
POLITECNICO DI TORINO
Master degree course in Data Science and Engineering

Master Degree Thesis

Neural Networks
hardware-specific optimization

using different frameworks

Supervisor
prof. Paolo Garza

Candidate
Riccardo Bosio
291299

Internship Tutor
AllRead’s CTO and Co-founder, Marçal Rossinyol

Academic Year 2021-2022

This work is subject to the Creative Commons Licence

Summary

Artificial Intelligence (AI) is a fast growing sector where investments are
increasing, the number of applications is getting bigger and the total amount
of publications is doubled from 2010 to 2021.

Among AI fields there is Computer Vision: the goal is to process images
or videos and extract relevant information depending on the task we are
solving. A huge amount of data is used to train a Deep Learning model to
accomplish a specific function.

We can end up having a Neural Network that is able to accomplish a
specific task and we can run this model on several hardware, such as CPUs
and GPUs. Moreover in several applications it’s really important not only
to have good quality metrics, but also to process data as fast as possible.
The inference time is really important and the trade-off between speed and
accuracy is something that should be assessed carefully keeping in mind the
context in which we want to deploy our Neural Network.

In this scenario where we can find clients with different hardware and
needs, the possibility of optimizing our models to run faster without losing
the original accuracy can be a game changer.

In this thesis I tried to reach this goal using different optimization frame-
works and testing the improvements of three models. I had the opportunity
to do my experiments in a real world scenario, working at AllRead Machine
Learning Technologies: it is a Barcelona based startup delivering a Deep
Learning based OCR (Optical Character Recognition) software for Supply
Chain and Industry 4.0.

The first models that I’ve optimized in my experiments are the detector
and the reader that compose the AllRead’s OCR system which is reading
license plates. Finally I’ve applied the different optimization pipelines on
the Damage Detection Demo model, a semantic segmentation net that I had
previously trained for a potential customer.

At the beginning I implemented a pipeline using Apache TVM, an open

3

source end-to-end machine learning compiler framework for CPUs and GPUs
that enables optimization on any hardware back-end. The results obtained
by the TVM optimized company’s models were not good on my Intel i5
CPU, therefore we decided to follow another approach: since more than 90%
of the company’s clients usually have Intel CPUs, we can use OpenVINO to
optimize the models.

OpenVINO is an open-source toolkit for optimizing and deploying AI in-
ference specifically for Intel products. The results obtained using this frame-
work are really good: the optimized models are up to 2.6 times faster on
Intel core i5 and up to 3.9 times faster on Intel core i7.

On the other hand sometimes clients ask for an edge computing solution
and a valid choice in this context is to provide them with an NVIDIA GPU.
This is the reason why we decided to optimize the models to run on this
specific hardware. To reach this goal I first explored TensorRT.

TensorRT is an SDK for high-performance deep learning inference on
NVIDIA products. I tested its performances on an NVIDIA Jetson Xavier
available at the office. Using TensorRT I reach the best performances in
terms of inference time. Anyway there are still other steps involved in an
end to end pipeline, such as pre-processing and post-processing. In order
to take advantage of the TensorRT inference time and optimize the entire
stream of data I used DeepStream as a last optimization framework.

NVIDIA DeepStream Software Development Kit (SDK) is an accelerated
AI framework to build intelligent video analytics pipelines. The results ob-
tained with this optimization are really good since real-time inference is
reached. Moreover I can definitely say it is worth for a customer to invest on
an NVIDIA edge device: with this optimization tool, the final pipeline is 8x
faster than the OpenVINO optimized one running on an Intel i5 CPU.

4

Acknowledgements

Thank you Franco and Sonia for doing your best everyday in being my par-
ents. I wouldn’t be the man I am today without you being my source of
inspiration.

Thank you Leonardo for always getting a smile out of me.
Thank you Beatrice for the invaluable help you have given me during these

years. Sharing this journey with you has changed me as a person and I can’t
be more proud of this.

Thanks to my grandparents for the sacrifices they made when I was a
child.

Finally, thank you prof. Paolo Garza, you are definitely the most profes-
sional professor I have met during these five years.

5

Contents

List of Tables 8

List of Figures 11

1 Introduction 13
1.1 Artificial intelligence . 13
1.2 Computer Vision . 14
1.3 Optical Character Recognition 14
1.4 Semantic Segmentation . 15
1.5 AllRead Machine Learning Technologies 15
1.6 Neural Networks optimization 16

2 Literature 17
2.1 Computer Vision tasks . 17
2.2 OCR . 18
2.3 TensorFlow . 19
2.4 Apache TVM . 19
2.5 OpenVINO . 21

2.5.1 Quantization . 22
2.6 TensorRT . 25
2.7 DeepStream . 26
2.8 Hardwares and development environment 26

3 Problem Statement and Solutions 29
3.1 The goal . 29
3.2 The License Plate pipeline . 29
3.3 The Damage Detection demo 30

3.3.1 The U-Net inspired architecture 30
3.3.2 The training . 31

6

3.4 The Apache TVM optimization pipeline 32
3.4.1 AutoTVM . 32
3.4.2 TVMC . 33

3.5 The OpenVINO optimization pipeline 35
3.5.1 Model Optimizer . 35
3.5.2 Post-training Optimization Tool 36

3.6 The TensorRT engine generation process 37
3.7 The DeepStream pipeline . 38

3.7.1 The metadata . 38
3.7.2 The pipeline structure 39
3.7.3 Plugins description . 42
3.7.4 The C++ parsing functions 44

4 Results 47
4.1 Metrics . 47

4.1.1 Intersection over Union 48
4.1.2 Accuracy . 48
4.1.3 Inference time statistics 49

4.2 Apache TVM . 49
4.3 OpenVINO . 50
4.4 TensorRT . 54
4.5 DeepStream . 55

5 Conclusion 59

Bibliography 61

7

List of Tables

4.1 TVM optimization results on Intel i5 CPU. The model without
OPT is just loaded to the TVM runtime. When there is OPT
in the name, it means the model has been optimized and then
tested on the TVM runtime. 50

4.2 LP detector inference performances on different runtimes. Both
the TVM models are run on the TVM runtime. 50

4.3 LP detector inference performances on Intel Core i5 dual-core
using different optimization methods. Baseline is the model
just converted to the IR format and run on the OpenVINO
runtime. FP16 is the model converted to FP16 precision (in-
stead of FP32 which is the original one). Quantization is the
model quantized without any constrain on Intersection over
Union loss. Finally, Accuracy-aware quantization is the quan-
tized model with a constrain on the loss of Intersection over
Union. 51

4.4 LP detector inference performances on Intel Core i7 - 8650U
using different optimization methods. Baseline is the model
just converted to the IR format and run on the OpenVINO
runtime. FP16 is the model converted to FP16 precision (in-
stead of FP32 which is the original one). Quantization is the
model quantized without any constrain on Intersection over
Union loss. Finally, Accuracy-aware quantization is the quan-
tized model with a constrain on the loss of Intersection over
Union. 51

8

4.5 LP reader inference performances on Intel Core i5 dual-core
using different optimization methods. Baseline is the model
just converted to the IR format and run on the OpenVINO
runtime. FP16 is the model converted to FP16 precision (in-
stead of FP32 which is the original one). Quantization is the
model quantized without any constrain on LP accuracy loss.
Finally, Accuracy-aware quantization is the quantized model
with a constrain on the loss of Intersection over Union. 52

4.6 LP reader inference performances on Intel Core i7 - 8650U
using different optimization methods. Baseline is the model
just converted to the IR format and run on the OpenVINO
runtime. FP16 is the model converted to FP16 precision (in-
stead of FP32 which is the original one). Quantization is the
model quantized without any constrain on LP accuracy loss.
Finally, Accuracy-aware quantization is the quantized model
with a constrain on the loss of Intersection over Union. 52

4.7 LP pipeline end-to-end performances on Intel Core i5 in terms
of total time (seconds) to process 298 images, detection time
(milliseconds per iteration) and reading time (milliseconds per
iteration). TensorFlow means both the detector and reader
are running on TensorFlow runtime, OV Baseline means both
models are just converted to the OpenVINO format and no fur-
ther optimization is performed, while OV Acc.-aware Quant.
means the models are converted to OpenVINO format and
Accuracy-aware quantization is performed. 53

4.8 Damage detector inference performances on Intel Core i5 dual-
core using different optimization methods. Baseline is the
model just converted to the IR format and run on the Open-
VINO runtime. FP16 is the model converted to FP16 preci-
sion (instead of FP32 which is the original one). Quantization
is the model quantized without any constrain on Intersection
over Union loss. Finally, Accuracy-aware quantization is the
quantized model with a constrain on the loss of Intersection
over Union. 54

4.9 LP detector performances comparison between TensorRT op-
timization on NVIDIA Jetson Xavier and the previous ones. . 54

4.10 LP reader performances comparison between TensorRT opti-
mization on NVIDIA Jetson Xavier and the previous ones. . . 55

9

4.11 Performances of the DeepStream single stage pipeline involv-
ing the LP detector only. Comparison with TensorFlow and
OpenVINO ones. 56

4.12 Performances of the DeepStream single stage pipeline involv-
ing the LP reader only. Comparison with TensorFlow and
OpenVINO ones. 56

4.13 Performance of the DeepStream end-to-end LP pipeline. Com-
parison with TensorFlow and OpenVINO ones. 57

10

List of Figures

1.1 Number of AI publications in the world, 2010–2021. 13
2.1 The Apache TVM optimization process. 20
2.2 The OpenVINO workflow. 21
2.3 The Post-training Optimization Tool (POT) workflow. 22
2.4 The Default Quantization algorithm. 23
2.5 The Accuracy-aware Quantization algorithm. 24
2.6 The TensorRT workflow. 25
3.1 The LP pipeline. 30
3.2 The Damage detector input and output. 31
3.3 The TVMC Python pipeline code’s flow diagram. 34
3.4 DeepStream metadata overview. 39
3.5 The DeepStream pipeline architecture. 41

11

12

Chapter 1

Introduction

1.1 Artificial intelligence

In 2022, the Artificial Intelligence (AI) market size value is 136.6 billion USD
and the forecast growth rate between 2022 and 2030 is 38.1% [1].

