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Abstract

Among all computer architectures, Application-Specific Instruction set Processors (ASIP)
are one of the solutions that can better host a custom application. Together with the
usage of Field-Programmable Gate Array (FPGA) chips, they provide the best tradeoff
regarding flexibility and performance, allowing for an efficient design chain.
Transport Triggered Architectures (TTAs) are ASIP-like solutions that can offer quite
exceptional features. The possibility of creating custom functional units to accelerate
specific tasks and the opportunity of having program instructions that can host several
move operations simultaneously lead to a highly optimized and parallel architecture.
Furthermore, the possibility of programming TTA cores through a high-level language like
C, using custom hardware operations, offers an additional level of freedom to the design,
providing an efficient codesign environment for present and future use cases.
This thesis proposes an implementation for an FPGA TTA processor architecture integrated
into a Networked Music Performance (NMP) application, an environment where musicians
can play together remotely in real-time: custom hardware reduces the typical latencies
given by processing, recording, and streaming of audio data.
Results show that the implemented processor can easily record, stream and exchange audio
data with the other devices composing the NMP environment, with enough space to add
more processing power, eventually. Latency contributions introduced by the architecture
are very low since the core can run at a clock speed of 100 MHz with optimized paths,
potentially leading to an improvement with respect to software-based solutions.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Networked Music Performance
Networked Music Performance (NMP) is a practice by which musicians connected remotely
from different and distant places can play together in a real-time environment, leveraging
ultralow-delay audio streaming over a telecommunication network.

With NMP, musical performers can overcome the physical distance among them, and
the possibilities of application are huge: let’s just think about a band whose members need
to rehearse but they live in different parts of the country or even of the world. They can
avoid being always present while still performing their activity. Even more ambitious tasks
can be accomplished with the help of this technology: live performances with members
spread at different locations can be supported, opening endless possibilities.

However, the implementation of this technology comes with many problems: trans-
mission and processing latencies of streamed audio have to be very low for the musicians
to be synchronized with each other and play virtually at the same time. Luckily, up to
some extent, delay is acceptable. Studies reveal that human hearing can tolerate latencies
in the range of 20-30 ms [1] while still being able to play simultaneously. This range
depends on many factors, such as musicians’ skills and practice in coping with delay, as
well as the musical context being considered. Let’s think about an orchestra: there is a
non-negligible distance between the members that leads to delays of up to 30-50 ms. We
clearly understand that this is not a problem and many times can even add some "flavor"
to the performance. Or even think about an organ player, who is naturally accustomed
to significant latencies, even on its own instrument, due to the physical distance between
console and pipes that is often present.

Nevertheless, while developing a solution for NMP, one should consider the worst-case
scenario and try to minimize as much as possible every source of delay.

Some NMP frameworks try to reduce latency by sending only MIDI information through
the network. This is due to the MIDI protocol being extremely lightweight and transmitting
only commands without carrying audio signals. At the receiving side, it is sufficient to read
these commands and send them to a MIDI-capable device, such as a synthesizer, which will
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Introduction

convert them into audio signals. However, it is clear that this is not a friendly solution for
acoustic instruments. More ambitious systems will try to stream audio samples through
the network. This time, the situation is much more complicated, since we need to send
packets with many audio samples and much more information (depending on the sample
rate as well). In addition, there is also the time required for eventual pre/post-processing
tasks.

Some of the most challenging aspects of NMP therefore are:

• Bandwidth: high bandwidth is needed to obtain high-quality streaming to make the
performers feel in a more comfortable environment. On the other hand, high quality
also means higher bitrate offered to the network, which may be more challenging to
accomodate in highly-congested scenarios.

• Synchronization: systems at both ends of the communication should ensure a
consistent audio stream. Unfortunately, the internet network is not well known for
its reliability. Different delays in packets’ arrival and the possibility to lose some of
them are problems one has to face. NMP systems at both ends must be able to solve
problems related to jitter and try to use the most reliable protocols available.

• Latency: it is the time delay that occurs between the moment a musician plays a
note and the moment in which this note arrives at the listener’s ear. It is probably
the most critical parameter for an NMP technology. Many sources contribute to the
overall delay, either from the users’ sides (sound acquisition, sampling, quantization,
processing, buffering of the audio board, audio reconstruction, etc.) or the network
side (packetization, transmission and propagation, depacketization, jitter buffering,
etc.).

1.2 Thesis objectives
This thesis focuses on the development of a TTA-based processor implemented on an
FPGA board that features a series of dedicated hardware functional units for hardware
acceleration of specific tasks. The goal is to have an ultra-low latency processor that can
stream and process audio samples at a "real-time" rate. Since an FPGA is used, the whole
hardware circuitry is completely reconfigurable. In addition to that, the processor should
be programmable in C/C++ language and should implement some custom operations to
control the function units. In this way, once the architecture is defined, it is sufficient to
modify some lines of code to change the overall behavior. And if the situation requires
some architectural changes, they can be made as well.

From a functional point of view, the processor should act as an accelerator between
one custom audio board [2] and a Raspberry Pi 4. The former features four input and two
output audio channels, as well as four input and two output MIDI channels. On the other
hand, RPi is used to transmit/receive audio packets to/from the internet network, and
pack and unpack them properly.

Communication with the audio board uses the I2S standard for the audio signals
and a UART-like communication at 31250Hz baud rate for MIDI messages exchange.
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Communication with Raspberry Pi is free but has to be pretty fast. So, using SPI peripheral
could be a solution, since it is a pretty fast serial protocol and since FPGA should be good
in dealing with such frequencies.

1.3 Thesis outline
This thesis is organized into 6 chapters. Being this one the introduction, chapter 2 shows
a digression on NMP history and the state of the art of NMP applications, while chapter
3 overviews the background concepts that are used in the hardware design. Chapter 4
describes the processor architecture that has been implemented, while Chapter 5 reports
simulations and measurements that were performed to validate the system. Chapter 6
contains conclusions on the thesis work and possible future work.
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Chapter 2

Related Work

This chapter explores some of the most relevant solutions that have been investigated in
time to achieve the results expected in the Networked Music Performance field. It also
provides some useful articles to compare the state of the art with the results which are
expected in this thesis work.

2.1 NMP history
One of the first experiments dealing with a long-distance type of performance can be
related to an experiment led by John Cage in 1951, many years before the diffusion of
the internet network. The title of the performance was "Imaginary Landscape No. 4 for
Twelve Radios" and it consisted in the usage of radio frequency transistors to be influenced
by each other and at the same time be used as musical instruments [3]. Even without
the real usage of a network, this can be considered one of the first steps toward remote
performances.
Anyway, the first real experiments with NMP came with the advent of computers and
in the late seventies, the League of Automatic Music Composers exploited the
connection of computers in a network to send messages to influence the playing of each
other [3].
Later, the same members were involved in a new project called The Hub. They started
to perform music adding gradually more distance. In 1987 they were able to play in
different streets in New York City [4]. In 1990, they started a MIDI-based version of The
Hub, adding a layer of flexibility in the mutual control of machines. In 1997, they were
asked to create a new performance called "Points of presence", connecting musicians
at Mills College, California Institute for the Arts with ones at Arizona State University.
Anyway, they found out that this was more difficult than previously expected, and that
the communication channel was still not ready for this type of musical performance [4][5].
However, it was only at the beginning of the 2000s that the internet started to become fast
enough to allow for high-quality audio links [4][6]. One of the first examples is provided by
the SoundWire group at Stanford University’s CCRMA (Center for Computer Research
in Music and Acoustics), which featured bidirectional uncompressed audio streaming[4].
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Related Work

At the same time, at McGill, the Ultra Video-Conferencing Research group started to
explore the same field with additional interest in video transmission. Since then, several
frameworks have been proposed, such as SoundJack [7] and DIAMOUSES [8]

2.2 Relevant articles
This section provides an overview of some relevant articles that can be related to this
thesis work.

Article [1] gives an extensive view of all the problems and technology solutions related
to Networked Music Performance, and in particular, in chapter V there is a focus on the
State-Of-Art NMP frameworks. In particular, a proposal for an FPGA-based solution "is
employed for the routing procedure of media packets (i.e. reception, copy and transmission)",
without any kernel intervention.

Article [9] analyzes the benefits and the drawbacks of using a Transport Triggered
Architecture processor as a soft core in FPGA design, by making a comparison with the
well-known VLIW architectures. The main reported drawback is the program size, with an
increase varying from 21% to 49% with respect to VLIW. However, employment of TTA
architecture led to a resource usage of 67% and an execution time improvement of 88%
with respect to VLIW.
These results show that TTA is a good candidate for flexible application-specific tasks
aimed at reducing execution time, as in the case analyzed in this thesis.

Article [10] presents the open-source TCE Codesign Environment for TTA processors
development. Close attention is paid to its workflow based on a retargetable high-level
language compiler, an instruction-set simulator and an RTL generator, which guarantee
a fast, flexible and relatively simple toolset for the development of application-specific
processors based on TTA architectures.

Article [11] focuses on the benefits of Transport Triggered Architectures when dealing
with hardware acceleration of specific tasks to speed up execution time. Traditional
architectures introduce overheads when working with hardware acceleration, due to the
transfer of data between the processor and the accelerator unit and the signalling required
to notify that the accelerator is ready to perform operations. The article explains how
TTA architectures reduce these problems by placing the hardware accelerators directly
on the processor datapath. In this way, they are seen as normal processor function
units, being visible to the programmer and being scheduled by the compiler as any other
operations, potentially hiding their latency with other available program operations. This
is particularly useful in the case study of this thesis since dedicated units are used for
external interface peripherals and others are likely to be added in the future to accelerate
specific tasks such as mixing and/or filtering of audio sources.
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Chapter 3

Background

This chapter describes general concepts about the employed processor architecture, the
FPGA technology and the serial communication protocols used for external communication.

3.1 TTA processors
Transport Triggered Architecture (TTA) is a processor design philosophy where the
processors’ internal datapaths are exposed in the instruction set. All operation parameter
reads and result writes are explicitly stated in the instruction set [12]. Datapath consists
of a certain number of functional units (FU), register files, and a series of buses to connect
them. Each possible user program is mapped to a discrete number of movements from a
trigger port to a destination port through the available buses. Instruction length is usually
very long and consists of a move slot for each datapath bus, leading to natural parallelism
in the processor.

TTA processors are particularly suitable for Application Specific Processors
(ASIP), where custom functional units are used in a modular way to accelerate par-
ticular types of tasks (audio-related ones in this case). A picture of a very simple TTA
architecture is shown in figure 3.1

3.2 FPGA
Since low latency is our major concern, it is known that dedicated hardware offers many
benefits in these terms: having paths and functional units that perform highly specialized
operations can lead to minimize the time delay. However, in many situations, this can be
too expensive and rigid and it’s been years since electronic instruments companies have
stopped to use dedicated ICs for their machines: one single bug in the design can bring to
the failure of the whole system, without the possibility of debugging.

