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Abstract

We present a methodological contribution to the modeling of waveguide
photodetectors for silicon photonics. This technology specializes in making
silicon-compatible photonic devices and thus takes advantage from state-of-
the-art MOS technology. After a general introduction to photodetectors, the
thesis presents simulation results obtained with an approach not convention-
ally applied to these devices, validated against experimental measurements
provided by the group’s research partner Cisco System. We use commercial
3D multiphysics simulation tools to solve first the optical problem (with
FDTD) and then the electrical problem (with drift-diffusion). In order to
assess the dynamic response of the devices, rather than using a conventional
small-signal approach, we have performed transient simulations taking into
account the temporal variations of the optical signal. From these simula-
tions it is possible to directly extract all the figures of merit of the device
and other relevant information that can be exploited for designing the next
generation of Ge-on-Si photodetectors for silicon photonics.



Summary

Since the foundation of modern communication systems, there has been a
dramatic increase in data exchange, which continues to grow along with the
complexity and quality of the services provided to users around the world.
This is made possible by the means of a paradigm whereby the calculations
required to operate these services have been centralized in data centers.
Here, information is elaborated and then delivered to the final user. A cru-
cial part of this infrastructure is the realization of low-power high-speed
short-range communications. In this context, Silicon Photonics (SiPh) ap-
pears as the ideal platform, bridging the bit rate of optical communications
and providing synergistic, low-cost, and fully CMOS-compatible integration
of optical and electronic systems. Aiming to keep up with such an unstop-
pable internet traffic growth requires optimizing each block of the optical
transmission chain. The core of this thesis is on the receiver block, which
is one of the current bottlenecks for increasing the performance of optical
links. In particular, it presents the study and the simulations of photode-
tectors with a CAD (computer aided design) approach, trying to develop a
model capable of understanding and predicting the operation of the device.
The simulative approach lowers both production costs, by reducing pro-
totyping, and specific critical issues found by the simulations themselves.
The difficulty lies in the modeling of the device, which inherently needs a
multiphysics model where both the optical and the electrical problem are
taken into account. This method involves an initial solution to the optical
problem, providing the spatial distribution of the charges photogenerated by
the device illumination, and then the use of this term as a source into the
transport (electrical) problem. Here, through the use of the Poisson equa-
tion coupled in a self-consistent way with the continuity equations of the
carriers and with the constitutive relations of drift-diffusion for the current
densities of electrons and holes, the transport problem is solved. It can be
then studied either under stationary conditions, small signal conditions, or
with a transient simulation that also considers temporal variations of the
applied signal. The latter solution is a novel one and it is not present in
the state-of-the-art for the simulation of devices of this type. It allows us
to extract all the quantities and figures of merit of interest with a single
simulation, as well as to understand the temporal behavior of the device,
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although it has a higher computational cost, and thus further improve and
optimize the design of future generations of devices.

The thesis is organized as follows:

• The first chapter is an introduction on Silicon Photonics and on its
growing importance in the perspective of optical telecommunications.
A fundamental building block for the simulations is the theory of semi-
conductors. This part run trough equilibrium and out-of-equilibrium
semiconductors to understand the description of the drift-diffusion
model. There is then a brief description of the generation-recombination
events to better appreciate the dark current and how those events in-
fluence the response of the devices. The last part of the introduction is
the methodology of the simulations. The focus is on two main points:
FDTD solution of the optical problem and Sentaurus simulation tools.
A particular focus is given to the transient analysis: from the solution
of the optical problem to the transient loop for the transport equations.

• The second chapter concentrates on photodetectors theory, explaining
the different relations that hold and the different quantities which
give a quality analysis of the devices. The discussion continues with a
general description of the dynamic pin model and the main limitations
of the detector cutoff frequency: the transit time and the capacitance
effects. Finally, it ends with the description and characteristics of the
materials adopted, the configuration, and the explanation of how the
light coming from the waveguide enters the detector.

• The third chapter is the one describing the results. It introduces the
structure of the detectors under study and their two-dimensional coun-
terparts. After a brief description of the figures of merit, the core part
of the results is presented: starting from the 2D transient simulations,
we have gone through the study of the tool and of the break criteria
to finally reach a satisfying transient simulation performed on the 3D
devices. The results are compared to both small-signal analysis and
measurements given by an industrial partner (Cisco Systems). The
discussion continues on high optical input power cases, in which we
can exploit the transient analysis. In conclusion, it is presented the
exploration of some parameters, whose influence on device operation
can be studied more in detail with a transient analysis.
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Chapter 1

Introduction

1.1 Research context

Silicon photonics is one of the most attractive and interesting branches of
optoelectronics and it is arousing interest in the communication world [1].
Nowadays, the challenging aim is to increase the speed of the transmission
of data, especially in close-distance systems, because the speed of intercon-
nections is crucial for interconnected and complex system on which new
technologies relays on. In many different cases this condition is the uprising
reason of bottleneck problems. In this work, what we are trying to achieve
is a higher and higher bandwidth of one of the components present in the
interconnection chain, the photodetector. To make devices as fast as possible
and to do this, it is important to study those devices from a physical point
of view, in such a way that it is possible to optimise and solve device level
issues that affects the overall performance of the system. This approach
based on physics and simulations is preferred to a direct approach where
measurements and fabricated device are involved. The simulation part is an
important part of industry workflow and it is needed to save both money
and time. Even more importantly it can be used to fully understand the
the behaviour of the devices to upgrade them to the next generation and
to exploit it in our favour [2]. We do not have to confuse simulation as a
theoretical approach, but as a predictive approach. In fact, being able to
simulate the device means being able to interpret the results, and at the
same time design and predict the capability of not-yet-fabricated devices.

At the system level the optical interconnects have to be both low-cost
and efficient, and germanium photodetectors are engaging devices for this
applications due to the heteroepitaxy of germanium on silicon, making them
CMOS-compatible. As we are going to see, germanium is an almost direct-
gap semiconductor and it suits the use at standard telecom wavelengths
such as 1310 nm and 1550 nm. The epitaxy consists of a low-temperature
procedure to achieve a Ge buffer layer of few nanometers over Silicon and
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then a high-temperature one, which let us complete the structure with a
high-quality layer [3]. The simulations of such devices are complex, due
to the hetero-interface modeling challenge present between the Ge absorber
and the silicon substrate [4]. Another complexity level is derivated by the
coupling of the light with the detector. In fact, this technology typically
takes advantages of an evanescent coupled waveguide, requiring a solution
of the complete Maxwell’s equations.

In this thesis, first we start by describing the device and the modeling
challenges, with an introduction to the simulation software to be able to
understand next what we are going to do. Then, we report the methodology
used and the type of simulation we choose for the description of the device.
Finally, the results that were obtained, with remarks on the state-of-the-
art devices and comparisons with measurements provided by the group’s
partner Cisco System.

1.2 Theory of semiconductors

Once we have in mind the description of the bands, we can define the carriers
as the electrons promoted in the conduction band and the holes as the ones
present in the valence one due to the voids left from the promoted electrons.
The representation of the holes as an electron counterpart (consequent posi-
tive charge due to the lack of a negative one and its compensation to have an
overall equilibrium) can be extremely useful and can make the description of
what happens in a device quite easier. Both the carriers interacts with the
external electric field, photons, phonons and other particles or defects. The
two populations depend on the number of states per unit volume in both
bands and on the energy dependence of how these states are populated. In
an equilibrium situation, we can say that the carriers follow a Fermi-Dirac
distribution, while we can adjust it in case of applied bias with a quasi-Fermi
distribution. The Fermi-Dirac distribution describes both carriers equilib-
rium occupation statistics in relation to the Fermi level EF , which is the
energy value at which the electrons fill the bands:

fn(E) =
1

1 + exp
(
E−EF
kBT

) , fh(E) =
1

1 + exp
(
EF−E
kBT

) (1.1)

This value is in general in a semiconductor constant in the whole system as
far as we assume an equilibrium case and it is in the energy gap between
the valence and conduction bands if we are dealing with a nondegenerate
semiconductor. A nondegenerate semiconductor has a Fermi level in the
band gap, between the valence and the conduction bands. In case of a
degenerate case, this energy level take place in one of the two bands. In this
case, the condition for the approximation of the Fermi-Dirac statistic in the
Boltzmann one is not valid anymore. We have the necessity to use the full

6



Fermi-Dirac statistics. In this specific case the Fermi-Dirac distribution can
be approximated with the Boltzmann distribution:

fn(E) ≈
E≫EF

exp

(
EF − E

kBT

)
, fh(E) ≈

E≪EF

exp

(
E − EF

kBT

)
. (1.2)

In the other case, the degenerate one, the Fermi level falls in one of the two
bands and the condition for the approximation is not anymore met: in those
specific cases we have to deal with the full Fermi-Dirac statistic. While we
assume the effective mass approximation, the density of states (DOS) in a
bulk or 3D material can be written as:

Nc(E) ≡ gc(E) =
4π

h3
(
2m∗

n,D

)3/2√
E − Ec

Nv(E) ≡ gv(E) =
4π

h3
(
2m∗

h,D

)3/2√
Ev − E

(1.3)

The valence band DOS is larger than the conduction one due to the con-
tribution of heavy holes to its value. Now we have everything in order to
calculate the number of carriers by integrating the multiplication of the den-
sity of states and the statistical distribution (which is the Fermi-Dirac one
in general or we can use the Boltzmann one in the nondegenerate case) over
all the energies of the conduction band for what concern the electrons and
of the valence one for the holes.

n =

∫ ∞

Ec

Nc(E)fn(E)dE = Nc exp

(
EF − Ec

kBT

)
p =

∫ Ev

−∞
Nv(E)fh(E)dE = Nv exp

(
Ev − EF

kBT

)
,

(1.4)

where we still have to explicitly write the effective densities which shows up
in the formula:

Nc = 2

(
2πm∗

n,DkBT
)3/2

h3
, Nv = 2

(
2πm∗

h,DkBT
)3/2

h3
. (1.5)

In the most basic case, the intrinsic one, we are not implanting or diffusing
any kind of doping and the concentration of the intrinsic number of carriers
is equal to both the electron and hole population and it can be calculated
by:

ni = Nc exp

(
EFi − Ec

kBT

)
= pi = Nv exp

(
Ev − EFi

kBT

)
, (1.6)

From there, thanks to the fact that we are calculating the number of car-
riers on the intrinsic Fermi level, we can derive it by equating the intrinsic
formulas passing through an electron or an hole point of view.

EFi = kBT log

√
Nc

Nv
+

Ec + Ev

2
(1.7)
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On the other hand, if we do not equate these two formulas, but we multi-
ply them, the multiplication of the exponential means the addition of the
exponent with the respective signs (negative for the division) and this lead
to the well-known formula which relates the number of intrinsic carriers to
the energy gap of the specific semiconductor.

nipi = n2
i = NcNv exp

(
− Eg

kBT

)
(1.8)

As we can see from that, the intrinsic concentration of carriers is hugely
dependent on the temperature, which explains why at very high T doping
becomes no more important. This compromises a lot of working of the
device, altering for example the ohmic contacts. Other problems that may
show up are for example the channels that need to be almost intrinsic in
order to have good conduction or in the case of the main topic of this thesis
the photodetectors: the germanium detector. Its intrinsicity is necessary
to have a large absorption region and as much as possible a low number of
trap states due to the doping, so we have less recombination as possible and
the absorption of most photons for the creation of electron-hole pairs. We
can also obtain the mass action law, which tells us that in an equilibrium
condition, the product of the electrons and the holes is, by definition, equal
to the square of the intrinsic number of carriers.

np = n2
i (1.9)

We can now move on to the case of doped semiconductors, the mass ac-
tion law is valid also in this case, but the electron and hole number are
not anymore equal to the square of the intrinsic one, but this has to deal
now with the number of doping we are using. The doping can be done in
two ways: through a donor with density ND which provides an additional
electron to the conduction band when it substitutes the original semicon-
ductor or through an acceptor element with density NA which attracts an
electron from the valence band leaving a hole. Some examples of those two
types are As and P as donors and B as acceptors. The ionization energy in
both cases is on the order of 10meV and they can be ionized leading to an
additional electron or hole, respectively, quite easily, increasing the carriers
that participate to conduction. If we assume the complete ionization of each
doping atom, so we are in a full ionization regime and we remember that
the mass action law is still valid, we can simply derive the new expressions
and numbers for the electrons and holes populations.

n ≈ N+
D ≈ ND, p ≈ n2

i /ND n-type semiconductor

p ≈ N−
A ≈ NA, n ≈ n2

i /NA p-type semiconductor.
(1.10)

The influence of the temperature on the number of carriers is now not any-
more related simply to the number of intrinsic carriers, which depends expo-
nentially from it, but we have to take into account also the ionization energy
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necessary for the doping to be full ionized. At very low temperatures, the
thermal energy is not enough for a good ionization process and the carrier
population decreases with T well below theND value (freeze-out range). The
next range is the one which starts at (3/2)kBT ≈ 20meV with a temperature
of 150K and it ends when the number of intrinsic carriers equals the number
of dopants we have in our semiconductor. This is called saturation range
and in that we have something really close to the full ionization: electrons
equal the dopants number in case of ND or hole equal the dopants number in
case of NA type of doping. The last range is the one with temperatures even
higher than the last mentioned. The intrinsic concentration of carriers flood
the semiconductor with carriers not anymore due to the ionization of the
doping agents, being their number negligible. In the case of a donor doping
we can call the semiconductor of n-type, because it will have more electrons
than an intrinsic one: its Fermi level (which as we have already said, tells us
in part the filling of the electrons in the bands) will be higher in energy than
the intrinsic one, so closer to the conduction band edge. The exact opposite
is going to happen in case of an acceptors doping and consequently a p-type
semiconductor, with the Fermi level closer to the valence band maximum.
The full ionization condition can be satisfied only in case of relatively low
levels of doping: in case of 1019 cm−3 this assumption is not anymore valid
and the ionization cannot be assumed as 100%, but the number is related
to the very position of the Fermi level and it decreases when the Fermi level
is larger than the donor energy level or smaller than the acceptor’s one. It
is even more extreme the same discussion about degenerate semiconductors,
but we have to remember than it is almost impossible than the degeneration
is caused merely by the doping, being it a condition that can be met only
in particular cases (for example in a direct-bias condition under high carrier
injection).

1.2.1 Out of equilibrium

We can now move on to a non-equilibrium description of the semiconductor.
In equilibrium the electron and hole populations follow the mass-action law
and any difference is compensated by some kind of generation or recombi-
nation process. The difference between the number of the carriers and their
number at equilibrium follows an exponential decay law:

n′(t) = n′(0) exp (−t/τn) (1.11)

with a characteristic lifetime that can go from milliseconds to nanoseconds.
In the case of an external cause or by an external electric field, the condition
is characterized by a different form of the probability distribution which is
not anymore the Fermi-Dirac one. In the second case, there is an increase in
the average velocity and a non symmetrical velocity distribution concerning
the origin. In all our discussions, the electric field will never be such dramatic
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as to make the quasi-Fermi approach not consistent. The first thing to do in
order to describe the disequilibrium of carriers with respect to equilibrium is
to introduce the quasi-Fermi levels EFn and EFh modifying the Fermi-Dirac
ones. These also change the Boltzmann approximation when it is valid:

fn (E,EFn) =
1

1 + exp
(
E−EFn
kBT

) ≈
E≫EFn

exp

(
EFn − E

kBT

)

fh (E,EFh) =
1

1 + exp
(
EFh−E
kBT

) ≈
E≪EFh

exp

(
E − EFh

kBT

)
,

(1.12)

While the Boltzmann equations holds, the carrier density expressions be-
come:

n = Nc exp

(
EFn − Ec

kBT

)
, p = Nv exp

(
Ev − EFh

kBT

)
(1.13)

Thereafter we can derive another time the mass action law and, as we can
see, there is an extra term which includes the difference between the two
quasi-Fermi levels:

np = n2
i exp

(
EFn − EFh

kBT

)
(1.14)

This is an even more general formula: if we assume back the equilibrium
condition in which the Fermi level is unique, we simply restore the first
formulation we have given of the mass action law. In this case we can
distinguish two different conditions: the first one is when EFn is higher
than EFh and the exponential has an overall plus sign, the result is that
np > n2

i and we are in a carrier injection condition. On the other hand,
when EFn is lower than EFh, we have a negative sign as exponent and the
exponential will dramatically reduce the np product, making it smaller than
n2
i np < n2

i : this condition is called carrier depletion. In this case, if we are
talking about degeneration we have to be a little more careful, by using the
Fermi-Dirac integrals to write down the charge density.

n =
2√
π
NcF1/2

(
EFn − Ec

kBT

)
, p =

2√
π
NvF1/2

(
Ev − EFh

kBT

)
. (1.15)

There are various approximations such as the Joyce-Dixon inverse formula:

EFn ≈ Ec + kBT

[
log

n

Nc
+

1√
8

n

Nc

]
EFh ≈ Ev − kBT

[
log

p

Nv
+

1√
8

p

Nv

] (1.16)
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1.2.2 Drift-Diffusion

We can now describe more in detail the case in which there is the application
of an external electric field that we can expect will increase the average
velocity of the carriers. We cannot underestimate the velocity in equilibrium
condition, because the average kinetic energy is 39meV at 300 K. This is
quite high, on the order of vave ≈ 1×107 cm s−1 even if the distribution of the
velocities is symmetric respect to the origin (the average velocity is equal to
0). In the case of an applied electric field, we can explicit the proportionality
of the velocity with the electric field, which is called mobility, and these are
measured in cm2 V−1 s−1:

vn, ave = −µnE , vh, ave = µhE , (1.17)

These mobilities are a good approximation of the linear proportionality be-
tween velocity and electric field when we are in a low-field regime, as we are
exploiting the linear part of the curve. This mobility depends on many ob-
jects that can influence the movement of the particles due to many kinds of
scattering. The carriers can interact with lattice vibrations, which are called
phonons, impurities (due to a not perfect semiconductor or to the doping),
lattice mismatch for the heterostructures between two different semiconduc-
tors, etc. The mobility will also decrease with increasing doping because
of the increased number of scattering centers. The same happens with an
increasing temperature: the higher energy that the whole lattice has, there
is increase in the creation of phonons. We can simplify their description as
the vibration of the lattice: as we know an increased temperature causes an
increase of its vibration. All what we have said by now is true in a low field
condition, but when we increase it to values higher than 10kV/cm, we can
see a saturation of the average velocity vn, ave → vn, sat , vh, ave → vh, sat .
These saturated values are around 107 cm/s. The movement of carriers due
to the electric field is called drift motion and this is called the drift compo-
nent of the current density if we express it in the form of a current:

Jn,dr = −qnvn, ave = qnµnE
Jh,dr = qpvh, ave = qpµhE .

