
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Automatic differential cryptanalysis of
the SPECK block cipher with Monte

Carlo Tree Search

Supervisors: Candidate:
Prof. BASILE Cataldo PROTOPAPA Matteo
Prof. BAZZANELLA Danilo

Academic Year 2021/2022





Abstract

Nowadays, cryptography is one of the main building blocks in computer sci-
ence, as it contributes to digital data security in the broadest sense, both when
stored and when exchanged. Block ciphers play an essential role in this sce-
nario, as they represent some of the functions used to achieve cryptographic
security. Differential cryptanalysis is a powerful tool to assess the security
and robustness of ciphers and hash functions. This technique usually takes
the form of a chosen plaintext attack and aims to analyse the multiple rounds
in a block cipher. In practice, its purpose is to find sequences of perturba-
tions, called differences, from the input of the cipher and up to the largest
possible number of rounds so that the total propagation probability is as high
as possible. When a good sequence (also called differential characteristic) is
found, the attack is considered successful. In some cases, it can allow a key
recovery attack, in which the secret key used with the cipher is discovered.

The work described in this Thesis regards the automation of the search
for differential characteristics in block ciphers. The case study focuses on the
SPECK family of ciphers. The objective is to ease the security assessment
of block ciphers by developing a tool capable of finding good sequences of
differences in an automated way, with minimal knowledge of the target cipher
and no human interaction. The tool is based on a Monte-Carlo Tree Search
(MCTS) variant called Single Player MCTS. Monte-Carlo Tree Search is a
well-known algorithm in the context of board games such as Chess of Go
because of its strength when the number of solutions is so high that a complete
search is unfeasible, as is the case in cryptanalysis, but it is almost unexplored
in this field.

The research started with a survey of the works in the literature, which
led to the discovery of precious heuristics that improve the performance of
the MCTS algorithm. Then, the implementation phase has taken place, from
the code for the precomputation of data needed to the algorithm, to the al-
gorithm itself, the collection of statistics, and the validation of the outcome.
During this phase, several heuristics collected from previous works were grad-
ually added to face the limitations that arose, and each addition contributed
positively to the global performance of the algorithm. At last, a comparison
between the new tool and the existing ones is performed: although graph-
based searches are the natural competitor of the Monte-Carlo Tree Search

2



due to their internal behaviour; also solver-based ones are taken into account.
The results are promising as the search is significantly faster than the state-
of-the-art works for the smallest versions of SPECK, while non-optimal but
still good results are obtained for the bigger version. Moreover, additional op-
timizations can be introduced, leaving room to further improvements in the
already good results.
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Chapter 1

Introduction

The work presented in this Thesis is part of a research project conducted in
partnership with the Cryptography Research Center of the Technology In-
novation Institute, a research institute located in Abu Dhabi, United Arab
Emirates. The Center operates in several fields of cryptography and crypt-
analysis and one of its primary focuses is that of the automation of tests aimed
to assess the security of cryptosystems.

In fact, in a modern soociety where communications and everyday ap-
plications heavily rely on cryptography, it is of the utmost importance to
secure these systems so as to avoid malicious hackers to break in. In general,
it is possible to say that the main pillars of cryptography are: confidentiality,
integrity, authentication and non-repudiation, which altogether constitute a
solid foundation for the security of computer systems. In view of these main
objectives, throughout the years, many cryptographic systems were developed
with the aim to protect and increase the secrecy of sensitive information. A
few well-known examples are blocks ciphers, stream ciphers and hash func-
tions. Understanding the security level of these primitives is a crucial but
difficult task, and a deep theoretical analysis of block ciphers can reveal a
series of weaknesses related to classical attacks.

One of the theoretical tools considered in this kind of analysis is the so-
called differential cryptanalysis, which is especially useful with ciphers based
on the reiteration of a round function: the number of rounds that can be
tackled with this technique gives the designer a lower bound on the num-
ber of rounds necessary to guarantee the desired level of security. Generally
speaking, differential cryptanalysis starts from perturbations, or differences,
of the input of a function. In this case, thanks to the Markov assumption
that allows to consider each round separately, it will be the round function
of the target cipher. By concatenating the differences for multiple rounds,
a differential characteristic is obtained: this represents the final goal of the
differential characteristics search.

7



Introduction

Over the years, two main approaches were developed. The first one is a
graph-based search, in which differences, transitions, and propagation proba-
bilities are represented by vertices, edges, and weights of a graph. The second
one is a solver-based search, in which the problem is modelled with constraints
to be solved by Boolean satisfiability (SAT), Mixed Integer Linear Program-
ming (MILP) or constraint programming (CP) solvers. With the improve-
ments in these kinds of analyses, differential characteristics search became
easier and easier; still, ciphers in which the internal state is large are difficult
to attack. In fact, given the necessity to go down for multiple rounds, the re-
sulting search space grows exponentially. It is the case of the cipher ASCON
for which only short characteristics are known.

This situation is similar to that of board games such as Go. In fact, the
search space for Go includes over 10170 possible games; nonetheless, methods
derived from Artificial Intelligence have good performance even against expe-
rienced players. One of those methods is Monte-Carlo Tree Search, which was
presented by Rémi Coulom [1] in 2006, specifically for Go. It is particularly
efficient for two-player games, even if the variant called Single Player Monte
Carlo Tree Search, presented by Schadd et al. [2], has been developed to ad-
dress games with only one player. The key point is the introduction of the
Upper Confidence bounds applied to Trees (UCT) formula, which replaces
the opponent of the two-player games. This variant is the one studied for this
Thesis since a single-player scenario better models the problem.

The chosen target for the experiments is SPECK, which is a family of ARX
block ciphers designed by the National Security Agency of the USA. In an
ARX cipher, the only operations involved are the bitwise XOR, the bitwise
rotations and modular addition. Several versions of the SPECK cipher are
standardized and each one is identified by its block and key size. The cipher
was analysed with several techniques in literature, which makes it ideal to
benchmark a differential characteristics search algorithm and compare it with
the others.

Moreover, the existence of a practical attack on this cipher, starting from
a good differential characteristic, constitutes a real-world application of the
results obtained. The attack is due to Dinur [3], who was able to build a
framework that can be used also with longer characteristics with minimal
effort.

The objective of this specific research is to find good differential char-
acteristics on the different versions of SPECK exploiting the capabilities of
the Single-Player Monte Carlo Tree Search. The search is thus modelled as a
single-player game in which the better the probability, the higher the score.
The SP-MCTS algorithm, specifically adapted, performs the tree search look-
ing for the best score on a fixed number of rounds. Since the algorithm is not
aware of the existence or not of a better solution, several iterations are needed.
In literature, the only other attempt to use Monte Carlo Tree Search in dif-
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ferential cryptanalysis was made by Dwivedi et al. in 2018, with the variant
called Nested MCTS. However, sub-optimal results were found in that case.
This work is instead the first attempt using the Single-Player MCTS variant.

Several heuristics are used to improve the performance of the algorithm:
the use of a partial difference distribution table allows to build the initial
search tree with good differentials; the All Moves As First heuristic was em-
ployed to merge two different scores for the nodes, speeding up the search
inside the tree; the Hamming weight was used to prune the tree expansion.
Moreover, ad-hoc strategies were adopted for the various phases of the Monte
Carlo Tree Search algorithm. In particular, the choice of the first difference,
the one to be injected into the plaintext, is made using a different method
with respect to the following ones. The start-in-the middle approach, instead,
reduced the depth of the search splitting the search in two parts, one in the
forward direction and the other in the backward one. A cache of the good
differential characteristics in one of the directions is used to merge the two
parts.

In addition, the work from Lipmaa and Moriai [4] was analyzed. Specif-
ically, the Algorithm 3 was taken into consideration. Its purpose is to enu-
merate all the optimal differentials through the modular addition. It turns
out that in some particular cases, it returns an incorrect result. A fix for that
is proposed, together with a generalization for the algorithm. This variant
allows to enumerate not only the differentials with optimal probability p, but
also the δ-optimal ones with probability p · 2−δ.

The results obtained with the developed tool are satisfactory. In fact, the
newly introduced technique outperforms all the other graph-based searches
present in literature for most instances, and even the solver-based ones for
the versions of SPECK with a small state. This is very encouraging since
further work in the same direction can lead to better results.

The research has culminated with the writing of a scientific paper which
is currently submitted, waiting for the review. The contributions of the paper
include the introduction of a novel technique to perform differential crypt-
analysis and a review of Lipmaa and Moriai’s Algorithm 3.

1.1 Organization of the Thesis
• In chapter 2, the required background concepts are given. They range

from the general notion of Cryptography, with the related Cryptanal-
ysis techniques, to the Monte Carlo Tree Search technique, adopted to
perform the attack described in this Thesis.

• In chapter 3, a survey of the related works in literature is reported,
including a comparison between the results obtained with the various
techniques.
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• In chapter 4, the objective of the work done for the Thesis is stated.

• In chapter 5, the high level structure of the proposed algorithm and the
developed software are described.

• In chapter 6, instead, the low level structure of the algorithm and the
details of the implementation are addressed.

• In chapter 7, the tests used to validate the solutions, with some consid-
erations on the work done are reported.

• In chapter 8, the conclusions are taken.
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Chapter 2

Background

This section describes the main concepts on which this work is built. By
starting from an overview of the general topic of cryptography, the focus will
first move on cryptanalysis, with all the needed tools, then on the target
cipher SPECK, and finally, on the Monte-Carlo Tree Search technique and
the related heuristics.

Notation

In the following pages, the following notation is used:

• ¬ for bitwise negation

• ⊕ for bitwise XOR;

• ⊞ for n-bit addition (addition modulo 2n);

• X ≪ r and X ≫ r for left and right bitwise rotations, respectively, of
r bits, with r < n for an n-bit word X.

Moreover, bit strings of size n, say x, are indexed from 0 to n − 1, with x0

being the least significant bit, such that x =
n−1∑
0

2i · xi.

2.1 Cryptography
A protocol is a sequence of instructions where multiple participants attempt
to achieve a goal, e.g., exchanging confidential messages. Cryptography is the
practice of augmenting such protocols to secure them in the presence of ad-
versarial behaviour. It often requires the usage of secret information.

The main cryptography goals can be summarized as follows:
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• confidentiality, which is the capability of preventing private messages
from being read even when intercepted by unauthorized users;

• integrity, which is the capability of detecting whether the communication
has been compromised, i.e., if one or more messages in the communica-
tion were added, removed, or modified;

• authentication, which is the capability of verifying the identity of a com-
puter system or an individual involved in the communication;

• non-repudiation, which is the capability of relating a message to its au-
thor so that the authorship cannot be denied.

Cryptographic systems used to achieve these goals, and consequently the
mathematics involved, can be very different and thus can be divided into two
main categories, each one further separable:

• Private key cryptography, in which there is only one key (or two keys,
each one easily obtainable from the other) for both the encryption and
the decryption operations; in this case, the key must be shared between
the two communicating parties securely before the communication.

