
POLITECNICO DI TORINO

Master’s Degree course in Computer Engineering

Master’s Degree Thesis

Development of a social trading application

Supervisor Candidate
Prof. Alessandro Fiori Alexander Carlo Gustavo Spira

October 2022

Summary

The thesis is about the development of social features for a web platform used for analyzing
financial derivatives. Financial derivatives are a complex concept that requires a lot of
knowledge and experience in the financial market. They are complex since are financial
instruments that allow people to either speculate or hedge a position by giving the buyer
the possibility to purchase or sell a certain quantity of a specific underlying asset at a fixed
price at some point in the future. They are used essentially as a form of leverage allowing
an investor to make a bet on a stock without having to purchase or sell the shares directly,
but by paying a small sum to the seller. In the application different types of derivatives
can be combined in a "strategy" depending on the intention of the investor.

Since strategies can become very complicated and dynamic, the objective of the thesis
was to allow people to have a look at other peoples’ strategies in order to learn, take
inspiration and grow their portfolio. Users should be able to make their strategies open to
the public, share them inside the application to other users or inside communities called
"Clubs", and outside the application on social media. Clubs are small groups of people in
which administrators can add strategies that all the members can view.

The sharing features of the application allow users to receive or give financial knowledge
and tactics from or to other people.

i

Acknowledgements

First of all I want to thank the Professor Alessandro Fiori that welcomed me in this project
and guided me by giving advice on how to advance and improve. I would also thank the
support of Dr. Marco Rossi Bassignana which helped understanding what a professional
trader would have looked for in a financial application.

I would also like to thank my family for the encouragement and support through all
my studies.

Last but not least, my friends. We have always supported and helped each other and
i would like to thank them for a cherished time spent together.

ii

Contents

List of Figures v

List of Tables vii

1 Introduction of the application 1
1.1 Overview . 2
1.2 Description of the starting point . 2

2 About Option Trading 4
2.1 The Markets . 5
2.2 Exchanges . 7
2.3 Derivatives . 8

2.3.1 Futures . 8
2.3.2 Options . 9
2.3.3 Greeks . 11

2.4 Competitors . 12
2.4.1 Fiuto Beta . 12
2.4.2 OptionNET Explorer . 13
2.4.3 Option Ruler . 13
2.4.4 OptionVue . 15

3 Social trading 16
3.1 Social networks features . 18
3.2 Common ground . 19
3.3 Social trading platforms . 21
3.4 Regulations . 23

4 Design 26
4.1 Interface design principles . 26
4.2 Web design inspired by Social Media . 27
4.3 Reference designs . 28

iii

5 Architecture 31
5.1 Web-Based Application . 31

5.1.1 Client-Server Architecture . 32
5.1.2 Containerization of the server . 33

5.2 Technologies . 34
5.2.1 Docker . 34
5.2.2 Celery . 35
5.2.3 MongoDB . 36
5.2.4 Django . 37
5.2.5 React . 38
5.2.6 Nginx . 40

6 Implementation 41
6.1 Database . 41

6.1.1 MongoDB Collections . 41
6.2 REST APIs . 44

6.2.1 User APIs . 46

7 Client application 53
7.1 User interface . 53

7.1.1 Strategies . 54
7.1.2 Clubs . 58

7.2 Data management . 62
7.2.1 React Redux Store . 62
7.2.2 Data flow . 64

8 Use cases 65

9 Conclusions 70
9.1 Future work . 71

iv

List of Figures

2.1 Types of options. Image taken from here. 9
2.2 Fiuto Beta main page . 13
2.3 OptionNet main page . 14
2.4 Option ruler Grid view . 14
2.5 OptionVue matrix . 15

3.1 eToro copy investor explore page. 20
3.2 ZuluTrade copy investor explore page. 20
3.3 ZuluTrade user page. 21
3.4 eToro CopyTrade interface . 22
3.5 eToro investor data. Image from here. 22
3.6 TastyWork FOLLOW page. Image from here. 24
3.7 TastyWork copy trade. 24

4.1 Attention grabbing button . 28
4.2 Icons in support of text . 28
4.3 Button animation . 29
4.4 Social media main pages . 30

5.1 Client-server architecture . 32
5.2 Architecture of Docker-Compose . 34
5.3 Docker client-server architecture. Image took from [15] 35
5.4 Django MTV architecture. 38
5.5 React Redux architecture. 39

7.1 Strategy page with three open strategies 54
7.2 Different types of representation for the strategies 55
7.3 Private strategy seen by other users that are not the owner 55
7.4 Page of a strategy . 56
7.5 Accessing to a not owned private strategy page 57
7.6 Different tabs for sharing a strategy in different ways. 57
7.7 Club page . 58
7.8 Modal for creating a club . 59
7.9 Page of an open club . 59

v

https://www.google.com/url?sa=i&url=https
https://www.etoro.com/it/copytrader/popular-investor/
https://www.warriortrading.com/tastyworks-broker-review/

7.10 Owned private strategy inside a club . 60
7.11 Button for joining a club . 60
7.12 Club dropdown . 60
7.13 Manage members page . 61
7.14 Modal of warning when the last admin is trying to leave. 61
7.15 Private club page . 61
7.16 React-Redux Store, image from freeCodeCamp 62
7.17 React-Redux Reducer, image from freeCodeCamp 63
7.18 React-Redux data flow example . 64

8.1 Create strategy stages . 66
8.2 Create club stages . 67
8.3 Share strategy to a club stages . 68
8.4 Close club button location . 69

vi

https://www.freecodecamp.org/news/what-is-redux-store-actions-reducers-explained/
https://www.freecodecamp.org/news/what-is-redux-store-actions-reducers-explained/

List of Tables

5.1 HTTP methods . 33

6.1 User’s table . 42
6.2 Strategy’s table . 43
6.3 Club’s table . 44
6.4 Portfolio’s table . 45

8.1 Use case: create strategy . 66
8.2 Use case: create club . 67
8.3 Use case: share strategy to a club . 68
8.4 Use case: close a club . 69

vii

Chapter 1

Introduction of the application

This thesis is about implementing sharing features in a web platform that allows to sim-
ulate financial options strategies. Strategies are very powerful financial instruments that
in recent years have gained lot of attention. A strategy is the simultaneous, and often
mixed, buying or selling of one or more derivatives of the same type that differ in one or
more variables. Since now banks and online broker firms have developed reliable trading
systems that enable fast market orders. The problem is that these complex systems are
used mostly for task execution, meanwhile other specific external platforms are being used
for the analysis and forecasting portions.

These tools, that have different instruments to analyse strategies with visual elements,
are difficult to find, particularly in the futures and options markets. Often they have
high prices and if they are cheap, they are old and out of date, with user interfaces that
don’t make new users comfortable and instead, make the whole learning process more
challenging and intimidating.

Therefore the concept for this application was proposed. The objective was to deliver
a web-based platform, user friendly and most importantly with every tool necessary to
analyze the market. The application enables both experienced and inexperienced traders
to evaluate the markets and display statistical findings on their trend through an easy
and intuitive interface.

For this thesis, the idea was to expand the capabilities of the application by giving the user
the possibility to make their strategies open to the public and share them. In addition to
that, the user should be able to create communities called Clubs in which share strategies
that will be accessible by the members.
This idea originated by the trader need of observing what other traders are doing in order
to keep up with trends and have different point of view on the evaluation of the market.

1

Introduction of the application

1.1 Overview
All of the key instruments and design decisions needed to get to the established goal will
be discussed in this document.

The next chapter, Chapter 2, will give readers a deeper understanding of the financial
sector by focusing on the major providers of futures and options contracts, such as CME
and CBOE for the American markets and EUREX for the European one. It will explain
what futures and options contracts are, highlighting their features and context of use
along with the relevant benefits and achievable operational tactics. This stage gives the
appropriate background information for better comprehend what strategies are made of.

Afterward, we continue with the Chapter 3 that will describe what are the basic features
of a social application and the meaning of social trading.

Chapter 4 will describe how to make the usage of the application user friendly and
more engaging through the use of micro-interactions. In general this chapter is about
design principles and how to apply them in a web application.

We next go on to the Chapter 5 in which we will cover the architecture and design
of the system on which runs the application. Frameworks, libraries and programs will be
described with their advantages and use in this project.

The Chapter 6 is about the implementation of the back-end with the methods used
for accessing it. In particular it concentrates on the non-relational database with the
definition of its models and collections.

In Chapter 7 we’ll have a look at the user interface, how the data is managed and at
the many application functionalities. It will show how user actions are managed and how
the response is delivered.

Chapter 8 shows some use cases that are possible with the new functionalities added.
Finally the last chapter is about the conclusions and the future works.

1.2 Description of the starting point
The platform first features will be summarized here in order to understand the starting
point. It was divided in three sections: Markets, Strategies and Portfolio.

1. The first one, Markets, allows the user to look for a market in order to analyze it
through different types of graphs. One market tab contains general information of
the market selected, different charts that can be explored, a part dedicated to the
strategies created by the user in that market with their positions (open and closed),
a part for futures and one for chains with options put and calls, both with relative
prices, volumes and open interests.

2. Strategies shows all the strategies that the user has created and lets the user modify
the positions of an open strategy. The strategy shows a graph with the payoff, its
group of markets and the currently open positions.

3. The Portfolio part shows the balance of the user’s account, a graph with the trend
of the balance and a table with all the strategies with their costs and profits.

2

Introduction of the application

The primary functions are offered to the user through graphs, with the option to store
them on their own computer through the download of the image. The decision to utilize
graphs was made to give the user a clear and understandable perspective of the present
state of the market and of the strategy created.

For what concerns the data collection, for our purpose using a Web Service 1 was
convenient for its type of data and simplicity of usage. In particular the convenience is
because of guidelines called REST API 2 make using online resources, that the service
exposes, extremely simpler. This is why the focus of the research has been on locating
reliable APIs that can track all financial summary, stock, quotes and options.

The data was collected from these exchanges: Chicago Board Options Exchange
(CBOE), Chicago Mercantile Exchange (CME) and EUREX Exchange (EUREX). Some
of the data of the EUREX had to be scraped 3 from dedicated HTML pages but other
then that the rest was from free public APIs that have a 15 minutes of delay from real
time data.

The underlying of the option belongs to different categories: stocks, equity indices,
commodity futures, index futures and bond futures.

From here, as said in the introduction, the thesis will develop new features and compo-
nents. The strategies will be modified and extended with social features and the clubs
will be build from scratch.

1A service running on a computer device, listening for requests at a particular port over a network,
serving web documents (HTML, JSON, XML, images), and creating web applications services, which
serve in solving specific domain problems over the Web.

2An application programming interface (API) that queries data, parses responses, and sends in-
structions between one software platform and another.

3Automated process implemented using a bot or web crawler used for extracting data from websites.

3

Chapter 2

About Option Trading

This chapter will first attempt to give an overview of the actors and components involved
in trading and then provide more in-depth understanding of the financial instruments that
are available on the platform.

First of all trading is referred as buying and selling financial assets such as shares,
options, currencies, and futures, whose values are listed during the opening hours of
international exchanges. A trade transaction requires a seller of goods and services as well
as a buyer. Various intermediaries such as banks and financial institutions can facilitate
these transactions by financing the trade.

A trader is defined as a person who buys and sells financial instruments with the aim
of making a profit. Millions of businesses, people, institutions, and even governments
trade simultaneously and continuously on the financial markets. While some traders
maintain a more specialized portfolio, others concentrate to just a single instrument or
asset class. Also before entering a trade, some traders conduct extensive research, while
others scan charts and keep an eye out for trends. However, every transaction has one
thing in common: risk. The concept of risk is fundamental to all forms of financial trading.
Balancing possible profit against risk is essential regardless of the instrument being traded,
the person doing the trading, or the location of the trade.

But what is the difference between a trader and an investor? The key distinction is
in how long each party keeps the asset; investors typically have a long-term time horizon,
whereas traders typically hold assets for shorter amounts of time in order to profit from
short-term trends.

Now let’s see some more specific definition of the words cited before and some that will
be encountered in the following chapters:

Share: "A certificate giving the person or company listed a portion of ownership in a
stock, mutual fund, or some other investment vehicle. A share is the smallest unit of
ownership. They may be bought or sold on or off an exchange." [1]

Financial Instrument: "Any document with monetary value. Examples include cash
and cash equivalents, but also securities such as bonds and stocks which have value and

4

About Option Trading

may be traded in exchange for money." [2]

Stock: "A portion of ownership in a corporation. The holder of a stock is entitled to
the company’s earnings and is responsible for its risk for the portion of the company that
each stock represents. Stock may be bought or sold, usually, though not always, in the
context of a securities exchange. It is important to note that a single share of a stock
usually represents only a tiny amount of ownership, and, therefore, most stocks are traded
in batches of 100." [3]

Bond: it is debt that is put out for a period of more than one year. Governments,
companies and institutions sell bonds. The act of buying bonds means that the investor
is lending money, but the bond is repaid with the principal amount at the specified time
agreed in the buying process. Also the bond holder usually receive an interest periodically.
[4]

Commodity: is a physical good like metal, food or mineral that is yet to be processed.
They are usually sold via futures contracts. [5]

2.1 The Markets
A financial market is any location or system that gives buyers and sellers the ability to
trade financial assets, such as shares, bonds, derivatives and various international cur-
rencies. They make the connection easier between those who have capital to invest with
those who need capital. [6]

There are different types of markets with different characteristics and different pur-
poses. Now we’ll have a look at the main ones.

Capital markets which consists of: Stock markets that allows to buy and sell shares
or common stocks which are the ownership claim on businesses, and Bond markets where
parties can issue new debt or buy and sell debt securities. With bonds investors can
buy those securities in order to loan money for a defined period of time for a established
interest rate.