(1.18)

The electron velocity-field curve is non-monotonic for every different semi-
conductor. It increases for low electric fields because electrons are mainly
in the Gamma minimum of the conduction band in case of direct gap semi-
conductors, but when we are dealing with higher field values, electrons are
scattered in the indirect-bandgap minima, with consequent lower velocity,
which reduce the overall velocity of electrons. As an example we can mention
the GaAs that have the maximum and the consequent beginning of the de-
crease in the correspondence of 3kV/cm which has a difference of 300meV
between the two different gaps, while the InP has the maximum close to
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higher fields accordingly to the higher energy different between direct and
indirect gaps. In general the mobility of the holes is never better than the
electron’s one, so n-type transistors are in general more used in high speed
applications. But carriers show up another cause of motion aside than the
electric field which is present in the depletion region or by the application
of an external one, which is the concentration gradient difference between
different regions. This gives rise to the other component of the motion that
corresponds to the diffusion current density:

Jn, d = qDn∇n, Jh, d = −qDh∇p (1.19)

The Dn and Dh are the diffusivity coefficients and those are related to the
mobilities present in the drift part of the current through the Einsten’s
relation (it holds for both electrons and holes):

Dα = (kBT/q)µαα = n, h. (1.20)

Even if we have talked about velocity saturation as a consequence of scat-
tering with some kind of particle, this is not the absolute rule and this is
not what always happens. In very particular conditions, such as when the
required movement of the carrier is on the order of picoseconds long or for
very short distances way lower than micrometers, we are in a condition of
ballistic transport. This means that we can assume there is no collision
at all and consequently the average carrier velocity can reach values quite
higher than the saturation one in the presence of a high electric field. This
is what we call a velocity overshoot and this lead to an increase in speed of
some kind of devices such as nanometer-gate FET. However, we have to say
that in our transient analysis this could compromise the simulation and its
convergence. The conditions themselves of the structure we analyse and the
voltage we apply are far away enough to meet these conditions, which are
meant to be used in other kind of devices where the saturation velocity is
considered not good enough for their purpose.

1.2.3 Generation-Recombination

The net recombination rates take into account both the generation processes
(electrons and holes generated per unit time and volume) and the recombi-
nation ones (carriers recombined per unit time and volume):

Un = Rn −Gn, Uh = Rh −Gh. (1.21)

In some conditions the total rates of electrons and holes are equal: for
example in DC stationary conditions or when the process is band-to-band
with a direct transition between valence and conduction due to the creation
of both an electron and a hole. The mechanisms can happen also through
intermediate traps or recombination centers inside the band gap, working
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only for one kind of carrier, making the instantaneous net recombination
rates different in time-varying conditions. We know that the net rate should
be zero at equilibrium, so we can write:

Un = rn
(
pn− n2

i

)
(1.22)

where we can distinguish the generation associated to the n2
i term and the

recombination associated to the pn one. The pn term is the recombination
one because we are considering both carrier’s populations densities in a sort
of collision between the two. This term can be also expressed in lifetime
terms: tau. If we define the electron density n, the excess lifetime can be
derived by the rate equation:

dn′

dt
≈ −n′

τn
(1.23)

The lifetime of minority carriers is constant and the definition tells us that
the population exponentially decreases with time:

n′(t) = n′(0) exp (−t/τn) (1.24)

and can also be defined as the ratio between the average time of the carrier
pair creation and their annihilation with a recombination event:

⟨t⟩ =
∫∞
0 tn′(t)dt∫∞
0 n′(t)dt

=

∫∞
0 t exp (−t/τn) dt∫∞
0 exp (−t/τn) dt

=
τ2n
τn

= τn. (1.25)

The GR mechanisms can be both direct, so interband transitions or indirect,
assisted by trap levels present in the gap. In direct gap semiconductors, the
main event is due to optical (radiative) mechanisms, while in the indirect
ones, the trap-assisted mechanism is the main one. As we have already
described in the drift-diffusion formula, if we are in a case of 0 electric field,
then the spatial evolution of the excess carrier densities is dominated by
diffusion movement and by generation-recombination events. The solution
of the continuity equation in this case can be described through the carriers’
lifetime with an exponential kind of solution:

n′(x) = A exp (−x/Ln) +B exp (x/Ln) (1.26)

where the constants are derived by boundary condition and the terms at the
denominator of the exponent are the diffusion lengths of the carriers, that
can be written as:

Lα =
√
Dατα α = n, ha (1.27)

We can talk about some of these processes, for example, SRH recombination.
We are assuming a trap state inside the band gap, where in an ideal case
there should not be any kind of possible state. The assumption of states at
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different energies from one of the valence and conduction bands complicates
our discussion. We can consider a certain number of trap levels Nt at certain
energy included in the band-gap Et. In general, transitions (for example
thermal ones) are quite easier, since two steps are required with a lower
amount of energy each time. In the case of a not sufficient thermal energy
for carrier pair creation between the two bands, it could be enough for the
intermediate step of ∆E ≈ Eg/2 if the state is exactly in the middle of
the gap. We are not writing and demonstrating the passages, but the net
trap-assisted recombination rate is equal to:

USRH =
np− n2

i

τSRH
h0 (n+ n1) + τSRH

n0 (p+ p1)
(1.28)

where the lifetimes are written as:

τSRH
h0 =

1

rSRH
ch Nt

, τSRH
n0 =

1

rSRH
cn Nt

(1.29)

The r parameters are the trap capture coefficients respectively for electrons
and holes and n1 and p1 are:

p1 = nig exp

(
EFi − Et

kBT0

)
, n1 = ni

1

g
exp

(
−EFi − Et

kBT0

)
(1.30)

g is the trap degeneracy factor and it has no dimensions, while Ef i is an-
other time the intrinsic Fermi level. We can consider a n-type doped semi-
conductor in low-injection condition: excess carriers are negligible respect
to equilibrium ones n′ ≪ ND p′ ≫ n2

i /ND The complete formula can be
approximated as:

USRH ≈ p′

τSRH
0

[
1 +

2ni

n
cosh

(
EFi − Et

kBT0

)]−1

, (1.31)

where

τSRH
0 =

1

rSRH
c Nt

. (1.32)

Starting from ni ≪ n, the minimum lifetime is obtained for a trap energy
close to the middle of the gap. The lifetime is completely independent from
the doping, while as we see in the formula, it depends on the number of
traps. The derivation is the same in case of a p-doped semiconductor and the
formula is identical, but referred to holes when we have something relative to
electrons and vice versa. The name of these traps in the middle of the gap are
called recombination centers and they drop the thermal lifetime respect to
the case of an intrinsic material. We can derive a different formulation in case
of a high-injection condition. In this case this is case a direct competitor even
to the radiative recombination. With some simple calculations we can find
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rSRH
c ≈ 105 m/s · 10−17 m2 = 10−12 m3/s and τSRH

0 = 1
10−12·1020 = 10 ns,

which is a value quite close to the one we obtained when we calculated the
radiative lifetime. If these calculation were performed in silicon, we can find
even higher numbers respect to radiative transitions in case of direct-gap
semiconductors. We assume both quasi-neutrality n ≈ p and equal trap
capture coefficients for electrons and holes rSRH

ch ≈ rSRH
cn = rSRH

c :

USRH =
p

2τSRH
0

[
1 +

ni

n
cosh

(
EFi − Et

kBT0

)]−1

. (1.33)

The lifetime in high-injection is equal to:

τSRH
0hi = 2τSRH

0 =
2

rSRH
c Nt

(1.34)

r parameters can be written as the product between the thermal velocity
and the cross section:

rSRH
cn = vthσn, rSRH

ch = vthσh. (1.35)

The order of magnitude of the cross sections are 10−15 cm2 for Silicon for
both electrons and holes to σn ≈ 10−14 cm2, σh ≈ 10−13 cm2 for III-V ma-
terials and the thermal velocity on the order of vth ≈ 107 cm/s. In case the
quasi-neutrality assumption is not valid, but at least np ≫ n2

i and Et ≈ EFi

we have:
USRH ≈ np

τSRH
0 (n+ p)

(1.36)

Another recombination process is the Auger one, which uses one additional
electron or one additional hole and the rate is proportional to p2n or pn2,
meaning not only the colliding populations are involved, but also the type of
carrier which supply the energy necessary for the recombination. Logically,
this process, which needs more carriers and the right amount of energy to
happen, is more significant in high-injection devices. The reflected process,
from a generation point of view, is the impact ionization, which is important
when we consider very high fields (on the order of 100kV/cm). Carriers in
this case receive enough energy from the field to be able to ionize another
carrier (for example another electron in the conduction band) after a first
scattering event. In the time between two different scattering the field should
be high enough to give to the carrier sufficient energy from the drift motion
in order to impact another carrier, transferring to it enough energy for the
ionization. This process happens for each carrier, which, in their motion
range, can create a certain number of pairs. If the field is too high, this will
diverge since each generated carrier will generate a high amount of carriers
itself. This could cause many problems and it is called avalanche breakdown.
This may be avoided by making the field always lower than the breakdown
value, which value has an exponential dependence with the semiconductor
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gap. This is why for high power applications or in harsh conditions, for
example, it is better to use materials with a big gap such as SiC or GaN to
avoid any kind of instant breakdown of our device. The description of this
latter process can be done with the following formulas:

∇ · Jn = −qGn − qGh, ∇ · Jh = qGn + qGh, (1.37)

where:

Gα =
1

q
αα(E)Jα, α = n, h. (1.38)

Impact coefficients are strongly dependent with the electric field and the
values for electrons and holes are equal in some semiconductor such as GaAs
and Ge, while the electron’s value is higher in silicon for example.

1.3 Multiphysics modeling

In this section we are going to talk about the tools we use in the simulation.
These are performed in order to obtain:

• the optical simulation of the evanescent coupling in the device;

• information for the preliminary analysis to obtain the main quantities
of the device before the transient analysis.

1.3.1 FDTD

In Senturus we can use different optical solvers to obtain, as we are going
to see, the evanescent coupling of our devices. The correct solver for the
structure and the type of coupling is the finite-difference time domain. The
Finite-Difference Time-Domain (FDTD) method is a rigorous and power-
ful tool for modeling nano-scale optical devices. FDTD solves Maxwell’s
equations directly without any physical approximation, and the maximum
problem size is limited only by the computing power available. It is possible
to use it in Synopsys TCAD Sentaurus (RSoft FullWave tool). What it can
do is evaluate the optical field, and it then converts the field distribution
into a generation rate of photons inside the different materials. But, how
does this method work? We can start with the Maxwell equations in an
isotropic medium:

∂B

∂t
+∇× E = 0

∂D

∂t
−∇×H = J

B = µH

D = ϵE,

(1.39)
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Figure 1.1: FDTD Yee Cell[5].

with J , µ, and ϵ functions of both space and time. The FDTD method solves
them on a certain mesh and computes both E and H at grid points spaced
δx, δy, and δz, with E and H interlaced in all three spatial dimensions as
they are in the Maxwell equations. We can see in Fig. 1.1 the Yee cell of
the dimensions we have written, with the presence of the field components:
the E-components in the middle of the edges and the H-components in the
center of the faces. The space grid size must be such that over one single
increment, the electromagnetic field has no significant changes. To have
relevant results, the linear dimension of the grid has to be a certain fraction
of the wavelength. If we want to know the stability of the method, there is
the requirement of satisfaction of a relationship between the space increment
and the time increment δt. This is very difficult to obtain in case of the
variable value of µ and ϵ, while in case these are constant, the computational
stability requires:

√
(∆x)2 + (∆y)2 + (∆z)2 > c∆t =

√
1

ϵµ
∆t (1.40)

with c velocity of the light in the simulated medium. We can further enlarge
the inequality by using cmax maximum light velocity in the analysed region:√

(∆x)2 + (∆y)2 + (∆z)2 > cmax∆t (1.41)

The choice of the points in which the method evaluates the field components
is crucial, making the set of finite difference equations possible to solve
and the solution satisfies the boundary conditions. FDTD includes many
effects such as scattering, transmission, reflection, and absorption. This
method follows a leapfrog scheme for going forward in the time direction:
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the electric field updates are done in a time step between two consecutive
time-steps in which the magnetic field is updated and vice versa. This avoids
the simulator’s need to solve more equations simultaneously, and it allows
the propagation of a dissipation-free wave. The main problem of this scheme
is the requirement of an upper bound on the time step to avoid numerical
instability.

1.3.2 Synopsys TCAD Sentaurus

Technology Computer-Aided Design (TCAD Sentaurus) is an advanced de-
vice simulator developed by Synopsis which solves the electric transport of
the device and it is used coupled with Synopsis RSoft FullaWAVE, which
instead solves the electromagnetic (EM) problem.

Synopsis Sentaurus Workbench (SWB) tool is the graphical interface we
can see with all the simulation in one single environment, or better, a table.
It is possible to plan and make different simulations run consequentially.
It is possible to add to the simulation a great number of tools in order to
perform bot only TCAD simulations, but also RSoft, codes written in tcl,
MATLAB script and others third-party tools, with the possibility to param-
eterize different values that are going to be used in the various simulations.

Therefore, the graphical used interface (GUI) simplifies the management
of complex projects and let you parameterize input files or values to run more
than one simulation automatically.

1.3.3 Quasistationary

We can briefly explain this kind of simulation because it is used in many
part of the simulations for the analysis of the device before the transient
one. This command ramps a device from one to another solution changing
the boundary conditions or some kind of parameter we want to analyse.
At each iteration the device is solved with a different parameter value and
this is done until we reach the maximum value we have imposed for that
particular parameter (ex. voltage applied to the device). Internally, the
Quasistationary ramps a variable t from 0 to 1. The voltage at the contacts
changes with the variable t through the formula V = V0+ t (V1 − V0), being
V0 the initial value of voltage and V1 the final one we have imposed as the
Goal of the simulation. All the control parameters are made on the t variable
and the step control parameters are:

• MaxStep

• MinStep

• InitialStep

• Increment
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• Decrement

The first two limit the step size and gives a range the simulation can use
to solve the device. The InitialStep defines only the first one and the next
step sizes are automatically increased or decreased depending on the rate of
success of the inner solve command. This rate of increase is controlled solely
by the number of performed Newton iterations and by the factor Increment,
while the step size is reduced by Decrement when the inner solve fails. All
the process aborts if the step becomes even smaller than the MinStep. In
case of a simulation over the voltages with no illumination, we are able to
obtain the dark current of the device by the IV characteristic, while if the
goal is the OpticalGeneration rate defined as a constant or as a function
of the power, the curve we are able to obtain is the photocurrent-power
curve. These two simulations are functional to obtain the values of dark
and photocurrent for the use of the break criteria for the optimization of
the transient analysis.

1.3.4 ACCoupled

This command allows us to perform a small-signal AC analysis. This com-
putes the frequency-dependent admittance matrix Y between circuit nodes
of the specified electric system. For a given frequency v, it describes the
small signal model in this way:

δI = Y δV (1.42)

where δV and δI are the vectors of voltage and current excitations at selected
nodes. The admittance matrix is defined as:

Y = A+ i2πvC (1.43)

with A real conductance matrix and C capacitance matrix. As in the
Quasistationary, we need to specify many parameters of the simulation:

• StartFrequency

• EndFrequency

• NumberOfPoints

• Linear

• Decade

With those, one is able to to select the frequencies of the simulation. Node is
used to specifying the list of AC nodes considered in the admittance matrix.
Exclude specify a list of system instances that should not be part of the
AC system. Optical tells the simulation to consider the optical part of the
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problem. In case of dark conditions, without the Optical command specified,
we obtain the electric response of the device. What we have done is both
this simulation and the one in which we do not consider the resistive load.
In case we specify the Optical part, we obtain the electro-optic response of
the device to our optical input and consequently its cutoff frequency.

1.4 Transient Analysis

1.4.1 Methodology

We have now all the concepts for what concern both the theory of the
photodetectors (our devices in particular) and the working flow and method
of Sentaurus [6]. We can move on to describe the main analysis of this
thesis. We have to remember another time that everything was done firstly
on a two-dimensional version of the reference project in order to have the
possibility to perform more simulations in a reasonable time: hundreds of
simulations on the three-dimensional would take too much time if we think
that the time order of one simulation is between 30 and 40 hours. In the next
part we are going to describe the flow of the transient, the basic equations
and what it is based on.

1.4.2 Flow Chart

The transient simulation starts from the solution to the optical problem,
through a finite-difference time-domain (FDTD) method. Its solution is
then used as a pulsed generation term in the drift-diffusion equation and
then solved in an iterative way for each time step until the final time you
chose at the beginning of the simulation is reached or the break criteria is
encountered (see Fig. 1.2). Thus, Sentaurus solves the transient problem by
solving the device first, and then by increasing the time step in a loop and
resolving it. The equations used for the transient can be written as a set
of ordinary differential equations which can be divided into both DC and
transient parts of the partial differential equations:

d

dt
q(z(t)) + f(t, z(t)) = 0 (1.44)

Composite trapezoidal rule / backward differentiation formula is the implicit
method which is used for the discretization of the problem, which requires
as input:

• the time interval

• the initial condition
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Figure 1.2: Flow chart of the transient simulation.

1.4.3 Solution of the optical problem: FDTD

We can start to say that in the two-dimensional case, we are not going to
use Synopsis RSoft FullaWAVE using Yee method [5], but we are going to
use a constant Optical Generation Rate. The value we are using is not a
casual value, but it has been calculated with an average over the whole three-
dimensional Germanium material(Fig. 1.3). As we are going to see in the
results, this choice is quite good and comparable with the three-dimensional
simulation. Another important approximation is the choice of the photons
generated in the silicon part of the device, which reproduce the waveguide
with the coupling to the germanium. The values in this part for what
concern the optical generation must be for sure lower than the value used
in germanium, in order to obtain a reasonable frequency response. Once
we go below a value of 1e21 there is no more a great difference if we go
further below, which corresponds exactly to the difference in the integral of
the Optical Generation in the three-dimensional device. On the other hand,
the input for the three-dimensional case is the OpticalGeneration coming
from Synopsis RSoft FullaWAVE, in which we can see the resonance of the
evanescent mode inside the germanium.