• Public key cryptography, in which there is a pair of keys, a public one
and a private one; in this case, only the private key must be secret, while
the public one can be freely distributed.

2.1.1 Private key cryptography
As stated before, private (or symmetric) key cryptography relies on a single
shared secret for both the encryption and the decryption operations. This
means that every pair of communicating parties must share a different key;
one of the major issues with this approach is the exchange of secret keys.
There are two main types of symmetric algorithms:

• Block ciphers, in which the text is split into blocks of contiguous bits of
fixed length, called block size, and the algorithm will, in general, process
one block at a time. Some padding is added, if necessary, to make the
text length a multiple of the block size.

• Stream ciphers, in which small units of text, usually bytes, are processed;
in particular, there is no more padding as the length of the text does
not have to be multiple of the block size.

2.1.2 Block ciphers
A block cipher is a deterministic map between blocks, a group of bits of fixed
length. Such a cipher is designed to encrypt a single block at a time. Still,
the encryption and decryption of a higher number of blocks are guaranteed
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by several modes of operation that reuse the same cipher in a way that confi-
dentiality and/or authenticity are preserved. Common types of block ciphers
are Substitution-Permutation Networks and Feistel ciphers.

Substitution-Permutation Networks

This kind of cipher is obtained from the repetition of rounds made up of a
substitution phase, in which one or more Substitution Boxes (S-Boxes) are
used to substitute a portion of the bits through an invertible map, and a
permutation phase, in which the output of the S-Boxes is shuffled; at the
end of the process, a round key is inserted in the process, usually with an
XOR operation. An example of an SPN cipher is the Advanced Encryption
Standard.
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Figure 2.1: The structure of a Substitution-Permutation Network

Feistel ciphers

A Feistel cipher requires splitting the plaintext block into two words with the
same length. After that, a round function that includes the round key is
applied to one of the two words, the output is XORed with the second word,
and then the two words are swapped. This process is repeated several times.

2.1.3 ARX ciphers
With the term “ARX ciphers,” we address a category of symmetric key al-
gorithms designed to use only three operations: modular addition, bitwise
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F1

L

⊕
K1

R

⊕

F2⊕
K2

⊕

L′ R′

Figure 2.2: The Structure of a Feistel cipher

rotation and bitwise exclusive-OR (XOR). Given the types of operations per-
formed, the definition of block size is essential, and typical values for it are
32 or 64 bits.

ARX ciphers have several advantages, including fast performances in soft-
ware implementations (this does not hold for hardware implementations, even
though some of these ciphers are designed to obtain good performances in
hardware), compact algorithms, resistance against timing attacks and func-
tionally completeness, if constants are included.

An example of this type of cipher is the one attacked during this Thesis’s
work, the SPECK cipher.

2.2 Cryptanalysis
Cryptanalysis is the study of cryptographic systems aimed at discovering hid-
den properties and weaknesses, which may eventually lead to the compromise
of the system itself. If the analysis is successful, the results may vary from
a distinguishing attack (the attacker can distinguish between ciphertext and
random data) to a key recovery attack (the attacker discovers the secret key).
A possible intermediate outcome is the ability to decrypt the secured mes-
sages, even without knowing the key. The targets of cryptanalysts are block
ciphers, stream ciphers, and hash functions.

Cryptanalysis can be performed not only on the algorithm but also on
its implementation. In this case, we talk about Side Channel Attacks. Ex-
amples of this technique are timing attacks, in which the attacker measures
(with more or less precision depending on the environment settings) the time
needed to perform some unknown operations, which can be of two types: power
consumption analysis or electromagnetic attacks. The former consists in the
attacker having access to the consumption of the hardware device running the
algorithm. As for the electromagnetic attacks, the offender usually has access
to the physical device and performs measurement about the electromagnetic
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emissions. In all the listed attacks, it is possible to infer the instructions exe-
cuted, usually with the help of machine learning techniques.

In the context of symmetric ciphers, two of the most used techniques, very
similar to each other, are called differential cryptanalisys and linear cryptanal-
ysis. The former is the one that will be addressed in this Thesis.

2.2.1 Linear Cryptanalysis
Linear cryptanalysis is one of the two most widespread forms of cryptanalysis.
It is based on the search for affine approximations of a given cipher. It was
proposed by Mitsuru Matsui [5], who applied it to the FEAL cipher in 1992
and then to the Data Encryption Standard (DES) in the following few years.
This technique leads to a theoretical attack since 247 known plaintexts are
needed.

Two steps are required to perform this kind of attack. The first one is
to find linear equations involving the bits of the plaintext, the ciphertext,
and the key, that hold with probability highly biased towards 0 or 1. On the
contrary, in a cipher resistant to linear cryptanalysis, any such equation holds
with probability very close to 1

2
. These correlations are obtained in several

ways depending on the cipher structure. For example, when dealing with a
substitution-permutation network, the target of this method is the S-Box, the
only non-linear component in such system.

2.2.2 Differential Cryptanalysis
A differential is a pair of input and output differences, which are perturba-
tions of the input (and, as a result, of the output) of the studied function.
A differential, alongside its propagation probability, is the building block of
Differential Cryptanalysis.

Differential Cryptanalysis aims to find sequences of differentials, called
differential characteristics or differential trails, that propagate through the
rounds of the cryptographic functions with high probability.

Given the function with respect to which the differences are computed,
several variants of Differential Cryptanalysis exist. The most popular among
them are the ADD-Differential Cryptanalysis and the XOR-Differential Crypt-
analysis, with a general preference towards the latter.

ADD-Differential Cryptanalysis

In this case, the function taken into account is the modular addition, i.e. the
difference are injected into the input by a modular addition. The propagation
probability is referred to as additive differential probability and it is computed
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as
adpf = (α → β) =

# {x : f(x⊞ α) = f(x)⊞ β}
n

where n is the number of possible inputs to the function f . For example, we
can consider m bit inputs and compute the adp of the bitwise XOR:

adp⊕ = (α, β → γ) =
# {(x, y) : ((x+ α)⊞ (y + β )) = (x+ y)⊞ γ}

22m

XOR-Differential Cryptanalysis

This time we work with XOR, and therefore the differences are XOR-ed to
the input. The propagation probability is called XOR differential probability
and it is computed analogously to the previous case as

xdpf = (α → β) =
# {x : f(x⊕ α) = f(x)⊕ β}

n

where n is the number of possible inputs to the function f . Again, let us
consider m bit inputs and compute the xdp of addition modulo 2m:

xdp⊞ = (α, β → γ) =
# {(x, y) : ((x⊕ α)⊞ (y ⊕ β)) = (x⊞ y)⊕ γ}

22m

Obviously, also other types of functions can be exploited, such as the
rotation function. Still, due to the fact that their application in real-world
scenarios is much more limited, they are less popular than the two mentioned
above.

2.2.3 Partial DDTs
When the cryptographic function analyzed by Differential Cryptanlaysis are
substitution boxes, then an easy way to summarize their differential properties
is to build a difference distribution table (DDT) whose records are triplets
made by a differential with its probability. This is feasible because, typically,
the substitution boxes work on 8 or 4-bit words.

In the other case, the DDT would be too large to compute and store. In
fact, for an ARX cipher, there are usually two input words and an output
one, all of them on n bits; thus, 23n records are needed to store a full DDT,
and since a typical value for n is at least 32, the construction of a full DDT
is clearly unfeasible.

To address this problem, Biryukov and Velichkov came up with the idea of
partial DDT (pDDT), where the entries of the DDT with probability higher
than a fixed threshold are stored. The key point of the idea of pDDTs is that
the probabilities of XOR differentials through the modular addition operation
(and in an analog way, the ADD differentials through the XOR operation)
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monotonously decrease with the bit size of the words. Formally, this property
is stated in the Proposition 1 of their article [6], which states the following:

The differential probabilities of ADD and XOR (respectively xdp⊞ and
adp⊕) are monotonously decreasing with the word size n of the differences
α, β, γ:

pn ≤ . . . ≤ pk ≤ pk−1 ≤ . . . ≤ p1 ≤ p0,

where pk = DP (αk, βk → γk), n ≥ k ≥ 1, p0 = 1, and xk denotes the k least
significant bits of the difference x i.e. xk = x[k−1 : 0].
def compute_pddt(dp, n, p, k, pk, ak, bk, ck):

if n == k:
yield (ak,bk,ck,pk)
return

for x in range(2):
for y in range(2):

for z in range(2):
ak1 = ak + x*(1<<k)
bk1 = bk + y*(1<<k)
ck1 = ck + z*(1<<k)
pk = dp(ak1,bk1,ck1,n)
if pk > p:

yield from compute_pddt(dp, n, p, k+1, pk,
ak1, bk1, ck1)

Listing 2.1: Computation of the pDDT with threshold probability p

2.2.4 Lipmaa and Moriai’s algorithms
In 2001, Lipmaa and Moriai [4] proposed a series of algorithms related to the
differential properties of modular addition. In particular, Algorithm 2 gives
the probability of the differential (α, β) → γ, and Algorithm 3 lists all optimal
γ values, given α and β, i.e. the values of γ for which the corresponding
differential probability is the highest possible.

Overview of Algorithm 2

The output difference γ to a modular addition is equal to α⊕ β⊕ δc, where δc
denotes a difference in the carry.

Algorithm 2 first determines whether a transition from α, β to γ is valid,
before computing its probability. A transition is said to be valid if and only
if

eq(α << 1, β << 1, γ << 1) ∧ (α⊕ β ⊕ γ ⊕ (β << 1)) = 0 (2.1)
where eq(x, y, z) is 1 in all positions where xi = yi = zi, and 0 elsewhere.

This condition stems from the observation that three carry patterns are
deterministic, whereas the other cases all have probability 1

2 :
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1. γ0 = α0 ⊕ β0

2. If αi = βi = γi = 0, then γi+1 = αi+1 ⊕ βi+1 (because it implies that
δci+1 = 0)

3. If αi = βi = γi = 1, then γi+1 = αi+1 ⊕ βi+1 ⊕ 1 (because it implies that
δci+1 = 1) .

Any transition violating these conditions is invalid; all other transitions
are possible. It is easy to verify that Equation 2.1 eliminates the invalid tran-
sitions.

The probability of a valid transition is determined by the number of oc-
currences w of above mentioned deterministic carry propagation cases 2 and
3, excluding the most significant bit, as 2−n+1+w.

Overview of Algorithm 3

Following the authors’ notation, let x and y be two binary strings with length
n, indexed from 0 to n− 1, where 0 is the position of the MSB, and define li
to be the length of the longest common alternating bit chain: xi = yi ̸= xi+1 =
yi+1 ̸= ... ̸= xi+li = yi+li. Then the common alternation parity C(x, y) is again
a binary string with length n defined as:

• C(x, y)i = 1 if li is even and non-zero,

• C(x, y)i = 0 if li is odd,

• unspecified when li = 0 (can be both 0 and 1, not affecting subsequent
algorithms since there is no chain).