FPGAs (Field Programmable Gate Array) try to address these problems, by being
relatively low cost and flexible hardware solutions: an FPGA can be reconfigured many
times with all the circuitry that we need, while still showing great advantages in terms of
speed.
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Figure 3.1: Example TTA architecture. Image taken from [13]

Going into detail, FPGAs are semiconductor devices that rely on a matrix of Pro-
grammable Logic Blocks (PLB) and reconfigurable connections, usually set up with the
help of Hardware Description Languages (HDL) such as VHDL and Verilog, being these
two of the most well-known ones worldwide. Memory is also another important building
block for FPGAs and it can be in the form of simple Flip-Flops (FF) or more sophisticated
memory blocks. In figure 3.2 it is possible to see a simplified representation of the internal
organization of an FPGA chip.

Figure 3.2: Simple representation of FPGA chip. Image taken from [14].

7



Background

FPGA design flow consists of four main steps:

• Design elaboration This is the phase in which the user designs the architecture
that has to be implemented in hardware. HDL languages can be used, as well as
schematics tools, or even a combination of the two.

• Synthesis During this phase, the design entry is analyzed and converted into an
electrical circuit composed of logic gates, flip-flops, interconnections, etc. A netlist is
generated as a result.

• Implementation In this phase, the generated netlist is mapped to the actual
resources present in the chosen FPGA chip, by a process called Place&Route, which
first maps components to the physical cells and then performs the routing of the
interconnections. This last process can be iterated many times to meet the timing
requirements of the system that has to be generated. In case timing constraints are
not respected, the design is not guaranteed to work properly.

• Programming During this last phase, a bitstream file is generated with all the
information necessary to configure the FPGA chip and make it work.

3.3 Serial communication protocols
3.3.1 MIDI
MIDI, which stands for Musical Instrument Digital Interface, is a standard used to define
communication protocol, interface, and physical connectors for the connection between
digital musical instruments [15]. In detail, the protocol specifies messages to send control
information among devices (no audio samples are exchanged). A message consists of 8-bit
words, which can be either state or data words. The communication is asynchronous and
is similar to a UART one, with a baud rate of 31250 Hz, a start bit (logic 0), and a stop
bit (logic 1) encapsulating the 8-bit message. Messages can be of various types, such as
NOTE-ON/NOTE-OFF, CC (usually used to read the value of a certain control, like
potentiometers, etc.), and so on. System messages and information about channels and
timing can be sent as well.

3.3.2 I2S
I2S (Inter-IC Sound) bus [16] is a synchronous serial communication protocol created to set
a standard for digital connection among audio devices, such as A/D and D/A converters,
DSP devices and so on.
It features a master/slave configuration and consists of at least three wires:

• Continuous Serial Clock (SCK) or Bit Clock (BCK), generated by the master.
It sets the rate at which bits are transmitted. Its frequency is the result of the sample
rate fs times number of bits per channel Nbch times number of channels Nchann.

fbck = fs · Nbch · Nchann

8
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• Word Select (WS) or Left-Right Clock (LRCLK): this signal specifies to which
channel the samples in the SD line belong. WS=0 for channel 1 (left), while WS=1
for channel 2 (right). Its period is equal to the audio sample rate.

• Serial Data (SD): line in which the serialized data is transmitted. Data format is
signed with MSB (Most Significant Bit) first.

In Left-Justified (LJ) configuration, timing is set as in figure 3.3. When LRCK switches,
SD starts simultaneously to transmit the MSB of the word of the selected channel. Then,
each bit is transmitted serially at the rate set by BCK (Bit Clock). Although MSB has a
fixed position, LSB position depends on the word length.

Figure 3.3: Left-Justified configuration timing.

3.3.3 SPI
SPI, standing for Serial Peripheral Interface, is a synchronous serial interface used primarily
in embedded electronics. SPI is designed for short-distance communication and supports
full-duplex communication in a standard master/slave architecture. It is composed of
four wires:

• SCK (Serial Clock): it is generated by the master and is the clock signal that
determines the rate of communication.

• MOSI (Master Output Slave Input): the line where the master outputs data.

• MISO (Master Input Slave Output): the line where the slave outputs data.

• CS (Chip Select): can be used either to select a specific slave device or to activate
the connection with the slave, if only one is present.

SPI supports four modes of operation, depending on the clock polarity (CPOL) and phase
(CPHA) concerning data. In figure 3.4 we can see an example of operation in mode 0.
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Figure 3.4: Timing diagram for SPI mode 0 (CPOL=CPHA=0). Image taken from [17].
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Chapter 4

System Description

This chapter describes the designed system from different points of view, either looking
at its interface with the external devices and its internal organization and analyzing in
detail the peripherals and the internal functional units used. The exploited hardware is
described, as well as the architectural choices that led to the final implementation. The
development choices of the firmware that runs inside the processor are also reported.

4.1 Hardware support
To implement the designed system, an Arty A7-100T development board by Digilent
(figure 4.1) is being used, which features an XC7A100TCSG324-1 FPGA chip, 15850
logic slices, 65200 flip-flops, 4860 Kbits of block RAM and a 100 MHz internal oscillator
clock. It also features some on-board utilities like 4 pushbuttons, 4 switches, 4 LEDs, 4
RGB LEDs, 4 GPIO Pmod connectors, and an Arduino Shield connector.

Figure 4.1: Arty A7-100T development board.

In addition, one custom audio board [2] is used to record and play audio data and to
exchange it with the FPGA through the I2S protocol. This board has a user interface
that features four XLR inputs with pre-amplifier stages, four MIDI inputs, two MIDI
outputs, and one headphone output (3.5mm jack). On the other hand, it is connected to

11



System Description

the FPGA board thanks to the two Pmod connectors J12 and J13 (12 pins each). These
pins are used to share a common ground and to exchange I2S audio, as well as MIDI data.
Internally, it features two PCM1803ADBR Analog to Digital Convertes that convert the
four analog input audio channels into I2S data. It also features one PCM1771PW Digital
to Analog Converter to convert digital I2S data into an audio signal for the headphones
output. Figure 4.2 shows its block diagram.

Figure 4.2: Block diagram of the custom audio board.

4.2 Block diagram of the FPGA system
The whole FPGA system consists of many layers, as shown in figure 4.3. The outer one,
called "TOP_PLL" is composed of two elements, one being the complete processor system
("TOP" layer) and the other one the PLL circuit, which accepts as an input the system
clock coming from the Arty A7-100T FPGA board and outputs the master clock mclk,
which is used by the internal I2S peripherals, as well as the ones on the external custom
audio board, to generate the proper timings. Moving one step forward, we find the "TOP"
layer, which is composed of the I2S clock generator, in charge of generating the bit
clocks bck and the left-right clocks lrck, the data memory, the instruction memory,
and the TTA core, consisting of all the necessary functional units (see section 4.4.2 for
detailed description). Data memory is implemented as a synchronous RAM block and
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contains results of operations and global variables, while instruction memory contains the
sequence of instructions required to be executed by software.

Figure 4.3: Block diagram of FPGA system.

4.3 Interface description
As introduced before, the FPGA design acts as an accelerator unit between a Raspberry
Pi 4 board and the custom audio board (see figure 4.4).
Connection with Raspberry Pi is performed by an SPI communication through another
Pmod connector. In particular, two peripherals are exploited, one for MIDI data and one
for audio data.
Figure 4.5 is the representation of the "TOP_PLL" layer described in section 4.2 with
all its input and output pins that connect it with the external environment. Note that
u_clk_wiz_0 is the PLL module.
Each of the interface pins is assigned to a physical pin on the FPGA chip, which in turn is
assigned to one of the Pmod connectors GPIO pins, as can be seen in table 4.1. In the
same table, the custom audio board pin is also shown, that is connected to the Arty A7
pin. Since the FPGA board features four equally spaced PMod female connectors (see
figure 4.7a) and the audio board features two male Pmod connectors(figure 4.7b) with the
same spacing, it is mandatory that two adjacent FPGA board connectors are assigned to
this communication. In addition, JB and JC connectors are labeled as High-speed by the
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Figure 4.4: External interface block diagram.

manufacturer, and we would like to assign at least one of the two to the SPI communication
(since it is the one requiring more bandwidth). Thus, connectors J12 and J13 of the audio
board are connected to connectors JA and JB (see figure 4.6), while JC is assigned to
high-activity pins of the SPI communication, like miso, mosi and sck.

4.3.1 I2S speed

Since the FPGA system should work as an I2S master device, it should provide the master
clock (mclk) and all the other timings to the external audio board. The speed of mclk can
be calculated as follows

fmclk = fsr ∗ A ∗ B = 11.289,6 MHz

where A = 4 is the mclk to blck ratio, B = 32 is the bck to lrck ratio, and fsr = 44,100 Hz
is the sampling rate.
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Figure 4.5: TOP_PLL layer schematic.

Figure 4.6: Connection between the FPGA (left) and the custom audio board (right).

4.3.2 SPI channel bandwidth requirements

According to the number of SPI channels that the SPI link needs to handle, the required
bandwidth (the speed of the serial clock) changes. Being the audio sample rate fixed to
fs = 44,100 kHz and the number of bits per sample bs = 16, each channel will require at
least

BWchann = fs · bs = 705,600 kbps
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(a) Arty A7 Pmod connectors (b) Audio board Pmod connectors

Figure 4.7: Pmod connectors.

If we want to stay safe and also consider some overhead, let’s fix the bandwidth per channel
to

BW ′
chann = 750,000 kbps

Hence, the required bandwidth can be easily calculated as

BW = nchann · BW ′

where nchann is the number of channels.

4.4 TTA core

4.4.1 Introduction to TCE

To design the processor, Tampere University’s TTA-based Co-design Environment
(TCE) [18][19] was exploited. This open-source tool is aimed at creating and programming
customized TTA processors, by providing a set of tools to co-design the RTL architecture
and the high-level software running in it.
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Table 4.1: Architectural pins assignments.

Arch. Pin Arty A7 pin Audio Board pin
clk_in1 E3

rstx C2
i_UART_Rx_Serial_0 C15 J13_5
i_UART_Rx_Serial_1 D15 J13_7
i_UART_Rx_Serial_2 E16 J13_9
i_UART_Rx_Serial_3 E15 J13_11
o_UART_Tx_Serial_0 G13 J12_11
o_UART_Tx_Serial_1 D13 J12_12

i_data_i2s_0 D12 J12_5
i_data_i2s_1 K16 J12_6
o_data_i2s_0 J15 J13_6

o_bck_ADC_0 A11 J12_7
o_bck_ADC_1 A18 J12_8

o_bck_DAC K15 J13_8
o_lrck_ADC_0 B11 J12_9
o_lrck_ADC_1 B18 J12_10

o_lrck_DAC J18 J13_10
o_mclk J17 J13_12

i_mosi_0 V10
i_mosi_1 T13
i_sck_0 U12
i_sck_1 U14

i_ss_n_0 V11
i_ss_n_1 U13
o_miso_0 V12
o_miso_1 V14

Figure 4.8: TCE design flow [18].