The Commodity markets are where products of primary economic sector are traded.
Money markets provide debt financing and investment under the form of short-term

funds that generally are for a period of a year or less.
The Derivatives market offers instruments that draw their value from other, such

as bonds, indices, equities, and other form of assets. These financial instruments can be
futures contracts and options.

The Foreign exchange markets is a global decentralized market for trading curren-
cies. It is the one responsible for the foreign exchange rates for every currency. It offers
buying and selling but also exchanging currencies at current or determined prices.

Finally the Cryptocurrency markets are decentralized and let you trade digital
currencies, assets and financial technologies.

5

About Option Trading

Now let’s see what our platform has to offer in order as they are presented in the Markets
page.

For the Stock market it has the top American Companies with high capitalization like:
Apple Inc., Microsoft Corp., Tesla Inc., Google Inc., Amazon, Facebook Inc. e Intel Corp.

For what concerns Indexes there are:

• S&P 500 or Standard & Poor’s 500 Index : which is a stock market index tracking the
stock performance of 500 large companies listed on exchanges in the United States.

• S&P 500 Volatility Index : it is a measurement of the volatility of the stock market
based on the options of the S&P 500 index. In contrast to other markets indices this
is traded through derivative contracts rather than being purchased or sold directly.
The quoted price of each option represents the market’s estimate of volatility for the
subsequent 30 days.

• DAX or Deutscher Aktien-Index : is similar to the S&P 500 but tracks the perfor-
mance of the 40 largest companies trading on the Frankfurt Stock Exchange.

• EuroStoxx50 : is a stock index of Eurozone stocks and it is composed of 50 stocks
from 11 countries in the Eurozone. The index futures and options are among the
most liquid products in Europe and the world.

After there are the futures contracts which involve stock indices, bond and commodities.
Other than the ones cited before there are also:

• Russel 2000 : which is a small-cap stock market index that makes up the smallest
2,000 stocks in the Russell 3000 Index. It is by far the most common benchmark for
mutual funds that identify themselves as "small-cap".

• Nasdaq-100 : is a stock market index made up of 102 equity securities issued by 101
of the largest non-financial companies listed on the Nasdaq stock exchange. The
stocks’ weights in the index are based on their market capitalizations, with certain
rules capping the influence of the largest components.

• Vstoxx : is based on real-time prices of options on the Euro Stoxx 50 index and
reflects the market expectations on volatility.

Finally referring to Commodities there are only two which are gold and crude oil.

6

About Option Trading

2.2 Exchanges
"An exchange is a marketplace where securities, commodities, derivatives and other finan-
cial instruments are traded. The core function of an exchange is to ensure fair and orderly
trading and the efficient dissemination of price information for any securities trading on
that exchange. Exchanges give companies, governments, and other groups a platform from
which to sell securities to the investing public." [7]
It might be an actual place where traders congregate to conduct business or an online
platform. For each business or entity wishing to list securities for trading on an exchange,
there are particular listing requirements that must be met. The fundamental standards
for stock exchanges include regular financial reporting, audited earnings reports, and min-
imum capital requirements. Some exchanges are more strict than others.

The ones present in the project are: CBOE, CME and EUREX.

CBOE (Chicago Board Options Exchange): provides trading in a variety of asset
classes and regions; including options, futures, European and American equities,
exchange-traded products, foreign exchange, and products that take into account
several asset classes volatility. By value traded, it is both the largest stock exchange
in Europe and the largest options exchange in the United States. The VIX index is
the leading indicator of volatility in the equities market. This Index, which is based
on current pricing for near-the-money options on the S&P 500 Index (SPX), aims
to capture investors’ perceptions of predicted stock market volatility over the next
30 days. [8]

CME (Chicago Mercantile Excange): is an organized exchange for the trading of
futures and options. The CME trades futures, and in most cases options, in the
sectors of agriculture, metals, stock indices, real estate, foreign exchange, energy
and interest rates. [9]

EUREX (Eurex Excange): is one of the world’s biggest marketplaces for futures and
options.It primarily deals with European futures, but it also gives electronic access
to traders connecting from over 700 locations worldwide. [10]

7

About Option Trading

2.3 Derivatives
Derivatives are one of the three main categories of financial instruments besides equity
(stocks or shares) and dept (bonds). A derivative is a contract which value depends on
the performance of an underlying entity (underlying) that can be an asset, bond, index or
interest rate. Forwards, futures, options, swaps, and variations of these, such as synthetic
collateralized debt obligations and credit default swaps, are some of the more popular
derivatives.

The contract consists on an agreement made between two or more parties who can
trade over-the-counter (OTC)1 or on an exchange. It has its own risk and can be used to
trade a wide range of assets. It can be used to hedge a position to mitigate risk or assume
risk by speculating.

The investor is not required to possess the underlying asset when using derivatives to
speculate on the price movement of the asset. In fact, due to the fact that many derivative
instruments are leveraged, only a little amount of capital is needed to own a big portion
of the value of the underlying. The fact that they are leveraged is a good thing like
increasing the amount of return with little money, but can have drawbacks like increasing
the accumulation of losses.

Also, since the derivative has no intrinsic value because it comes from the underlying
asset, its price is susceptible to the market sentiment regardless of what is happening with
the price of the underlying asset. Supply and demand factors may cause a derivative’s
price and its liquidity to rise and fall.

Derivative items fall into two categories: "lock" and "option."

• Lock products (such as futures, forwards, or swaps) obligate the parties to the
terms of the contract from the beginning.

• Option products (such as stock options) give the holder the right but not the
obligation to buy or sell the underlying asset or security at a particular price on or
before the option’s expiration date.

Now we’ll dive down and have a look at what the platform offers: futures and options.

2.3.1 Futures
A futures contract, often known as a futures, is a agreement between two entities for
trading of an item at a certain price at a later time. The key here is that the parties are
required to follow through the promise to acquire or sell the underlying asset at the price
stipulated. Futures contracts are used to manage their risk or make predictions about the
price of an underlying asset.

A few words on how it works: the buyer opens a long position2 and agrees to pay a
price on a certain date for the underlying asset; in order to supply the underlying asset in

1Trading securities over-the-counter means doing it through a network of broker-dealers rather than
on a centralized exchange.

2The purchase of an asset with the expectation it will increase in value.

8

About Option Trading

return for a price and by an expiration date, the seller opens a short position3. So if the
price of the underlying increases, the person who purchased the future gets money while
the person who sold the future suffers a loss and vice versa if the price falls.

2.3.2 Options
An options contract is a financial instrument that resembles a futures contract with the
important distinction that the buyer has the right, but not the obligation, to purchase or
sell a certain quantity of a specific underlying asset at a fixed price at some point in the
future. A contract’s terms outline the underlying securities, the strike price4 at which it
can be traded, and the expiration date.

Like the future contracts they are used for hedging purposes or for speculation, and
also options cost a fraction of the underlying. This means that, like the futures, also
options are used as a form of leverage allowing an investor to make a bet on a stock
without having to purchase or sell the shares directly. The option buyer gives the party
selling the option a premium5 in return for this benefit.

Options may be divided into two primary groups, American options and European op-
tions, depending on the type of exercise. Up to the expiration date, American options can
be exercised whenever you choose, meanwhile European options are riskier than Ameri-
can options because they can only be exercised on the expiration date. For this reason
European options are priced less than American options.
At this point we can have a look at the two types of options: call and put (Figure 2.1).

Figure 2.1: Types of options. Image taken from here.

3Strategy that speculates on the decline of the price.
4A strike price is a price at which an option can be exercised
5Option premium: current market price of an option contract.

9

https://www.google.com/url?sa=i&url=https

About Option Trading

Option Call

Financial contracts known as call options provide the buyer the right, but not the obli-
gation, to purchase a stock, bond, commodity, or other asset or instrument at a par-
ticular price within a predetermined window of time. The buyer also pays a fee called
premium which is the total cost to buy the contract, so if the price of the underlying
at expiration is under the strike price, the buyer loses the premium paid which repre-
sents the maximum loss. Otherwise, the profit is the price difference between the un-
derlying asset’s current market price and the strike price at expiry less the premium.
The amount is then multiplied by the number of shares that the option buyer owns.
There are 2 types of call options:

• Long Call Option: gives the right to buy shares for a preset price at a later date.
It is executed when there is hope that the price of the underlying will rise so that
exercising the right to buy it lower at the predetermined price will make a profit
when selling it after.

• Short Call Option: it’s the same as the previous one but from the seller’s perspec-
tive, so it gives the right to sell shares for a preset price at a later date. In this case,
the seller bets that the price of the stock will go down from its strike price and the
call option will be worthless to the buyer by the expiration date. The profit of the
seller is the premium paid by the buyer at the purchase, but not only, if the buyer
doesn’t exercise the ability to buy, the seller keeps the stocks.

Option Put

A put option is a contract that gives the buyer the right to sell a predetermined quantity of
shares of an underlying at a set price (strike price) before the put option contract expires.
It more profitable as the price of the underlying decreases, so it is used for hedging or to
speculate on the downfall of the price. If the holder decides to sell, the contract obligates
the writer to acquire shares of the underlying asset from the buyer (or holder) at a certain
price (strike price) and within a predetermined window of time. The contract writer
maintains the option premium money even if the buyer doesn’t exercise their right to sell
by the contract’s expiration date.

So the buyer is not required to keep the option until it expires. As the underlying
stock price moves, the premium of the option will adjust to reflect the underlying price
movements. Due to the effect of time decay, a put option’s value typically declines as
the time to expiry draws near. With less time to earn a profit from the deal, time decay
quickens as an option’s time to expiry approaches.

The option writer has a similar set of options. They might not take any action if the
underlying price is higher than the strike price. This is so they may pocket the entire
premium as the option could expire with no value. However, the option writer may choose
to simply purchase the option back if the underlying price is nearing or declining below the
strike price (which gets them out of the position). The difference between the premium
collected and the premium paid to exit the trade represents the profit or loss.

There are 2 types of put options:

10

About Option Trading

• Long Put Option: it is the most popular put option strategy, in which the investor
assumes the position of the holder of the option contract (buyer). A long put is
betting that the price of the underlying stock or asset will drop.

• Short Put Option: in a short put, also known as a naked put, the investor serves
as the person who creates the option contract (the seller). The investor in a short
put believes that the price of the underlying stock or asset will rise. With this tactic,
investors hope to make money from the option premium charge that the buyer gives
them at the beginning of the contract. Since the investor can be forced to purchase
worthless shares of the underlying asset if the market price of the shares falls sharply,
short puts can be risky.

2.3.3 Greeks
A Greek is a symbol that indicate different risks in the option market. Each Greek variable
comes from a false assumption or connection between the option and another underlying
variable, but they are used to evaluate the risk of options. Each of these Greeks has a
corresponding number that provides traders with information about the movement or risk
of the corresponding option.

The ability to use Greeks is useful to decrease risk in a position taken and achieve
the desired exposure value to risk variables. The main Greek letters that we will briefly
analyze are delta, gamma, theta, rho, vega are the ones that are most frequently used.

Delta (∆) : is the ratio of the option’s price movement to a 1$ change in the value of
the underlying asset. To put it another way, the option’s price sensitivity relates to
the underlying asset. A call option’s delta can be any value between 0 and 1, while
a put option’s delta can be any value between 0 and -1. Assume, for instance, that
a trader owns a call option with a 0.50 delta. As a result, the price of the option
would theoretically rise by 50 cents if the price of the underlying stock rose by 1$.
Option traders use it for creating delta-neutral 6 positions since the Delta represents
the hedge ratio7. Not only, it can also be used to get the probability of the option
expiring in-the-money8.

Theta (Θ) : it indicates the rate of variation in an option’s price with respect to time,
also referred to as time sensitivity or time decay. It is the amount by which the price
of an option would decline as the time before expiration grew shorter. Assume, for
instance, that a trader is long an option with a theta of -0.50; with all other things
being equal, the price of the option would fall by 50 cents every day. Options closer

6Delta neutral is a portfolio strategy utilizing multiple positions with balancing positive and negative
deltas so that the overall delta of the assets in question totals zero.

7The hedge ratio compares the value of a position protected through the use of a hedge with the
size of the entire position itself.

8Option that presents a profit opportunity due to the relationship between the strike price and the
prevailing market price of the underlying asset.

11

About Option Trading

to expiration also have accelerating time decay. Short calls and short puts will have
positive theta, meanwhile long calls and long puts will usually have negative theta.

Gamma (Γ) : it reflects the rate at which the price of the underlying asset changes in
relation to the delta of an option. It shows how much the delta would change if
the underlying security moved by 1$. Options traders can choose to hedge not only
delta, but also gamma in order to be delta-gamma neutral, which guarantees that
no matter how the underlying price changes, the delta will stay close to zero.

Vega (v) : it is the option’s sensitivity to volatility, or the rate of change between the
value of the option and the implied volatility of the underlying asset. An high
volatility will correspondingly raise the value of an option because it suggests that
the underlying is more likely to have extreme values and vice versa for low volatility.
So it is used to determine how stable an option’s delta is. Gamma values often
increase as expiration gets closer because price changes have a greater effect on
gamma.

Rho (ρ) : it determines the interest rate’s sensitivity. It is utilized far less frequently
than the other Greeks due to the fact that an option’s value is typically less sensitive
to changes in the interest rate than changes to the other parameters that determine
it.

2.4 Competitors

This platform takes place because of the flaws of other platforms already available. Now
we’ll analyse some with their features, pro and cons.

2.4.1 Fiuto Beta

PlayOptions srl’s Fiuto Beta is a free program that allows underlying analysis and provides
option chains on the chosen underlying. The software provides a picture of the underlying’s
price trend, historical volatility, open interest, and the quantities of contracts traded on
the underlying with relation to underlying analysis. The software enables the display of
the profit graph and reports the value of the Greek linked with each option when it comes
to the examination of the options strategy (Figure 2.2).