Applied AI and industrializing machine learning are two of the most sig-
nificant technology trends unfolding today. Tech industries are leading in AI
adoption, while product development and service operations are the business
functions that have seen the most benefits from applied AI.

As you can see in Figure 1.1, from 2010 to 2021, the total number of AI
publications doubled, growing from 162,444 in 2010 to 334,497 in 2021 [2].

Figure 1.1. Number of AI publications in the world, 2010–2021.

13

1 – Introduction

In 2021, global private investment in AI totaled around 93.5 billion USD,
which is more than double the total private investment in 2020.

Both research and investments are active in AI sector, therefore the trend
seems quite promising. Hopefully economic issues won’t change AI’s powerful
momentum.

1.2 Computer Vision
Computer vision (CV) is a field of Artificial Intelligence (AI) that focuses
on enabling computers and systems to derive meaningful information from
digital images, videos and other visual data.

As of 2021, computers can outperform humans in many computer vision
tasks. There is a wide range of computer vision tasks, such as image classi-
fication, object recognition, semantic segmentation, and face detection.

Computer vision technologies have a variety of important real-world ap-
plications, such as autonomous driving, crowd surveillance, sports analytics,
and video-game creation.

In this thesis I will work with models solving the following CV tasks:
Optical Character Recognition (object detection + reader) and Semantic
Segmentation.

1.3 Optical Character Recognition
Optical Character Recognition (OCR) is the process that converts an image
of text into a machine-readable text format. The goal is to detect and read
the text present in an image.

The global optical character recognition market size was valued at 8.93
billion USD in 2021 and it is expected to expand at a compound annual
growth rate (CAGR) of 15.4% from 2022 to 2030 [3].

The growth of the OCR market is primarily attributed to the improvement
in productivity and a rise in the penetration of automatic recognition sys-
tems: widespread adoption of OCR technology has been observed in health-
care, retail, tourism, logistics, transportation, government, manufacturing,
and other sectors.

Digitalization in business organizations has made all the processes faster
and more accessible. As companies witness technological advancements, data
is becoming a critical element for growth. When data is converted to digital

14

1.4 – Semantic Segmentation

form, it can be processed by computers and various devices with computing
capacity, and this data is easy to share, access, and store.

1.4 Semantic Segmentation

Semantic Segmentation is the Computer Vision task whose goal is to label
each pixel of an image with a corresponding class of what is being represented.

It can be considered as a powerful alternative to object detection since
it allows the object of interest to cover multiple areas of the image at the
pixel level. As a matter of fact Semantic Segmentation techniques cleanly
detect irregularly shaped objects, unlike object detection, where objects get
surrounded in a bounding rectangle.

Thanks to this accuracy, Semantic Segmentation is useful in applications
in multiple fields, such as Autonomous Driving or Robotic Vision.

The main drawback is that most of the relevant methods in Semantic
Segmentation rely on a large number of images with pixel-wise segmentation
masks. Obviously, manually annotating these masks is quite time-consuming,
frustrating and commercially expensive. Therefore, some weakly supervised
methods have recently been proposed: they operate the Semantic Segmen-
tation task by using annotated bounding boxes, or even image-level labels.

1.5 AllRead Machine Learning Technologies

AllRead MLT. is a startup founded in 2019 that offers a Deep Learning based
OCR software for Supply Chain and Industry 4.0. The goal is to improve
the operational efficiency by automatic data capture in images and videos,
reducing repetitive manual tasks, eliminating errors and allowing immediate
processing of the information.

The main tasks the software can solve are Access Control, Security and
Safety, Network Asset Visibility, Inventory, Digitalization, Monitoring. Right
now the company is focusing on reading shipping containers, UIC wagons,
license plates, utility meters, unit load devices, QR and Barcodes. The soft-
ware can be installed on premise, on cloud or on device.

15

1 – Introduction

1.6 Neural Networks optimization
AllRead has models solving different tasks that can be delivered to any client.
Each client has different needs and can choose a specific hardware to run the
company’s software on: in this scenario it would be a game changer to be
able to optimize the model inference on that specific hardware.

This is exactly the goal of my thesis: explore different frameworks and
techniques to perform hardware-specific optimization. The idea is to speed
up the inference time without losing the original accuracy.

16

Chapter 2

Literature

2.1 Computer Vision tasks
As mentioned in the Introduction, Computer Vision is the branch of AI that
deals with images and videos. These inputs are processed in order to extract
useful information, depending on the task. In this thesis three models solving
different tasks are optimized with various frameworks. The tasks involved
are the following:

• Object detection: task of detecting instances of objects of a certain class
within an image. The state-of-the-art methods can be categorized into
two main types: one-stage methods, that prioritize inference speed (such
as YOLO and SSD), and two stage-methods, that prioritize detection
accuracy (such as Faster R-CNN and Mask R-CNN).

• Text recognition: task of recognizing written or printed characters such
as numbers or letters. Optical Character Recognition systems are often
composed of a detector, which detects the text in the image (object
detection), and a reader, that reads the detected text (text recognition).

• Semantic segmentation: task of classifying each pixel in an image from
a predefined set of classes. It is different from object detection since
in this case we are not predicting any bounding box and we are not
distinguishing between different instances of the same object.

The first two tasks are achieved in the so called License Plate pipeline, which
is an Optical Character Recognition system that reads the license plate of
vehicles from frames. Semantic segmentation is instead done by the Damage

17

2 – Literature

Detection model. More information about the models will be presented at
the beginning of Chapter 3.

2.2 OCR

Humans read all kinds of textual information daily, since text is present
everywhere in man-made environments and it conveys relevant information
about the world around us.

Even if OCR engines have been around for several decades, we have seen
in the last years a revolution in this field, powered by the latest advancements
in deep learning. Nowadays, state of the art methods are able to locate and
read text not only in scanned documents but also in natural scenes “in the
wild” [4] [5].

In the industry context, text usually contains structured information to
be transmitted. Those textual information are not easy to read by human
operators. Moreover humans usually read with a word-level processing of
the textual context, therefore any structured textual content requiring a
character-by-character interpretation is not natural for humans and can lead
to mistakes that can have important consequences.

When it comes to structured text, machine-based automated reading soft-
ware can be the solution, but instead of a generic OCR a different approach
is needed, adaptable and specialized to each reading domain.

The solution proposed by AllRead [6] is based on a convolutional neural
network that processes images and outputs the desired structured texts in
a single shot. The network is composed of a convolutional backbone, that
has the goal of extracting visual features, followed by stacking several in-
dependent fully connected layers, that specialize in predicting the output
probabilities for each symbol, each one with a Softmax activation produc-
ing a probability distribution over the n possible classes for each expected
symbol of the final reading. The n outputs of the network are then treated
as a typical classification output and trained using the Cross-Entropy loss
function.

The main advantages of this end-to-end model are that the network can
be trained with full images, without any explicit segmentation, directly opti-
mizing the end-to-end reading performance and that the particular design of
the network allows for real time reading speeds while achieving high reading
accuracy.

18

2.3 – TensorFlow

2.3 TensorFlow
TensorFlow (TF) [7] is an interface to express and execute machine learning
algorithms for both training and inference. It is used for conducting research
but also for deploying systems into production, thanks to its ability to run,
after small or no changes in the algorithm specification, on a wide and hetero-
geneous set of systems such as mobile devices and distributed systems. The
TensorFlow API has been first released in 2015. In TensorFlow graphs are
very important: we can describe a computation as a directed graph, where
nodes are operations and typed, multidimensional arrays called tensor flow
along the edges.

The main TensorFlow components are the following:

• Operation: it represents an abstract computation and it has a specific
name.

• Kernel: the implementation of an operation that can be run on a par-
ticular type of device.

• Session: when a client interacts with the TensorFlow system, it creates
a session.

• Variable: a special kind of operation that returns an handle to a persis-
tent mutable tensor that survives across executions of a graph.

In TensorFlow, after training, there are two different ways to save the state
of a graph in order to freeze its weights. One way is to get the following files:
a .meta file holding the metadata and the graph structure, a .index file, a
checkpoint file and a .data file with the weights. In this case, it’s necessary
to have the source code to run inference. The other way is to generate a
Protobuf (.pb) file, which is a single file containing all the information needed
to run inference.

2.4 Apache TVM
Apache TVM [8] is an end-to-end machine learning compiler framework for
CPUs, GPUs, and machine learning accelerators. It is open source and its
goal is to enable optimization and running computations efficiently on any
hardware back-end. This flexibility is a pro of TVM that I would like to
underline: we can potentially use it to optimize the models’ inference on any
hardware created by any company (Intel, AMD, NVIDIA, etc.).

19

2 – Literature

Figure 2.1. The Apache TVM optimization process.