1.4.4 Properties of the optical input pulse

The model of the light signal in important in order to model the electro-
optical response to a light impulse. It is necessary for Sentaurus to specify
the time dependence, which scales the generation rate obtained by a station-
ary solution of the optical -problem- as a function of time. The dependency
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Figure 1.3: Integration of the optical generation over the whole Germanium.

we have used is the linear one, while we had the possibility to use also a
Gaussian, exponential, cosine or arbitrary description of the pulse. We have
to specify four different times in order to describe it: the first one t0 tells us
when the optical generation begin to rise and this happens until the second
value t1 is reached. At this point the value is kept constant at the relative
scaling factor equal to 1 until the third time value t2 is reached, which ex-
presses the start of the falling edge. This part in which the generation rate is
constant is described by WaveT ime = (t1, t2). This continue linearly until
t3 is reached and the optical impulse is another time equal to zero. The
description can be expressed mathematically as the next formula:

F (t) =


max (0,m (t− t1) + 1) t < t1

1 t1 ≤ t ≤ t2

max (0,m (t2 − t) + 1) t > t2

(1.45)

As we can see in this formula, m is a parameter we have not introduced
by now: this is the slope of the rising edge and it is described in Sentuarus
as WaveTSlope or as its inverse WaveTLin, that corresponds to t1 - t0 (see
Fig. 1.4). In the next image it is possible to have a clearer vision of the
description. It is important to specify that the rising edge and the falling
edge must coincide, so the rate will increase from t0 on as fast (with the
same derivative) ad it decreases after t2. It is easy to imagine that those
two edges need to be as fast as possible. The lower limit to the rising and
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Figure 1.4: Linear optical impulse [6].

falling times is given by the convergence of the problem, which is not granted
if we go beyond a certain value.

1.4.5 Generation term in the drift-diffusion model and ex-
planation of the transient loop

The carrier transport models can all be expressed as continuity equations
and then derived for each specific case or model Sentuarus is going to use.
The important part is that the problem’s time evolution of the solution of
the transport problem can be generally written as the conservation of the
charges in the form of these two equations, also known as the continuity
equations [7, 8]:

∇ · J⃗n = q (Rn −Gn) + q
∂n

∂t
, (1.46)

−∇ · J⃗p = q (Rp −Gp) + q
∂p

∂t
, (1.47)

where J⃗n and J⃗p are the electron and hole current densities, and Rn, Rp,
Gn, Gp are the electron and hole recombination and generation rates, re-
spectively. There are two main points on which we have to focus to explain
this formulation of the problem. The first one is the generation term, which
is the one we are giving as a transient parameter and we explained just
before. So, to resume, we have a solution of the optical problem through a
FDTD method and then it is taken and scaled to obtain a linear impulse as
we have described in the previous part. The combination of this generation
term and the recombination one, which is related to various recombination
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methods and events are happening in our device, will determine part of the
solution. The other important term is the last one, which describes the elec-
trons and holes population density variation in time. This is exactly what is
changing in the transient analysis each time we are moving on by a ∆t (also
the generation which changes during the rise and fall of the edge, which
is ideally vertical from a mathematical approach, but, as we have already
seen, it is impossible from a computational and physical point of view). The
solution of the drift-diffusion model is done each time we increment time.
Therefore, the model we use to calculate the current densities is the drift-
diffusion one. The model is described by two formula, one for the current
density of electrons and one for the holes’ one. The statistic used is the
Fermi-Dirac one. This statistic is necessary because in our device there is a
doping concentration quite high, which reaches even 10 × 1020 cm−3 in the
silicon waveguide. So the two parameters can be described by the carriers
distributions 1.4 with the use of Fermi-Dirac statistic 1.1.

1.4.6 Discretization method

The transient simulation is described by equations that can be written as a
set of ordinary differential equations

d

dt
q(z(t)) + f(t, z(t)) = 0 (1.48)

which can be mapped to the DC and transient part of the partial differential
equations [6]. What Sentaurus uses for the discretization of the transient
equations are two different discretization schemes: the simple backward Eu-
ler (BE) method and the composite trapezoidal rule/backward differentia-
tion formula (TRBDF) [9, 10, 11]. This scheme with the use of the two
different schemes is the default one for all the transient simulations. The
Backward Euler is a definitively stable method, but this is not so precise
due to the fact it has only a first-order of approximation over the time-step
hn. This discretization can be written through the formula:

q (tn + hn) + hnf (tn + hn) = q (tn) (1.49)

We can now think about the local truncation error (LTE) estimation, which
is based on the comparison of the obtained solution q (tn + hn) with the
linear extrapolation from the previous time-step. The extrapolated solution
is then written as:

qextr = q (tn)−
f (tn) + f (tn + hn)

2
hn (1.50)

In every point of we can estimate the relative error by the formula:(
q (tn + hn)− qextr

)
/q (tn + hn) (1.51)
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Using the two previous formulas in order to estimate the norm of the relative
error, Sentaurus Device computes this value:

r =

√√√√ 1

N

N∑
i=1

(
f (tn + hn)− f (tn)

εR,tr |qn (tn + hn)|+ εA,tr
hn

)2

(1.52)

with the sum over all the unknowns also known as all the free vertices of all
the equations: εR,tr is the relative and εA,tr is the absolute transient errors,
respectively. The next-time step is estimated as:

hest = hnr
−1/2 (1.53)

This estimation is used for hn+1 computation, being it equal to the estimated
value when the r is lower in value than 2 time frej . We can now describe the
TRBDF method: for each time point tn, The next time point which can be
written as tn+hn (with hn current step size) is not directly reached. A step
in between to tn+ γhn is made improving the accuracy of the discretization
method. The optimal value of gamma has been shown to be equal to γ = 2−√
2. Using this value the method reach two different nonlinear systems.For

the trapezoidal rule (TR) step:

2q (tn + γhn) + γhnf (tn + γhn) = 2q (tn)− γhnf (tn) (1.54)

while for the BDF2 step:

(2− γ)q (tn + hn) + (1− γ)hnf (tn + hn) =

= (1/γ)
(
q (tn + γhn)− (1− γ)2q (tn)

) (1.55)

The local truncation error (LTE) in this method is estimated after the double
step as:

τ =

[
f (tn)

γ
− f (tn + γhn)

γ(1− γ)
+

f (tn + hn)

1− γ

]
(1.56)

C =
−3γ2 + 4γ − 2

12(2− γ)
(1.57)

And then Sentaurus computes the norm of the relative error:

r =

√√√√ 1

N

N∑
i=1

(
τi

εR,tr |qn (tn + hn)|+ εA,tr

)2

(1.58)

another time the sum is over all the unknowns which are the free vertices of
all equations, εR,tr and εA,tr the relative and absolute transient errors. Since
TRBDF method has in this case second order approximation on hn instead
of first order (as in the BE one). The successive step can be computed as:

hest = hnr
−1/3 (1.59)
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The default method is this last one, the TRBDF. We can easily switch with
a command to the BE. We can see the control mechanism to see if a time-
step was successful and to provide an estimate of the next step size. There
are a few simple rules: - if one nonlinear system cannot be solved, the step
is rejected and it uses half the step hn = 0.5 · hn - otherwise, r < 2frej is
tested, and if fulfilled the transient assign to the next step the value of the
esteem, or it is tried again with a value of 0.9 times the esteem - the LTE is
checked only if an option (CheckTransientError) is selected, otherwise the
next time-step is chosen only for the purpose of convergence of the nonlinear
iterations.
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Chapter 2

Photodetectors

In this chapter we are going to introduce the analyzed and studied device.
It is a waveguide photodetector, and where the light is guided all the way
through a waveguide (typically a silicon one) to the detector region, where
a coupling happens. When the light reaches the absorber, thanks to its
material properties, it is possible to see a great number of electron-hole
pairs that have been generated in the detector. Hence, it is important to
explain them from a general point of view to fully understand the specific
one we are going to study.

The photodetectors are part of the receiver in a generic communication
system. The main role they cover is to convert an optical signal in an elec-
trical one, i.e. an optical power into a current. The use of light to transfer
information in close-distance devices is crucial in order to overcome the ac-
tual limit in copper transmission lines and obtain a greater band. Photode-
tectors are meant to be at the end of the optical chain in order to convert
the optical input in an electrical output: we obtain a voltage or a current
with the appropriate use of an external circuit (Fig. 2.1). Since they depend
on both material choice and on targeted application, device performances
rely upon available fabrication and its integration technologies. An example
of those devices can be found in [12, 13] where Ge-on-Si photodetectors are
fabricated and characterized. The physics on which this conversion is based
is the generation-excitement mechanism of electron-hole pairs due to a pho-
ton incident on the active region of the detector [14]. We want to convert

Information Light  
emitter

Light  
receiver

Light

Amplifier Electrical
circuit

Figure 2.1: Receiver block in a optical link.
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the optical excitement seen as a photon in an electrical signal, which is then
read by an external circuit. The main parameter for an efficient conversion
of photons with a certain energy is the correct choice of the semiconductor
used as active material with a suitable band gap energy. [12] The photode-
tectors are meant to be designed in order to have both a great sensibility on
the photons arriving and a even great electric field, in order to have a fast
separation of the pairs to make the electron collected by the cathode and
the holes by the anode. Literally, the measure of how fast the collection of
the generated pairs happens tells us the frequency of the detector and its
increase is exactly the main goal we want to achieve and the main reason
we are studying the photodetectors. The easiest way to carry out a high
field is the use of an external reverse bias, which makes the collection way
quicker. As we are going to see, the movement of the carriers in the device
can be explained with a drift-diffusion model: we are exploiting the drift
component of the density current of the carriers, prerogative of the electric
field. This is kinda necessary because of the greater value of this component
respect to the diffusive one, which is way slower and it would only slow all
our system (in absence of electric field). However, the presence of a regular
and well-spread electric field over the whole volume of the photodetector
is not trivial and needs some precautions, for example in the corners of a
rectangular device. The current in case of a reverse bias is not zero even in
case of a completely dark situation and this take the name of dark current
id. As far as a depletion region is present in the device, there is this sort
of leaked generation of carriers inside it, which are then collected and this
generate a current with quite low values respect to the one obtained in a
illuminated context, but it cannot be ignored. What it is experimentally
observed [15][16] is the fact that the main contributions to the dark current
are given by two different mechanisms: tunneling and trap-assisted recom-
bination of the carriers [17][18][19]. It is interesting to better explain those
two mechanisms and we will understand next why they are important in our
structure. It can be considered as noise, because it sums to the photocurrent
without being properly produced by the photons’ creation of carrier’s pairs
and it has to be taken into account for every calculation we are going to do
in the next chapters. One of the first parameters which can say the quality
of the detector is the responsivity and this has the measure units of A/W.
This is the proportionality factor between the photocurrent and the input
optical power and this relation holds[14]:

iL(t) = ℜpin(t) (2.1)

The first assumption is the linearity of this relation, but this soon is not
anymore valid if we are considering larger input power, due to the screening
of the consequent extremely high density of carriers. A saturation of the
current is present and we have to think a little more over the absorption
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of our material. It is necessary to introduce the dependence of the respon-
sivity to the wavelength. The shape of its curve is like a band-pass and it
is important to use wavelengths inside this range. To fully understand this
statements it is important a rapid digression on the band structure of semi-
conductors. The plot of the bands of the Germanium (spoiler: the material
of our detector) for example helps us to understand easily the meaning of
the wavelength dependence(look at Fig. 2.2). In the case of a direct gap
semiconductor (one symmetry point has the same k vector of the maximum
of the valence band), the energy between the minimum of the conduction
band and the maximum of the valence one is exactly the amount of energy
required to make an electron go to the conduction band and a hole in the
valence band. If there are no other effects such as defect or tail states in-
side the band gap, the lowest amount of energy is exactly that one. This
happens also in the case of an indirect semiconductor such as Silicon, but
the conservation of the momentum k has to be preserved and a single pho-
ton is not able to provide it: a photon has a great amount of energy, but
an insignificant amount of momentum compared to the one required. This
opens the world of phonons scattering. Going back to the main topic, the
minimum amount of energy required can be related to the frequency with

Figure 2.2: Energy bands of germanium calculated by the k · p method in
the [111] and [100] directions of k space [20].
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the simple property:
Eph = hω ≥ Eg (2.2)

In other words, there is a maximum value of wavelength in the responsivity
curve, thus we can see the dependence: there is ideally no current even in
case of high optical power if we are over that range. The linear relation holds
only in case the power change is slow in time (or if modulation frequency
is lower than the cutoff one in case of a time-harmonic input), if not, the
capacitance effects and the transit time effect come into play. In small-signal
analysis, this is equivalent to a complex responsivity, which in this case re-
lates both the amplitude and the phase of current and optical input power.
If we look another time from above and we think about the whole receiver
block, the current which exits from the detector needs to become a volt-
age, using usual converters such as a load resistance or as a transimpidance
amplifier (TIA). From a structural point of view, the detector can be:

• bulk

• junction

• photodiode

• avalanche photodiode

• phototransistors

The differences between them is not only from a structural and construction
point of view, but they differ also for what concern the speed of the device.
There are huge differences in losses, noise (signal/noise ratio, comparing the
photocurrent to the dark one for example), costs and frequency response.
Both junction and photodiode types are based on a pn junction: the region
devoted to collect the photons is the depletion one. This is created in the
junction and it could be enlarged by the use of an external negative bias
(which also increases the dark current). The main limit in those cases are
both the lifetime of the carriers before they get recombined and the transit
time, while the capacitances are not related to any frequency limitation. The
first idea, in order to have better performances in these cases, is to use a pin
junction, where the ”i” stands for intrinsic. We want to increase the ratio
between the intrinsic regions and the diffusion ones, which are the main rea-
son of lag in the collection of carriers at contacts. This lightly doped region,
as a neutral charge one, is able to absorb even more photons, maximizing
the absorption pattern of the photodetector. As we are going to see, this
is what happens in our device, being it a heterojunction between a highly
doped Silicon waveguide, a contacting Germanium zone with quite low dop-
ing and a high doping one in the region close to the metallic contact. The
fact that we can engineer easily this absorption region is an optimum point
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in favor to this structure, because we can design it based on the absorption
length of the material, increasing as much as we can the photogeneration
in this region respect to the one in highly doped regions. Photogenerated
carriers are removed quickly from an electric field mostly uniform applied on
the intrinsic region with a movement which can be associated almost entirely
to its drift component. Being the diffusion component way less important,
the frequency response is not anymore limited by the lifetime of the carriers
(being the collection at contacts way faster), but it is still limited by the
transit time, even if with even lower limitations. The frequency values are
quite higher, so some kind of RC effects can arise, in particular in devices
particularly large (high) in the direction parallel to the illumination direc-
tion. If the speed can reach very high values (what we are going to see in
our device), the sensitivity is not the best one out of every photodetector
device we have mentioned, because there is a unit gain and, unlikely APD
based photodiodes, there is not a multiplication of carriers, which makes
the detection of even a single photon way easier. We have talked about the
different structures and their advantages/disadvantages, we can talk now
about how the materials of the detector influence the working point of the
device. If we think to the generation of carriers, it happens when the energy
of the photon is enough to overcome the band gap. This is related to the
material absorption profile and to its threshold, which tells us the minimum
energy necessary to create a carrier’s pair. The relation is quite simple and
because of the dependence of energy on the frequency of the incoming light,
we can think it in an inverse way, looking from the point of view of the
wavelength:

Eph = hω ≥ Eg −→ λ[µm] ≤ 1.24

Eg[eV]
(2.3)

The materials for these devices can have both direct and indirect gap, but
the firsts have higher absorption values. In general, the exponential decrease
of power in the semiconductor can be expressed both with the absorption
coefficient or with the absorption length, which is the inverse:

Pin(x) = Pin(0) exp(−αx) = Pin(0) exp (−x/Lα) , (2.4)

If we think to the problem, to design a photodetector for a certain source
we have to choose wisely the material, because we want to absorb most of
what hits our apparatus. Its thickness has to be at least comparable with
the absorption length, however we cannot use a value much higher in order
to limit arising transit time problems. In junction-based detectors, the ca-
pacitance gain increasing importance because of the inverse proportionality
between its value and the thickness of the device, which limit and cap the
device speed (its frequency response) while the transit time problem fall off.
This is then a trade-off in the design of the photodetector between these two
limits: RC related and transit time.
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2.1 Parameters and relations

If we think of the photodetector from an electrical point of view, this is
a one-port with an optical input port. The input power is pin around the
working point wavelength λ and the output current iPD is composed by both
dark id) and illuminated currents iL. Once we have defined these quantities,
we can model it with the following constitutive relation:

iPD(t) = f

(
pin(t), vPD(t);

d

dt
, λ

)
(2.5)

The only quantity we have not talked about yet is the voltage vPD, but this
is trivial. The time derivative inside the relation tells us that there is in
some way memory because the memory-less condition holds only in case of
slow variation in time of the power or a modulation frequency lower than
the cutoff one. As we are going to see, especially in the transient analysis,
we want to see the feedback of the detector in case of an optical impulse that
goes from 0 to a certain value in very low time (in an ideal case we would
want it to be an actual impulse, but this gives convergence problems when
we use reduce too much the time necessary for the rise and falling edges).
As already said, the output current is the sum of the two contributions:

iPD = iL + id, (2.6)

To be clear another time, the dark current is the one intrinsically present
in the detector due to tunneling effects and due to recombination events
of carriers, while the illuminated component is present when the light is
incident to the detector and the photons create electron-hole pairs, logically
when the photons have enough energy to overcome the band gap of the
material. Those two can be defined by the following relations:

id = f

(
0, vPD(t);

d

dt
, λ

)
iL = f

(
pin(t), vPD(t);

d

dt
, λ

)
− id.

(2.7)

In case of DC stationary state we have the exclusion of the derivative from
the relation:

IPD = f (Pin, VPD; 0, λ) = IL + Id, (2.8)

where Id = f (0, VPD; 0, λ) is the DC dark current, IL = f (Pin, VPD; 0, λ)−
Id is the DC photocurrent. The relation is in principle both nonlinear and
dispersive, but, as we have seen, if the input power is varying slowly in
time, we can approximate using the definition itself of responsivity, which
still depends on the wavelength:

iPD(t) = iL + id ≈ ℜ (λ, vPD) pin(t) + id (vPD) (2.9)

32



In many cases the responsivity and the dark component of the current are not
dependent on vPD, because the voltage is quite small and overall negligible
in the formula, leading to this expression:

iPD(t) = ℜ(λ)pin(t) + Id ≈ ℜ(λ)pin(t) (2.10)

After a certain optical power, there is both a decrease in responsivity and
a saturation in the curve, due to the space-charge screening of the electric
field cause by the collected photocarriers.