17



System Description

Figure 4.8 is a picture of the design flow of TCE: first of all the user creates an
architecture for the processor with all the buses, register files, and function units required.
Each function unit features a set of operations, that in first place are associated with a
high-level language file that describes their external behavior (OSAL), without taking into
account the internal architecture of the unit. In this way, the user can compile the custom
program targeting it to the designed machine and then simulate it, without even having to
implement it in hardware. After the simulation, the user can extract information about
the units and buses usage and can see which ones were exploited the most, and eventually
make some changes. Furthermore, it is possible to store the results of some variables, to
see if the program is working properly. If everything is coherent with what is expected, the
user can proceed to implement the real processor at the RTL level, by expoliting hardware
databases (HDB) which contain the HDL descriptions of all the function units and their
operations.
There are a wide variety of hardware units already present in TCE, each one performing
one or more operations. There are even more versions of the same unit, with different
output latencies, according to the specific use case. To perform all these tasks, TCE
environment provides a series of software tools, each one dedicated to a different part of
the design flow:

• ProDe: graphical tool to define FUs, registers, and interconnects of the TTA core.

• tcecc: to compile the user’s code.

• Proxim: tool to simulate the firmware running on the basis of the OSAL descriptions.

• OSEd: database editor for OSALs.

• HDBEditor: database editor for hardware implementation descriptions.

• ProGe: to generate the HDL description of the TTA core and its components.

4.4.2 Processor architecture
The internal architecture of the TCE-developed processor is shown in figure 4.9. The four
transport buses are 32-bits wide, as well as the data coming from/going to the units. Each
function unit is fully connected to any one of the transport buses: thus, the decisions on
how to route move operations among FUs are left to the TCE compiler, which will perform
it according to the uploaded firmware routine. Note that in the picture only one instance
of LED_DRIVER and one of SWITCH_DRIVER are shown for readability, while in
reality there are four instances for each one.

4.4.3 Function Units: ports and operations
Having a closer look at the function units in figure 4.9 one can recognize some of the
common fundamental building blocks of a processor, such as the Global Control Unit
(GCU), Arithmetic Logic Unit (ALU), Load-Store Unit (LSU), and two register
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Figure 4.9: Processor internal architecture.

files, one being 32x32 bits and the other a 16x1 vector used to store bool values. The
remaining units are custom ones [20] developed to deal with the dedicated serial peripherals.

Each unit features two types of ports, architectural and external.
Architectural ports are the ones that are connected to the transport buses of the TTA
processor. They are exposed to the firmware programmer by being arguments of the
software operations. At least one of these ports needs to be a triggering port, meaning
that it is used to initiate the operation. If an architecture port is an input port, it needs
also a related load port in the HDL file.
External ports are instead the ones that compose the external interface of the processor.
Furthermore, units also feature special ports for the clock, glock, and reset signals and one
opcode port to select among the available operations.

It is worth specifying that the serial peripheral units (I2S, UART and SPI) share a
similar internal structure: one control unit that contains two elements, one core and one
FIFO to buffer the data.
In the case of the receiver circuit, the core takes in input the serial data, ouputs the parallel
data and feeds it inside the FIFO. In the case of transmitter circuit, the FIFO takes in
input the parallel data, and outputs it to the input of the core, which in turn will output
the serial data. Note that each of the FIFOs have separate write and read indexes and that
the length of each one is 64. The architecture just described is summarized in figure 4.10.
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Figure 4.10: Transmitters and Receivers control unit structure. Parallel data is on n
bits.

Function Units descriptions Following is a brief description of all the custom units of
the processor. However, a better description of ports and operations for each of them is
provided in Appendix A.
Each FU is followed by an image of the relative RTL view: note that when the design is
simple enough to be printed in a readable format, the RTL view is showed also for one
further internal hierarchical level.

I2s_LJ_master_TX_x (fig. 4.11): I2S transmitter with Left-Justified format and
24-bits audio samples on 32-bit frames. Internally, it is composed of two elements: the
proper transmitter circuit and two FIFOs for data buffering (one for the left and one for
the right channel). It features four operations:

• PUSH_L, PUSH_R: to load one word in the respective FIFO, that will then
transmit it in order of arrival.

• STATUS: Used to output the internal state of FIFOs (Empty, Almost Empty, Almost
Full, Full).

• ZZZ: Unused.

Ports i_bck, i_bck_eoc, i_lrck, i_lrck_eoc, and i_mclk are used to receive I2S
clocks, eventually generated by a clock generator. i_data_tx_l and i_data_tx_r are
the architectural ports used to transfer parallel input words, while o_data is the serial
external output and o_status outputs internal FIFOs states.
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Figure 4.11: I2s transmitter.

I2s_LJ_master_RX_x (fig. 4.12): I2S receiver. Its behavior is symmetrical to that
of the I2S transmitter. It features four operations: POP_L, POP_R, STATUS, and
ZZZ.

Figure 4.12: I2s receiver.

UART_TX_x (fig. 4.13): UART transmitter at 31250 Hz baud rate, used to send 8-
bits MIDI messages, encapsulated between start bit and stop bit. It features two operations,
PUSH and STATUS. i_data_tx is the architectural port by which parallel data to be
transmitted enters, while o_UART_Tx_Serial is the serial external output port.
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Figure 4.13: UART transmitter.

UART_RX_x (fig. 4.14): UART receiver at 31250 Hz baud rate, used to receive
8-bits MIDI messages. Its behavior is symmetrical to that of the UART transmitter. It
features two operations, PULL and STATUS.

Figure 4.14: UART receiver.

SPI_slave_x (fig. 4.15): SPI transmitter/receiver. It features four operations, that
work similarly to the previous ones: POP, PUSH, POP_PUSH, and STATUS.
POP_PUSH merges the first two operations and allows to receive and send one SPI
frame in the same operation. Each frame is composed by 8 bits. In addition to the other
serial peripherals, it also features a 2 Flip-Flop synchronizer on MOSI, SS_n and SCK
inputs to avoid metastability problems.
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Figure 4.15: SPI slave.

LED_DRIVER_x (fig. 4.16): simple driver to control three led pins. It features only
one operation, SET_LED, which is used to set the state of the three external outputs
o_blue, o_green and o_red, according to the command sent to the i_color_set input
internal port.

Figure 4.16: LED driver.

SWITCH_DRIVER_x (fig. 4.17): simple driver circuit for reading the state of a
switch through external input port i_switch. According to it, the state is sent internally
to the processor through the o_status port and the only operation switch_status.
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Figure 4.17: Switch driver.

4.5 Firmware
Once the hardware architecture is defined, firmware is the most flexible part of the design,
in which we use the defined operations as C-style software functions. According to the
purpose of the device, the FPGA system should be able to collect and send data from/to
the custom audio board peripherals (I2S and UART, respectively for audio and MIDI
samples), and Raspberry Pi4 ones (SPI0 and SPI1).

Modes of operation In figure 4.18 it is possible to see a flow diagram of the firmware
routine [21].

Figure 4.18: Flow diagram of firmware routine.

There is support for two main modes of operation, depending on wheter the mixing of
audio samples is done at the RPi level or at the FPGA level (still to be developed). In
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the first case, FPGA acquires samples from I2S channels and sends them directly to SPI0.
RPi is then in charge of performing the mixing operations. Simultaneously, it also receives
already mixed samples from RPi and streams them to I2S output channels. On the other
hand, when working in mixing mode, the FPGA is supposed to both send already mixed
channels through SPI0 and receive a certain amount of channels on which to perform
mixing. This latter mode will lead to a better performance in terms of latency, but will
likely have limitations when dealing with a very large amount of audio sources, due to the
SPI channel bandwidth (as discussed in section 4.3.2).
There is also a set of configuration variables that can be modified at run-time using a
specific command. In detail, they are:

• ws: it represents the samples bitwidth (can be either 8, 16, 24 or 32 bits). Since SPI
frame is on 8 bits, if a sample is composed by more than 8 bits, it will be divided
into two or more consecutive frames. By default, ws is 16 bits.

• nCHF : it indicates the number of channels sent by FPGA in case of RPi-premixing.
It can be a value among 1, 2 or 4. By default, it is equal to 4.

• chann_mask: a bitmask that sets which inputs to activate in the FPGA-system.
Each bit is related to a channel (MSB for channel 3, down to LSB for channel 0).
If a channel has to be activated, its bit is set to logic 1. By default chann_mask
is equal to "1111", meaning that all the channels are active. The upper four bits of
chann_mask are unused and are set to 0. Example: cann_mask equal to "0000 1010"
means that only channels 3 and 1 are activated.

• sn: it is the number of samples inside each packet of audio data. By default, it is set
equal to 112.

• nCHRP I : it indicates the number of channels that are coming from RPi-SPI in the
case of mixing done by FPGA. By default, nCHRP I is equal to 4.

Since the FPGA-SPI peripheral works as a slave device, it will receive commands from
the RPi-SPI, which acts as the master. After starting, the FPGA system will enter an
infinite loop, in which first of all it will wait for a command.
A protocol has been developed to try to minimize as much as possible the amount of errors
which can occur along the SPI channel (eventually allowing the communication to run at
more "unstable" frequencies). It is based on an ACK/NACK mechanism and implements
redundancy of critical steps such as command issuing. This is of extreme importance,
since it is mandatory that the command sequence is clear to both ends even at high speed,
in particular in case of a configuration command: in fact, if a configuration command fails,
the whole communication could be compromised.

Each command is preceded by 5 SPI frames (1 byte each) which work as a preamble
(see table 4.2 for its value). By FPGA side, if it receives frames that have an Hamming
distance less or equal than two with respect to the preamble sequence, and if at least 3
out of the 5 bytes are equal to it, it understands that RPi wants to send a command.
Right after sending the preamble, RPi sends the 8 bit command on three consecutive SPI
frames and FPGA applies to it the same criteria as for the preamble, except that this
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time two out of three of the command frames have to be equal to one of the available
commands (figure 4.19 shows the time diagram for this command sequence). Then, RPi
receiver (transmitter can work indipendently) waits for an acknowledge (ACK) or an
not-acknowledge (NACK) coming from FPGA. Coming back to the FPGA side, after
receiving the preamble+command sequence, it has to send the ACK/NACK sequence. If
everything worked correctly, an ACK is sent, which consists in sending the same sequence
of preamble+command back to RPi (figure 4.20). If instead the command coming from
RPi was not clear, the NACK sequence is transmitted (figure 4.21), which consists in the
same 5 frames of preamble, but this time followed by the error sequence (see table 4.2
for its value).

Table 4.2: Preamble, error and commands sequences values in binary and decimal formats.

