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Chapter 1

Introduction
Automatic Text Summarization is still today a very active research
topic with several methods available and hundreds of applications, sum-
marization from scientific papers is one of them.
In general, text Summarization can be extractive or abstractive.
This work will focus only on extractive methods, therefore the sum-
maries will be composed of some sentences taken from the original text
and re-arranged together.
The output from the automatic summarization of a scientific paper can
be used to create a presentation for a scientific work i.e. slides or can
be read to understand the main contents and gain more information
than simply reading the Abstract and conclusions.
There are already lots of works in summarization from scientific papers
and, although astonishing results, the problem is far from being solved.
Furthermore, this work will also focus on the multimodal aspect of the
scientific summarization i.e. how pictures can be included in the sum-
mary in a meaningful way to make presentation slides in an automated
way, in the time of writing only one paper from 2021 (DOC2PPT) [1]
has done this type or research.
The model proposed by the authors of [1] uses paper/slide pairs during
training and is capable of outputting a slide deck from a scientific paper
during test time.
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Introduction

DOC2PPT [1] addresses the following tasks:

• text summarization, based on a Seq2seq model [2] (Recurrent
Neural Networks used for text paraphrasing).

• figure extraction, which entails identifying the most relevant figures
in the paper by using a shared embedding space for images and
text. Images are embedded using a ResNet-152 [3] and text is
encoded using RoBERTa [4] (a Transformer model, read below for
details) , then the embeddings are projected to a shared embedding
space using a two-layer multilayer perceptron (MLP).

• slide generation, which relies on a module that is able to put
paraphrased objects (text and/or images) in a visually appealing
manner using a two-layer MLP to predict the position and size of
the object.

The idea of the project is to produce an output like the one of
DOC2PPT combining simpler blocks. Therefore, this Master’s Degree
Thesis aims to investigate the problem of automatic slide generation
based on multimodal content.
This work will use a wide range of tools from various branches of
Machine Learning to address the problem, the purpose of this report is
to illustrate all the tools used and the most important results and to
be useful reading to anyone who wants to approach this field.
To better understand the idea of the project it can be useful to introduce
two deep learning models used:

• Transformers: a family of deep learning models commonly used in
many NLP tasks such as text classification, sentence similarity, etc.
Transformers are the current state-of-the-art solutions for many
NLP problems and they can be used also in Computer Vision tasks.
For this work, Transformers are used to perform sentence embed-
ding, i.e., make sentences processable by machine learning models.

• CLIP [5] a multimodal neural network that efficiently learns visual
concepts from natural language supervision. More in particular,
during training, CLIP sees an image and its caption at the same
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time, this allows understanding better the relationship between
visual concepts and their textual description.

In particular, the work followed this idea: a state-of-the-art solution in
Extractive Summarization for Scientific Papers (no Multimodal setting)
like [6] is slightly modified to try to improve its performances using
Transformers, then CLIP tries to understand which pictures are more
useful for a slide presentation using the text of the summary, so this
work also studies how possible is to extend an only-text model like [6] to
a Multimodal challenge like Automatic Presentation Slides Generation
from Scientific Papers like DOC2PPT [1].
This thesis will follow a specific structure:

• Chapter 2 (Related Works) will explain the context of this work
with a quick overview of Text Summarization, Multimodal Learn-
ing, and Slide generation, moreover this chapter will cover some
fundamentals tools of NLP like Word/Sentence Embedding and
Transformers and will give some insights about Graph and Graph
Attention Networks.

• Chapter 3 will describe the model adopted and how it works.

• Chapter 4 will illustrate the experimental setting: the hardware and
software used, what dataset has been adopted for training/testing,
the experiments’ procedure, the metrics involved, and the results.

• Chapter 5 will be dedicated to conclusions.

3





Chapter 2

NLP framework and
Related Works
Nowadays more and more data is pushed through the internet with
different modalities, one of them being text: news, articles, social media,
books, scientific papers, and so on.
With this mass of data is crucial to understand how to automatically
elaborate text cleverly and efficiently.
Natural Language Processing is a branch of Machine Learning that
deals with word processing and text analysis performed by machines.
NLP is a very active field of research due to its many applications in
various scenarios and the variety of tasks involved.

2.1 Fundamentals

2.1.1 Word Embedding
Word Embedding is a subtask of NLP, and represents the first step for
a machine to understand the text of a document.
Basically, through Word Embedding, a word is represented by a vector
of n-dimensions. A Word Embedding model is trained using text
corpora to grasp the context of words, then the model associates a
specific n-dimensional vector to each word.
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The training allows the word embedding model to minimize the vector
distance between words that are similar by semantic and syntactic
patterns and maximize the distance between unrelated words.
As can be seen in figure 2.1, word embeddings try to project words in a
vector space where relationships between words are preserved through
distances and other geometric properties.
There exist multiple pre-trained word embedders available online, in
this work GloVe [7] will be used.

Figure 2.1: Word Embedding Vectors

There are different versions of GloVe according to the dataset used
during the training phase and the number of output dimensions.
The version used for this project is the "bigger" one: trained using a
dataset composed of Wikipedia articles and the English Gigaword Fifth
Edition dataset (newswire text data) [8] and returns a vector of 300
dimensions.

2.1.2 Sentence embedding
For text summarization and other NLP tasks, processing only separated
words is not sufficient and processing whole sentences is required, so a
proper vector embedding for sentences is needed.
The task is more complex than basic Word Embedding, a good sentence
embedder must be able to grasp things such as context of the sentence
and relationships between words.