2.1.1 Responsivity

The photocurrent can be defined as the integration of the optical generation
rate G0 over all the active volume that absorb the radiation:

IL = q

∫
V
Go (r, Pin) dr (2.11)

And the responsivity is the ratio between the output current and the input
optical power in both incremental and differential definitions:

ℜ =
IL
Pin

or ℜdiff =
dIL
dPin

. (2.12)

Even if the generation rate is evaluated with a numerical solver which per-
forms FDTD, a simple derivation can be done to understand the analytic
method with a consequent ideal solution. The goal is to relate the optical
generation rate G0 and the optical power, and this can be obtained by dif-
ferentiating the optical power density P̃in = Pin/A

(
W/m2

)
respect to the x

axis. The area on which we have calculated the density is the detection area
(intrinsic or neutral charge region) of our photodetector. What we obtain
is:

dP̃in(x)

dx
= −αP̃in(x) →

Energy lost due to absorption

t · V
= −∆P̃in

∆x
= αP̃in.

(2.13)

We can now divide for the definition of the energy of the photon Eph =
ℏω:

( Energy lost )/(t · V )

Photon energy ℏω
=

αP̃in

ℏω
=

Number of photons absorbed

t · V

=
Number of e-h pairs generated

t · V
= Go

(2.14)

With the final relation:

Go =
αP̃in

ℏω
(2.15)
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Due to the fact we can say that the optical power density decreases in an
exponential way respect to the absorption direction, the behaviour of the
optical generation rate will be the same:

Go(x) =
αP̃in(x)

ℏω
=

αP̃in(0)

ℏω
exp (−x/Lα) = Go(0) exp (−x/Lα) (2.16)

Now, we can do some assumptions: all the incident power is absorbed and
all the generated pairs are collected in form of current in the external cir-
cuit. We have in this way: Number of electrons in the external circuit

t = IL
q =

V · Number of e-h pairs generated
t·V = Number of photons absorbed

t·V = A
∫∞
0 Go(x)dx =

A
∫∞
0

αP̃in(x)
ℏω dx = − A

ℏω
∫∞
0

dP̃in(x)
dx dx ≈ Pin(0)

ℏω ,

IL
q

=
Pin(0)

ℏω

It follows that the photocurrent depends linearly on Pin(0) through the
responsivity ℜ:

IL =
q

ℏω
Pin(0) = ℜPin(0) (2.17)

Using the density point of view of the same quantities, we can in parallel
define JL = ℜP̃in(0). From the previous formula we can derive a different
expression of the responsivity which is related to the energy of the photon:

ℜ =
q

hω
=

q

Eph
(2.18)

This is valid only when all the incident photons are both absorbed and
converted in electron-hole pairs which arrive at the contacts without any
recombination phenomenon. In this best case possible, the responsivity
has a maximum as a function of the photon energy: it is zero for photon
energies below the absorption threshold and it assumes a sharp increase of
absorption once we have reached the threshold value. We can assume the
photon density equal to the band gap one Eph ≈ Eg:

ℜmax ≈ q

Eg
=

1

Eg[eV]
≈ λ[µm]

1.24
(2.19)

and a first approximation of the behaviour for energies higher than the gap,
we can introduce at first an inverse proportionality:

ℜ (Eph) ≈ ℜmax
Eg

Eph
, (2.20)

This is quite a good estimation when we look at the form of the responsivity
respect to the absorption (Fig. edge2.3). The value of responsivity of a real
device can be a little different, because not all the carriers are collected,
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Figure 2.3: Behavior of absorption α and responsivity ℜ (in arbitrary units,
normalized so that ℜ ≈ α near Eg) vs. the photon— energy [14].

due to many possible effects happening such as recombination events in
correspondence of defects at the interface between different materials (sili-
con/germanium). The maximum responsivity can be very large in case of far
infrared photodetectors, while in case of long-wavelength infrared detectors
we have a maximum in the order of 1 A/W. Aside from the responsivity,
we can talk also about the quantum efficiency: the internal one assume that
all the photons are correctly absorbed, so we think about the number of
generated carriers respect to the photons which actually reach the active
region.

ηQ =
generated pairs

photons reaching the active region
(2.21)

The external quantum efficiency is more general, because we now consider:

• the carriers which are collected and not anymore the generated ones

• the incident photons and not anymore the ones which effectively reach
the absorption region.

We are in this way accounting two more real device problems: not every
generated pair is correctly collected and not each photon incident on the
device is properly absorbed by the active region of the detector.

ηx =
collected pairs

incident photons
=

IL/q

Pin/ℏω
=

ℏω
q
ℜ < ηQ. (2.22)

If the internal one can be very close to 1, the second one is usually lower
if we do not assume an ideal operation case, which would make the two
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Figure 2.4: Responsivity versus wavelength for a Si homojunction, an In-
GaAs heterojunction high-speed pin photodiode, and a Ge-on-Si photodiode.
The dotted curve is the ideal case with external quantum efficiency ηx = 1
and responsivity ℜ = q/(ℏω) [14].

different definitions of quantum efficiency coincide. If we talk a little more
about non-ideality mechanisms present in a real device we can sum them in
this list:

• The optical power Pin (0) is incident on the photodetector.

• Part of the power is reflected at the PD interface due to dielectric
mismatch.

• Part of the power is absorbed in regions where it does not contribute
to the useful output current.

• Part of the power is transmitted through the PD without being ab-
sorbed.

• Finally, part of the power is absorbed and yields a useful current com-
ponent.

We can also see where there is a good responsivity in some materials and
for which wavelength we can use them (see Fig. 2.4). We can focus mainly
on the Germanium, the leading actor of this thesis.
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2.1.2 Electrical bandwidth

We start another time from the same constitutive relation we have used
at the beginning of the discussion of the responsivity, the difference is the
negligence of the wavelength dependence:

iPD(t) = f

(
pin(t), vPD(t),

d

dt

)
(2.23)

We separate now the DC and AC components and for simplicity we denotes
the DC components with a 0:

Pin = Pin,0+p̂in(t), VPD = VPD,0+v̂PD(t), IPD = IPD,0+ı̂PD(t) (2.24)

The AC component is a general signal, but for this demonstration we can
assume a sinusoidal modulation of the light with the consequent association
of the signal components:

Pin = Pin,0 + p̂in(t), VPD = VPD,0 + v̂PD(t), IPD = IPD,0 + ı̂PD(t), (2.25)

ω is the light angular modulation frequency. We are now able to linearize
around the DC working point:

IPD,0 + ı̂PD(t) =

= f (Pin,0, VPD,0, 0)︸ ︷︷ ︸
IPD,0

+
∂f( d/dt)

∂pin

∣∣∣∣
0

p̂in(t) +
∂f( d/dt)

∂vPD

∣∣∣∣
0

v̂PD(t), (2.26)

where the second and third term are the two small-signal parts of the pho-
todetector current: respectively photocurrent and dark current. For these
two terms, we can another time express them with the phasor notation:

ı̂PD(t) = ı̂L(t) + ı̂d(t) = Re
(
ℜ(ω)P̂ine

jωt
)
+Re

(
YPD(ω)V̂PDe

jωt
)

(2.27)

in which we introduce two relatively new terms in our discussion: the com-
plex small-signal responsivity and the small-signal admittance. The associ-
ated phasor is:

ÎPD(ω) = YPD(ω)V̂PD(ω) + ÎL(ω) (2.28)

where the second term can be related through the well-known and already
discussed equation formulated in a phasorial way. In the case of V̂PD = 0 the
current is called short-circuit photocurrent. While the complex responsivity
Rω describes the small-signal frequency response and it is a low-pass function
of the modulation frequency. A normalized responsivity r(ω) can be defined
from this division:

ÎL(ω)

ÎL(0)
=

ℜ(ω)
ℜ(0)

P̂in(ω)

P̂in(0)
= r(ω)

P̂in(ω)

P̂in(0)
. (2.29)
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Figure 2.5: Small-signal equivalent circuit of loaded photodetector [14].

and assuming a constant complex input power we obtain:

r(ω) =
ÎL(ω)

ÎL(0)
=

ℜ(ω)
ℜ(0)

→ |r(ω)|dB = 20 log10

∣∣∣∣ℜ(ω)ℜ(0)

∣∣∣∣ . (2.30)

For a typical low-pass detector, the cutoff frequency (or 3 dB bandwidth) is
the frequency at which the normalized responsivity drops by 3 dB respect
to its DC value. To this aim, it is usual to normalize the DC value to 0 and
look and the value at −3 dB:

|r (ω3 dB)|dB = −3 →

→ 20 log10

∣∣∣∣ℜ (ω3 dB)

ℜ(0)

∣∣∣∣ = −3 → ℜ (f3 dB) =
1√
2
ℜ(0)

(2.31)

This cutoff frequency refers to short-circuit photocurrent and does not de-
pend on the load. Many effects we have already talked about are crucial
such as the transit time, the avalanche buildup delay in case of APD’s pho-
todetectors or current gain at high-frequency. The overall response considers
also the load and the parasitic elements such as capacitances: this is the RC
cutoff caused by the combination of both intrinsic and extrinsic capacitance
effects with the external load resistance. A quantitative evaluation can be
performed with the equivalent circuit represented in Fig. 2.5. and, in the fre-
quency domain, the detector can be modelled by the current-voltage phasor
relation:

IPD(ω) =
[
Y i
PD(ω) + Y x

PD(ω)
]
VPD(ω) + IL(ω) (2.32)

If we have already talked about IL = ℜ(ω)Pin as the short-circuit component
at omega, we can now distinguish the admittance in the ”i” intrinsic one and
the ”x” parasitic (and in particular capacitive) one. The load impedance
has to be considered for what concerns the bandwidth of the loaded detector
as well as the capacitive and resistive loading. The frequency-dependent
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responsivity takes into account only cutoff effects, while RC cutoff is handled
at circuit level. Assuming both ZL = RL and CPD as total capacitance, the
current flowing through the load IRL

= −IPD is:

IRL
(ω) = − IL(ω)

1 + jωRLCPD
→ |IRL

(ω)| = |IL(ω)|√
1 + ω2R2

LC
2
PD

(2.33)

From that formula we can derive also another formulation of the responsivity
of the loaded detector:

|ℜl(ω)| =
ℜ√

1 + ω2R2
LC

2
PD

(2.34)

The limitation in the cutoff frequency due to RC effects is:

f3 dB =
1

2πRLCPD
(2.35)

As a first approximation of the large-signal model, one can model an equiv-
alent circuit with the parallel of a capacitive (sometimes nonlinear) admit-
tance with two different current generators: one models the photocurrent IL
(linearly dependent on the optical power) and the dark one Id (which is neg-
ligible in some context). Adding more elements, one can take into account
other kinds of effects such as voltage-dependent photocurrent, nonlinear de-
tector input admittance, more interconnected parasitic networks with series
connector resistances, wire inductances, and distributed more than lumped
elements.

2.1.3 Frequency response in pin

We can now focus a little more on pin detector, being the general structure
of our analysed devices. There are four mechanisms that can limit the speed
of the device when we are exciting it and one of these can be the dominant
one in each specific case depending on the structure and the conditions. The
main ones are:

• The effect of the capacitances, which are the sum of the one consequent
of the depleted region, external parasitic ones, and the one consequent
of the height of the device.

• transit time of carriers drifting in the depletion layer of widthW (which
is larger due to the intrinsic area).

• diffusion time of carriers that are generated outside of the depleted
regions and this is even more important in homojunction.

• charge trapping in heterojunctions (as in our case).
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Transit time is quite important in our devices, while it is almost negligible
in pn devices, being their depleted region narrower. In our device as in every
optimized pin photodiode, the two main limitations are the transit time and
the RC cutoff.

2.2 Dynamic pin model

We can discuss now a general way to follow the path of photogenerated
carriers in a pin photodetector, in order to give a generic description to fully
understand the main effects that happen in a photodetector and what can
actually limit the speed of the device. If we want to follow the dynamic of
photogenerated carriers in the less doped region, we can model it as a 1D
problem and we can write the continuity equations for electrons and holes
in this way:

∂p

∂t
= −p− p0

τb
+Gop(x, t)−

1

q

∂Jh
∂x

∂n

∂t
= −n− n0

τb
+Gop(x, t) +

1

q

∂Jn
∂x

(2.36)

the ”0” means equilibrium value, while the τ refers to excess carrier lifetime.
The electron and hole current densities are:

Jh = qvh(E)p− qDh
∂p

∂x

Jn = qvn(E)n+ qDn
∂n

∂x

(2.37)

where vn and vh are the field-dependent drift velocities. We can couple that
with the Poisson equation:

∂E
∂x

=
ρ

ϵs
, (2.38)

Being the movement only due to drift component, when we apply a bias
and we have a certain electric field with a direction, electrons and holes
will have different velocities moduli and this is going to divide them. If we
look also at its absolute value, this will be different and the charge has an
overall asymmetry, which screens the field and change it. We assume this
as a negligible effect: there is not a change in the total electric field we are
using to solve the problem. When the field value is not too high we have:

Jh = qvh(E)p− qDh
∂p

∂x
≈ qµhEp− qDh

∂p

∂x

≈ qµh
|VA|
W

p− q
kBT

q
µh

∆p

W
=

qµh

W

(
|VA| p−

kBT

q
∆p

) (2.39)

This approximation holds as far as we assume the injected charge in the
central region as linear with a slope equal to ∆p/W and we assume the
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worst case scenario: ∆p ≈ p. The diffusion component of the current can be
neglected when we have a |VA| ≫ kBT/q = 26mVT at ambient temperature
and this is usually a correct inequality in operating devices. We will also
assume that the transit time in the device of the photogenerated carriers is
lower than the average time necessary to encounter a recombination event,
so they will reach the contacts before having any kind of recombination
process. The last assumption is that the electric field is high enough to make
the velocity saturate inside the intrinsic part of the junction. The omission
of space charge contribution can be assumed valid as far as the incident
power is small. An higher value would lead to a higher space charge in the
active region and a screening and non-uniformity of the field. To evaluate
the impact of this effect we can assume vn ≈ vh ≈ v or if we are in low
field regime we can write the velocity as a linear dependence of the mobility
µn ≈ µh ≈ µ and n ≈ p. What we obtain is:

JL = Jh + Jn ≈ qµhE0p+ qµnE0n ≈ 2qµE0n = 2qvn, (2.40)

where E0 is the field of the mere external bias. The charge q multiplied by
n, since n = p, is the charge density associated with both carriers:

|ρ| ≈ JL
2µE0

=
JL
2v

(2.41)

If we put this charge inside the Poisson equation seeing it as an uncompen-
sated density deriving from the displacement of generated carriers:

∂E
∂x

=
ρ

ϵs
=

JL
2µϵsE0

=
JL
2ϵsv

(2.42)

where E is the extra field introduced due to this photocarriers. If we simply
integrate on all the intrinsic layer (remembering we are doing this only in
one dimension) we obtain:

E =
JLW

2µϵsE0
=

JLW

2ϵsv
(2.43)

This electric field is negligible in two different cases: when we are in a low-
field condition and when we are in a velocity-saturation regime.

E =
JLW

2µϵSE0
≪ E0 → |E0| ≫

√
JLW

2µϵS
(2.44)

E =
JLW

2ϵsv
≪ E0 → |E0| ≫

JLW

2ϵsv
(2.45)

Thanks to these two inequalities, we can find an electric field which is suffi-
cient to ignore the space charge contribution. We can obtain an estimation
of the saturation power of the photodetector.
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2.2.1 Transit time limitation

Considering only the drift currents with a constant electric field, the conti-
nuity equations are written in this way:

∂p

∂t
= Go(x, t)−

1

q

∂Jh
∂x

∂n

∂t
= Go(x, t) +

1

q

∂Jn
∂x

(2.46)

where the density currents can be written as drift currents as:

Jh = qvh, sat p, Jn = qvn, sat n. (2.47)

The position x = 0 is positioned in correspondence of the pi junction, while
we are assuming a length of x = W of the intrinsic region. Being the system
linear, we can use a harmonic optical incident power at an angular frequency
of ω:

pin(t) = Pin(ω)e
jωt (2.48)

If we substitute the density currents in the continuity equations we obtain,
once we assume the electron density equal to zero at the interface between
intrinsic and p doped region and the hole density equal to zero in the inter-
face (minority carriers density at the interfaces is 0):

jωp(x) = Go(x)− vh,sat
dp(x)

dx
= Go(0)e

−αx − vh,sat
dp(x)

dx

jωn(x) = Go(x) + vn,sat
dn(x)

dx
= Go(0)e

−αx + vn,sat
dn(x)

dx

(2.49)

What we are looking for is an exponential trial solution in the homogeneous
associate:

jωp′(x) = −vh,sat
dp′(x)

dx
(2.50)

written as:
p′(x) = Aejkx (2.51)

If we substitute this solution inside the formula we obtain:

jωAejkx = −vh,satkAejkx → k = − jω

vh,sat
(2.52)

We can now write the solution of the first complete equation with the sum
of two termsp1 + p2, with p2 particular solution of the same equation. We
compose the solution as: p2 = B exp(−αx)

p(x) = p1 + p2 = Ae
− jωx

vh,sat +Be−αx (2.53)

42



with A and B general constants. Substituting and using another time the
condition p(W ) = 0 we obtain the hole density:

p(x) =
GO(0, ω)

jω − αvh,sat
e−αW

[
e−α(x−W ) − e

− jω(x−W )
vh,sat

]
. (2.54)

While for the electron density we use the trial solution with the changed
sign at the exponent of

n(x) = Ae
jωx

vn,sat +Be−αx (2.55)

Substituting in the same way and imposing this time n(0) = 0, we have:

n(x) =
Go(0, ω)

jω + αvn,sat

[
e−αx − e

jωx
vn,sat

]
(2.56)

From what we have obtained for n(x) and p(x), when we substitute this
back in the drift currents we obtain:

Jh(x) = qvh,satp(x) =
qvh,satGo(0, ω)

jω − αvh,sat
e−αW

[
e−α(x−W ) − e

− jω(x−W )
vh,sat

]
Jn(x) = qvn,satn(x) =

qvn,satGo(0, ω)

jω + αvn,sat

[
e−αx − e

jωx
vn,sat

] (2.57)

The total current will be the sum of these two components and of the dis-
placement current:

Jt(ω) = Jh + Jn + jωϵsE(x, ω) (2.58)

where E(ω) derive from the harmonic input optical power we have chosen
at the beginning of this section. We have now to integrate over the intrinsic
region on both sides of the currents sum equation. If on the left side this
is equivalent to a simple multiplication of the total current for the width,
being it assumed not dependent, we can take care of the right one:∫ W

0
Jt(ω)dx =WJt(ω) =

∫ W

0
[Jh(x) + Jn(x) + jωϵsE(x, ω)] dx

=
qvh,satGo(0, ω)

jω − αvh,sat
e−αW

∫ W

0

(
e−α(x−W ) − e

− jω(x−W )
vh, sat

)
dx

+
qvn,satGo(0, ω)

jω + αvn,sat

∫ W

0

(
e−αx − e

jωx
vn,sat

)
dx+ jωϵs

∫ W

0
E(x, ω)dx

=
qvh,satGo(0, ω)

jω − αvh,sat
e−αW

e−α(x−W )

−α
− e

− jω(x−W )
vh,sat

−jω/vh,sat

W

0

+
qvn,satGo(0, ω)

jω + αvn,sat

e−αx

−α
− e

jωx
vn,sat

jω/vn,sat

W

0

+ jωϵs[−V ]W0

(2.59)
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The last formulation of the current density is this one:

Jt(ω) =
1

W

qvh,satGo

jω − αvh,sat
e−αW

eαW − 1

α
+

1− e
jωW
vh,sat

jω/vh,sat


+

qvn,satGO

jω + αvn,sat

1− e−αW

α
+

1− e
jωW
vn,sat

jω/vh,sat

+ jω
ϵs
W

[V (0)− V (W )].

