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Summary

One the most important topics in technology is machine learning and its applications.
machine learning methods are used to understand different concepts and make
decisions to improve the performance. One of the famous subsets of machine learning
is Deep learning. Deep learning is the way of creating an abstract hierarchical
representation of the raw input data to extract useful features for the traditional
machine learning algorithms. Arising deep learning approaches have improved many
real world applications and problems in different areas such as computer vision,
forecasting future events, text recognition, and etc. In this study, a deep generative
model is proposed to predict the future probability of the Solar Power in the United
State sites. we propose a scalable algorithm/framework which is able to capture
the distribution of each power number in the historical data. the probabilistic
data generation model is devised based on the feature extraction function in which
the Kernel metric learning is used, deep learning, and the conditional variational
autoencoder. We apply the model to the problem, the probabilistic solar power
prediction. We use the Solar Power datasets obtained from Oklahoma and eastern
states located in the United States. Using our proposed model, the distribution
of future Solar power given historical power observations is estimated for every
locations. Numerical results on the National Solar Power Database show state-of-
the-art performance for probabilistic power prediction on geographically distributed
power data in terms of Mean Absolute Error and RMSE has a great improvement
in comparison to other solutions.
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Chapter 1

Introduction

1.1 Overview

One of the most important topics in technology is machine learning and its ap-
plications. machine learning methods are used to understand different concepts
and make decisions to improve the performance. One of the famous subsets of
machine learning is Deep learning. Deep learning is the way of creating an abstract
hierarchical representation of the raw input data to extract useful features for the
traditional machine learning algorithms. Arising deep learning approaches have
improved many real world applications such as computer vision, speech recognition,
and Text recognition.
On the other hand, with the significant increase of using solar power energy all
around the world, predicting the amount of this energy for next time period is a
critical and hard task, this task is categorized as a time series problem. Recently,
different deep neural networks have been developed and used successfully to produce
the most accurate outcome for the time series prediction. These networks are often
trained using RNNs and LSTMs. Moreover, combining generative models with
the mentioned architectures have obtained better improvements for the time series
problem and its density estimation.
In recent publications, detecting the similarity between extracted features in deep
learning has increased the final accuracy in classification tasks in Face recognition
and face verification applications. Applying similarity metrics for extracting useful
features in time series problems is a new challenge and the result should be analyzed
and studied.
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1.2 Generative models
Deep generative models (DGM) are neural networks with many hidden layers
trained to approximate complicated, high-dimensional probability distributions
using a large number of samples. When trained successfully, we can use the DGMs
to estimate the likelihood of each observation and to create new samples from
the underlying distribution. Developing DGMs has become one of the most hotly
researched fields in artificial intelligence in recent years. The literature on DGMs
has become vast and is growing rapidly. Some advances have even reached the
public sphere, for example, the recent successes in generating realistic-looking
images, voices, or movies; so-called deep fakes [18].
Normalizing flow, Variational Autoencoders and the Generative adversarial Net-
works are the most popular generative models.

Figure 1.1: Generative Models

1.3 Deep Metric Learning
Metric learning is an approach based directly on a distance metric that aims to
establish similarity or dissimilarity between objects. While metric learning aims to
reduce the distance between similar objects, it also aims to increase the distance
between dissimilar objects. For this reason, there are approaches, such as k-nearest
neighbors, which calculate distance information, and approaches where the data
is transformed into a new representation. While the metric learning approaches
are moved to the transformation space with distance information, the method is
basically based on a W projection matrix. Current studies are directly related to
Mahalanobis distance in general [4–6]. When Mahalanobis distance is transformed
into the Euclidean distance, the metric learning approach is presented based on the
decomposition of the covariance matrix and the use of symmetric positive definite
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matrices while performing these operations.

Figure 1.2: deep metric model

1.4 Thesis Objectives
Current research took place in the Software Engineering Lab at the University
of Tulsa under the supervision of Prof. Mahdi Khodayar. The goal of this study
is to integrate deep distance metric learning into predictive models and propose
a new algorithm to improve the prediction result of the Solar Power dataset for
the different future time periods in terms of Mean Absolute Error (MAE) and
Mean Squared Error (MSE). the application is applied on Oklahoma’s solar power
sites. Moreover, we will use this frameworks as a probability density function and
compare its result based on the Sharpness and Reliability metrics.