SEQUENCE VALUE
Preamble 10101010 (170)
Error 11110000 (240)
Command 1 00110011 (51)
Command 2 00011000 (24)

Following is the list of the commands RPi can use to control the SPI communication:

• Command 1:It is the command for changing the configuration variables. After
the preamble+command sequence, RPi sends 5 frames with the value of the first
variable, then 5 with the value of the second, and so on (figure 4.22). The order
must be the one shown in the list above and each single variable has to be set. If
FPGA sends a NACK for command 1, it is of extreme importance that RPi sends
back again the command and the configuration, otherwise the whole communication
will be compromised.

• Command 2: It is the command for starting the streaming of a packet of samples
in RPi-mix mode. After sending the preamble+command sequence, RPi starts to
send its interleaved audio samples, while waiting for an ACK/NACK. If a NACK
is received, no recovery of the lost packet is performed, and the next packet is
transmitted, if available. On the FPGA side, after the command reception, the
receiver immediately listens on the MOSI line for the samples. The transmitter will
instead send the ACK sequence and immediately start the transmission of the FPGA
packet of audio samples. Since the audio samples are grouped in packets (determined
by sn ·max(2, nCHF ), since RPi sends two channels even when nCHF = 1), for a total
of sn · max(2, nCHF ) · (ws/8) SPI frames, both FPGA and RPi will have internal
counters to count how many samples they received/transmitted. When the packet
transmission is concluded on both sides, RPi can send again command 2 if another
packet is needed to be streamed. A timing diagram for Command 2 is exhibited in
figure 4.23.

• Command 3 will be used in future works for the streaming of audio samples with
the mixing operation in FPGA.
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It is worth noting that the redundancy introduced in commands does not introduce a great
overhead term, in particular in case of Command 2: only 8 SPI frames are used at each
side, while the SPI packet to stream can be much longer (its length depends on ws, nCHF

and sn). If the default values are used, the overhead OH introduced by the redundancy is
only

OH = 8/(((ws/8) · nCHF · sn) + 8) = 8/(((16/8) · 4 · 112) + 8) ≃ 0.89%

Synchronicity In case FPGA is not able to understand a certain command, it is
important that it sends a packet of zeros to maintain the synchronicity: in fact, if the next
command by RPi is still command2, the user will eventually note a glitch given by the
previous silence, but the time coherence won’t be lost. Furthermore, if the next command
is command1, there will be a certain amount of time for the new settings to take place
and so we can assume that if a streaming starts again, a new "zero point" in time is being
set and so the synchronicity is still guaranteed.
The entire code is provided in Appendix B.
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Figure 4.19: MOSI starting a command

Figure 4.20: MISO ACK

Figure 4.21: MISO NACK

Figure 4.22: Command 1

Figure 4.23: Command 2 (ws = 8)

Figure 4.24: Timing diagrams for firmware SPI communication. Horizontal axis is time.
t_fr is the time of one SPI frame (8 bits), t_d is the time required by FPGA to process
RPi request before sending ACK and start audio streaming.
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Chapter 5

Results Validation

In this chapter, the system behaviour is analysed and evaluated. Many experiments are
performed, either in a simulation environment and in real-world scenarios, starting form
the single function units and ending to examine the whole FPGA system and its interface
with the external devices. The main metrics to be analysed are the results accuracy and
the speed performance in terms of latency.

5.1 Test of peripherals and function units

5.1.1 Description of firmware and testbench

A first and simplified version of the firmware (see appendix B for the code) has been
developed to perform a loopback test of the serial peripherals: when the board switch
is pressed, a LED light is turned on and each RX function unit is first required to pop
some data from its FIFOs. Then, the data is pushed back by the relative TX units. If
the switch is not pressed, LED turns off and TX units send zeros. Each instance of every
peripheral has been tested as well.

A functional simulation of this routine has been performed. The testbench simulates
external peripherals attached to the FPGA system. To do so, it sends to the inputs of the
RX units a series of "samples" and then performs a control on the TX outputs to see if
any data was corrupted during the process. The list of samples sent to the RX units used
to generate the following images is shown in table 5.1.
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Table 5.1: Testbench samples for the three peripherals.

I2S UART SPI
24’h800001 10’b0101010101 8’b10001000
24’h7FFFFE 10’b0110011001 8’b10101010
24’hAAAAAA 10’b0111100001 8’b11001100
24’h555555 10’b0010101011 8’b11110000
24’hCCCCCC 10’b0111001001 8’b00000000
24’h333333
24’hF0F0F0
24’h0F0F0F
24’hFF00FF

5.1.2 Behavioral simulation
By looking at figures 5.1 for I2S, 5.2 for UART and 5.3 for SPI, it is possible to verify the
simulation results. Note that some of the matching frames are highlighted with rectangles
of different colors to improve readability of results.

For I2S, we see that each sample generated by the testbench (data_RX_i2s signal)
is recognised by the receiver (in o_data_rx_l or o_data_rx_r depending on which
was the lrck value when the sample arrived) after the two clock lrck delays required.
Furthermore, the loopback tranmission in the serial data_Tx_i2s is correct as well and
each of the output samples is aligned with the respective lrck edge, as expected while using
the LJ format. We see that the the latency between one frame on the data_Rx_i2s line
and the relative loopback frame in the data_Tx_i2s is around 1.5 ms: this is mainly due
to the transmitter FIFO. In fact, if one analyzes the internal signals of the two TX and RX
I2S peripherals, the following situation will be seen: on the RX FIFO, the write and read
indexes would constantly be at the same value, but the write enable signal always arrives
before the read enable signal. Thus, the received frame is practically read immediately.
On the other hand, the processor gives as input to the TX circuit the value of the received
frame, but in this case the read enable signal arrives before the write enable signal. Hence,
in order to read the frame, the read index has to go through the whole FIFO until it
arrives back to the correct index.

We can also evaluate this latency mathematically: being the mclk period equal to

tmclk = 1/(11.289,6 MHz) = 88.577 ns

the ratio between master clock and bit clock MtoB = 4 and the length of a I2S frame
inside the processor equal to lfr = 32, the time of one I2S frame is

tfr = lfr · tmclk · MtoB = 11.338 µs

Then, since the write and read enable signals are asserted only once each lrck period
(tlrck = tfr ∗ 2) and since the length of the RX FIFO is lF IF O = 64, the resulting latency
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of the loopback frame is
tlat = lF IF O · tlrck ≃ 1.45 ms

It is clear that in this case the delay introduced by the processor is negligible. To reduce
t_lat one solution could be to use shorter FIFOs (reducing l_FIFO) or trying to modify
the TX in order to avoid reading before writing from the FIFO.

Figure 5.1: Simulation results for I2S peripheral. RX sequence above, TX sequence
below.

For UART/MIDI, we have a similar situation, with the serial commands coming from the
testbench in UART_Rx_Serial signal, the parallelized commands from the receiver in
o_data_rx[31:0] (with all the bits reversed) and the serial output from the transmitter
in UART_Tx_Serial. We notice that the samples experience a delay of about 21/22 ms,
which is due to the same consideration done for the I2S case. This might sound like a huge
latency term for the application, but some considerations have to be made. In fact, this is
the case with a FIFO of length 64. Decreasing this size leads to a lower delay term, down
to the ideal best case with a FIFO of length 1. In this case, the delay would be equal to

tlat = tbaud · nbits · lF IF O

Being tbaud the inverse of the baud rate (31250 Hz for MIDI), nbits = 10 the number of
bits in a frame (8 bits of data + start bit + stop bit) and lF IF O = 1 the length of the
FIFO, the following value is obtained

tlat = 0.32 ms

Indeed, this is a quite more acceptable value. So, it is possible to tune lF IF O length to
obtain the best trade-off between buffering and latency.

Finally, we consider SPI loopback (figure 5.3). Simulations were performed with a virtual
synchronous clock that spans from 1 MHz to 50 MHz (in figure the case with the latter
value), obtaining correct results in each case. As for the other peripherals the serial input
(mosi signal) is correctly received and parallelized by the RX circuit (o_data_rx[7:0]
and o_data_rx[31:0] signals). On the other hand, the processor takes the received values
and sends them to the TX circuit (i_data_tx[7:0] signal), which correctly outputs the
serial data (miso signal), aligned with the synchronous clock sck_sync_d. Looking at
the time, data on the mosi line takes around 11 µs (at fsck = 50 MHz and FIFO length
equal to 64) to be received and then transmitted back on the miso line.
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Figure 5.2: Simulation results for UART peripheral. RX sequence above, TX sequence
below.

Figure 5.3: Simulation results for SPI peripheral. RX sequence above, TX sequence
below.

5.1.3 Real-world Tests
Finally, the processor system was loaded inside the FPGA chip and some tests were
performed. First of all, the FPGA board was connected to the audio board through the JA
and JB connectors (as explained in chapter 4), to see if the UART/MIDI and I2s loopback
routines were performing correctly. Setup for the audio part can be seen in figure 5.4. As
expected, when pressing switch button 0, the streaming starts and the audio from the
XLR cable is sent to the FPGA board and then back to the headphones output. From the
user’s point of view, there is virtually negligible latency.

Then, to test the SPI peripheral, the FPGA board has been connected through GPIO
pins to an STM32 NUCLEO-F401RE board (see figure 5.5), which acts as a sample
generator and then checks the samples sent back by the processor, in a sort of echo test.
Succesful results were obtained up to an SCK frequency of 21 MHz. Anyway, we can
expect higher frequencies, since this test was performed in non-optimal conditions: in fact,
long jumper wires were exploited to connect the NUCLEO GPIO pins to the FPGA board
and the firmware simply used a polling strategy to collect and send SPI frames. A better
connection and a better software management will for sure lead to better performance in
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Figure 5.4: Setup for audio board and FPGA interfacing through I2S.

terms of achievable SPI clock speed.

Figure 5.5: NUCLEO STM32 F401RE microcontroller board.

5.1.4 Post-Implementation Simulation
After the implementation with Vivado tool has been performed, a functional simulation of
the system with the same testbench has been performed to guarantee that the processor is
still working correctly. The results show coherent results with respect to the behavioral
simulation.
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5.2 Final architecture implementation
In this section are analyzed the steps that led from TCE design to the FPGA implementation
of the processor described in chapter 4.

After describing the blocks and buses of the architecture with the help of the Processor
Designer tool (ProDe), the generated processor features an instruction word width equal
to 176 bits. Then, the final developed firmware (see appendix B) was compiled for the
generated architecture and loaded inside the Proxim simulator: this tool generates the
machine code that runs in the processor and can execute it step by step: the resulting
code has a total of 364 instructions. One interesting thing to be noticed is that even if the
code instructions are written in the traditional sequential way, the TCE compiler is able
to understand if two software operations can be run in parallel. This is the case depicted
in figure 5.6: notice in the highlighted lines how operations involving SPI and I2S TX/RX
peripherals are run in parallel in the same instruction thanks to the four buses.

Figure 5.6: Parallelization of FUs instructions.