(2.60)

One last step before the conversion of the density in the current quantity,
we can introduce the transit times through the use of the space and of the
velocity:

τdr,n =
W

vn,sat
, τdr,h =

W

vh,sat
(2.61)

and the complete expression for the optical generation rate which was never
specified before in our discussion.

Go(0, ω) = ηQ
(1−R)

Ahf
αPin(ω) (2.62)

What we finally obtain is:

It(ω) = αW
q

hf
ηQ(1−R)Pin(ω)

×
{

e−αW − 1

αW (αW − jωτdr,h)
+ e−αW ejωτdr,h − 1

jωτdr,h (αW − jωτdr,h)

+
1− e−αW

αW (jωτdr,n + αW )
+

1− ejωτdr,n

jωτdr,n (jωτdr,n + αW )

}
+ jω

Aϵs
W

VA(ω)

= −IL(ω) + jωCVA(ω).

(2.63)

In this formula we can see the small-signal short-circuit photocurrent −IL
which is the bracket term and the current absorbed by the intrinsic layer
geometric capacitance which is the last term. This in particular can be
neglected when a DC bias is applied. In particular for w lim 0 the equation
simplify to:

It(0) = −IL(0) = − q

hf
ηQ(1−R)Pin(0)[1− exp(−αW )] (2.64)

The small-signal photocurrent can be written as:

IL(ω) =αW
q

hf
ηQ(1−R)Pin(ω)

×
{

1

αW − jωτdr,h

[
1− e−αW

αW
+ e−αW 1− e

jωτdr,h

]
τdr,h

]
− 1

αW + jωτdr,n

[
1− e−αW

αW
+

1− ejωτdr,n

jωτdr,n

]} (2.65)
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Even if the response is quite hard from an analytical point of view and it
should be solved numerically in theory, there are a bunch of cases in which
we can write an expression. For this discussion we shall start from the
normalized responsivity, which is equal to:

r(ω) =
IL(ω)

IL(0)
=

1

αW − jωτdr,h

[
1

αW
+

1− ejωτdr,h

jωτdr,h

1

eαW − 1

]
− 1

αW + jωτdr,n

[
1

αW
+

1− ejωτdr,n

jωτdr,n

eαW

eαW − 1

] (2.66)

We can now show two cases in which we have an overall simplification and
we are able to achieve an analytical formulation: 1 diode is thick, so we
impose αW ≫ 1, we have the absolute value of the responsivity:

|r(ω)| ≈

∣∣∣∣∣sin
(ωτdr,n

2

)
ωτdr,n

2

∣∣∣∣∣ (2.67)

and the 3 dB bandwidth condition with epsilon ξ = jωτdr,n/2

20 log10 |r (ω3 dB,tr)| = 20 log10

∣∣∣∣sin(ξ)ξ

∣∣∣∣ = −3 (2.68)

i.e.,

ω3 dB,trτdr,n
2

≈ 1.391 → f3 dB,tr =
2× 1.391

2π

1

τdr,n
= 0.443

vn,sat
W

. (2.69)

What we have come to is the transit time-limited cutoff frequency, which
is dependent on the transit time of minority carriers in the illuminated
part of the device. This is because electrons are the minority ones close
to the p+ surface being it illuminated on the front. If we have instead a
back illumination, on the n+ side, we will have the same formula related to
saturation velocity of holes, which are this time the minority carriers:

f3 dB,tr = 0.443
vh,sat
W

. (2.70)

Being in general holes slower, a front illumination fits more this device to
obtain a better overall response and speed. If we are assuming the same
transit time for both electrons and holes, we will then obtain this formula:

f3 dB,tr ≈
1

2.2τt
(2.71)

2 the diode can be defined thin, so with αW ≪ 1: the generation is much
more uniform in the active intrinsic region and the frequency response is
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limited by both electrons and holes at the same time. An approximation in
this case is the subsequent:

f3 dB,tr =
3.5v̄

2πW
, where

1

v̄4
=

1

2

(
1

v4n,sat
+

1

v4h,sat

)
. (2.72)

The difference between these two cases is not that high in case of equal
saturation velocity between carriers.

2.2.2 Capacitance effect

We can design the photodetector with an equivalent circuit and from this
we can have an idea of the RC-limited cutoff frequency. If Cp stands for the
external diode parasitic capacitance and RS the series parasitic resistance,
RD the parallel one and CJ the intrinsic capacitance, we have

RD ≫ Rs, RL, (2.73)

and the formula of the cutoff frequency is given by a resistance that is the
sum of the series one with the one deriving form the illumination R ≈
RS +RL and the capacitance is the sum of the intrinsic capacitance and the
external one C ≈ Cj + Cp , Cj = ϵsA

W . The total cutoff frequency can be
evaluated at a circuital level and an approximation can be done in this way
f3 dB,RC ≈ 1

2πRC . The total cutoff frequency resulting from the transit time
and RC effect can be evaluated at a circuit level; an approximate expression
is:

f3 dB ≈ 1√
f−2
3 dB,RC + f−2

3 dB,tr

(2.74)

2.3 Bandwidth-efficiency trade-off

Because both the efficiency and the cutoff frequency depend on the mea-
sures of the detector, we can say that there is a trade-off between these
two quantities. We have seen both RC-limited bandwidth and transit time
limited bandwidth: when we increase the thickness W we increase the first
one because of the decrease of the junction capacitance and, on the other
hand, when we decrease it there is an increase of the second contribution. If
we think about the total area, its increase does not affect the transit-time,
but it surely increases the capacitance, decreasing the total bandwidth and
in particular the RC component. If we keep the area value constant, we can
see the direct proportionality of the RC cutoff frequency with the thickness
W and the inverse proportion with the transit time. From the moment that
the total bandwidth is influenced by the lower one between these two, it is
influenced by the RC component in case of low W and from the transit time
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Figure 2.6: High-speed pin optimization: trade-off between speed and effi-
ciency [14].

one in case of large W , so it increases with W and then decreases. We can
suppose and imagine there is somewhere in the middle of these two differ-
ent behaviors a maximum value whose position depends on the area. The
maximum is going to move to lower W and larger cutoff frequencies for an
increasing area and the efficiency will still increase with the width W . When
we are working at high frequencies, the required aspect is a quite small area
device with small W and poor efficiency. This trade-off can be shown with
the Fig. figure2.6. is which we can better understand the trade-off between
speed and efficiency and its meaning. This is a InGaAs pin photodiode with
circular illuminated area and the D means diameter of this area. The to-
tal volume of the intrinsic region is exactly the area calculated as the area
of a circle with that particular diameter multiplied for the thickness W of
this region. We have considered for this plot only the intrinsic junction ca-
pacitance and not the parasitic one, which may have a fundamental role in
many cases. For good bandwidth, we have to use small area devices, at least
20µm;. But, for decreasing illuminated area, we have to decrease also the W
of the device in order to have both good efficiencies and speed, as far as for
larger combination of measures the transit time limit become the limiting
one making the bandwidth and the external quantum efficiency worse and
worse.
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2.4 Si-Ge photodiode, the choice of the materials
and the heterostructure

The aim of all the research around photodetectors is to implement a rea-
sonably low-cost and effective interconnections based on optical principles,
due to the speed required to keep on the roadmap for the next evolution
of computers. In fact, optical technologies are foreseen as the next step to
overcome the bottleneck of metal interconnections, as we can assume the
speed of light will provide to the device a much larger bandwidth than the
slower physical interconnection. Those are not only meant to be cheaper
and faster, but also consume less energy improving both thermal and power
link budgets [12]. One of the most promising paths is the silicon photonics
and germanium detectors are very attractive for many reasons: they are
CMOS-compatible through mastered heteroepitaxy on silicon (refer to the
figure with gap vs lattice constant) and a quite decent crystalline film qual-
ity, the absorption coefficient of Ge is very competitive for both 1.31 µm and
1.55 µm, being the absorption range high over a wide spectral range and
the use of strain (compressive or tensile) can help the engineering of the
gap. This is exactly what our device is based on: a waveguide photodetec-
tor. Those are able to optimize the frequency response and the responsivity.
Another interesting aspect of germanium is the fast mobility value for both
electrons and holes [12]. The central mechanism used for light detection is
to transduce impinging photons with given energy into an electrical signals,
typically current or voltage, which can then be collected by an electronic
readout circuit. Indeed, an efficient photon-to-electron conversion depends
on the electronic bandgap of the active material used (see Fig. 2.7), because
if the energy is too low we cannot create an electron-hole pair and if it is
too high there is a waste of energy with many other effects in order to relax
the created pairs to an equilibrium value of energy in correspondence of the
bands. We can do now a little digression of what this kind of heterostruc-
ture means from a different point of view. The heterostructure is defined
when two different crystals with different lattice constants are grown one on
top of the other. Due to this difference there are misfit dislocations, that
are essentially traps for both electrons or holes and these make the perfor-
mances of a generic device worse. Essentially, we can call two crystals a
heterostructure when, in the process of growth, there is a very little differ-
ence in the lattice constant. We can take advantage of this differences from
an electronic and optical point of view. The discontinuity at the interface
can be used as a confinement for carriers from a band structure point of
view because of the jump we have in one or in both bands. The heter-
structures can be defined with three different types: straddling gap (type
I), staggered gap (type II) or broken gap (type III). Depending from the
type of heterojunction there could be, from the band diagram point of view,
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the confinement of one or both carriers in one semiconductor respect to the
other. Instead, if we look at it from an optical point of view, we can have
the confinement of the radiation due to the difference in refractive index
between the two different semiconductors. The lattice can be matched or it
can have a little mismatch which causes some kind of strain (compressive
or tensile). This little mismatch can be used for a confinement, that is es-
pecially useful in the photodetectors in order to have the generation of the
pairs only in the desired intrinsic active region (in the case of pin). A dou-
ble heterojunction such as AlGaAs/GaAs/AlGaAs creates a potential well
in the band diagram and can be engineered to construct a multi quantum
well or even a superlattice when the number of wells starts to increase dra-
matically, with even more quantum effects to be introduced and considered,
which significantly change the electronic properties of the device. Now we
focus now on the Si-Ge interface that is present in our device. The light
arrives from the silicon waveguide, while the evanescent coupling happens
in the germanium photodetector. We can show in Fig. 2.8 the difference of
band gap in the two semiconductors. The main difference between the two
is the fact that germanium is an almost direct material, while silicon is an

Figure 2.7: Absorption coefficient as a function of the wavelength and
bandgap energy for several semiconductors typically harnessed in optical
photodetectors.[12]
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indirect one. We can easily understand why the semiconductors are used
in this way. The germanium is commonly used as a detector for the above
mentioned properties, for its easy and well-explored growth and integration
with silicon and with the contemporary technology. The waveguide is done
in silicon both for its transport properties and for the growth methods on
silicon wafers. But how the growth can be made? What we want for our
device is a direct growth of germanium over silicon for the fabrication of our
detector. This is not trivial because of the difference in lattice constant be-
tween the two semiconductors, which is equal to 4.2%. The lattice constant
is equal to 5.431 Å in Si and 5.658 Å in Ge, determining a high density of
misfit and threading dislocations in the germanium side of the interface. If
a potential higher roughness can be a problem for the fabrication itself of
the photodetector, all the consequent defects can impact the performances
of the device by increasing the dark current and decreasing the mobility of
both carriers. If one can think the solution is a graded layer of Si-Ge buffers
with a percentage that makes the growth of germanium on silicon with no
lattice mismatch and with the reduction of defects at the interface, this is
not anymore the solution. In fact, the recent solutions were the use of a
detector directly on a silicon waveguide in order to have, as in our case, an
evanescent coupling. The efficiency of this connection is precluded by the
use of buffer layers, so the growth need to be direct on the waveguide and a
two-step deposition technique is used in order to mitigate as much as possi-
ble the mismatch of lattice constants. This approach exclude the creation of
islands during the chemical vapor deposition (CVD), giving a smooth, high
quality germanium. The first step is the formation of a seed layer at low
temperature in the 320-450 °C range, making the defects accumulate in it
and creating a regular array of misfit dislocations 10 nm apart, decreasing

Figure 2.8: Band diagram comparison between germanium and silicon.
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the roughness due to the elastic strain relaxation. In a second step, the
used temperature is way higher and between 600 °C and 850 °C with the
formation this time of germanium more rapidly and with an overall better
quality. A thermal cycling can be even be used after these steps in order
to further reduce the number of defects. Despite the initial design for this
kind of detectors as discrete normal incidence devices, this is now an outrun
idea for chip integration. The main problems were the thick layer needed to
absorb the incident light making the dark current quite high, the footprint
on the silicon substrate large, a high capacitance which limited the band-
width and a limited responsivity-bandwidth product. As the capacitances
limit the speed, the sensitivity is then limited by the dark current, making
an overall bad performance for this kind of devices respect to other kind of
photodetectors or materials. A turning point were the waveguide-integrated
photodetectors, being their active area smaller, increasing speed, low-noise
and sensitivity. In this configuration, the collection path are orthogonal
one to each other, with a great advantage respect to normal incidence ones.
We have in this way a new degree of freedom to optimize responsivity and
bandwidth more independently. The coupling of the germanium detector
with the waveguide can be done with two different couplings: evanescent or
butt-coupling. The first one is the coupling used in our actual real device
studied in this thesis and in particular the waveguide is positioned under
the detector with a pin configuration of this heterojunction. In fact, the
p doped part create an ohmic contact at the very end of the Germanium
close to the metal part, while the intrinsic part is the active region where
we have the absorption of the main part of the light coming from the cou-
pling. The heterojunction is between the intrinsic part of the detector and
the waveguide silicon. On the other hand, a butt-coupling is different and
can also have better absorption per device length. In general, the design of
Ge high-performance photodetectors are created with front-end-of-line ion
implantation and epitaxy processes, while metal contacts on it, as in our
case tungsten and copper, are fabricated with the back-end-of-line CMOS
metalization (Fig. 2.9). There are two main configurations of Ge integrated
on Si waveguides: the MSM (metal-semiconductor-metal) and the pin (see

Figure 2.9: Evanescent-coupling schemes: top-to-down, down-to-top, and
side-coupling. Butt-coupling scheme. [12].

51



Fig. 2.10). if the first is constructed as interdigitated metal layers on top of
the Ge with Schottky barriers, its easiness in the fabrication and its low-
bias operation are good points. But, despite improved responsivity and fast
responses were achieved with time and research, they still show high dark
currents due to low Schottky barriers: there is an long-term low signal-to-
noise ratio, high power utilization and a relatively poor sensitivity when the
optical input power is not so consistent. These are the main reasons why the
pin device is more challenging and more studied now. There are two main
possibilities: a lateral scheme and a vertical one, which is the one used in
our device, and the one we will focus on. Another degree of freedom is the
homo and hetero-junction in the detector. Our device belongs to the first
category since we have only germanium for both the intrinsic active region
and the doped contact one, but let us see the main concerns and advantages
of this choice. As first, there is a possible lack of confinement due to the
weak index contrast between the intrinsic and the doped regions, meaning
there is also, due to the coupling, the generation of carriers’ pairs in the
doped region, leading to higher recombination of photogenerated carriers
with consequent degradation of the responsivity. The heavy doping of the p
region is a symptom of performance drop: lower responsivity, reduced speed,
and higher noise. Even with higher dark current, reduced responsivity, and
slower response, homojunctions are still a good choice for fast detection sys-
tems. The hetero-junction version with silicon on top as a doped region
exploits the benefits of its processing, making it more simple to produce
lowering wafer-level production costs. From a performance point of view,
there is an higher optical confinement in the intrinsic region, leading to lower
losses in the absorption because of the less significant recombination. Due
to the second hetero-junction aside from the one with the waveguide, both
the responsivity and the bandwidth are low when we are not applying any
kind of bias due to the limited collection thanks to the energy barriers. A
voltage has to be applied in order to have a good working point for these
devices. In general, pin photodetectors have an insufficient electrical output
levels and there is a need for other electronic stages attached to the chip.
The receiver input-referred noise is prevailing on the intrinsic detector noise
limiting the sensitivity [12].

Figure 2.10: Common types of waveguide-integrated Si–Ge photodetectors.
MSM structure, lateral, and vertical p-i-n diodes.[12]
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Table 3.1: WPD geometry.

WGe HGe Wdoping

Device 1 4µm 0.8µm 3µm
Device 2 4µm 0.8µm 3.5µm

Chapter 3

Results

In this chapter we will focus on the results that we obtained during the thesis
work, starting from the description of the geometry, the figures of merit and
concluding with the transient analysis. The results are first obtained on
the two-dimensional version of the devices, then moving on to the complete
structure.

3.1 Structure

The structure of our photodiode is a Ge-on-Si device, with a vertical configu-
ration. It is a waveguide photodetector, meaning that the silicon waveguide,
below the Germanium block, illuminates the device with an evanescently
coupled mode. The light-matter interaction that appears in the photode-
tector allows the photogeneration of carriers. In the Germanium absorber,
it is important that the doping increases in a limited region and close to the
contact in order to create an ohmic contact[21]. The width of this doped
region is quite important for the frequency response of the device and the
second device we have data on differs from the first one exclusively for this
measure. It is necessary that the width of the metal contact is narrower
than this doped region if we want something relatable and with a good re-
sponse. The difference between the two devices (as we can see in Fig. 3.1) is
exclusively the width of the doped region, which is equal to 3 µm in the first
device and to 3.5 µm in the second one. Respect to what we have written
in the photodetector general description, we can say that these devices have
a waveguide coupled below it with an evanescent kind of coupling. From
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a semiconductor point of view there is a heterojunction between the sili-
con waveguide and the germanium detector, but there is a homostructure
between the top doped layer and the intrinsic active one. The absence of
difference of reflective index between these two parts of the germanium de-
tector make the spreading of the evanescent coupled light all over the device,
causing diffusion currents in the highly doped region and even more recom-
bination in this area with an overall increase of the dark current. For every
preliminary simulation, as already said, we have used a two-dimensional
structure derived from the complete one for both devices. This was done by
deleting the z axis and maintaining each measure for what concern the x and
y axis unaltered. In order to have some significant simulations, it is obvious
that the two-dimensional cut (see Fig. 3.2)of the structure was performed in
a point in which the metal of the contacts is present (the definition of the
contacts is obligatory in order to perform any kind of electrical simulation).
The main reason for the two-dimensional transformation of the project is
done in order to study the transient, because of the excessive time needed
for a three-dimensional simulation. As we are going to see, the study of this
analysis and of the one of the break criteria was quite long and it required
a huge number of simulations, for example, to push the study of the conver-
gence of the problem due to the rise time to its limit. But, one important
fact was to understand if the 2D simulation was on point or if this would
have been not sufficiently precise and coherent with what we obtained in

Ge

Si

light

Figure 3.1: 3D photodetector geometry.

