between these two speeds multiplied by the tuning gains.

• t inside the firmware, the PID operates in the digital domain, and this variable
is determined by the period of the timer (TIM2) that recall this function.

The following is the firmware function that implements the PID controller.

float PIDcal(int id_motor, float setpoint,float fb_motor){
//Caculate P,I,D
error[id_motor] = setpoint - fb_motor;
derivative = (error[id_motor] - pre_error[id_motor])/dt;
integral[id_motor] = integral[id_motor] + error[id_motor]*dt;

//Output of the PID controller
output = Kp[id_motor]*error[id_motor] + Ki[id_motor]*integral[id_motor]

+ Kd[id_motor]*derivative;

//Update error
pre_error[id_motor] = error[id_motor];
return output;

}

1. The error e(t) was defined as the difference between the setpoint, i.e. the
speed set by the user via the controller, and the current motor speed indi-
cated with fb_motor.

2. The derivative component de(t)
dt

is calculated as follows:

derivative = (error[id_motor] - pre_error[id_motor])/dt;

95

PID firmware

where the variable pre_error reports the value of the error at the previous
instant, and the constant dt was set to the value 0.01.

3. Finally, the integrative part
∫ t

0 e(τ)dτ was calculated as follows:

integral[id_motor] = integral[id_motor] + error[id_motor]*dt;

In order to emulate the computation of the integral, each time the function
is called, the integral variable is re-calculated taking into account all the
previous values.

Finally, all the previously calculated parts are multiplied by the tuning gains and
then added together to obtain the output of the PID.

The variables passed as input to this function are, as can be seen from the func-
tion, the setpoint, (i.e. the final speed to be achieved by the motor), the current
motor speed, and lastly the motor id.

Using the same principle as for continuous control of the three motors, a timer
(TIM2) is used to call up the PIDCal() function on a regular basis and compute
the torque required for each motor. The output of the PIDCal() function is utilised
as input for the CAN_TX_AK8080() function, so the torque computed from the col-
lected data is sent to the motor to be compensated.

The code below shows the TIM2 callback, which starts with id 1 and grows by
1 each time the timer is activated until it reaches value 3, at which point it resets
to value 1. As a result, after three timer cycles, all torques for all motors have
been computed. Setting the timer frequency as high as possible provides torque
control that ensures the stability of the robot. Since the output of the function is
a torque, all other parameters to be sent to the driver are set to zero so that only
torque control is available.

void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
if (htim == &htim2) {

m++; //Change the motor to be controlled
//calculate the torque to be sent to the motor
curr[m] = PIDcal(m, speed_setpoint[m],fb_motor_speed[m]);
CAN_TX_AK8080(m, 0, 0, 0, 0, curr[m]);

}
}

The functioning of the firmware has slightly changed as a result of the addition
of this control; Fig. 11.2 displays a flow chart of the operations performed. The

96

11.2 – PID in C

speed input entered by the user via the ROS node is not sent directly to the motors,
but is provided as input to the PID function. In this way, the PIDCal() function
calculates the torque based on the received values and sends them to the motors.
This is done cyclically for all three motors, using the TIM2 timer. The TIM8
previously used to send data directly to the motors, is now used to periodically
send feedback from the motors to the ROS node.

Figure 11.2: Complete firmware’s flow chart

97

PID firmware

11.3 PID tuner
So far, it has been shown how the code for the PID implementation was built; in
the following section of the chapter, it will be described how the PID’s kp, ki, and
kd parameters were chosen for the various engines.

The first motor on which the PID was set was motor 2, because it has to sustain
the two links and motor 3 during movement , it requires more torque because it
supports the majority of the robot’s structure.

In general, the PID parameters (kp, kd, ki) are set one at a time, beginning
with zero and progressing to see how the system responds. The table 11.1 shows
the relevance of the variation of each parameter.

Rise time Overshoot Settling time Stability
Kp Decrease Increase Small change Degrade
Ki Decrease Increase Increase Degrade
Kd Minor change Decrease Decrease Improve

Table 11.1: PID parameters

The code that emulates the behaviour of the PID is written within the firmware
loaded on the microcontroller, so for the correct setting of the parameters it is
necessary to reload the firmware on the board each time and check the motor’s
behaviour with the new parameter. The time it takes to modify and reload the
firmware must be added to the time it takes to validate the robot’s behaviour.

To make this PID setting operation faster and easier, a python node was cre-
ated that allows the tuning gains of each motor to be updated without reloading
the firmware on the board.