Even though the software has many functionalities, there are some gaps compared to
our platform. In particular, Fiuto Beta does not provide graphs relating to the cumulative
distribution of open interest, Greek values are only shown as a numerical value, making
it impossible to analyze Greek performance as a function of the price of the underlying.

So overall is perfect to start learning about options and their characteristics since is
free, but it is missing some key features like the one cited before and also chain data isn’t
updated unless the application is restarted.

12

About Option Trading

Figure 2.2: Fiuto Beta main page

2.4.2 OptionNET Explorer
OptionNET Explorer is a complete options trading and analysis software platform that
enables the user to backtest complex option strategies, analyze their results and monitor
them in real-time, all from within a single, user friendly environment. It allows to design
and backtest multiple options trading strategies for the same or different underlying sym-
bols and switch between them. Also it automatically keeps track of all adjustments and
commissions throughout the life of each position giving you the cummulative profit and
loss figure (Figure 2.3). This application is expensive and has only a 10 days trial.

2.4.3 Option Ruler
Option Ruler is a Directa’s platform for option trading that is built into dLite (online
trading web platform). It allows users to perform simulations and set up option buying
and selling strategies that are more in line with their own price expectations in addition to
the standard operations. Grid is the default screen (Figure 2.4); it is vertically separated
into three sections: call, strike price, and put options data. It is possible to buy or sell a
position or add it to a strategy.

There are also other pages that are: Calendar that enables users to examine the average
pricing of call and put options with various maturities; Strategy that allows to evaluate
the performance of a strategy and Portfolio that let users manage open or temporary
orders. Account maintenance costs are not charged by the site, although commissions for
European markets are approximately $5 per executed order and were $9 for non-European

13

About Option Trading

Figure 2.3: OptionNet main page

markets. It is a service that appeals to a very diverse group of investors, from novices to
those with more expertise in the field.

Figure 2.4: Option ruler Grid view

14

About Option Trading

2.4.4 OptionVue
OptionVue is a sophisticated options trading platform with tools for determining the
optimum trade strategy as well as facilities for crucial aspects including option matrices
(Figure 2.5), highly customisable charting, reporting, and modeling. You can get all the
pricing details for the different options contracts for a specific asset here, which is one
of the program’s remarkable features. The implied volatility, options premium, and the
present delta value for each contract are some of the information shown. It will be simple
for you to assess the changes in option pricing and implied volatility because you may
look across numerous dates and strike prices at once. The ability to enter trades directly
into the options chains display is another feature of this matrix. Another tool is the
TradeFinder that is also available for comparing various options strategies and locating
the best one that adheres to certain basic criteria and filters. The problem is that, other
than being advanced, is very expensive for someone just starting to learn.

Figure 2.5: OptionVue matrix

15

Chapter 3

Social trading

Social trading is a form of investing that enables investors to view the trading activities of
both novice and experienced traders. The main goal is to imitate or mimic other’s trading
tactics in order to follow their investment strategies. It can also be a different approach to
studying financial data by observing what other traders are doing, comparing it to your
own methods, and eventually mimicking them. Furthermore, it can serve as confirmation
for other types of analysis by observing market sentiment and other traders’ activities.
Social trading has been referred by the World Economic Forum [11] as a low-cost, smart
alternative to traditional wealth managers and is said to require little to no expertise of
financial markets. It serves a wider range of clients and gives users greater control over
their financial management.

There are a couple of advantages of having the social trading feature:

• Information flow: in finance the exchange of information is a very important
feature. In this case people are constantly looking at what other people doing or
sharing knowledge to others less experts.

• Cooperative trading: it gives investors the chance to create trading groups that
can trade the markets cooperatively, whether by pooling funds, dividing research or
through sharing information.

• Transparency: platforms give members extensive information to evaluate the re-
liability of the contributors they follow on the platform by disclosing performance
statistics, open and historical positions, and market sentiment.

This last point was the subject of a 2017 St. John’s University study which found that
traders with lots of followers were more susceptible to the disposition effect 1 than the ones
with less or no followers. In the paper the authors are suggesting that this phenomenon
can be explained by: "leaders feeling responsible towards their followers and an urge to not
let them down, by fear of losing followers when admitting a bad investment decision and

1Investors’ propensity to hold on to assets with declining value while selling ones with rising value.

16

Social trading

signaling confidence in their initial investment choice, or by an attempt of newly appointed
leaders to manage their self-image." [12].

Also, social trading networks typically contain a leader-board based on popularity and
success rate, experienced traders have an incentive to share their trading tactics because
they are frequently rewarded with both money and status.

When talking about social trading, usually there are three words for describing a trade:
single (or non-social), copy and mirror trade. The first one is well known and is the normal
trade that is placed by a trader.

Copy trade allows to automatically copy opened positions managed by another per-
son. It connects a portion of the copying trader’s funds to the copied investor’s account.
Any future trading decision that the copied investor makes, such as opening a position,
placing stop loss and take profit orders, or closing a position, are also carried out in the
copying trader’s account in proportion to the copied investor’s account and the copying
trader’s allotted copy trading funds. The trader who is copying has the option to detach
the cloned trades and manage them independently. Additionally, they have the option
to end the copy connection permanently, closing all cloned positions at the current price
on the market. Although followers do not deposit funds into the signal2 providers’ ac-
counts, since the latter have indirect control over a portion of the capital of the signal
followers, they in fact act as portfolio managers. Social trading platforms therefore offer
a cutting-edge framework for delegated portfolio management.

At last, mirror trading enables the trader’s brokerage account to automatically "mir-
ror" the trades made using a chosen strategies. Individual trading preferences, such as
risk tolerance and past trading success, can be taken into account when choosing a trad-
ing strategy. All signals generated by a chosen strategy are automatically applied to the
client’s brokerage account after selection. Since the platform manages all account activity,
the client is not obliged to get involved.

The difference between copy and mirror trading is that while in mirror trading in-
vestment decisions are based on algorithms created from the trading patterns of several
successful traders, in copy trading the trader actually duplicates the actions of a single
successful trader.

Not everyone should engage in social trading. While it has received acclaim for remov-
ing some obstacles to financial inclusion, it has also drawn criticism for undervaluing a
significant portion of the knowledge required to successfully navigate financial markets.
One of the worst mistakes a social trader may make is to believe that a strategy entirely
eliminates risk. Risk is a component of trading, and losses are almost always a possibility.
The concept of relying on a third party’s judgment while yet bearing the full risk of loss is
therefore seen to be a significant disadvantage of social trading. Social trading can lower
the amount of preparation required, but it also increases the likelihood that the trader
will rapidly find himself out of his depth. Furthermore, there is no assurance that the
third party he has selected to copy has performed the necessary amount of research.

2A trade signal is a trigger for action, either to buy or sell an asset, generated by analysis.

17

Social trading

Moreover, according to a recent experiment, just telling someone about the success
of others might significantly improve their risk taking. When participants are given the
chance to directly emulate others, this rise in risk-taking may even be greater. In light of
this, copy trading might encourage taking unwarranted risks.

Although social trading may allow to skip a few steps in the financial markets, it does
so at the sacrifice of expertise and experience. It is crucial to ensure that the trader is
doing everything exactly as he intended and that he has a suitable risk management plan
in place. When beginning social trading, the trader is adopting the trading strategy of an
another person, but a strategy should be particular to him and his objectives. Although
he can utilize other people’s methods as inspiration for his own trades, he has to keep
in mind that other’s plans will be tailored to their own objectives, drives, etc. Since
everyone’s risk tolerance and financial availability vary, it is not always a smart idea to
trade in the same way as another person.

Before the introduction of social trading, traders and investors relied on fundamental or
technical analysis to help them make investment decisions. Using social trading, traders
and investors can incorporate social indicators from other traders’ trading data feeds into
their investment decision-making processes. So in a few words, social trading platforms
can be considered a subcategory of social networks, so much that some of them also define
themselves as "trading social network". In fact they have lot of similar features that now
we will analyze.

3.1 Social networks features
Let us introduce a definition and features of Social Network Services. A Social Network
Service is a website or online platform that enables users to create social networks or inter-
personal connections with other users that have similar personal or professional interests,
hobbies, backgrounds, or connections in real life.

Social networking services come in a variety of formats and feature sets. A variety
of modern information and communication tools can be incorporated depending on the
purposes and users. Usually, it provides an individual-centered service in contrast to
online community services that are groups centered, but at the same time, they provide
a space for interaction beyond in-person interactions.
There are different types:

• Socialization social networks are mostly used for interacting with current friends.
These are the ones with the most users and include the biggest ones like Facebook
and Instagram.

• Communication social networks allows users to communicate over the internet and
they include WhatsApp and Telegram.

• Networking ones are used for non-social interpersonal communication. For example
there is LinkedIn that is a career and employment-oriented site.

18

Social trading

• Social Navigation services instead are utilized mostly to facilitate users’ access
to certain information or resources. One example is Reddit which is a social news
aggregation, content rating, and discussion website.

One thing that all have in common is the User-Generated Content (UGC) which is the
one thing that keeps these services alive. UGC is any type of online content that users
have submitted, including text, audio, video, and photographs on wikis, social networking
platforms, and other online communities. In this way developers need to focus on creating
tools for create / modify content and places where to publish and interact with it. In this
way, the company only needs to deal with the technical part of the platform, while all the
content inside is created by the users themselves.

Since profits are fueled by the user time spent on the platform, these companies try
to keep the user engaged and interested as much as they can. Social media engagement
usually refers to the number of public shares, likes and comments. This data is also used
by external companies for marketing measurements.

Different platforms offer different ways to interact with the content but are always
the same concepts such as likes, comments and the possibility to share with other people
either inside the platform itself or outside on other ones. The user has possibility to either
be active and post personal content or to interact with other people’s content through
comments, likes and shares.

While shares and likes let you know how popular a post is, followers show a higher
level of interest, indicating that users want to regularly see more of your work. Based on
this, platforms usually promote to users accounts that are active and post frequently. In
this way, users are kept busy for longer periods of time by fresh content.

Another way to keep users on a platform is to have a user-friendly, intuitive and pleasant
interface design, so that the user doesn’t end up frustrated that he doesn’t understand or
find what he’s looking for and leaves the platform.

In the next chapter we will have a look at some of the principles in designing a system
used by non-expert users and then see some web design trends.

3.2 Common ground
Unlike copy trading, which is the mimicking of the trades of a chosen trader, social trading
places a greater emphasis on the social aspects. Because of this, some platforms have
established it as a sort of social network where traders may communicate with one another,
observe one another’s trades and methods, and get more knowledge about developing
trading strategies and making decisions. So lets have a look at what social trading apps
have in common with social networks.

Just like social networks, every user has his own profile, but in this case, instead of
being the personal information and posts of the user, there are statistical data on the
performances and risks, and a summary of the composition of the portfolio. A profile
usually has a nickname, description and picture. Sometimes there is also the flag that
indicates where the user is from.

19

Social trading

A trader can be searched in a page where all profiles are displayed in different cate-
gories, like "Top traders" or "Trending" and they can be filtered by different parameters.
Each profile displayed is summarized with the most important information in order to
let the user decide if it is worth checking them out. The summary usually includes some
information on the user, like username, photo and then there are some statistical and
performance data. Some examples of explore pages can be seen in Figures 3.1 and 3.2.

Figure 3.1: eToro copy investor explore page.

Figure 3.2: ZuluTrade copy investor explore page.

20

Social trading

Once opened a profile, all the information and statistical data of the trader is presented
in order to understand his skills, achievements and if he is worth to copy. Among the
information usually there is a feed with the operations performed, statistical data on the
performance, the portfolio composition and different charts. An example can be seen in
Figure 3.3.

Figure 3.3: ZuluTrade user page.

Another thing that some platform use for distinguish users, that are also present in some
social networks, are badges that are obtained according to milestones achieved, and they
are displayed in the profile. These badges are made in an effort by the broker to promote
a positive social environment and are not only for showing off one’s accomplishments, but
they can also aid potential copiers in forming a proper opinion of a certain trader. You
can learn about a trader’s involvement in the community, whether or not the public likes
or dislikes them, whether they copy other traders or prefer to rely on their own judg-
ment by looking at the kind of badges they have accumulated. Badges represents some
achievement in different areas like capital gain, time spent trading and many others.

3.3 Social trading platforms
The first platform to have introduced the feature was eToro in 2010. eToro is an interna-
tional social trading company based in Israel that specializes in offering financial and copy
trading services. Along with being used for trading stocks, making investments online,
trading cryptocurrencies, and much more, it has also developed many novel social trading
features. The main feature is the CopyTrader, that lets you select the traders you want
to replicate, choose your investment level, and with just one click, automatically and in
real-time, copy everything they do (modal for copying in Figure 3.4). This is just the
basic concept, but other than that there are quite a few more settings and elements to

21

Social trading

the system. For example you can copy all the trades or only the new ones and copy the
stop losses.

Figure 3.4: eToro CopyTrade interface

The decision on whether or not copy someone is based on statistical and historical data
that is displayed on the user profile (examples in Figure 3.5). In particular there is the
gain and fail/success ratio, the Risk Score (shows the risk the investor is taking on a scale
of 1 to 10) and the portfolio composition.

Figure 3.5: eToro investor data. Image from here.

22

https://www.etoro.com/it/copytrader/popular-investor/

Social trading

In a very similar way other platforms jumped in implementing these features. The first
one was Wikifolio in 2012, then others like NAGA which is Europe-based and Zulu Trade.
All have similar characteristics and tools to look at profiles performance and risk in order
to decide whether to follow their strategies or not.

The problem with the platforms cited above and others similar, is that they don’t have
the possibility to trade derivatives, but they allow to trade Stocks, Commodities, Indices,
Forex, ETFs and Cryptocurrencies.