The optimization process can be summarized as in Figure 2.1.
First of all the model is converted into TVM’s Relay Format. The front-

end component is able to automatically understand the frameworks of the
model and to ingest it into an IRModule, which contains a collection of
functions that internally represent the model. Relay [9] is a high level graph
representation language designed to balance efficient compilation, expressive-
ness, and portability. It is a statically typed, purely functional, differentiable
Intermediate Representation. An intermediate representation (IR) is the
data structure or code used internally by a compiler or virtual machine to
represent source code. Relay was intended as the top layer of the TVM stack.

In the tuning step, there are the compute expressions, that basically tell us
which are the operations and how a certain output is computed, and there are
the schedules, that are the ways in which these expressions can be rewritten.
This optional step uses machine learning to look at each operation within a
model and tries to find a faster way to run it. TVM optimizes across multiple
layers in the following way: it looks at the model, it divides it in multiple
workloads and then optimize them . For each workload, a set of possible
schedules is generated and a final best schedule is selected. A tuning table
is produced: low latency and high GFLOPS are better. GFLOP stands

20

2.5 – OpenVINO

for Giga FLOP: FLOP means floating point operations per second and it
is a measure of performance, assessing how fast the computer can perform
calculations.

During the compilation step, the model from Relay is translated into a
lower-level language that the target machine can understand. The target is
the desired hardware we want to run the model on.

Finally we run inference using the TVM runtime and we collect metrics.
It’s important to remind that the accuracy is not going to change: we are
trying to boost inference on a specific hardware.

2.5 OpenVINO
OpenVINO [10] is an open-source toolkit for optimizing and deploying AI
inference on Intel products. The general OpenVINO optimization workflow
can be seen in Figure 2.2.

Figure 2.2. The OpenVINO workflow.

Optimization happens in two stages:

1. Model Optimizer (MO): it is a command-line tool that converts a model
trained with a supported framework into an Intermediate Representation
(IR), which can be inferred with the OpenVINO runtime.

2. Post-training Optimization Tool (POT): it provides two main 8-bit quan-
tization methods: Default Quantization and Accuracy-aware Quantiza-
tion.

21

2 – Literature

The Model Optimizer step is mandatory and it already improves perfor-
mances. POT is an additional step to get a more optimized model.

The following are the main MO tasks:

• Convert the format: a model from one of the recognized framework is
converted into IR. IR is basically composed of two files: an .xml file that
describes the layers, the connectivity, the parameters and a binary file
that holds all the weights and biases.

• Optimize: it can apply different techniques, such as batch normalization,
layers fusion and others hardware agnostic optimizations that can save
a lot of computations and memory.

• Convert weights and biases: for example they may change from FP32 to
FP16.

2.5.1 Quantization
In Figure 2.3 there is an high level description of the POT workflow.

Figure 2.3. The Post-training Optimization Tool (POT) workflow.

In particular, POT offers two different quantization methods: Default
Quantization and Accuracy-aware Quantization. Usually a trained neural-
network model is in full-precision format, i.e. FP32. What quantization does
is to convert the floating-point number operations to low-bit numbers, such as
Int8. This not only reduces the size of the model but also the computational
cost to a great extent.

During quantization using POT, an operation, named FakeQuantize, is
added into the model graph, based on the target hardware. Basically, the
model is optimized according to the computation device on which the POT
operation is carried on. During runtime, these FakeQuantize layers convert

22

2.5 – OpenVINO

the input to the convolution layer into Int8. For example, if the next con-
volutional layer has Int8 weights, then the input to that layer will also be
converted to Int8. Further on, the precision however depends on the next
operation. If the next operation requires a full-precision format, then the
inputs will be reconverted to full-precision during runtime. Let’s take a look
at the two algorithms more in detail.

As you can see in Figure 2.4 the Default quantization follows these oper-
ations:

1. The input is the full-precision model.

2. Activation Channel Alignment is applied in order to align the activation
ranges of the convolutional layers and reduce quantization error. This is
done first calculating the mean of the activation values and then aligning
them by clipping the activation values within a certain range.

3. Depending on the target hardware chosen, the MinMax Quantization
method is performed to insert the FakeQuantize layers into the model
graph.

4. Bias Correction is applied to the quantized model in order to make the
model output unbiased. Since quantization tends to shift the network’s
statistics from the learned distribution, bias correction helps to overcome
this, by adding a constant to the bias term of each channel, in every layer
of the neural network.

Although with Default Quantization you get the fastest quantized model,
the main drawback is that you cannot control its accuracy. Most of the time
this might not be an issue, but there will be situations where such control
becomes crucial.

Figure 2.4. The Default Quantization algorithm.

23

2 – Literature

To tackle this issue you can use the Accuracy-aware quantization algo-
rithm, since it does not let the resulting quantized model drop below a pre-
defined accuracy range. This method should be used whenever inference
accuracy of the INT8 model is as important as its inference speed.

In Figure 2.5, you can see the Accuracy-aware Quantization workflow:

1. The input is the full-precision model, which passes through the Default
Quantization algorithm to output a fast, 8-bit quantized model.

2. The quantized model infers on a sample-validation set, which provides
an accuracy score. If the accuracy level is satisfactory and matches the
required threshold, the resulting model is given as output. Otherwise,
since the accuracy score does not match the criteria, a number of extra
steps is needed before reaching the output stage.

3. If it is the first iteration, a layer-wise ranking is done to check which
layer affects the accuracy the most.

4. The quantized layer contributing most to the accuracy drop is completely
reverted back to the original full-precision format.

5. The process restarts from point 2.

Figure 2.5. The Accuracy-aware Quantization algorithm.

24

2.6 – TensorRT

2.6 TensorRT
NVIDIA TensorRT is an SDK designed to deliver high-performance deep
learning inference: it includes a deep learning inference optimizer and run-
time.

The TensorRT workflow can be seen in Figure 2.6.

Figure 2.6. The TensorRT workflow.

The tasks that the TensorRT optimizer can accomplish are the following:

1. Weight Activation Precision Calibration: throughput maximization by
quantizing models to INT8 while preserving accuracy.

2. Layer Tensor Fusion: nodes fusion in a kernel in order to optimize the
use of GPU memory and bandwidth.

3. Kernel Auto-Tuning: best data layers and algorithms selection based on
target GPU platform.

4. Dynamic Tensor Memory: memory footprint minimization and re-using
memory for tensors efficiently.

5. Multi-Stream Execution: scalable design to process multiple input streams
in parallel.

6. Time Fusion: recurrent neural networks optimization over time steps
with dynamically generated kernels.

25

2 – Literature

2.7 DeepStream

DeepStream [11] is an NVIDIA’s SDK that delivers a complete streaming
analytics toolkit to rapidly develop Vision AI applications and services that
can be deployed on-premises, on the edge and in the cloud. Using Deep-
Stream, developers have great flexibility since they can develop in C/C++,
Python, or use a low-code graphical programming with Graph Composer.
Moreover DeepStream offers an extensive AI model support for popular ob-
ject detection and segmentation models (such as YOLO, SSD, and others)
and there is also the possibility of integrating custom functions and libraries
in order to use customized models. It uses GStreamer, which is a library for
constructing graphs of media-handling components that range from simple
audio/video streaming to complex audio mixing and video processing.

The main advantage is that you can use TensorRT for inference, which
is the best optimization framework for NVIDIA GPUs, and meanwhile you
optimize also the entire stream of data. In this way you improve not only the
inference time, but also the other steps involved in an end-to-end pipeline,
such as the pre-processing, post-processing and so on.

NVIDIA introduced Python bindings to help you build high-performance
AI applications using Python, a very easy to use language widely adopted by
data scientists when creating AI models. The DeepStream Python applica-
tion uses the Gst-Python API action to construct the pipeline and use probe
functions to access data at various points in the pipeline. The data types
are all in native C and require a shim layer through PyBindings or NumPy
to access them from the Python app. Tensor data is the raw tensor output
that comes out after inference. If you are trying to detect an object, this
tensor data needs to be post-processed by a parsing and clustering algorithm
to create bounding boxes around the detected object.

2.8 Hardwares and development environment

As already mentioned in the introduction, the hardware I used in the ex-
periments are three: two CPUs, Intel Core i5 dual-core and Intel Core i7 -
8650U, and one GPU, NVIDIA Jetson Xavier. Running tests on CPUs was
pretty straight-forward since I had the machine in house. Using the Jetson
has been more complicated: it has been installed in headless mode in the
office and I had to connect via Secure Shell (ssh) to access it.

26

2.8 – Hardwares and development environment

Secure Shell is a network communication protocol that enables two com-
puters to communicate and share data in a secure way, using encryption. In
particular I have used ssh to "login" on the Jetson remotely and then be able
to perform operations.

In order to transfer data, I have used the Secure copy protocol (SCP),
which is a means of securely transferring files between a local and a remote
host. SCP is based on the Secure Shell protocol.

Concerning the DeepStream prototype, since I didn’t have any NVIDIA
GPU on my laptop, I mainly developed the code locally using Pycharm and
then I moved the code on the Jetson to test it. Same for the C++ shared
library (.so) that I generated: more details in chapter 3.

27

28

Chapter 3

Problem Statement and
Solutions

3.1 The goal
AllRead is delivering different products to different clients. Clients have
different hardware on which they can run AllRead’s models. The main goal
of my thesis was to create and test different optimization pipelines in order
to deliver optimized models depending on the client’s hardware. For example
if a specific client is interested in having model X running on hardware Y,
we want to provide him with X optimized to run on Y. In order to achieve
this goal, I developed and tested different optimization pipeline involving
different frameworks. The models I used to test these optimizations were
three: a detector, a reader and a semantic segmentation model. In this way I
covered all the main Computer Vision tasks. In sections 3.2 and 3.3 there is
an explanation of the models used, while in the other sections of the chapter
the different optimization pipelines are described.

