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Abstract

In the last years, role of technology is becoming more and more important, and
an increasing number of IoT (Internet of Things) devices are spread all over
the world. The presence of this large number of devices creates an IT security
problem, thus communication between them traditionally occurs through
the use of asymmetric cryptography, whose keys are distributed by means
of a Public Key Infrastructure (PKI). However, traditional PKIs have some
downsides as they are defined by a centralized structure, which intrinsically
leads to single-point-of-failures and complex revocation mechanisms.

The purpose of this thesis is therefore to create a Proof of Concept of a
Public Key Infrastructure that is no longer centralized, but distributed by
means of the innovative blockchain technology. The project was carried out
with the collaboration of a cybersecurity team of Security Reply S.r.l., by
starting from scouting the state-of-the-art of PKI and blockchain and, in
particular, from the research carried out by M. Toorani and C. Gehrmann
at the Swedish Lund University, who proposed a general model to create a
distributed PKI based on blockchain.

The developed and described framework has been designed for a set of
nodes that could represent IoT devices, vehicles using V2X (Vehicle to
Everything) technology or elements of a smart city. It demonstrates how
a decentralized structure can offer advanced security, as it eliminates the
weakness of single point of failure and avoids the issuance of fraudulent
certificates by centralized Certificate Authorities (CAs). The proposed model
has been built following Web of Trust concepts and integrating Hardware
Secure Module devices as Roots of Trust.
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Chapter 1

Introduction

Systems connected through a network, such as IoT (Internet of Things)
devices, are now part of everyday life [1]. All these devices require a huge
number of interconnections and communication channels, which must be
protected and must guarantee properties including authentication, authoriza-
tion, integrity, privacy, etc. Nowadays, in most cases, all these cybersecurity
properties are provided thanks to the use of asymmetric cryptography, which
envisages the use of key pairs composed by a private key, that must be kept
secret by its owner, and a public key, which is used to exchange messages with
other entities. Those keys are commonly distributed by means of traditional
PKIs, which are characterized by a hierarchical tree-structure where there
are root Certificate Authorities (root CAs) on the top, and other CAs below
them.

Each CA issues several digital certificates: signed documents which certify
the validity of a certain public key and guarantee the identity of its owner.
Therefore, PKIs have long played a central role in ensuring the security of
communication channels and in protecting sensitive data within distributed
systems. Their use is widespread all over the world and hierarchical systems
of Certificate Authorities allow for remarkable performance and security,
starting from root CAs.

However, these infrastructures have led to some problems, especially with
regard to the issuance of fraudulent certificates by compromised authorities.
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There are several causes for which a CA could be compromised and sign
fraudulent certificates [2]: ineffective identity validation, as happened for
FireFox browser in 2015 [3]; breaches in the system, as in DigiNotar case
[4]; insecure cryptographic algorithms (e.g. MD5) [5]; governments’ control
over CAs [6]; generic malfunctions or insecurities that can be exploited by
attackers [7]. For instance, the report of the DigiNotar breach (2011) indicated
a total of 531 issued fraudulent certificates, even for famous domains (e.g.,
*.google.com) [4]. Moreover, CAs’ main weakness lies in being a single point
of failure and in requiring the use of complex mechanisms for disseminating
information on certificates that have been revoked (i.e. CRLs and OCSP).
Hence, since in recent years, with the increase of low-consumption devices
such as those in IoT or IoV (Internet of Vehicles), which require multiple
authentication in a short time, and with the creation of entire smart cities,
it is possible to notice that it might be helpful to find alternative methods
to manage these public key infrastructures.

The first attempts to try to improve PKIs have been to create log-based
PKIs, in which certificates are not considered valid as long as they are
not logged in public append-only logs, or blockchain-based ones, in which
blockchain replaces the logs as they are used as append-only database
of signed transactions [8]. Those attempts tried to improve security of
PKIs, but indeed they did not removed the single points of failure, which
were CAs. For this reason, between years 2020 and 2021, Mohsen Toorani
and Christian Gehrmann, in their research at Swedish Lund University,
proposed a conceptual model which aims to completely remove CAs from the
infrastructure, by exploiting potential of blockchain technology as a Web of
Trust, in which certificate issuance and revocation can take place only after
a consensus between reciprocal-trusting entities (i.e. nodes) is successfully
reached [8]. These two researchers called their model DBPKI, which stands
for Decentralized Blockchain-based PKI.

Although DBPKI model, for simplicity, does not consider some privacy
issues, it is a good starting point to be able to create an efficient infrastructure
without centralized entities, especially since it plans to use an accumulator
in order to avoid the scanning of the entire blockchain to perform required
operations. Indeed, a Merkle-tree-based accumulator allows the devices
depending on DBPKI to extrapolate useful data or check whether a public
key has been revoked or not, by simply verifying the corresponding generated
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witness. Each new block in the blockchain contains the last updated version
of the accumulator and the witnesses corresponding to the valid keys. Thus,
by looking at the accumulator contained in the last block of the blockchain
only, a lot of computing time is saved, and all the other previous blocks in
the chain are kept as history for auditing purposes only.

Nodes belonging to DBPKI infrastructure are able to perform some oper-
ations on the PKI as a leader node, according to their role type, and each
operation needs to be approved by the consensus group. The latter is com-
posed by all the other nodes that, working as validators, will validate the new
proposal of the leader node. Selected consensus algorithm is PBFT (Practical
Byzantine Fault Tolerance), which is carried on following few phases, in
which specific messages are exchanged in multicast among validator nodes.
If a sufficiently large number of nodes agree on the new proposal, then it will
be added to the blockchain, otherwise it will be rejected.

Many other researches about alternatives to traditional PKIs have been
published in recent times until today, like [9, 10, 11, 12, 13, 14, 15, 16], but
most of them deviate from the idea of WoT that underlies the work of Toorani
and Gehrmann. Some of these, however, are very interesting and provide
valuable insights to further improve their DBPKI model. In particular,
the work of Chai et al. [14], which, by implementing the CyberChain
framework for V2X networks, proposes the use of DPBFT (Diffused Practical
Byzantine Fault Tolerance) instead of the standard PBFT proposed by
Toorani et al., or the research by Koa et al. [16], which implements reward-
and-punishment mechanism for the nodes. The latter, in particular, has been
used as inspiration for this thesis project, in order to improve the starting
DBPKI model. That improvement allows carrying out operations on the
basis of validations weighted on trust levels assigned to the individual nodes,
according to a custom mechanism for incentivization and disincentivization.

1.1 Objectives

This Master’s degree thesis project, carried out at Security Reply S.r.l.
consulting company, whose focus is on cybersecurity and personal data
protection, had the aim to realize a Proof of Concept of the PKI conceptual
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model proposed by Toorani et al. and, after that, to analyze it and look for
possible improvements. In more details, goal of this work was to achieve the
following objectives:

• Research for state of the art and scouting of possible solutions for
blockchain-based PKI;

• Study of main concepts related to HSM (Hardware Secure Module) and
PKCS#11 standard;

• Realization of a PoC of a decentralized PKI based on WoT and block-
chain, by using a HSM as Root of Trust;

• Analysis of the produced PoC and implementation of effective enhance-
ments based on the use of dynamic trust weights and of a reward-and-
punishment mechanism.

1.2 Outline

The remaining parts of this document are organized as follows:

• Chapter 2 - Background: within this chapter, a brief description of main
concepts needed as basic knowledge background is provided

• Chapter 3 - State of the art: in this chapter, current state-of-the-art of
alternative solutions to centralized PKI is given

• Chapter 4 - Solution design: this chapter introduces conceptual model
and design of the proposed solution

• Chapter 5 - PoC implementation: this chapter describes the actual
implementation of the Proof of Concept

• Chapter 6 - Results and validation: this chapter contains the achieved
experimental results and the PoC validation, as a comparison with all
requirements presented in previous chapters

• Chapter 7 - Conclusion: in the end, this last chapter summarizes the
achieved results and draws the conclusions of the thesis

4
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Lastly, at the end of this document, there are comparable appendices
containing some of the used algorithms and procedures.

5



Chapter 2

Background

As PKI and asymmetric cryptography are two of the main topics for cyberse-
curity nowadays, it is very important to understand how they usually work,
in order to be able to better compare traditional PKI with the proposed one.
On the other hand, blockchain is an innovative technology that has spread
quickly in recent years, especially regarding cryptocurrencies, so it is worth
investigating to discover its potential.

This chapter introduces basic knowledge of the aforementioned relevant
topics and of all other topics concerning this document. In particular, section
2.1 describes Public Key Infrastructures and their functionalities. Section
2.2 refers to the notion of Root of Trust and how it is related to the concept
of HSM, the hardware module needed to handle keys distributed by means
of a PKI. It also presents PKCS#11, the programming standard used to
communicate to HSMs. Section 2.3 describe blockchain technology, while
sections 2.3.1, 2.4 and 2.5 introduce the reader to other basic concepts,
necessary in understanding how a consensus mechanism should work, what
a Web of Trust is made of and what an accumulator is, respectively.
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2.1 PKI

A Public Key Infrastructure, often abbreviated as PKI, is an “infrastructure
whose services are implemented and delivered using public-key concepts and
techniques” [17].

2.1.1 Symmetric and asymmetric cryptographies

Before discussing the infrastructure itself, it is needed to make a premise and
understand what asymmetric cryptography is and what is meant by the term
“public key”. To better understand these significant concepts, a comparison
between symmetric and asymmetric cryptographies is presented.

Symmetric cryptography

Imagine two friends, Alice (A) and Bob (B), would like to share some news
among them, but they want no one else to understand their messages. They
decide to choose a common passphrase which has significance only for them,
and use it to modify their messages, in a way that only who knows the
secret passphrase will be able to decipher and read them. In this very
simple example, A and B, which could be two people, two devices or, more
generally, two entities, are hiding the information contained in those messages
by means of symmetric cryptography. The secret message that sender A
is sending to recipient B, is usually known as plaintext when it is in clear,
and as ciphertext when it is incomprehensible for others. The modification
used to make a plaintext become a ciphertext is called encryption, while
the opposite transformation is the decryption. The pre-shared common
information, known only by A and B, is the key for that communication
(sometimes known as secret key or symmetric key) [18, 19].

7
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Figure 2.1: Symmetric cryptography model (Source)

Asymmetric cryptography

In a different way, instead, asymmetric cryptography allows secure communi-
cation between two entities that do not have any pre-shared secret. This is
possible by assigning a pair of keys to each entity, instead of using a single
key for both of them. A keypair is composed by a secret key (sk), that must
be known only by its owner, and a public key (pk), which can be known by
all external entities, as per definition. The two keys must be mathematically
related and it should be infeasible to recover a secret key starting from the
corresponding public key1.

In this way, by means of asymmetric encryption, it is possible for A to
send a secret message to B, by simply encrypting it using B’s public key.
Doing so, B, being the only one to know the corresponding secret key, will
be the only one to be able to decrypt the generated ciphertext [18, 19].

Moreover, asymmetric cryptography provides another security functionality:

1Infeasible since the amount of time and computing resources necessary to derive a
private key would be too large.

8
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Figure 2.2: Asymmetric cryptography model (Source)

the digital signature.

Digital signature is the analogue of handwritten signature, since, when
Alice signs some document or data, that new signature will bind Alice’s
identity with those data, and all other entities will be able to verify validity
of that signature. Digital signature is even more secure than handwritten
one, since it cannot be forged. As modeled in Figure 2.3, signing operation is
made by encrypting some data (usually the result of a hash function2) with a
private key, while verification of a signature, received along with some data,
is made by decrypting it using the corresponding public key, and verifying
that result obtained from decryption is equal to received data.

2.1.2 Certificate Authority (CA)

As explained above, associations between entities and public keys are needed,
especially when these entities do not know each other, which is the most

2A hash function is a function mapping data of any size to a fixed-size value.

9
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Figure 2.3: Digital signature model (Source)

common and generic situation. The way these associations are usually
created, is by appointing few trusted authorities, in charge of assigning a
public key to the requesting entity. These authorities are named Certificate
Authorities (CA) and form the basis of a Public Key Infrastructure.

A CA assigns a public key to an entity, which could be a person or an
organization, by digitally signing a data structure containing the public key
and some data about entity’s identity. This particular signed data structure
is known as Public Key Certificate, since it certifies that a public key is
related to a certain entity. Usually, these certificates are also called X.509
certificates, from the name of the ITU standard used to define their format.

But how can someone trust a certificate issued by some CA? Here comes
into play the actual PKI infrastructure. A CA is an entity like any other,
so it will have its own key pair with which it will sign certificates and that
must be certified by another CA, too. In this way, a tree-structure-like
infrastructure is generated by a chain of CAs, one certifying the other. That
chain is often called chain of trust, and, as Figure 2.4 shows, it has on the
top a root Certificate Authority (Root CA), which certifies itself by its own,
so its certificate is self-signed.

10
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Figure 2.4: Chain of trust example

For instance, if Alice would like to send Bob some data, it can verify if
Bob’s public key is the right one by looking at which CA issued it. If that CA
is trusted by Alice, or by another CA trusted by Alice, then it can assume
that public key as valid and use it.

2.1.3 Registration Authority (RA)

Inside a Public Key Infrastructure there are also other significant roles. One
of these is the Registration Authority (RA). It deals with incoming digital
certificate requests and has to authenticate identity of the entity who made
the request.

2.1.4 Validation Authority (VA) and certificate revo-
cation

Sometimes, for several reasons, it may be necessary to revoke a digital
certificate. Those reasons could be, for example, a change in usage of the

11



Background

certificate is needed, or owner of certificate is concerned or sure that its
private key has been compromised [20]. This can happen by sending a
Certificate Revocation Request.

Thus, another important role in a PKI is played by the Validation Au-
thority (VA), which is responsible for guaranteeing validity of certificates, by
providing a mechanism to check if a certificate is still currently valid, or if it
has been revoked before its expiration date. VA role is often held by the CA
which issued the certificate. There are different ways to ensure certificate
validity:

• CRL (Certificate Revocation List): CRL is “a list of digital certificates
that have been revoked by the issuing CA before their scheduled expira-
tion date and should no longer be trusted” [21]. CRLs are periodically
published, so it is possible that a revoked certificate is accepted as valid
even if corresponding CRL has not be updated yet.
CRLs can be retrieved as a response from a CRL Issuer, by making
browsers access one of the URLs contained within the certificate that
has to be validated. In Figure 2.5, the process of validating a certificate
by means of a CRL is shown3.
Main disadvantages of CRLs are [23, 24]:

– Large amount of overhead, since client has to search through the
CRL, which can be long (even on the order of a thousand lines);

– Problems with network resources if CRL is huge;
– Potentially open attack surface until next CRL update;
– If CRL download fails, client will trust the certificate by default.