The only popular one that has the ability to trade also derivatives such options and
futures with features of social trading is Tastyworks. Tastyworks was launched in 2017
as a subsidiary of Tastytrade and is an online brokerage platform specialized in options,
futures, and stock trading. It is aimed for experienced and active traders, so it can be
intimidating for beginners, but it has a lot of educational content and research tools for
learning available on Tastytrade website. The platform has a lot of focus on derivatives
since they form the 98% of the trades placed by the customers.

Coming back to the social trading aspect, just like eToro, it lets the user view and copy
real-time trades from other traders. There is a tab called "FOLLOW" in which there are
all the trades placed by the people that the user follows (Figure 3.6). By clicking on one
trade in which the user is interested there are a set of informations and a button named
"trade" or "duplicate this trade" according to the device used (Figure 3.7). Clicking on
the button automatically fills the trade ticket with the same trade with the possibility to
add an underlying security.

The limitation of Tastywork is that the people that one can follow are only the teachers of
the show Tastytrade which are just 21 (showed in Figure 3.6). This has been done so that
if someone is following the course wants to recreate also the trades that they are showing,
they can in real time on their account.

Here is where our application comes in and fills the gap in this business, a social trading
application that trades with derivatives.

3.4 Regulations
Since copy traders are effectively making judgments for other traders, the MiFID3 recently
classified copy trader platforms as portfolio management services due to their automatic
nature. The MiFID does not expressly address the issue of copy trading, but it does
provide general guidelines that would serve as the foundation for any explicit rules to be
developed. The tendency among regulators is to view copy trading as combining elements
of portfolio management, which is a MiFID-regulated financial service. As a result, the

3The MiFID stands for The Markets in Financial Instruments Directive and is a European regulation
that increases the transparency in the EU financial markets and normalizes the regulatory disclosures
required for firms that operate in Europe.

23

Social trading

Figure 3.6: TastyWork FOLLOW page. Image from here.

Figure 3.7: TastyWork copy trade.

platforms had to incorporate more features to meet regulatory requirements, particularly
those that would reduce risk and increase public awareness of it.

For this reason many trading systems provide each trader a risk profile so those thinking
about mimicking them can have more information. Additionally, platforms have included
additional tools to assist clients diversify their portfolios and pair traders with one another
based on risk profiles. These come at an additional cost to comply with the law, but many

24

https://www.warriortrading.com/tastyworks-broker-review/

Social trading

professionals view this as a positive development and essential to creating a sustainable
product.

So, platforms, in order to reduce the copy trading potential backlashes, have created
"programs" in which investors can join once they meet some requirements. This is done
in order to help inspire confidence in copying someone since they follow some criteria.
Some of the requirements could be that the investor is verified (with his real credentials
and personal information), is active, has invested a certain amount of money, has been
investing for a certain period of time, respects some set rules about leverage and has a
risk factor below a threshold. This types of users usually are the finest and the ones being
copied the most.

Once the trader is associated with a program, he gains perks and benefits according
to the number of copiers to maintain the position and the active work.

25

Chapter 4

Design

The design of systems that interact with humans is an entire research field in computer
technology called Human computer interaction (HCI). Researchers in this field study
how people use computers and develop solutions that let people use them in new and
different ways. As said many times, the interaction with the interface must be fluid and
easy, the user has to find what he’s looking for in order to avoid frustration and generate
disinterest in the application. Basically the objective is to reduce errors committed by the
user or try to avoid them happening in the first place. If there is one the user must have
a way of correcting it or go back and redo the stage where something went wrong.

Also the user has to have everything needed visible, accessible, and the navigation
inside the pages has to be intuitive and not too complicated.

Researchers in the field may have different ideas of what they want to accomplish, for
example for a cognitive perspective they try to make computer interfaces more consistent
with the mental picture that people have of their activities. They aim to match computer
interfaces with current sociocultural values or social practices.

In addition to studying interaction paradigms they are also interested in building
design approaches, experimenting with hardware and software, prototyping software and
hardware systems, and developing models and theories of interaction.

4.1 Interface design principles
Now lets have a look at the "golden rules" of interface design present in the Designing
the User Interface: Strategies for Effective Human-Computer Interaction book [13], in
particular in chapter 8:

1. Strive for consistency: similar scenarios should call for the same set of actions, the
same terminology should be used in prompts, menus, and help screens, and the same
color scheme, layout, capitalization, typefaces, and other design elements should be
utilized throughout.

2. Seek universal usability: users have different needs, so the interface should adapt

26

Design

and let the content be transformed. For example adding explanations for novices and
shortcuts for experts enriches the interface design and improves perceived quality.

3. Offer informative feedback: every action the user performs should be associated
with an interface feedback. The response can vary according to the action.

4. Design dialogues to yield closure: action sequences need to be grouped into
units with a beginning, middle, and end. Feedback after the completion gives the
user the satisfaction of accomplishment. For instance, e-commerce websites guide
consumers through the checkout process ending with a clear confirmation page.

5. Prevent errors: the interface should be design so that the user can’t make mistakes.
If they still make one, the interface should offer easy instruction for recovery.

6. Permit easy reversal of actions: actions should be reversible when is possible.
Because users are aware that mistakes may be corrected, this feature reduces fear
and stimulates investigation of new actions.

7. Keep users in control: experienced users have a great desire for the feeling that
they control the interface and that it reacts to their activities. They dislike unex-
pected changes in behavior, and they find laborious data entry processes, challenges
locating relevant data, and failure to deliver intended results annoying.

8. Reduce short-term memory load: interfaces that demand users to memorize
information from one display and subsequently use that information on another
display should be avoided due to humans’ limited ability to process information in
short-term memory.

In the application these principles were followed as much as possible. For example, as we
will see in the next chapters, every element that can be created by the user can also be
updated or deleted; errors are prevented by not showing what the user shouldn’t see and
disabling buttons he can’t access depending to different roles and permissions; and every
information needed for actions are showed and well displayed.

4.2 Web design inspired by Social Media
The main characteristics of a typical social media can influence the design of web ap-
plications usually are: visuals, images, interaction and use of the user generated content
(UGC).

Because there is more stuff available online every day we have developed the practice of
speed-reading and quickly scanning websites to find the information we need. To combat
information overload we should take advantage of attention-grabbing visual elements.
For example in the page where admins manage members, the button to add new ones is
colored and well visible in order to "call to action" (Figure 4.1).

Promoting images is very important because "a picture paints a thousand words",
and in addition to icons, they immediately communicates the purpose and usage of buttons

27

Design

Figure 4.1: Attention grabbing button

Figure 4.2: Icons in support of text

and features. In the application icons are widely used as support of text since they
immediately highlight the action or task (Figure 4.2).

Another important aspect is to invite to interact through the use of micro-interactions.
They are essential to give the user the impression of showing interest for something and
give him some entertainment value. A micro-interaction [14] is a short animated event
that has a single purpose, further, they are used to entertain the user and generate a small
emotional experience. They have the purpose to get the user to do something, they need
to grab the attention and satisfy the user once they have been used. They should not only
be captivating animations, but also highly enhance user experience by giving immediate
feedback. The thing to avoid is to add too many animation that instead disturb the user
experience. For example in the application there are only two main micro-interaction
that are the upvote and the bookmark button, which are a way to interact with elements
(Figure 4.3).

Finally, the content created by the user (UGC) should be customizable in some way
so that the user can distinguish himself from the others.

4.3 Reference designs
When designing an interface, is always suggested to have a look at what other companies
have done according to the different purposes of the application. For example in our case
the objectives were to have pages in which present both content from the logged-in user
and content from other users, and also, for the clubs, have a common space within a group
of people where to interact. These characteristics are present already in many popular
social networks. According to what have been said in the previous section about social
networks, the application falls in the social navigation category since it is not used to
create networks or to chat, but to view content of other users.

In particular the application has nested sections that works at levels, for example in order

28

Design

(a) Upvote before click (b) During animation

(c) Bookmark before click (d) During animation

Figure 4.3: Button animation

to look at one strategy from the Strategies page, the user has to select a category and then
a strategy to open. Each section doesn’t have enough information and content in order
to be in a separated page from the others, so they are put together in columns or rows.
This can also be seen in other social media applications like Telegram, Discord, Facebook,
Twitter and many others. The ones cited are the ones that have been used as inspiration
for different parts of design.

As we can see in Figure 4.4, they all have similar structure: one navigation column on the
left, content in the center and suggested or minor content or column on the right. The
order of the column is dictated by navigation purposes, and the order goes from left to
right since what is selected on the left decides what to show on the right. On the top
usually there are some commands and search bars for filtering content.

• Navigation column: on the far left there is the navigation section that is needed
to decide what type of content display in the main column.

• Content section: at the center of the page there is the main component that
displays the content.

• Secondary content: on the right is usually displayed extra content that can be
something like secondary content, advertisement or suggested content.

This same type of structure is being used in our application when displaying lists of
content. There is the navigation column and the content columns. The content ones can
vary according to what is shown on screen. We will have a more in depth look of the
interface in the client chapter.

29

Design

(a) Twitter (b) Discord

(c) Facebook
(d) Telegram

Figure 4.4: Social media main pages

30

Chapter 5

Architecture

As previously mentioned, the application is web-based with a client-server architecture
used for managing it. Between the client and the server the data is exchanged with the
use of the APIs. Since the application is made up of microservices that handle data, the
server side has been containerized in order to make the development faster and easier.
Microservices are an architectural and organizational approach to software development
where software is composed of small independent services that communicate with each
other. Each microservice should have a clearly defined role and domain knowledge when
performing its tasks, so this approach promotes better results when implementing new
features in a system since each one specializes in a particular task. Furthermore, separating
concerns into individual microservices promotes scalability since each service can scale
independently. These microservices are packed inside containers that are then managed
all by a program in order to make the development and use easier and faster.

So in this chapter we will explain everything that have been used for developing includ-
ing the list of development tools and frameworks with their characteristics and advantages.

5.1 Web-Based Application
Any program that is accessed via a network connection using HTTP1 rather than being
stored in a device’s memory is referred to as a web-based application. Web browsers are
frequently used to run web-based applications and is the instrument used by the user as
an interface for accessing the data. By using the browser nothing needs to be installed
or updated on the client machine, but everything is requested to the server. Nowadays
browsers are largely widespread and supported on most devices so web-applications can
be considered platform-independent.

The usage of terminology like web-based, internet-based, and cloud-based when dis-
cussing applications causes a lot of confusion; those that interact with users using HTTP

1HTTP stands for Hypertext Transfer Protocol and it is an application-layer protocol for sending
hypermedia documents between web browsers and web servers, but it can also be used for other
purposes.

31

Architecture

are all considered web-based applications.

The architecture that was chosen is the client-server because it is the most common and
highly recommended design for enabling users to interact with online applications over
internet using a web browser.

5.1.1 Client-Server Architecture
In the client-server computing model, the server hosts, provides, and controls the majority
of the resources and services that the client will use. In this form of architecture, a central
server is connected to one or more client computers via a network or the internet.

So basically, there is the server which is listening and waiting for request of services
and the client that has an interface with which the user interact and makes requests to
the server that responds with the results. So the exchange of messages between client
and server follows the request-response pattern: the client sends a request, and the server
returns a response. Many clients can make requests to the same server simultaneously
(Figure 5.1).

Figure 5.1: Client-server architecture

The requests and responses are made through a specific network protocol, which in
our case is HTTP. Other than that, there is the application programming interface or
API that is an abstraction layer2 for accessing a service on the server. This is needed
for facilitate cross-platform data exchange through a communication with specific content
format. They strive for rapid performance, reliability, and scalability by reusing parts
that can be controlled and modified without having an impact on the system as a whole,
even while it is in use. In particular for the server interface it was implemented a REST
API3 approach.

2Technique for concealing how a subsystem works.
3A software architecture approach known as "representational state transfer" describes a consistent

interface between physically distinct components.

32

Architecture

REST API

REST in web development enables what is frequently referred to as "Dynamic Content"
or content that is rendered as it is requested. In order to create a website and transmit it
to the requesting web browser, it is required to have server-side rendering. The requesting
web browser then understands the server’s code and renders the page in the user’s web
browser.

Using URL-encoded parameters, HTTP requests are used to retrieve data or resources
in web applications. The data is often formatted as either JSON or XML4 for transmission.
REST guidelines recommend using a specific HTTP method on a given type of call of a
server call. HTTP provides operations or methods that are described in Table 5.1.

HTTP method Description
GET Retrieve resources representation or information
POST Create new resource in a collection of resources
PUT Update an existing resource

PATCH Make a partial update on a resource
DELETE Delete resources

Table 5.1: HTTP methods

5.1.2 Containerization of the server
Using Docker containers (that will be explained later), the server-side portion of the web
application may be built and deployed. With this architecture, an application can be
packed along with all of its dependencies without having to worry about the real server’s
hardware or software features. This is due to the fact that a container always carries all
of its dependencies with it. Additionally, by running many web applications separately
on the same physical server, containers enable IT businesses to drastically lower the cost
of managing data centers and administrative overhead.

Due to this, we choose to use Docker containers to build the trading platform. Looking
at Figure 5.2, it is able to observe how the Docker compose tool structured and connected
all necessary applications.

Now we will go through all these applications and frameworks and see how they work.

4JSON and XML are two human-readable formats for storing or transmitting data.

33

Architecture

Figure 5.2: Architecture of Docker-Compose

5.2 Technologies
As seen from the previous image we used Docker Compose that is a configuration tool
used for running multiple containers at once keeping all the components in the same place
letting them interact with each other. All of the configurations are defined in one file so
that the containers can be started with one command. Containers run the applications in
isolated environments so that they don’t enter in conflict with each other.

Now we will have a look at the components one by one.

5.2.1 Docker
Docker is an open platform for developing, shipping, and running applications [15]. You
may divide your apps from your infrastructure with the help of Docker, allowing a fast
software delivery. Users can package programs into a Docker-Image, which is a compact,
independent, executable bundle of software that includes all the operating system libraries
and dependencies needed to run the code in any environment. When launched on Docker
Engine5, a Docker image becomes a container, a loosely separated environment. An
advantage is that the container can be easily shared because the host doesn’t have to
worry about what he has installed on his device.