In the original work, an algorithm to retrieve C(x, y) in O(logn) can be
found. This tool is the main ingredient used by the authors to construct an
algorithm that, given in input two n-bit values α, β, retrieves all the possible
values γ such that the probability of modular addition with respect to XOR:
xdp+(α, β → γ) is maximum.

The algorithm constructs the optimal values of γ bit-by-bit. The least
significant bit is forced to be γ0 = α0⊕β0 in order to have a possible transition
since there is no carry for it. For the other bits, the idea is to maximize
the number of positions i such that eq(α, β, γ)i = 0 while maintaining the
transition possible.

(a) if αi−1 = βi−1 = γi−1 then the choice γi = αi−1⊕αi⊕βi is the only possible
one. This is because the previous position deterministically fixes the
value of the carry at this position, so the other transition is impossible.

(b) else if αi ̸= βi the choice of γi is not relevant, since both choices mean
paying a probability of 1

2 (because this already implies eq(α, β, γ) = 0).
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In the same way, if i = n − 1 we have no carry and so the choices
are equivalent. Finally, if αi = βi but C(α, β)i = 1 the choice is again
irrelevant, since both choices will result in a chain of even length of
position with eq(α, β, γ)i = 0. In reality, this last case is not completely
true, but we will come back to it at the end of the section.

(c) the only remaining possibility is when we have αi = βi and C(α, β)i = 0,
so the chain has odd length. In this case we have that choosing γi = αi

generates a chain of length ⌊li/2⌋, having a probability cost equal to
the one in case (b), while the other choice generates a chain of length
⌊li/2⌋+1, having an extra 1

2 factor in the cost. So, in order to maximize
the probability, in this case we have to choose γi = αi.

2.3 SPECK
The name “SPECK” refers to a family of ARX block ciphers released by
the National Security Agency (NSA) of the USA in 2013. This family of
ciphers, specifically designed to be optimized for software implementations,
includes five versions, each one with different block size, and each version
can support one or more values for the key size. These versions are known
as SPECK32, SPECK48, SPECK64, SPECK96, and SPECK128; when the
key size is specified, the name becomes SPECK2n/mn, with m ∈ {2, 3, 4}.
The SPECK cipher can be considered a combination of two Feistel networks,
with rounds ranging from 22 to 34 depending on the block and key size. Each
2n bits block is divided into two words of n bits each (so that, for example,
SPECK32 has two words of 16 bits each). The two input words at round i,
say xi and yi, are manipulated by the cipher in the following way:

xi+1 = ((xi ≫ α)⊞ yi)⊕ ki,

yi+1 = (yi ≪ β)⊕ xi+1,

where α and β are constants depending on the version of SPECK (the values
for SPECK32 are (α, β) = (7, 2), while bigger versions use (α, β) = (8, 3)) and
ki is the round key, obtained from the master key through the key schedule
algorithm.

The round keys are computed using the same round function as the cipher
itself, with an increasing counter instead of the value ki. When implementing
block ciphers, it is a common practice to cache the round keys in order to use
them for the encryption of each block. However, with SPECK, it is a good
choice to compute these on the fly since it was designed so as to keep the
code size small. Moreover, this makes it possible to use the cipher on devices
with very poor resources since the only RAM needed would be the one used
to store the key and the plaintext.
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xi yi

≫ α

≪ β

xi+1 yi+1

ki

Figure 2.3: The round function of the SPECK cipher

2.3.1 The Markov assumption
For time and space performance reasons, the differential probability that is
computed usually regards one single round of the analyzed cipher. Then, the
differential probabilities covering multiple rounds are computed as the product
of the differential probabilities of the single rounds. This approach is called
the Markov assumption, and it is not always correct.

As formalized in [7], the assumption is based on two hypotheses:

• the cipher is a Markov cipher, in the sense that if the round key of
the cipher is uniformly random, the differential probability of a fixed
differential does not depend on the input word;

• the round keys are independent and uniformly random.

If a cipher does not satisfy the Markov assumption, it may happen that
there exist some keys for which the propagation probability of the differen-
tial characteristic is significantly different from the value obtained during the
search.

In [8], Biryukov et al. demonstrated that SPECK is not a Markov cipher.
However, the probability of its differential characteristics usually are the cor-
rect ones for most of the keys, making the results still useful in practice.
Moreover, even in the case of non-Markov ciphers, the Markov assumption of-
ten represents the best way that a cryptanalist has in order to analyze them.

2.4 Dinur’s attack
In 2014, Dinur [3] proposed a key recovery attack, on all versions of SPECK,
that allows to exploit a differential characteristic. The technique improves
significantly the previous best attack on the cipher in terms of number of
rounds exploited, complexity of the attack, size of the necessary data (a few
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megabytes are sufficient).

By starting from an r round differential characteristic with probability
p, it is possible to attack r + m rounds, with m being the number of key
words of the SPECK variant, where the first r rounds are exploited using the
characteristic. A sub-cipher attack is conducted on the remaining m rounds
using the guess-and-determine strategy (although other strategies may also
be used); The author describes an optimized attack when m = 2, while going
for higher values introduces additional complexity. The attack is faster than
the exhaustive search by a factor of p · 22n−1, for resulting time complexity of
2 · p−1 · 2(m−2)n, where n is the size of the cipher.

The strategy described is generic; thus, finding a new, better differen-
tial characteristic for a version of SPECK is almost automatically translated
into a new attack on that version. The only work needed is to analyze the
dependencies between the blocks in the m additional round of the cipher.

However, it is important to notice that in some cases, the attack is just a
theoretical one (the time complexity is less than that of an exhaustive search,
but still not feasible). At the same time, with round-reduced versions, it can
also be a practical one.

2.5 Monte Carlo Tree Search
Born in the first half of the 20th century, Monte Carlo methods are nowa-
days a widely used approach for intelligent playing in board games. They
generally consist of randomly sampling from the set of possible inputs for the
considered problems to perform calculations and obtain the conclusions of the
experiment. Monte Carlo methods are usually exploited in order to overcome
some of the problems related to classical tree-search methods, such as the
impossibility to search the full tree for the best move (like in a Breadth-First
Search or a Depth-First Search) because of the game complexity, or the im-
possibility to construct the heuristic evaluation function needed by classical
algorithms like A* or IDA*. The term Monte Carlo Tree Search (MCTS)
refers to the embedding of Monte Carlo methods inside a tree search algo-
rithm. MCTS is a popular approach in the context of two-player games, such
as Chess, Backgammon and Go, and it is increasingly combined with Machine
Learning and Deep Learning techniques.

In its classical form, the MCTS algorithm provides the iteration of the
following four steps:

• Selection. In the selection phase, the algorithm starts from the root of the
tree, representing the current state of the game (e.g., the configuration
of the board), and traverses the tree until a leaf node, which represents
a point ahead in the game. The traversal of the tree is based on the
results of the previous simulations, and the leaf node does not have to
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be the end of the game, but usually it is a node with a potential child
that has not been yet explored.

• Simulation. In the simulation phase the algorithm plays moves either
in a completely random manner or with a heuristic that is independent
from the past moves. When the end is reached, a score is assigned to the
path taken. In two-player games, usually a game finishes when a player
wins, loses or if there is a draw; these outcomes are usually represented
with scores 1, -1 and 0, respectively.

• Expansion. In the expansion phase the algorithm can add, to the last
node visited during the selection phase, one or more of the nodes ex-
plored during the simulation phase. There are no restrictions on the
number of nodes that can be added, and usually at most one of them is
stored, in order to keep the size of the search tree reasonable.

• Backpropagation. In the backpropagation phase the algorithm propa-
gates the results of the simulation phase back to the root of the tree.
The score achieved at the end of the game (or some statistics about it)
is saved in each node of the path followed in the selection phase, so that
future iterations can benefit of additional information and therefore be
more accurate.

The steps described above are graphically represented in Figure 2.4, where
the involved elements are bold.

SimulationExpansionSelection Backpropagation

Figure 2.4: The four phases of the Monte Carlo Tree Search algorithm

2.5.1 Single Player Monte Carlo Tree Search
Single Player MCTS (SP-MCTS), as the name suggests, is an application
of the previously explained technique to single player games. It was initially
proposed by Schadd et al. on the puzzle SameGame, but can be virtually
generalized to every single player game. The structure of the algorithm is the
same as the two-player version, with two major differences:

• In the selection phase, it is not necessary to take into account other
players’ moves, so we do not have the uncertainty of the opponent’s play.
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This means that the scores can be set to the node in a more accurate
way.

• In the simulation phase, the space of the payout can be way bigger than
3 elements, leading to problems in the backpropagation of the final score.
In games where there is a theoretical minimum and maximum payout,
it is usually rescaled in the interval [0, 1].

2.5.2 The UCT Formula
For the selection phase, Schadd et al. used a modified version of the UCT
(Upper Confidence bounds applied to Trees) formula initially proposed by
Kocsis and Szepesvári [9]. It computes the score (to be maximized) of an edge
of the search tree and can be described as follows:

UCT (N, i) = X + C ·
√

ln t(N)

t(Ni)
+

√∑
x2 − t(Ni) ·X

2
+D

t(Ni)

where:

• N is the current node;

• Ni is the ith child node of N ;

• xs are the previously computed scores starting from node Ni;

• X is the average game value;

• t(N) is the number of visits of the node N ;

• C, D are constants to be chosen.

The goal of the original UCT formula, limited to the first two addends
of the reported formula, is to guide the MCTS algorithm in the choice of
the next nodes, while the modified version is intended to replace the second
player, given that SP-MCTS is for games without an opponent, with the third
piece of the formula.

This third term can be thought of as a standard deviation of the achieved
scores, biased by the constant D. a high value for D should favor the explo-
ration of the tree, while a lower value favors the exploitation of the already
explored nodes.

2.5.3 The AMAF heuristic
Even if it was introduced before the Monte Carlo Tree search algorithm, the
All Moves As First (AMAF) heuristic, whose performances are analyzed by
Helmbold and Parker-Wood in [10], gives significant help to improve the re-
sults of the search. Its core idea is to mix two scores, one from the UCT formula
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presented in subsection 2.5.2 and the second one proper of the AMAF heuris-
tic. This second score is updated not only on the nodes traversed during the
MCTS play-out but also on nodes that represent an analogous move, played
in a different moment during the play-out. The result is a rapid increment of
the information known to the tree.

In their work, Helmbold and Parker-Wood showed that this approach not
only helps in the early phase of the search but also in a later one; moreover,
it can be beneficial also in terms of win rates in two-player games.

Several variants for the AMAF heuristic were proposed, each with its own
peculiarity. Among the most used ones, there the following are considered.

α-AMAF

The α-AMAF is a weighted average between the AMAF score and the UCT
one. Hence, both types should be stored in memory. The final score is then
computed as

α · AMAF + (1− α) · UCT

with α ∈ [0, 1].