Wdoping
 

WGe

HGe intrinsic Ge

silicon

doped Ge

metal

metal metal

Figure 3.2: 2D transverse cross section of the 3D photodetector geometry.
The length of the devices is 15 µm.
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the simulations of the full device. If from the dimensions point of view,
this is quite easy, and we just have to keep the same absolute values for
what concern the doping concentrations, there is some more reasoning on
the illumination of the device. In fact, Rsoft FullWave is not able to work
on a two-dimensional device and this makes us think of another method to
recreate the same photon density in the devices. For sure, we already know
it is impossible to recreate the same mode as in the evanescent coupling
through the waveguide, so we have explored two main paths:

• use the maximum value of photons present in the photodetector through
the three-dimensional Rsoft FullWAVE coupling at 200 µW

• use a medium value of the same quantity in the same conditions

This last value has been obtained through the integration tool of SV isual,
by simply integrating the OpticalGeneration quantity, which is derived from
the RSoft FullWave simulation. This value, for the 1.31 µm is equal to a
medium value of 4.675× 1021 cm−3s−1 photons, which is what we are going
to use as a constant rate in all the Germanium of the 2D device as we are
going to use the medium value instead of the maximum one.

3.2 Figures of merit and preliminary analysis

Once we have completed the two dimensional structure with all the aspects
including dimensions, doping and illumination, we can now move on to some
figures of merit and on some analysis on both the 2D case and the 3D on.
This is done in order to understand both the closeness of the simplified device
and the actual values of the detector to be then compared with our transient
analysis. So, we can start from the description of the two-dimensional ”try”
devices in order to understand how to use the transient simulation properly
and its relation compared to its properties. The first ever analysis we make is
a quasistationary in dark conditions. This is useful to have a correct value
of the dark current and of all the microscopic quantities when we apply
different negative voltages to the device. The first thing this command will
calculate is the equilibrium condition: in dark and with no applied bias, to
study the built-in potential and other quantities. Once Sentuarus has this,
it is able to perform a number of steps of the bias in a certain range of
motion up to the desired value of voltage. We have to explain better what
range of motion is, because these are not the appropriate words: each step
of the bias to higher value, aside from the first one that is surely 1×10−4V,
can have a certain value which goes from a minimum value called MinStep
to a maximum value called MaxStep and in this analysis those are equal to
V1×10−6V and V0.1V. The dark current value we obtain (Fig. 3.3) will be
quite important also for the transient analysis, because we can use it for the
break criteria. This can be an easy control parameter in order to understand
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Figure 3.3: Dark current comparison in the two 2D devices.

when we can stop the simulation after the transient fully exhausted after
the light input went off.

The dark current is negligible in the equilibrium case: a voltage is re-
quired in order to see some electric field in the Germanium region, some
movement and some recombination event in dark conditions. The dark cur-
rent is equal to 1.015 483×10−6 µA in device 1 and it is equal to 1.006 763×
10−6 µA in device 2. The difference between the two devices in dark condi-
tions is minimal.

The second aspect we can analyse is the illuminated current value of
the device to actually know the maximum current value we can reach in
case of an illumination with the power we have studied. This is rather
important and it can also carry out the role of a control parameter to know
exactly when the transient simulation current reaches its higher possible
value, and we can stop the transient rise part and proceed with the falling
one, reducing the computational cost immensely. We perform the same
Quasistationary command with the optical generation rates set as described
before, while we put actually 0 photons and 0 generated pairs in the Silicon.
We had some studies to justify this choice, but since a generation value up
to 1 × 1021 centim−3s−1 did not make any difference in the electro-optical
response of the device and since it has very small values also in the 3D
simulation project with RSoft FullWAVE simulating the incoming light from
the waveguide and the evanescent coupling.

As expected (Tab. 3.2) there is no major difference for different biases,
but there is a great difference between the two devices. The Wdoping doping

56



Table 3.2: Photocurrent in the 2D case with G0 = 4.675× 1021 cm−3s−1.

Device 1 Device 2
Bias Photocurrent Photocurrent

0.0V 2.807 058× 10−3 cm−3s−1 2.807 061× 10−1 µA
0.8V 2.808 033× 10−3 cm−3s−1 2.807 163× 10−1 µA
1.5V 2.808 182× 10−3 cm−3s−1 2.807 240× 10−1 µA
2.0V 2.808 273× 10−3 cm−3s−1 2.807 299× 10−1 µA
3.0V 2.808 697× 10−3 cm−3s−1 2.807 522× 10−1 µA

difference plays a huge role in the photocurrent for what concern the two-
dimensional structures. This kind of simulation is not only interesting for
the current value, but also because we can calculate the responsivity and we
can have a measure of it for our device. We already described responsivity as
the ratio between the output current and the input power and it is important
to have a good value. The results we get are a 2.807×10−5AW−1 for device
1 and 2.807 × 10−3AW−1 for device 2, which is a reasonable number if we
think the fact that the device is very small and the volume illuminated by
the coupling is really little and uniform, so the real problem of this value is
the fact that we are considering a two-dimensional structure. The difference
is evident and it is exactly equal to the difference in photocurrent between
the two devices. This problem is due to the two-dimensional device and its
deal with the highly doped region close to the contact. We can now look
at the bandwidth of the device done by the small-signal analysis in order
to see its speed. The electro-optic response was performed for frequencies
going form 1 × 108GHz to 1 × 1011GHz with 40 points in the interval and
this is sufficient in order to obtain a smooth result without the necessity of
longer and more computational heavy simulations. What we could expect
is to see differences when we apply different biases, because the higher the
bias, the larger the depleted region and the electric field, leading to a faster
drift motion of the pairs generated in the intrinsic region and a generally
faster response. As first comparison (see Fig. 3.4), we can see how much a
different bias change the response:

The bigger difference is between the 0V case and the cases in which
we have an applied voltage. This proves us another time that the correct
working of the detector happen when there is an applied reverse bias of
some measure. Another important fact is that the difference in GHz is
always reducing between different curves as long as we consider higher biases,
meaning that an even higher voltage value is not useful for a better speed
of the photodetector and this also proves that the choice of −2V in all our
3D simulations is correct.

We can now think about the real three-dimensional device and look
another time into all the figures of merit to better understand the device
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Figure 3.4: Frequency response for the two 2D devices for different biases
for a constant generation rate of 4.675× 1021 cm−3s−1.

Table 3.3: Frequency response in the 2D case with G0 = 4.675 ×
1021 cm−3s−1.

Device 1 Device 2
Bias Cutoff frequency Cutoff frequency

0.0V 16.31GHz 20.04GHz
0.8V 25.94GHz 29.81GHz
1.5V 28.10GHz 31.52GHz
2.0V 28.81GHz 32.09GHz
3.0V 29.56GHz 32.62GHz

and then we will see if the results we are going to obtain in the transient
analysis are comparable and coherent or not. We can follow the same path
and order done before for the device with one dimension less. The The
dark current is equal to 1.403 477 × 10−5 µA. We can now use the power-
current file in order to have the value of the maximum photocurrent the
device can reach. Those values are important to describe the device and
to correctly run the transient simulation. This is a necessary value mainly
for the break criteria, which allows us to perform much faster and more
automatic simulations without the necessity of putting the correct times
of the rising and falling edges in the physics section of the common file
of the simulation. With these two values, we have the boundaries of the
current curve in the transient simulation and this lets us understand exactly
when the rise or fall are fully completed. The photocurrent has a value of
159.29 µA as we can see in Fig. 3.6. Another time, from the power-current
curve we can easily calculate the responsivity as we have already explained
multiple times and the value for the three-dimensional device is equal to
0.7963 A/W. As written in [12], a good value could be 0.7 A/W for devices
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Figure 3.5: Dark current in the 3D device at a reverse bias voltage of 2V.

0 50 100 150 200

Total input power, W

0

20

40

60

80

100

120

140

160

T
o
ta

l 
cu

rr
en

t 
in

 n
 c

o
n
ta

ct
, 

A

Device 1

Device 2

Figure 3.6: Photocurrent in the 3D device at reverse bias of 2V for an
increasing input optical power.

under 20 µm and this is coherent with what we get. We have to analyse
another important figure of merit, the bandwidth and the cutoff frequency.
This is important because it is comparable not only with the experimental
results, but also with the values we are going to obtain in the transient
simulation. The electro-optic response is shown in Fig. 3.7. It is interesting
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Figure 3.7: Frequency response in the 3D device at a reverse bias of 2V for
an input optical power of 200 µW.

to see what is the limiting factor in this response. In order to do that,
we used a in-house developed model using information from the structure
and from the electrical response of the devices. The plots we have done
are relative to the variation of one of the main measures that characterize
the device and we can see if the choice of a 0.8 µm height is optimal. The
values for the constants are took from bibliography of the Germanium, such
as the mobility, the velocity of carriers. In order to evaluate the transit
time, we need some values such as the height of the device, the absorption
coefficient, the velocity of the carriers and the frequencies we are considering:
we already have everything form the specifics of the device and from the
characteristics of the germanium. For what concern the evaluation of the
RC cutoff frequency, there is something more to evaluate. In fact, because
of the fact we are using the analytic formula for the extraction of electrical
parameters, we need the values of the capacitances and of the resistances
to model our device. Even if the photodetector capacitance value can be
calculated starting from its dimensions with the formula (we consider it as
a capacitance with parallel plates):

CPD = ϵ0ϵr
WGeLGe

HGe
(3.1)

and the load resistance is equal to 50Ω from the measurements, we have
to find out the values of the parasitic resistance and capacitance of the de-
vice. Those are possible to obtain with an electrical AC analysis of the
devices. This analysis is done with no optical excitation and what we ob-
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Figure 3.8: Real part of the admittance of the two devices.
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Figure 3.9: Electrical frequency response.

tain are the admittance Y and the frequency response with its own cutoff
frequency(Fig. 3.8 and Fig. 3.9, respectively). As we can see, the response
of the two devices is very close and seeking for an order of value for the par-
asitic capacitance and resistance, we can use 1 fF and 50Ω, respectively. We
are now able to compute the RC component of the cutoff frequency. Once
we have both, we can finally see which is the predominant in our devices and
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Figure 3.10: Cutoff frequency for different HGe.

if a change in the dimension can change them. We can, at first, modify the
height of our device. We already know in advance that this will change the
photodetector capacitance, because it changes the height of the capacitor
with two parallel plates. On the other hand, this will change also the values
of the constant of time tau used in the transit time cutoff frequency and the
height value is also present in the formula itself. Therefore, there will be
a change in both cutoff values and logically also in the combined one (see
Fig. 3.10). The situation is a little different in case we enlarge the photode-
tector, increasing the dimension of W . This measure do not influence in any
way the transit time of the carriers, because their lifetime is related only to
the height of the device (as well as the characteristics of the material). The
main difference is present in the RC of the device, because we are chang-
ing the area of the ideal capacitor: CPD will be lower with a consequent
difference in the cutoff frequency related to RC effects(Fig. 3.11). We can
see that the transit time cutoff is effectively not influenced, while there is a
change in the RC component, but with not significant changes in the total
cutoff: the decrease is quite slow.

3.3 Transient analysis

After a first work on the study of certain parameters such as the velocity
saturation (that we are reporting later), we started to effectively see the
transient analysis in a two-dimensional framework. Once understood the
values to use in order to have a converging simulation, we have then switched
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Figure 3.11: Cutoff frequency for different WGe.

to the three-dimensional one.

3.3.1 2D

The first results we are going to see regard the transient simulation for the
two 2D devices. One of the bigger works of this thesis is the study itself
of the analysis: due to the computational time in the three-dimensional
device, the use of the two-dimensional structure was crucial. The initial
tests were performed to understand the parameters we could control. We
can represent in the next figure the current response and the optical impulse
we are giving to the device in order to see their correlation. We are reporting
the normalized plot of the current transient at the n contact deriving from
the represented optical pulse with the shape of a step function. We could
in principle increase the slope of the pulse, since, as we can clearly see, it
is not vertical at all, but it would be meaningless because the current of
the detector is now following at the maximum possible velocity. This time
analysis gives us also many information from the frequency point of view as
reported in the Fig. 3.12. Aside from all the control parameters we can use,
we can focus on the main information we get to optimize the simulation.
There are few important points on which we have to focus:

• shape of the response

• minimum value

• maximum value
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Figure 3.12: Shape of the transient respect to the optical pulse for the 2D
devices.

This figure is made by the 2D version of the two devices. We can already
see that there is a difference in the transit time between the two devices.
The shape of the current is following the optical pulse with a certain delay
due to the frequency limiting effects of the device, such as the transit time
and the capacitance (this last one is not the main one even if the detector
is quite high). Another important quantity is the minimum value of the
current, which coincides with the dark current, which is the current of the
device when there is no light impinging on it and that, as we are going to see
in the next section, can be evaluated easily with a simple Quasistationary
simulation. This is the value of both the beginning of the analysis and of
the end, so when the transient has exhausted after the impulse is removed.
This is important because when the current reach this value, we are sure
the transient is completely finished and we can interrupt the simulation
before it goes on until our time limit value. We can say something quite
similar on the maximum value, in fact, when the current reach the maximum
value it can reach under illumination, we know that the transient finished
arriving to the maximum value corresponding to that kind of illumination
and we can analyse the time necessary for the transient to follow up the
light impulse. Another time this will be useful in the break criteria to stop
the simulation and cut out the pulse and make the falling transient part,
without losing computational time with the detector in a static situation
after the illumination and with no source of information for our analysis.
Some results can be shown and obtained already in the 2D simulation, such
as the 10% and 90% current of the curve in the rising part, because it tells
us the time constant of the device and consequently its cutoff frequency.
The results of these 2D structures are not fully comparable with the one
we are going to obtain in the 3D devices mainly because of the constant
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optical generation rate used in the two-dimensional structure, even if the
difference is not that important. But this is actually not relevant, being all
the analysis performed with these structures only functional to the study of
the simulation. The obtained figure reported before is the result of many
simulations and the fact that it uses a quite wide optical input is merely
done in order to clearly see what happens in general as a response of the
device.

3.3.2 Break criteria

A big amount of work was done on the break criteria and its study was
quite huge in terms of time. We have to remember that the use of the two-
dimensional version of the two devices were functional also for this study.
This is something we can introduce in the transient simulation for two main
reasons: decrease the computational time and the computational cost. A
first definition is the subsequent: it allows us to stop the simulation once
some values you have pre-fixed are reached before the end of the simulation.
In our specific simulation, we know that after a certain transient of time,
the current will cap to a maximum, which is correspondent and equivalent
to the photocurrent of the device. Before entering more into details, we
have to explain the problem we encountered already in the first transient
simulations. As we already specified in the introductory part of the transient
simulation, the definition itself of the transient needs some values to be
specified firsts. While in the cmd file of the sdevice we have to define the
initial and the final time of the simulation and the time steps in order to
have a coherent discretization of the problem, in the physics file we need
to define many parameters for what concern the optical pulse used. In the
definition of the optical pulse, as we have seen in the chapter on the transient
analysis, we must specify the time length of the pulse and its slope in the
rise and fall parts. The study of the WaveTLin was done in order to have
a light impinge as instantaneous as possible, but we could not push this
value more than a certain limit for two main reasons: convergence problems
and unnecessary computational cost when it was too fast. The simulation
time step needs to be way lower than the rise time, in order to have many
points in this range and the possibility to follow and converge. But, doing
this we increase dramatically the computational cost having serious impact
on the time necessary to perform the simulation in the 3D case. The study
of this parameter in order it to be fast enough to see the faster possible
transient of the current with an acceptable convergence time was long and
necessary. On the other hand, the definition of the length of the pulse in
order to exhaust the transient before the falling edge was quite a problem.
In fact, we could not know before how much it would have taken and its
definition was always larger to avoid problems with the simulation. The
point was that, if in the 2D simulation we could change it manually many
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times to obtain a correct pulse range because of the speed of the simulation,
it is not possible to do the same thing int he 3D simulation. We wanted to
automatize the simulation in order to obtain the correct one for each device
we want to simulate without the necessity of many simulations to obtain a
correct result. What we need are two values: the photocurrent one, which is
the maximum the device can reach with the specified bias and illumination
conditions and the dark current, which is the current of the device in the
same bias conditions without any kind of illumination. The photocurrent can
be calculated with the use of the PIFR.plt file, which is theQuasistationary
simulation with the costant illumination in the case of the 2D structure or
with the one deriving from the RSoft simulation. The evaluation of these
exact value from the Quasistationary simulation is implemented directly
in Sentaurus with the support of an external code written in MATLAB (in
this case specifically, but it could also be an other programming language)
put in a Bash node. By simply running this bash command before the
transient simulation we obtain, not only the photocurrent, yet it is easy to
also achieve the dark one. Actually, using the REV ERSEBIAS.plt file,
we have the electrical simulation of the device without any optical type
of source, therefore by definition the dark current, which is the maximum
current of the device when it is on in absence of any source of light in case of
the reverse bias we are using. This second value is quite important because
it represents the other control parameter for the transient break criteria. We
can now introduce two break criteria in the transient simulation. The first
one correspond to the maximum photocurrent, which is the maximum value
the transient reaches after a certain time. This interrupts it the first time,
stopping the optical pulse and setting up the simulation for the second part:
the falling one. We can make it restart without any kind of illumination
from the same value of current, so there is the fall. The second break
criteria is put for the dark current value, which is then reached after the
device is not anymore exposed to an illumination source. This part would
in general continue until the final time of the simulation and another time,
this will not give us any useful information. We are in this case able to
stop the simulation before the time expires and we reduce dramatically the
computational time of the simulation, especially when we are going to come
back on the 3D devices in the next section.