Distribution Points and Delta-CRLs are two alternative methods, pro-
posed in order to solve overhead caused by the growing of CRL: the
former have the purpose to partition a CRL by pointing at different
URIs, while the latter consists in incremental CRLs, which contains only
the new revocations that have taken place since the last base CRL4 was

3The term “SSL/TLS certificate” is another way of calling the digital certificate.
4A base CRL is a standard complete CRL, which is published less often than Delta-

CRLs.
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Figure 2.5: Certificate checking process by means of a CRL [22]

published [24]. These solutions are promising, but they do not solve all
CRL issues.

• OCSP (Online Certificate Status Protocol): OCSP was created as an
alternative to CRLs. This internet protocol allows an entity to send an
OCSP Request to an OCSP Responder, asking if a specific certificate is
valid in this particular moment. Usually, OCSP Request is sent by a
CA, whose task is to allow a user to verify the validity of a certificate
issued by that CA. Figure 2.6 shows an example of a client verifying a
certificate by sending an OCSP Request.
Main disadvantages of OCSP are [23, 25]:

– Large overhead on OCSP Responder, since an OCSP Request is sent
for each certificate;

13
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Figure 2.6: Certificate checking process by means of OCSP [22]

– A third party can track user’s browsing history, since OCSP Requests
for certificates of visited websites are sent out;

– Client could suffer of connection latency due to OCSP queries;

– Most browsers ignore OCSP if the protocol times out.

An enhancement to the standard protocol is the one known as OCSP
Stapling. It reduces overhead and improves user privacy by making web
servers periodically caching OCSP Responses. Thus, when user visits
the corresponding website, it will receive the latter’s certificate, along
with a “stapled” OCSP Response [22]. However, OCSP Stapling is not
widely used, because it is still not supported by many browsers [23].
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2.2 Root of Trust

A Root of Trust (RoT ) is the root of some framework that can always be
regarded as truthful by all the components of the infrastructure, as Thales
Group explains [26]:

Root of Trust (RoT) is a source that can always be trusted within a
cryptographic system. Because cryptographic security is dependent
on keys to encrypt and decrypt data and perform functions such as
generating digital signatures and verifying signatures, RoT schemes
generally include a hardened hardware module. A principal example
is the hardware security module (HSM) which generates and pro-
tects keys and performs cryptographic functions within its secure
environment.
Because this module is for all intents and purposes inaccessible

outside the computer ecosystem, that ecosystem can trust the keys
and other cryptographic information it receives from the root of trust
module to be authentic and authorized.

Therefore, RoT has the primary role of maintaining a Public Key Infrastruc-
ture authentic and secure, by protecting its root keys.

2.2.1 Hardware Security Module (HSM)

Cryptographic devices constitute a family of machines able to handle and
store cryptographic objects (e.g. asymmetric keys or digital certificates),
and use those objects to perform some cryptographic operations. There
are different types of cryptographic devices, like USB-based cryptographic
tokens, smart cards and Hardware Security Modules (HSMs). While smart
cards are designed for a single user (i.e. they usually store a single key)
and can perform few cryptographic operations, HSMs are very advanced
modules able to store thousands of keys and to implement a large amount of
cryptographic algorithms, by using cryptographic accelerators [27, 28].

Hardware Secure Modules are tamper-resistant hardware devices able to
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Figure 2.7: HSM (Source)

generate, manage and store cryptographic keys, encrypt or decrypt data,
and perform or verify a digital signature. They are often used as RoTs by
CAs in traditional PKIs.

HSMs can be in the form of standalone network-attached appliances, hardware
cards that plug into existing network-attached systems, USB-connected
backup HSMs, etc.

HSMs provide a layered encryption, made through encrypting multiple
times the same object, and fully decrypting it in temporary (volatile) memory
only when needed [29]. They also provide tamper protection, which means
that when a physically security breach is detected, these intrusion-resistant
modules lock or reset themselves, by erasing all stored objects. They have
multiple hot-swappable power suppliers (that can be replaced without turning
off the system) and suitable cooling systems, which make HSMs very reliable
devices. One of the main features of HSMs is the use of a True Random
Number Generator (TRNG), which is a nondeterministic Random Number
Generator (RNG) based on a specific physical process [30]. TRNGs are
used by HSMs in order to generate true random values, which lead to better
security services rather than pseudo-random ones, since their guessability
is minimal. Furthermore, depending on the network configuration, Backup
HSMs can be also used to perform a backup of secure material.

HSMs’ storage is often logically divided up in partitions, each one having
its own data, policies and access control. The latter allows a set of users
to perform operations on HSM, according to their role. Each role provides
privileges to perform different actions, such as initialize the HSM, create
other users, create or delete partitions, configure policies for the entire
HSM, configure policies for a single partition, create or modify cryptographic

16
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Figure 2.8: PKCS#11 general model [28]

objects, etc.

2.2.2 PKCS#11

PKCS (Public Key Cryptography Standards) is a family of standards, related
to public key cryptography, published by RSA Security Inc. PKCS#11, also
known as Cryptoki is one of these standards, and it provides a cryptographic
token interface, so an API (Application Programming Interface) to handle
cryptographic objects and use cryptographic algorithms [31].
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There are a lot of cryptographic devices from different vendors. If all
vendors provide their own proprietary way of accessing their products, the
applications working with the latter would be strictly tied to a specific ven-
dor’s product. Hence, PKCS#11 provides a standard way of communicating
with cryptographic devices, like HSMs, following a object-based approach
[32]. This standard provides the API model as multiple C header files, that
will be implemented by vendors, and then distributed as DLL (Dynamic Link
Library) files for Windows OSes or as SO (Shared Object) files for Linux
ones [27]. Indeed, low level programming of cryptographic devices is mainly
based on C programming language.

PKCS#11 has its own terminology allowing standardized working on
cryptographic devices [27]. As mentioned in Chapter 2.2.1, storage of HSMs
can be divided up in logical partitions, that PKCS#11 refers to as slots.
Inside a single HSM slot there can be stored hundreds of cryptographic
objects and, for each slot, a related token is present. In other kinds of
devices, like smart cards, only one slot is present. According to this standard,
for a HSM, a token is a component which is the correspondent of the smart
card reader for the smart card, so it must provide a safe environment for
executed applications [33]. Token’s purpose is to allow the establishing of a
session: a logical connection between the slot and the running application,
allowing the latter to perform cryptographic operations, by exploiting a
certain mechanism, which is the way cryptographic algorithms are called
in PKCS#11. Access control provided by HSMs expects existence of users,
each one with its role and related privileges.

Objects stored inside a slot can be public or private. Public objects are
inspectable by any user or application, while private ones requires that user
is logged into the corresponding token, and that it has enough privileges.
Usually, a HSM has a user with the role of Security Officer (SO), whose
task is to initialize the HSM itself, and other users with minor roles too,
depending on the HSM model. For example, Thales Luna HSMs, deployed
inside a secure appliance, expect different types of user roles at different
logical levels, as summarized in Table 2.1 [29].
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Figure 2.9: PKCS#11 classes of objects and their attributes [32]

Appliance-level roles

Admin has the rights to perform all administrative and configuration tasks
on the appliance, and to create custom users and roles. Operator role can
perform administrative tasks only. Monitor is able to provide information
about the appliance and HSM. Audit role is used for managing HSM audit
logging instead.
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Appliance-level
roles

HSM-level roles Partition-level roles

• admin
• operator
• monitor
• audit

• HSM Security Of-
ficer

• Auditor

• Partition Security
Officer

• Crypto Officer
• Crypto User

Table 2.1: Thales Luna HSMs users and roles [29]

HSM-level roles

HSM Security Officer (SO), who must have admin-access level to the appli-
ance, initializes the HSM, manages its partitions and configures global HSM
policies. Auditor (AU) manages HSM audit logging, by having audit-level
access to the appliance.

Partition-level roles

Partition Security Officer (PO) initializes the partition and can configure
its policies. Crypto Officer (CO) role instead, allows to create and modify
cryptographic objects within the partition, and to use cryptographic functions,
too. Crypto User (CU) can handle public objects only instead.

2.3 Blockchain

A blockchain is a secure digital ledger implemented in a distributed fashion
without a central authority, and shared among users (i.e. nodes) of a
community. This ledger aims to record users’ transactions in a way that
makes it not possible to modify them once published on blockchain. During
the last decade, blockchain concept has been combined with other technologies
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in order to develop cryptocurrencies (e.g. Bitcoin or Ethereum), made up by
virtual electronic coins protected through cryptographic mechanisms instead
of a central bank [34]. Blockchain technology is very promising, indeed
it is spreading in many sectors such as Internet of Things, finance, data
provenance, sharing economy and public sectors, too [35].

This technology is called “blockchain” since the main structure can be
visualized as a chain of blocks, starting from a genesis block. Each of these
contains a set of published and immutable transactions, a reference to the
previous block (usually a hash) and some other metadata.

Blockchains can be classified into two high-level categories: permissionless
and permissioned. The latter includes all blockchains where read and write
operations are allowed only to authorized people or organizations. In per-
missionless (i.e. public) blockchains instead, anyone can have access without
authorization [34].

In Bitcoin blockchain, taken as example since it was the first famous
cryptocurrency, all electronic cash information are attached to an address:
an alphanumeric string allowing to link balance of a user to its identity. Thus,
in the cryptocurrency case, transactions describe exchange of cryptocurrencies
between users of the blockchain.

Sometimes, blockchains are even used to store smart contracts, which
consist of a set of trustworthy data and code, that can be run to perform
some operations [34]. In a smart contract, agreement clauses written in
the code are automatically executed when specific conditions are met, thus
enabling the contractual terms of an agreement to be enforced without the
intervention of a trusted third party. Automatic agreements available by
means of smart contracts could be, for instance, contracts among buyers and
a supplier, and related payment procedures by means of cryptocurrency [35].

2.3.1 Consensus models

A node able to publish a new block in the blockchain is usually called pub-
lishing node, and the publishing operation is made by reaching an agreement
among all – or almost all – nodes, known as consensus.
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Proof of Work

One of the most used consensus models in cryptocurrencies is the Proof of
Work (PoW ), which allows a node to publish a new block if it is the first one
to solve a computationally intensive puzzle. The investing of computational
power to solve the puzzle is generally known as mining. A common example
of PoW puzzle requires to make the hash value of the block smaller than
a target number. Usually, puzzle difficulty increases over time, in order to
make more difficult to be able to publish new blocks [34].

Proof of Stake

Another consensus mechanism is the so called Proof of Stake (PoS). A stake
is a sum of money bet on the outcome of a risky game or something similar.
In the context of blockchain, the stake is represented by cryptocurrencies
invested on the system. These kind of blockchain networks do not require
great computing power, since they use the amount of stake a user owns as a
decisive factor for publishing new blocks [34].

This model constitutes an energy-saving alternative to PoW, but the
publishing node selection results to be quite unbalanced, since few very rich
users would be dominant even in a huge network [36].

Practical Byzantine Fault Tolerance

L. Lamport, taking a cue from well-known problems such as that of philoso-
phers or that of readers and writers, presented the “Byzantine generals
problem”. According to this problem, some Byzantine5 generals are leading
the Byzantine army to the siege of an enemy city attacking from different
fronts, so they can communicate only by messengers. Solving the Byzantine
generals problem consists in guaranteeing that those generals can agree
unanimously on the same action plan, and that, if few generals are traitors,
then their plan proposals cannot prevail on honest generals’ ones [37, 38].

5The choice fell on Byzantine generals so as not to offend any nation existing today.
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Byzantine faults are therefore the ones which happen when, in a distributed
decision-making system, some of the system’s nodes fail or have malicious
intentions. Since software complexity is increasing year after year, the amount
of possible software failures and malicious attacks is increasing, too. For these
reasons, M. Castro and B. Liskov proposed an algorithm able to tolerate
Byzantine faults: the Practical Byzantine Fault Tolerance (PBFT ) consensus
mechanism [39].

PBFT model expects a client instance C to interact with one of the nodes
in the consensus group, trying to make all other nodes accepting a message
or – in the context of a blockchain – a transaction. This mechanism is made
up of several stages [39, 8]:

1. Initialization request: Consensus mechanism initialization is made
by the creation of a request by client C, sent to one of the elements in
the consensus group, which will be labeled as primary until the end of
consensus mechanism.

2. Pre-prepare: In Pre-prepare phase, the primary node sends a signed
pre-prepare message as a multicast6 to all other nodes in consensus
group. Pre-prepare message is used to allow all nodes to have the same
view of client request. At the end of this phase, all nodes will be in the
pre-prepared state.

3. Prepare: In Prepare phase, all nodes that have previously received
a pre-prepare message, validate the latter and share a signed prepare
message as multicast, saying if current request made by C is valid or
not, according to them. At the end of this phase, all nodes will be in
the prepared state.

4. Commit: In Commit phase, all nodes in consensus group (even the
primary one), verify all received prepare messages. If the latter indicate
that enough nodes have evaluated the request as valid, they multicast
a positive commit message (a negative one otherwise). At the end of
this phase, all nodes will be in the committed phase, and the result of
current client request will be committed to their logs.

6A communication method allowing a source to send a message to many receivers,
which belong to the same multicast group.
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Figure 2.10: PBFT example case [39]

5. Finalization reply: In the end, consensus group will share the result
of evaluated request back to the client.

Figure 2.10 shows an example situation in which, besides client C, there
are four nodes composing the consensus group, one of which (i.e. node 3)
is malicious. In this example, despite the presence of that malicious node,
consensus has been achieved anyway. This because PBFT model can tolerate
up to ⌊n−1

3 ⌋ simultaneous Byzantine faults, where n is the currently total
amount of nodes in the network (client instance is not included) [39]. In that
example, n is equal to 4, therefore that network is able to tolerate up to 1
faulty node.

Given the previous formula, it is clear that the amount of tolerable
Byzantine (i.e. faulty) nodes grows linearly as the number of nodes in the
network increases.

2.4 WoT

A Web of Trust (WoT ) is a kind of distributed PKI which, unlike traditional
hierarchical structures, allows each of its nodes to create their own trust links
with other nodes in the network, without the need for centralized authorities
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Figure 2.11: Hierarchical PKI vs. Web of Trust [40]

[40]. Figure 2.11 shows, in a simple way, the difference between a traditional
hierarchical PKI (on the left) and a WoT (on the right).

WoT concept was firstly introduced in Zimmermann’s PGP: an encryption
framework developed to secure electronic mails. In PGP, a user decides which
entities to trust, assigning them trust levels (e.g. untrusted, partially trusted,
trusted), and put their public keys in a single file, called key ring [41]. In
this way, infrastructure’s security depends on which criteria the nodes choose
while assigning their trust, and on the honesty of trusted elements.