A new window was built to allow setup of the PID parameters based on the
script used for motor speed control. The graphical interface is shown in Fig. 11.3.
Use the drop-down menu to pick the motor for which the tuning gains are to be
updated, then use the sliders to modify the values of the gains (kp, kd, ki), and
lastly press the Tune! button to publish the values set by the sliders on the topic
and insert them into the PID controller. The three lines at the bottom of the GUI
display the current PID parameters of the three engines.

A subcriber was implemented to accept the values released by the ROS node in
order to allow changes to firmware parameters. When you press the Tune! button,
the slider parameters are transmitted as a message to the topic "/PIDValue" to

98

11.3 – PID tuner

which the microcontroller is subscribed, and the previous PID parameter values
are overwritten with the new ones. When the TIM2 invokes the PIDCal() func-
tion, the output will be computed using the newly obtained tuning gains. This
script allows the PID settings to be modified more quickly and easily, removing
the need to reload the board’s firmware, and the parameter change is done in real
time, allowing the motors’ reaction to the new parameters to be seen immediately.

The development of this additional feature demonstrates the system’s adapt-
ability. It was possible to update the PID parameters dynamically by adding a
publisher/subscriber. In comparison, adjusting the parameters without the ROS
node would have taken much longer because the firmware on the board would have
had to be reloaded each time the parameters changed.

Figure 11.3: GUI - PID tuner

Using this GUI, it was feasible to rapidly and easily tune the PID for all three
engines. The table shows the parameters discovered that allow the POPUP robot
to operate optimally.

kp kd ki
motor 1 20 0.05 0.1
motor 2 20 0.05 0.5
motor 3 20 0.05 0.1

Finally, after determining the best PID parameters and developing the ROS
node to control the manipulator. The POPUP robot was tested by making it

99

PID firmware

follow various trajectories to obtain various configurations. The graphs in the
figure show the various motor feedbacks during a series of movement.

Figure 11.4: Movement POPUP robot

The position feedback of the three motors is shown in radians in the Fig. 11.5.
As the manipulator movements are confined inside a specific space, the position
of the motors changes inside a range.

0 100 200 300 400 500 600 700 800

-2

-1

0

0 100 200 300 400 500 600 700 800

-2

-1

0

1

0 100 200 300 400 500 600 700 800

-1

0

1

Figure 11.5: Motors feedback - position

The speed of the three motors is shown in the Fig. 11.6, which is relatively low
in order to have better control over the robot’s movement; the maximum speed
that the motors can achieve can be set using the GUI.

100

11.3 – PID tuner

0 100 200 300 400 500 600 700 800

-0.1

0

0.1

0 100 200 300 400 500 600 700 800

-0.2

0

0.2

0 100 200 300 400 500 600 700 800

-0.2

0

0.2

Figure 11.6: Motors feedback - speed

Finally, the current consumed by the motors shown in the FIG. 11.7 is low
because the robot is very light and hence great torque is not required.

0 100 200 300 400 500 600 700 800

-2

0

2

0 100 200 300 400 500 600 700 800

-5

0

5

10

0 100 200 300 400 500 600 700 800

-4

-2

0

2

Figure 11.7: Motors feedback - current

101

102

Chapter 12

Conclusion

The purpose of this thesis is to use the robotic software ROS 1.0 to control a
three-degree-of-freedom robot. The POPUP robot, which will be operated, is a
soft manipulator created for space applications in the laboratories of Politecnico
di Torino. It is composed of two inflatable links and three rigid joints.

A similar project was done in the following publication [12], in which ROS mid-
dleware was also utilised to drive a 7 dof robotic arm. The main difference between
this project and and the one described in the paper is that no ST microcontroller
was used for communication with the motors, and the connection between PC and
robot was created over ethernet to reduce communication latency (the rosserial
protocol was always used, as it also supports ethernet communication).

The usage of ROS 1.0 middleware, in this dissertation, enabled the POPUP
robot to be controlled in a variety of ways, beginning with position control and
progressing to speed control. ROS 1.0 offers several services such as hardware
abstraction, low-level device control, implementation of commonly-used function-
ality, message passing between processes, and package management. Using this
library tool, it was feasible to create complete robot control, allowing for the inte-
gration of other devices and the creation of a modular framework. The application
and the entire system have been configured and designed to be versatile and mod-
ular, allowing for easy integration both in terms of hardware, with the addition
of sensors and motors on the manipulator, and software with the use of tools for
simulating and monitoring the POPUP robot.