Permutation AMAF

Considering the path walked by the algorithm and the ones obtained by a per-
mutation of the moves, the Permutation AMAF is a more aggressive heuristic
that updates many more nodes than the standard one. As in the α-AMAF,
the final score is a weighted average between the UCT score and the AMAF
one.

Some-First AMAF

The Some-First AMAF variant updates fewer nodes than the standard heuris-
tic by truncating the play-out of MCTS after the first m random moves and
applying the heuristic only to the nodes in the truncated path. The two ex-
treme cases, when varying m, are the standard AMAF heuristic and the uti-
lization of the UCT score without the AMAF one.

Cutoff AMAF

In Cutoff AMAF, the first k simulations will use the AMAF to initialize
the counts in the tree nodes. UCT, which benefits from the outcomes of the
AMAF-based iterations, is exploited for the remaining search.

RAVE

Similarly to α-AMAF, Rapid Action Value Estimation (RAVE) mixes both
the AMAF and the UCT score. The difference is that the coefficient α is not
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fixed anymore. In fact, it decreases at each visit, usually (but not always)
with the formula

α = max
(
0,

V − v(n)

V

)
where n is the number of visits, V is a given constant and v is an increasing
function of n. This way, the total score is based on the AMAF part at the
beginning, when very little information about the node is known. In contrast,
the UCT score is more important after good knowledge has been acquired,
but the difference between RAVE and Cutoff AMAF is that the transition is
smooth in RAVE.
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Related works

In this chapter, the most relevant techniques in the literature regarding the
automation of differential characteristics search are reported, alongside some
references to the Monte Carlo Tree Search heuristic. Then, a comparison be-
tween various results is performed, including also the outcomes obtained with
the tool described in the Thesis. If possible, the time needed to run each
algorithm will also be provided. Finally, some possible explanations for the
differences in the performances obtained are given.

3.1 Works in literature

3.1.1 Matsui’s algorithm and variants
The first attempt to automatize the search for optimal differential charac-
teristics was based on a tree search, where the nodes, edges, and height lev-
els represent the differences, transitions, and rounds, respectively. The main
approach used to tackle this problem is through Matsui’s algorithm [11], a
Depth-First Search (DFS) algorithm that expands the information on a cer-
tain number of rounds to the next ones using heuristics similar to the A* ones.
The original version of Matsui’s algorithm targets Feistel ciphers, like the Data
Encryption Standard, but during the years it was extended to Substitution–
Permutation Networks (SPN) [12] and to ARX cipher, with the introduction
of the concept of threshold search, based on pDDTs [6]. The authors of this
last work later improved their own results using a modified version of Matsui’s
algorithm specifically designed for SPECK [8], giving an optimal result for a
low number of rounds on all versions of the cipher.

In 2019, Liu et al. [13] substituted the concept of pDDT with the new
concept of carry-bit-dependent difference distribution table (CDDT). In this
new idea, the focus is put on the carry bits of the modular addition in order
to view that operation as a lookup into an S-Box, i.e. a table that describes a
fixed mapping between a bit string and another one. Later, Huang et al. [14]
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improved the storage complexity of CDDTs constructing a so-called combi-
national DDT (cDDT). Both approaches then exploit a modified version of
Matsui’s algorithm.

3.1.2 Other approaches
While Matsui’s DFS is a popular approach, also other techniques rooted in
AI have been used. For instance, in [15] the authors use a Dijkstra-inspired
Breadth-First Search algorithm on a graph, in which all nodes representing
the same difference are merged. This approach does, however, not scale well,
due to the high memory requirements to store the graph.

In 2018, Dwivedi et al. introduced for the first time a Monte Carlo Tree
Search-related method (called Nested MCTS, or NMCTS) to find differen-
tial trails on the LEA cipher [16]; they then applied the same technique on
SPECK [17]. Unfortunately, in their approach, the MCTS algorithm looks for
differential transitions that optimize the overall score (and thus the differen-
tial probability of the differential characteristic) only locally and not globally,
leading to sub-optimal results.

Moreover, in 2016, Fu et al. [18] found the best, up-to-date, known differ-
ential trails on reduced-round versions of Speck. Their method does not rely
on the concept of pDDT, nor on that of the tree search: it is based instead
on Mixed Integer Linear Programming (MILP), an optimization technique
in which the variables are integers. The differential characteristics search is
thus described with a series of equations or inequalities with integer variables.
After that, the objective function to be minimized is set to be the weight of
the characteristic. Finally, the search can be executed via MILP solvers such
as Gurobi or CPLEX. In the same year, Song et al. [19] exploited another
technique called Satisfiability Modulo Theory (SMT) to extend short char-
acteristics into longer ones, improving the previous results on SPECK and
LEA.

Later, in 2021, Sun et al. [20] used a technique very similar to SMT based
on the Boolean satisfiability problem, usually referred to as SAT, to translate
some of Matsui’s bounding conditions into Boolean formulas, obtaining a
significant reduction of the tests runtime if compared to other frameworks
based on SAT solvers.

3.1.3 Monte Carlo Tree Search
Regarding Monte Carlo Tree Search, it was first described with this name
in 2006 by Coulom [1] on two-player games. Similar algorithms were however
already known in the 1990s, for example in Abramson’s Ph.D. thesis published
in 1987 [21]. MCTS for single-player games was introduced in 2008 by Schadd
et al. [2], on the SameGame puzzle game. In recent years, Google DeepMind
tried to improve MCTS algorithms by combining them with reinforcement
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learning, giving birth to AlphaZero and MuZero [22, 23].

In 2020, Leurent et al. [24] proposed an extension of MCTS named Monte
Carlo Graph Search (MCGS), where they applied the same principles to gen-
eral graphs instead of trees. This introduces a significant improvement in the
algorithm’s performance when the trajectories can overlap, i.e. if some of the
nodes can be reached from multiple states; in the standard MCTS such nodes
are duplicated, while in MCGS they are merged so that the information from
all the interested trajectories is merged. This approach has been used by Czech
et al. in 2021 [25] to improve AlphaZero.

3.2 Comparison between the search methods
In Table 3.1 a comparison between the main results in the literature is re-
ported. For the largest versions of SPECK, two results are reported: one to
compare directly with classical Matsui-like searches, and the other to reach
as many rounds as possible, comparing with solver-based searches. As can be
seen, the tool developed outperforms the other approaches for the smallest ver-
sions of the cipher and is still better than the other Matsui-based approaches
for the largest ones. A separate note is necessary for the case of SPECK64,
as the proposed approach struggles to find good results.

3.2.1 Matsui-like and graph-based search
In Table 3.1, the main approaches based on Matsui’s algorithm and a graph
representation of the differential characteristics problem are reported. This
category represents the direct competitor of the SP-MCTS algorithm, as the
latter is a graph-based search. The work described in this Thesis is notably
better than this approach in four versions out of five of the SPECK cipher.
As for the first class of works, the main limitation probably is that Matsui’s
algorithm needs the best weights for r rounds to be able to attack r+1 rounds.
This clearly means that the search process must analyze every number of
rounds between 1 and the target number, while the MCTS approach can
directly attack the target number of rounds.

On the other hand, the Monte Carlo Tree Search, with most of the other
graph-based algorithms, is penalized with deep trees, equivalent to a high
number of rounds, in terms of both time and memory complexity. Moreover,
as stated before, Dwivedi’s approach focus on local optimization, which results
in performance worse than that of the other works on the 32 to 64-bit versions.

3.2.2 Automatic solvers
Even though this work is not a direct competitor of solver-based approaches,
they are reported for completeness. This technique can benefit from the fact
that automatic solvers are available: the researcher’s work is limited to the
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SPECK
version

Reference of
the attack

Technique Number of
rounds reached

Weight Time

32

[17] NMCTS 9 31 -
[18] MILP 9 30 -
[19] SMT 9 30 -
[26] Matsui-like 9 30 240m
[8] Matsui-like 9 30 12m
[13] Matsui-like (CarryDDT) 9 30 0.15h
[20] Matsui + SAT 9 30 7m
[14] Matsui-like (CombinationalDDT) 9 30 3m

This work SP-MCTS 9 30 55s

48

[8] Matsui-like 9 33 7d
[17] NMCTS 10 43 -
[26] Matsui-like 11 47 260m
[19] SMT 11 46 12.5d
[18] MILP 11 45 -
[20] Matsui + SAT 11 45 11h
[13] Matsui-like (CarryDDT) 11 45 4.66h
[14] Matsui-like (CombinationalDDT) 11 45 2h

This work SP-MCTS 11 45 7m18s

64

[8] Matsui-like 8 27 22h
[17] NMCTS 12 63 -

This work SP-MCTS 13 55 48m50s
[26] Matsui-like 14 60 207m
[18] MILP 15 62 -
[20] Matsui + SAT 15 62 5.3h
[14] Matsui-like (CombinationalDDT) 15 62 1h
[19] SMT 15 62 0.9h
[13] Matsui-like (CarryDDT) 15 62 0.24h

96

[8] Matsui-like 7 21 5d
[14] Matsui-like (CombinationalDDT) 8 30 162h
[13] Matsui-like (CarryDDT) 8 30 48.3h
[20] Matsui + SAT 10 49 515.5h

This work SP-MCTS 10 49 1m23s
[17] NMCTS 13 89 -

This work SP-MCTS 13 86 12m58s
[18] MILP 16 87 -
[19] SMT 16 ≤ 87 ≤ 11.3h

128

[8] Matsui-like 7 21 3h
[14] Matsui-like (CombinationalDDT) 7 21 2h
[13] Matsui-like (CarryDDT) 8 30 76.86h
[20] Matsui + SAT 9 39 40.1h

This work SP-MCTS 9 39 1m29s
[17] NMCTS 15 127 -

This work SP-MCTS 15 115 8m34s
[18] MILP 19 119 -
[19] SMT 19 ≤ 119 ≤ 5.2h

Table 3.1: Comparison between the different techniques found in literature, with
timings when reported. Solver-based works are indicated in italic.
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description of the problem. In fact, the solver is already implemented, and it is
considered reliable because it has passed intensive tests, as solvers are general-
purpose tools. However, the same reason can be a limitation, i.e., a more
specialized algorithm can be more efficient. Despite this last consideration,
the solver-based approach, nowadays, is the one that scales better with large
state problems.

On the algorithmic side, the main limitation of these tools is that, usually,
the differential characteristics search is described as a feasibility problem in
the form of “does a differential characteristic on r rounds and weight w exist?”
for fixed r and varying w. As for the Matsui-like searches, this means that there
is not a direct search, but an iteration is necessary, which results in longer
search timings.
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Problem statement

4.1 General overview
The work of this Thesis is due to a research project born from the collabo-
ration, started in late 2019, between the Cryptography and Number Theory
Group (CrypTO) of Politecnico di Torino and the Technology Innovation In-
stitute (TII) of Abu Dhabi, United Arab Emirates. One of the goals of the
Cryptography Research Center (CRC) of the Institute is to develop methods
to perform several kinds of analysis on the robustness of cryptographic imple-
mentations, focusing as much as possible on the automation of the different
developed tests.