After applying each of the following pipelines, I benchmarked the opti-
mized models to assess the possible loss of accuracy/mIoU.

3.2 The License Plate pipeline
The License Plate pipeline is one of the OCRs that AllRead is deploying to
the customers and it is mainly used for access control in ports. As you can
see in Figure 3.1, it is composed of a detector and a reader. Later on I will
refer to these models as the License Plate detector and the License Plate

29

3 – Problem Statement and Solutions

reader. The two models perform these actions inside the LP pipeline:
1. LP detector: it takes the full image as input and it produces a bounding

box around the license plate in the frame.

2. LP reader: the input is the original image cropped on the bounding box
area generated by the detector. The outputs are the reading and the
country of the cropped license plate.

Figure 3.1. The LP pipeline.

I will not provide any additional information about these models because
of Intellectual Property.

In order to perform my experiments I had to know how to pre-process
the input image and how to post-process the outputs of the models: with
this knowledge and the Protobuf files of both the detector and the reader,
I was able to apply all the optimization pipelines described in the following
sections.

3.3 The Damage Detection demo
The idea behind this model was to develop a demo to show potential clients
what we can achieve so far and then to propose a partnership in order to
improve the model with more data from them. In Figure 3.3 you can see
how the Damage Detection model works: it gets an image as input and it
generates a segmentation map of the damages in that image. In the following
subsections I present the model’s architecture first and then I describe how
I trained it from scratch.

3.3.1 The U-Net inspired architecture
The model architecture takes inspiration from the U-Net paper [13]. As the
paper explains, it consists of:

30

3.3 – The Damage Detection demo

Figure 3.2. The Damage detector input and output.

• a contracting path: it has the typical architecture of a convolutional
network. It is composed of repeated applications of two 3x3 convolutions,
each one followed by a rectified linear unit (ReLU) and a 2x2 max pooling
operation.

• an expansive path: every step consists of an upsampling of the feature
map, a 2x2 convolution, a concatenation with the corresponding cropped
feature map from the contracting path and two 3x3 convolutions, each
one followed by a ReLU. The final layer is a 1x1 convolution.

I have used MobileNet [12] pre-trained on ImageNet as backbone.

3.3.2 The training
In order to build a training dataset I explored around 3000 images the com-
pany already had. I didn’t annotate all of them: there were many different
damages, some of them were very small and some others were big, there were
very old cars and pretty new ones, there were also broken windows and miss-
ing pieces. The goal was to be coherent while building the dataset. Therefore
at the end I annotated 833 images for training and 50 for validation. The
test set was composed of 50 images. The tool I used to annotate images is
labelme [14].

I have trained the model for 201 epochs, using a batch size of 16 and
a learning rate of 0.001 with Adam as optimizer. The losses I tested are
the weighted cross entropy and the penalty-reduced pixel-wise logistic re-
gression with focal loss. The first one performed better in this scenario.

31

3 – Problem Statement and Solutions

The augmentations are taken from the albumentations package: in par-
ticular I used ShiftScaleRotate(), LongestMaxSize(), PadIfNeeded(),
RandomCrop(), RandomGamma(), ColorJitter(), ToGray(), MotionBlur(),
GaussNoise() and JpegCompression(). The hyperparameters finetuning
involved the batch size, the learning rate, the loss and the parameters of some
augmentations (in particular the rotation angle of ShiftScaleRotate()).
The metric used to evaluate the model is the Intersection over Union.

The final performances of the model were not bad: the IoU is actually
not very significant since identifying the real shape of the damages is really
subjective. The best way to understand how the model performs is to look
at the segmentation maps of the test set. In the test set there were images
taken from different distances and also the size of the damages varied a lot.
It emerges that the model struggles to detect small damages in images taken
from afar, while when pictures are taken from a closer distance the model
performs better.

3.4 The Apache TVM optimization pipeline
Apache TVM is the first framework I tried out: I built two different opti-
mization pipelines, one using the python API (AutoTVM), and one using a
command line application (TVMC Python). I first tested the pipelines on
some standard architectures from Keras and then I applied the optimization
to the models described at the beginning of this section.

3.4.1 AutoTVM
The TVM optimization framework has APIs available for different languages:
in particular I have used the Python API (AutoTVM). In order to build an
optimization pipeline using AutoTVM, I need to define the following:

• Target: a tvm.target.Target object that contains the target descrip-
tion. The target is the hardware we want to optimize our model for. In
my optimization pipeline it is target = tvm.target.Target("llvm",
host="llvm").

• Frontend: a tvm.relay.frontend to import models from different frame-
works. In the pipeline I built I have used the method from_tensorflow()
to load the TensorFlow graph from the Protobuf file into relay.

32

3.4 – The Apache TVM optimization pipeline

• The model and its input: it is necessary to consider the model that
is being optimized and to define a valid input for this model. In this
case, I created a variable containing the Protobuf of my model and I
pre-processed a real image to obtain the corresponding input vector.

After defining these variables we can first generate a Relay function to run
on TVM graph executor, using tvm.relay.build(), and then we obtain the
final wrapper of the TVM module, using tvm.contrib.graph_executor.GraphModule().
Before these two operations, we can add a tuning step to optimize our model:
without this step, no hardware specific optimization is applied and the model
is only compiled to work on the TVM runtime. It’s important to add this
tuning step because if we run inference using the compiled model we might
not obtain the expected performance. Therefore we need to define additional
elements:

• Runner: set up basic parameters for the TVM runner and then create
it using tvm.autotvm.LocalRunner(). The main parameters include
number, the number of different configurations that we will test, repeat,
how many measurements for each configuration, timeout, maximum
time on how long to run training code for each configuration. In my
case, number = 10, repeat = 1 and timeout = 10.

• Tuner: create a tvm.autotvm.tuner and specify its basic parameters,
such as early_stopping, which is the minimum number of trials to run
before a stopping condition can be applied, and trials, which is the
number of trials. In my pipeline I used the XGBTuner(), early_stopping
= 100 and trials = 1500.

We can now add the tuning process: TVM will try running many different
operator implementation variants to see which perform best. To do this it is
going to use Machine Learning and in particular the algorithm we specified
as tvm.autotvm.tuner.

3.4.2 TVMC
I built the optimization pipeline using TVMC Python, an high-level API for
TVM. In particular, TVMC is a tool that exposes TVM features such as auto-
tuning, compiling, profiling and execution of models through a command line
interface.

TVMC simplifies a lot the optimization flow: there is one method for each
required stage of the TVM workflow reported in Figure 2.1.

33

3 – Problem Statement and Solutions

Start

Model

tvmc.load()

tvmc.tune()

tvmc.compile()

tvmc.run()

Optimized model performances

Stop

Figure 3.3. The TVMC Python pipeline code’s flow diagram.

In Figure 3.3 you can see the code flow diagram of the TVMC Python
optimization pipeline.

The result of importing a model into TVM is a TVMCModel object, which
contains the pre-compiled graph definition and parameters that define what
the model does.

Compiling a TVMCModel produces a TVMCPackage, which contains the gen-
erated artifacts that allow the model to be run on the target hardware. This
is the optimized model: if you want to use it in production, you need to
export this TVMCPackage.

Finally running a TVMCPackage produces a TVMCResult object, which con-
tains the outputs of the model and the measured runtime. In this step you
can pass the hyperparameter inputs, which is a dictionary that maps input
names to Numpy values. If not provided, inputs will be generated using the
fill_mode argument, whose valid options are [zeros, ones, random] and

34

3.5 – The OpenVINO optimization pipeline

the default is random.

3.5 The OpenVINO optimization pipeline
Concerning OpenVINO, I built two different optimization pipelines: the first
one is very simple and exploits the standard functionalities of the framework,
while the second one is an extension of the previous one.

3.5.1 Model Optimizer
The Model Optimizer is a command-line tool that converts a model trained
with a supported framework (TensorFlow in this case) into an Intermediate
Representation (IR), which can be inferred with the OpenVINO runtime.
The IR is composed of the following files:

• .xml: a file describing the network topology.

• .bin: a file which contains the weights and biases binary data.

There are different parameters that can be passed when calling the Model
Optimizer. These are the most relevant:

• input_shape: to set up static shapes in case the model has dynamic
input.

• data_type: convert all floating-point weights to another data type.

• layout: to specify the layout or change it (it can be nhwc for example).

• mean_values, scale_values, scale: to embed the corresponding pre-
processing block for mean-value normalization of the input data and
optimize it.

• reverse_input_channels: to embed color channel format reversing.

• input: to cut the model from the beginning and start at a specific layer.

• output: to cut the model at the end and finish with a specific layer.

In the Results section I will refer to this pipeline as the Baseline.

35

3 – Problem Statement and Solutions

3.5.2 Post-training Optimization Tool
The Post-training Optimization Tool (POT) allowed me to do an additional
optimization using its two quantization methods: the Default Quantization
and the Accuracy-aware Quantization. In order to use the POT, I need an
IR model, a representative calibration dataset representing a use case sce-
nario and, in case of accuracy constraints, a validation dataset and accuracy
metrics. I implemented two different pipelines, one for each quantization
method. Their workflow can be described in four steps (the second one is for
Accuracy-aware Quantization only):

1. Prepare the dataset interface using openvino.tools.pot.DataLoader
base class. In particular it is necessary to override the __len__()
method, which is responsible of returning the dataset size, and the
__getitem__() method, which provides access by index, incorporates
model-specific pre-processing and returns (data, annotation). data
is the input that is passed to the model at inference as numpy.array and
annotation must be None for Default Quantization, while for Accuracy-
aware Quantization it must have the format expected by the Metric class
we will create.