2.5 Cryptographic accumulator

A cryptographic accumulator ACC is a set of heuristics and polynomial-time
algorithms allowing to accumulate a finite set X = {x1, ..., xn}. For each
of the accumulated values, it provides a witness ωxi, which is a proof of
membership for value xi ∈ X, meaning that it has been accumulated in ACC.
Moreover, an accumulator should provide soundness property: it should be
infeasible to find a valid witness for any non-accumulated value yi /∈ X [42].

An accumulator can be useful in many scenarios, for instance when there
is the need of a list of credentials that have been authorized for an access
control. If those values are stored in a list, it would require a linear-time
complexity (O(n)) to scan the list and find a match, where n represents the
length of the list. That complexity can be lowered to sublinear (O(log(n)))
by means of a binary search, but it will require some pre-computations
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(e.g. sorting) on the elements of the list, which increases complexity to
O(n · log(n)). The use of cryptographic accumulators is a valid space-efficient
alternative to achieve sublinear time complexity. Moreover, accumulators
have another advantage: the checking for membership of a certain value
can be done with just a portion of the tree, so it could be unnecessary to
download the entire data structure [43].

One of the main possible classifications that can be made on these crypto-
graphic objects, is the distinction between static and dynamic accumulators.
Static accumulators basically consists of four algorithms [8]:

• AccGen(1λ)→ a0: algorithm for the initialization of an accumulator a0
and all its parameters. A security parameter λ could be needed, too.

• AccAdd(ai, x) → (ai+1, ωx
i+1, updmsgi+1): adds to accumulator ai the

value x received as input, giving as output the updated accumulator
ai+1 and the membership witness ωx

i+1 for x. Moreover, an update
message updmsgi+1 is provided in order to be used by witness holders
for updating old set of witnesses.

• AccWitAdd(ωx
i , y, updmsgi+1)→ ωx

i+1: given the update message updmsgi+1,
generated from the accumulation of a new element y, this algorithm
updates the witness ωx

i for element x, which was accumulated before y.

• AccV er(ai, x, ωx
i ) → 1/ ⊥:7 verifies membership of element x using

related witness ωx
i and accumulator ai.

Dynamic accumulators are similar to static ones, but they additionally
support deletion of elements from the accumulator itself. Hence, they provide
these two following algorithms [8]:

• AccDel(ai, x)→ (ai+1, updmsgi+1): deletes element x from accumulator
ai, and gives as output the updated accumulator ai+1 and the related
update message used to update old set of witnesses.

7The ⊥ (“falsum”) symbol represents the logical value False.
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• MemWitUpdateDel(x, ωx
i , updmsgi+1) → ωx

i+1: updates membership
witness ωx

i for element x, after the deletion of another element y, and it
returns the updated proof ωx

i+1 for x.

2.5.1 Merkle tree

There are distinct types of accumulators providing different key properties,
as classified in [43]. Sometimes, Merkle Tree data structure is used as basis
to build strong accumulators, which main advantage is to not require any
central authority for the signing of witnesses [44]. A Merkle Tree is a hash
tree having a Merkle root on the top, whose value is “a pairwise accumulated
hash of all the non-root nodes in the tree”[43]. Root value, which represents
the value of the accumulator itself, has to be updated each time a new item
has been added to or removed from the accumulator. These structures are
very efficient since their time and size complexities are sublinear. However,
their size continuously grows, even after deletions. As the root node, all the
non-leaf nodes (i.e. inner nodes) of the tree contains an accumulated hash of
the nodes below them in the tree structure. Leaf nodes contains the original
values that have been added to the accumulator up to the current time [43].

Figure 2.12 shows how elements (usually hashes) in a Merkle binary tree
are combined starting from the leaves up to the root node, where the +
symbol stands for concatenation. In that example, values LA and LB are
combined into their parent node, which is itself combined with another inner
node into the root.
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Figure 2.12: Merkle tree pairwise hashing example
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Chapter 3

State of the art

Although standard design of PKI is widespread, as it guarantees great security
properties, it suffers from weaknesses like the issuing of fraudulent certificates,
or the use of complex revocation mechanisms with their related disadvantages,
as already pointed out in the previous chapters. For this reason, for some
time now researches have been looking for alternatives to that classic design
solution. Some of these alternatives have been found thanks to the novel
blockchain technology, used as a means of making network information secure,
immutable and transparent, without the use of Certificate Authorities or
other third parties. The transparency property, in particular, requires that
all data in blockchain is publicly available to anyone.

During scouting phase of this thesis project, also carried out thanks to
surveys like [45, 46], a lot of alternatives to standard PKI implementation
have been found and analyzed. However, most of them did not removed the
main problem of PKI centralization, which are CAs.

The first alternative PKI models proposed are mainly based on public
logs. In log-based PKIs, all certificates issued by CAs must be logged on
a public append-only log, before being considered as valid. In this way,
any entity can audit CA activities and verify certificate validity. These
kind of PKIs still have several drawbacks, since centralized CAs and sources
of information are required [8]. An example of log-based PKI is given by
Certificate Transparency, proposed by Google [47].
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Another approach used to find alternatives to standard PKIs consists in
using a blockchain as append-only ledger of signed transactions [8]. A first
example of blockchain-based approach is the one presented by Kakei et al.
[48], which proposed a PKI using some special meta-CAs communicating
with classic CAs, using a distributed ledger technology. Zhao et al. [49]
proposed a system in which certificates are stored inside smart contracts,
while Wang et al. [50, 2] tried different approaches using Ethereum-based1

blockchains, but all these solutions still use certificates generated by CAs.
Other similar approaches exist, for example the work of Quin et al. [51],
in which interactions among CA certificates are treated as a currency in a
Bitcoin-based blockchain, or the proposals of Yakubov et al. [52] and Li et
al. [53], which try to take advantage of smart contracts to emulate or to
just support issuing authorities. There have been proposals for improving
revocation system or PKI’s transparency, without changes on traditional
CA infrastructure [45]. Some other solutions instead, like [54], make CAs
issue certificates through a system based on ACME (Automated Certificate
Management Environment), a recent technology able to automate certificate
issuance.

Unlike the just mentioned solutions, some of the most promising blockchain-
based PKIs are constituted by a WoT-like infrastructure, which tries to
overcome the issues related to single point of failures. Indeed, these recent
solutions propose ways to fully decentralize Public Key Infrastructures using
blockchain technology, and avoiding the use of CAs for identity management
[45]. These proposals usually replace CAs with miners of public blockchains,
and generation of certificates is made by mining after Proof of Work. For
instance, Fromknecht et al. [55] proposed Certcoin, a PKI based on a
cryptocurrency forked from the Bitcoin, that ensures identity retention2, by
exploiting PoW and mining concepts. The work of Axon et al. [56] and the
one of Plessing et al. [57] lead to the realization of PB-PKI, a PKI based
on Certcoin blockchain, where user’s identity has been dissociated from the
certificate and an accumulator has been used, ensuring anonymity. Al-Bassam
[58] invented a PKI which uses smart contracts to publish attributes and
revocations on Ethereum platform, and that performs identity management
by means of a PGP-like WoT [8]. However, PGP itself is different from a PKI

1Ethereum is another blockchain cryptocurrency, like Bitcoin.
2Preventing registration of different public keys for a single entity.
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as public keys cannot be retrieved from it [58]. Sermpinis et al. [59] proposed
another solution using a blockchain storing the hash of each X.509 certificate,
and where transactions has to be paid in Ethereum’s gas currency. Toorani
et al. [8] realized a WoT-like system based on blockchain named “DBPKI”,
which stands for Decentralized Blockchain-based PKI. DBPKI distributes
trust among entities and allows certification and revocation after a consensus
between nodes has taken place. Other similar WoT-like approaches have
been proposed in [60, 61, 62], among which one is exploiting smart contracts’
functionalities, another one is using graphs to relate keys and identities, while
last one consists in a purely mathematical approach used for key validations
and identity approvals. A different solution has been presented by Li et
al. [10], who decided to use the cryptographic features of RSA3 in order to
protect users’ privacy by storing pseudonyms on blockchain, instead of their
actual identity.

Most of all the previous works researching for decentralized PKIs based on
blockchain, fail to propose a decentralization of identity itself [45]. Among all,
the few proposals able to allow individual users to create their identities by
themselves are [45]: [59], [54], [8] and [10]. However, among them, the model
proposed by Toorani et al. [8] is the one that most differs from traditional
PKI. As a counterexample, the work of Kfoury et al. [54] is still based
upon CA classic infrastructure design. Furthermore, Brunner et al. [46]
stated that any blockchain-based PKI framework should follow at least these
recommendations:

• Permission type: Both permissionless and permissioned blockchains
can be used, even if sometimes the former is preferred due to better
stability and end-user acceptance.

• Revocation: In a PKI, the possibility to revoke a certificate is a must,
so it has to be supported.

• Blockchain type: A well-known and well-studied blockchain should
be preferred to a custom one.

3RSA is a public-key cryptosystem relying on the hardness of factoring a number into
its two large prime numbers [63].
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• Certificate format: Use of a standardized certificate format is highly
recommended.

• PKI Type: In order to create a decentralized PKI, the adoption of
WoT structure is strongly recommended.

• Storage Type: The blockchain should store a minimum amount of
data only, in order to reduce costs and to enhance performance.

• Updatable Key: Support for key updating is very important, especially
for long-term usage.

• Privacy: Privacy features could be desirable, so they should be sup-
ported depending on the specific use case.

• Incentives: Incentives for participants are necessary to improve stability
of blockchains, especially for custom ones.

• Evaluation: A blockchain should be evaluable and comparable to
others, in terms of time and space complexity, as well as of monetary
cost.

Conceptual DBPKI proposed by Toorani et al. follows almost all of
the above suggestions. For this reason, and for the previously discussed
ones, it has been chosen as starting point for the realization of the Proof
of Concept described in this document. Moreover, a couple of other very
promising researches have been taken into account to search for improvements
for the starting DBPKI model, thus supporting even more of the above
recommendations. For instance, the use of incentives for honest nodes that
managed to successfully carry out some operations on the blockchain. Those
works are: CyberChain, invented by Chai et al. [14], and ETHERST, created
by Koa et al. [16]. Below, those researches that inspired the work of this
thesis are briefly presented.

3.1 DBPKI

As already mentioned, DBPKI is the theoretical model proposed by M.
Toorani and C. Gehrmann [8]. This model presents a fully decentralized PKI
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based on a custom blockchain, and uses PBFT (Practical Byzantine Fault
Tolerance) as consensus mechanism. DBPKI scheme includes the following
entities:

• Root units (Ri): Root units are nodes existing in the beginning and
assumed to be honest during the initialization of the PKI itself. Each
root unit is identified by an identifier IDRi and has its own pair of
asymmetric keys. DBPKI can be initialized by n root units {R1, ..., Rn}.

• Intermediate units (Ii): Each intermediate unit is identified by an
identifier IDIi and has its own key pair. Intermediate nodes could be,
for example, organizations or institutions.

• Ordinary units (Oi): An ordinary unit, identified by an identifier IDOi

and owning a key pair, is not directly part of the DBPKI itself since it
can not perform any operation on the blockchain. Basically, they are
users of the system, which can only read blockchain in order to validate
public keys, without participating in the consensus mechanism. For
instance, they might be resource-constrained units, like IoT devices or
vehicles.

Any node can verify validity of a key, while only Root and Intermediate
units can enroll, update or revoke a key by establishing the PBFT consensus
mechanism as leader node. Blockchain structure and all DBPKI functionali-
ties are explained in Chapter 4, since this model constitutes the basis of the
design solution presented within this document.

3.2 CyberChain

Chai et al. proposed a blockchain for lightweight and privacy-preserving
authentication in Internet of Vehicles based on CyberTwin (CT) technology
[14]. The main issue of authenticating vehicles in V2X is constituted by their
high mobility and frequent handover. CyberTwin is an emerging technology
able to map physical entities into a cyberspace by constructing digital replicas,
simulating communication behaviors of vehicles and giving real-time feedback
to the physical world. Those researchers tried to exploit CT in order to
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address authentication problems in IoV. Thus, they realized CyberChain
(CC): a CyberTwin-empowered blockchain which uses blockchain to ensure
security and CT to reduce consensus latency and storage consumption.

The framework is logically divided into a physical world and a virtual one.
The former includes all physical entities such as vehicles and Edge Servers
(ESs), which are servers allowing division of the entire physical world into
multiple regions, according to their geographical location. Edge Servers has
also the aim of maintaining multiple CTs and a CC in order to virtualize all
vehicles present in their corresponding region. Thus, the virtual world refers
to all the CyberTwin replicas, and it defines three virtual elements:

• Sub-CyberSpace (SCS): A SCS is the virtual space maintained by one
Edge Server. It is constituted by the CTs of all vehicles in the region
corresponding to that server, and the CT of the Edge Server itself.

• CyberSpace (CS): A CyberSpace is a set of SCSs, so it includes the
virtualization of all the Edge Servers within one geographical region.

• CyberChain (CC ): The CyberChain is the blockchain of a virtual space,
and all the CT instances of the related CyberSpace constitute its nodes.
A CC ledger only needs to record information about its region, unless
a vehicle requests the identity handover process. In that case, the CC
needs to communicate with the CCs in adjacent regions. Moreover, CC
ledgers containing transactions, are cached by the Edge Servers of the
related region only.

Edge servers constitute the bridge between physical and virtual world.
Vehicle in a certain region will communicate with the nearest ES in order
to make it construct a new CT for the vehicle itself. An Edge Server can
simultaneously host several CTs, which virtually communicate to each other
by means of interprocess communication. In this way, communication latency
is greatly reduced.

There are two types of identity handover in this framework, depending
if it happens between two SCSs or between two CSs. In the first case, the
blockchain identity remains unchanged, so it just needs to authorize the new
ES to reactivate its blockchain account, in order to rebuild the corresponding
CyberTwin. On the other hand, when a cross-region vehicle requests the
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Figure 3.1: CyberChain framework model [14]

handover between two CSs, the consensus process requires every node of the
network to reach the same view of the blockchain.

One of the main contributions of CyberChain is the use of DPBFT
(Diffused Practical Byzantine Fault Tolerance), which is a variant of standard
PBFT allowing to reach the consensus in a small part of the network first.
Then, consensus will gradually reach all the other nodes of the entire network.
Thus, DPBFT decomposes conventional PBFT consensus into multiple “sub-
consensus areas”, which in CyberChain coincide with SCS regions. In this
way, assuming that each ES is maintaining at least ξ CTs, η of which
malicious, the proposed DPBFT has a ⌊η/⌊ ξ

3 + 1⌋⌋ reduction in terms of
single point of failure, if compared to traditional PBFT [14].