Furthermore, the Proxim tools can give an estimation of the usage of each part of the
generated processor after a certain number of code cycles. Since many of the instructions
involving SPI and I2S peripherals are executed only when the command sequence is
received from Raspberry Pi through SPI, the firmware has been modified to always enter
the command2 condition (see section 4.5). The statistics show that all the four buses are
equally exploited, with an average utilization of 84% each. As expected, we see a perfect
balance between the I2S_TX_PUSH_L and I2S_TX_PUSH_R operations (50% usage of
I2S_LJ_master_TX_0 unit each). Hence, the same result holds also for I2S_RX_POP_L
and I2S_RX_POP_R for the two I2S RX peripherals and for SPI_POP_PUSH and
SPI_PUSH in the SPI_0 peripheral.

5.2.1 Synthesis and implementation
Once the Proxim analysis was concluded, synthesis and implementation were performed in
the Vivado software, with a target system clock speed of fclk = 100 MHz. For synthesis, the
directive PerformanceOptimized was exploited, since speed of the final system is the main
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objective. Retiming was also used in order to add a degree of freedom for the synthesizer
to reorganize the registers. Regarding the implementation, the Performance_Auto_1
strategy was used, with opt_design and phys_opt_design directives checked. After all
the steps, the processor was succesfully implemented, and all the timing constraints were
verified. In the following sections, various reports for the implemented design are presented.

Resources usage

In tab 5.2 we can see a summary of the resources usage after synthesis and after imple-
mentation steps, while in tab 5.3 we see a more detailed summary of only the latter one.
We see that since the amount of utilization of LUT with respect to the available amount is
quite low (about 20%), there is a large amount of LUTRAM exploited, since it is generally
faster than BRAM. In particular, if we look in detail inside the reports, we see that the
majority of LUTRAM is exploited in form of Distributed RAM, used to implement the
synchronous data memory (8192 out of 8378 LUTRAM blocks). It is also possible to see
that the only two BRAM blocks are used in the FIFOs of I2S receivers and that the only
three DSP blocks used are assigned to the ALU module.

Table 5.2: Resources usage after synthesis and after implementation steps.

LUT FF BRAM URAM DSP
Post-synthesis 13916 3881 2 0 3

Post-implementation 13545 3980 2 0 3

Table 5.3: Detailed resources usage after implementation step.

Resource Utilization Available Utilization %
LUT 13545 63400 21.36

LUTRAM 8378 19000 44.09
FF 3988 126800 3.15

BRAM 2 135 1.48
DSP 3 240 1.25
IO 42 210 20.00

MMCM 1 6 16.67

Power report

Even if power is not the major concern for this project, it is worth reporting the total
On-Chip Power consumption estimated by Vivado. By looking at figure 5.7, it is clear that
the major contribution to the total power consumption (equal to 0.326 W) is determined
by the 70% of the dynamic power. In particular, MMCM, which is the PLL used to create
the I2S master clock, is dissipating more than 50% of this power alone. The other three
major contributions are given by Clocks (system clock and I2S master clock), by signals
and by logic.
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Figure 5.7: Power consumption estimation.

Timing

After completing the implementation step, all the timing constraints are satisfied and
in tab. 5.4 it is possible to see a brief summary of the results regarding Setup, Hold
and Pulse Width constraints. One thing to be observed is that the worst slack and the
resource usage seem to be sensitive to variations in the firmware code: more complex is
the latter, lower is the slack and higher is the utilization of resources. Anyway, in case of
future improvements that will require a larger firmware (let’s think to implementation of
command 3 mentioned in section 4.5) it is predictable that more hardware support will be
added to the processor and so the slack trend will be mitigated. Also, more aggressive
Vivado synthesis and implementation strategies can be explored.

Table 5.4: Timing report values.

Setup Hold Pulse Width
Worst Slack 0.159ns 0.033ns 3.000ns
Total Slack 0 0 0

Failing endpoints 0 0 0
Total endpoints 90684 90684 12376

Below is a report showing the critical path and in figure 5.8 is an RTL view of it. It is
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shown that the critical path starts from the C input of the

rf_REG_FILE_0_wr_opc_reg_reg[1]_rep

register of the instruction fetch module, and ends in the D input of the

addr_reg_reg[1]_replica_1

register of the load-store unit. Analyzing the report, it is clear that the highest contribution
in the total delay (equal to 9.456ns) is given by the Net Delay (equal to 7.988), contributing
for a 84.48% over the total, while the logic delay contributes only for a 15.52%.

1 Timing Report
2
3 Slack (MET) : 0 . 1 5 9 ns ( r e q u i r e d time − a r r i v a l time )
4 Source : u_top/ c o r e / i nst_d ecod er /rf_REG_FILE_0_wr_opc_reg_reg [ 1 ] _rep/C
5 ( r i s i n g edge−t r i g g e r e d c e l l FDCE c l o c k e d by clk_in1 { r i se @ 0 . 0 0 0 ns f a l l @ 5

ñ→ . 0 0 0 ns p e r i o d =10.000 ns })
6 D e s t i n a t i o n : u_top/ c o r e / fu_lsu / addr_reg_reg [ 1 ] _replica_1 /D
7 ( r i s i n g edge−t r i g g e r e d c e l l FDCE c l o c k e d by clk_in1 { r i se @ 0 . 0 0 0 ns f a l l @ 5

ñ→ . 0 0 0 ns p e r i o d =10.000 ns })
8 Path Group : c lk_in1
9 Path Type : Setup (Max at Slow P r o c e s s Corner )

10 Requirement : 1 0 . 0 0 0 ns ( clk_in1 r ise@10 . 0 0 0 ns − clk_in1 r is e @ 0 . 0 0 0 ns )
11 Data Path Delay : 9 . 4 5 6 ns ( l o g i c 1 . 4 6 8 ns (15.525%) r o u t e 7 . 9 8 8 ns (84.475%) )
12 Logic L e v e l s : 6 (LUT4=1 LUT6=4 MUXF7=1)
13 Clock Path Skew : −0.292 ns (DCD − SCD + CPR)
14 D e s t i n a t i o n Clock Delay (DCD) : 4 . 9 2 3 ns = ( 1 4 . 9 2 3 − 1 0 . 0 0 0 )
15 Source Clock Delay (SCD) : 5 . 4 0 2 ns
16 Clock Pessimism Removal (CPR) : 0 . 1 8 7 ns
17 Clock Uncerta inty : 0 . 0 3 5 ns ( ( TSJ^2 + TIJ ^2) ^1/2 + DJ) / 2 + PE
18 Total System J i t t e r (TSJ) : 0 . 0 7 1 ns
19 Total Input J i t t e r ( TIJ ) : 0 . 0 0 0 ns
20 D i s c r e t e J i t t e r (DJ) : 0 . 0 0 0 ns
21 Phase Error (PE) : 0 . 0 0 0 ns
22
23 Locat ion Delay type I n c r ( ns ) Path ( ns ) N e t l i s t Resource ( s )
24 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−
25 ( c l o c k clk_in1 r i s e edge ) 0 . 0 0 0 0 . 0 0 0 r
26 E3 0 . 0 0 0 0 . 0 0 0 r clk_in1 ( IN )
27 net ( f o =0) 0 . 0 0 0 0 . 0 0 0 clk_in1
28 E3 IBUF ( Prop_ibuf_I_O ) 1 . 4 8 2 1 . 4 8 2 r clk_in1_IBUF_inst /O
29 net ( f o =1, routed ) 2 . 0 2 5 3 . 5 0 6 clk_in1_IBUF
30 BUFGCTRL_X0Y16 BUFG ( Prop_bufg_I_O ) 0 . 0 9 6 3 . 6 0 2 r clk_in1_IBUF_BUFG_inst/O
31 net ( f o =12180 , routed ) 1 . 7 9 9 5 . 4 0 2 u_top/ c o r e / in st_de code r /

ñ→ clk_in1
32 SLICE_X41Y20 FDCE r u_top/ c o r e / inst _dec oder /

ñ→ rf_REG_FILE_0_wr_opc_reg_reg [ 1 ] _rep/C
33 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−
34 SLICE_X41Y20 FDCE ( Prop_fdce_C_Q ) 0 . 4 5 6 5 . 8 5 8 r u_top/ c o r e / i nst_d ecod er /

ñ→ rf_REG_FILE_0_wr_opc_reg_reg [ 1 ] _rep/Q
35 net ( f o =128 , routed ) 1 . 6 8 4 7 . 5 4 2 u_top/ c o r e /rf_REG_FILE_0/

ñ→ TX_wr_data_temp_reg [ 0 ] _i_60_0
36 SLICE_X28Y33 LUT6 ( Prop_lut6_I2_O ) 0 . 1 2 4 7 . 6 6 6 r u_top/ c o r e /rf_REG_FILE_0/

ñ→ addr_reg [ 1 ] _i_70/O
37 net ( f o =1, routed ) 0 . 0 0 0 7 . 6 6 6 u_top/ c o r e /rf_REG_FILE_0/

ñ→ addr_reg [ 1 ] _i_70_n_0
38 SLICE_X28Y33 MUXF7 ( Prop_muxf7_I1_O ) 0 . 2 1 7 7 . 8 8 3 r u_top/ c o r e /rf_REG_FILE_0/

ñ→ addr_reg_reg [ 1 ] _i_58/O
39 net ( f o =1, routed ) 0 . 8 8 2 8 . 7 6 5 u_top/ c o r e /rf_REG_FILE_0/

ñ→ addr_reg_reg [ 1 ] _i_58_n_0
40 SLICE_X22Y33 LUT6 ( Prop_lut6_I5_O ) 0 . 2 9 9 9 . 0 6 4 r u_top/ c o r e /rf_REG_FILE_0/

ñ→ addr_reg [ 1 ] _i_31/O
41 net ( f o =4, routed ) 0 . 9 2 4 9 . 9 8 8 u_top/ c o r e / i nst_ deco der /

ñ→ rf_REG_FILE_0_r1data_wire [ 3 ]
42 SLICE_X13Y22 LUT4 ( Prop_lut4_I3_O ) 0 . 1 2 4 1 0 . 1 1 2 r u_top/ c o r e / i nst_ decod er /

ñ→ addr_reg [ 1 ] _i_13/O
43 net ( f o =1, routed ) 0 . 5 7 5 1 0 . 6 8 7 u_top/ c o r e / i nst_ decod er /

ñ→ addr_reg [ 1 ] _i_13_n_0
44 SLICE_X13Y22 LUT6 ( Prop_lut6_I3_O ) 0 . 1 2 4 1 0 . 8 1 1 r u_top/ c o r e / i nst_ decod er /

ñ→ addr_reg [ 1 ] _i_3/O
45 net ( f o =14 , routed ) 1 . 0 7 6 1 1 . 8 8 7 u_top/ c o r e / i nst_d ecod er /