Architecture: docker uses a client-server architecture (Figure 5.3) where the client
communicate with the Docker daemon (server) through a REST API over a UNIX sockets
or network interface if the server is remote or through the CLI6 if both client and daemon
run on the same system. So the Docker daemon manages Docker objects like images,
containers, networks, and volumes while listening for requests made over the Docker API.
To manage Docker services, a daemon can also talk to other daemons. Docker registry is

5Open source containerization technology for building and containerizing your applications
6Command line interface

34

Architecture

used to publish or download public or private images.

Figure 5.3: Docker client-server architecture. Image took from [15]

Docker Compose

A tool called Docker Compose is used to create and manage services, which are multi-
container Docker applications. These may all be created and started with a single com-
mand after being specified using a specific file for each environment. Some features are
that one host can have multiple isolated environments and that it recreates containers
only when they change.

5.2.2 Celery
Celery is an open source distributed message forwarding based asynchronous task queue
or job queue. Although it enables scheduling, its emphasis is on real-time operations.
Using multiprocessing, the execution units, known as tasks, are carried out concurrently
on one or more worker nodes. Tasks can be executed asynchronously (in the background)
or synchronously (wait until ready). Despite being built in Python, the Celery protocol
can be implemented in any language and is simple to integrate with a wide range of web
frameworks, like Django in our case.

Redis

Celery typically requires a different service called a message broker to transmit and receive
messages between the application and workers because it interacts via messages. Redis is
one of the most popular message brokers for this use due to its compatibility with Celery.
In particular, it is a open source, in-memory data store used by millions of developers as
a database, cache, streaming engine, and message broker. It popularized the concept of a
system that functions as both a store and a cache. In addition to being saved on disk in
a format that is not suitable for random data access, it was created so that data is always

35

Architecture

modified and read from the main computer memory. Once the system has restarted, the
formatted data is solely restored into memory.

5.2.3 MongoDB
MongoDB [16] is a cross-platform document-oriented database application that is open
source. MongoDB, a NoSQL database application, employs documents that resemble
JSON and may or may not include schemas7. A document, or record, in MongoDB is a
data structure made up of field and value pairs. Values can be native data or also other
documents, arrays, and arrays of documents. Some key features are:

• High performance data persistence since it supports embedded data models to reduce
I/O activity on the system and has indexes for query faster.

• The Query API supports read and write operations (CRUD8) and also Data Aggre-
gation (pipeline that process documents with one or more stages), Text Search and
Geospatial Queries.

• High Availability through its replication facility called replica set. This is a group of
servers that maintains the same data set, providing redundancy and increasing data
availability.

• Horizontal Scalability by using a process called sharding, which consists in distribute
data across a cluster of machines.

• Supports multiple Storage Engines, which are the responsible for managing data
storage, both in memory and on disk. The performance of the applications can be
dramatically impacted by selecting the best storage engine for the use case.

Before we cited NoSQL, now we will have a look at what it is and where it comes from.

SQL and NoSQL

The programming language known as SQL, or "Structured Query Language," has been
used extensively since the 1970s to manage data in relational database management sys-
tems (RDBMS)9. When storage was still expensive in the beginning, SQL databases con-
centrated on minimizing data duplication. Today they are still very used using tables with
columns for the field type and rows for the records. One table record may be connected
to another record in the same table, to many other records, or to many records in another
table.

7An organization of data as a blueprint of how the database is constructed
8It is the acronym for CREATE, READ, UPDATE and DELETE that are the operations for

managing persistent data in relational and NoSQL databases.
9Is a type of database that allows to identify and access data in relation to another piece of data

36

Architecture

NoSQL is a non-relational database, which means it offers more flexibility to use the
format that best suits the data and different architecture than a SQL database.

When working with connected data, SQL is good. Relational databases are effective,
adaptable, and simple for any application to use. A benefit of a relational database is that
every instance of the database automatically refreshes when one user modifies a specific
record, allowing for real-time information to be delivered.

While SQL is preferred for assuring data validity, NoSQL is effective when it’s more
crucial that massive data can be available quickly. Additionally, it’s a wise decision when
a business needs to expand in response to shifting customer demands. It’s a wise decision
as well when a business must expand to meet shifting demands. [17]

So, in conclusion, in our case was chosen NoSQL with MongoDB because it is the best
DBMS when looking for high flexibility and versatility to real world scenarios.

5.2.4 Django
Django is a Python-based server-side web framework10 that is free and open-source. It
follows the model–template–views (MTV) architectural pattern and the primary goal is to
facilitate a quick creation of complex, database-driven websites.

Before diving into Django, lets have a few words about Python. Python is an in-
terpreted, object-oriented, high-level, dynamically semantic programming language. The
straightforward syntax that prioritizes readability makes it simple to learn, which lowers
the cost of program maintenance. Python’s support for modules and packages promotes
the modularity and reuse of code in programs. For all popular platforms, the Python
interpreter and the comprehensive standard library are freely distributed and available in
source or binary form.

Coming back to Django, Django is versatile since it can work with all client-side frame-
works, and can deliver content in almost any format, including HTML, RSS feeds, JSON,
and XML. It can scale for more traffic by adding hardware at any level because the various
components are completely separated. Other than that Django is very secure, because by
default it has protection against several vulnerabilities, such as SQL injection, cross-site
scripting, cross-site request forgery, and clickjacking. It also has an integrated authentica-
tion mechanism that manages user counts, groups, and cookie-based user sessions, support
for multiple cache mechanisms, end-to-end application testing and translating text into
various languages, local formatting dates, times, numbers and timezones.
It also has a lot of external libraries; for example in our case was used the REST-
Framework one that provides support for building APIs with validators and authentication
protocols with few lines of code.

At the beginning was mentioned that Django follows a model–template–views architecture,
so now lets see how it works. There are separate files that deals with different steps of
the communication between client and server which follow this schema (Figure 5.4):

10Software for designing web applications

37

Architecture

URLs : it is a mapper that is used to route HTTP requests based on the request URL
to the appropriate view. It can also look for specific strings or number patterns in a
URL and transmit those patterns as data to a view function.

View : is a function that handles requests and sends HTTP responses in response to
HTTP queries. Models provide views with access to the data they require to fulfill
requests, and templates are given control over the formatting of the answer.

Models : are Python objects that provide the data structure for an application and offer
tools for managing (add, change and remove) and querying database records.

Templates : is a text file that specifies a file’s structure or layout with placeholders are
used to indicate actual content.

Figure 5.4: Django MTV architecture.

5.2.5 React
React is a front-end JavaScript library that is free and open-source used for creating user
interfaces based on UI components. The basic idea is to create user interfaces by assem-
bling little pieces of code (called components) into complete websites without imposing
any type of architecture or pattern to developers.

These components are build using JSX, that is a combination of JavaScript and XML,
and they are the smallest building pieces with an inner state and properties that make
them flexible and reusable. JSX enables developers to construct elements containing both
HTML and JavaScript at the same time.

38

Architecture

Props and callback functions are used to interact among the components in the com-
ponent tree as data travels downward through it. This composition gets deep, tightly
connected, less maintainable, and prone to props-drilling in large React apps. This is
one of the reasons why complex React apps require architectural patterns like the Redux
pattern.

React-Redux

Is an open-source JavaScript package that is used to control application state while creat-
ing the user interface. It enables Redux Store data to be accessed by React components,
who can then send actions to the store to update the data (Figure 5.5). By offering a
practical method of managing state through a unidirectional data flow architecture, it
helps in the scalability of projects.
So lets define all the elements:

STORE : is the place where the entire state of the application is situated. It has a
dispatch (action) function used for handling the application’s status change.

ACTION : is dispatched or sent from the view and contains payloads that Reducers can
read. It is a pure object designed to keep track of user event data.

REDUCER : it reads the payload of the action and updates the store.

Figure 5.5: React Redux architecture.

39

Architecture

JavaScript

JavaScript is a programming language that enables the implementation of sophisticated
functionality on web pages like create dynamically updating content, control multimedia,
animate images etc. It is the third tier of the layer cake made up of standard web
technologies in which the first two being HTML and CSS. It is a type-safe, dynamic
scripting language, and the user’s browser’s interpreter executes the code rather than
transforming it by compiling it like in other languages like C and C++.

HTML

The most fundamental component of the Web is HTML (HyperText Markup Language).
It describes the meaning and structure of web content meanwhile the appearance / pre-
sentation and functionality / behavior of a web page are handled by CSS and JavaScript
respectively.

To annotate text, images, and other content for display in a Web browser, HTML uses
markups that include Tags. Tags consist of the element name enclosed by "<" and ">".
They are used to distinguish HTML elements from other content in a page. Case is not
relevant when naming an element inside a tag.

CSS

Cascading Style Sheets is a language for style sheets that is used to describe how a
document written in a markup language, like HTML, is presented. Layout, color, and
font may all be separated from the content by specifying the CSS in a separate file,
which reduces complexity and repetition in the structural content. This separation can
improve content accessibility, flexibility and control of the presentation characteristics,
enabling multiple web pages to share formatting, and enabling the style file to be cached
to improve page load speed between the pages that share the same file.

5.2.6 Nginx
Nginx is an open-source web server that is currently utilized as a reverse proxy, HTTP
cache, and load balancer in addition to its original function as a web server due to its
success. It was designed to have high concurrency and little memory utilization. Nginx
employs an asynchronous, event-driven approach where requests are handled in a single
thread rather than starting new processes for each web request.

One master process can manage numerous worker processes, so while the workers carry
out the actual processing, the master manages the worker processes. Each request can be
processed by the worker simultaneously without affecting other requests because Nginx is
asynchronous.

Nginx is utilized by a number of well-known businesses, including Microsoft, IBM,
Google, Adobe, LinkedIn, Cisco, Facebook, Twitter, Apple, Intel, and many others.

40

Chapter 6

Implementation

This chapter describes the back-end part of the application, which refers to the part of
a software system that is not visible to the user. This part of the system performs tasks
such as data storage and processing and is used to power many different types of online
applications. A server, a database, and a back-end application make up a website’s back-
end. The information is stored in the database, which is operated by the server. By using
server-side scripts to transmit requests and queries, the back-end application creates a
barrier between your server and the database. A good database should have the features
necessary to support an application’s needs, which means that, in our case, the database
should have a flexible schema and the ability to scale efficiently with the different types of
data. A well-implemented database will have adequate performance and security features,
and this will ultimately improve the overall functionality and efficiency of an application’s
system architecture.

Now the implementation of the back-end will be presented with the database and the
services exposed.

6.1 Database
As was already mentioned in the technologies section, for data persistence, a non-relational
database, specifically MongoDB, is being used. The collections are: User, Market, Chain,
Future, Group Strategy, Portfolio, Market History, Chain History and Club. Here we will
focus on the new ones and those that were modified or used.

6.1.1 MongoDB Collections
As said before, in MongoDB data records are kept as documents, specifically BSON doc-
uments1, which are organized into collections. Also for the collections definition it was
decided to not define Python classes but to use JSON dictionaries directly so that one
document can have a different structure from one another inside the same collection.

1A binary representation of JSON documents that has more data types than JSON

41

Implementation

User

Its a collection of user records that includes details for identifying each individual user,
such as email, name, and surname, as well as details about how they used the platform
(Table 6.1).

Field Description Data Type

id Unique identifier of the user inside of the
database Number

email Unique identifier for the authentication String

username Unique identifier for the user inside the ap-
plication String

password Unique string used for logging in String
first_name Name of the user String
last_name Surname of the user String

is_superuser If the user is authorized to administrative
tasks Boolean

is_active If the user is using the application Boolean
last_login Last time the user logged in Datetime
date_joined Date the user registered Datetime

Table 6.1: User’s table

Strategy

Collection of all the strategies created by the users and contains all the operations made
inside the application within a specific group of markets (Table 6.2). Every strategy
is identified by an unique id, but other than that it can be distinguished by its name,
belonging group of markets, and creator username. The strategy itself is composed by a
number of market positions that the user decides to open or close. Each position can refer
to either an option or a future. A strategy also has a "what-if" logic that enables the user
to alter parameters of one or more positions, such as the initial or final price, volatility,
the number of days before expiration, and many others, in order to run simulations on
the strategy’s performance.

Since strategies can be shared, each has a field called published that implies whether
or not other people in the platform can see the details of the strategy. When a strategy is
published, other people can interact with it by giving votes (upvotes, which can be seen
as likes) or saving it for another moment (bookmarks).

A strategy not only can be shared in a traditional way, but it can also be added to a
club, and this is tracked in the clubs field.

Club

A club is a place where a group of people gather and share strategies that the other
members can look (Table 6.3). In particular a club is composed by admins, members

42

Implementation

Field Description Data Type

_id Unique identifier auto-generated by the
database ObjectId

userId Username of the creator String

groupId Symbol of the group of markets which the
strategy belongs String

name Name of the strategy given by the user String
positions Array of position objects Array
created The strategy’s creation time and date Datetime
disabled If the strategy in the portfolio is disabled Boolean

closed If there are no open positions left in the
strategy Boolean

whatif Object with all the simulation information Object

clubs List of clubs ObjectId in which the strategy
is present Array

published Whether the strategy is public or private Boolean
bookmarks List of usernames that saved the strategy Array
upvotes List of usernames that voted the strategy Array

Table 6.2: Strategy’s table

and strategies. One club, other than being defined by its id, is also unique in the pair
creator_userId and name. This means that one user can’t create two clubs that have the
same name. One club also can have an image, a description and some contact or social
links.

Like the strategies, also clubs can be shared, and for this reason there is the published
field that defines if the club can be seen by the public. They also have the upvotes like in
the strategies.