As shown in Figure 3.3, the use of the diffused version PBFT leads to less
delay in reaching the consensus, especially for huge networks. Hence, as will
be told in Chapter 7.1.3, this work could lead to a major improvement for
the PoC developed during this thesis project.
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Figure 3.2: DPBFT consensus mechanism [14]

3.3 ETHERST

Some of the proposals for blockchain-based PKIs are based on the adding
and running of program code into blockchain. Usually, for what has been
previously discussed, well-known blockchains (e.g. Bitcoin) are used to
develop these kind of PKIs. However, Bitcoin-based scripting language is
not Turing-complete4 [65], since nodes needs to process the script in order
to verify validity of transactions [16]. Hence, the processing of a malicious
script could cause nodes fall into infinite loops [16]. For this reason, usually

4Language able to simulate any Turing-machine, by providing ways for implementing
loops and complex recursion [64].
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Figure 3.3: DPBFT communication overhead [14]

Ethereum-based blockchains are used instead, because Ethereum is a public
blockchain platform supporting Turing-complete language, whose scripts are
known as Smart Contracts. Similarly to Bitcoin, even Ethereum has its own
cryptocurrency, called Ether. In addition, Ethereum allows to create custom
cryptocurrencies [16].

One of the possible improvements of PKI based on Ethereum is the
implementation of a reward-and-punishment mechanism, by exploiting its
implicit currency property. Two examples of the applying of this kind of
feature are the Instant Karma PKI proposed by Matsumoto et al. [66]
and the Internet Web Trust System, invented by Li et al. [53]. The use
of that currency leads to the problem of implementation costs that fluc-
tuates together with the Ether market value [16]. For this reason, Koa et
al. [16] introduced ETHERST, another blockchain-based PKI providing a
reward-and-punishment mechanism, which uses custom ERC-20 token as
cryptocurrency, thus solving the cost fluctuation issue. Additionally, the use
of that new token, allows the owner of the distributed PKI to arbitrarily
choose the values of reward and punishment.
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Figure 3.4: ETHERST trust and reward example [16]

ETHERST is the first blockchain-based system integrating Web of Trust
with a reward-and-punishment mechanism. Its smart contract, written in
Solidity programming language, defines some functions, like the creation or
signing of an attribute, and the trusting or untrusting of a signature. These
last two functionalities define also the implementation of the reward-and-
punishment mechanism itself. When a user trusts another, the latter must
send a fixed amount of PKIToken5 currency to the first one. Only a certain
amount of users (i.e. “TRUST-LEVEL”) can trust the same signature. In
this way, the request for trust gains a higher value, and the user giving its
trust obtains a reward, thus encouraging the establishing of WoT.

On the other hand, during signature untrusting operation, the untrustor
(i.e. the user which decides to untrust another) is rewarded with a fixed
amount of PKIToken. The same amount of PKIToken is then deducted
from the balance of the signature owner as a disincentive cost for not being
trustworthy in the system. Indeed, a user’s signature can only be untrusted
by a maximum number of nodes (i.e. “UNTRUST-LEVEL”), and all rewards
and the punishment are respectively given to untrustors and untrusted user,
only when the UNTRUST-LEVEL-th untrust operation has been completed.
Figure 3.5 shows an example scenario in which UNTRUST-LEVEL value is
equal to 5 and the 5-th untrust operation has just triggered the punishment

5PKIToken is a custom token following ERC-20 specifications [16].
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Figure 3.5: ETHERST untrust and punishment example [16]

appliance.

As said before, the functionalities of ETHERST have been taken as an
inspiration for the realization of a custom reward-and-punishment mechanism
in the PoC described starting from the next Chapter, where trust weights
are used as incentive or disincentive for the various nodes.

39



Chapter 4

Solution design

The one presented within this document is a python project, in which a Proof
of Concept of a decentralized blockchain-based PKI is implemented. The
PoC has been built following the DBPKI model, proposed by Toorani and
Gehrmann [8], which substitutes the traditional PKI with a WoT-based one.
Additionally, this project proposes a management of trust weights weighted
on time, and a new custom reward-and-punishment mechanism. Even if the
proposed framework differs from DBPKI conceptual model, especially with
regard to the use of trust weights, this document will refer to it as “DBPKI”
anyway, since the basic concepts behind it are the same.

This Chapter introduces the design structure of the implemented solution,
while its actual implementation is available in Chapter 5. Figure 5.5 will
also display a summarizing model of design of developed Proof of Concept.
Below, all the main elements of the PoC design are presented.

4.1 DBPKI User Interface

Solution has been designed in order to allow a single user to build its
own blockchain-based PKI, and to try all its functionalities in a simulation
environment, without the need for multiple applications or multiple users
working together. Indeed, all nodes in blockchain are represented by processes
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running on the same machine. To achieve that, a single DBPKI User Interface
(DBPKI UI) has been created, and the PoC functioning has been divided
into rounds. After the Setup phase, described later in section 4.6.1, the series
of rounds begins. Each round is divided in three main phases:

1. Node and operation choices: At the beginning of the round, DBPKI
User Interface asks the user to choose which node to impersonate in
current round, and which operation that node should perform. After
that, control is passed to that node, referred to as leader node for that
specific round.

2. Leader node operation: Upon receiving the control over the UI
interface, leader node will try to perform the requested operation and,
if needed, it will start PBFT consensus mechanism. After operation
success or failure, leader node will return control back to DBPKI User
Interface.

3. End of the round: When requested operation has been performed
and control has been returned to DBPKI User Interface, the latter
communicates to all nodes that current round has finished, and then it
will start another one, unless a termination command has been executed
meanwhile.

4.2 DBPKI nodes

DBPKI nodes represent the actual elements of the PKI itself. Some of
them could be, for instance, organizations or institutions, while others
mirror entities like vehicles in V2X or low-consumption IoT devices. All of
these constitute the nodes of a network, in which entities owning pairs of
cryptographic keys, build reciprocal trust relations in order to avoid the need
of centralized Certificate Authorities. That kind of network is known as Web
of Trust.

DBPKI nodes can be divided in three classes, following the same division
criteria used by Toorani et al. [8] in their work, mentioned in Chapter 3.1.
Those classes are:
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• Root units (Ri): Root units are nodes used to initialize the DBPKI
itself. These units can be instantiated during Setup operation (4.6.1)
only. They are assumed to be trusted a priori, and they are assigned
an initial fixed trust weight of value V_R. Their role R allows them to
participate in the consensus mechanism, and to perform all operations
available on the blockchain.

• Intermediate units (Ii): Starting from the first round, Intermediate
units can be enrolled by Root ones, or by other Intermediate nodes.
After their enrolling operation has been successfully completed, they are
assigned an initial fixed trust weight of value V_I. Their role I allows
them to participate in the consensus mechanism, and to perform all
operations available on the blockchain, just like Root units.

• Ordinary units (Oi): Ordinary units can be enrolled by any Root or
Intermediate unit. They represent the actual users of the system, like IoT
devices or vehicles. Indeed they are not directly part of the DBPKI, and
according to their role O, they can access the blockchain in a read-only
way, without either being able to participate in consensus mechanism.
For this reason, their trust weight value V_O is set to zero by default.

All nodes can become the leader node of the round in progress, after
user has chosen which one to impersonate. Root and Intermediate units,
which could be associated to institutional entities or companies, are then
able to: instantiate the consensus mechanism and wait for its final result,
verify the validity of a public key of one of the nodes, or make the entire
PoC terminate. Hence, their privileges allow them to modify the blockchain,
by proposing new blocks that must be approved by the consensus group.
Instead, an Ordinary unit that became the current leader node is only able
to choose among public key verification or PoC termination commands. It
is possible that some nodes need to be associated to several identities, with
different roles. In that case they should create an account related to all their
identities, however this feature has not been covered by proposed framework
for the sake of simplicity: if a new identity is needed, a new unit has to be
enrolled in the system.
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4.3 Blockchain

In the presented work, blockchain is a custom digital ledger cached by the
running nodes in DBPKI, including Root and Intermediate entities. Being a
Proof of Concept, it is a simplified version of what would be a real DBPKI
implementation. Hence, blockchain is cached also by Ordinary nodes, even if
they are not directly part of the PKI. Moreover, when a new Intermediate
or Ordinary node is enrolled, it obtains just the very last block in the
chain (i.e. the one asserting its own enrolling), without compromising any
PKI functionality. This is possible thanks to the use of a cryptographic
accumulator, better described in section 4.4.

The very first block in the blockchain (i.e. the genesis block) includes all
transactions regarding the enrolling of all the Root nodes, which issuance
is made by the first of them, namely R0. While all other blocks contain
the transactions published by all the subsequent nodes that have become
leader until current time. As it was structured the framework, all these other
blocks, starting from the second one, refer to just one single transaction.
This is due to the fact that operations performed after initialization are
treated individually, alternating the work of the leader node with that of the
DBPKI User Interface. Moreover, although the update operation of a key is
substantially divided into two stages, it still generates only one transaction,
as explained in section 4.6.3.

4.3.1 Block

A generic block in the chain includes the following items:

• Timestamp: Alphanumeric string indicating current date and time of
the moment when leader node has built the block to be approved by
consensus group.

• Block identifier: Numeric identifier of current block. First block ID is
equal to 1.

• Hash of the previous block: Except for the genesis one, all the blocks
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contain a secure one-way hash reference to the previous one in the chain,
in order to achieve integrity of the links between them.

• Accumulator: Current cryptographic accumulator, updated consider-
ing the transactions of the block itself as the latest. This field implicitly
includes also all the witnesses related to that accumulator.

• Transactions: All the transactions that leader node is trying to com-
plete by placing current block under the judgment of all other nodes in
DBPKI. As said before, while first block contains multiple transactions
(i.e. one for each of the Root nodes), all other nodes will refer to just
one transaction, due to a design choice. This does not mean that they
could not include more than one transaction if necessary.

• Trust weights: Current value of the trust weights of nodes in DBPKI,
since they vary as the PoC rounds go by. More on trust weights in
section 4.7 and in Chapter 5.6.

• Digital signatures: All digital signatures of nodes in consensus group,
including the one of the leader node, obviously. Except for the latter,
digital signatures are stored together with the decision of the node on
that proposed block (i.e. if it is approved or not).

• Other minor data: Additional data includes the identifier of the node
who proposed the block (i.e. the leader node).

4.3.2 Transaction

Figure 4.1 shows the elements included in the genesis block and in a generic
one. The blocks outlined in that figure do not include trust weights since in
the work of Toorani et al. from which the image is taken [8], trust weights
are designed to be fixed and so always immutable. From that picture, it is
possible to notice the structure of transaction items. The latter include:

• Node identifier: Identifier of the node affected by current transaction.

• Public Key: This field contains the entire public key corresponding to
the current transaction, if the latter is contained in the genesis block.
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Figure 4.1: Contents of the first block (left) and ith block (right) [8]

Otherwise, this field contains the hash of that public key only. Moreover,
it refers to the new key, in case of enrolling or updating procedures, or
to the revoked key if a revocation has taken place.

• Flag: flag ∈ {0, 1, 2} indicates whether corresponding public key has
been enrolled, updated or revoked, respectively.

• Role: role ∈ {R, I, O} denotes the role of the affected node.

4.4 Accumulator

Within this framework, it is possible for users having access to blockchain
to retrieve the history of a public key, from when it was issued, until its
expiration or revocation, if already happened. This kind of operation would
be possible by scanning the entire blockchain only. In order to know which
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public keys are valid or not without examining the whole blockchain, an
accumulator is needed. That cryptographic tool compacts all necessary data
in a single object, and allows to obtain public key validity information by
accessing the very last block in the chain only. According to DBPKI starting
model, “any efficient and sound dynamic Merkle-tree based accumulator [...]
can be used” [8]. As already pointed out in Chapter 2.5, an accumulator
is sound if it is computationally infeasible to find a valid witness for a non-
accumulated item, while it can be tagged as dynamic if it also supports the
removal of previously accumulated objects. Many well-known accumulators
are publicly available, as the ones described in [67, 43]. One of these is the
asynchronous accumulator defined by L. Reyzin and S. Yakubov [44], which
exploits a dynamic set of Merkle Trees in order to reduce the frequency of
witness updates. In that case, accumulator value is computed by considering
the roots of all its Merkle Trees.

Typically, the membership proof of an item added to a cryptographic
accumulator has to be always synchronized with the accumulator value itself.
This means that, every time accumulator is modified, all witnesses related
to its accumulated items have to be updated accordingly. An example of
synchronous accumulator is a simple Merkle Tree, in which proofs need to
be constantly synchronized with the root of the tree. This kind of operation
leads to a waste in computational time and consequently it also leads to
communication overhead at the application level. This is an important issue
to be considered in distributed systems, like the one of decentralized PKI. In
that case, an asynchronous accumulator as the one proposed by Reyzin et
al. [44] is useful, since it provides low update frequency for witnesses, and
old-accumulator compatibility property, which makes it possible to verify a
proof with outdated accumulator values, too.

Low update frequency

An accumulator has a low update frequency if verification of witness ωx is
successfully working even if that proof is only updated a number of times
which is sub-linear in respect to the amount of elements accumulated after
x. In this way, a user can not verify an arbitrary old proof with the last
published accumulator value, but it can still verify it, if recent enough.
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Old-accumulator compatibility

An accumulator is old-accumulator compatible if membership verification
through an up-to-date witness ωx is successful even with an outdated accu-
mulator. This is possible even with an arbitrary old accumulator; the only
constraint is that the element x has already been added to it.

The aforementioned properties make an accumulator asynchronous, allow-
ing verification of a witness, even if the latter is non-synchronized with the
current accumulator value (i.e. a bit older or newer). Assuming that tx is
the moment when x has been accumulated, and ta represents the time of the
last update of accumulator value, verification can work with a proof from
any time tω after the moment given by the arithmetic average between tx

and ta. Hence, there are two out of sync situations: accumulator is older
than the witness to be verified, or vice versa [44]. Table 4.1 shows various
complexity comparisons between a standard Merkle Tree construction, a
sample synchronous accumulator and the proposed asynchronous one, where
n is the number of accumulated elements.

Functionality
Synch.

accumu-
lator

Standard
Merkle

Tree

Asynch.
accumu-

lator

AccAdd algorithm runtime O(1) O(log(n)) O(log(n))

AccAdd algorithm storage O(1) O(log(n)) O(log(n))

AccWitAdd algorithm runtime O(1) O(log(n)) O(log(n))

AccWitAdd algorithm storage O(1) O(log(n)) O(log(n))

Accumulator size O(1) O(1) O(log(n))

Witness size O(1) O(log(n)) O(log(n))

Update frequency O(n) O(n) O(log(n))

Table 4.1: Accumulators complexity comparison [44]
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However, as pointed out later in section 4.4.2 these properties are in-
deed not granted in the proposed framework since removal of accumulated
elements should be provided. Nevertheless, that accumulator is suitable
for distributed situations also because it does not require any knowledge
on the accumulated items, like the number of already added elements, for
new adding operations [44]. Moreover, as underlined in Table 4.1, space
complexity of accumulator and its witnesses is logarithmic. Therefore, even
if some properties of asynchronous accumulators are compromised by the
need of deleting procedure, the proposed PoC deploys that cryptographic
accumulator model and avoids those related issues by publishing an update
both for accumulator and proofs in each new block in blockchain.