ñ→ databus2 [ 3 ]
46 SLICE_X25Y24 LUT6 ( Prop_lut6_I1_O ) 0 . 1 2 4 1 2 . 0 1 1 r u_top/ c o r e / i nst_ decod er /

ñ→ addr_reg [ 1 ] _i_1/O
47 net ( f o =13 , routed ) 2 . 8 4 6 1 4 . 8 5 8 u_top/ c o r e / fu_lsu / addr_reg_reg

ñ→ [ 1 3 ] _12 [ 1 ]
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48 SLICE_X63Y79 FDCE r u_top/ c o r e / fu_lsu / addr_reg_reg
ñ→ [ 1 ] _replica_1 /D

49 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−−−−−−
50
51 ( c l o c k clk_in1 r i s e edge ) 1 0 . 0 0 0 1 0 . 0 0 0 r
52 E3 0 . 0 0 0 1 0 . 0 0 0 r clk_in1 ( IN )
53 net ( f o =0) 0 . 0 0 0 1 0 . 0 0 0 clk_in1
54 E3 IBUF ( Prop_ibuf_I_O ) 1 . 4 1 1 1 1 . 4 1 1 r clk_in1_IBUF_inst /O
55 net ( f o =1, routed ) 1 . 9 2 0 1 3 . 3 3 1 clk_in1_IBUF
56 BUFGCTRL_X0Y16 BUFG ( Prop_bufg_I_O ) 0 . 0 9 1 1 3 . 4 2 2 r clk_in1_IBUF_BUFG_inst/O
57 net ( f o =12180 , routed ) 1 . 5 0 0 1 4 . 9 2 3 u_top/ c o r e / fu_lsu / clk_in1
58 SLICE_X63Y79 FDCE r u_top/ c o r e / fu_lsu / addr_reg_reg

ñ→ [ 1 ] _replica_1 /C
59 c l o c k pessimism 0 . 1 8 7 1 5 . 1 1 0
60 SLICE_X63Y79 FDCE ( Setup_fdce_C_D ) −0.058 1 5 . 0 1 6 u_top/ c o r e / fu_lsu / addr_reg_reg

ñ→ [ 1 ] _replica_1
61 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
62 r e q u i r e d time 1 5 . 0 1 6
63 a r r i v a l time −14.858
64 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 s l a c k 0 . 1 5 9

Figure 5.8: RTL view of critical path.
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Conclusions

In this thesis, the base structure for an FPGA-based processor integrated inside a Networked
Music Performance application environment has been designed and analyzed. The need
to examine hardware solutions comes from the strict latency requirements that the study
case asks for, while the FPGA solution was chosen due to its great characteristic of being
easily reconfigurable. Among all architectures, the Transport Triggered (TTA) one has
been chosen due to its suitability for application-specific tasks and the possibility to easily
parallelize different operations. Hence, the processor has been developed using a set of
tools aimed at helping during the codesign of software and hardware. The final design
resulted in a four buses architecture featuring custom units that deal with the serial links
connecting the FPGA system to the external custom audio board and Raspberry Pi 4.

After that, some loopback tests were performed to verify the correct behavior of the
serial peripherals when integrated inside the processor, and the latency introduced by
these operations was calculated. Results show that latency is directly proportional to the
transmitter FIFO length and that this value can be adapted by taking into account a
trade-off between buffering and delay. Calculated latencies vary from microseconds in the
SPI case, to few milliseconds for I2S and UART.

Later, a communication protocol has been proposed for the interaction between the
FPGA system and Raspberry Pi 4 through the SPI bus. It is based on an ACK/NACK
mechanism and uses a preamble to identify commands. A certain amount of redundancy
is introduced in the commands to reduce as much as possible the possibility of errors in
the communication and guarantee the reliability of the link.

Finally, this protocol has been adapted and translated into code to implement audio
streaming with mixing performed at Raspberry Pi level. The resulting firmware has been
loaded inside the designed processor and finally implemented for the target FPGA chip at
a system clock rate of 100 MHz. The resulting architecture shows good utilization of the
available resources, in particular an even usage of the four transport buses and a good
parallelization of the tasks. All the timing requirements are satisfied and the resources
and power reports show that there is still a lot of free space for further improvement of
the designed processor.
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Future work Considering possible future developments, the first step should be focused
on the "real-world" testing of the developed interface protocol between Raspberry Pi and
the designed FPGA. Then, an incremental movement of tasks from Raspberry Pi firmware
to FPGA hardware should be started. In these terms, the first assignment could be to
port the mixing operation inside the processor, as introduced in section 4.5, by eventually
developing a dedicated functional unit. In this way, the latency of this task could benefit
from the speed enhancement introduced by a hardware-oriented solution. Finally, another
step to be developed could consist in adding some filtering units to the processor to perform
some equalization directly on the audio sources coming from the custom audio board.
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Function units ports and
operations

This appendix shows the input/output ports and the operations of the custom function
units used in the TTA processor. A brief description of each one is provided. Note that
architectural ports are written in bold.

Table A.1: fu_UART_TX_x

fu_UART_TX_x
INPUT PORTS Description OUTPUT PORTS Description
i_clk System clock o_UART_Tx_Serial Serial output
i_glck Global lock o_status[32] TX status
i_rstn Neg. reset
i_opcode[1:0] Opcode
i_opcode_ld Opcode load
i_opcode_dummy[32] Triggering Opcode
i_data_tx[32] Parallel input
i_data_tx_ld Par. IN load port

OPERATION Description
0. uart_tx_push Push data frame to be transmitted
1. uart_tx_status Return TX status
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Table A.2: fu_UART_RX_x

fu_UART_RX_x
INPUT PORTS Description OUTPUT PORTS Description
i_clk System clock o_data_rx[32] Parallel output port
i_glck Global lock o_status[32] RX Status
i_rstn Neg. reset
i_opcode[1:0] Opcode
i_opcode_ld Opcode load
i_opcode_dummy[32] Triggering Opcode
i_UART_Rx_Serial Serial input

OPERATION Description
0. uart_rx_pop Get one frame of received data

1. uart_rx_status Return RX status
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Table A.3: fu_I2S_LJ_TX_x

fu_I2S_LJ_TX_x
INPUT PORTS Description OUTPUT PORTS Description
i_clk System clock o_data Serial output
i_glck Global lock o_status[32] TX status
i_rstn Neg. reset
i_opcode[1:0] Opcode
i_opcode_ld Opcode load
i_opcode_dummy[32] Triggering Opcode
i_mclk I2S master clock
i_bck I2S bit clock
i_bck_eoc bit clock end of count
i_lrck I2S Left-Right clock
i_lrck_eoc LR clock end of count
i_data_tx_l[32] Parallel input left
i_data_tx_ld_l Par. IN left load
i_data_tx_r[32] Parallel input right
i_data_tx_ld_r Par. IN right load

OPERATION Description
0. i2s_tx_push_l Push left data frame to transmit
1. i2s_tx_push_r Push right data frame to transmit
2. i2s_tx_status Return TX status

3. i2s_tx_zzz Not assigned
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Table A.4: fu_I2S_LJ_RX_x

fu_I2S_LJ_RX_x
INPUT PORTS Description OUTPUT PORTS Description
i_clk System clock o_data_rx_l[32] Parallel left output
i_glck Global lock o_data_rx_r[32] Parallel right output
i_rstn Neg. reset o_status[32] RX status
i_opcode[1:0] Opcode
i_opcode_ld Opcode load
i_opcode_dummy[32] Triggering Opcode
i_mclk I2S master clock
i_bck I2S bit clock
i_bck_eoc bit clock end of count
i_lrck I2S Left-Right clock
i_lrck_eoc LR clock end of count
i_data Serial input

OPERATION Description
0. i2s_rx_pop_l Get one frame of left channel received data
1. i2s_rx_pop_r Get one frame of right channel received data
2. i2s_rx_status Return RX status

3. i2s_rx_zzz Not assigned
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Table A.5: fu_SPI_SLAVE_x

fu_SPI_SLAVE_x
INPUT PORTS Description OUTPUT PORTS Description
i_clk System clock o_data_rx[32] Parallel output
i_glck Global lock o_miso SPI MISO
i_rstn Neg. reset o_status[32] SPI status
i_opcode[1:0] Opcode
i_opcode_ld Opcode load
i_opcode_dummy[32] Triggering Opcode
i_ss_n Neg. slave select
i_sck SPI Synch. clock
i_mosi SPI MOSI
i_data_tx[32] Parallel input
i_data_tx_ld Par. IN load port

OPERATION Description
0. spi_pop Get one frame of received data

1. spi_pop_push Get frame of received data and push frame to be transmitted
2. spi_push Push one frame of data to be transmitted
3. spi_status Return SPI slave status

Table A.6: fu_LED_DRIVER_x

fu_LED_DRIVER_x
INPUT PORTS Description OUTPUT PORTS Description
i_clk System clock o_blue Blue LED output
i_glock Global lock o_green Green LED output
i_rstn Neg. reset o_red Red LED output
i_color_set[32] Set color
i_color_set_ld Set color load

OPERATION Description
0. set_led Turn ON/OFF LEDs
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Table A.7: fu_SWITCH_DRIVER_x

fu_SWITCH_DRIVER_x
INPUT PORTS Description OUTPUT PORTS Description
i_clk System clock o_status[32] Switch status
i_glock Global lock
i_rstn Neg. reset
i_opcode[1:0] Opcode
i_opcode_ld Opcode load
i_opcode_dummy[32] Triggering Opcode
i_switch Read switch status

OPERATION Description
0. switch_status Return switch status
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Appendix B

Code

B.1 Loop-back firmware

1 #i n c l u d e <s t d i o . h>
2 #i n c l u d e <s t d l i b . h>
3 #i n c l u d e <s t d i n t . h>
4 #i n c l u d e <s t a t u s _ f l a g s . h>
5
6 i n t main ( ) {
7 //UART v a r i a b l e s
8 i n t status_UART = AE_RX_UART | E_RX_UART;
9 i n t UART_data_TX = 0 ;