The POPUP robot ecosystem is made up of three major components: a PC,
a microcontroller, and a robot. The microcontroller is in charge of "mediating"
communication between the PC and the motors of the robot. It uses the CAN
protocol to communicate with the three motors, while it is connected to the PC
through USB and communicates with the ROS node via the rosserial protocol
(communication protocol present in ROS 1)

103

Conclusion

The first step in this project was to connect the motors and microcontroller
through CAN. To enable this communication, a firmware that provides complete
control of the motor was developed, allowing the microcontroller to supply input
to the motors and receive responses.

Subsequently, the ROS middleware was integrated into the project, allowing
the direct connection with the microcontroller and consequently with the three
motors. It was very important to set up the microcontroller in such a way as to
allow simultaneous communication both with the PC via USB and with the motors
via CAN. Then the manipulator control system was developed using nodes and
publisher-subscriber communication, which is the main communication paradigm
of ROS. The use of the python programming language for node development en-
abled the implementation of algorithms to control and visualise the manipulator’s
data.

The combination of ROS middleware and the python programming language for
developing nodes provides the project with great versatility and the possibility to
be upgraded. Using the publisher and subscriber communication it is possible to
control and modify every single data of the POPUP robot. Furthermore, with this
configurations, the motors may be controlled in various modes (position, speed,
torque) by simply running the appropriate script, without the need to replace the
firmware or other components, which underlines the modularity of the project.
ROS offers a wide range of robotics software development tools, that allows the
development of advanced applications with just a few lines of code.

A future development of this project could be the reception of data from sensors
mounted on the robot, which can be done simply by adding a publisher that pub-
lishes the data received from the sensor on a defined topic and then live-printed
using a python library. This aspect allows great modularity to the project, as the
code that implements the functions is not device-bound, but can be ported to any
device, maintaining correct operation.

Finally, another step forward for this project would be to make better use of
the robotics tools supplied by ROS, such as simulation and data representation
software, in order to create an accurate software for operating and monitoring the
POPUP robot

104

Bibliography

[1] Emmanouil Tsardoulias and Pericles Mitkas. Robotic frameworks, architec-
tures and middleware comparison. 2017. doi: 10.48550/ARXIV.1711.06842.
url: https://arxiv.org/abs/1711.06842.

[2] L. Joseph and J. Cacace. Mastering ROS for Robotics Programming - Third
Edition: Best Practices and Troubleshooting Solutions when Working with
ROS. Packt Publishing, 2021. isbn: 9781801071024. url: https : / /books .
google.it/books?id=08GQzgEACAAJ.

[3] Marwane Ayaida et al. “TalkRoBots: A Middleware for Robotic Systems in
Industry 4.0”. In: Future Internet 14.4 (Mar. 2022), p. 109. doi: 10.3390/
fi14040109. url: https://doi.org/10.3390%2Ffi14040109.

[4] Pablo Iñigo-Blasco et al. “Robotics software frameworks for multi-agent robotic
systems development”. In: Robotics and Autonomous Systems 60.6 (June
2012), pp. 803–821. doi: 10.1016/j . robot.2012.02.004. url: https://doi .
org/10.1016%2Fj.robot.2012.02.004.

[5] Ayssam Elkady and Tarek Sobh. “Robotics Middleware: A Comprehensive
Literature Survey and Attribute-Based Bibliography”. In: Journal of Robotics
2012 (2012), pp. 1–15. doi: 10.1155/2012/959013. url: https://doi.org/10.
1155%2F2012%2F959013.

[6] Leon Jung Yoonseok Pyo Hancheol Cho and Darby Lim. ROS Robot Program-
ming (English). ROBOTIS, Dec. 2017. isbn: 9791196230715. url: %5Curl%
7Bhttp://community.robotsource.org/t/download-the-ros-robot-programming-
book-for-free/51%7D.

[7] Henrik Andreasson et al. Software Architecture for Mobile Robots. 2022. doi:
10.48550/ARXIV.2206.03233. url: https://arxiv.org/abs/2206.03233.

[8] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. “Exploring the perfor-
mance of ROS2”. In: Proceedings of the 13th International Conference on
Embedded Software. ACM, Oct. 2016. doi: 10.1145/2968478.2968502. url:
https://doi.org/10.1145%2F2968478.2968502.