Modern cryptography is an essential tool in this era, for example, to secure
the privacy of communications. A large part of it relies on block ciphers,
stream ciphers, and hash functions. Thus, it is of primary importance to
assess those systems’ security; as already seen, differential cryptanalysis is an
important tool to achieve said result.

The research project with TII was aimed at the development and automa-
tion of new differential cryptanalysis techniques. As seen in chapter 2, the
differential characteristics search is a widely addressed problem, and litera-
ture is rich in techniques developed or improved to perform such a task. Thus,
the common research subjects in this field are the improvement of the existing
methods or the development of new ones.

In section 2.4, it is shown that Dinur [3] developed a feasible method to
perform a key recovery attack on SPECK given a differential characteristic,
so, given the real-world application of differential cryptanalysis with this ci-
pher, SPECK is often used as a benchmark in this field. Therefore, all the
experiments will be conducted on this cipher, mainly on the smaller versions,
namely SPECK32, SPECK48, and SPECK64, but also on the bigger ones,
SPECK96 and SPECK128. Moreover, several works targeting SPECK exist,
covering both the main approaches of graph search and automatic solvers.
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This makes the cipher ideal for understanding the goodness of the developed
technique.

Monte Carlo Tree Search has become very popular in the application to de-
cision processes, especially for automatic playing in two-players board games.
The variant called Single-Player Monte Carlo Tree Search is intended to work
on games with only one player, thanks to the introduction of the Upper Con-
fidence bounds applied to the Trees formula, which replaces the actions of
the opponent. Among the several improvements that were developed, the All
Moves As First is very efficient in improving and enriching the information
gathered by the tree search.

4.2 Constraints and limitations
A high number of rounds is difficult to analyze, and it is proven, at least
on some versions of the SPECK cipher, that differential characteristics on
the full-size design lead to an attack that is less efficient than the exhaustive
search and thus not meaningful. For this reason, round-reduced versions will
be analyzed.

Furthermore, the setting is that of non-related keys, and the Markov as-
sumption is made so that the different rounds can be analyzed independently.
Moreover, the presence of a single modular addition makes the choice of the
XOR differential probability the most natural one.

Obviously, one of the targets in this kind of application is to keep the
execution time as low as possible and thus optimize the code and the algo-
rithm. But, apart from software-related problems, it has to be also noticed
that Monte Carlo Tree Search and its variants are very demanding in terms
of memory. The entire tree should be in memory, and even if the algorithm
starts with a small one, it is expanded during the search. Thus, only a few
instances can be run in parallel if the used machine is not equipped with
enough RAM.

4.3 Research goal
The final goal is to put together all these pieces. More specifically, the de-
veloped tool has to find good differential characteristics on round-reduced
SPECK versions, with the least possible human intervention, exploiting the
Single-Player Monte Carlo Tree Search. The novelty introduced by this work
is indeed to apply the SP-MCTS algorithm to the search of differential char-
acteristics.

As a reference, the results of the published works are taken and reported
in Table 3.1. Better results presuppose a shorter time in finding a differential
characteristic with the same weight or the capability to find one with a lower
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weight (and thus a higher probability).

Once a good result has been found, the application of Dinur’s framework
completes the attack on the cryptographic system. Since the application is
straightforward, it was not addressed during the project.

In the final phase of the project, together with the automatic tool, a
scientific paper was written; it is currently submitted and waiting for the
review outcomes.
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Chapter 5

System design

This chapter describes the high-level design of the SP-MCTS algorithm ap-
plied to cryptanalysis. Firstly, a modified version of Lipmaa and Moriai’s
algorithm is introduced. The following sections are given a description of the
general strategy to combine the aforementioned variant (if dealing with ci-
phers with a single modular addition per round) with Single-Player Monte
Carlo Tree Search; however, the generic description does not give satisfying
results in practice as cipher-dependent tuning may be necessary. The specific
case of SPECK will be addressed in section 5.4.

5.1 A fix for the Lipmaa and Moriai’s original al-
gorithm

During some experiments, an anomalous behaviour took place, and this led
David Gerault, a member of the research team in TII, to the discover of an
inconsistency in the initial algorithm in [4] from Lipmaa and Moriai, already
described in subsection 2.2.4.

Consider for example the input difference (α, β) = (10112, 10012); we have
C(α, β) = 01002. Applying Algorithm 3, there are:

• γ0 = 0 (initialisation case)

• γ1 = {0, 1} (case (b), since α1 ̸= β1)

• γ2 = {0, 1} (case (b), since C(α, β)2 = 1)

• γ3 = 0 if γ2 = 0, 1 otherwise.

Therefore, γ = 11102 is listed as optimal. However, it holds that

xdp+(10112, 10012 → 11102) = 2−3

while the optimal probability is 2−2 (reached, for instance, with γ = 00102).
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The discrepancy occurs when C(α, β)n−2 is equal to 1, and αn−3 ̸= βn−3. The
algorithm considers both choices of γi equivalent in the (b) branch when
C(α, β)i = 1, because the length of the chain is l

2 , and choosing 0 or 1 only
shifts the probability vector.

However, at position n−2, picking γn−2 = αn−2 implies that no probability
is paid (because eq(αn−2, βn−2, γn−2) = 1), and position n− 1 is free by defini-
tion. On the other hand, picking γn−2 ̸= αn−2 costs a probability, so that both
choices are not equivalent in this case.

To fix this issue, the bit string returned by the common alternation parity
algorithm can be modified so that all positions that are part of a chain ending
at position n− 1 are set to 0.

5.2 A variant of the Lipmaa and Moriai’s algo-
rithm

In the description of the algorithm for the differential characteristics search,
a generalization of Algorithm 3 from the paper of Lipmaa and Moriai [4],
already described in subsection 2.2.4 is used. It takes in input α, β, δ, where
δ is an offset, such that that the algorithm returns all γ having xdp+(α, β →
γ) ≥ maxγ(xdp+(α, β → γ)) · 2−δ. In other words, this modification lists all the
solutions with probability within a distance 2−δ of the optimal. In the paper
written during the research, these solutions are called δ-optimal.

Intuitively, the goal is to modify a branch to eliminate at most δ visits of
case (a) compared to an optimal difference, paying every time a cost of 1

2 and
thus adding 1 to the weight of the differential.

A violation of case (a) immediately leads to a transition with probability
0, per rules 2 and 3. On the other hand, the values chosen in case (b) have no
influence on the final probability. Therefore, the remaining case to be studied
is the case (c).

The modified algorithm works as follows: for at most δ times, when in
branch (c), chose γi = ¬αi. Therefore, at position i+ 1, branch (a) cannot be
chosen anymore. Intuitively, this is equivalent to paying a probability cost at
a position that should be free. In order to list all solutions, we go through

all
δ∑

i=0

(
t
i

)
possible positions, where t is the number of visits to case (c) in

Algorithm 3.

In the following paragraph, arguments for the soundness and completeness
of the algorithm are given, i.e., it is shown that the algorithm returns all the
δ-optimal solutions and only them.
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Soundness.

By Lemma 2 of [4], xdp+(α, β, γ) = 2−(n−1)+w, where w is the number of
visits to branch (a). In the modified algorithm, the outcome of branch (c)
is changed, effectively forbidding one access to branch (a) at most δ times,
therefore adding a factor at most 2−δ to the final probability.

Completeness.

Assume γ′ to be a δ-optimal output difference for a given (α, β), such that the
algorithm does not find it. Let γ′′ be a δ-optimal returned by the algorithm
for the same (α, β). Compare these differences bit-by-bit: if they differ at an
index that (in the difference γ′′) originated from the case (b), then γ′ is already
in the list; if the difference originates from case (c), then it is also already
returned since all the possible combinations of indices originating from case
(c) are flipped. As discussed before, the difference can not be originated from
case (a). Notice that it is always possible to choose γ′′ since the modified
algorithm (as well as Lipmaa and Moriai’s one) always outputs at least one
valid solution.

5.2.1 Complexity
As seen in chapter 3, the time necessary to find a good differential char-
acteristic is an important parameter to benchmark a solution and compare
different ones. Moreover, given that the final goal of this kind of research is to
estimate a cryptosystem’s security level, the code’s optimization gains even
more value. Since the analyzed variant of Algorithm 3 is called several times
during the tree search, as reported in the next sections, the analysis of the
complexity of this algorithm is performed. Instead, the MCTS algorithm is
based on random choices and cannot be properly analyzed, even though there
was an effort to optimize it. Lipmaa and Moriai’s Algorithm 3 is described in
the original paper as a linear-time algorithm. This is, however, not directly
from the description given by the authors: in particular, considering the case
α⊕ β = 2n − 1, then branch (b) is the only possible choice for all bit positions
except 0. This means that all 2n−1 choices for the remaining bits of γ are valid,
and the enumeration is exponential.

On the other hand, it is possible to build a compact representation of all
possible γ in linear time by representing the solution space as a directed graph
G = (V,E), with 2 · n vertices, and at most 4 · n edges. In this representation,
vertex Vi,0 and Vi,1 represent the statement bit i of γ takes value 0 (respectively
1), and vertices Vi,j is connected to vertex Vi+1,k if (γi, γi+1) = (j, k) is a pair
that belongs to the set of all optimal γ values. A γ value is 0−optimal if
and only if V0,γ0 , V1,γ1 , . . . , Vn−1,γn−1 is a connected path in the graph. Through
the loop of Algorithm 3, each vertex is visited at most once, yielding a time
complexity in O(n). Sampling an optimal solution from the graph can then
be done in O(n) by following a connected path.
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This representation is possible because the choice of a bit value at position
i is independent of the choices made before position i− 1. On the other hand,
when further dependencies exist, as in the presented variant, the situation is
more complex.

This variant introduces additional computations:

1. A pass to zero some values of C(α, β) is added, according to the fix
presented in section 5.1. The computation becomes linear in n, in the
worst-case, rather than logarithmic;

2. In order to enumerate all the solutions, it is necessary to go through
δ∑

i=0

(
t
i

)
(with t the maximum number of visits to the (c) branch) possible

positions of flip in the (c) case.

Point 1 is not an issue, as the computation of C(α, β) is only done once at
the start of the algorithm; on the other hand, point 2 prevents the application
of the aforementioned graph approach, as the possible choices for bit i now
depend on a state defined by the number of times branch (c) was flipped. In
contrast, a graph representation requires bit i to depend only on bit i− 1, not
on the previous choices.

A possible solution is to have one graph for each combination of flipped

bits, effectively multiplying the computation time by
δ∑

i=0

(
t
i

)
, resulting in a

complexity in Θ(nδ), with δ a constant. Crucially, the number of visits to
branch (c) t is loosely upper bounded by n

2
(as it requires a chain of odd

length), and in the application of the SP-MCTS algorithm δ is restricted to
values lower than 3, so that the computation overhead factor is upper bounded
by

2∑
i=0

(
32
i

)
= 528 for 64-bit words, as in SPECK-128.