4.4.1 Construction

As already explained, developed accumulator is based on Reyzin and Yakubov’s
proposal [44], which is asynchronous and built on a set of Merkle Trees.

Accumulation of elements in the proposed accumulator consists in comput-
ing a hash of them, and inserting it in a leaf of one of the Merkle Trees. Then,
starting from that leaf, hash of all the parents is iteratively recomputed up
to the root, considering their children. Given a hash function h and a node
in one of the Merkle Trees, computing the hash related to that node consists
in hashing the values contained in its descendants. A node in a Merkle Tree
can have one or two children, so hash function h can be applied to single
elements or to pair of elements, depending on how many descendants the
node has. When h is used to encode a single element, the latter is prefaced
by a ‘0’, while during an encoding of a pair of elements, first one is prefaced
by a ‘1’ and second one by a ‘2’. This is done in order to never confuse hashes
of single elements with hashes of pairs.

The accumulator maintains a list of D = ⌈log(n + 1)⌉ Merkle-tree roots,
where n represents the current amount of elements in the accumulator. Those
elements are accumulated into the leaves of the trees. A sample root rd is
the root of a complete Merkle Tree with 2d leaves if and only if the d-th least
significant bit of the binary expansion of n is 1 [44].
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Figure 4.2: Developed accumulator example [44]

If element x is in the Merkle Tree with root rd, then its corresponding wit-
ness is defined as ωx = ((z1, dir1), ..., (zd−1, dird−1)), where zi is a resulting
hash, while dir indicate the direction of current branch in the authenti-
cating path, that could be either left or right. Hence, a witness is an
append-only list of items composing a rebuildable Merkle-tree path. Sibling
elements along all those Merkle-tree branches, together with x, can be used
to reconstruct the root of the Merkle Tree itself. An example illustration of
the used accumulator is shown in Figure 4.2, where elements with dashed
outlines belong to the authenticating path for xt−5 element, which means
that its witness is computed as ωxt−5 = ((h(xt−6), left), (z, right)) [44].

4.4.2 Operations

This section presents procedures provided by the accumulator deployed in the
Proof of Concept. Additionally, Appendix A contains the specific algorithms
that inspired accumulator implementation, as pseudo-code.
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Element addition

New element addition operation (AccAdd) is performed by merging together
existing Merkle Trees, so creating deeper ones. In particular, when element
x is accumulated as n-th, if r0 =⊥ (i.e. first Merkle Tree is empty), then
r0 = h(x), otherwise a “carry” operation is needed. The latter consists in
[44]:

1. Creating a new Merkle-tree root z equal to the pairwise hash h(r0, h(x)).

2. Set r0 to ⊥, and then look to the next root (i.e. r1).

3. If r1 root’s tree is empty, then r1 = z, otherwise it must continue merging
subsequent Merkle Trees and “carrying” up the chain.

In Figures 4.3 and 4.4 it is possible to observe an usage example of the
used accumulator, in which xt+1 is being added and two “carries” are needed.
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Witness update

Witness updating operation (AccWitAdd) occurs any time two Merkle Trees
are merged or “carried”, during an adding procedure. As better described
in corresponding algorithm of Appendix A, membership proof updates are
executed by means of an “update message” updmsgt+1 = (y, ωy

t+1), where y is
the just added element and ωy

t+1 is its new corresponding generated witness
[44]. After the completion of the updating procedure, all witnesses of the
accumulated elements are up-to-date.

Element deletion

Since DBPKI construction requires a dynamic accumulator, deleting oper-
ation (AccDel) of previously accumulated items must be provided. This
operation removes element x from the accumulator and, as for the adding,
update messages used to update the other witnesses will be generated too,
by means of AccWitDel operation. Deletion can be made by replacing the
leaf to be removed with ⊥ (i.e. a null value) and recomputing values of its
ancestors. Corresponding updating operation consists in replacing “the child
node of the lowest common ancestor of the deleted value and x” [44] with the
value contained in the received update message. However, in order to do that,
some modifications should be done on the starting version of the accumulator
proposed by Reyzin et al. [44]. Although those needed modifications would
degrade low update frequency property and old-accumulator compatibility
[44], this problem does not result in the proposed PoC, since an operation
can be performed only if the author node has access to an updated version
of the blockchain.

Witness verification

Membership verification (AccVer) for element x is made by starting from
the item x itself and its witness ωx. Purpose of verification is to reconstruct
the Merkle Tree from the leaf related to x up to the top, checking that result
of this operation matches the value of the root rd, where d is the length of
ωx. This is done by recomputing the ancestors of x, starting from knowing
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the value of ωx [44].

4.5 Consensus mechanism

DBPKI model expects the use of a consensus mechanism to make nodes
take decisions in a distributed fashion. The selected consensus mechanism
is Practical Byzantine Fault Tolerance (PBFT ). Its execution is made up
of rounds and each of them is split in some phases, and it is carried on
by nodes in a consensus group. In all phases, several messages are signed
and then sent as multicast to all other nodes. For each running of PBFT
mechanism, a node in that group acts as the leader, while all the others
behave as validators. Leader node is in charge of proposing a new item (or
set of items) and validators should approve it or not, according to some
specifications [8]. In the proposed framework, consensus group is composed
by Root and Intermediate units, so excluding Ordinary units, since they just
represent the users of the PKI. In DBPKI, the leader’s proposal consists in a
new block to be appended to the blockchain if it has been approved by most
of the validator nodes. PBFT phases are the following [8]:

1. New round phase: Initially, all DBPKI nodes are in NEW ROUND state.
A new round is initiated by the user, through DBPKI User Interface
commands. In this stage, leader node is selected and operation to be
performed on blockchain is chosen.

2. Pre-prepare phase: Leader node creates a new block with one or more
transactions corresponding to the operation to be performed on block-
chain. Then, it signs those elements with its key pair and sends it as a
multicast pre-prepare message to all validator nodes. At the end of this
stage, all validator nodes should have received the pre-prepare message
and their state will be set to PRE-PREPARED. Leader node is directly set
to PREPARED state instead, since it already knows the content of block
proposal, and it does not need to validate its own pre-prepare message.

3. Prepare phase: Upon receiving the pre-prepare message of current round,
each validator verifies correctness and validity of leader’s proposal. The
former can be checked by looking at the transactions contained in the
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block proposal, while validity check is made by verifying the digital
signature. After that, each validator node multicasts a signed prepare
message to all nodes in consensus group. Each of those messages contains
the approval decision for block proposed by the leader node. At the end
of this phase, all nodes in consensus group are in PREPARED state.

4. Commit phase: Nodes in consensus group wait for all prepare messages
and, after analyzing their content, they can know if most of validator
nodes have approved the new block. In that case, the latter can be
committed to blockchain and a positive signed commit message is sent out
as multicast by all nodes, stating their agreement on current operation.
Moreover, the new block in the chain will also contain all the signatures
of DBPKI nodes, along with their approval decisions. Otherwise, if
number of validators’ approvals is not high enough, blockchain will
remain unchanged and negative commit messages are exchanged instead.
At the end of Commit phase, states of all the nodes in consensus group
will be set to COMMITTED.

5. Round change phase: After reporting current round result, leader node
leaves control of the PoC to DBPKI User Interface, which will make
application ready for the next round. In the meantime, all the nodes
have changed their states to ROUND CHANGE.

This kind of consensus mechanism can tolerate up to f = ⌊(t − 1)/3⌋
Byzantine (i.e. faulty or malicious) nodes, where t is equal to the number of
nodes in consensus group. This is possible since each validator node should
verify at least 2f +1 collected messages, in both Prepare and Commit phases.
Indeed, actual value of messages to be validated could be different for each
round, depending on trust weights of nodes in consensus group, as explained
later in section 4.7. At the end of each PBFT round all honest nodes in the
consensus group has reached a common decision about approving or rejecting
the new block proposal provided by the current leader node. In this way, all
honest nodes will then have the same view on blockchain state [8].
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4.6 Procedures

Proposed framework defines a set of procedures that can be executed by
DBPKI nodes in order to create new blocks for the blockchain, or to verify
validity of a certain public key. Additionally, a minor functionality simply
consists in terminating the entire session, by making DBPKI User interface
and all other nodes stop themselves. The main provided functionalities are
[8]:

• Setup(λ): After Root nodes initialization, this function generates first
accumulator object, and publishes genesis block of blockchain including
transactions for all Root units. This operation is performed by first
Root unit, namely R0.

• Enroll(IDui, pkui, flag, role) → 1/ ⊥: Enrolls an entity ui with
identifier IDui and role ∈ {R, I, O} in the PKI. Public key pkui is the
public key of the entity to be enrolled. Boolean value flag indicates if
entity is being enrolled for the first time (0), or if the public key is being
updated (1) (i.e. by means of execution of Update procedure). This
procedure can be requested as leader node by Root (R) and Intermediate
(I) nodes only (i.e. nodes belonging to the consensus group). It outputs
success (1) or failure (⊥). Enrolling procedure is used during Setup in
order to enroll Root units and, as an example, it can be used when an
Intermediate unit (e.g. an organization) would like to enroll a certain
device (i.e. an Ordinary unit).

• Update(IDui, pk∗
ui

)→ 1/ ⊥: Updates the public key value corresponding
to entity with identifier IDui to the new value pk∗

ui
, returning as output

success (1) or failure (⊥). As enrolling and revoking procedure, also
updating a key can be requested by Root (R) and Intermediate (I) nodes
only, and not by Ordinary (O) ones. Update procedure has to be used
any time a node is changing its reference public key, for example when
old key pair has reached is expiration time, if any.

• Revoke(IDui, pkui) → 1/ ⊥: Revokes public key pkui of the entity with
identifier IDui, returning success (1) or failure (⊥). Revoking procedure
can be requested as leader node, only by nodes that are currently in the
consensus group. For instance, revoking process can be used by a Root
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or Intermediate node which has learned that its own private key has
been compromised, or if it would like to revoke key of a faulty Ordinary
unit.

• Verify(IDui, pkui) → 1/ ⊥: Verifies whether or not pkui is a valid
public key, meaning that it correctly corresponds to the identity of the
entity with identifier IDui, and returns success (1) if key is valid, or
failure (⊥) otherwise. Verification process can be carried on by any unit
u ∈ {R, I, O}. This operation can be useful, for example, when a certain
communication channel has to be instantiated and an identity validation
is necessary.

All procedures, except for verification, require reaching of consensus in
order to be successfully completed. Hence, most of the nodes in consensus
group should have approved the new block proposed by current leader node.
Those procedures are explained in more detail below, and their related
pseudo-codes are available in Appendix B.

4.6.1 Setup

Setup operation is performed only once in the beginning, immediately after
Root nodes are initialized, and their own key pairs (skRi, pkRi) are created.
After that, first Root node (R0) takes on the task of generating an accumulator
a0 by means of the AccGen function presented in Appendix A. R0 accumulates
identifiers and hash of public keys of all Root nodes, starting from itself, into
the accumulator. Thus, an updated accumulator a1 and related witness ω1
are generated. Then, it creates a transaction item for each of the Root units,
including identifier IDi, entire public key pkRi, flag set to ‘0’ indicating that
keys are being added for the first time, and R in the role field. After that,
all those transactions are inserted in a block proposal and sent out by R0
in the first pre-prepare message, so initiating PBFT consensus protocol as
leader node. All other Root units act instead as validator nodes during Setup
procedure. They should verify that their public keys have been correctly
accumulated by R0, and that transactions in block proposal contain the right
values. At the end of Setup procedure, if everything works correctly, all Root
units share the same view on blockchain state and they are ready to start
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first real round of this framework. Otherwise, initialization process fails and
Setup procedure has to be restarted from the beginning [8].

4.6.2 Enroll

If any new unit ui would like to join the DBPKI, it should generate its
key pair and send a signed request to unit uj, which is already part of
the consensus group. This enrollment request should contain an identifier
IDui, the public key pkui, desired role in PKI, and it could also contain
validity period or expiration date for that key if applicable, or other minor
information if needed [8]. In order to simplify the process, proposed Proof
of Concept assumes that node uj in consensus group decides to enroll a
new node by its own, only requiring the latter to create a key pair, and to
share its public part. In this way, enrollment request is not needed anymore.
Then, unit uj verifies if received public key correctly correspond to claimed
ui identity by means of Public key and Identity Validation (PIV ), which
preserves identity retention. Finally, node uj creates a new signed block
proposal related to current enrollment operation, that will be evaluated by
other nodes in consensus group following the steps of PBFT mechanism. It
is important to notice that if Enroll function is used during Setup, then
transactions contain entire public keys of Root units, otherwise transactions
contain hash of public keys only, in order to reduce accumulator size and
communication overhead.

Each node in consensus group will verify correctness and validity of
proposal and, if at least 2⌊(t − 1)/3⌋ + 1 of them have approved current
enrollment, new block will be successfully committed to blockchain and so
new unit will be part of PKI starting from the next round [8]. Indeed, block
proposal approval depends not only on the number of nodes accepting it,
but also on their trust weights, described in section 4.7. Note that a Root
unit can be enrolled only during Setup procedure, while Intermediate and
Ordinary nodes can only be enrolled after it. On the other hand, if consensus
mechanism leads to a rejection decision, then enrolling fails and blockchain
remains unchanged.
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4.6.3 Update

Update procedure can be performed by any unit ui ∈ {R, I} that would
like to update public key reference of a unit uj ∈ {R, I, O} (it is possible
for a node to update its own keys, too). It consists in revoking the old
key pkold

uj
by means of revocation procedure, and registering the new one

pknew
uj

by executing Enroll(IDuj , pknew
uj

, 1, role), where flag = 1 indicates
that affected entity uj was already recorded in the public ledger [8]. Hence,
enrolling and revoking procedures are merged in a unique updating operation,
which results in a single execution of consensus mechanism, that leads to
a success if and only if a certain number of DBPKI nodes, depending on
their trust weights (see section 4.7), agrees on current proposal. Unlike
starting DBPKI model proposed by Toorani et al. [8], which decided to
insert both the revoking and enrolling part in the block proposal as different
transactions, proposed framework uses just the enrolling part (with flag
value appropriately set to ‘1’). Thus, revocation of old public key remains
implicit.