Portfolio

This collection contains the user’s portfolios that are a virtual account that keeps the
overall balance of each user (Table 6.4). When a user creates a profile, a portfolio is
created with an initial value of €100,000. This value changes through time based upon
the performance of the strategies created by the user. Since the user and his portfolio
currently have a one-to-one relationship, it is identifiable by his username.

A portfolio has a list of strategies and clubs that were created by the user, and these
are inside the fields strategies and in clubs. The other_strategies field contains strategies
that are not created by the user, but created by somebody else and connected in some
way to the portfolio:

• The saved ones are those that the user have bookmarked while exploring other
peoples’ strategies.

43

Implementation

Field Description Data Type

_id Unique identifier auto-generated by the
database ObjectId

creator_userId Username of the creator String
name Name of the club given by the user String
img_path Position of the image in the disk String
created The club’s creation time and date Datetime
description Text that describes the club String

links List of objects containing contact informa-
tion Array

admins List of usernames that manage the club Array
nmembers Number of members Number
published Whether the club is public or private Boolean
upvotes List of usernames that voted the club Array
nstrategies Number of strategies in the club Number
strategies List of ObjectIds of the strategies Array

Table 6.3: Club’s table

• Opened are the last 10 strategies that the user opened, and they can be both from
other people or the user personal strategies.

• The shared field contains the strategies that some other user sent to the user owner of
the portfolio. They are saved in objects with the id of the strategy and the username
of the sender.

6.2 REST APIs
This section is about the most important APIs created to allow the user to interact with
the data through the client application. These web services follow the REST guidelines
and serve as an interface for the following elements: user, market, chain, future, strategy,
portfolio and club. Same as before, we will describe only the most important ones that
were involved in this work and the new ones.

Different HTTP methods have been used to define special URLs for each of them. To
distinguish them from other web services that do not require authentication and are not
a part of the REST API architecture, it is vital to highlight that all declared paths begin
with the prefix /api.

It is essential to note that all of the APIs are secure and connected through HTTPS
before beginning the discussion of each one. In fact, an HTTP 401 Unauthorized error is
returned for every request made by an unauthenticated or unauthorized client. A user,

44

Implementation

Field Description Data Type

_id Unique identifier auto-generated by the
database ObjectId

userId Username of the holder String
name Name of the portfolio String
value Total balance Number
currency Currency used for the portfolio String
created The date of creation Datetime

strategies List of ObjectIds of the strategies associ-
ated to the portfolio Array

clubs List of ObjectIds of the clubs associated to
the portfolio Array

other_strategies Object with different types of strategies ar-
rays Object

other_strategies
.saved List of ObjectIds of the strategies saved Array

other_strategies
.opened

History of the last strategies’ ObjectIds
opened Array

other_strategies
.shared

List of Objects of the strategies shared to
this portfolio with the sender username Array

Table 6.4: Portfolio’s table

to be authenticated, goes through the login process in order to obtain his session cookie2.
In the login process the server follows the default implementation provided by Django
Authentication System [18] which consists in four steps:

1. With the user’s username and password, the client application posts an HTTP re-
quest to the server.

2. The server queries the database for the username, hashes the provided login pass-
word, and compares it with the previously stored hashed password. If it is invalid,
the client will receive an HTTP 401 Unauthorized error and access will be prohibited.

3. If the request is legitimate, the database will generate and store a session ID that
specifically identifies the user’s current session. The session ID may also have a time
or date limit to prevent indefinite use of the user’s session. It will then be attached
to a cookie that will be sent back to the client as a response.

4. Cookies will be connected to any future client requests that requires user authenti-
cation, and the server will just need to verify that the session ID stored inside the
cookies is still valid. If so, access is given; if not, a fresh login request is necessary.

2Small text file that the website stores on the user’s device with different type of information.

45

Implementation

In addition to this Django comes in handy also for other security features like the
protection against Cross Site Request Forgeries (CSRF). In this case it offers a middleware3

and a template tag [19] that help avoid the "login CSRF" attack, where when a malicious
site manipulates a user’s browser to log in to a site using another person’s credentials.

In particular, a CSRF attack is a sort of attack in which a malicious web page, email,
blog, instant message, or application directs a user’s web browser to carry out an un-
desirable activity on a reliable site after the user has authenticated. Browser requests
automatically contain all cookies, including session cookies, which is how a CSRF attack
operates. As a result, if the user is authenticated on the website, the website is unable
to tell the difference between genuine approved requests and fake authenticated ones. It
follows that a challenge-response system that authenticates the identity and authorization
of the requester is necessary in order to prevent this type of attack.

6.2.1 User APIs

These APIs are in charge of providing data about the user, as well as his portfolio, strate-
gies and clubs. For the strategies and clubs, these services not only provide information,
but they can also add, modify and delete elements already existing.

– User general purpose –

api/users/

Only the HTTP GET method is permitted, and it only returns information about the
user who is now signed in. This is done without requiring any sensitive data to be sent in,
like a username or email address because after authentication, Django actually saves its
identifier (such as a username) in the session that is accessible for any subsequent HTTP
requests made by the same user until the session expires.

api/users/search/

Only the HTTP GET method is available because it provides the list of all users. This is
needed for searching for users to add to a club. It searches all users that match the first
letters of the username that has been written in a form. This has been done by using a
regular expression4 that determines whether a string (username in the database) begins
with the characters of a specified string that corresponds to the ones typed in the search
form in the client interface.

3Type of software that permits various forms of connectivity or communication between various
applications or application components.

4Also referred as regex or regexp, is a a string of characters that designates a text search pattern.

46

Implementation

api/users/search/share/strategy/

Similar to the previous one, it searches for users that don’t already have a specified
strategy shared to them. It is used when a user want to share a strategy to another user
inside the application. It works just like the previous API, with a regular expression on
the username, but here users are filtered if the strategy has already being shared to them.

– Portfolio –
api/users/portfolio/

Only the HTTP GET method is permitted, and it returns information on the portfolio of
the logged-in user. Since a user is limited to having a single wallet, as was already said,
only the username already present in the session is needed.

– Strategies general purpose –
api/users/strategies/

For the strategies both HTTP GET and POST methods are available:

1. GET method: returns the list of strategies of the logged-in user. Each element
has details that summarize the single strategy. The user can also filter the results
by name.

2. POST method: it lets the user create a strategy to be added to his portfolio.
Before the insertion in the database the server checks if the fields in the body are
valid:

• name field: is the name given by the user.
• groupId field: identifier of the market group to which the strategy belongs.
• published field: boolean field that indicates if the strategy is public or private.

By default is set to false, that means not published.

If the validation procedure is completed successfully and without any problems, the new
strategy is inserted into the database after being associated to an auto-generated id, and
at the end the server responds with the produced id.

api/users/strategies/:id/

For the single strategy are available HTTP GET, POST and DELETE:

1. GET method: returns the data of a single strategy. After receiving the request,
the server checks if the id exists in the database. If it exists, the server returns all
the information of the strategy requested, otherwise it responds with an HTTP 404
Not Found error.

47

Implementation

2. POST method: it lets the user modify one of his own strategies. The server
validates the body of the request after having checked if the strategy exists. The
user can modify these strategy fields:

• name: change the name.
• positions: add, modify or remove one or more positions.
• whatif : update the "whatif" values.
• published: change the visibility of the strategy.

3. DELETE method: the user can remove a owned strategy from the database. After
this operation the strategy is removed permanently from the application without the
possibility to recover it.

api/users/strategies/:id/:chart-id

By using the HTTP GET method, it is possible to get related chart information for each
individual strategy. For the strategy Payoff and Greeks information, the chart-id path
parameter may be enhanced with profit or greeks, respectively. The API always returns
an array of JSON objects with data for each possible market price.

– Strategies organization –
api/users/strategies/:page-category

Returns strategies belonging to a specific category though a HTTP GET method. A query
string can be used for filtering results according to strategy name, group of belonging and
creator username. Some of the categories also have a POST method.

1. GET method: returns a different list of strategies according to the category re-
quested. Just like in the GET of the strategies of the user, each element returned in
the list has details that summarize the single strategy.

• explore category: retrieves all the strategies that are public (published field
equal to true).

• saved category: retrieves the strategies that the user saved by giving them a
bookmark.

• history category: gets the last 10 strategies that the user opened. The strate-
gies can be both of the user or of other users.

• share category: recovers the strategies that had been shared with the logged-in
user.

2. POST method: adds a strategy id to the correct list according to the category.

• history category: once a strategy is opened, it is saved in the list of "opened"
strategies. There is a max of 10 strategies that will be tracked, so the database
first checks if there aren’t already 10 strategies in the list and: if there aren’t,

48

Implementation

it adds the id at the top of the list, otherwise it "pulls" or removes the last one
and adds the new one as first.

• shared category: when a user shares a strategy to another user, the recipient
receive in his "shared" list another entry which is an object with the sender
username and the strategy-id.

api/users/strategies/mypublic/

Returns, through a GET method, all the public strategies that the user has created. This
is needed when the user wants to add a strategy to a club.

– Strategy votes –
api/users/strategies/:id/upvote/

It manages, through a POST method, the upvote of a strategy by adding or removing the
username to the array of users that upvoted the strategy in question.

api/users/strategies/:id/bookmark/

It manages, through a POST method, the bookmark of a strategy by adding or removing
the username to the array of users that bookmarked the strategy.

– Clubs general purpose –
api/users/clubs/

For the clubs both HTTP GET and POST are available:

1. GET method: returns the list of clubs of the logged-in user. Each club of the list
has summary of the single club. The user can also filter the results by name.

2. POST method: creates a club to be added to the user’s portfolio. When a club is
created, the user creator is automatically also promoted to admin. Before adding it
in the database, the server checks if the fields in the body are valid:

• name field: name given by the user.
• published field: boolean value that indicates if the club is public or private

and by default is private.
• img_path field: is a string with the directory path where is situated the display

image. If no image is selected a default one is placed.
• description field: is a brief description of the club with a limit of 256 characters.

The description can also be empty.
• links field: is an array of objects with the link information. The object is made

by the link title and by the URL itself.

49

Implementation

api/users/clubs/:page-category

Returns the clubs that belong to the category selected through a HTTP GET method.
The results can be filtered by name and username of the creator with a query string
inserted by the user. Both the categories have only the GET method:

• joined category: retrieves all clubs in which the user is member or admin but doesn’t
own.

• explore category: retrieves all the clubs that are public (published field equal to
true).

api/users/clubs/names/

Retrieves all the names of the clubs created by the user through a GET. There is to note
that the club names for the same user are unique. When creating or modifying a club a
control is being done and in case of a duplicate the user is alerted and informed.

api/users/clubs/admin/administrate/

Returns all the clubs in which the user logged-in is admin with a GET method. This is
needed when the user wants to share a strategy to a club because only admins can add
or remove strategies.

api/users/clubs/:id/

Same as for the single club, there are HTTP GET, POST and DELETE methods.

1. GET method: returns the data of a single club. Upon receiving the request, the
server checks if the club exists in the database. If it exists, the server returns all the
information of the club, otherwise it responds with an HTTP 404 Not Found error.

2. POST method: it lets the user modify the club. After confirming that the club is
present, the server verifies the request’s body. The user can modify these fields:

• name: change the name.

• published: change the visibility.

• img_path: replace the display image.

• description: modify the text of the description.

• links: add, remove or update a link.

3. DELETE method: the user can remove a owned club. This operation is allowed
only if there aren’t any members still in the club.

50

Implementation

api/users/clubs/:creator_userId/:name

This HTTP GET is very similar to the GET of the one above, but is made not with the id,
but with the pair creator_userId and name of the club. As mentioned before, a club name
can’t be duplicated by the same user, so this pair should be unique. The requests returns
all the information about the club. The purpose is that one club should be possible to be
retrieved from the club page url (which includes the username and the name), so that if
someone shares the link, the page can load the club from only the information of the url.
The decision was made so that the url is more readable since it contains who made the
club and the club’s name, instead of only the id like in the strategies.

– Club votes –
api/users/clubs/:id/upvote/

Just like in the strategies, it manages the upvotes through a POST method.

Clubs members and admins
api/users/clubs/:id/member/:username/

It manages members with a POST and DELETE method.

1. POST method: adds the user to the club by adding one entry to the user’s clubs
in the portfolio collection. It also increment the counter of members in the club
collection. A user can join a club if some admin invites him or, if the club is public,
he can join autonomously through the club’s page.

2. DELETE method: this method is used when the user is being expelled or just
wants to leave the club. This works both for users and admins. Similarly as the
POST, it decrements the member counter in the club collection and removes the
club id from the clubs field in the portfolio collection. If the user was an admin, it
also removes the username from the admins field in the club collection.

api/users/clubs/:id/admin/:username/

Just like for the members, admins have the POST and DELETE method:

1. POST method: is used to add an admin to the club. When a user creates a club,
he is automatically promoted to admin. At this point he has the power to promote
other users that are members of the club. In particular this method just adds to the
list of admins in the club collection the username of the user.

2. DELETE method: in the contrary to the previous one, this demotes an admin to
a member by removing the username from the array of admins in the club.

Both methods don’t have an impact to the portfolio collection, where there are all the
clubs in which is present the user, because the user, if is not admin, still remains a member
of the club. These methods just concern the array of admins in the club collection.

51

Implementation

– Club strategies –
api/users/clubs/:id/strategies/:strategy-id

This API manages the club’s strategies with a HTTP POST and DELETE methods:

1. POST method: simply adds the strategy id to the list of strategies of the club.

2. DELETE method: in the contrary this removes the strategy id form the list.

Both operates not only on the club collection, but also on the strategy one. In the strategy
record, in the clubs field, is added or deleted the club id. This is done in order to know
in which club the strategy is found.

52

Chapter 7

Client application

We had a look at the back-end of the application, in particular at the server, so now we
will have a look at the front-end part, by discussing the client side. A client is a program
that uses the services provided by the server. These services are accessed by the client by
doing requests that we already saw in the previous chapter.