Sampling a δ-optimal solution from the graph, as is required in the search
algorithm presented in the next section, can be done in linear time by choosing
one of the graphs at random and following a connected path.

5.3 General algorithm
The main idea behind the general algorithm is to start with a tree as small as
possible to keep the computations feasible and gradually expand it using the
algorithm presented in subsection 2.2.4 and modified in the previous section.
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Algorithm 1 The final algorithm
Require: a bit-size n ≥ 1, two n-bits input differences α, β and the offset 0 ≤ δ ≤

n− 1.
Ensure: all possible output differences γ such that xdp+(α, β → γ) differs by at

most a 2−δ factor from the optimal one in the form of graphs. It is possible to
sample from them using a simple randomized traversal.

Class Node:
allowedValues = [False, False]

graphs = []
p = C(α, β)

for i = 0 to n− 1 do
j = n− 1− i
if αj = βj and αj−1 = βj−1 and αj ̸= αj−1 then

pj = 0
else

break
end if

end for

procedure GenGraph(α, β)
possibleCPositions = [i for i = 1 to n− 1 if αi = βi]
positionsLists = [combinations(possibleCPositions, i) for i = 0 to δ]
for positions in positionsLists do

graph = [new Node() for i = 0 to n− 1]
graph[0].allowedValues[α0 ⊕ β0] = True
for i = 1 to n− 1 do

for j ∈ {0, 1} do
if αi−1 = βi−1 = j then

graph[i].allowedValues[αi ⊕ βi ⊕ βi−1] = True
else if αi ̸= βi or pi = 1 or i = n− 1 then

graph[i].allowedValues = [True, True]
else

if i is in positions then
graph[i].allowedValues[1− αi] = True

else
graph[i].allowedValues[αi] = True

end if
end if

end for
end for
Append graph to graphs

end for
return graphs

end procedure
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Building the initial tree

Using the algorithm from Biryukov et al., presented in [6] and reported in
Listing 2.1, the initial set of nodes, represented by differences with a differ-
ential probability above a certain threshold probability t = 2−τ , is built. The
initial plaintext difference is thus to be chosen from this pDDT, and all the
nodes are appended as children of a virtual root node before the search.

Exploring paths

The search for differential characteristics is modelled as runs of a single-player
game: the algorithm starts from the virtual root node, which represents the
fixed starting configuration of the game board, and then selects a difference
inside the pDDT as the initial difference, the one injected in the plaintext.
There are two different ways of choosing the following nodes for each round,
based on the number of visits of the current node and a threshold k. Supposing
that each node has at least one child, then:

• If the current node has already been visited k times or more, we select
the child that is associated with the highest score, computed using the
UCT formula by Kocsis et al. [9], described in subsection 2.5.2; the same
formula is used to update the score of each node at the end of the run,
during the backpropagation phase.

• If the current node has been visited less than k times, then the next
node is chosen uniformly at random from the children nodes; what does
not change is that, as before, the UCT formula is used to backpropagate
the outcome of the run to the parent nodes in the path. This is done to
give enough initial information to the tree before making choices based
on the UCT and thus based on the previous runs of the game.

The two situations represent respectively the selection phase, in which one
of the children nodes is chosen, and the simulation phase, in which random
playouts are performed, of the classic MCTS algorithm.

Choosing the plaintext difference

An exception to the previous paragraph is made for the selection of the initial
difference: in a way similar to the simulation phase, for the first k′ iterations,
the difference is chosen completely at random, with a uniform distribution of
probability, after that, the input differences are stored in a list sorted by the
UCT score in descending order, and then the next node is selected using a ge-
ometrical distribution with probability p, favouring the best node in terms of
score but giving the possibility to be also selected to the worse nodes. By vary-
ing the parameter p, the balance between exploration and exploitation, really
important when the MCTS algorithm is applied, changes. The experiments
show that this expedient improves the performance of the initial difference
selection, as it prevents the algorithm from getting stuck on a single input
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difference with a good score just by chance, especially at the beginning of the
search.

Expanding the tree

Up to this moment, there was the assumption that every node had at least
a child. If this does not happen, i.e., the current node is not an entry in the
stored pDDT, the expansion is in charge of adding one or more differences
to the tree as children nodes. The expansion uses the modified Lipmaa and
Moriai’s algorithm 3 presented in section 5.2. Multiple differences are taken
into account, and not just one of the optimal ones, as this results in a very
local strategy that limits the probabilities of finding longer characteristics,
which is one of the main limitations of Dwivedi et al. in [17].

If instead a small penalty threshold δ is fixed, and all the possible differ-
ences whose probability differs at most 2−δ from the optimal one are listed,
the successive choices may be more rewarding. These differences are then
added to the tree, and the MCTS algorithm can continue its execution. This
last part will be covered with more details in section 5.4 when addressing the
specific case of the SPECK cipher.

Assigning a score to the nodes

To determine the score to be assigned to the nodes, the UCT formula is
used, with a custom formula for the payouts. It resembles both the global
weight of the characteristic and a local one, computed as the weight from
the current node to the end of the characteristic. The two values are then
averaged with different proportions, as in the α-AMAF heuristic presented in
subsection 2.5.3. In formulas, the playout is given by:

x = βG+ (1− β)L,

where:

• G is the global score of the characteristic, calculated as 1
w , with w being

the weight of the differential characteristic.

• L is the local score, calculated as α 1
w′ , where w′ is the weight of the differ-

ential characteristic from this point to the end, and α is a normalization
constant.

• 0 ≤ β ≤ 1 is the constant that balances the two parts of the score.

The purpose of this kind of scoring is to give information about both the good-
ness of a characteristic containing a given difference, but most importantly,
about the goodness of said difference relative to the current round because
some choices can be good at some point in the characteristic (i.e., near the
end, if they have a very good probability) but very bad in others (i.e., near
the beginning, if they do not generate good successive choices). This avoids
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having a too local strategy that does not produce results when looking for
long characteristics.

This score is then used to backpropagate the results to each path node up
to the root.

5.3.1 Limitations of this approach
As anticipated, the previous approach, being very generic and not optimized,
is subject to issues when applied to an actual cipher. The two main limitations
that arose during the application to SPECK, but not necessarily related to
the cipher, are described below.

The branching number

Even if Lipmaa and Moriai’s algorithm is run with a small value of δ, the
tree expansion phase can end with a very high number of children nodes.
Recalling what happens with the rest of the MCTS algorithm, it is clear
that a greater expansion makes the research longer and longer, as the scores
assigned to each node are more precise with more visits to that node. If the
tree becomes too wide, a huge number of iterations is needed to visit all the
nodes in enough time. A limitation on the number of children nodes added
to the tree is required, but this must not negatively affect the search results.
The branching number issue is also the main reason that chess (and other
popular board games) are dominated by computers, while Go is a lot harder.
When comparing the branching factors of the two games, it turns out that
chess has a value of 35, while Go’s one is about 200 [27], a lot larger. The
difference in the corresponding search trees is huge, given that this factor has
an exponential impact on their sizes. The branching factor of a differential
characteristics search can grow even more than Go’s one, having a maximum
value of 2n−1 when α⊕ β is 2n − 1.

The choice of the plaintext difference

There is a slight contradiction in the proposed algorithm: the selection of the
initial difference from a pDDT is in contrast with the criticism of the work
from Dwivedi et al. when explaining the expansion phase about the locality
of their choice: a difference that is inside the pDDT is in general, excluding
the case of particular ciphers that have, e.g., cyclic differential characteristics,
very good for short characteristics but non-optimal for long ones. In fact, the
characteristics reported in the literature start with differences that are not
optimal in the short term but allow limited growth of the global weight. It is,
therefore useful to modify the selection of the starting difference according to
this observation.

The solution to the cited issues depends heavily on the cipher analyzed;
the path taken for the case of SPECK, which resulted in a decently fast search,
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is reported in the next section.

5.4 Application to SPECK
In this section, the previously stated issues regarding the general algorithm
for differential characteristics search with Monte-Carlo Tree Search are solved
with the aim of the application to the SPECK cipher. The following consider-
ations are based on the smallest version, SPECK32, but then they are adapted
to work for the other versions.

Given that MCTS is basically a graph search, the final goal is to compare
its performance with that of Matsui-like approaches; that is why the tool is not
very optimized to go for a high number of rounds for the biggest versions of
the cipher since it is already producing better results than the aforementioned
techniques.

5.4.1 The start-in-the-middle approach
The first solution described is to solve the problem that probably limits the
previous method, that is the one related to the choice of the plaintext differ-
ence. To better explain the problem, alongside with its solution, it is useful to
examine all the optimal differential characteristics for 9 rounds on SPECK32;
in order to be sure that there is no more optimal characteristics, a check with
a SAT solver, namely CryptoMiniSat, was performed. The optimal character-
istics are listed in Appendix A.

A first observation is that only two characteristics start with a transition
with probability 2−3, while for more than half of them the startintg prob-
ability is 2−5. In [6], Biryukov et al. state that a pDDT containing all the
differentials with probability at least 2−5 has about 230 elements, a number of
nodes unmanageable with MCTS since, as already stated in the previous sec-
tion, the algorithm needs to visit each node, and its children, multiple times
to produce good results.

The second thing to notice is that each characteristic among the optimal
ones contains a differential with probability 2−0 or 2−1. A pDDT containing
only the differentials wit those probabilities has 183 elements, which is clearly
a more limited number, and thus more tractable, than 230. This suggests a
method to allow the search of differential characteristics for a higher number
of rounds with respect to the general algorithm: if the target number of rounds
is r, and the high probability differential is at round s, then it is possible to
build a cache of low weight differentials by attacking the cipher on r−s rounds
for a given number of iterations of the SP-MCTS algorithm. This way, each
explored differential is mapped to a characteristic (with the lowest weight
among the ones found) starting with that same differential. At this point, it
is possible to run again the SP-MCTS algorithm in the backward direction,
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for s rounds. Moreover, the algorithm is almost the same, since it holds that

xdp+(α, β, γ) = xdp−(α, β, γ)

and thus the Lipmaa and Moriai’s algorithm for the modular addition still
works. The only change necessary regards the order of the linear operations
in the cipher, in order to get a differential for SPECK from the one for the
modular addition.

Finally, it is not even needed to know the position s of the high probability
differential since it can be bruteforced given the low number of possible values.
In practice, r+1 parallel processes can be run, each one with a different value
for s; if the assumption that a high probability differential holds (which is,
as far as is known, true), then is very likely that one of the processes will
generate an optimal characteristic. In the submitted paper, this strategy is
called start-in-the-middle, in analogy with the well-known term meet-in-the-
middle.