10 i n t UART_data_RX = 0 ;
11 i n t UART_data_0 = 0 ;
12 //SPI v a r i a b l e s
13 i n t status_SPI = AE_RX_SPI | E_RX_SPI;
14 i n t SPI_data_TX = 1 70 ;
15 i n t SPI_data_RX = 0 ;
16 i n t SPI_data_0 = 0 ;
17 // I2S v a r i a b l e s
18 i n t status_I2S = AE_RX_I2S | E_RX_I2S ;
19 i n t I2S_data_l_RX = 0 ;
20 i n t I2S_data_r_RX = 0 ;
21 i n t I2S_data_0_RX = 0 ;
22 i n t I2S_data_l_TX = 10066329;
23 i n t I2S_data_r_TX = 10066329;
24 i n t I2S_data_0_TX = 0 ;
25 i n t status_switch = 0 ;
26
27
28 _TCEFU_SET_LED( "LED_DRIVER_0" , 0) ; // Switch OFF a l l LEDS
29 whi le ( 1 ) {
30
31 _TCEFU_SWITCH_STATUS( "SWITCH_DRIVER_0" , 1 , s tatus_switch ) ;
32
33 i f ( s tatus_switch == 1) { //When we p r e s s the switch we s t a r t
34 // read ing audio from o u t s i d e whi le streaming
35
36 // I2S
37 _TCEFU_I2S_RX_POP_L( " I2S_LJ_master_RX_1 " ,0 , I2S_data_l_RX , status_I2S ) ;
38 I2S_data_l_TX = I2S_data_l_RX ; // L e f t channel
39 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " ,0 , I2S_data_l_TX , status_I2S ) ;
40
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41 _TCEFU_I2S_RX_POP_R( " I2S_LJ_master_RX_1 " ,1 , I2S_data_r_RX , status_I2S ) ;
42 I2S_data_r_TX = I2S_data_r_RX ; // Right channel
43 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " ,1 , I2S_data_r_TX , status_I2S ) ;
44
45 //UART
46 _TCEFU_UART_RX_POP( "UART_RX_0" , 0 , UART_data_RX, status_UART ) ;
47 UART_data_TX = UART_data_RX;
48 _TCEFU_UART_TX_PUSH( "UART_TX_0" , 0 , UART_data_TX, status_UART ) ;
49
50 //SPI
51 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" ,1 , SPI_data_TX , SPI_data_RX , status_SPI )

ñ→ ;
52 SPI_data_TX = SPI_data_RX ;
53
54 _TCEFU_SET_LED( "LED_DRIVER_0" , 1) ; //Turn ON LED
55
56 }
57 e l s e { //We always send something when switch not p r e s s e d ( z e r o s / s i l e n c e )
58
59 // I2S
60 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " ,0 , I2S_data_0_TX , status_I2S ) ;
61 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " ,1 , I2S_data_0_TX , status_I2S ) ;
62
63 //UART
64 _TCEFU_UART_TX_PUSH( "UART_TX_0" , 0 , UART_data_0, status_UART ) ;
65
66 //SPI
67 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" ,1 , SPI_data_0 , SPI_data_RX , status_SPI ) ;
68
69 _TCEFU_SET_LED( "LED_DRIVER_0" , 0) ; //Turn OFF LED
70 }
71
72 }
73
74 r e t u r n 0 ;
75 }

B.2 Final firmware (as described in section 4.5)

1 #i n c l u d e <s t d i o . h>
2 #i n c l u d e <s t d l i b . h>
3 #i n c l u d e <s t d i n t . h>
4 #i n c l u d e <s t a t u s _ f l a g s . h>
5
6 i n t hamming_dist ( i n t a , i n t b ) ;
7 void send_ack ( uint8_t command) ;
8 void send_error ( i n t s_n ) ;
9

10
11 i n t main ( ) {
12 i n t status_SPI_0 = AE_RX_SPI | E_RX_SPI;
13 i n t SPI_data_TX_0 = 0 ; // SPI data s e n t on SPI0
14 i n t SPI_data_RX_0 = 0 ; // SPI data r e c e i v e d on SPI0
15
16 i n t status_I2S_TX_0 = AE_RX_I2S | E_RX_I2S ;
17 i n t status_I2S_RX_0 = AE_RX_I2S | E_RX_I2S ;
18 i n t status_I2S_RX_1 = AE_RX_I2S | E_RX_I2S ;
19
20 uint8_t I2S_data_RXa = 0 ;
21 uint8_t I2S_data_RXb = 0 ;
22 uint8_t I2S_data_TXa = 0 ;
23 uint8_t I2S_data_TXb = 0 ;
24
25 i n t mode = 0 ; // S t o r e the value o f the c u r r e n t mode ( determined by the command r e c e i v e d )
26 uint8_t comm = 0 ; //Command r e c e i v e d
27
28 //CONFIGURATION VARIABLES
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29 uint8_t w_s = 1 6 ; // Samples b i t w i d t h
30 uint8_t n_chf = 4 ; //Number o f c h a n n e l s FPGA sends i n c a s e o f RPi−mixing
31 uint8_t chann_mask = 0x0F ; // BitMask to s e t the input c h a n n e l s i n FPGA. Put a 1 on the s e l e c t e d

ñ→ c h a n n e l s
32 // e s . : channel_mask = 0000 1010 ( only c h a n n e l s 1 and 3) ;
33 // channel_mask = 0000 0100 ( only channel 2) ;
34 uint8_t s_n = 1 1 2 ; // Samples i n a packet
35 uint8_t n_chpre = 4 ; //Number o f c h a n n e l s RPi sends i n c a s e o f FPGA−mixing
36 i n t config_num = 5 ; //Number o f c o n f i g v a r i a b l e s
37 uint8_t SPI_frames_per_sample = w_s / 8 ;
38
39 //SEQUENCES OF BITS
40 uint8_t preamble = 0 b10101010 ;
41 uint8_t e r r o r = 0 b11110000 ;
42 uint8_t command1 = 0 b00110011 ;
43 uint8_t command2 = 0 b00011000 ;
44
45 // Counters f o r m a j o r i t y check
46 uint8_t general_cnt = 0 ; //
47 uint8_t preamble_cnt = 0 ;
48 uint8_t command_cnt = 0 ;
49 uint8_t preamble_check = 0 ;
50 uint8_t command_check = 0 ;
51
52 _TCEFU_SET_LED( "LED_DRIVER_0" , 0) ; // Switch OFF a l l LEDS
53
54 w h i l e ( 1 ) { // Enter ing the main loop
55
56 //WAIT FOR A COMMAND
57 _TCEFU_SPI_POP( "SPI_SLAVE_0" , 0 , comm, status_SPI_0 ) ;
58 i f ( hamming_dist (comm, preamble ) <= 2) // Check f o r preamble
59 {
60 general_cnt++;
61 i f (comm == preamble )
62 {
63 preamble_cnt++;
64 }
65 }
66 e l s e
67 {
68 general_cnt = 0 ;
69 preamble_cnt = 0 ;
70 }
71
72 i f ( general_cnt == 5) {
73 i f ( preamble_cnt >= 3) // I f preamble d e t e c t e d
74 { //Wait f o r the command
75 preamble_check = 1 ;
76 general_cnt = 0 ;
77 preamble_cnt = 0 ;
78 w h i l e ( preamble_check == 1) {
79 _TCEFU_SPI_POP( "SPI_SLAVE_0" , 0 , comm, status_SPI_0 ) ;
80 i f ( ( hamming_dist (comm, command1 ) <= 2) | | ( hamming_dist (comm, command2 ) <= 2) )
81 {
82 general_cnt++;
83 i f (comm == command1)
84 {
85 command_cnt++;
86 mode = 1 ;
87 }
88 i f (comm == command2)
89 {
90 command_cnt++;
91 mode = 2 ;
92 }
93 }
94 e l s e {
95 general_cnt = 0 ;
96 preamble_cnt = 0 ;
97 preamble_check = 0 ;
98 send_error ( s_n ) ;
99 }

100
101 i f ( general_cnt == 3)
102 {
103 i f ( command_cnt >=2)
104 {
105 command_check = mode ;
106 }
107 e l s e
108 {
109 general_cnt = 0 ;
110 preamble_cnt = 0 ;
111 preamble_check = 0 ;
112 send_error ( s_n ) ;
113 }
114 }
115 }
116 }
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117 e l s e {
118 preamble_cnt = 0 ;
119 general_cnt = 0 ;
120 // send_error ( s_n ) ;
121 }
122 }
123
124 // A c t i v a t e only i n c a s e o f proxim t e s t i n g
125 //command_check = 2 ;
126
127 s w i t c h ( command_check )
128 {
129 c a s e 1 :
130 send_ack ( command_check ) ;
131 _TCEFU_SPI_POP( "SPI_SLAVE_0" , 0 , w_s , status_SPI_0 ) ;
132 _TCEFU_SPI_POP( "SPI_SLAVE_0" , 0 , n_chf , status_SPI_0 ) ;
133 _TCEFU_SPI_POP( "SPI_SLAVE_0" , 0 , chann_mask , status_SPI_0 ) ;
134 _TCEFU_SPI_POP( "SPI_SLAVE_0" , 0 , s_n , status_SPI_0 ) ;
135 _TCEFU_SPI_POP( "SPI_SLAVE_0" , 0 , n_chpre , status_SPI_0 ) ;
136 command_check = 0 ;
137 break ;
138
139 c a s e 2 : // Streaming with RPi−mix
140 _TCEFU_SET_LED( "LED_DRIVER_0" , 1) ; //LED s w i t c h e s ON to t e l l streaming i s working
141 send_ack ( command_check ) ;
142
143 f o r ( i n t i = 0 ; i<s_n ; i ++)
144 {
145 uint8_t SPI_byte [ 4 ] = {0 , 0 , 0 , 0 } ;
146 i f ( n_chf == 1)
147 {
148 i f ( chann_mask == 0 b00000001 ) //CH. 0
149 {
150 _TCEFU_I2S_RX_POP_L( " I2S_LJ_master_RX_0 " , 0 , I2S_data_RXa , status_I2S_RX_0 )

ñ→ ; // Record ch . 0
151 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
152 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 0 and send ch . 0
153 }
154 I2S_data_TXa = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8) + (

ñ→ SPI_byte [ 0 ] ) ;
155
156 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , I2S_data_TXa , status_I2S_TX_0

ñ→ ) ; // Play ch . 0
157 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
158 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 1 and send ch . 0
159 }
160 I2S_data_TXb = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8) + (

ñ→ SPI_byte [ 0 ] ) ;
161
162 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , I2S_data_TXb , status_I2S_TX_0

ñ→ ) ; // Play ch . 1
163 }
164 e l s e i f ( chann_mask == 0 b00000010 ) //CH. 1
165 {
166 _TCEFU_I2S_RX_POP_R( " I2S_LJ_master_RX_0 " , 0 , I2S_data_RXa , status_I2S_RX_0 )

ñ→ ; // Record ch . 1
167 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
168 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 0 and send ch . 1
169 }
170 I2S_data_TXa = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8) + (

ñ→ SPI_byte [ 0 ] ) ;
171 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , I2S_data_TXa , status_I2S_TX_0

ñ→ ) ; // Play ch . 0
172 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
173 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 1 and send ch . 1
174 }
175 I2S_data_TXb = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8) + (

ñ→ SPI_byte [ 0 ] ) ;
176 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , I2S_data_TXb , status_I2S_TX_0

ñ→ ) ; // Play ch . 1
177 }
178 e l s e i f ( chann_mask == 0 b00000100 ) //CH. 2
179 {
180 _TCEFU_I2S_RX_POP_L( " I2S_LJ_master_RX_1 " , 0 , I2S_data_RXa , status_I2S_RX_0 )

ñ→ ; // Record ch . 2
181 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
182 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 0 and send ch . 2
183 }
184 I2S_data_TXa = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8) + (