Front-end web development is the process of creating a website’s graphical user inter-
face using HTML, CSS, and JavaScript so that visitors can view and interact with it. One
of the greatest challenges for a developer is to create a user interface that each of the users
can easily understand and use. There is also the need to ensure that they have access to
the necessary data for their application to function properly, so that they will find much
easier to accomplish tasks. Consistent navigation, formatting, and design elements help
the user quickly and easily navigate through the web application. Some users may have
limited access to certain functionalities according to their role and permissions.

The client application’s user interface will be covered in this chapter. Along with
it there will be explained the data management that supports and interacts with the
interface providing the necessary information and data.

7.1 User interface

As already told at the beginning of the document, the application front-end or interface
is being developed using the React framework with the support of HTML and CSS.
The application is made up of many parts: Markets, Strategies, Portfolio and Clubs. The
focus will be on the Strategies and Clubs pages since they have been the main components
being developed for this thesis.
After the login the user will be presented with a navigation bar with all the parts and
some user management buttons like the profile and the log-out button and under the bar
the Market page is open by default.
From here the user can navigate through the pages with the names in the navigation bar.

53

Client application

7.1.1 Strategies
This page is divided in three columns. The first one indicates what types of strategies are
displayed, the second one shows the strategies available for that category and the third is
a blank space where the open strategies will be displayed (Figure 7.1).

Figure 7.1: Strategy page with three open strategies

The first column, with the buttons aligned vertically, is where there are all the categories
of strategies, these are:

• My strategies: category in which there are all the strategies that have been created
by the user.

• Saved strategies: contains all the strategies which have a bookmark given by the
user.

• Last opened strategies: when a strategy is opened as a card, it is saved here in
order to track the latest opened strategies. It is a history of the strategies that the
user has looked at.

• Shared with me strategies: place where the logged-in user receives strategies
shared by other people.

• Explore page: here users can go and look at what strategies other users have
created and made public.

54

Client application

According to the category selected, in the second column, are presented the strategies
in a summarized format. Strategies can be searched by name or creator username and
ordered by date, popularity, number of positions and number of clubs they are in. At the
top there is also a button that opens a modal for creating a new strategy by inserting the
name, choosing the visibility and the group it will belong to. Depending on what category
is selected, the summary is different (Figure 7.2):

• My strategies: here the strategies are presented with: the visibility, the name, the
profit, the number of bookmarks and upvotes.

• Saved strategies, Last opened strategies and Explore page: same as for the
My strategies but instead of the upvotes, there is the username of the creator of the
strategy.

• Shared with me strategies: also same as for the Saved strategies but it has also
the username of the user that shared the strategy.

(a) My strategy (b) Saved, history and explore (c) Shared

Figure 7.2: Different types of representation for the strategies

Also, for the categories saved, last opened and shared, if another user’s strategy becomes
private from public, the table entry will disable the possibility to open the strategy, view
the summary and will display: "[name of the strategy] has become private" as shown in
(Figure: 7.3). In this way if a user decides to transform one of his strategies from public
to private, the strategy information will only be accessible to him even if it is situated in
other peoples feeds. All of this is not valid if the strategy in question is owned by the
user, so if the strategy has become private but the user owns it, the information is visible
and the strategy can be opened.

Figure 7.3: Private strategy seen by other users that are not the owner

The third column is like a whiteboard where strategies selected from the second column
are opened as Cards in a three column grid. Here the user can open more than one
strategy at the time with an overview of the trend and profits. Strategies can be opened
from different categories and will stay open even if the category changes.

55

Client application

Card : the card represents a single strategy with at the top a brief summary on the
trend, costs and popularity and at the bottom three expandable windows to view
some details:

• the payoff graph, both at now and when it expires
• the group of markets in which it belongs
• the currently open positions

The card is different if is owned by the user logged-in or not:

• Owned strategies show also if the strategy is public or not and have the bookmark
button disabled because the user can’t save his own strategies.

• Not owned strategies have a colored border to have a distinct difference from
the owned ones. In the Markets window, the link for accessing the market page
is disabled just like the position numbers in the Opens window because the user
does not own the strategy and have not authorization to modify it.

In the very top left of the card there are some control buttons and in the top right
there is one to open the strategy in a page and the other one for sharing it.

Page : the strategy page simply has the card information displayed at full screen. This
is useful if someone wants to have every data information of the card open and with
more space (Figure 7.4). In this page the user can also share the strategy (if its
visibility is public) and modify its attribute like name and visibility through the
settings if the strategy is owned by him. If the strategy becomes private after being

Figure 7.4: Page of a strategy

56

Client application

shared, the page will show a blank page with written that the strategy is private like
shown in Figure 7.5.

Figure 7.5: Accessing to a not owned private strategy page

Share Modal : this modal (Figure 7.6) can be accessed through the Card or the Page
by clicking on the share button (arrow). The button is visible only if the strategy is
public. Here the strategy can be shared:

• inside the application with another user, and the receiver will find it in the
Shared with me strategies category.

• to a club only if the club is owned by the user or he is one of the admins.
• outside the application through the link of the strategy’s page.

(a) Share directly (b) Share inside a club (c) Share on social media

Figure 7.6: Different tabs for sharing a strategy in different ways.

57

Client application

7.1.2 Clubs
The club page is composed by a column with the club strategies and the column with the
list of clubs with a top part with some controls (Figure 7.9).

Figure 7.7: Club page

On the left, just like in the strategies, there are the clubs categories:

• My Clubs: category in which there are all the clubs created by the user.

• Joined Clubs: where all the clubs that the user joined are situated.

• Explore Page: place where users can go and join public clubs created by other
users.

The rest of the page is occupied by the list of the clubs that are represented by cards
with some information which include: name, creator username, number of members and
strategies, description and number of upvotes that it received. In the My Clubs category
the club also shows the visibility of the club.

At the top there are some controls to filter by name or creator and sort the clubs
according to: date, upvotes, number of members and number of strategies. If the category
selected is My Clubs, the user has at the top one more button that opens the modal for
creating a club.

58

Client application

Figure 7.8: Modal for creating a club

Upon clicking one of the cards, the selected club page opens up (Figure 7.9).

Figure 7.9: Page of an open club

59

Client application

This page is also divided in different parts:

1. The first column has a description of the club with all his attributes and at the top
a button to go back to the page with the list of the clubs.

2. The second one has the list of all the strategies that had been added to club. They
can be opened, filtered by name and creator and sorted by different parameters. If
the user is an admin he will also have two buttons for adding and deleting strategies
from the club. If the one of the strategies changes visibility from public to private, it
will show the same message that was displayed in the strategies page. If this strategy
is owned by the user, the table entry will be disabled, but the information of the
summary will still be visible as show in Figure 7.10.

Figure 7.10: Owned private strategy inside a club

3. The third part, just like the strategies, is a empty space where strategies cards can
be opened. The cards are the same as in the strategy page.

4. The last part on the left is composed by the list of the admins and members.

At the top left of the page there will be the button that let a new user join (Figure 7.11)
and if he’s already in, there will be a button with commands (Figure 7.9).

Figure 7.11: Button for joining a club

If the user is a member, the user can just leave the club
through the button in the modal that appears when clicking
the gear button in the top right corner. The leave club is
the only available option for members when opening the
dropdown.
If instead he is an admin (Figure 7.12), he can change the
club settings, leave the club, close the club or, by accessing
the manage members page (Figure 7.13), promote members to
admin, demote admins to member or expel members.

Figure 7.12:
Club dropdown

An admin can’t leave the club if he is the only admin and there are still members. He
can close the club if he is the only admin and there are no members (Figure 7.14).

60

Client application

Figure 7.13: Manage members page

Figure 7.14: Modal of warning when the last admin is trying to leave.

If a user try to access to a private club via url, but the user
is not either owner or member, the page will not be accessible
and it will display a suggestion as in Figure 7.15.

Figure 7.15:
Private club page

61

Client application

7.2 Data management
Now we will have a look at how the data is handled in the front-end after being sent from
the server. The managements has been done using the React Redux library of the React
framework. It works by having one single data source called Store which is accessible by
every component (Figure 7.16).

Figure 7.16: React-Redux Store, image from freeCodeCamp

It comes handy in order to avoid duplication of inconsistent data between different com-
ponents and is also very useful for simplifying the development and the maintenance since
it is strict about the structure of the code, which makes it simpler for someone who is
familiar with Redux to comprehend the organization of any application.

Another key feature is that the state is always predictable, this is because reducers are
pure functions, they always deliver the same result when the same state and action are
supplied to them.

7.2.1 React Redux Store
A store is an immutable object tree, or a state container, which is in JSON format and is
stored inside the browser and whose access is restricted to the application that instantiated
it. Only one store can exist for one application and it’s lifecycle is related to the program
one.

In our case the object consists of other nested objects, one for each section of the
application. In this way each section has its own data which corresponds to its object
with its elements inside.
{

"app": {
"mode": " Authenticated ",
"wait": 0, "open": false ,
" loading ": false , " failed ": false ,
" groups ": [{" symbol ": "^GSPC", "name": "S&P 500","type": " index "}, ...] ,
" exchanges ": [{" symbol ": "CBOE", "days": [1 ,2 ,3 ,4 ,5] ,"name": ...} , ...] ,

},

62

https://www.freecodecamp.org/news/what-is-redux-store-actions-reducers-explained/

Client application

"user": {" email ": " team@finance .com", "name": ...} ,
" modal ": {"show": false , " title ": ""},
" markets ": { "open": true , " loading ": false , " failed ": false , " search ": "", ... },
" strategies ": {

" search ": "",
" results ": [...] ,
" charts ": [...] ,
"page": "My Strategies ",
" pagination ": {},
" strategy ": {" markets ":[] , " upvotes ": [], " published ": false , ...}
...

},
" portfolio ": {

" currency ": "EUR",
" value ": 0, " stats ": {},
" chart ": {...} ,
" strategies ": [...] ,

}
" clubs ": {

" results ": [...]
"page": "My Clubs ",
"club": {"_id": "", "name": "", " admins ": [], ...}
" pagination ": {},
...

}
}

The store is a read/only state, so in order to change it the library provides the Reducer
function. This function accept as input the current state of the store and one action
which is an object that describes what happened. The Reducer is called like that because
combines the two inputs to produce the new instance of the updated state (Figure 7.17).

Figure 7.17: React-Redux Reducer, image from freeCodeCamp

Actions are often created following a user interaction with the view that results in an
event, or within an asynchronous process.

Additionally, it was used a middleware of the React Redux library called Effect which
manages actions and allows them to not necessary being handled in a Reducer. The Effect
lets perform asynchronous tasks like HTTP calls to external APIs.

63

https://www.freecodecamp.org/news/what-is-redux-store-actions-reducers-explained/

Client application

7.2.2 Data flow
Now lets examine what happens when the user interacts with the User Interface. A
unidirectional flow of data between the views and the store is obtained and ensured by
using the set of elements describes before. Lets make a real example (shown in Figure
7.18) in which the user wants to change a "club category".

As a first action, the user clicks on a category from the list that launches an event (1).
The event is then intercepted by its handler that creates a JSON object with: the

requested action (LOAD_CLUBS), and the information of the event (that contains some
information about the category clicked). This object then becomes an input of the dispatch
function provided by Redux, which is the only way of updating the state (2).

The middleware Effect receives the action as input and decides how to proceed with
the following tasks based on the type of action. In this case it will call a HTTP GET to
the API /users/clubs/:category (3).

The asynchronous nature of the call requires the input of two callback functions, one
to handle the response and the other to handle any errors. The dispatch function will
be applied in both scenarios to communicate the server’s response via an action (such as
LOAD_CLUBS_SUCCESS or LOAD_CLUBS_FAILED) (4).

At this point the Reducer will take the action and the latest state in the store and
based on the action type, the store will be updated with the new data of the API (5).

Finally the view will be updated to show the new information by React (6).

Figure 7.18: React-Redux data flow example

64

Chapter 8

Use cases

A use case is a detailed explanation of how users will utilize your website to complete tasks.
It describes how a system behaves in response to a request from the user’s perspective. A
use case starts with a goal, describes the actions that users take, and specifies what the
system response is to each action. So each use case is described as a series of actions that
start with the user’s objective and finish when that objective is achieved. Use cases are
valuable because they help to describe how the system should function and ensure that
there is a match between expectations and the delivered response.

It provides clear instructions on how a user should utilize a system or software and
identifies common tasks that should be performed through it. It is an essential tool for
software development as it helps with both conceptualization and design patterns. It can
also help with user training and testing of new systems or software modules.

A use case can also be defined as a set of scenarios that collectively describes, from
the perspective of the system, what a set of actors can do with it and what outcomes can
be expected from a particular sequence of interactions. Use cases can also be defined as a
set of functional requirements specifying what tasks and services should be supported by
the system from the perspective of the system, what a set of actors can do with it, and
what outcomes can be expected from a particular sequence of interactions.

Every use case should at least include: who is using the system, called an "actor,"
the user’s goal, and the steps that he takes to accomplish it with the responses from the
system. A use case is described as scenarios, also called flows, that describes the system’s
behavior in different conditions. The main one is called Main success scenarios that is
when everything goes well. Then there are Alternative paths that are variation of the
main one. A scenario also can’t occur if the preconditions are not satisfied.

65

Use cases

Create a strategy : in this use case the user creates a new strategy (Table 8.1). In
the strategies page, if the My strategies category is selected, the user can click on
the plus button (Figure 8.1a) and, through the modal, decide the name, the market
group and the visibility (Figure 8.1b). Once confirmed the chooses with the save
button of the modal, a HTTP POST will be called with the information provided
by the user. The information is then saved in the database and the user will be able
to observe the new strategy in the list of his strategies after an HTTP GET called
automatically updates the list. In case of some error, the user will be informed by a
error modal.