2. Define the accuracy metric using openvino.tools.pot.Metric abstract
class (Accuracy-aware only). Override the properties value, which re-
turns the accuracy metric value for the last model output with format
Dict[str, numpy.array], avg_value, the average metric over collected
results as Dict[str, np.array], and higher_better, which should be
True if higher metric means better performance or False if not. Over-
ride the methods update(output, annotation), which computes and
updates the metric value using the last model output and annotation,
reset(), which collects the accuracy metric, and get_attributes(),
which returns the dictionary {metric_name: {attribute_name: value}}
and the required attributes are direction and type.

3. Select quantization parameters. The most important ones are target_device,
which indicates the hardware to quantize for, stat_subset_size, which
tells the size of data subset to calculate activations statistics used for
quantization (no less than 300), and maximal_drop (Accuracy-aware
only), which defines the maximum accuracy drop that has to be achieved
after the quantization.

4. Define and run the quantization process. The steps are the following:

36

3.6 – The TensorRT engine generation process

• load the model;
• initialize the engine for metric calculation and statistics collection;
• create a pipeline of compression algorithms and run it;
• (OPTIONAL) compress the model weights to quantized precision to

reduce the size of the final .bin file;
• save the model to the desired path.

In order to use the optimized models you need to save the IR format and
then run it using the OpenVINO runtime. The optional compression step can
be very useful in context where we need to operate on low resources devices
and we need to save memory space. In my experiments this functionality
allowed me to obtain files whose size was the 30% of the original one.

3.6 The TensorRT engine generation process
The goal is now to optimize our models to run inference on NVIDIA GPUs.
In particular, as explained in chapter 2, the target hardware is the Jetson
Xavier. In order to convert a model from Protobuf to TensorRT, these are
the steps I followed:

1. Convert the model to .onnx;

2. Generate a TensorRT engine using the trtexec command available in
the Jetson.

Let’s see these two steps in detail. Open Neural Network Exchange (ONNX)
[15] is an open ecosystem that empowers AI developers providing an open
source format for AI models. It defines an extensible computation graph
model, as well as definitions of built-in operators and standard data types.
In order to convert a model from Protobuf (.pb) to ONNX (.onnx) I have
used the tf2onnx [16] library.

The conversion can be done using the t2onnx.convert and passing the
following parameters: output, the name of the output file, graphdef, which
is the Protobuf of the model you want to convert, inputs and outputs,
that specify the TensorFlow model’s input/output names, opset, the set
of operators to use when mapping operations from TensorFlow to ONNX,
inputs-as-nchw. This last parameter is really important: in order to gen-
erate the TensorRT engine, you need to pass an ONNX model with nchw
format. Therefore if the original TensorFlow model is in the nhwc format,

37

3 – Problem Statement and Solutions

it is necessary to use the inputs-as-nchw parameter to adapt it. Also, the
opset parameter should be chosen carefully otherwise a loss of accuracy could
be induced. Concerning the second step, trtexec is a command-line wrap-
per tool to use TensorRT without having to develop your own application.
The trtexec tool has three main purposes:

• Benchmarking networks on random or user-provided input data;

• Generating serialized engines from models;

• Generating a serialized timing cache from the builder.

I exploited the first functionality with the goal of understanding which is
the new inference time of the model and also I have used the generated
engine both to integrate it in the original inference script and to use it in the
DeepStream pipeline described in the next section.

3.7 The DeepStream pipeline
The development of the DeepStream pipeline has been the most challenging
part of my thesis. The idea of AllRead was to create a prototype in order to
demonstrate we can reach next level speed in terms of processing time. To
reach this goal, I have decided to take the License Plate pipeline and try to
replicate it using DeepStream. The main difference between the original LP
pipeline and the DeepStream prototype is that the first one takes as input
one frame at a time, while the second one can process a stream directly.

3.7.1 The metadata
In order to understand how DeepStream works, I have to first explain the
metadata. Since DeepStream is built on GStreamer, the basic unit of data
transfer is the Gst Buffer. Each Gst Buffer has associated metadata and the
DeepStream SDK attaches the DeepStream metadata object, called NvDsBatchMeta.

More in detail, DeepStream uses an extensible standard structure for meta-
data: the basic metadata structure NvDsBatchMeta starts with batch level
metadata, while subsidiary metadata structures hold frame, object, classifier,
and label data. As you can see in Figure 3.4, the NvDsBatchMeta can contain
different NvDsFrameMeta structures that keep the information of all the dif-
ferent frames in the batch. Again the NvDsFrameMeta can include different
NvDsObjectMeta structures, responsible of transporting information about

38

3.7 – The DeepStream pipeline

Figure 3.4. DeepStream metadata overview.

detected objects in that frame (for example, the bounding boxes generated
by the LP detector). After detection, if we want to perform also classifi-
cation (for example applying the LP reader to the detected objects), the
NvDsObjectMeta can be linked to an NvDsClassifierMeta structure that
handles the result of classification on that specific detected object. Finally,
the NvDsFrameMeta has a list of NvDsDisplayMeta structures, containing
information about what to display.

3.7.2 The pipeline structure
Since DeepStream SDK is based on GStreamer framework, in order to build
a pipeline we can use both DeepStream GStreamer plugins and standard
GStreamer plugins. The most important object in GStreamer is the GstElement
object. An element is the basic building block for a media pipeline and it
needs to be encapsulated in a plugin in order to be used by GStreamer. How-
ever, a single plugin may contain the implementation of several elements, or
just a single one. Plugins are only loaded when their provided elements are

39

3 – Problem Statement and Solutions

requested. Elements can have one or two pads: the pads are the element’s in-
terface to the outside world. Data streams from one element’s source pad to
another element’s sink pad. Finally, a GstElement can have several proper-
ties which are implemented using standard GObject properties. Most plugins
provide additional properties to give more information about their configu-
ration or to configure the element. There are three types of elements:

• Source elements: they don’t accept data, they only generate data to be
used by a pipeline.

• Filter elements: they have both input and outputs pads. They operate
on data that they receive on their input (sink) pads, and they provide
data on their output (source) pads.

• Sink elements: they accept data but do not produce anything. They are
end points in a media pipeline.

Keeping these concepts in mind, we can now analyze how I implemented
the DeepStream License Plate pipeline. The prototype code I developed is
structured in this way:

1. Initialize GStreamer and create Pipeline element.

2. Create the different elements needed.

3. Define the properties of each element.

4. Add the elements to the pipeline and link them together.

5. Create an event loop and feed GStreamer bus messages to it.

Concerning this last step, a bus is a simple system that takes care of
forwarding messages from the streaming threads to an application in its own
thread context. Every pipeline contains a bus by default, so applications do
not need to create a bus or anything. The only thing applications should
do is to set a message handler on a bus, which is similar to a signal handler
to an object. When the mainloop is running, the bus will periodically be
checked for new messages, and the callback will be called when any message
is available.

In Figure 3.5, you can see the architecture of the DeepStream License
Plate pipeline. It takes as input a .H264 stream, it pre-processes the data, it
applies the LP detector first and then it applies the LP reader on the output
of the detector. It has the option of displaying the bounding boxes with

40

3.7 – The DeepStream pipeline

LP predictions, but I didn’t use it since the AllRead’s Jetson Xavier was in
headless mode. More details about the different plugins are available in the
next subsection.

Start

H264 stream

filesrc

h264parse

nvv4l2decoder

nvstreammux

nvinfer (primary)

nvinfer (secondary)

nvvideoconvert

nvdsosd

appsink

Stop

Figure 3.5. The DeepStream pipeline architecture.

41

3 – Problem Statement and Solutions

3.7.3 Plugins description
These are the plugins I have used to implement the DeepStream License
Plate pipeline:

• filesrc: source element responsible of reading data from a file in the
local file system. You need to specify that file setting the property
location.

• h264parse: it is used to parse H.264 streams.

• nvv4l2decoder: it leverages the hardware decoding engines on Jetson
by interfacing with libv4l2 plugins on that platform. The input is an
encoded bitstream and the plugin uses the NVDEC hardware engine
to decode that bitstream. Supported formats are H.264, H.265, JPEG
and MJPEG. The output is a Gst Buffer with decoded output in NV12
format.

• nvstreammux: it forms a batched buffer of batch-size frames from
multiple input sources and it pre-processes the input image.
Even if I didn’t use its first functionality since I had a single source, it is
interesting to quickly explain what it can do. The muxer uses a round-
robin algorithm to collect frames from the sources: it tries to collect an
average of (batch-size/num-source) frames per batch from each source
(if all sources are live and their frame rates are all the same). The
number varies for each source, though, depending on the sources’ frame
rates. Then it pushes the batch downstream when the batch is filled, or
the batch formation timeout batched-pushed-timeout is reached. The
timeout starts running when the first buffer for a new batch is collected.
Concerning the input pre-processing instead, the muxer outputs a single
resolution (i.e. all frames in the batch have the same resolution). This
resolution can be specified using the width and height properties. The
muxer scales all input frames to this resolution. The enable-padding
property can be set to true to preserve the input aspect ratio while
scaling by padding with black bands.