6
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In other words, sentence embedders can perform contextualized embed-
dings of words: the same word can mean different things according to
the context that is given by all the words of the sentence.
A sentence embedder uses all the words in a sentence to understand
its context and then performs the embedding of each word, finally
it combines all the word embeddings into a single vector that is the
sentence embedding.
As in Word Embedding, the output of Sentence Embedding is a vector
of n-dimensions capable of representing a sentence in a vector space.
Nowadays the state of the art in sentence embedding is represented by
Transformers.
The model proposed will use BiLSTM for sentence embeddings in the
first part and Longformer (a Transformer model) in the second part.

2.1.3 Transformers
Transformers were introduced by [9] in 2017, and are currently employed
in many state-of-the-art solutions in NLP and Computer Vision. They
use an encoder-decoder architecture based on self-attention.
Before Transformers, all the state-of-the-art solutions in NLP relied on
recurrent neural networks (RNN) like long short-term memory (LSTM)
and gated recurrent units (GRUs).
Due to the intrinsic nature of RNNs, all the text had to be processed
sequentially with no opportunity for parallelization during training.
The use of Attention in Transformers allows processing the text in a
non-sequential way, allowing parallelization. The Attention Mechanism
mimics human cognitive attention: some elements in the inputs are
more important than others while others are not particularly relevant.
The type of Attention used in Transformers is Self-Attention.
With Self-Attention the input is used to value the importance of each
element in the input.

7
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Figure 2.2: Transformer Architecture

The encoder-decoder architecture works as follows:

• The encoder consists of encoding layers that process the input
iteratively one layer after another. The function of each encoder
layer is to generate encodings that contain information about which
parts of the inputs are relevant to each other. It passes its encodings
to the next encoder layer as inputs.

• The decoder takes the output of the encoder.

8
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• The decoder consists of decoding layers that work iteratively one
layer after another. Each decoder layer does take all the encodings
and uses their incorporated contextual information to generate an
output sequence.

• Each encoder and decoder layer makes use of an attention mech-
anism. Both the encoder and decoder layers have a feed-forward
neural network for additional processing of the outputs and contain
residual connections and layer normalization steps.

According to the task is possible to use only one side of the encoder-
decoder architecture, for example, GPT-3 [10] (state of the art in
human-like text generation) only uses the decoder side, while BERT
[11] (state of the art in sentence encoding) and its variants, use only
the encoder-side.

2.1.4 BERT and its variations

Figure 2.3: BERT

This work will use different BERT versions for sentence encoding.
BERT stands for Bidirectional Encoder Representations from Trans-
formers, it’s a pre-trained bidirectional model developed by Google,
and released in 2018. Since 2020, Google uses BERT in almost every
English-language query.
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BERT uses a bidirectional architecture (for each word using the pre-
vious and next words to understand its context) to perform deep-
contextualized word embeddings, i.e. the same word has a different
embedding given the context of the sentence.
BERT is available as a pre-trained model, i.e., already trained using a
huge amount of generic data and time. It is possible, for the end-user,
to further train the model using task-specific data to get better results,
this operation is called fine-tuning.
BERT, for example, is trained on BooksCorpus (800M words) [12] and
English Wikipedia (2,500M words) but is easy to fine-tune for a specific
language domain or task, so there are different versions of BERT for
different purposes.
More specifically, BERT uses a stack of Encoders to model a sentence,
each word of a sentence is processed using all the other words of a
sentence via self-attention mechanisms.
Attention allows an understanding of how words are correlated and
what words are more relevant than others.

Figure 2.4: Self-Attention: more relevant words for the word "making"
[9]
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Given queries vectors qi, keys vectors ki and values vi, to calculate
the attention :

• calculate the affinity score between qi and kj (eij = qT
i kj)

• normalize using softmax (aij = softmax(eij))

• output the weighted sum of values (outputi = Σjaijvj)
In a self-attention environment, q, k, and v are represented by word
embeddings.
Given a sentence, the model outputs the embedding of a special CLS
token (that can be used as sentence embedding) and one vector em-
bedding for each word, these vectors can be aggregated to produce an
alternative sentence embedding.

This work uses SciBERT [13] (a BERT version fine-tuned on scientific
text) to divide into sentences the text of scientific papers and Longformer
to get sentence embedding for the model.
Longformer is based on RoBERTa [4], a version of BERT with more
robust and efficient training that use a larger dataset than base BERT.
Specifically, Longformer can process sequences larger than 512 tokens
(the limit for standard transformers) using sliding windows.

2.1.5 Graphs
Graphs are widely used to model relationships between entities, and
thanks to their flexibility they can be used in almost every field.
The basic definition of a graph is a set of nodes (entities) connected by
edges (relationships).
From the base definition can be derived various types of graphs, e.g.
if edges have a direction it is the case of a directed graph, if the edges
have weights it is a weighted graph if all the nodes model the same
entity is an homogeneous graph otherwise is an heterogeneous graph.
There exist algorithms that use graphs to model and solve a problem,
some of them can be found also in NLP.
In NLP graphs can be adopted to model single sentences or entire
documents and used by text summarization algorithms like TextRank
[15], LexRank [16] and GraphSum [17].
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Figure 2.5: A graph that represents airports, airport restaurants, and
flights [14]

2.1.6 Graph Attention Networks

Figure 2.6: Graph Attention Network as in [18]

Graph Attention Networks (GATs) were first introduced in [18] in
2018.
GATs stack layers that use an attention mechanism to model the
relationship between a node and its neighbors, this allows for a bet-
ter understanding of the connection between entities and avoids the
shortcomings of methods based on graph convolutions or their approxi-
mations.