105

https://doi.org/10.48550/ARXIV.1711.06842
https://arxiv.org/abs/1711.06842
https://books.google.it/books?id=08GQzgEACAAJ
https://books.google.it/books?id=08GQzgEACAAJ
https://doi.org/10.3390/fi14040109
https://doi.org/10.3390/fi14040109
https://doi.org/10.3390%2Ffi14040109
https://doi.org/10.1016/j.robot.2012.02.004
https://doi.org/10.1016%2Fj.robot.2012.02.004
https://doi.org/10.1016%2Fj.robot.2012.02.004
https://doi.org/10.1155/2012/959013
https://doi.org/10.1155%2F2012%2F959013
https://doi.org/10.1155%2F2012%2F959013
%5Curl%7Bhttp://community.robotsource.org/t/download-the-ros-robot-programming-book-for-free/51%7D
%5Curl%7Bhttp://community.robotsource.org/t/download-the-ros-robot-programming-book-for-free/51%7D
%5Curl%7Bhttp://community.robotsource.org/t/download-the-ros-robot-programming-book-for-free/51%7D
https://doi.org/10.48550/ARXIV.2206.03233
https://arxiv.org/abs/2206.03233
https://doi.org/10.1145/2968478.2968502
https://doi.org/10.1145%2F2968478.2968502

BIBLIOGRAPHY

[9] Jaeho Park, Raimarius Delgado, and Byoung Wook Choi. “Real-Time Char-
acteristics of ROS 2.0 in Multiagent Robot Systems: An Empirical Study”. In:
IEEE Access 8 (2020), pp. 154637–154651. doi: 10.1109/access.2020.3018122.
url: https://doi.org/10.1109%2Faccess.2020.3018122.

[10] J. A. Cook and J. S. Freudenberg. “Controller Area Network (CAN)”. In:
EECS 461, Fall 2008 ().

[11] C. Noviello. Mastering STM32: A Step-by-step Guide to the Most Complete
ARM Cortex-M Platform, Using a Free and Powerful Development Environ-
ment Based on Eclipse and GCC. Leanpub, 2016. url: https://books.google.
it/books?id=ZZnfzQEACAAJ.

[12] Guojun Zhang et al. “A Real-time Robot Control Framework Using ROS
Control for 7-DoF Light-weight Robot”. In: 2019 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM). IEEE, July 2019.
doi: 10.1109/aim.2019.8868488. url: https://doi.org/10.1109%2Faim.2019.
8868488.

106

https://doi.org/10.1109/access.2020.3018122
https://doi.org/10.1109%2Faccess.2020.3018122
https://books.google.it/books?id=ZZnfzQEACAAJ
https://books.google.it/books?id=ZZnfzQEACAAJ
https://doi.org/10.1109/aim.2019.8868488
https://doi.org/10.1109%2Faim.2019.8868488
https://doi.org/10.1109%2Faim.2019.8868488

	List of Tables
	List of Figures
	Introduction
	Description POPUP robot

	Robotic framework
	Introduction
	Robotic framework comparison
	ROS 1.0 vs ROS 2.0 vs micro-ROS
	ROS1 vs ROS2 performance evaluation
	Scheduling latency
	Task periodicity
	Message loss

	Final evaluation

	ROS 1.0
	History
	Distribution
	What is ROS (Robot Operating System)
	Ros basic functionalities
	Communication between nodes
	ROS package
	IDE - Visual Studio Code
	Visualization
	Simulation

	Rosserial
	Rosserial package
	Rosserial protocol

	Popup robot devices
	Actuator AK80-80 Robotic Actuactor
	Controller Area Network (CAN)
	Actuator - PID schematic

	Microcontroller STM32H7
	PC/Raspebrry Pi4

	STM32H7 configuration
	UART3 configuration
	UART: Hardware Communication Protocol

	FDCAN configuration
	Timer configuration
	Rosserial configuration
	STM32H7
	PC

	Basic publisher/subscriber on STM32H7

	STM32H7 firmware
	main.c
	Function description

	mainpp.cpp
	Publisher/subscriber functions

	ROS workspace
	Basic publisher/subscriber functions on ROS

	ROS node development
	Position controller
	One motor control - ROS node
	Terminal Interface
	Graphical Interface

	Continous comunication
	GUI motor control

	Three motor control - ROS node

	Message latency comparison
	One motor at time - (single mode)
	Time analysis - script python

	Three motor at time - (matrix mode)
	Time analysis - script python

	Popup speed control
	Gamepad control
	GUI - speed control

	PID firmware
	PID funciton
	PID in C
	PID tuner

	Conclusion