• nvinfer: it infers on input data using NVIDIA TensorRT. Also, it
handles part of the pre-processing: the pre-processing function is y =
net_scale_factor * (x - mean). The Gst-nvinfer plugin performs
transforms (format conversion and scaling), on the input frame based

42

3.7 – The DeepStream pipeline

on network requirements, and passes the transformed data to the low-
level library. The low-level library pre-processes the transformed frames
(performs normalization and mean subtraction) and produces final float
planar data which is passed to the TensorRT engine for inferencing.
The Gst-nvinfer plugin can work in three modes: in primary mode it
operates on full frames, in secondary mode it operates on objects added
in the meta by upstream components and in pre-processed tensor input
mode it operates on tensors attached by upstream components. When
operating in pre-processed tensor input mode, the pre-processing inside
Gst-nvinfer is completely skipped. For the LP pipeline implementation
we use nvinfer two times, one in primary mode to infer using the LP
detector and one in secondary mode to infer with the LP detector.
Downstream components receive a Gst Buffer with unmodified contents
plus the metadata created from the inference output of the Gst-nvinfer
plugin. To create the metadata from the inference output, you should set
the following properties: custom-lib-path, output-tensor-meta=1,
parse-classifier-func-name for the reader model and parse-bbox-func-name
for the detector.
In order to configure the plugin, you can set the property config-file-path,
passing the path to a configuration file where you define the other prop-
erties of the plugin. The main generic properties to define are the follow-
ing: process-mode, that is the mode (primary or secondary) in which
the element is to operate on, model-engine-file, which is the path-
name of the serialized model engine file, batch-size, it is the number
of frames or objects to be inferred together in a batch, gie-unique-id,
that is the unique ID to be assigned to the GIE (GPU Inference En-
gine) to enable the application and other elements to identify detected
bounding boxes and labels.
For secondary inference you need to define operate-on-gie-id, which is
the unique ID of the GIE on whose metadata (bounding boxes) this GIE
is to operate on, operate-on-class-ids, that indicates the class IDs of
the parent GIE on which this GIE is to operate on, input-object-min-width,
input-object-min-height, input-object-max-width and input-object-
max-height, used to define the minimum and maximum dimensions of
the bounding boxes the secondary GIE has to operate on.
To apply the pre-processing function, these properties must be set up:
net-scale-factor, that is the pixel normalization factor, offsets, that

43

3 – Problem Statement and Solutions

represents the array of mean values of color components to be subtracted
from each pixel. Consider that the array length must equal the number
of color components in the frame and that the plugin multiplies mean
values by net-scale-factor.
Finally to create metadata from the inference output, it is needed to
define the properties I have previously described.

• nvvideoconvert: it performs video color format conversion. It accepts
NVMM memory as well as RAW (memory allocated using calloc() or
malloc()), and provides NVMM or RAW memory at the output.

• nvdsosd: it draws bounding boxes, text, and region of interest (RoI)
polygons. The plugin takes as input an RGBA buffer with attached
metadata from the upstream component. It draws bounding boxes,
which may be shaded depending on the configuration (e.g. width, color,
and opacity) of a given bounding box. It also draws text and RoI poly-
gons at specified locations in the frame: the parameters are configurable
through metadata.

• appsink: sink plugin that supports many different methods for making
the application get a handle on the GStreamer data in a pipeline. Unlike
most GStreamer elements, Appsink provides external API functions.
Connecting the new_sample signal to a particular function, we can apply
custom actions every time a new sample is available.

3.7.4 The C++ parsing functions
The goal of a parsing function is to post-process the output of a model and
to attach the obtained objects to the metadata.

In the nvinfer plugin description we have seen that it is needed to define
the custom-lib-path property: it is the absolute pathname of a library
containing custom method implementations for custom models.

Inside this library I have implemented:

• extern "C" bool NvDsInferParseCustomDetector(std::vector<NvDsInfer
LayerInfo> const &outputLayersInfo, NvDsInferNetworkInfo const
&networkInfo, NvDsInferParseDetectionParams const &detectionParams,
std::vector<NvDsInferObjectDetectionInfo> $objectList): the de-
tector parsing function. This function accesses the detector’s output
layer through the outputLayersInfo parameter and updates the objectList

44

3.7 – The DeepStream pipeline

with the detected bounding boxes. The NvDsInferObjectDetectionInfo
structure is composed of ID of the class to which the object belongs, the
vertical and horizontal offsets of the bounding box shape for the object,
the width and height of the bounding box shape for the object and the
object detection confidence.

• extern "C" bool NvDsInferParseCustomReader(std::vector<NvDsInfer
LayerInfo> const &outputLayersInfo, NvDsInferNetworkInfo const
&networkInfo, float classifierThreshold, std::vector<NvDsInferAttribute>
&attrList, std::string &descString): the reader parsing function.
Also in this case it is possible to access the reader’s output layer through
the outputLayersInfo parameter. The goal is to populate the attrList
parameter with the LP readings of the different objects. The NvDsInferAttribute
structure holds information about one classified attribute and in partic-
ular it is composed of the index of the label, the output for the label, the
confidence level for the classified attribute and the string label for the
attribute. The classifierThreshold parameter can be used to filter
out predictions with confidence under a certain threshold.

After implementing this library, I need to set the parse-classifier-func-name
property for the reader model and the parse-bbox-func-name property for
the detector. These properties contain the name of the custom bounding
box/classifier output parsing function.

45

46

Chapter 4

Results

In this chapter I present the results obtained testing the different optimiza-
tion pipelines on the three models running on different hardware. More
importance has been given to the License Plate pipeline testing, since it is a
model currently used in production by the company. The Damage detector
optimization is only an additional experiment I did for this thesis.

The first section is about the metrics I have used to evaluate the optimized
models. Then there is one section for each optimization framework.

4.1 Metrics
In the experiments we need two different kind of metrics:

• Quality metrics: the goal is to first assess that the optimized model is not
reaching lower performances. In particular, the model after optimization
should achieve the same quality metrics results it was obtaining before
optimization. Depending on the different Computer Vision tasks, it is
necessary to use different metrics for each model: Intersection over Union
will be computed for the License Plate detector and for the Damage
detector, while Accuracy is the one to evaluate the License Plate reader.

• Speed metrics: these are needed to assess the impact of the different op-
timizations. For each model I compute some statistics of the inference
time, such as the mean and the standard deviation (usually in millisec-
onds ms). Obviously, if the optimization is working properly, the model
should be faster in terms of inference time. When computing speed met-
rics for different models from different frameworks it’s important to be
coherent and try to start the clocks at the same time: including or not

47

4 – Results

including a specific part of the process in the inference time computation
can change the result and mislead the final evaluation.

4.1.1 Intersection over Union
Intersection over Union (IoU) is a metric used in object detection to describe
the extent of overlap of two boxes. In particular, given two bounding boxes,
one with area A and the other one with area B,

IoU = A ∩ B

A ∪ B
.

We compute this considering the bounding box associated with the Ground
Truth (GT) and the one predicted by the model: the greater the region of
overlap, the greater the IoU. I have used this IoU in order to evaluate the
performance of the License Plate detector.

Concerning the Damage detector instead, I computed the IoU at pixel
level: it’s more or less the same, but we are not considering two bounding
boxes, but two more general sets of points. I have done this because both
the GT and the prediction are not boxes anymore, they are instead sets of
points. Another solution could have been to obtain, from both the GT and
the prediction, the enclosing bounding boxes and to use them to compute
the IoU. The enclosing bounding box is the smallest box containing all the
points of a set of points. Visualizing some of the enclosing bounding boxes,
I realized it was too much inaccurate for some damage shapes. Therefore I
decided to compute IoU using the sets of points directly.

Note that this metric is not as significant as accuracy for example: a small
change in the IoU can be also introduced by a small error in the annotation
process. During the annotation process there is a margin of error that we
should consider. Of course the higher the quality of the training set (in terms
of precision of the bounding boxes), the more reliable the IoU is.

4.1.2 Accuracy
Accuracy is the number of correctly predicted samples divided by the to-
tal number of samples. More formally, it is defined as the number of true
positives and true negatives divided by the number of true positives, true neg-
atives, false positives, and false negatives. I have used Accuracy to evaluate
the performance of the License Plate reader: when one single digit or letter in
the license plate is wrong, we will consider that reading as wrong. Therefore
we will consider as good readings only the entirely right predictions.

48

4.2 – Apache TVM

4.1.3 Inference time statistics

In order to compute the inference time of a model I mainly use two methods.
The first one is to run inference several times on the same image and calculate
some statistics of the inference time: mean, standard deviation, minimum
and maximum. To do this I have used the timeit module, in particular the
Timer class, which times execution speed of small code snippets. The second
way is applying the model on a set of samples: using the time library, I create
a clock just before running inference on a pre-processed image and another
one right after having generated the prediction. Then I keep summing the
differences between the two clocks (they correspond to the different inference
times) for all the samples in the set. At the end I divide by the number of
samples and I obtain the mean time per iteration. It is important to use the
same set of examples when comparing performances between two models.

When the goal is to compute the performance of the end-to-end License
Plate pipeline, which consists of applying the LP detector first and then the
LP reader, I use again the time module to create three different clocks. Two
clocks to time the inference time of the two models and one clock to compute
the total execution time: the last one involves not only the inference but also
all the other steps of the workflow, such as image pre-processing and post-
processing. As you will see later on in this chapter, DeepStream is the only
optimization that affects the entire end-to-end pipeline rather than inference
only.