12
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In [6] (2021), one of the major references for this work, a GAT is used
for scientific papers summarization.
More in detail, [6] runs a GAT over a heterogeneous graph (HGAT)
where each node can represent a word, a sentence, or an entire section,
and edges are used to model specific relationships between them, e.g.
words in a sentence, a sentence in a section, sentences in the same
sections and so on.

2.2 Prior work on summarization

2.2.1 Automatic summarization

Figure 2.7: Extractive and Abstractive Summarization [19]

Automatic summarization is used to compute a summary of a docu-
ment using Machine Learning.
The main division in Automatic summarization is between extractive
summarization and abstractive summarization:

• Extractive summarization is used to extract chunks of data from
the original document and use them to create a summary.

13
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• Abstractive summarization tries to create an original summary
of the document after learning a semantic representation of the
original content.

The input, and the output, can include only text or text and images
(multimodal input/output).
The Machine Learning involved can be shallow or deep, supervised or
unsupervised according to the algorithms and models involved.
In this project the input is in the form of scientific papers (Multimodal
with both text and images), the output is in the form of presentation
slides (again, Multimodal with both text and images), and the sum-
marization approach is extractive using Deep Learning in a supervised
setting.
Automatic summarization of scientific text is still an open problem,
during the bibliographic research for this project numerous works were
found:

• [20] (2017) introduces a new dataset (CSPubSum), a interesting
metric to evaluate sentence importance (AbstractROUGE) and
some useful insight for summarization.

• [21] (2019) introduces a new dataset (ScisummNet) and proposes a
summarization method that integrates the authors’ original high-
lights (abstract) and the article’s actual impacts on the community
(citations), to create comprehensive, hybrid summaries.

• [22] (2020) presents a supervised approach, based on regression
techniques, to extract highlights from scientific papers.

• [23] (2020) introduces a new dataset (PPSGen) and uses windows-
based approach for text summarization.

• [6] (2021) introduces an interesting summarization pipeline and
uses Graph Attention Networks for text summarization, and it is
also one of the main references for this project.
Being [6] the main reference for this work, the description of this
project’s model in Chapter 3 can be seen as a description of the
model proposed by [6]

14
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There are also other works worth mentioning regarding generic text
summarization like:

• TextRank [15] and LexRank [16], very famous unsupervised models
for automatic text summarization that use a graph-based approach.

• HIBERT (2019) [24] and [25] (2020) that uses a hierarchical ap-
proach to adapt transformers to the field of text summarization of
large documents.

Graph-based approach: TextRank and LexRank

Figure 2.8: LexRank [16]

TextRank and LexRank are two of the most famous models for
automatic text summarization.
They are both unsupervised and use a graph-based approach to model
the structure of a document where:

• The nodes represent sentences and key phrases.

• The edges connect all the nodes and represent the similarity between
sentences.

15



NLP framework and Related Works

This kind of approach is similar to the one of PageRank [26], a model
by Google, to model web pages and their connections, e.g., the links
from one page to another.
The core difference between TextRank and LexRank is the metric used
to measure sentence similarity: TextRank uses words co-occurrence
while LexRank uses cosine similarity of tf-idf vectors.
Through similarity scores is possible to detect what are the most
significant sentences and use them to build a summary of the document.
Moreover, in the final part of the project, TextRank and LexRank will
be among the models tested as baselines for text summarization.

HIBERT: Hierarchical Bidirectional Transformers for Docu-
ment Summarization

Figure 2.9: HIBERT [24]

HIBERT, and similar works, propose an extension of the standard
Transformer’s architecture for text summarization of documents.

16



NLP framework and Related Works

Standard transformers, like BERT, are bound to a fixed sequence’s
length like 512 or multiples of 512 and this makes it impossible for a
single transformer to process an entire document.
Works like [24] propose a hierarchical structure, like the one in figure
2.9, to allow the use of transformers and attention.
In particular, the first transformer performs sentence embedding given
the words of a sentence, then the second transformer performs document
embedding using all the sentence embeddings.
This procedure allows the model to learn contextualized representations
of sentences and, during test time, to understand if a sentence is relevant
enough to be used in a summary.

2.2.2 Slide Generation from scientific papers

Figure 2.10: DOC2PPT summarization pipeline [1]

Slide Generation from scientific papers is an application of text
summarization: from a scientific paper, a machine learning model tries
to create a summary that can suit the format of slides.
In literature are present some solution for this task like [27], [28] and
[1]. More in detail, [1] is the most recent and effective solution: the

17
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authors presented a model capable of high-quality slide generation and
released a huge dataset for everyone who wants to approach this task,
in fact, this will be the dataset used in this work.
The authors of [1] use also a hierarchical sequence-to-sequence approach
(similar to the one of [24]) and, unlike other mentioned solutions for
slide generations, train a module of the model to collocate text and
images in a visually pleasing manner, while other works use only text
placed following hand-crafted rules.

DOC2PPT

As said before, the model proposed in [1] represents the state of the art
in presentation slide generation.
Looking at figure 2.11 it is possible to grasp the complexity of the
model.
The model is composed of 4 sub-modules:

• Document Reader (DR): The Document Reader reads both text
and images from the source paper, embeds them separately, and
then projects them in a common vector space.

• Progress Tracker (PT): The Progress Tracker keeps track of the
relationship between documents and slides, i.e, a document can have
multiple sections and each section can have multiple corresponding
slides that can contain different objects (text or images).

• Object Placer (OP): The Object Placer chooses the object (text or
image) from the current section that has the maximum compatibil-
ity score with the current state of the slide presentation and places
it in a visually pleasing manner, if the object is a phrase it has to
be paraphrased by the PAR first.