ñ→ SPI_byte [ 0 ] ) ;
185 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , I2S_data_TXa , status_I2S_TX_0

ñ→ ) ; // Play ch . 0
186 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
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187 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (
ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 1 and send ch . 2

188 }
189 I2S_data_TXb = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8) + (

ñ→ SPI_byte [ 0 ] ) ;
190 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , I2S_data_TXb , status_I2S_TX_0

ñ→ ) ; // Play ch . 1
191 }
192 e l s e i f ( chann_mask == 0 b00001000 ) //CH. 3
193 {
194 _TCEFU_I2S_RX_POP_R( " I2S_LJ_master_RX_1 " , 0 , I2S_data_RXa , status_I2S_RX_0 )

ñ→ ; // Record ch . 3
195 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
196 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 0 and send ch . 3
197 }
198 I2S_data_TXa = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8) + (

ñ→ SPI_byte [ 0 ] ) ;
199 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , I2S_data_TXa , status_I2S_TX_0

ñ→ ) ; // Play ch . 0
200 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
201 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 1 and send ch . 3
202 }
203 I2S_data_TXb = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8) + (

ñ→ SPI_byte [ 0 ] ) ;
204 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , I2S_data_TXb , status_I2S_TX_0

ñ→ ) ; // Play ch . 1
205 }
206
207 }
208 e l s e i f ( n_chf == 2)
209 {
210 i f ( chann_mask == 0 b00000011 ) // Channels 0 and 1
211 {
212 _TCEFU_I2S_RX_POP_L( " I2S_LJ_master_RX_0 " , 0 , I2S_data_RXa ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 0
213 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
214 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 0 and send ch . 0
215 }
216 I2S_data_TXa = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
217 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , I2S_data_TXa ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 0
218 _TCEFU_I2S_RX_POP_R( " I2S_LJ_master_RX_0 " , 1 , I2S_data_RXb ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 1
219 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
220 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXb >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 1 and send ch . 1
221 }
222 I2S_data_TXb = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
223 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , I2S_data_TXb ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 1
224 }
225 e l s e i f ( chann_mask == 0 b00001100 ) // Channels 2 and 3
226 {
227 _TCEFU_I2S_RX_POP_L( " I2S_LJ_master_RX_1 " , 0 , I2S_data_RXa ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 2
228 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
229 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 0 and send ch . 2
230 }
231 I2S_data_TXa = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
232 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , I2S_data_TXa ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 0
233 _TCEFU_I2S_RX_POP_R( " I2S_LJ_master_RX_1 " , 1 , I2S_data_RXb ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 3
234 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
235 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXb >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 1 and send ch . 3
236 }
237 I2S_data_TXb = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
238 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , I2S_data_TXb ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 1
239 }
240 e l s e i f ( chann_mask == 0 b00001010 ) // Channels 1 and 3
241 {
242 _TCEFU_I2S_RX_POP_R( " I2S_LJ_master_RX_0 " , 0 , I2S_data_RXa ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 1
243 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
244 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 0 and send ch . 1
245 }
246 I2S_data_TXa = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
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247 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , I2S_data_TXa ,
ñ→ status_I2S_TX_0 ) ; // Play ch . 0

248 _TCEFU_I2S_RX_POP_R( " I2S_LJ_master_RX_1 " , 1 , I2S_data_RXb ,
ñ→ status_I2S_RX_0 ) ; // Record ch . 3

249 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
250 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXb >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 1 and send ch . 3
251 }
252 I2S_data_TXb = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
253 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , I2S_data_TXb ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 1
254 }
255 e l s e i f ( chann_mask == 0 b00000101 ) // Channels 0 and 2
256 {
257 _TCEFU_I2S_RX_POP_L( " I2S_LJ_master_RX_0 " , 0 , I2S_data_RXa ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 0
258 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
259 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 0 and send ch . 0
260 }
261 I2S_data_TXa = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
262 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , I2S_data_TXa ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 0
263 _TCEFU_I2S_RX_POP_L( " I2S_LJ_master_RX_1 " , 1 , I2S_data_RXb ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 2
264 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
265 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXb >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 1 and send ch . 2
266 }
267 I2S_data_TXb = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
268 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , I2S_data_TXb ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 1
269 }
270 e l s e i f ( chann_mask == 0 b00001001 ) // Channels 0 and 3
271 {
272 _TCEFU_I2S_RX_POP_L( " I2S_LJ_master_RX_0 " , 0 , I2S_data_RXa ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 0
273 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
274 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 0 and send ch . 0
275 }
276 I2S_data_TXa = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
277 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , I2S_data_TXa ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 0
278 _TCEFU_I2S_RX_POP_R( " I2S_LJ_master_RX_1 " , 1 , I2S_data_RXb ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 1
279 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
280 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXb >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 1 and send ch . 1
281 }
282 I2S_data_TXb = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
283 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , I2S_data_TXb ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 1
284 }
285 e l s e i f ( chann_mask == 0 b00000110 ) // Channels 1 and 2
286 {
287 _TCEFU_I2S_RX_POP_R( " I2S_LJ_master_RX_0 " , 0 , I2S_data_RXa ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 0
288 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
289 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 0 and send ch . 0
290 }
291 I2S_data_TXa = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
292 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , I2S_data_TXa ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 0
293 _TCEFU_I2S_RX_POP_L( " I2S_LJ_master_RX_1 " , 1 , I2S_data_RXb ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 1
294 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
295 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXb >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 1 and send ch . 1
296 }
297 I2S_data_TXb = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
298 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , I2S_data_TXb ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 1
299 }
300 }
301 e l s e i f ( n_chf == 4)
302 {
303 _TCEFU_I2S_RX_POP_L( " I2S_LJ_master_RX_0 " , 0 , I2S_data_RXa ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 0
304 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
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305 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXa >> ( 8 ∗ (
ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 0 and send ch . 0

306 }
307 I2S_data_TXa = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
308 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , I2S_data_TXa ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 0
309 _TCEFU_I2S_RX_POP_R( " I2S_LJ_master_RX_0 " , 1 , I2S_data_RXb ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 1
310 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
311 _TCEFU_SPI_POP_PUSH( "SPI_SLAVE_0" , 1 , I2S_data_RXb >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , SPI_byte [ i ] , status_SPI_0 ) ; // Receive ch . 1 and send ch . 1
312 }
313 I2S_data_TXb = ( SPI_byte [3] < <24) + ( SPI_byte [2] < <16) + ( SPI_byte [1] < <8)

ñ→ + ( SPI_byte [ 0 ] ) ;
314 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , I2S_data_TXb ,

ñ→ status_I2S_TX_0 ) ; // Play ch . 1
315 _TCEFU_I2S_RX_POP_L( " I2S_LJ_master_RX_1 " , 0 , I2S_data_RXa ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 2
316 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
317 _TCEFU_SPI_PUSH( "SPI_SLAVE_0" , 2 , I2S_data_RXa >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , status_SPI_0 ) ; // Send ch . 2
318 }
319 _TCEFU_I2S_RX_POP_R( " I2S_LJ_master_RX_1 " , 1 , I2S_data_RXb ,

ñ→ status_I2S_RX_0 ) ; // Record ch . 3
320 f o r ( i n t i = 0 ; i < SPI_frames_per_sample ; i ++){
321 _TCEFU_SPI_PUSH( "SPI_SLAVE_0" , 2 , I2S_data_RXb >> ( 8 ∗ (

ñ→ SPI_frames_per_sample−1−i ) ) , status_SPI_0 ) ; // Send ch . 3
322 }
323 }
324 }
325
326 _TCEFU_SET_LED( "LED_DRIVER_0" , 0) ; //LED s w i t c h e s OFF to t e l l streaming i s c l o s e d
327 command_check = 0 ;
328 break ;
329
330 c a s e 3 : // Streaming with FPGA−mix
331 break ;
332 d e f a u l t :
333 break ;
334 }
335
336 }
337 r e t u r n 0 ;
338 }
339
340 //FUNCTIONS
341
342 i n t hamming_dist ( i n t a , i n t b ) // Simple f u n c t i o n s that c a l c u l a t e s Hamming d i s t a n c e between two numbers
343 // ( C r e d i t s to h t t p s : / /www. g e e k s f o r g e e k s . org /hamming−d i s t a n c e −between−

ñ→ two−i n t e g e r s /)
344 {
345 i n t c = a ^ b ;
346 i n t cnt = 0 ;
347
348 w h i l e ( c > 0) {
349 cnt += c & 1 ;
350 c >>= 1 ;
351 }
352 r e t u r n cnt ;
353 }
354
355 void send_ack ( uint8_t command)
356 {
357 uint8_t preamble = 0 b10101010 ;
358 i n t status_SPI_0 ;
359 f o r ( i n t i = 0 ; i < 5 ; i ++) // Send 5 Bytes o f preamble
360 {
361 _TCEFU_SPI_PUSH( "SPI_SLAVE_0" , 2 , preamble , status_SPI_0 ) ;
362 }
363 f o r ( i n t i = 0 ; i < 3 ; i ++) // Send 3 Bytes o f e r r o r sequence
364 {
365 _TCEFU_SPI_PUSH( "SPI_SLAVE_0" , 2 , command , status_SPI_0 ) ;
366 }
367 }
368
369 void send_error ( i n t s_n ) // This f u n c t i o n sends an e r r o r to RPi and contemporarly
370 { // r e p r o d u c e s a packet o f z e r o s to maintain s y n c h r o n i c i t y
371 uint8_t preamble = 0 b10101010 ;
372 uint8_t e r r o r = 0 b11110000 ;
373 i n t status_SPI_0 ;
374 i n t status_I2S_TX_0 ;
375 f o r ( i n t i = 0 ; i < 5 ; i ++) // Send 5 Bytes o f preamble
376 {
377 _TCEFU_SPI_PUSH( "SPI_SLAVE_0" , 2 , preamble , status_SPI_0 ) ;
378 }
379 f o r ( i n t i = 0 ; i < 3 ; i ++) // Send 3 Bytes o f e r r o r sequence
380 {
381 _TCEFU_SPI_PUSH( "SPI_SLAVE_0" , 2 , e r r o r , status_SPI_0 ) ;
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382 }
383 _TCEFU_SPI_PUSH( "SPI_SLAVE_0" , 2 , preamble , status_SPI_0 ) ;
384
385 i n t SPI_frames = 2∗s_n ;
386 f o r ( i n t i = 0 ; i < ( SPI_frames ) ; i ++){ //PLAY PACKET OF ZEROS
387 _TCEFU_I2S_TX_PUSH_L( " I2S_LJ_master_TX_0 " , 0 , 0 , status_I2S_TX_0 ) ;
388 _TCEFU_I2S_TX_PUSH_R( " I2S_LJ_master_TX_0 " , 1 , 0 , status_I2S_TX_0 ) ;
389 }
390
391 }
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