4.2 Apache TVM
My first experiment was testing the TVM optimization pipeline on different
standard architectures. As you see in Table 4.1, the results seem promising
using the TVM runtime. This is a key point: on the TVM runtime, the
optimized model is always faster than the unoptimized one. When I optimize
a model that I currently have in production, I should compare its current
execution time with the one of the optimized model. When I optimized
both the LP detector and reader, I realized that the models running on the
TensorFlow runtime were at the end faster than the optimized ones running
on the TVM runtime. Therefore this optimization was not suitable for our
models: at least it didn’t lead to any improvement on my laptop Intel i5
CPU. In Table 4.2 you can see the performance of the License Plate detector
on the different runtimes.

49

4 – Results

Model Mean (ms) Median (ms) Max (ms) Min (ms) Std (ms)
Alexnet 112.45 106.54 260.65 92.38 19.04

Alexnet-OPT 57.16 55.73 64.90 53.25 3.95
Inception v2 158.72 157.24 172.35 156.39 4.57

Inception v2-OPT 118.02 117.50 120.50 117.27 1.12
Resnet 18 154.45 150.98 189.70 135.38 17.93

Resnet 18-OPT 98.44 98.39 99.03 98.31 0.20
Resnet 50 325.95 324.57 335.16 323.23 3.33

Resnet 50-OPT 227.69 227.54 230.20 226.96 0.88
Resnet 101 655.36 648.70 692.52 639.17 17.73

Resnet 101-OPT 467.00 464.49 488.38 459.98 8.49
Densenet 243.50 242.98 246.35 242.63 1.18

Densenet-OPT 170.37 170.33 170.63 170.23 0.12
Googlenet 181.84 174.87 250.09 138.03 33.47

Googlenet-OPT 97.06 96.67 100.69 96.43 1.21

Table 4.1. TVM optimization results on Intel i5 CPU. The model without
OPT is just loaded to the TVM runtime. When there is OPT in the name, it
means the model has been optimized and then tested on the TVM runtime.

Model Mean (ms) Std (ms)
TensorFlow 59.08 1.09

TVM - unoptimized 363.40 3.17
TVM - optimized 79.44 0.55

Table 4.2. LP detector inference performances on different runtimes. Both
the TVM models are run on the TVM runtime.

4.3 OpenVINO
OpenVINO (OV) was the object of several experiments. I have tested four
different pipelines:

• Baseline: it consists of applying the Model Optimizer without changing
the data type.

• FP16: it exploits the Model Optimizer functionality of changing data
type, coverting all the weights to Floating Point 16.

50

4.3 – OpenVINO

• Quantization: Post-training Optimization Tool (POT)’s Default Quan-
tization.

• Accuracy-aware Quantization: POT’s Accuracy-aware Quantization.

Model Mean (ms) Std (ms) IoU
TensorFlow 59.08 1.09 0.707561

Baseline 27.14 0.57 0.707561
FP16 26.98 0.56 0.707559

Quantization 22.07 0.54 0.690587
Accuracy-aware Quantization 22.47 1.06 0.701180

Table 4.3. LP detector inference performances on Intel Core i5 dual-core
using different optimization methods. Baseline is the model just converted
to the IR format and run on the OpenVINO runtime. FP16 is the model
converted to FP16 precision (instead of FP32 which is the original one).
Quantization is the model quantized without any constrain on Intersection
over Union loss. Finally, Accuracy-aware quantization is the quantized model
with a constrain on the loss of Intersection over Union.

Model Mean (ms) Std (ms) IoU
TensorFlow 42.47 1.91 0.707561

Baseline 13.56 0.81 0.707561
FP16 11.78 0.30 0.707559

Quantization 8.38 0.23 0.688902
Accuracy-aware quantization 10.83 0.42 0.718029

Table 4.4. LP detector inference performances on Intel Core i7 - 8650U using
different optimization methods. Baseline is the model just converted to the
IR format and run on the OpenVINO runtime. FP16 is the model converted
to FP16 precision (instead of FP32 which is the original one). Quantization
is the model quantized without any constrain on Intersection over Union loss.
Finally, Accuracy-aware quantization is the quantized model with a constrain
on the loss of Intersection over Union.

I tested these different pipelines on the License Plate detector running on
Intel Core i5 dual-core in Table 4.3 and on Intel Core i7 - 8650U in Table
4.4. As you can see, the FP16 optimization doesn’t improve a lot the perfor-
mances with respect to the Baseline. Quantization pipelines instead speed

51

4 – Results

up the model on both machines: in particular with Default Quantization we
reach the best performance in terms of speed metrics, but we lose some points
in Intersection over Union (IoU). Probably with Accuracy-aware Quantiza-
tion we obtain the best trade-off between inference time and IoU: few IoU
points can also be not so significant, but at the end the Default Quantiza-
tion is not so faster than the Accuracy-aware one. Therefore Accuracy-aware
Quantization produces an optimized LP detector which is 2.62x faster on i5
CPU and 3.92x faster on i7 CPU.

Model Mean (ms) Std (ms) LP ACC Country ACC
TensorFlow 79.30 2.90 0.9589 0.9866

Baseline 52.93 0.63 0.9589 0.9866
FP16 51.39 0.68 0.9589 0.9866

Quantization 48.33 0.64 0.8952 0.9733
Accuracy-aware quantization 47.95 0.89 0.9527 0.9866

Table 4.5. LP reader inference performances on Intel Core i5 dual-core using
different optimization methods. Baseline is the model just converted to the
IR format and run on the OpenVINO runtime. FP16 is the model converted
to FP16 precision (instead of FP32 which is the original one). Quantization
is the model quantized without any constrain on LP accuracy loss. Finally,
Accuracy-aware quantization is the quantized model with a constrain on the
loss of Intersection over Union.

Model Mean (ms) Std (ms) LP ACC Country ACC
TensorFlow 47.36 2.18 0.9589 0.9866

Baseline 24.73 0.55 0.9589 0.9866
FP16 23.95 0.36 0.9589 0.9866

Quantization 18.22 0.75 0.9044 0.9774
Accuracy-aware quantization 18.39 1.49 0.9527 0.9866

Table 4.6. LP reader inference performances on Intel Core i7 - 8650U using
different optimization methods. Baseline is the model just converted to the
IR format and run on the OpenVINO runtime. FP16 is the model converted
to FP16 precision (instead of FP32 which is the original one). Quantization
is the model quantized without any constrain on LP accuracy loss. Finally,
Accuracy-aware quantization is the quantized model with a constrain on the
loss of Intersection over Union.

Then I optimized the License Plate reader on both Intel Core i5 dual-core

52

4.3 – OpenVINO

in Table 4.5 and Intel Core i7 - 8650U in Table 4.6. The LP reader’s behaviour
is similar to the detector’s one: FP16 doesn’t improve so much with respect
to the Baseline and Default Quantization leads to the best performance in
terms of inference time on i7 CPU. On i5 CPU the best optimization pipeline
is for sure the Accuracy-aware Quantization, since it is the fastest and it is
limiting the loss of accuracy to a minimum quantity. Also on i7 CPU it is
pretty clear that the Accuracy-aware Quantization is the best optimization
pipeline: it is around 0.17 milliseconds slower but it has almost 5 accuracy
points more than the Default one. In this case we have seen the utility of
the constraint on accuracy loss.

Models Total time (s) Det. time (ms/it) Read. time (ms/it)
TensorFlow 73 63.2 79.1
OV Baseline 53 27 50.8

OV Acc.-aware Quant. 50 21.4 46.3

Table 4.7. LP pipeline end-to-end performances on Intel Core i5 in terms
of total time (seconds) to process 298 images, detection time (milliseconds
per iteration) and reading time (milliseconds per iteration). TensorFlow
means both the detector and reader are running on TensorFlow runtime,
OV Baseline means both models are just converted to the OpenVINO for-
mat and no further optimization is performed, while OV Acc.-aware Quant.
means the models are converted to OpenVINO format and Accuracy-aware
quantization is performed.

Finally I tested the different optimization pipeline applying them on the
end-to-end License Plate pipeline running on Intel Core i5 CPU. The results
are available in Table 4.7. The Accuracy-aware Quantization pipeline is 2.10x
faster than the TensorFlow one in terms of total inference time. On the other
hand, it is only 1.46x faster in terms of total processing time: this is due to
the fact that inference is only one of the steps of an end-to-end pipeline.

In order to conduct a more exhaustive evaluation of the different pipelines
and test also a model belonging to another CV task, I performed the same
experiment with the Damage detector model running on Intel i5. The results
can be seen in Table 4.8: the behaviour is more or less the same we experience
with the LP pipeline models.

The conclusion is that with OpenVINO we improve significantly the infer-
ence time of our models. The main limitation is that this framework is only
designed to operate on Intel products.

53

4 – Results

Model Mean (ms) Std (ms) IoU
TensorFlow 67.13 1.51 0.525833

Baseline 40.44 0.63 0.525833
FP16 40.27 0.61 0.525812

Quantization 35.89 0.59 0.511129
Accuracy-aware Quantization 36.21 0.73 0.525176

Table 4.8. Damage detector inference performances on Intel Core i5 dual–
core using different optimization methods. Baseline is the model just con-
verted to the IR format and run on the OpenVINO runtime. FP16 is the
model converted to FP16 precision (instead of FP32 which is the original
one). Quantization is the model quantized without any constrain on Inter-
section over Union loss. Finally, Accuracy-aware quantization is the quantized
model with a constrain on the loss of Intersection over Union.

4.4 TensorRT
In this section you can see the results of the comparison between the Open-
VINO optimization on CPUs and the TensorRT one on GPU. The CPUs
are once again the Intel Core i5 and the Intel Core i7, while the GPU is the
Jetson Xavier.