• Paraphraser (PAR): The Paraphraser uses Seq2Seq (Sentence Em-
bedder based on Bi-RNNs) to make the sentence selected more
concise and adequate to the slide format.

During training time every sub-module is trained at the same time
using a joint loss function capable of addressing all the sub-modules.

18
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Figure 2.11: DOC2PPT model in detail [1]

It is also worth noticing that the authors of [1] perform a high-quality
data processing of the original dataset and this helps to achieve better
results (see pages 8-10 from [1]).

SlideGen

Slidegen [27] [28] will be used as a baseline (with other models) for the
text summarization task.
The authors of SlideGen create presentation slides using only text
summaries condensed in the form of bullet points.

19
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In [28] the authors propose two different models: one extractive and
one abstractive and compare them.
The extractive version uses BertSum [29] to select the most n-relevant
sentences of the document and then re-arranges them in slides as bullet
points.
It is worth mentioning that BertSum has a constraint on the max
number of tokens that can be processed at the same time, so, to
process all the documents, BertSum was used in a window-like approach
(different m sentence of the paper each time).
The abstractive version uses a fine-tuned version of BART [30] (a
Transformer) to produce an abstractive summary for each section to
put in bullet points to create a slide.
During training time BART is fine-tuned using section/slide pairs from
the training set.
The paper proposes an interesting comparison between the two methods
and states that the extractive method outputs better summaries in
terms of ROUGE scores (see 4.4.1 for explanation) but the abstractive
method outputs summaries more similar to slide format, can generate
talk overview slides and can learn the language of the slides which is
different from scientific text.
SlideGen (in its extractive version) was used as a baseline because
shares, in part, the same task of this work, and the availability of the
code on GitHub makes it easy to modify and test for the project.

2.2.3 Multimodal Learning
The term Multimodal Learning refers to a type of machine learning
method where the model can process different types of information
(text, audio, images...) at the same time, the multi-modality can be in
input, output, or both.
Multimodal learning is a field with many applications in different
scenarios.
In the specific case of document summarization, many interesting works
can be found: for example in [31] the authors use Multimodal Learning
to produce a summary with text and images of news, in [1] Multimodal
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Learning is used to create slide summarization for scientific papers.
In particular, [1] is one of the inspirations for this project due to his
specific task.
It’s worth noticing that [31] is a paper from 2020 and [1] is from January
2022, this indicates how this specific application of Multimodal Learning
is in its early stages.

CLIP

Figure 2.12: Clip model [5]

In this multimodal setting CLIP [5] will cover a crucial role.
CLIP is a pre-trained model available for download on GitHub.
Given a pair of images and captions during training, the model learns
both text and image encoding.
This joint learning allows one to classify an image using a caption (e.g.
"a photo of a dog" for an image where is present a dog) or retrieve a
pertinent image given a specific caption.
This type of training leads to better zero-shot predictions and, more
importantly, allows the model to better understand the content of an
image.
More in detail, during training CLIP, for each image/caption pair,
produces an image embedding and a text embedding for the caption,
then tries to maximize the cosine similarity between text and images
embeddings from the same image/caption pairs and tries to minimize

21
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the cosine similarity between text and images embeddings from different
pairs. By doing so, CLIP can understand what image is more pertinent
to a caption and vice versa.
For this project CLIP was fine-tuned with images from scientific papers
and their caption.
This is because, thanks to fine-tuning, a pre-trained model (like CLIP)
can be able to deal with different data from the one seen during
pre-training, to do so a model is pre-trained by the author with a
huge amount of generic data (for example in the case of CLIP with
images/captions of animals, food, random objects) then a user can
continue to train to model with fewer data and time than pre-training
using task-specific task (in this case images/caption from scientific
papers).

2.3 Contribution
As already mentioned, this project draws inspiration mainly from two
papers: "DOC2PPT: Automatic Presentation Slides Generation from
Scientific Documents" [1] and "Summarizing Long-Form Document with
Rich Discourse Information" [6].
This works uses the dataset released with [1] and shares the same task,
while [6] is followed (with some modifications) for the summarization
phase of the paper.
The main innovation presented by this work can be seen in the use of
the summarization pipeline by [6] in the context of slide generation
with more extensive use of transformers than [1] and [6].
Both the reference papers rely on GRUs or Convolutional neural net-
works (CNNS) paired with transformers like BERT or RoBERTa, while
this work uses directly Longformer for sentence and section embedding.
It’s worth noticing that this work tries also to extend the approach in
[6] to a multimodal setting, introducing images in the summarization
and slide-generation step.
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Method
Following the structure of the model proposed by [6], the Summariza-
tion Model proposed in this work is composed of two main blocks: the
Ranking Module and the Extractive Module.
The Ranking Module selects for each section the most important sen-
tences and the Extractive Module performs an extra step of extractive
summarization from these sentences, the output of the Extractive
Module is the summary of the paper.

Figure 3.1: The Summarization Pipeline
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3.1 Ranking Module
The purpose of the Ranking Module is to perform a sort of filter for
the sentences from the paper: due to the complexity of the Extractive
Summarization Module is infeasible to process all the sentences from
the paper, so the Ranking Module selects the most important sentences
for each section. The top-n sentences selected for each section are used
as input for the Extractive Module.
The Ranking Module is composed of different sub-modules:

• Title Representation module: this module uses a BiLSTM to obtain
contextualized word representation from the title of a paper, then
the attention mechanism is used to detect the most important
words.