Use Case 1 Create strategy
Actor User

Pre-condition The user is authenticated and is in the
Strategies page in the My strategies section.

Post-condition The user has created a new strategy that
can see in the list of owned strategies.

Basic flow

The user clicks on the plus button, inserts a
valid name, selects a market group and the
visibility in the modal opened. Once fin-
ished confirms his choices by creating the
strategy.

Alternative flow
The user inserts a name that is not valid
and the system doesn’t let him create the
strategy.

Table 8.1: Use case: create strategy

(a) Create strategy button. (b) Create strategy modal.

Figure 8.1: Create strategy stages

66

Use cases

Create a club similar to the previous use case, the user creates a new club in the clubs
page only if the My Clubs category is selected (Table 8.2). The user can click on
the Create Club button (Figure 8.2a) and, through the modal, decide the name, the
visibility, display image, description and links (Figure 8.2b). He’s obliged only to
have a name in order to continue, the other fields are optional. An HTTP POST
will be called with the information provided by the user when the user clicks on the
save button of the modal. In this way the information is saved in the database. At
this point a HTTP GET will retrieve the list of clubs updated with the new club
just created. In case of some error in the process, the user will be informed by a
error modal.

Use Case 2 Create a club
Actor User

Pre-condition The user is authenticated and is in the
Clubs page in the My Clubs category.

Post-condition The user finds the new club in the list of
his own clubs.

Basic flow

The user clicks on the Create Club but-
ton, inserts a valid name in the modal and
saves. Once finished confirms his choices
by creating the strategy.

Alternative flow
The user inserts a name that is not valid
and the system doesn’t let him create the
club.

Table 8.2: Use case: create club

(a) Create club button.

(b) Create club modal.

Figure 8.2: Create club stages

67

Use cases

Share a strategy to a club in this use case the user wants to add a strategy to a club
in which he’s one of the admins (Table 8.3). First the user needs to select a public
strategy. Once chosen and opened as a card, he has to click on the arrow at the top
of the card (Figure 8.3). A modal will appear with three tab. He will choose the
second that says Share to a club, click the search bar and either choose a club from
the list or write for the name and click on it and finally click on the Add strategies
to club button (Figure 8.3). At this point a HTTP POST will be performed to save
the id of the strategy in the club collection and the strategy will be visible in the
club page.

Use Case 3 Share a strategy to a club
Actor User

Pre-condition
The user is authenticated, has the Strategy
page open, has at least a public strategy in
the list, and is admin in at least one club.

Post-condition The user finds the strategy in the list of
strategies in the club chosen.

Basic flow

The user clicks on a public strategy that
he wants to share. This will open as a card
and present the share button. Once clicked
the share button a modal will appear with
three tabs. The user chooses the Share to a
club one and selects a club from the search
bar after clicking on it. After the selected
club is present in the search bar he clicks
on the button below to add the strategy.

Alternative flow 1 The user selects a strategy that is not pub-
lic and doesn’t have the share button.

Alternative flow 2
In the sharing modal the user doesn’t select
the right tab and shares the strategy to a
user instead of a club.

Table 8.3: Use case: share strategy to a club

Figure 8.3: Share strategy to a club stages

68

Use cases

Close a club in this case the user wants to delete one of his own clubs (Table 8.4). The
user has to open the club that he wants to close, click on the settings button in
the top corner and select "close club", which is the last option (Figure 8.4). This
option appears only under the circumstance of the user being admin and the club
being without any members. After the club is closed the user will be redirected
to the clubs page with all his other clubs displayed. When the button is clicked a
HTTP DELETE will be called, and this will go in the database and remove every
information of the club by eliminating the entry in the club collection and the id
saved in other collections.
If there are some members or other admins they have to be expelled either one by
one or all together.

Use Case 4 Close a club
Actor User

Pre-condition
The user is authenticated, has the club
page open, is the only admin and there are
no members.

Post-condition The club is being deleted and disappears
from the list of owned clubs.

Basic flow
The user clicks on the settings button in
the top corner and on the "close club" in
the drop-down menu.

Alternative flow 1
The club still has members or admins, so
the "close club" button in the drop-down
doesn’t show up.

Table 8.4: Use case: close a club

Figure 8.4: Close club button location

69

Chapter 9

Conclusions

Since strategies on derivatives can become complicated for retail investors, it is therefore
important, in order to encourage investments, to observe strategies that other people,
maybe more experienced, have made available to the public.

In this context is inserted this work, which aim is to create sharing features in a
platform in which users have the ability to conduct analysis of the derivatives market and
create operational strategies on future and option contracts.
This has been achieved in this thesis by giving the user the possibility to make his strategies
publicly visible and share them not only through a web link, but also by sending them
directly to another user or to a group of people inside the application.

Aside from that, users can interact with strategies by saving or upvoting them to let
others know that they liked them. This means that the best strategies are quantified by
the number of votes received.

It is also possible to form groups of people, called "clubs", within which investment
strategies can be shared. The entry allowance for a club can be free or not depending on
whether the club is open to the public or private. Just like the strategies, clubs can be
evaluated by the number of votes or members.

From a technological perspective, the implemented technologies serve as strong foun-
dations for future functional extensions with advancements. The ones utilized, like React,
Django, and MongoDB, are already the most famous and used among the "over the top"
companies. These tools are well documented and supported, and are continuously updated
with new features and upgrades.

The sharing features of the application allow users to study financial data by observing
what other traders are doing, enabling investors to track the trading activities of both
novice and experienced traders.

Having considered everything, in conclusion, this application can allow to welcome a
broader number of users in the complex derivatives world, as it tries to fill the gap between
expert and novice investors.

70

Conclusions

9.1 Future work
For what concerns future works, the application can be extended on different fronts for
the social part. For example, a feature missing is the user’s profile that can be looked at
by other people to study the different approaches and decisions taken in the past and the
performances of these decisions and tactics. This should be different from the portfolio
page since it would be open to the public. On this page, for example, people can have
a look at the public strategies and clubs created by the user, and maybe have a brief
summary of the user’s performances, like a dashboard.

Also, the possibility to have friends, which are users that accepted the invite to be the
user’s friend, with which to compare different approaches, ideas and performances. They
can also be the only type of user with which a user can interact, like sending strategies or
inviting to a club.

Notifications both in the app or via mail, can be added in order to notify the user
about certain tasks and actions that have been performed. In particular some essential
ones would be some responses from the server when something is done. For example, as
for now, when sending a strategy to another user, the sender doesn’t know if it has arrived
or not except from the page loading. Notification via mail can be used for more important
and big events, like the announcement that a club, in which the user is present, will be
closed.

71

Bibliography

[1] Campbell R. Harvey. Shares. Accessed: 2022-08-19. url: https: //financial-
dictionary.thefreedictionary.com/Shares.

[2] Farlex Financial Dictionary. Financial Instrument definition. Accessed: 2022-08-19.
url: https://financial- dictionary.thefreedictionary.com/Financial+
instrument.

[3] Campbell R. Harvey. Stock. Accessed: 2022-08-19. url: https : / / financial -
dictionary.thefreedictionary.com/stock.

[4] Campbell R. Harvey. Bond. Accessed: 2022-08-19. url: https : / / financial -
dictionary.thefreedictionary.com/bond.

[5] Campbell R. Harvey. Commodity. Accessed: 2022-08-19. url: https://financial-
dictionary.thefreedictionary.com/commodity.

[6] Office of the Comptroller of the Currency. Financial Markets. Accessed: 2022-08-16.
url: https://www.occ.treas.gov/topics/supervision-and-examination/
capital-markets/financial-markets/index-financial-markets.html#:~:
text=Financial%20Markets%20include%20any%20place,who%20have%20capital%
20to%20invest..

[7] Will Kenton. Exchange. Accessed: 2022-08-16. url: https://www.investopedia.
com/terms/e/exchange.asp.

[8] Gordon Scott. CBOE Options Exchange. Accessed: 2022-08-16. url: https://www.
investopedia.com/terms/c/cboe.asp.

[9] James Chen. Chicago Mercantile Exchange (CME). Accessed: 2022-08-16. url: https:
//www.investopedia.com/terms/c/cme.asp.

[10] Rajeev Dhir. EUREX. Accessed: 2022-08-16. url: https://www.investopedia.
com/terms/e/eurex.asp.

[11] World Economic Forum. Newly Empowered Investors. Accessed: 2022-08-16. url:
https://reports.weforum.org/future-of-financial-services-2015/newly-
empowered-investors/?doing_wp_cron=1662191016.5359039306640625000000.

[12] Matthias Pelster and Annette Hofmann. About the Fear of Reputational Loss: Social
Trading and the Disposition Effect. Page 26, accessed: 2022-08-20. url: https :
//papers.ssrn.com/sol3/papers.cfm?abstract_id=3057533.

72

https://financial-dictionary.thefreedictionary.com/Shares
https://financial-dictionary.thefreedictionary.com/Shares
https://financial-dictionary.thefreedictionary.com/Financial+instrument
https://financial-dictionary.thefreedictionary.com/Financial+instrument
https://financial-dictionary.thefreedictionary.com/stock
https://financial-dictionary.thefreedictionary.com/stock
https://financial-dictionary.thefreedictionary.com/bond
https://financial-dictionary.thefreedictionary.com/bond
https://financial-dictionary.thefreedictionary.com/commodity
https://financial-dictionary.thefreedictionary.com/commodity
https://www.occ.treas.gov/topics/supervision-and-examination/capital-markets/financial-markets/index-financial-markets.html#:~:text=Financial%20Markets%20include%20any%20place,who%20have%20capital%20to%20invest.
https://www.occ.treas.gov/topics/supervision-and-examination/capital-markets/financial-markets/index-financial-markets.html#:~:text=Financial%20Markets%20include%20any%20place,who%20have%20capital%20to%20invest.
https://www.occ.treas.gov/topics/supervision-and-examination/capital-markets/financial-markets/index-financial-markets.html#:~:text=Financial%20Markets%20include%20any%20place,who%20have%20capital%20to%20invest.
https://www.occ.treas.gov/topics/supervision-and-examination/capital-markets/financial-markets/index-financial-markets.html#:~:text=Financial%20Markets%20include%20any%20place,who%20have%20capital%20to%20invest.
https://www.investopedia.com/terms/e/exchange.asp
https://www.investopedia.com/terms/e/exchange.asp
https://www.investopedia.com/terms/c/cboe.asp
https://www.investopedia.com/terms/c/cboe.asp
https://www.investopedia.com/terms/c/cme.asp
https://www.investopedia.com/terms/c/cme.asp
https://www.investopedia.com/terms/e/eurex.asp
https://www.investopedia.com/terms/e/eurex.asp
https://reports.weforum.org/future-of-financial-services-2015/newly-empowered-investors/?doing_wp_cron=1662191016.5359039306640625000000
https://reports.weforum.org/future-of-financial-services-2015/newly-empowered-investors/?doing_wp_cron=1662191016.5359039306640625000000
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3057533
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3057533

BIBLIOGRAPHY

[13] Ben Shneiderman et al. “Designing the User Interface: Strategies for Effective Human-
Computer Interaction”. In: 6th ed. New York: Pearson, 2016. Chap. 8.

[14] Evernine. MICRO INTERACTIONS. Accessed: 2022-09-6. url: https://evernine-
group.de /en/designtrends - 2022- micro- interactions- optimized- user-
experience/.

[15] Docker Documentation. Docker Overview. Accessed: 2022-08-27. url: https://
docs.docker.com/get-started/overview/#the-docker-platform.

[16] MongoDB Documentation. MongoDB Introduction. Accessed: 2022-08-27. url: https:
//www.mongodb.com/docs/manual/introduction/.

[17] Benjamin Anderson Brad Nicholson. SQL vs. NoSQL Databases: What’s the Differ-
ence? Accessed: 2022-08-27. url: https://www.ibm.com/cloud/blog/sql-vs-
nosql.

[18] Django Documentation. Using the Django authentication system. Accessed: 2022-08-
30. url: https://docs.djangoproject.com/en/3.2/topics/auth/default/.

[19] Django Documentation. Cross Site Request Forgery protection. Accessed: 2022-08-
30. url: https://docs.djangoproject.com/en/3.2/ref/csrf/.

73

https://evernine-group.de/en/designtrends-2022-micro-interactions-optimized-user-experience/
https://evernine-group.de/en/designtrends-2022-micro-interactions-optimized-user-experience/
https://evernine-group.de/en/designtrends-2022-micro-interactions-optimized-user-experience/
https://docs.docker.com/get-started/overview/#the-docker-platform
https://docs.docker.com/get-started/overview/#the-docker-platform
https://www.mongodb.com/docs/manual/introduction/
https://www.mongodb.com/docs/manual/introduction/
https://www.ibm.com/cloud/blog/sql-vs-nosql
https://www.ibm.com/cloud/blog/sql-vs-nosql
https://docs.djangoproject.com/en/3.2/topics/auth/default/
https://docs.djangoproject.com/en/3.2/ref/csrf/

	List of Figures
	List of Tables
	Introduction of the application
	Overview
	Description of the starting point

	About Option Trading
	The Markets
	Exchanges
	Derivatives
	Futures
	Options
	Greeks

	Competitors
	Fiuto Beta
	OptionNET Explorer
	Option Ruler
	OptionVue

	Social trading
	Social networks features
	Common ground
	Social trading platforms
	Regulations

	Design
	Interface design principles
	Web design inspired by Social Media
	Reference designs

	Architecture
	Web-Based Application
	Client-Server Architecture
	Containerization of the server

	Technologies
	Docker
	Celery
	MongoDB
	Django
	React
	Nginx

	Implementation
	Database
	MongoDB Collections

	REST APIs
	User APIs

	Client application
	User interface
	Strategies
	Clubs

	Data management
	React Redux Store
	Data flow

	Use cases
	Conclusions
	Future work