Model - Machine Mean execution time (ms)
TensorFlow - i5 59.08
OpenVINO - i5 22.47
TensorFlow - i7 42.47
OpenVINO - i7 10.83

TensorRT - Jetson 5.16

Table 4.9. LP detector performances comparison between TensorRT opti-
mization on NVIDIA Jetson Xavier and the previous ones.

The License Plate detector performances are available in Table 4.9 and
the LP reader ones can be seen in Table 4.10.

Also in this case, I have tested the Quality metrics of the optimized models
and they correspond to the ones obtained by the original models. The Ten-
sorRT detector IoU is the same as the TF model and the execution time on
Jetson is more than 11x faster than on i5. Also the reader improves runtime
speed without losing accuracy: the optimized model infers on Jetson more

54

4.5 – DeepStream

Model - Machine Mean execution time (ms)
TensorFlow - i5 79.3
OpenVINO - i5 47.95
TensorFlow - i7 47.36
OpenVINO - i7 18.39

TensorRT - Jetson 8.45

Table 4.10. LP reader performances comparison between TensorRT opti-
mization on NVIDIA Jetson Xavier and the previous ones.

than 9x faster than on i5. For OpenVINO we are considering accuracy-aware
quantized models: the TensorRT optimized models are more than 2x faster
than the OpenVINO optimized ones.

What emerges from these results is that it is definitely worth of investing
in an edge device like the Jetson Xavier if you are able to optimize your
models to run on it. At least you will reach a significant improvement of the
inference time speed.

4.5 DeepStream
Finally I present the performance that can be reached using DeepStream
optimization. It is important to remind that with DeepStream we optimize
the entire stream of data. TensorFlow and OpenVINO metrics are collected
on i5, while DeepStream ones are obtained running on Jetson Xavier. The
inference time is optimized using TensorRT.

You will see in the results tables that with OpenVINO we optimize infer-
ence making the models run up to 2.62x faster on i5. However the impact is
reduced if we take into consideration the total processing time: OpenVINO
optimizes only the inference time and it doesn’t influence the other steps
such as pre-processing and post-processing.

In Table 4.11 we can see the huge impact of DeepStream optimization on
the License Plate detector. The DeepStream single stage pipeline involving
the LP detector only is 8.34x faster than the TensorFlow one. And in this
case we are not talking about inference time only: we are referring to the total
processing time. Inference time is optimized exploiting TensorRT engines,
therefore we reach the performances I presented in the previous section.

The impact on the License Plate reader is similar, as you can see in Table
4.12. The DeepStream single stage pipeline involving the LP reader only is

55

4 – Results

Model Inference Time (ms/it) Processing Time (ms/it)
LP detector - TensorFlow 59.08 153.7
LP detector - OpenVINO 22.47 115.1
LP detector - DeepStream 5.16 18.42

Table 4.11. Performances of the DeepStream single stage pipeline involving
the LP detector only. Comparison with TensorFlow and OpenVINO ones.

8.10x faster than the TensorFlow one.

Model Inference Time (ms/it) Processing Time (ms/it)
LP reader - TensorFlow 79.3 91.66
LP reader - OpenVINO 47.95 67.16
LP reader - DeepStream 8.45 11.32

Table 4.12. Performances of the DeepStream single stage pipeline involving
the LP reader only. Comparison with TensorFlow and OpenVINO ones.

Finally I have tested the end-to-end License Plate pipeline performances
and they reflect the improvements we have seen for the single-stage ones: as
you can see in Table 4.13, with DeepStream the LP pipeline is 8.30x faster
than with TensorFlow.

Moreover you can observe that the total processing time is now of 32.15
milliseconds per iteration, about 31.10 frames per second: this means that
we can reach real-time inference. In this way it’s proven that it is worth
investing in an edge device such as the NVIDIA Jetson Xavier: with this
hardware and DeepStream, it is possible to reach significant improvements
in the total processing time.

Since we are using TensorRT for inference, there is no loss of accuracy.
Note that the Jetson Xavier is a good hardware among edge devices, but

NVIDIA offers several more powerful GPUs that can improve performances
even more: on premise and on cloud an higher speed can be reached.

56

4.5 – DeepStream

Model Processing Time (ms/it)
E2E - TensorFlow 266.85
E2E - OpenVINO 181.54
E2E - DeepStream 32.15

Table 4.13. Performance of the DeepStream end-to-end LP pipeline. Com-
parison with TensorFlow and OpenVINO ones.

57

58

Chapter 5

Conclusion

In this thesis I explored the following optimization frameworks: Apache
TVM, OpenVINO, TensorRT and DeepStream. For each of them, I im-
plemented and tested different optimization pipelines, exploiting their main
functionalities.

The first approach based on Apache TVM was promising: results were
good on standard architectures and the tool covers a wide range of hardware
we can optimize our models for. Anyway, the AllRead’s models performances
were quite bad when comparing the TVM runtime with the original TF one
on Intel i5. In particular the optimization of the LP pipeline’s models didn’t
lead to any improvement.

Since Intel CPUs are the most common hardware among AllRead’s clients,
OpenVINO was defined as the next optimization framework to try. This tool
definitely improved all the AllRead’s models I tested. The performances
of four different OpenVINO optimization pipelines were compared and the
License Plate detector reached the best results: the optimized LP detector
is 2.62x faster on Intel i5 and 3.92x faster on Intel i7 in terms of inference
time.

Edge devices are a solution that is getting more and more popular in
the last years and the GPUs offered by NVIDIA are valid hardware in this
context. Keeping this in mind we explored and tested TensorRT. The LP
pipeline models optimized with this framework and run on NVIDIA Jetson
Xavier are reaching the best performance in terms of inference time.

Inference is only one of the stages that compose an end-to-end streaming
analytics pipeline: therefore optimizing the inference time will affect the total
processing time only partially. A clear example is the OpenVINO one. With
this tool we optimized inference making the models run up to 2.62x faster

59

5 – Conclusion

on i5. However the impact is reduced if we take into consideration the total
processing time.

To tackle this aspect, we decided to use DeepStream to optimize the entire
stream of data while taking advantage of TensorRT inference. The results
obtained with this SDK are significant: we can reach real time inference on
Jetson Xavier, with a speed of 31.10 frames per second.

This thesis demonstrates that a hardware specific optimization of the neu-
ral networks that a company uses in production can be a game changer in the
industrial context. It allows to deploy models that are significantly faster,
keeping accuracy unchanged. This solution can be used both to improve the
product and to cut hardware costs.

60

Bibliography

[1] Grand View Research, Artificial Intelligence Market Size, Share & Trends
Analysis Report By Solution, By Technology (Deep Learning, Machine
Learning, Natural Language Processing, Machine Vision), By End Use,
By Region, And Segment Forecasts, 2022 - 2030, 2022

[2] Daniel Zhang et al., The AI Index 2022 Annual Report, 2022
[3] Grand View Research, Optical Character Recognition Market Size, Share

& Trends Analysis Report By Type (Software, Services), By Vertical
(BFSI, Transport & Logistics), By End Use (B2B, B2C), By Region,
And Segment Forecasts, 2022 - 2030, 2022

[4] Max Jaderberg et al., Reading Text in the Wild with Convolutional Neu-
ral Networks, 2014

[5] Lluìs Gòmez et al., Single Shot Scene Text Retrieval, 2018
[6] Marçal Rusiñol et al., Automatic Structured Text Reading for License

Plates and Utility Meters, 2019
[7] Martìn Abadi et al., TensorFlow: Large-Scale Machine Learning on Het-

erogeneous Distributed Systems, 2015
[8] T. Chen et al., TVM: An Automated End-to-End Optimizing Compiler

for Deep Learning, 2018
[9] J. Roesch et al., Relay: A New IR for Machine Learning Frameworks,

2018
[10] Intel, https://docs.openvino.ai/latest/index.html
[11] NVIDIA, DeepStream SDK, https://developer.nvidia.com/deepstream-

sdk
[12] A. G. Howard et al., MobileNets: Efficient Convolutional Neural Net-

works for Mobile Vision Applications, 2017
[13] Olaf Ronneberger, Philipp Fischer, Thomas Brox. U-Net: Convolutional

Networks for Biomedical Image Segmentation, 2015
[14] Kentaro Wada, https://github.com/wkentaro/labelme
[15] Open Neural Network Exchange (ONNX),

61

Bibliography

https://github.com/onnx/onnx
[16] tf2onnx - Convert TensorFlow, Keras, Tensorflow.js and Tflite models

to ONNX, https://github.com/onnx/tensorflow-onnx

62

	List of Tables
	List of Figures
	Introduction
	Artificial intelligence
	Computer Vision
	Optical Character Recognition
	Semantic Segmentation
	AllRead Machine Learning Technologies
	Neural Networks optimization

	Literature
	Computer Vision tasks
	OCR
	TensorFlow
	Apache TVM
	OpenVINO
	Quantization

	TensorRT
	DeepStream
	Hardwares and development environment

	Problem Statement and Solutions
	The goal
	The License Plate pipeline
	The Damage Detection demo
	The U-Net inspired architecture
	The training

	The Apache TVM optimization pipeline
	AutoTVM
	TVMC

	The OpenVINO optimization pipeline
	Model Optimizer
	Post-training Optimization Tool

	The TensorRT engine generation process
	The DeepStream pipeline
	The metadata
	The pipeline structure
	Plugins description
	The C++ parsing functions

	Results
	Metrics
	Intersection over Union
	Accuracy
	Inference time statistics

	Apache TVM
	OpenVINO
	TensorRT
	DeepStream

	Conclusion
	Bibliography