• Content Representation module: a word-level BiLSTM encoder is
used to encode words and a word-level Attention layer is used to
aggregate word representations into sentence embedding.
For the context representation (the embedding of a section) the
same approach is used starting from the sentence embeddings, a
BiLSTM is used to encode the sentence embeddings and an Atten-
tion Layer is used to aggregate them into a content representation
(one for each sentence).

• Sentence and Section importance: for the importance of the sen-
tences a feed-forward network activation is used. For section impor-
tance, first, an Attention Layer fuses the Content Representation
and the Title Rconcerningthe output of this Attention Layer is sent
through a feed-forward network with sigmoid activation.

To train this module the ground-truth importance of each sentence
and section is the average of ROUGE-1/2/L F1 against the golden
summary (for ROUGE description see 4.4.1).
The model tries to minimize the Binary Cross Entropy loss between
the sentences and sections’ importance estimated by the model and the
importance from the ground truth.
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3.2 Extractive Module
The Extractive Module is a Heterogeneous Graph Attention Network
(HGAT for short).
Is in this module that we can see one of the main differences concerning
[6]: the authors of [6] use a mixture of CNN and BiLSTM for the
initial representation of the nodes of the HGAT (in a similar way to
the Ranking Module), in this work instead, two different Longformer
versions are used.
For sentence embedding a version with max_length=512 is used, for
sentence embedding is used a version with max_length=4096 (the
highest value supported by Longformer), while for word-embedding is
still used GloVe, the version with the 300 dimensions output.
A Projection Layer is used to project words, sentences, and section
embeddings in common feature space with 300 dimensions.
After the projection, all the embeddings are allocated as nodes in an
HGAT, for the edges of this HGAT the model suggested by [6] is
followed:

• word-to-sentence edges: edges from each word to the sentence
containing that word.

• sentence-to-word edges: the reverse version of word-to-sentence
edges.

• intra-section sentence-to-sentence edges: edges from a sentence to
every other sentence in the same section.

• cross-section section-to-sentence edges: for each sentence in a sec-
tion, edges from every section node to that sentence.

• intra-section sentence-to-section edges: edges from a sentence to
the section it belongs to.

• section-to-section edges: edges from a section to other sections.

The Extractive Summarization Module’s complex architecture is capable
of better understanding the concepts from the paper and thus performs
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a better sentence relevance estimation than the Ranking Module.
Finally, the most relevant sentences from the paper are selected, put
in order as they appear in the paper, and concatenated to form the
summary.

Figure 3.2: Sample from the Graph used in the Extractive Summa-
rization Module

As stated before, two versions of the model were trained for comparisons
purposes: one version uses the abstract text as ground truth (like in
[6]), so this part of the paper can not be used to build the summary,
instead, another version of the model uses the text parsed from the
slides as ground truth (like in [1]) and this makes the abstract text
usable in the summarization process.
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3.3 Multimodality
To extend the Text Summarization pipeline to a Multimodal context,
a model like CLIP can be used.
The main idea is to avoid training from scratch a high-complexity model
to perform both Text Summarization and Image understanding but
instead concatenate two independent state-of-the-art models.
More in detail, in the case of CLIP, is possible to obtain, given in input
Text/Image pairs a similarity score of their embeddings, this can be
used to understand, from a pool of images from the original paper,
which can be more pertinent with a specific sentence from the summary.
This is only possible thanks to the fine-tuning done using images/cap-
tions from the papers.
Of course, this approach is simpler than the one proposed by DOC2PPT
but its high modularity allows for simpler training and easier modifi-
cations and updates: for example can be used as a different approach
for Text Summarization without changing the multimodal module or,
vice-versa, change CLIP in favor of another model without having to
modify the Text Summarization pipeline.
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Chapter 4

Experimental Results

4.1 Hardware
Train Machine Learning models can be heavy computational work
unfeasible in a reasonable time by normal computers.
To solve this problem there exist solutions like cloud computing where
high computing power is usable via the internet. For this project was
used HPC@POLITO (HPC for sake of brevity).
HPC is a service of Academic Computing provided by Politecnico di
Torino, upon request, for thesis work, didactic purposes, or research.
The following section will describe the HPC architecture.

Figure 4.1: Generic HPC system Architecture [32]
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4.1.1 HPC@POLITO
The HPC center is composed of 3 cluster that shares both login system
and storage: CASPER, HACTAR, and LEGION.
To submit and manage jobs by the users, all 3 clusters use SLURM
scheduler.
For this project LEGION, the most recent and powerful one, was used.
LEGION is an InfiniBand cluster with a sustained performance of
21.094 TFLOPS (with 14 nodes) and capable of 110.865 TFLOPS at
peak performance (57 nodes). For what concerns hardware, LEGION
is equipped with:

• CPU: 2x Intel Xeon Scalable Processors Gold 6130 2.10 GHz 16
cores.

• GPU: 4x Nvidia Tesla V100 SXM2 - 32 GB - 5120 Cuda cores (on
6 nodes).

• RAM: 21.888 TB DDR4 REGISTERED ECC.

• Node Interconession: Infiniband EDR 100 Gb/s.

• Service Network: Gigabit Ethernet 1 Gb/s.

• OS: Centos 7.6 - OpenHPC 1.3.8.1.