4.6.4 Revoke

Revocation procedure can be performed by any unit ui which is part of DBPKI
(i.e. Root or Intermediate), when key pair of unit uj has to be revoked for
some reason, like validity expiration, probable private key disclosure, etc. It
is also possible that ui ≡ uj, if an entity would like to share a revocation
request to consensus group for its own key pair. Node ui creates a block
proposal, inserting a transaction including identifier IDuj , hash of public key
pkuj to be revoked, flag value set to ‘2’ and role value indicating which
is the role of unit uj. Block proposal is then signed by ui and shared with
other nodes in consensus group during first step of PBFT protocol [8].

As for enrolling and updating procedures, upon completion of PBFT
consensus mechanism, during which any unit in DBPKI has verified signatures
of received PBFT messages, revocation request is approved if the number of
nodes in consensus group accepting it is large enough. DBPKI nodes also
have to verify that public key to be revoked was present in last version of the
accumulator, by means of AccVer function. If revocation succeeds, then new
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block in the chain will contain an accumulator from where revoked public
key has been removed through AccDel functionality. Otherwise, if number
of agreeing units is not large enough, then revocation is aborted [8].

4.6.5 Verify

Verification procedure is the way a unit ui ∈ {R, I, O} can verify validity of a
certain public key and its correct association to a specific identifier, and so
to a certain node uj in PKI. It should check if public key belongs to the right
owner, if it is not expired yet (if an expiration time is applied), and, primarily,
if it has not been revoked. For simplicity, PoC described in this document
does not consider any expiration date. Given the identifier IDuj of the entity
whose key has to be verified, and value of the public key pkuj , verifier ui has
to build x = (IDuj , H(pkuj)), where H represents an hash function. Then,
this proof membership algorithm verifies whether if AccVer(ai, x, ωx) = 1,
where ai is the accumulator updated to last round, and ωx is the up to date
witness corresponding to x, which was generated and published when pkuj

was enrolled. If that equation is satisfied, then it means that the element to
be verified is valid as it is present in the accumulator [8].

4.7 Trust weights

In order to better distribute trust among DBPKI entities, this thesis improved
starting model of Toorani et al. [8], by proposing the use of dynamic trust
weights. Each node in the network is assigned to a certain trust weight value,
and all other nodes develop trust in it based on that weight. This means that,
when PBFT consensus mechanism is activated, the threshold to successfully
commit the new block proposal is not only given by the number of agreeing
nodes (that should be 2⌊(t − 1)/3⌋ + 1, where t is number of nodes), but
also on their current trust weight values. Therefore, in Prepare and Commit
phases of PBFT, when a node has received all messages from other DBPKI
nodes, it verifies whether the threshold (2⌊(t− 1)/3⌋+ 1) ·wi

avg is reached or
not. Current value of wi

avg is computed in each round i as the average trust
value that each node in DBPKI, except for leader, would have if they all had
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the same trust weight, and if all of them were always considered not revoked.
The latter requirement is necessary to compute value of wi

avg because, by
default, trust weight is always set to 0 for revoked nodes, as well as for the
Ordinary ones, not being part of DBPKI. Moreover, trust weights are stored
in blockchain, so allowing any node to stay updated about all of them.

Initially, when a node has just been enrolled in the system, a default trust
weight is assigned to it, according to its role type (Root, Intermediate or
Ordinary). As the rounds go by, trust weights of nodes are increased in
a way that the nodes that have been part of the network for the longest
time, have a greater trust weight than newly enrolled nodes. Furthermore,
proposed framework implements also a reward-and-punishment mechanism
that increases or decreases trust weight of nodes according to the outcome
of their operations. When a Root or Intermediate node has not successfully
completed an operation on blockchain, it means that it was not able to reach
majority of consensus in DBPKI. For this reason, reward-and-punishment
mechanism will decrease its trust weight, since that node could have become
faulty or malicious. Otherwise, if operation was successfully committed, trust
weight of leader node will be increased instead. This reward-and-punishment
mechanism also sets directly to zero trust weight of nodes that have been
revoked, because no other node should trust them anymore.

Chapter 5.6 describes usage of trust weights in more detail, and how
reward-and-punishment mechanism is actually implemented, too.
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Figure 4.3: Adding operation example - part 1 [44]
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Figure 4.4: Adding operation example - part 2 [44]
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Figure 4.5: PBFT phases and messages [8]
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Chapter 5

PoC implementation

In this Chapter, all implementation aspects of proposed framework are intro-
duced. It describes actual implementation of accumulator and trust weights,
and how PKCS#11 standard has been integrated to provide communication
towards a Hardware Secure Module. Used libraries and implemented data
structures are presented, too.

5.1 Project characteristics

This thesis project was entirely developed in Python 3.9 [68]. Python has
been chosen instead of other programming languages (e.g. C, C++) since
it provides a particularly suitable way for developing simple applications,
in an object-oriented fashion. Moreover, nodes in DBPKI should be able
to establish communication channels towards a HSM in order to use its
functionalities, and this can be done by means of low-level C programming,
or by means of the existing Pycryptoki Python library [69], as done in this
project. Pycryptoki is later described in section 5.5.

Developed Proof of Concept has been designed to run on a single machine
at the same time, as already explained in Chapter 4. For this reason, main
Python script to be launched is the one containing DBPKI User Interface
code that, after a brief initialization, takes care of helping the user to build its
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own custom PKI. Initially, it requires the user to choose how many Root units
are needed, and after that selection, it instantiates them as sub-processes
(i.e. by means of subprocess library), each one running the DBPKI node
Python script. After that, all those sub-processes wait for DBPKI UI to
finish initialization and to start the sequence of rounds characterizing this
framework, which was previously described.

5.2 Simulation database

Each node in DBPKI should be able to obtain some information on the
network by itself. For instance, it should know, in some way, which are the
public keys of other nodes. This could be done by requesting and then caching
all those keys locally. For the sake of simplicity, this PoC implements a
database containing all needed information, common to all the nodes, and to
DBPKI User Interface, too. It is a simple MySQL [70] database (version 9.1,
distribution 10.3.32-MariaDB) allowing nodes to obtain public keys and their
related data, by means of specific queries. Structure of proposed solution and
usage of the database is later shown in Figure 5.5. Used database contains a
single table named pubkeys, including the following columns:

• id: Identifier of the row in the table. This field contains integer values
used for database management but it has no role in DBPKI implemen-
tation actually. It is the primary key of the table.

• node_id: Identifier of the DBPKI nodes, as integer type. Each node
identifier is unique.

• cur_user_id: Identifier of the current User object related to a certain
node. A User object is used as reference of a node when working on the
accumulator, as better explained in section 5.3. Its value is unique and
has integer type.

• trust_weight: Current trust weight of the node in DBPKI, as integer
value.

• type: Field containing a value describing the role of current node, which
could be Root (R), Intermediate (I) or Ordinary (O).

64



PoC implementation

• value: This field contains a string of bytes referencing current value of
node’s public key stored in HSM. It refers to the last value of node’s
public key value only, remembering that a node can have just one public
key at a time, by design. So, if public key has been updated by means
of Update procedure, the new enrolled key is present only, while the old
one is not.

• updated: This field is just used as a boolean flag, letting user know
whether a certain node’s public key has been updated at least once or
not.

• status: It contains a value treated as boolean, which describes current
status of nodes’ public key. It can assume two values indicating if a
node’s identity has been revoked, or if it is still valid.

Some of the columns contained in that table of the database, as trust_weight
and status, are indeed redundant since their values could be simply retrieved
through blockchain. However, they are included anyway in order to allow
user better understanding current state of DBPKI, when working with its
related UI. An example of how the values contained in pubkeys table are
displayed to the user of the framework is available later in Figure 5.6.

5.3 Accumulator

Accumulator used in proposed PoC has been inspired to the work of Reyzin
et al. [44], and then implemented in Python programming language. Its aim
is to accumulate public keys and generate correspondent witnesses, used to
later verify them as a proof of membership. It is basically composed by a
list containing all the roots of the Merkle Trees composing the accumulator.
How the roots are created and moved, and how elements are added to the
accumulator is explained in Chapter 4.4. Each of the Merkle Trees are
composed by a set of AccumulatorNode objects, of which the roots are part.
Any time a new item is accumulated in one of the leaves of a Merkle Tree, a
witness is generated. That proof is a list of hashes needed to reconstruct the
authentication path for its corresponding element, and it is also used in order
to update other witnesses. In proposed framework, witnesses are stored in
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Proof objects and intrinsically tied to User objects, which are needed for
collecting data about the users of the accumulator.

In addition to adding or removing a certain item, accumulator object
also offers other functionalities like dichotomic search of a leaf node given
its value, or the retrieving of all proofs for values accumulated in a specific
Merkle Tree, or the printing of current accumulator structure. Obviously, it
provides also a way for updating or verifying one or more witnesses.

Figure 5.1 shows an example of printing operation performed at a certain
time on accumulator. In that representation, a root is equal to None (i.e.
⊥) when its Merkle Tree is empty, while Left and Right help in drawing
actual tree structure. Each accumulator node is represented as a couple,
containing its hash value in hexadecimal format and the nominative of its
author between brackets. The latter is optional and, if present, it is obviously
shown in leaves only, since these are the Merkle-tree nodes containing the
accumulated values. Moreover, each accumulator leaf corresponding to a
revoked key is associated to a byte string which value is “REVOKED”.

5.3.1 Accumulator node

An AccumulatorNode is a Python object representing a node in one of the
Merkle Trees currently present in the accumulator. It could be a root, a
leaf or one of the accumulator nodes between those two. It points to its
ancestor and to its neighbors (i.e. children) nodes, and it owns the following
attributes:

• hash: Current value contained inside the node. It is part of one or
more authenticating path. If node is a root, it is the highest part of
authenticating paths. If node is a leaf, it is the hash of an accumulated
element. Otherwise, if node is in the middle, it contains a central piece
of those paths. It can assume ⊥ value if corresponding element has been
removed from accumulator, or if node is a root and the tree is empty.
Hashing could be performed by means of Pycryptodome Python library
[71], or by means of a HSM. Each hash value in the Proof of Concept
has been computed by means of SHA-256 algorithm. There are a lot
of algorithms for hashing data which are more efficient than SHA-256,
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Figure 5.1: Example of printing accumulator structure

which was selected for the sake of simplicity. Any other algorithm could
be used, too.

• left: Pointer to the left child of current accumulator node. It is an
accumulator node itself. It could be None if left child is not present yet.

• right: Pointer to the right child of current accumulator node. It is an
accumulator node itself. It could be None if right child is not present

67



PoC implementation

yet.

• ancestor: Pointer to the father of current accumulator node. It is an
accumulator node itself. It could be None if current node is one of the
roots of Merkle Trees.

• author: This attribute contains the User object corresponding to the
author of the accumulated item. If node is not a leaf, then it is None.

• order_id: Unique identifier indicating the order in which elements are
added to the accumulator. It grows sequentially and it is present in leaf
nodes only.

Among others, accumulator nodes provide methods to recalculate their
own hashes, in case an element has been added or deleted, and methods for
computing witnesses and assigning them to the right User object.

5.3.2 User

As already mentioned, a User is a Python object referring to the author of a
certain adding operation and containing its related witness. For each data
to be accumulated, a new User object will be needed. For this reason, it
also provides some attributes to distinguish the actual DBPKI node which
performed the adding procedure. Its attributes are:

• unique_id: Sequential and unique identifier of User objects.

• user_id: Identifier of the actual user (i.e. DBPKI node) which has
performed the adding procedure, so generating this User object.

• name: Alphanumeric string indicating the identity of the DBPKI node
which has performed the related adding procedure. It just provides
to user of this PoC an useful tool for identifying the right author of a
certain adding operation, so its use is optional.

• proof: Witness generated at the end of the adding procedure related to
this User object.
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Since a new User is needed for each new adding procedure, its user_id
and name parameters can be used to distinguish which DBPKI node is the
real author of that operation. For instance, if DBPKI node with identifier
ID= 6 and “Alice” as nominative, has performed the 17th adding procedure
in this framework, the related User item will have unique_id = 16 (since
first unique_id is equal to 0), user_id = 6 and name = Alice. These
attributes could be useful, for example, when printing the current structure
of accumulator, as the one already presented in Figure 5.1.

5.3.3 Witness

As already pointed out, witnesses are represented by lists of arrays of bytes,
containing a proof used to verify the membership of the related public
key. Any time a witness has to be updated, due to an adding or removing
operation performed on accumulator, new generated value is appended to
the proof itself. For this reason, witnesses are implemented as a Python
subclass of list default class. Indeed, having combined the use of this type
of accumulator to the blockchain, only the valid proofs are saved in the latter.
Moreover, a list of all currently valid witnesses is available in each block of
the chain.

5.3.4 API

Accumulator has been developed individually, in order to make this thesis
project independent from the chosen accumulator implementation. Thus,
proposed framework offers an API allowing interoperability between the accu-
mulator and the rest of the project. Functions provided by that accumulator
API are the ones corresponding to the main accumulator functionalities:

• acc_gen: Generates a new accumulator object.

• acc_add: Given item x and an accumulator object ai, it creates a new
User ux and accumulates x, by binding it to ux. Then, it returns new
accumulator ai+1 and the witness related to the just performed adding
operation.
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• acc_ver: Verifies whether a certain item x has been added to the
accumulator or not, by knowing which is its related User object, and so
which is its membership proof.

• acc_ver_any: Verifies whether a certain item x has been added to the
accumulator or not, by going to trial and error with a list of valid
witnesses. This functionality could be useful in case a node in DBPKI
wants to verify a certain public key, without searching for the right User
object within the accumulator.

• acc_del: Given an accumulator object ai and an item x to be deleted
from ai, it searches for a leaf containing value corresponding to x, and
then it removes it. In the end, it returns the updated accumulator ai+1.
After deletion all witnesses has to be updated accordingly.

5.4 Communication protocol

As already pointed out in Chapter 4.5, nodes in DBPKI have to reach a
common decision about the current operation, by sending some messages in
multicast to all other nodes in consensus group. Any communication protocol
providing multicast could be chosen for that purpose. For instance, simple
UDP messages could be used to establish those kind of communications.
However, for reasons of low computational power, some UDP messages could
be lost while DBPKI nodes are still busy finishing some operations. This
is due to the fact that UDP is connectionless and delivery for the data is
unreliable [72], and also because all of those nodes are run as subprocesses
on a single machine, as already described in section 5.1. For all these reasons,
a TCP-based communication protocol has been chosen for proposed Proof of
Concept. The choice regarding the sending of PBFT messages fell on the
MQTT protocol, since that is one of the most used in IoT communication
[73], even in the automotive field [74]. Moreover, MQTT offers different QoS
levels, according to the usage of the system. For this Proof of Concept, QoS
level 2 has been selected, meaning that messages are delivered exactly once
to subscribers.