3.3.3 3D results

We can start now the discussion about the results obtained for the two
devices. But first, we have to better explain how we can calculate the
frequency from a transient analysis. In order to have a time constant to
see how fast the device is, we have to calculate the rise time of the rising
edge. The rise time is defined as the time between the 10% and 90% of
the curve, in this case, the photocurrent. In fact, for this experiment, we
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Figure 3.13: Transient simulations performed with a reverse bias voltage of
2V [22].

simulated a simple rising signal applying a low input optical power signal
and looking at the output current on a 50Ω load resistor, which is the same
used by Cisco Systems for their experiments. The rise time is particularly
important not only for the time constant of the device, but also because
from this value we directly derive the bandwidth of the device. There is a
quite simple approximated formula that approximates quite well the single
pole response of a device and tells us the cutoff frequency:

f3dB ∼=
0.35

τr
(3.2)

We can use this conversion through the rise time analysis to compare the
transient analysis with both the small-signal analysis and the experimental
data we have. The optical pulse has a power measured at the beginning
of the detector of 200 µW, starting at 0.1 ns. This signal power is compat-
ible with the 0 dBm optical power measured at the laser output, assuming
−7 dBm for coupling and waveguide losses. So, we have described the con-
ditions of the simulation and we have calculated the photocurrent rise time
from Fig. 3.13, which is equal to 9.43 ps in the device 1 and to 8.58 ps in the
device 2. As we have argued, we can tell that these two values correspond to
electro-optic cutoff frequencies of a single-pole transfer function of 37.1GHz
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and 40.7GHz, respectively. At first we have to reason a little more on the
transit time we have obtained: is it a reasonable value? In order to under-
stand this we can calculate a theoretical value using a quite simple formula,
knowing that the time is the space divided the velocity, as we know from
middle school.

ttransient =
HGe

vSat
(3.3)

If we use the thickness of the intrinsic Germanium absorption layer as space
to be traveled by the further away carriers and we assume the velocity to
be capped at the saturation velocity value, we can substitute these values.
For the height of the device HGe ≈ 0.8 µm, while the saturation velocity is
equal to vsat ≈ 7× 106 cm s−1 [23]. What we obtain is:

ttransient =
HGe

vsat
=

0.8 µm
7× 106 cm s−1

≈ 11ps (3.4)

This result is absolutely comparable and compatible and we have the cer-
tainty it is correct. For what concern the frequency point of view, we can
now compare the obtained results with both experimental results and small-
signal analysis ones, as reported in Fig. 3.14. These results are compared
with the state-of-the-art small-signal electro-optic simulations and experi-
mental data [24]. Measurements and simulations show a −3 dB cutoff fre-
quency between 37GHz and 37.5GHz for Device 1, between 41GHz and
41.5GHz for Device 2 and this is very close to the estimated response from
the transient simulation of 37.1GHz GHz and 40.7GHz, respectively. This
difference is nominal, but we can account for it in the type of simulation
carried out. In fact, the small-signal simulations are fundamentally limited
to the cyclo-stationary steady state, they do not account for effects related
for example to slower carriers, that can be studied starting from the cur-
rent tails of the transient curve. And this is also one of the reasons why
we are investing time in the transient: this leads us to deeper analysis in
many aspects and the elaboration of the data coming from a time-domain
simulation can actually give a new point of view and new information. This
can improve the modeling of the devices and their optimization to a whole
different and even more advanced level.

3.3.4 Fourier Transform and small-signal comparison

In this section, we are going to analyse the comparison between the transient
analysis and the small-signal one for Device 1 only. We are moving forward
concerning the mere analysis of the cutoff frequencies. What we want to
compare is now the transient curve, to see if the small-signal is able to
represent everything for small input power or if it is present some additional
component as we could see from different time constants. The first step for
this discussion is the creation of an ideal input signal, whose parameters were
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Figure 3.14: Measurements and simulations of the electro-optic frequency
response of the two devices considered, performed at a reverse bias of 2V
and a laser power of 0 dBm.[22]

taken from the transient current file. From the time variable, we were able to
obtain both the period of this signal and its duty-cycle. From the fact that
we know also the frequency response, we can perform a correct choice of the
number of periodicity of the signal, the sampling frequency which requires
to be higher than the considered frequencies, and as a consequence, the time
step is chosen as the inverse of the sampling frequency. The time step is little,
so we have a time vector with a lot of points concerning the files we extract
from Sentaurus. Once we have chosen the periodicity, we can apply it to the
input signal and finally perform the fast Fourier transform to it. From the
MATLAB and FFT manuals, we can perform the calculations for the single-
sided representation of the Fourier transform we just got. We can now move
on and focus on the frequency response. Since it is discrete, we are fitting
this with a single-pole low-pass filter, making the operations we are going to
do better and possible to perform. The curves are almost overlapping, so it
is a good approximation. The frequency response has now to be multiplied
with the Fourier transform of the input signal created similar to the one
Sentaurus is giving as illumination (we are still using the linear function we
have explained in the transient analysis). We have to better explain why are
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we doing this multiplication. Starting from the transient analysis, when we
apply the Fourier transform to the current respect to the time, we obtain a
curve that is not comparable with the frequency response deriving from the
small-signal analysis. This happens because we have not only the output
component, but we have also the Fourier component of the input signal that
is increasing the overall cutoff frequency we obtain. What we should do
is the division of the Fourier transform (i.e.fast Fourier transform) of the
transient current for the Fourier transform of the input optical signal, which
is quite close to a step function. The methodology used in this analysis is
different, in the sense that does not want to obtain the frequency response,
but the transient current in the time domain. We have to multiply the FFT
of the small-signal analysis with the FFT of the input signal we have created
starting from the data we have from the plt file. Once we have multiplied
these two, we have the Fourier transform of the transient starting from
the frequency response of the device and by using the inverse fast Fourier
transform (IFFT), we obtain the current in the time domain we can finally
compare with the transient analysis we have obtained in Sentaurus. In the
IFFT we are forcing the ’symmetric’ command to avoid some numerical noise
that could be present. We are allowed to do this because of the properties
of the Fourier transforms, in fact, for real-valued f(x), the equation:

f̂(ξ) =

∫ ∞

−∞
f(x)e−i2πξxdx, ∀ξ ∈ R (3.5)

own the symmetry property f̂(−ξ) = f̂∗(ξ), with f̂∗(ξ) complex conjugate
of f̂(ξ). The Fourier transform is now written as:

f̂(ξ) =

{∫∞
−∞ f(x)e−i2πξxdx, ξ ≥ 0

f̂∗(|ξ|) ξ < 0
(3.6)

which means that negative values of the frequency are no more necessary
for the description of the Fourier transform [25]. We then proceed with
the normalization of the transient curve, its interpolation with more points
for a better representation, and its periodization with the same number of
periods as the created input signal (sufficiently high number). We are now
able to compare the two normalized curves. What we have finally obtained
is Fig. 3.15, in which we can see how much the comparison for a small opti-
cal input power between the transient curve and the curve derived from the
Fourier transform of the small-signal frequency response. In the figure, there
are shown only two periods, but the input signal is repeated more times, a
number sufficient to make this comparison relatable and meaningful. The
comparison is made possible by the normalization of the total current Itot,
that is the photocurrent exiting from the device after we use as input the
declared input power, divided by its maximum value, so the maximum cur-
rent the device achieves after a certain time the device is exposed to the
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Figure 3.15: Transient comparison between the Sentaurus file and the
Fourier transform of the small-signal file for an optical input power of
200 µW.

illumination. What we have also in the plot is the signal spectrum of the
two different curves and we can compare them in order to see if there is a
particular difference in some kind of harmonics or if the difference is dis-
tributed over the whole spectrum. Another important comparison we can
perform to create a bridge with the next section is the same kind of com-
parison in a case in which the optical input power is higher than before. As
expected, the difference between the two curves at low power is rather low,
as the small-signal linearization is correct in the neighborhood of the working
point. This is not anymore true as we are rising the input power value since
there are many more parasitic and capacitive effects that are not taken into
account with a small-signal analysis. The small-signal circuit and model
are no more correct, and a large-signal analysis is more congruent. The
procedure in order to obtain the same results is the same, but we have now
upscaled the value of the optical input power to 2 µW in both the RSoft sim-
ulation, which is used by the transient, and by the frequency opto-response
simulation, which value of input power ramps up to this higher value. What
we have obtained is presented in Fig. 3.16. The main consideration we can
do is the observation of the transient curve: as we are going to discuss in the
next section, it is not so much different from the one obtained before, but
the cutoff frequency we obtain between the 10% and 90% of the curve is
present. On the other hand, the obtained cutoff value from the small-signal
analysis is very different, since the decrease of its cutoff is rather higher than
what we expected. The cutoff frequency is now 11.0GHz, which makes the
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Figure 3.16: Transient comparison between the Sentaurus file and the
Fourier transform of the small-signal file for an optical input power of 2mW.

device impossible to use with a larger optical input power.

3.4 High optical input power

An interesting possible application for the transient analysis is to study
devices in case of high powers. In fact, in this condition the small-signal
analysis performed with the QuasiStationary command could become use-
less when we exaggerate the input power values and the transient can help us
to solve this issue. The hypothesis behind the small-signal approximation in
fact is a linearization in the neighbourhood of a working point, so we assume
that the device response is linear. This is not anymore valid in some cases
we are going to analyse, so a large-signal analysis in the time-domain, which
has no constrain on the initial hypothesis for its validity, is a good choice to
take into account lots of effect that make the detector work differently from
before. This could look like a mere simulation to magnify and celebrate
the transient analysis which is the topic of this thesis, as we have found a
case in which the frequency response can not anymore be calculated and
compared with a small-signal analysis, but that is not the case. In fact, we
have analysed high-power applications after many studies present in litera-
ture on germanium over a silicon waveguide photodetectors, making this an
interesting research field for the use of this kind of applications. Aside from
the comparison with other materials, there is a significant upgrade in this
kind of applications of a mode evolution for Ge-on-Si photodetectors over
a butt-coupling scheme. This is base on a silicon bus waveguide directly
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incident on the Ge-on-Si structure. With this coupling method, all of the
light in the bus waveguide is transferred into the photodetector directly at
the waveguide-detector interface, causing two main problems:

• butt-coupling excites modes in the detector with vastly different prop-
agation constants: strong modal interference with high peak intensities
occur.

• all of the light is transferred into the germanium at once, so most of
the absorption occurs only in the first few micrometers of the detector.

Together, these two issues will produce discrete locations of high power den-
sities in the germanium, leading to some saturation effects. Trap sites on
the germanium-silicon interface are occupied for longer fractions of time
due to a high generation rate of free carriers, leading to decreases of the re-
combination rate of minority carriers and of the responsivity at high input
powers. Additionally, a large electron-hole pair density in a single location
creates a large gradient of charge, inducing a strong electric field opposing
the applied bias and lowering the actual electric field in the depleted region.
This effect, called carrier screening, reduces the bandwidth at high powers
because the carriers are not anymore efficiently swept out of the detector
[26]. The total bandwidth of these type of detectors drops to values that
make them unusable in cases of large powers, while the mode evolution ones
have a far lower decrease of the cutoff frequency. To have an idea in term
of numbers, as reported in the experiment performed in [26], the bandwidth
of a certain Ge-on-Si detector is equal to 40GHz for both the devices in the
two configurations for an optical input power equal to 20 µW. For a increase
up to 4mW, the two detectors have very different behaviour and response
to this increase. If in case of a mode evolution based detector the cutoff
frequency drop to 31GHz, which is still a solid value, in the case of a butt-
coupling the bandwidth is equal to 0.7GHz, not even comparable in terms
of performance with the other device in this conditions. This improvement
is due to the more uniform absorption of optical power in the germanium
part, significantly reducing the effects of carrier screening observed in the
butt-coupled one, maintaining its characteristics even at high input powers,
with weaker saturation effects. Furthermore, the compact mode evolution-
based coupler takes little additional space and also adds no complexity to the
detector, so it can easily replace butt-coupled devices. All these characteris-
tics indicate that this coupling scheme for Ge-on-Si detectors can be useful
for many integrated optical systems in the fields of microwave photonics,
optical communications, and optical sensing that demand both high-power
and high-speed devices [26]. Going back to our analysis, the first analyzed
thing is the relation between the optical input power and the electro-optic
frequency response. Even if this device is designed and used for Silicon
Photonics (SiPh) applications where the powers involved are limited due to
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Figure 3.17: Comparison of simulations and measurement of the device with
a reverse bias voltage of 3 V [29].

the low-power consumption requirement, these detectors can be also cou-
pled directly with an optical fiber instead of a waveguide and the power
we are achieving is much higher. In this analysis, we used a multiphysics
modeling approach, where the solution of the optical problem is used to
calculate an input optical generation rate term, which is then included as a
source term in the drift-diffusion model. Simulations were performed with
Synopsys TCAD Sentaurus [27] and Synopsys RSoft FullWave, and are val-
idated against device fabricated and characterized by Cisco System with a
Keysight LCA [28] with a bandwidth up to 50 GHz on 5 nominally identical
devices from different parts of the wafer. Light is coupled to the device
via a dielectric waveguide and a taper directly into the Si substrate. The
measurements presented deembedded and they take into account both the
loss in the waveguide and the loss of the coupling with the fiber used for
the measurements. Fig. 3.17 shows a comparison between the measurements
and the small-signal simulation for different optical powers. As we increase
the input optical power considered from −7 dBm to 0 dBm, a reduction of
the electro-optic cutoff frequency appears, reducing the cutoff frequency of
almost 10 GHz, which is a huge value. This decrease can tell us that the
velocity of the carriers decreased considerably in the Germanium region,
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condition, while the field decreases for higher input optical power (500 µW)
[29].

therefore the first quantity we wanted to plot was the electric field in the
device (see Fig. 3.18, which report a 1D cut). The figure reports the abso-
lute value of the electric field in 1D vertical cut in the germanium and we
can see that for 10 µW the electric field is close to the one in dark condi-
tions, while for 500 µW the field is way lower and it is even reduced by three
times, leading to slower drift component of the movement of the carriers
and an overall slowdown of the carriers. The high power applications can
be explored in another way. We can use the transient simulation in order
to look at the rising edge of the current consequent to the optical pulse. In
fact, when we increase the power way more than we have done before, the
small-signal analysis makes no more sense and the transient simulation can
be a good choice for the calculation of the cutoff frequency of a device. In
this case the simulations are performed with a reverse bias of 2 V and very
different input optical powers ranging from 200 µW, which is the one we
have always used in all the other results, to 2000 µW. This choice has been
done to better appreciate the differences between the different simulations
in order to understand that the linear approximation we have assumed for
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Figure 3.19: Transient simulation for higher input power values.

the quasi-stationary simulation is not possible anymore. What we obtain
is the subsequent plot for the two three-dimensional devices (see Fig. 3.19):
We see the transient become more and more flat and the main differences
arise after half of the transient rising edge. This is not only important for
the fact that the 10% and 90% difference is increasing for increasing input
power, but also the transient rise is completed in much more time. If in our
standard case it expires in 30 ps, in the case of 2000 µW it takes around 80 ps
for device 1, while for device 2 the 200 µW takes 20 ps and the 2000 µW case
takes up to 60 ps, which makes the device way slower and it requires a longer
simulation to make the transient simulation start with the falling edge. We
can now approach the calculation of the bandwidth. We compare the values
obtained from the transit time with the ones deriving from a small-signal
analysis of the same devices with the same optical conditions, so an input
power of 200 µW, 500 µW, 1000 µW, 2000 µW, respectively. The meaning of
the comparison in this part of the transient analysis is to prove and show
that the results are reasonable, while the ones from the small-signal anal-
ysis is not. The transient analysis of high-power devices is possible. We
can, at first, report the frequency responses of both the devices (Fig. 3.20).
What we understand is the fact that a single-pole response in these illumi-
nation conditions is not possible and the results are completely wrong and
far from reality. The measured cutoff frequencies, calculated in the same
way we have done till now with the approximated formula from the current
transient curve are reported in the next table (Tab. 3.4) alongside the small-
signal ones: As we have already compared, the results for the 200 µW case
are quite similar and both methods are even comparable with the experimen-
tal results given by Cisco Systems. For higher intensities, the small-signal
analysis does not take into account many effects that shift the response far
away from an ideal single-pole one, underestimating in each case the cutoff
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Figure 3.20: Frequency response for higher input power values.

Table 3.4: Frequency response for different power values for device 1.

Device 1 Device 1 Device 2 Device 2
Transient Small Signal Transient Small Signal

200 µW 37.1GHz 36.8GHz 40.3GHz 40.3GHz
500 µW 34.3GHz 30.1GHz 38.0GHz 35.5GHz
1000 µW 28.7GHz 21.0GHz 34.3GHz 27.6GHz
2000 µW 18.2GHz 11.0GHz 26.5GHz 16.7GHz

frequency The transient can be considered a large-signal analysis and it is
able to correctly represent the problem due to the fact it is not linearizing in
the neighbourhood of a working point. From these results it is obvious the
drop in the bandwidth when the power increases leading even to a 15GHz
drop in the two furthest cases in both devices.

3.5 Optimization and exploration

In this part of the results chapter, we experimented with various changes
in material values, models used, or device quantities. Since the transient
analysis is not present in the literature, we tried to seek other applications
and selling points of the transient analysis, trying to understand if it can be
helpful in other contexts for a more complete analysis of some parameters.

3.5.1 Velocity saturation

The first analysis of the velocity saturation was done in order to gain con-
fidence with the tools. We experimented all the simulations possible aside
from the transient one, which was then performed once we had full confi-
dence with the simulation. What we can report are for example the dark
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(a) z-cut at the begin of the device (b) z-cut at one third of the device

(c) z-cut at two third of the device (d) z-cut at the end of the device

(e) Electric field color map v

Figure 3.21: Electric field for different cuts of the device.

current difference for different saturation velocities and how this last param-
eter can influence the working of the device in dark conditions, essentially
when it does not receive any light. Since what we are considering is a dark
condition with a reverse bias of 2V, the electric field in the depleted region
has a quite high value as we can see in the reported Fig. 3.21. Due to this,
we can properly say that the current in the detector has a great drift com-
ponent, which is the faster and main one. We can assume that the velocity
of the carriers saturates quite easily to its maximum value in the middle of
the germanium detector, so this is important not only because it can cap
the speed of the carriers, but also because it limits the energy of the carriers
and their velocity in this region, changing the type of generation or recombi-
nation events it can participate to. The first part of these plots and results
concern the two-dimensional devices. There is substantially a change in the
value of the current in dark conditions as we can see in the IV characteristic
detailed in Fig. 3.22. Furthermore, what we obtained in the case of a small-
signal analysis was exactly what we expected: for higher saturation velocity
we have a higher maximum reachable velocity in the semiconductor. As car-
riers can move more rapidly, they are subject to less recombination events
due to the lower time constant and they can be collected even more. The dif-
ference in the response is quite visible already for a drop of half of the value
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(a)Device 1. (b)Device 2.