Each authorized user has their own space that can be used for Python,
Bash scripts, Matlab, Blender, and more.
After uploading the necessary files (data sets, scripts, and more), a job
can be submitted to the job queue, waiting to be executed according to
resource availability and scheduler policies. For each job, a text output
file is created for logging.
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4.1.2 CUDA

Figure 4.2: CUDA Workflow [33]

CUDA [34] is an API created by Nvidia for general-purpose processing
on GPUs.
CUDA, and CUDA-capable GPUs, are nowadays the standard for
training huge machine learning models and are also used in various fields
like rendering of 3D graphics, encryption, decryption and compression,
physical simulations (in particular in fluid dynamics), and much more.
CUDA, and other GPU APIs, became the standard in Machine Learning
thanks to the high parallelization introduced by GPU that allows
drastically reduced training time for models.
CUDA is designed to work with programming languages such as C and
C++ and, thanks to third-party wrappers, it can be used in Python,
MATLAB, Java, and others. It’s worth noticing that CUDA, unlike
other APIs, doesn’t require advanced skills in programming.
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4.2 Software

4.2.1 Python Libraries

For this project, Python language [35] was used.
Of course, there exist other languages and frameworks for Machine
Learning but Python, thanks to its simple syntax and variety of li-
braries, seems the easiest and most flexible to use.
Moreover, creating a python virtual environment in HPC it’s quite easy
and the CUDA version of the PyTorch [36] library for Python makes
CUDA instantly available.
For this work various libraries are used, this section will describe them
and explain how they are used.
One of the most important libraries for this project is PyTorch and its
ecosystem.
PyTorch is an open-source End-to-end Machine Learning Framework.
PyTorch comes with APIs to download and use famous datasets, de-
ploy already trained models, create and train custom models, create a
dataset from scratch, and much more.
PyTorch is available for Windows, Mac, and Linux systems, for Java/C++
or Python, for CPU-only usage, or with CUDA support.
Thanks to its easy-to-use, variety of tools integrated and active com-
munity PyTorch can make testing and development simpler and faster.
Moreover, Pytorch is a building block for another library used in this
project: PyTorch Geometric.
PyTorch Geometric [37] is a library built upon PyTorch to easily write
and train Graph Neural Networks (GNNs) for a wide range of applica-
tions related to structured data. In this project, PyTorch Geometric is
necessary to work with Graphs and GANs.
Hugging Face’s Transformers [38] is another core library for this work: it
provides APIs to easily download and train state-of-the-art pre-trained
models.
Hugging Face’s Transformers supports seamless integration between
three of the most popular deep learning libraries: PyTorch, Tensor-
Flow, and JAX. The Transformers library was used to download the
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Longformer model used for sentence embedding.
Spacy [39] and Gensim [40] are the two core libraries more oriented
towards words and sentence processing for this work.
Gensim is a library used to train large-scale semantic NLP models and
for semantic vector representation of text. Also, Gensim comes with
implemented datasets and models, for this project Gensim was used
for its GloVe word embedding.
Spacy is a library created for efficient and easy-to-use NLP, it comes
with 60+ supported languages, pretrained pipelines, transformers, and
word vectors. Spacy alone can be used for NLP tasks such as Named
Entity Recognition (NER), text classification, part-of-speech tagging,
and more.
Upon Spacy is built scispaCy [41], that contains spaCy models for
processing biomedical, scientific or clinical text. For this work scispaCy
was deployed only for its implementation of SciBERT.
Concerning the CLIP model, an ad-hoc GitHub library from the authors
of the paper was used [42]. Thanks to this library a pre-trained version
of the model and a preprocess block are available to download.
For this work, some preprocessing work was done on the dataset pro-
vided by the authors of [1], to do so, others python libraries were used:
Pandas [43], Numpy [44] and PIL [45] (for image processing), Beautiful
Soup [46] and EasyOCR [47].
Pandas and Numpy are two famous standard Python libraries, Beautiful
Soup was used to parse XML output from GROBID (more on this
subject later) and EasyOCR is a library for optical character recognition
(OCR) and was used to parse text from slides.

4.2.2 GROBID
GROBID [48] stands for GeneRation Of BIbliographic Data.
GROBID is a machine learning library for extracting, parsing, and
re-structuring raw documents such as PDF into structured XML/TEI
encoded documents with a particular focus on technical and scientific
publications. In the context of this work GROBID was used to parse
the text from PDF files of papers, the output of GROBID comes in the
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form of an XML document and to manage this kind of output Beautiful
Soup was used.

4.2.3 PDFFigures 2.0
To fine-tune CLIP, an image-caption dataset from scientific papers was
necessary.
To create this dataset, PDFFigures [49] was used. Thanks to this
software it was possible to parse images from the scientific papers
provided by the dataset of [1] and pair them with their caption. The
original dataset from [1] has approximately 5,000 papers, parsing them
with PDFFigures results in 54,603 figure-caption pairs.
It is worth noticing that also tables in the PDFs are processed like
images.
Furthermore, the figures from some papers of the original dataset are
absent due to conversion errors.

4.2.4 CLIP fine-tuning
For this work, as mentioned earlier, a new dataset was created and
used for CLIP fine-tuning.
CLIP comes as a pre-trained model and, thanks to its architecture can
achieve competitive zero-shot performance on a great variety of image
classification datasets.
For the fine-tuning process were used 10 epochs with learning rate=1e-5
(learning rate decreasing by a factor of 10 after each epoch), all the
hyper-parameters were equal to the ones used for train CLIP: AdamW
optimizer with 0.2 weight decay (except for bias layers where no weight
decay occurs), β1 = 0.9 and β2 = 0.98 and ϵ = 1e − 6.