MQTT is a communication protocol based on the concepts of topic pub-
lication and subscription. Any entity which would like to send some data,
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Figure 5.2: MQTT architecture example (Source)

has to publish to a certain posting queue (i.e. a topic) a message containing
those data. Instead, any entity which would like to receive all messages
related to a certain topic, has to subscribe to it. MQTT requires the use
of a broker, which task is to coordinate all subscriptions and publications,
making sure that each entity subscribed to a certain topic receives all the
messages related to it. MQTT broker chosen for this PoC is mosquitto [75]
(version 1.6.15), an open-source and lightweight message broker. Figure 5.2
shows an example of MQTT architecture in which some devices (e.g. digital
thermometers) publish detected temperatures to a specific topic, two MQTT
clients are subscribed to that topic, and the broker takes care of distributing
the messages to the correct recipients.

MQTT broker has undoubtedly a central role in the structure of this com-
munication protocol. For this reason, it introduces a single point of failure in
MQTT architecture. If it stops working properly due to the malicious actions
of an attacker, all MQTT clients stop receiving updates on system status.
However, considering that purpose of this thesis is to create a PKI working in
a distributed fashion without the need of Certificate Authorities, the choice of
the communication protocol does not compromise the functionalities offered
by DBPKI. That choice therefore remains independent of proposed solution,
as any other multicast protocol could be used, too.

In Figure 5.3 an extract from the log file generated by MQTT broker
during a round execution is presented. It represents an example situation
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in which there are 3 active nodes in DBPKI (2 Root and 1 Intermediate),
which are passing through PBFT steps for approving or rejecting a public key
update procedure. The image shows leader node sending its new proposal in
dbpki/pbft/pre_prepare topic and, later, it also shows MQTT broker shar-
ing that pre-prepare message to all DBPKI nodes, since they are subscribed
to that topic from enrolling time. After that, prepare and commit messages
are exchanged (in dbpki/pbft/prepare and dbpki/pbft/commit topics),
containing the decisions about the approval of current block proposal. In the
end of the round, log file reports that DBPKI UI takes care of finishing the
round by sending a specific message on dbpki/pbft/round_change topic.
The latter will be then followed by a new message on dbpki/pbft/new_round
topic, when the next round begins.

All messages sent within developed PoC are encoded by sender, sent by
means of MQTT communication protocol, and later decoded by receivers.
Encoding and decoding of a certain message depends on which of the topics
it belongs to. Messages to be sent contain a lot of data like integers, strings,
byte arrays, or even entire lists or data structures. Those data are organized
in a single message following specific criteria, and divided by several separator
items. Separators consist in different strings of bytes, each one corresponding
to a specific level of the message encoding. For example, Figure 5.4 shows how
the encoding of a standard pre-prepare message of a certain round in DBPKI
is structured. In that image, a model of a pre-prepare message is presented.
The latter contains some simple data like a timestamp, an identifier, a
signature and a hash, and some other more complex structures like an entire
accumulator and some Python lists. For instance, the accumulator is encoded
in levels, starting from the roots of the Merkle Trees, until their leaves. The
one contained in that picture is a simple summary representation, where each
separator is represented by one or more special characters, corresponding to
long and specific string of bytes in the real PoC implementation.

5.5 HSM and PKCS#11 integration

Regarding the creation and management of cryptographic keys and signatures,
proposed framework exploits functionalities of a HSM. The used HSM is a
password-authenticated Thales SafeNet Luna A750 [29], and it was provided
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by Security Reply S.r.l. company. Its usage is preferred to the software library
called Pycryptodome, since HSMs provide great security capabilities, anti-
tampering properties and numerical generation which is not pseudo-random,
but actually random. Some of provided functionalities are indeed based on
the use of a True Random Number Generator (TRNG), as mentioned in
Chapter 2.2.1.

As already said in Chapter 2.2.2, in order to allow this framework co-
operating with a HSM, an API based on PKCS#11 standard should be
used. Pycryptoki library [69] has been chosen for that purpose. This open-
source Python library aims to simplify PKCS#11 library, which is written
in C programming language, by providing functions using Python’s ctypes
library. Some examples of functions provided by Pycryptoki library are
c_generate_key_pair_ex, which is used when a new key pair has to be
created, or c_sign_ex and c_verify, which are used for signing some data
and verify a signature, respectively. According to used standard, each of
those functions has to be preceded by an initialization and the opening of
a new session, and has to be followed by a finalization operation and the
closing of that session. Typically, functions provided by Pycryptoki needs a
mechanism in order to perform required operations. Proposed solution uses
mechanisms based upon RSA, both for key generation and signing of data.
Any other available mechanism could be used, too.

In the Proof of Concept’s architecture, shown in Figure 5.5, it is possible
to notice that a single HSM has been used for this thesis project. Each node
in DBPKI connects itself to that Thales Luna HSM in order to request some
operations, like the signing of some data. Obviously, each DBPKI node could
rely on a different HSM in a real implementation of this solution.

Figure 5.5 presents a conceptual representation of implementation design
of proposed solution, where:

• User represents the user of the developed PoC, which gives commands
through scripts or command line, interacting with DBPKI UI.

• DBPKI UI is the User Interface presented in Chapter 4.1, which is in
charge of allowing the user to interact with the system, initializing the
DBPKI and managing its rounds.
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• R (Root), I (Intermediate) and O (Ordinary) elements constitute an
example representation of all the nodes in the PKI. As explained in
Chapter 4.2, Root and Intermediate nodes are actually in DBPKI, while
Ordinary ones are not part of consensus group.

• MySQL DB, MQTT Broker and HSM are the external tools used
to make the proposed framework work properly. For simplicity, they are
in common to all the nodes, as said before.

5.6 Trust weights

As introduced in Chapter 4.7, this thesis project proposes the use of dynamic
trust weights, in order to enhance trust relationships among DBPKI entities.
Any operation that can be performed on blockchain has to be approved by a
minimum number of nodes in consensus group. That minimum threshold
is not only a fixed value depending on current number of nodes in DBPKI,
as proposed by Toorani and Gehrmann [8]. In this framework indeed, that
threshold is computed at each round also considering the value of trust weight
that all nodes (both leader and validators) have reached.

Starting from an initial trust weight value gained when enrolled, each
node in DBPKI has its own trust weight increasing or decreasing according
to the results of operations performed on blockchain, as the rounds progress.
As already seen in Chapter 4.7, a new block can be successfully committed
to blockchain if and only if threshold T = (2⌊(t− 1)/3⌋+ 1) ·wi

avg is reached,
where t is the current total number of nodes in DBPKI, and wi

avg is the
average value of trust weight of all nodes, excluding leader one. At each
round, if blockchain has to be modified, leader node checks whether the
current maximum reachable trust value is equal or greater than that threshold
T . If value of threshold T is not reached, operation requested by leader node
will be rejected from consensus group. Moreover, if maximum trust value
has not been achieved, it means that some of the nodes in DBPKI are faulty
or malicious. In this way, DBPKI security is enhanced since nodes which
have gained a high trust value, have a greater weight in the network.

Figures 5.6 and 5.7 show two screenshots taken from DBPKI UI, presenting
example situations in which threshold T is reached and not, respectively.
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These two scenarios assume that all non-revoked nodes are trustworthy (i.e.
non-faulty and non-malicious). In the first case, consensus group accept
the proposal made by leader node since, even if some nodes are revoked,
their trust weights have low impact on the outcome of current operation.
Hence, in first case the network of DBPKI nodes is able to converge to a
positive decision. On the other hand, second picture presents a round in
which consensus group is not able to accept leader’s proposal since threshold
T is not reached, because too many nodes have been revoked, and therefore
the system loses its decision-taking ability. Both images contain a forecast
on the result of requested procedure based on current maximum reachable
trust value, a table showing status of each node in PKI, the sequence of
completed consensus phases and the final result of the operation.

Proposed PoC assumes that maximum trust weight value reachable by
a single DBPKI node is equal to 50, while the minimum is set to 0. The
latter is also the value of trust weight of revoked nodes. Having these basic
rules in mind, management of trust weights and the reward-and-punishment
mechanism are explained below.

5.6.1 Initial trust weight

When enrolled, any node obtains an initial value for its trust weight in the
network, according to which role it has. If node is Root (R), it starts with a
trust weight of value 10, if it is Intermediate (I) its value will be 5, while
if it is an Ordinary (O) node, its trust weight will be always equal to 0. In
this way, Root nodes have a heavier weight in the beginning, thus creating
a pyramidal trust system which is then flattened with the growth of the
PKI, since only more Intermediate nodes will be added to consensus group.
Ordinary nodes instead do not need a trust weight because they are not
actually part of DBPKI, since they can not take part in PBFT consensus
mechanism.
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5.6.2 Trust weighted on time

Developed Proof of Concept proposes a system that proceeds in rounds,
alternating the work of DBPKI UI and the nodes, as already explained in
Chapter 4 of this document. At each round, a new leader node performs
a certain operation on blockchain or a public key verification. Any time a
new block to be appended to the chain is accepted or rejected by consensus
group, trust weight value of all nodes in DBPKI (Root and Intermediate
ones) is increased by 1. Thus, trust weights are weighted on time, since as
rounds passes, the nodes that have been in the network from a longer time,
will have a greater trust value. This feature allows nodes that have been
present for the longest time to consolidate their level of trust, and also to
create a time frame in which newly enrolled nodes must earn the trust of
the system.

5.6.3 Reward and punishment mechanism

An additional feature implemented in proposed framework is the appliance
of a custom reward-and-punishment mechanism which aims to incentivize or
disincentivize nodes in DBPKI, according to the results of their performed
operations on blockchain. When a DBPKI node takes the leadership of current
round, it is able to propose a new block to be committed to blockchain. In
that case, consensus group can approve or reject the proposed block. If
proposal has been accepted, it means that leader unit was able to make itself
trustworthy in the eyes of validator nodes. Hence, in that case, block is
successfully committed to blockchain and leader node’s trust weight value is
increased by 1 as a reward for its success (in addition to the increase due to
the functionality already described in section 5.6.2). Otherwise, if proposal
has been refused by other nodes in DBPKI, leader is punished by means
of a decrease in its trust weight of value 2. Those reward and punishment
constitute the implemented custom mechanism which helps the network to
exclude elements that DBPKI nodes do not trust, and to reward the ones
that have earned the necessary value of trust in the framework.
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Figure 5.4: Pre-prepare message structure
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Figure 5.5: PoC model architecture
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Chapter 6

Results and validation

This Chapter presents an overview on experimental results of this thesis
project, and a validation of the realized Proof of Concept in respect to
expected requirements.

6.1 The DCS theorem

The Decentralized Consensus Scale (DCS) theorem, studied by G. Slepak
and A. Petrova [76], shows how properties of any decentralized system must
follow the structure defined by the DCS triangle, on whose vertices there are
three different key concepts [76]:

• Decentralization: System has no single point of failure and, if any element
of it is removed, system continues to work properly.

• Consensus: System uses a consensus algorithm in order to take collective
decisions.

• Scale: System is able to handle any number of elements, and so it is
capable of providing the same services of any competing system.

DCS theorem demonstrates how “decentralized consensus systems like
block-chains, can have Decentralization, Consensus, or Scale, but not all three
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Figure 6.1: The DCS triangle [76]

properties simultaneously” [76]. Since proposed framework is decentralized
and uses a consensus mechanism, it obviously focuses on Decentralization
and Consensus properties, rather than on Scale.

6.2 Performance and costs

Proposed PoC has been designed to run on a single machine, which was a
Linux server with 4GB of RAM and Intel Xeon Silver 4214 CPU @ 2.20GHz
as processor. Due to this limitation, the Proof of Concept can instantiate a
maximum of 20 Root nodes as processes during Setup. Moreover, with the
increasing of number of nodes in DBPKI, the overhead of communication and
consensus mechanisms consequently increases, as shown by data collected in
Table 6.1, where first row contains t, which indicates the current number of
nodes in DBPKI, while second row contains elapsed time for an enrolling
procedure during a sample round, in seconds. Figure 6.2 also shows a more
complete distribution of collected data. That measured approximate time
considers creation of the key pair, the instantiating of the process, the creation
of the block, the achieving of consensus and the commit in the blockchain.
Presented times are quite high because, for simplicity, the Proof of Concept
also subscribes the nodes to MQTT queues in which they are not interested.
However, the importance of those data lies in increasing the time necessary
for the convergence of the collective decisions, as the number of nodes in the
consensus group increases.
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t 2 4 6 8 10 12 14 16 18 20
sec. 5.95 10.76 17.94 26.28 36.13 47.28 62.33 78.51 91.63 109.40

Table 6.1: Consensus mechanism overhead

Figure 6.2: Consensus mechanism overhead graph

Consensus procedure is therefore a costly part of the framework and its
cost increases with the enlarging of the DBPKI network, since each node has
to send multicast messages to all other units in consensus group, as described
by means of Table 6.1. Hence, PoC functionalities lie on a trade-off between
security and efficiency: the more nodes in the consensus group, the better the
system security, and the worse its efficiency, due to greater communication
overhead [8].

Performance of proposed solution are influenced by chosen accumulator,
consensus mechanism and communication protocol. Operations on accumu-
lator deployed in the Proof of Concepts are logarithmic, as already pointed
out in Chapter 4, while Table 6.2 shows computational costs of DBPKI
procedures, by dividing them in needed steps. In that table, t indicates the
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number of nodes in consensus group, while k represents the amount of nodes
storing and validating accumulator and witnesses.

Procedure Sign/Veri AccAdd AccWitAdd AccWitDel AccDel AccVer

Enroll O(t2) t k - - -

Revoke O(t2) - - k t t

Update O(t2) t k k t t

Verify - - - - - 1

Table 6.2: Computational costs of DBPKI procedures [8]

6.3 Security Properties

Proposed blockchain-based PKI removes the need of digital certificates and
of Certificate Authorities (CAs), since validity of cryptographic keys is
granted by the blockchain itself, which is held together by a multitude of
entities. There are no more central authorities able to validate certificates
in a pyramidal infrastructure, as it was the traditional PKI. The lack of a
validity certificate does not compromise the security of the system as it is only
necessary in parallel with the deployment of CAs. Some sort of certificate
could still be associated with the keys to enclose some data about them, such
as an expiration time. However, the proposed solution does not provide for
any expiration for the public keys, therefore, within the blockchain, only the
creator of a key and its owner are stored.