5.4.2 Branching number and the choice of δ

Solved the issue of the starting difference, the remaining one is that of the
branching number. Let the offset of a differential characteristic be the max-
imum possible difference between the weights of its differentials and the op-
timal ones. For example, if all the transitions in the characteristic are the
optimal ones, its offset is 0. Otherwise, if there is at least a differential with
probability that differs from the optimal one by a factor 2−δ and the value of
δ is the maximum one among all the differentials, then the characteristic has
offset δ.

Given that all the optimal characteristics on SPECK32 are listed in Ap-
pendix A, it is possible to analyze what happen in that case. It turns out that
none of them has offset 0, while only three, very similar to each other, have
offset equal to 1. All the other characteristics have at least one transition that
makes their offset equal to 2, except one that has offset equal to 3. No bigger
offset are present among the 15 optimal trails. This is the reason why all the
experiments were executed with a value of δ between 1 and 3. This allows to
limit the growth of the search tree so that it is possible to explore each branch
several times. This results in assigning accurate scores to the nodes with the
final goal of doing better choices during the exploration of the tree.

An exception to this behaviour is the expansion of the nodes corresponding
to the last round. In fact, no more differences will be added to the built
characteristic. This justifies the choice to set, only in this case, the δ parameter
to 0 in order to always have an optimal differential.
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5.4.3 Adding further heuristics to improve the search
The two proposed solutions are enough to lower the average branching num-
ber for SPECK32 to 83, if the offset δ is 1. This number has the same order of
magnitude of chess, indeed it is sufficient to find an optimal differential char-
acteristic on this version of the cipher. But, when scaling on bigger versions,
the branching number is still too large to perform a feasible search. Therefore,
further heuristics are introduced in the tool, with the aim of lowering its value
even more to a doable one.

Low Hamming weight differences

A heuristic already used in literature to improve the performances of differ-
ential characteristics search algorithms on SPECK, for example by Biryukov
et al. in [26], regards the Hamming weight of the differentials. In fact, the
differentials of ARX ciphers with high probability usually have low Hamming
weight. Informally, this is due to the fact that higher probabilities are related
to a smaller number of carry propagations in the modular addition.

The tool exploits this property with two different filters, based on the
Hamming weight of the three words of each differential called α, β, γ (a SPECK
differential has four words, but as already pointed out, the fourth one is
uniquely determined by the other three). One filter limits the Hamming weight
of each word, the second one puts a cap to the sum of the three Hamming
weights.

Analyzing these quantities in the optimal characteristics for SPECK32, it
is found that, for a single 16-bit word, the Hamming weight has a maximum
value of 8 and an average of 4.7, while the sum of the three word together has
a maximum Hamming weight of 20, with an average of 13.1. These values are
used to set the parameters described in section 7.1: the exact same values for
SPECK32 and an estimate for the bigger versions.

The expansion threshold

Another way to reduce the size of the search tree is to not expand some
nodes, in the sense that not all the nodes generated with the Lipmaa and
Moriai’s algorithm are added as children nodes in the tree. This last bound
is on the differential probability of the node, limited by a fixed threshold. For
SPECK32, this threshold is 2−12, thus transitions with worse probability are
not stored in the tree.

The reason behind this limitation is that usually a good characteristic has
a very small number of transitions that are non-optimal, while a differential
with a very low probability generates a very high number of differentials that
are δ-optimal. Informally, this can be explained noticing that a low optimal
probability implies several visits to branches (b) and (c) of Algorithm 3, and
each time the branch (b) is visited, a new valid differential is added (since
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both the values for the current bit are possible), while each time the branch

(c) is visited, the factor
δ∑

i=0

(
t
i

)
in the enumeration is affected, and so is the

number of solutions.

Using these heuristics significantly reduces the size of the search space,
and enable better scaling for larger versions of SPECK.
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System Implementation

In this chapter, the low-level implementation of the automatic tool is de-
scribed. The structure will follow the one of chapter 5 to ease the comparison
between the design and the implementation. Although non-optimal in terms
of performance, the code written is entirely in Python (the execution is fast
enough using PyPy as an interpreter).

6.1 General purpose functions
Some general-purpose functions are used inside the algorithm. Among them,
some functions compute operations performed by manipulating the bits of
the words, such as the bitwise XOR, the bitwise rotations, and the bitwise
negation.

The function ham_w computes the hamming weight of its input, i.e. the
number of ones in its binary representation, while the function eq(x, y,
z), as already seen, has a 1, in binary, at a certain index i, if and only if
xi = yi = zi.

6.2 Lipmaa and Moriai’s algorithms
The algorithms from Lipmaa and Moriai that are needed for the tree search are
three: the all-one parity, a function used in the computation of the common
alternation parity, which is in turn used in both the original and modified
versions of Algorithm 3.

6.2.1 The xdp_add function
The search for differential characteristics is based on the computation of the
XOR differential probability of the modular addition, which is computed,
according to Algorithm 2 in [4], as:

46



System Implementation

def xdp_add(a,b,c,n = word_bits):
if (eq(a<<1,b<<1,c<<1,n) & xor(a, xor(b, xor(c, (b<<1) &

((1<<n)-1))))) == 0:
mask = 2**(n-1) - 1
return 2**(-ham_w(negation(eq(a,b,c),n) & mask))

return 0

Listing 6.1: Implementation of the xdp of modular addition

6.2.2 The aop function
The aop function returns the all-one parity of its input x, i.e. a n-bit number,
with n equals to the word size, such that the i-th bit is 1 if and only if
the longest sequence of consecutive ones xixi+1 . . . xi+j has odd length. Its
implementation is the following.
def aop(x, n = word_bits):

l2n = int(log2(n))
rx = [0] * l2n
ry = [0] * l2n
rx[0] = x & (x>>1)
for i in range(1,l2n-1):

rx[i] = rx[i-1] & (rx[i-1] >> pow(2,i))
ry[0] = x & (negation(rx[0], n))
for i in range(1,l2n):

ry[i] = ry[i-1] | ((ry[i-1] >> pow(2, i)) & rx[i-1])
return ry[-1]

Listing 6.2: Implementation of the all-one parity function

6.2.3 The c function
The c function returns the common alternation parity of the two words in
input, defined in subsection 2.2.4.
def c(x, y, n = word_bits):

tmp = negation(x^y, n)
return aop(tmp & (tmp >> 1) & (x ^ (x >> 1)), n)

Listing 6.3: Implementation of the common alternation parity function

6.2.4 The find_all_lower_prob function
The find_all_lower_prob function is directly called in the SP-MCTS al-
gorithm, while the two previous functions are only used inside this one. Its
implementation follows the described Algorithm 1.
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6.3 Monte Carlo Tree Search related functions

6.3.1 The initial tree
The code for the initial set of differentials is not reported as it is a pDDT
with a fixed threshold, meaning that the algorithm is the same described in
Listing 2.1.

6.3.2 Path exploration
The exploration of a path is implemented in a function that receives in in-
put the already selected starting difference. Then, each round checks if the
current node has some children. If it does not, the expansion of the tree is
performed, exploiting the modified version of Algorithm 3 from Lipmaa and
Moriai, keeping only those differentials with a probability better or equal to
the threshold fixed for the tree expansion. Otherwise, based on the number
of visits to that node, a random simulation or a selection based on the previ-
ous visits is performed, meaning that the node for the next loop iteration is
chosen.

At the end of the loop, the probabilities of the traversed nodes are used
to compute the score of the playout using the AMAF heuristic. The path
score is then used to update the traversed nodes’ scores, thus performing the
backpropagation phase.

6.3.3 Choice of the initial difference
The plaintext difference is firstly chosen at random with a uniform distribution
to give some information to the tree. It is sampled according to its UCT score
but using a geometric distribution to avoid being stuck in a local maximum for
the said score. Given that an ordered list must be kept in memory, the choice
is that of using a SortedList from the sortedcontainers Python module.
It is specifically optimized to insert and retrieve sorted elements efficiently.

6.3.4 Scoring the nodes
The scoring formula is the one described in section 5.3, and it is used at the
end of the exploration of each path. An additional normalization constant,
SCORE_PARAM, is added to rescale the scores, leading to better performance.
The variable scores contains the data structure that maps a number of rounds
and a difference into its number of visits, the average of its playout scores,
and the sum of the squares of the identical scores.
beta_factor = 0.2
for j in range(len(path)):

L = (l-j)/(l*cs[j+1]) if cs[j+1]>0 else 1
G = 1/weight if weight >0 else 1
tmp_score = SCORE_PARAM*((1-beta_factor)*L + beta_factor*G)
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scores[(j,*path[j])][1] =
((scores[(j,*path[j])][0]-1)*scores[(j,*path[j])][1]+
tmp_score)/scores[(j,*path[j])][0]

scores[(j,*path[j])][2] += tmp_score**2

Listing 6.4: Implementation of the score used in the backpropagation

6.3.5 The start-in-the-middle approach
As said, the differential characteristics search is split into two different searches,
starting from a common point and going in two different directions. This is
done by repeating what is performed in subsection 6.3.2, but going back-
ward. A key concept to remember is that xdp+(α, β, γ) = xdp−(α, β, γ), which
reduces the differences of the two searches.

6.3.6 The UCT formula
To conclude, the last piece needed for the SP-MCTS part is the computation
of the UCT formula, implemented as follows.
def compute_uct(round, start_diff , end_diff):

if scores[(round+1,*end_diff)][0] == 0:
return float('inf')

term1 = scores[(round+1,*end_diff)][1]
term2 = C*sqrt(log(scores[(round,*start_diff)][0])/

scores[(round+1,*end_diff)][0])
term3 = sqrt((scores[(round+1,*end_diff)][2]-

scores[(round+1,*end_diff)][0]*
scores[(round+1,*end_diff)][1]**2+D)/
scores[(round+1,*end_diff)][0])

return term1 + term2 + term3

Listing 6.5: Implementation of the UCT formula
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Chapter 7

Validation and testing

In this section, a validation of the results achieved with the developed tool
is performed. The main points refer to the correctness of the algorithm, with
particular attention to checking that it is actually learning by analyzing the
average of the weight of the found differential characteristics, and to the cor-
rectness of the characteristics themselves, i.e., checking that each differential
has the correct probability associated.

7.1 Experimental results
The experiments are performed on a laptop with an Intel® CoreTM i7-11800H
3.6GHz. The code is written in Python and executed with PyPy 3.6. The
tool’s performance is presented in Table 3.1. In the explanation of the algo-
rithm, several parameters were introduced; the values used in the experiments,
possibly different when dealing with the different versions of SPECK, are:

• C = 1
4 and D = 100 for the UCT formula, for all the versions.

• t = 1
2 for the initial tree built from a pDDT.

• β = 1
5 to balance the scoring function for all the versions.

• p = 1
4 for the geometric distribution, for all versions.

• δ = 2 for all the versions except SPECK32, for which δ = 1 was enough
(note that this means that not all the optimal differential characteristics
can be found with this setting).

• 106 forward iterations for each version to build the cache.

• (t1, t2) = (8, 20) for the two Hamming weight thresholds on SPECK32,
while (12, 24) was used for all the other versions.