34



Experimental Results

4.3 Dataset
The core dataset for this project is the dataset introduced by [1], it will
be referred to as DOC2PPT dataset.
The DOC2PPT dataset includes pairs of papers and their corresponding
slide decks from academic proceedings: the papers are in PDF format
and the slide decks are JPG files, one for each slide. There are a total
of 6,581 scientific papers with their slides.
From the DOC2PPT dataset papers, using PDFFigures, the figures
and their caption were extracted, and these pairs were used to create a
separate dataset to fine-tune CLIP.
This dataset is composed of 54,603 figure-caption pairs: one JPEG for
each figure and a CSV file that contains entries in the form of the name
of the file, and caption.
To train the summarization model, all the text from PDF files was
extracted using GROBID, the output of GROBID is in the form of
XML, to parse XML files Beautiful Soup library for Python was used.
All the parsed papers were divided into 3 separate datasets: train
(80%-5,265 papers), validation (10%-657 papers), and test(10%-659
papers).
For each portion of the dataset, a JSON file contains a list of papers
with their text divided into a list of sections, each section is then
divided into sentences, for each section also the title is reported, and
the abstract of a paper is treated as a special stand-alone section (it is
separated from the list of sections).

Listing 4.1: The JSON format for each document
{

’ a r t i c l e_ id ’ : s t r ,
’ abstract_text ’ : L i s t [ s t r ] ,
’ section_names ’ : L i s t [ s t r ] ,
’ s e c t i on s ’ : L i s t [ L i s t [ s t r ] ]

}

The text from the slides of the DOC2PPT dataset was used as ground
truth for one version of the summarization model, to obtain this text,
EasyOCR was used.
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For each paper’s slide deck, a single txt file contains all the parsed text.
Another version of the model uses the abstract text as ground truth
instead.
For both the text from papers and text from slides, SciBERT was used
to divide all the corpus into sentences.

4.4 Experimental Design

4.4.1 ROUGE Metrics

ROUGE [50] stands for Recall-Oriented Understudy for Gisting Evalua-
tion, and is a set of metrics used for evaluating automatic summarization
and machine translation software in natural language processing.
The average ROUGE-1/2/L F1 against the golden summary is used as
a metric for the ground truth of a sentence, as a measurement of its
importance. Here is a brief explanation of these metrics:

• ROUGE-1: refers to the overlap of unigrams (each word) between
a sentence and reference summary.

• ROUGE-2: refers to the overlap of bigrams (two words) between a
sentence and reference summary.

• ROUGE-L: Longest Common Subsequence (LCS).

More precisely, ROGUE-n precision is given by the ratio of the number
of n-grams in a sentence that appear also in the reference summary
over the number of n-grams of the sentence, while ROUGE-n recall
is the opposite: the ratio of the number of n-grams in reference that
appear also in a sentence over the number of n-grams in the reference.
Given ROUGE-n precision and ROUGE-n recall, the ROUGE-n F1 is
given by their harmonic mean.
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4.4.2 Procedure
In terms of results, the only quantitative measure exploitable for this
work is the ROUGE metric to evaluate the quality of the Text Summa-
rization Module (also referred to as the Extractive Model).
To understand how well the Extractive Model performs, the ROUGE
scores between the summary produced by the model and the text parsed
from slides will be used.
Moreover, the ROUGE scores obtained by the model proposed will be
compared with the ROUGE scores obtained by summaries produced
by state-of-the-art unsupervised models (TextRank, LexRank, LSA...),
by SlideGen [28] and by BertSum [29].
As said before, there exist two versions of the model proposed in this
paper: one trained on the abstract text of the paper (like [6]) and one
trained on text parsed from slides (like [1]).
Unsupervised models do not require training ad are used in the version
provided by the Python library Sumy [51].
For SlideGen two versions were used: one trained with the dataset pro-
posed by the authors of the paper and one trained with the DOC2PPT
dataset, using the text parsed from the slides as ground truth.
BertSum was trained using the dataset provided by the author (CNN/-
Daily Mail dataset[52], based on summaries from CNN and Daily Mail
websites).
All the summaries are truncated to 620 words (620 is the average number
of words in the presentation slides from the DOC2PPT dataset).
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4.5 Results

4.5.1 Parameters
All the unsupervised methods tested are used in the version proposed by
the Sumy library [51], this library uses this configuration of parameters
for the models:

• TextRank: epsilon = 1e-4 and damping = 0.85.

• LexRank: threshold = 0.1 and epsilon = 0.1.

• Luhn Summarizer: window size = 4 and significant percentage =
100.

• LSA summarizer: min dimensions = 3 and reduction ratio = 1.

The other unsupervised methods tested (Random, Reduction, and KL
Divergence) do not require parameters.
BertSum and SlideGen are trained and tested following the instruc-
tions by the authors of the paper from the GitHub repositories, the
procedures do not indicate parameters to set during test time so all the
parameters used are set in the code by the authors.
BertSum, following the instructions of the authors, was trained using
the version BertSum+Classifier setting the dropout = 0.1 and the
learning rate = 2e-3.
The training of SlideGen did not require any specific setting.

4.5.2 Baselines Comparison
In general, with exceptions from a few cases, all the scores from the
ROUGE metrics are close to each other.
From a strictly numerical point of view, the better model in terms of
ROUGE precision is BertSum, while for ROUGE recall is the Luhn’s
Heuristic Method for text summarization (Luhn for the sake of brevity)
[53], for ROUGE-F instead, LexRank [16] is the best for ROUGE-1 F
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and ROUGE-L F and Luhn is the best for ROUGE-2 F.
For what concerns our model, the version trained on the slide ground
truth performs better than the one trained on the abstract ground
truth.
The version of SlideGen that scores better is the version trained on the
DOC2PPT dataset, maybe this happens because the data used to train
this version is more similar to the data used during test time than the
data proposed by the original authors of the model.
Is worth mentioning that, trained both on the DOC2PPT dataset, our
model performs better than SlideGen (except for ROUGE-1 P and
ROUGE-L P).
Considering two of the better scoring models, LexRank and Luhn, they
share some similarities with the model proposed:

• Lexrank uses a graph structure to model the relationship/similarity
between sentences.