Security capabilities of proposed DBPKI Proof of Concept depends on
the number of nodes t in consensus group, the number f of Byzantine nodes,
and all their trust weights. Assuming that deployed hash function is collision-
resistant1, that used accumulator is sound (see Chapter 2.5), and that there
are no more than f faulty units, then an adversary A has negligible advantage
in winning the following security experiments, which were defined in the

1A hash function is collision-resistant if it is hard to find two inputs corresponding to
the same output hash.
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work of Toorani et al. [8]:

• Enroll-ValidKey-IllegitimateEntity experiment:

(ID, pk) ← A()
return 1 if (Enroll(ID, pk, flag, role) = 1) ∧ (Verify(ID, pk) =⊥) ∧

(PIV(ID, pk) = 1)

Adversary A wins the “security game” if it can enroll an illegitimate
entity in DBPKI, by registering a valid public key.

• Enroll-InvalidKey-IllegitimateEntity experiment:

(ID, pk) ← A()
return 1 if (Enroll(ID, pk, flag, role) = 1) ∧ (Verify(ID, pk) =⊥) ∧

(PIV(ID, pk) =⊥)

Adversary A wins if it can enroll an illegitimate entity in DBPKI, by
registering an invalid public key.

• Enroll-InvalidKey-LegitimateEntity experiment:

(ID, pk) ← A()
return 1 if (Enroll(ID, pk, flag, role) = 1) ∧ (Verify(ID, pk) = 1) ∧

(PIV(ID, pk) =⊥)

Adversary A wins this experiment if it can enroll a legitimate entity in
DBPKI, by registering an invalid public key.

• Update-Collision experiment:

(ID, pk∗) ← A()
return 1 if (Update(ID, pkold, pk∗) = 1) ∧ (Verify(ID, pk∗) = 1)

Adversary A wins if it can update the public key of a legitimate entity
with another arbitrary public key pk∗.

• Revoke-Collision experiment:

(ID, pk) ← A()
return 1 if (Revoke(ID, pk) = 1) ∧ (Verify(ID, pk) =⊥)

Adversary A wins this game if it can revoke the public key of a legitimate
entity without the consent of the network.
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6.4 Trust weights analysis

The starting work of Toorani et al. [8] proposed a decentralized blockchain-
based PKI, which can tolerate up to ⌊(t− 1)/3⌋ malicious nodes inside the
system. Framework described within this document proposes an enhancement
of that security property. Developed PoC can tolerate a number of malicious
nodes which depends on the trust value of each of the nodes in DBPKI at
current time. Indeed, a trust level has to be reached in order to commit
any operation on blockchain, and the value of that threshold is equal to
(2⌊(t− 1)/3⌋+ 1) · wi

avg, as already defined in Chapter 4.7. This developed
improvement creates a mild form of centralization in the beginning, since
Root units will have a higher trust level from the first round. Nevertheless,
that slight centralization is quickly faded when the network grows up and
the time flows, thanks to the use of trust weights and their related reward-
and-punishment mechanism.

The two graphs included in Figure 6.3 show a comparison in which the
same sample use case has been run without or with the use of trust weights,
respectively. Those graphs present the number of rounds on the x-axis, which
simulates the passage of time, and the number of nodes or value of trust on
y-axis. Both graphs contain two lines: the solid line represents the trust value
reached assuming that no malicious nodes are present in consensus group,
while the dashed line represents the threshold to be reached to successfully
commit new transactions. In the first case, before trust improvements, and
so without the appliance of dynamic trust weights, solid line simply indicates
the current amount of valid (non-revoked) units in DBPKI. Instead, dashed
line is the curve described by ⌊(t− 1)/3⌋ threshold, where t is the current
total number of nodes participating in consensus group. On the other hand,
in the second graph, solid line is defined by the actual reachable trust value,
and the dashed one indicates the minimum threshold to be reached, which
depends on trust weight of any single node. As shown by that comparison,
the correct functioning of DBPKI version proposed by M. Toorani and C.
Gehrmann strictly depends on the current amount of valid nodes and, if a lot
of them are revoked (or malicious), it is soon compromised when the two lines
of the graph cross. Proposed solution instead allows the system to revoke
even a large number of units since, if the network is large, the difference
between the threshold and the reached value of trust gets bigger and bigger
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as time goes by. In this way, the relevance of a node within the network,
even if it has Root role, becomes almost insignificant, thus decentralizing
even more the PKI model.

88



Results and validation

Figure 6.3: DBPKI sample case comparison
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Chapter 7

Conclusion

This Master’s thesis started by focusing on the research for alternatives to
traditional centralized Public Key Infrastructures, in order to create a Proof
of Concept for a decentralized infrastructure, that could be applied for IoT
and similar distributed environments. A lot of past works have been analyzed,
and Toorani and Gehrmann’s one [8] was the most inspirational, since they
proposed a blockchain-based PKI which is totally decentralized. After that
first phase of scouting, the purpose of this thesis has therefore become to
develop in a testing environment the DBPKI model that Toorani et al. had
proposed only conceptually, and to possibly improve some of its features.
The latter is an important contribution of this work, indeed an enhancement
based on the use of dynamic trust weights has been implemented within the
developed PoC.

The entire programming of the PoC was made in Python and it was
based on the use of PBFT as consensus mechanism between the nodes of the
network. This thesis project also involved the realization of a cryptographic
accumulator, and the choice of a communication protocol which could be used
in distributed systems. While carrying out this thesis, standard PKCS#11
was studied and an HSM was integrated into the proposed framework, with
the aim of creating cryptographic keys and digital signatures. Furthermore, a
DBPKI User Interface is provided, thus allowing the user of a single machine
to run the PoC and to set up its own blockchain-based PKI.
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Finally, after having analyzed the security properties offered by the DBPKI
model and the experimental results obtained, it can be confirmed that
the PoC has been fully completed, and that the improvement given by
the use of dynamic trust weights has successfully enriched the developed
infrastructure. On the other hand, the one realized is only a prototype
and would therefore not be immediately usable in real applications, as
experimental tests measuring PoC performance revealed. Nevertheless, future
optimizations will hopefully make the use of proposed framework feasible in
several scenarios, making it an effective alternative to traditional PKI.

7.1 Future improvements

This section includes limitations of proposed implementation and provides
some hints for future improvements.

7.1.1 Privacy-awareness

As already pointed out by the work of Toorani et al. [8], DBPKI starting
model does not consider privacy-awareness property, which requires the
removal of direct link between nodes’ identities and their public keys. DBPKI
could be modified in order to respect this constraint, however, within this
thesis, it has not been considered as it has little in common with the issue of
decentralization.

This kind of improvement could be useful since features of blockchain-
based PKIs contradict two rules of the GDPR (General Data Protection
Regulation): the pseudonymization of personal data, and the right to erasure
[77]. Indeed, identities should not be directly stored on blockchain since,
once published, data become transparent, immutable and cannot be erased
easily [77]. Therefore, the use of pseudonym mechanism would make entities
tracking transactions to not obtain real identity of users, thus improving
their anonymity [10].
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7.1.2 Variants of PBFT

For the correct working of the proposed solution, DBPKI nodes have to verify
at least 2f + 1 signatures in both Prepare and Commit phases, according to
PBFT consensus mechanism. This might limit the framework when a huge
number of nodes are running at the same time, since their computational
and communication overhead is high [8]. For this reason, standard version of
PBFT could be replaced by other proposals in order to improve scalability
of the system. Those alternatives could be, for instance, MirBFT [78], which
allows the presence of multiple leaders, or HotStuff [79] and its variant
LibraBFT [80], which uses fewer messages to achieve consensus. However,
some vulnerabilities of HotStuff-based proposals should be taken into account,
like the ones depicted in the work of Momose et al. [81].

7.1.3 Diffused PBFT

Another improvement that could be taken into consideration, even together
with variations proposed in section 7.1.2, is the usage of a “diffused” version
of the PBFT. This future enhancement can be inspired by the work of Chai
et al. [14], already mentioned in Chapter 3.2. They built a framework called
CyberChain in which, among other features, PBFT consensus mechanism is
reinvented and applied in an even more efficient way. They called their new
mechanism DPBFT, which stands for Diffused Practical Byzantine Fault
Tolerance. Their work is mainly about IoV networks, so they needed to use
a lightweight consensus mechanism, in order to cater for the high mobility of
vehicles. DPBFT consists of the subdivision of the network, and therefore
of the consensus group, into “sub-consensus areas”. Each sub-area has a
corresponding Edge Server (ES), whose task is to manage nodes currently in
that area and to communicate with other ESs. Consensus is firstly achieved
in a single sub-area, and then collective decision is spread in the rest of the
network. In this way, the delay due to the total achievement of consensus
and the communication overhead are drastically reduced. Therefore, the
important aspects from which to take inspiration to improve the proposed
solution are the division of the network into zones and the gradual spread of
the consensus mechanism.
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7.1.4 Existing-PKI interoperability

The proposed solution was made to work independently, but it could be
useful to make it backwards compatible with the existing PKIs. A way
should therefore be found to ensure that traditional digital certificates can
be recognized by the proposed decentralized PKI, and vice versa, that public
keys of DBPKI nodes can also be validated externally. This would make it
possible to introduce interoperability with the already widespread traditional
PKIs.
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Developed accumulator
algorithms

This appendix contains all algorithms used as inspiration for the development
of the asynchronous accumulator. Some of these algorithms were taken
from the work of Reyzin et al. [44], and later adapted to the Python
implementation of proposed PoC. Among them, there is also a support
function (GetAncestors), which is used to recompute the ancestors of a
certain leaf in a tree.

Algorithm 1 AccGen: generating a new empty accumulator
Require: λ

1: return a0 =⊥
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Algorithm 2 GetAncestors: recomputing ancestors of an accumulated
item
Require: p, x

1: c = h(x)
2: p̃ = [c]
3: for (z, dir) in p do
4: if dir = right then
5: c = h(c||z)
6: else if dir = left then
7: c = h(z||c)
8: end if
9: append c to p̃

10: end for
11: return p̃

Algorithm 3 AccAdd: adding of a new element to the accumulator
Require: at, x

1: at+1 = at ▷ New accumulator starts out as a copy of the old one
2: ωx

t+1 = [] ▷ Witness starts out as an empty list
3: d = 0 ▷ Witness’ depth starts out as 0
4: z = h(x)
5: while at+1[d] /=⊥ do
6: if the length of at+1 < d + 2 then
7: append ⊥ to at+1
8: end if
9: z = h(at+1[d]||z)

10: append (at+1[d], left) to ωx
t+1

11: at+1[d] =⊥
12: d = d + 1
13: end while
14: at+1[d] = z
15: return at+1, ωx

t+1, updmsg = (x, ωx
t+1)
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Algorithm 4 AccVer: verifying of a witness
Require: at, x, ωx

1: p̃ = GetAncestors(ωx, x)
2: if at and r have any elements in common then
3: return TRUE
4: else
5: return FALSE
6: end if

Algorithm 5 AccWitAdd: updating a witness after that a new element has
been added to the accumulator
Require: y, ωy

t+1, ωx
t

1: let dx
t be the length of ωx

t

2: let dy
t+1 be the length of ωy

t+1
3: if dy

t+1 < dx
t then

4: return ωx
t ▷ Witness has not changed

5: else
6: dx

t+1 = dy
t+1

7: ωx
t+1 = ωx

t ▷ New authenticating path starts out as a copy of the old
one

8: ω̃y
t+1 = GetAncestors(ωy

t+1, y)
9: append (ω̃y

t+1[dx
t ], right) to ωx

t+1
10: append ωy

t+1[dx
t + 1, ...] to ωx

t+1
11: return ωx

t+1
12: end if
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Algorithm 6 AccDel: deleting an element from the accumulator
Require: at, x

1: search in at for pointer to x̃ value in the accumulator such that x̃ = x
2: if pointer to x̃ not found then
3: return at ▷ No element has been removed
4: else
5: let rd be the root of the Merkle Tree where x̃ has been found
6: at+1 = at ▷ New accumulator starts out as a copy of the old one
7: replace x̃ value with ⊥ in at+1[d] corresponding leaf
8: recompute hashes of all ancestors of found leaf in at+1[d]
9: return at+1

10: end if
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DBPKI procedure
algorithms

This appendix contains the algorithms of functionalities provided by DBPKI
proposed framework, as pseudo-codes. They are based on the work of Toorani
et al. [8], and they are the basis of the Python implementation of PBFT
protocol and DBPKI itself. The AddBL algorithm corresponds to the addition
of a new block in the chain, while the “KeyGen” function refers to the method
used to generate new asymmetric cryptographic keys. Each node creates its
own key pairs, and then only their public part is shared with other nodes.

Algorithm 7 AddBL: adding a block to blockchain
Require: Proposal

1: if consensus achieved ∧ proposal approved then
2: BLi+1 = {Proposal}
3: end if
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Algorithm 8 Setup: initializing DBPKI
Require: λ

1: IDblock = 1 ▷ First block ID is equal to 1
2: TL = [] ▷ Transaction list starts out as empty
3: TW = [] ▷ Trust weights starts out as an empty list
4: a0 = AccGen(1λ)
5: for i ∈ {1, ..., n} do
6: (skui, pkui) = KeyGen(1λ)
7: append (IDRi, pkRi, 0, R) to TL
8: append (IDRi, V_R) to TW
9: x = (IDRi, h(pkRi))

10: AccAdd(a0, x)
11: end for
12: AddBL({Opt, IDblock, a1, ω1, TL, TW}) ▷ Optional data contains a

timestamp

Algorithm 9 Enroll: enrolling a new unit in DBPKI
Require: ID, pk, flag, role

1: if PIV(ID, pk) = 1 ∧ consensus achieved then
2: append (ID, h(pk), 0, role) to TL
3: if role = I then
4: weight = V_I
5: else if role = O then
6: weight = V_O
7: end if
8: append (ID, weight) to TW
9: x = (ID, h(pk))

10: (ai+1, ωi+1) = AccAdd(ai, x)
11: AddBL({Opt, IDi+1

block ai+1, ωi+1, TL, TW}) ▷ Opt contains a
timestamp

12: return 1
13: else
14: return ⊥
15: end if
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Algorithm 10 Verify: verifying a proof membership
Require: ID, pk

1: x = (ID, h(pk))
2: if AccVer(ai, x, ωi) = 1 then
3: return 1
4: else
5: return ⊥
6: end if

Algorithm 11 Revoke: revoking a public key
Require: ID, pk

1: let role be the role of affected node
2: if Verify(ID, pk) ∧ consensus achieved then
3: append (ID, h(pk), 2, role) to TL
4: (ai+1, ωi+1) = AccDel(a, (ID, pk))
5: AddBL({Opt, IDi+1

block, ID, ai+1, ωi+1, TL, TWi+1}) ▷ Opt contains a
timestamp

6: else
7: return ⊥
8: end if

Algorithm 12 Update: updating a public key
Require: ID, pkold, pknew

1: let role be the role of affected node
2: if PIV(ID, pknew) = 1 then
3: Revoke(ID, pkold)
4: Enroll(ID, pknew, 1, role)
5: return 1
6: else
7: return ⊥
8: end if
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