• A probability threshold of 2−12 was used for the tree expansion on
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SPECK32, while 2−16 was used on all the other versions.

An essential difference between the MCTS approach and the others is
that the former is not complete, i.e., it cannot determine if a differential
characteristic is optimal. Therefore, it keeps running for the specified number
of iterations. In the performed experiments, only the forward search has such
a parameter, while the backward search runs for an indefinite number of
iterations. The timing reported in Table 3.1 represents, therefore, how long it
took to the algorithm to find the best differential characteristic, since it does
not have a stopping time.

For SPECK32 and SPECK48, the smallest versions of the cipher, the opti-
mal differential characteristics are found significantly faster than for state-of-
the-art solutions of both graph-based search methods and automatic solvers.
This is encouraging, even though, as already mentioned in subsection 3.2.2,
solvers usually require additional time to prove the optimality of the found
solution; that is one of the reasons behind the fact that SP-MCTS is not
directly compared to this method.

SPECK64 appears to be more difficult for the presented algorithm, as
it is only able to find good differential characteristics up to 13 rounds. The
explanation is probably that the depth of the tree makes the search difficult,
as characteristics longer than 12 rounds are difficult to find with MCTS. In
fact, the differential characteristics reported in the literature for SPECK64
on 15 rounds have a high probability transition near the end or the beginning
of the sequence of differences but never in the middle.

For the biggest versions of the cipher, the tool outperforms the previous
graph-based methods on the same number of rounds, with a search of about
one minute and a half against at least 48 and 2 hours for SPECK96 and
SPECK128, respectively. For both versions, a second result is added with
a non-optimal characteristic on more rounds to compare the Single Player
MCTS approach with the Nested MCTS from Dwivedi et al.

It is clear, however, that on these versions with a large state, automatic
solvers have the best results; thus, more work is necessary to make graph-
based searches competitive.

7.2 Correctness of the characteristics
During the development of the tool, some of the found characteristics were
wrong, meaning that at some point, the algorithm introduced some differences
with the wrong weight. Therefore it is important to verify the presented results
and to reveal some bugs in the code, to have a way to test the produced output.

The following function computes the probability of a differential for a sin-
gle round of SPECK.
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def sp_diff_prob(left_input_word , right_input_word ,
left_output_word , right_output_word ,
alpha = 7, beta = 2, n = 32):

if right_output_word != lrot(right_input_word , beta,
n)^left_output_word:

return 0
return xdp_add(rrot(left_input_word , alpha, n),

right_input_word , left_output_word , n)

Listing 7.1: Differential probability of a difference on SPECK

The computed value is then checked against the list of weights returned by
the SP-MCTS algorithm, in the following way, where diffs is the list of input
differences for each round, and weights is the corresponding list containing
the opposite of the logarithm of the probabilities:
def test(diffs, weights, n=32, alpha=7, beta=2):

res = []
weights = [0] + weights[:]
for i in range(len(diffs)-1):

x = sp_diff_prob(diffs[i][0], diffs[i][1],
diffs[i+1][0], diffs[i+1][1],
n=n, alpha=alpha, beta=beta)

w1 = -int(log2(x)) if x>0 else float('inf')
w2 = weights[i+1]
res.append(w1 == w2)

return (all(res))

Listing 7.2: Verification of a differential characteristic

7.3 Correctness of the algorithm
In order to check the correctness of Single-Player Monte Carlo Tree Search, a
possible way is to compute the average of the scores achieved (or, in the case
of differential cryptanalysis, the weights of the characteristics) and to verify
that is improving.

In the following figures, the weights found by the developed tool are re-
ported. The figures show the frequencies of the results at different times in
the search, scaled in order to obtain densities and compare the different situ-
ations. Figure 7.1 and Figure 7.2 show such densities for SPECK32 on 4 and
6 rounds respectively.

As it can be seen in Figure 7.1, the distribution of the weights found
by SP-MCTS change over time: with the advance of the iterations low (and
better) weights are found more frequently, while the high ones are avoided.
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Figure 7.1: Weights distribution on 4 rounds of SPECK32
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The case of 6 rounds is depicted in Figure 7.2. As expected, SP-MCTS
encounters difficulties and the global trend is to find weights of high value;
however, also in this case the algorithm is learning, as good weights are pre-
ferred in the long term.

In Figure 7.3 and Figure 7.4, instead, it can be seen how the search is
more difficult, as the characteristics with high weight are more frequent than
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Figure 7.3: Weights distribution on 4 rounds of SPECK64

the low weight ones since the start; furthermore, also the improvements are
slightly slower with respect to the SPECK32 case.

7.4 Fine tuning of the parameters
Several tests were conducted also to find the optimal values of the parameters
involved. In particular, an extensive search was needed to find the final values
for the constants C and D of the UCT formula and, even if not reported as
a parameter, of the scoring function. The latter refers to the form of G and
L in section 5.3. The chosen one, as reported is 1

w , but other functions such
as (the reciprocal of) polynomials, logarithms and exponentials were tested.
The functions had similar performances in the early phase of the execution,
while some differences emerged later.

Regarding the numerical constants, instead, several values, with very dif-
ferent order of magnitude were tested, and the combination that gave the best
results in the tests is the reported in section 7.1.
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Chapter 8

Conclusions

This Thesis showed how to apply the Single-Player Monte Carlo Tree search
in the field of differential cryptanalysis of the SPECK cryptosystem, allowing
researchers to find differential characteristics of the cipher. The method is a
novel one, introduced for the first time in the context of this work.

Moreover, an inconsistency in Lipmaa and Moriai’s Algorithm 3 was found
and fixed, and the algorithm was revisited to provide an efficient enumeration
of the so-called δ-optimal differentials. This variation was then used to expand
the search tree.

Even though the general approach is subject to several limitations, a solu-
tion was found for each of them. The use of specific heuristics was fundamental
to solve the issues.

The algorithm works exceptionally well with the small version of SPECK,
namely SPECK32 and SPECK48. At the same time, it has some difficulties
with the other versions, especially if the resulting characteristic has an ex-
cellent differential far from the center. In particular, the developed approach
is better than other graph-based approaches in almost all cases, while auto-
mated solvers are the best tools for the versions with a large state. This is
encouraging since further research could lead to a competitive implementation
with solver-based methods, or it could lead to the finding of new differential
characteristics on different ciphers.

The analysis performed is very specific to the SPECK cryptosystem. Fur-
ther work may involve the analysis of more ciphers, such as other ARX,
especially the ones with more than one modular addition or Substitution-
Permutation Networks. Moreover, given that the current implementation has
difficulty dealing with a high number of rounds, other optimizations can be
explored. For example, there could be the possibility to parallelize at least
part of the code, gaining speed. Another improvement could come from intro-
ducing additional heuristics, possibly derived through reinforcement learning.
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To conclude, the results presented in this work constitute a new step in
graph-based approaches. These are more challenging than solver-based ones
but have the potential to reach better performances thanks to the specializa-
tion of the proposed algorithms.
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Appendix A

All optimal characteristics for 9
rounds on SPECK32

r ∆L ∆R − log2 p
r ∆L ∆R − log2 p

r ∆L ∆R − log2 p

- 0211 0a04 - - 7448 b0f8 - - 8054 a900 -
1 2800 0010 4 1 01e0 c202 5 1 0000 a402 3
2 0040 0000 2 2 020f 0a04 5 2 a402 3408 3
3 8000 8000 0 3 2800 0010 5 3 50c0 80e0 8
4 8100 8102 1 4 0040 0000 2 4 0181 0203 4
5 8004 840e 3 5 8000 8000 0 5 000c 0800 5
6 8532 9508 8 6 8100 8102 1 6 2000 0000 3
7 5002 0420 7 7 8000 840a 2 7 0040 0040 1
8 0080 1000 3 8 850a 9520 4 8 8040 8140 1
9 1001 5001 2 9 802a d4a8 6 9 0040 0542 2
- 1488 1008 - - ad40 0012 - - a540 0012 -
1 0021 4001 4 1 8148 8100 5 1 8148 8100 5
2 0601 0604 4 2 1002 1400 3 2 1002 1400 3
3 1800 0010 6 3 1060 4060 4 3 1060 4060 4
4 0040 0000 3 4 0180 0001 5 4 0180 0001 5
5 8000 8000 0 5 0004 0000 3 5 0004 0000 3
6 8100 8102 1 6 0800 0800 1 6 0800 0800 1
7 8000 840a 2 7 0810 2810 2 7 0810 2810 2
8 850a 9520 4 8 0800 a840 3 8 0800 a840 3
9 802a d4a8 6 9 a850 0952 4 9 a850 0952 4
- a000 0508 - - 7458 b0f8 - - 0050 8402 -
1 0448 1068 4 1 01e0 c202 5 1 2402 3408 3
2 80a0 c100 5 2 020f 0a04 5 2 50c0 80e0 7
3 0207 0604 6 3 2800 0010 5 3 0181 0203 4
4 1800 0010 5 4 0040 0000 2 4 000c 0800 5
5 0040 0000 3 5 8000 8000 0 5 2000 0000 3
6 8000 8000 0 6 8100 8102 1 6 0040 0040 1
7 8100 8102 1 7 8000 840a 2 7 8040 8140 1
8 8000 840a 2 8 850a 9520 4 8 0040 0542 2
9 850a 9520 4 9 802a d4a8 6 9 8542 904a 4
- 052a 9000 - - 056a 9000 - - d40a 0120 -
1 440a 0408 5 1 440a 0408 5 1 1488 1008 6
2 1080 00a0 4 2 1080 00a0 4 2 0021 4001 4
3 0083 0203 4 3 0083 0203 4 3 0601 0604 4
4 000c 0800 6 4 000c 0800 6 4 1800 0010 6
5 2000 0000 3 5 2000 0000 3 5 0040 0000 3
6 0040 0040 1 6 0040 0040 1 6 8000 8000 0
7 8040 8140 1 7 8040 8140 1 7 8100 8102 1
8 0040 0542 2 8 0040 0542 2 8 8000 840a 2
9 8542 904a 4 9 8542 904a 4 9 850a 9520 4
- 7c48 b0f8 - - 540a 0120 - - 7c58 b0f8 -
1 01e0 c202 5 1 1488 1008 6 1 01e0 c202 5
2 020f 0a04 5 2 0021 4001 4 2 020f 0a04 5
3 2800 0010 5 3 0601 0604 4 3 2800 0010 5
4 0040 0000 2 4 1800 0010 6 4 0040 0000 2
5 8000 8000 0 5 0040 0000 3 5 8000 8000 0
6 8100 8102 1 6 8000 8000 0 6 8100 8102 1
7 8000 840a 2 7 8100 8102 1 7 8000 840a 2
8 850a 9520 4 8 8000 840a 2 8 850a 9520 4
9 802a d4a8 6 9 850a 9520 4 9 802a d4a8 6

Table A.1: A list of all the differential characteristics with weight 30, the optimal
one, in SPECK32.
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