• Luhn uses tf-idf frequencies to model the importance of a word and
the sentence that contains it while the model proposed uses word
nodes in the graph structure to model a word and its connections.

This can be an indicator that the graph approach of the model can
be the right solution but still needs improvements in architecture and
training.

4.5.3 Supervised vs. Unsupervised
The fact that unsupervised models score better than supervised models
can be caused by the quality/quantity of the dataset used for training:
6000 papers (and slides) can be too few to train a complex model like
the one proposed, moreover, the text parsed from pdf papers and a
jpeg of slides could have been of better quality (free solutions were used
for parsing).
Another cause can be the absence of an intensive grind search activity,
surely more fine-tuned hyperparameters can boost the performances of
the model proposed.
As proof of what are the problems faced by the model proposed during
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training, BertSum is the only supervised model tested that can score
better than LexRank and TextRank in one metric (ROUGE-P), maybe
this happens for 2 crucial factors:

• The quality of the Dataset used for training by the authors (CN-
N/Daily Mail dataset is well known in literature).

• The quality of the training procedure and architecture of the model
in terms of hyperparameters.

The fact that is ROUGE-P the metric where BertSum shines can be
caused by the type of data used during training: BertSum must provide
significant summaries of news, so the output of this model has to be
very short and still retain all the crucial information.
Is worth mentioning that, due to the architectural limitation of the
model (the intensive use of BERT), BertSum can process only a limited
number of tokens, this implies that the summaries produced by BertSum
are shorter than the summaries proposed by other models (the average
length is of 282 words against 620 by other models).

Table 4.1: ROUGE-1 evaluations

Method ROUGE-1 R ROUGE-1 P ROUGE-1 F
Ours (trained on slide) 39.64 38.90 35.52

Ours (trained on abstract) 38.00 36.48 33.64
SlideGen 36.41 37.88 32.92

SlideGen (trained on doc2ppt slides) 37.50 39.04 33.60
TextRank 38.12 39.80 34.77
Reduction 37.74 39.61 34.49

KL Divergence 32.47 37.33 30.18
Luhn 40.45 39.37 35.96
LSA 37.78 37.44 32.91

LexRank 39.43 41.29 35.97
Random 36.20 38.40 32.73
BertSum 23.89 46.66 28.27
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Table 4.2: ROUGE-2 evaluations

Method ROUGE-2 R ROUGE-2 P ROUGE-2 F
Ours (trained on slide) 09.46 09.50 08.56

Ours (trained on abstract) 08.37 08.35 07.56
SlideGen 08.19 08.74 07.46

SlideGen (trained on doc2ppt slides) 08.62 09.25 07.79
TextRank 09.42 10.03 08.66
Reduction 09.33 09.94 08.58

KL Divergence 06.86 08.07 06.44
Luhn 10.09 10.03 09.04
LSA 08.65 08.88 07.63

LexRank 09.75 10.47 08.99
Random 07.58 08.30 06.97
BertSum 05.47 11.39 06.62

Table 4.3: ROUGE-L evaluations

Method ROUGE-L R ROUGE-L P ROUGE-L F
Ours (trained on slide) 15.32 14.36 13.25

Ours (trained on abstract) 14.72 13.49 12.57
SlideGen 14.11 14.34 12.34

SlideGen (trained on doc2ppt slides) 14.45 14.87 12.51
TextRank 15.44 15.50 13.56
Reduction 15.37 15.53 13.53

KL Divergence 13.20 15.36 11.91
Luhn 15.64 14.52 13.38
LSA 14.43 14.24 12.14

LexRank 15.63 15.71 13.71
Random 13.74 14.57 12.05
BertSum 09.82 19.47 11.51
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Conclusion and future
work
From the results, is clear that the model proposed has to be improved
to become a competitive result in text summarization, this can be done
with a better dataset, a proper grid search for training, and architec-
tural changes where required.
Moreover, the model is realized by aggregating specific blocs for each
task, this modularity of the model allows its update according to the
progress in state-of-the-art solutions.
It is to keep in mind also that the main focus of this work was not to
realize a state-of-the-art model but to represent a useful starting point
for anyone that approaches the problem of Automatic Slide Generation
from Scientific Papers and NLP in general, giving an insight on the
task and illustrating what can be used to tackle this problem in terms
of related works, models, approach, software, and hardware. In the
spirit of research and help, moreover, all the code written for each step
of this work will be made publicly available on GitHub.
Future research for this project could explore a detailed grid search
to optimize the hyperparameters of the model, extend the model with
more advanced state-of-the-art solutions in word embedding or sentence
embedding, use a more sophisticated HGAT for the Extractive Module,
use a different model than CLIP (maybe a multimodal model more
suited for scientific papers), and train a module capable of put images
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and text in a visually pleasing manner like the one of [1].
In conclusion, this thesis work was beneficial to grasp the problems
and difficulties related to NLP and Text Summarization and to under-
standing that there is still a lot of work to do and plenty of room for
improvement in terms of models and solutions proposed, in fact, was
the low numbers of publications on Automatic Slide Generation from
Scientific Papers to inspire this thesis.
In the hope that all this work will be useful for future research, the
author wishes good luck and all the best to anyone that wants to
approach the same challenges of this project.
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