Figure 3.22: Dark current for a reverse bias of 2V for different velocity
saturation values in 2D device 1 and device 2, respectively.
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Figure 3.23: Frequency response for a reverse bias of 2V for different velocity
saturation values in 2D devices.

of the velocity saturation parameter in the physics common file used in the
simulation. The drop of 10 times shows even a higher decrease for the cutoff
frequency quite close to an entire order of magnitude of difference, as shown
in Fig. 3.23. Once we have seen the differences in the frequency response in
the two-dimensional device and we know there is a significant difference in
the working of the detector, we can study even deeper the influence of this
parameter with the simulations of the real devices. Starting form device 1,
we can start from the dark current because there should be difference due
to the maximum velocity carriers can reach even in dark conditions. The
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Figure 3.24: Dark current for a reverse bias of 2V for different velocity
saturation values.

Table 3.5: Cutoff frequency for different values of saturation velocity.

vsat Device 1 Device 2

7.430× 105 cms−1 3.086GHz 3.695GHz
3.715× 105 cms−1 18.992GHz 20.898GHz
7.430× 106 cms−1 36.821GHz 40.028GHz

electric field is considerable in the 2V case, because the bias enlarge the
depletion region and both type of carriers can hit their maximum velocity
in some regions of the Germanium photodetector. From the simulations,
the difference in dark current is not overwhelming, but it has still an appre-
ciable difference which tells us that the real value in the Germanium, even
if it allows the device to go faster, increase the dark current (see Fig. 3.24).
However, this is not the main effect of a different velocity saturation value
in a detector. Another time, we can simulate the frequency response and
we can see a drastic drop in the performances in relation to the parameter
(Fig. 3.25). The cutoff value drops by almost half in case of half saturation
velocity, but the most surprising result is given by when we decrease the
value by a whole order of magnitude. In this case the value is more than a
order of magnitude lower in GHz as reported in Tab. 3.8. We are now able to
study the change in the velocity saturation value with the transient analysis.
We have done it in both devices (see Fig. 3.26) and what we obtain is quite
interesting. Once we half the value of the velocity saturation, the character-
istic time defined as the 10% to 90% of the curve reduces significantly and
become itself approximately half: for device 1 it becomes equal to 18.4 ps
and equal to 16.4 ps in device 2. In the case of one order of difference, the
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Figure 3.25: Frequency response for a reverse bias of 2V for different velocity
saturation values.
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Figure 3.26: Transient simulation for a reverse bias of 2V for different ve-
locity saturation values.

time follows the same trend going up to a little more than 94 ps for device
2 and breaking the 100 ps barrier for what concern device 1 (the simulation
in this case stops before, but we can estimate it with an extension of the
curve, assuming it will follow the same behavior). What can be understood
through the transient simulation is the difference in microscopical quantities
that a different velocity saturation can cause. The response of the device is
different because in the regions where the saturation of their velocity value
is reached, which is quite large due to the field exploited by some value of
reverse bias. Carriers will then move to a velocity closer to the one of the
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Table 3.6: WPD geometry.

WGe HGe Wdoping

Simulated Device 1 4µm 0.8µm 2µm
Simulated Device 2 4µm 0.8µm 2.5µm

Device 1 4µm 0.8µm 3µm
Device 2 4µm 0.8µm 3.5µm

Table 3.7: Dark Current for different WNG values.

dark current

Simulated Device 1 1.411 32× 10−5 µA
Simulated Device 2 1.411 25× 10−5 µA

Device 1 1.403 48× 10−5 µA
Device 2 1.388 19× 10−5 µA

regions that are not well invested by the electric field, as we are going to
see better in the next section, and the importance of a reverse bias is less
predominant than before, even if it is still necessary for the correct working
point of the device.

3.5.2 Ge doping profile

An experiment to prove even more the trend we have already seen is to
further reduce the Wdoping value. What we have seen from the results in the
two devices in small-signal analysis, transient analysis and from experimen-
tal results is that the increase of the doped region inside the Germanium
close to the contact, it makes the contact as ohmic [21] as possible. There is
an increase of the bandwidth in the Device 2 that is associated solely to the
increase of Wdoping from 3 µm to 3.5 µm. So, we expect that a reduction of
this width parameter should lead to a reduction of the cutoff frequency and
we perform simulations to verify this. Because of the fact we have the two
devices with those width of the Germanium doped regions, we decided to
carry on two different simulations on devices unchanged ahead of theWdoping

value, that is equal to 2 µm for the first simulation and equal to 2.5 µm for
the second one. The comparison is made with the two devices and we want
to extrapolate a general trend from the values reported in Tab. 3.6. What
we compare are all the figures of merit we have already analysed for both
Device 1 and Device 2 including the transient analysis. For what concern the
dark current there is a slight increase of its value as we can see in Fig. 3.27,
but this is not as much as significant as what we are going to obtain in
the other simulations. We can report the values in the Tab. 3.7 anyway
for completeness: Another aspect that is practically not influenced is the
responsivity as we could expect from the beginning. The difference in the
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Figure 3.27: Dark current in the simulated devices for different Wdoping.

power-current curve and its slope are minimal and it has no sense to talk
about it. We move on directly to the frequency response in the small-signal
analysis. In this case, the difference is huge and the bandwidth drop in case
of a Wdoping of 2 µm meets our expectations. We can also say that the more
we decrease the Wdoping value, the more the response will become worse with
respect to the device with a higher Wdoping (see Fig. 3.28). The variation
between 2 µm and 2.5 µm is higher than the one between this last one and
the 3 µm Wdoping device case. The cutoff frequency in the last case is lower
than 20GHz and it makes the device practically useless if compared to the
two real devices. There is a reduction in the cutoff frequency of almost half
in the comparison with device 1 and more than one in the comparison with
device 2. The explanation for this is the fact that the heavily doped region
acts as the contact, so as long as we decrease this doping width in the device,
we have two main phenomena:

• the electric field is lower in value

• the width of the germanium invested by a high electric field is narrower,
leading to a more spread effect of edge effects

We can better see this by reporting the electric field in different WGe doping
cases as reported in the Fig. 3.29. What are the consequences of these two
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Figure 3.28: Frequency response in the simulated devices for different im-
plantation region width.

(a) z-cut at the begin of the device (b) z-cut at one third of the device

(c) z-cut at two third of the device (d) z-cut at the end of the device

Figure 3.29: Electric field with the same x cut for different Wdoping values.

effects? The first one is quite trivial, as long as the electric field is lower in
value, the velocity of the carriers will be lower and carriers will spend more
time before being collected. The velocity of the carriers can be expressed by
the formula: vd = µE, lower the electric field, lower their velocity and the
speed of the device. The second one is due to the rounding of the electric
field, which lines becomes more rounded between the silicon and the high
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Figure 3.30: Transient in the simulated devices for different Wdoping.

doped region and there are less vertical lines in the whole germanium directly
between the top and the bottom of the germanium. This means that the
path of the carriers is longer than before and their transit time will be higher
due to the fact that they are not following the shortest possible path inside
the device. We can see the higher transit time from the transient analysis
and we can also appreciate another time the reduction of the bandwidth.
We are plotting the normalized curves reported in Fig. 3.30in order to have a
direct comparison on the time scale of the time necessary for the transient to
be completed. As expected, the way the transient saturates is coherent with
the small-signal analysis and the increase of the 10% and 90% difference
of the curve makes sense with the results. What it is interesting to notice
is that the time constants of the device are changing a lot while we are
considering lower and lower width of the implanted region. The capacities
and the parasitic effects are different and we can analyse this difference by
the use of the transit time, correlating directly the equivalent circuit and the
microscopic quantities to the time constants of the time-domain responses.

3.5.3 Mobility

We can refresh just a little on how the problem is posed. In order to design
a waveguide photodetector, we need a multiphysical approach coupling elec-
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tromagnetic (EM) and carrier transport numerical simulators. The Synopsis
tool for the propagation of the optical wave is based on a finite-difference
time-domain (FDTD) solver, where we put a certain optical power to a
monochromatic wave of a certain wavelength, which is 1310 nm in our simu-
lations and compared results. If the carrier transport is described by a drift-
diffusion model [7] [8] with Fermi-Dirac statistics and incomplete ionization,
heterointerfaces are included by adding the thermionic current contributions
[30]. Many recombination processes are considered for the description of the
problem (SRH, radiative, Auger), and an additional carrier generation term,
driven by the photon density distribution determined by the EM simulator,
couples the EM and transport models [31], [32]. To obtain the photodetector
bandwidth it is necessary to have an accurate estimate of the carrier transit
time and velocity saturation mechanism due to the high electric field in the
intrinsic region of the detector (more specifically the depleted one) has to
be taken into account. The standard model for mobility is the one proposed
by Canali et al. [33] and this model the velocity saturation effect by putting
an electric field dependence in the mobility formula:

µ(E) = µ0[
1 +

(
µ0E
vsat,0

)β] 1
β

(3.7)

Here µ0 is the low-field mobility, vsat ,0 is the saturation velocity, β is a phe-
nomenological parameter, and the electric field magnitude E acts as carrier
driving force. But the mobility depends also on the density of doping impu-
rities and because of this fact Sentaurus adopted for the low-field mobility
the Masetti model [34], [35]:

µ0 = µmin,1 exp

(
−Pc

N

)
+

µ0,i − µmin,2

1 +
(

N
Cf

)α − µ1

1 +
(
Cs
N

)γ , (3.8)

where µ0,i is the low-field mobility of the intrinsic material, N = NA +ND

is the sum of acceptor and donor concentrations, and µmin,1, µmin,2, µ1, Pc,
Cf , Cs, α, γ are fitting parameters. Why can we say that the Masetti
model is good for our devices? Because, due to the high values of doping,
the mobility degrades principally due to impurity scattering and a doping-
dependent mobility model is a great choice. The carrier-carrier scattering
can be said to have far less influence as well as the interface degradation,
due to the lack of semiconductor-oxide interfaces in important regions for the
transport as it happens in the channel region of the MOSFET. In general,
the mobility model combines with Matthiessen’s rule when more than one
mobility model is used:

1

µ
=

1

µ1
+

1

µ2
+ . . . (3.9)
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We decide to investigate other possible mobility models and see if different
hypotheses and assumptions can change much the detector response. What
we want to understand in this exploration is the possibility to understand
if some effects that may be important are not considered in our model.
We start from other doping-dependent mobility models, such as Arora and
UbiBo. The Arora model [36] uses the subsequent formula:

µdop = µmin +
µd

1 + ((NA,0 +ND,0) /N0)
A∗ (3.10)

with:

µmin = Amin ·
(

T

300 K

)αm

, µd = Ad ·
(

T

300 K

)αd

(3.11)

and:

N0 = AN ·
(

T

300 K

)αN

, A∗ = Aa ·
(

T

300 K

)αa

(3.12)

The other one, the University of Bologna bulk mobility model has been de-
veloped for a range between 25 °C and 973 °C. The model is completely based
on the Masetti model, but with two extensions and substantial differences
in the approach:

• attractive and repulsive scattering are separately considered, with a
function of both donor and acceptor concentrations. This directly
accounts for different mobilities for different carriers and ensures the
continuity at the device junctions as long as impurity concentrations
are continuous.

• a suitable temperature dependence is introduced, in order to predict
the dependence of the mobility in a wider temperature range respect
to the Masetti model.

The model for lattice mobility is the following one:

µL(T ) = µmax

(
T

300 K

)−γ+c( T
300 K)

(3.13)

with µmax mobility at room temperature and c correction term to the mo-
bility at higher temperatures. The model for bulk mobility is:

µdop(T ) = µ0(T )+

µL(T )− µ0(T )

1 +
(

ND,0

Cr1(T )

)α
+
(

NA,0

Cr2(T )

)β −
µ1 (ND,0, NA,0, T )

1 +
(

ND,0

Cs1(T ) +
NA,0

Cs2(T )

)−2
(3.14)

The two mobilities µ0 and µ1 are weighted averages of the limiting values
for pure acceptor and pure donor-doping densities:

µ0(T ) =
µ0 dND,0 + µ0aNA,0

NA,0 +ND,0
(3.15)
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µ1(T ) =
µ1 dND,0 + µ1aNA,0

NA,0 +ND,0
(3.16)

The last model we have used is the Philips unified mobility model, which
unifies the description of majority and minority carrier bulk mobilities.
Other than the temperature dependence of the mobility, it considers also
the electron-hole scattering, the screening of ionized impurities by charge
carriers, and the clustering of impurities. In this model, we actually use
Matthiessan’s rule because we consider both the contributions of phonon
scattering µi, L and bulk scattering mechanisms µi, DAeh . The total bulk
mobility is calculated in this way:

1

µi, b
=

1

µi, L
+

1

µi,DAeh
(3.17)

where the i index has the e value for electrons and the h value for holes.
The first mobility contributions is equal to:

µi, L = µi,max

(
T

300 K

)−θi

(3.18)

While the second one is more complex:

µi, DAeh = µi,N

(
Ni,sc

Ni,sc,eff

)(
Ni, ref

Ni,sc

)αi

+ µi,c

(
n+ p

Ni,sc,eff

)
(3.19)

with the two mobility terms inside the formula which can be expressed as:

µi,N =
µ2
i,max

µi,max − µi,min

(
T

300 K

)3αi−1.5

(3.20)

µi,c =
µi,maxµi,min

µi,max − µi,min

(
300K

T

)0.5

(3.21)

We need also to express the charge densities in the formula, which is valid
for both carriers, for electrons and holes:

Ne,sc = N∗
D +N∗

A + p (3.22)

Ne,sc,eff = N∗
D +G (Pe)N

∗
A + fe

p

F (Pe)
(3.23)

Nh,sc = N∗
A +N∗

D + n (3.24)

Nh,sc,eff = N∗
A +G (Ph)N

∗
D + fh

n

F (Ph)
(3.25)

The concentrations of donors and acceptors have a ∗ in order to remark
the fact that they are both taking into account the effect of clustering. At
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ultrahigh concentrations, those concentrations are described by ’clustering’
functions ZD and ZA, which are defined as:

N∗
D = ND,0ZD = ND,0

[
1 +

N2
D,0

cDN2
D,0 +N2

D,ref

]
(3.26)

N∗
A = NA,0ZA = NA,0

[
1 +

N2
A,0

cAN2
A,0 +N2

A,ref

]
(3.27)

We have to express other two terms in the formula, which are kind of new,
the analytic functions G (Pi) and F (Pi) that describe minority impurity and
electron-hole scattering:

F (Pi) =
0.7643P 0.6478

i + 2.2999 + 6.5502 (m∗
i/m

∗
j)

P 0.6478
i + 2.3670− 0.8552 (m∗

i i/m
∗
j)

(3.28)

G (Pi) = 1−

−ag

[
bg + Pi

(
m0

m∗
T

300 K

)αg
]−βg

+ cg

[
Pi

(
m∗

i300K

m0

α

T

)αg
]−γg (3.29)

where m∗
i and m∗

j are fit parameters for both carriers. The screening pa-
rameter used for the analytic functions is calculated by a weighted harmonic
mean of the Brooks-Herring approach and Conwell-Weisskopf approach:

Pi =

[
fCW

3.97× 1013 cm−2N
−2/3
i,sc

+

+fBII
(n+ p)

1.36× 1020 cm−3

m∗
0

i

(
T

300 K

)2
(3.30)

For values of Pi < Pi,min, G (Pi,min) substitutes G (Pi), where Pi,min is the
value at which G (Pi) reaches its minimum. Once we have seen these possible
alternatives to the Masetti standard method used from Sentaurus, we can
compare the results with different models. Finally, we can compare some
quantities between the different models. The first one can be for example
the dark current in Fig. 3.31. As we already said, mobility is a fundamental
value to see the velocity of the carriers, especially in the case it saturates
to a maximum value where the electric field is particularly strong. A direct
consequence is a difference in the electro-optical bandwidth there is between
the analyzed models as we can see in Fig. 3.32. The cutoff frequencies have
a major value downgrade and we can report the values to compare them:
At the end we can compare also the transient simulation results for different
models (Fig. 3.33).
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Figure 3.31: Dark current for different mobility models.

Table 3.8: Cutoff frequency for different values of saturation velocity.

vsat Device 1

Masetti 36.81GHz
Arora 28.72GHz
UniBo 21.89GHz
Philips 21.71GHz
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Figure 3.32: Frequency response for different mobility models.
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Figure 3.33: Transient analysis for different mobility models.
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Chapter 4

Conclusions

Silicon photonics is an area for the development of very fast optical connec-
tions that is rapidly growing. The simulation of the devices constitutes a
fundamental part of the maturation of this technology, making the creation
of new devices quite cheaper and exploiting possible problems even before
they are actually found in a finished device. Most of the simulations present
in literature for this kind of purpose are the ones we have used for the pre-
liminary analysis, while the transient simulations have not been studied so
far and they can give a different point of view for the optimization of this
type of device. One of the main cores of the thesis was the study of the
two-dimensional device and the consequent optimization of the tool, in or-
der to make its computational cost reasonable for this type of time-domain
analysis. The study of the rise time of the optical input power curve and the
correct implementation of the break criteria are a great part of the results
and allowed us to move on and perform the simulations on the studied de-
vices. The transient uses the FDTD solution as the source of the simulation.
The pulsed optical generation rate term is put in the transport equations,
Sentaurus then solves the device through the use of the Poisson equation
coupled in a self-consistent way with the continuity equations of the carriers
and with the constitutive relations of drift-diffusion for the current densi-
ties of electrons and holes, the transport problem is solved. The transient
considers temporal variations of the applied signal and it increases the time
step in a loop until the time of the simulation is up or the break criteria
force the transient simulation to quit. The results obtained through the
transient simulations are important and they are promising. Even if some
of the obtained results are already a turning point for even more complete
optimization of the devices, there is a lot of research to do to exploit the
full potential of a time-domain analysis. The main result we have obtained
is the correspondence for low optical input power between the transient and
the small-signal simulation, while when we are increasing the input power,
the achieved results are very different. In fact, the small-signal linearization
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is not able to describe this condition, being it is far away from the work-
ing point and a simulation that includes large-signal effects. Small-signal
simulations are by definition limited to the cyclostationary steady state and
they are not able to describe effects linked to slower carriers, that can be
studied starting from current tails. In conclusion, despite their much higher
computational cost with respect to other simulations, transient ones have
shown a significant, and still largely unexplored, potential contribution to
the field of WPD modeling and optimization [22]. From the work of this
thesis, it was possible to give a contribution to two articles for two different
conferences, NUSOD 2022 and SIE 2022.
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