1.5 Thesis Structure
The rest of the thesis is organized as follows. Chapter 2 provides literature review
about recent researches on Solar forcasting and related deep learning architectures.
Deep metric learning method, Variational Autoencoders and LSTMs architectures
are studied. Later, other existing frameworks as a probability density function and
solar forcasting frameworks are analyzed to be compared with the final result of
the proposed algorithm. Description of data and tools used during this research
are presented in chapter 3.
Chapter 4 discusses data exploration and the proposed algorithm. Performance
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metrics used during this research are introduced. Hyperparameter tuning is used to
find the best set of hyperparameters. Results obtained from different hyperparame-
ters are compared and all the results and its interpretation are presented, After
finding the best hyperparameters for this faramework, the result of comparing this
method with other existing frameworks with respect to the specific metrics are
shown.
Finally, chapter 5 concludes the thesis research by pointing out the findings and
outcome of this work. Moreover, possibile improvements are proposed for further
research.

4



Chapter 2

Literature Review

This chapter is specified to the study of deep metric learning approaches, generative
models and deep learning architectures which are used for forcasting future events.
These architectures include Long-Short term memory (LSTM) and Recurrent
Neural Network (RNN).

2.1 Metric Learning

Metric learning aims to measure the similarity among samples while using an optimal
distance metric for learning tasks. Metric learning methods, which generally use a
linear projection, are limited in solving real-world problems demonstrating non-
linear characteristics. Kernel approaches are utilized in metric learning to address
this problem.

Each dataset has specific problems in terms of classification and clustering.
Distance metrics that do not have a good learning ability independent of the
problem can be claimed not to yield successful results in the classification of data.
Therefore, a good distance metric is required to achieve successful results on the
input data [23][27].

To address this problem, several works have been conducted while using metric
learning approaches [23][27]. Metric learning provides a new distance metric by
analyzing data.

A metric learning approach that performs the learning process on the data will
have a higher ability to distinguish the sample data. The main purpose of metric
learning is to aim to learn a new metric to reduce the distances between samples of
the same class and increase the distances between the samples of different class [6].
As can be seen in Figure 1c, while metric learning aims to bring similar objects
closer, it increases the distance between dissimilar objects.

5
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Figure 2.1: Deep Metric Learning

it can be seen that the studies for metric learning are directly related to Maha-
lanobis distance metric. Let X = [x1, x2, ..., xN ] ∈ Rd×N be the training samples,
where xi ∈ Rd is ith training example and N is the total number of training samples.
The distance between xi and xj is calculated as:

dM(xi, xj) =
ñ

(xi − xj)T M(xi − xj) (2.1)

dM (xi, xj) is a distance metric, it must have the properties of nonnegativity, the
identity of indiscernibles, symmetry, and the triangle inequality. M needs to be
symmetric and positive semidefinite. All of the eigenvalues or determinants of M
must be positive or zero to be positive semidefinite. When we decompose M, as
follows:

M = W T W (2.2)
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dM(xi, xj) =
ñ

(xi − xj)T M(xi − xj) (2.3)

=
ñ

(xi − xj)T W T W (xi − xj) (2.4)

= ||Wxi − Wxj||2 (2.5)

As can be seen from Equation (2.5), W has a linear transformation property.
Thanks to this property, Euclidean distance in the transformed space is equal to
Mahalanobis distance in original space for two samples.

This linear transformation shows us the reality in the infrastructure of metric
learning. Obtaining a better representation capability for data will certainly enable
us to make more accurate predictions possible in classification or clustering problems
[27].

Metric learning aims to learn a good distance metric from data. The distance
metric provides a new data representation that has more meaningful and powerful
discrimination using similarity relationship between samples. When we discuss
metric learning, it is useful to mention a linear transformation at first. Linear metric
learning approaches provide more flexible constraints in the transformed data space
and improves learning performance. These approaches have some advantages, such
as convex formulations and robustness to overfitting [2].

Although linear approaches help us to learn a good metric, it is possible to gain
better representation capabilities over the data. To better interpret the data, it is
necessary to act in accordance with its nature.
The linear transformation has a limited ability to achieve optimum performance
over the new representation of data, because they have poor performance to capture
nonlinear feature structure. Higher performance is aimed to be achieved by carrying
the problem to a non-linear space through kernel methods in metric learning in
order to overcome this problem [23].
Although these nonlinear approaches are practical to solve non-linear problems,
they may have a negative effect against overfitting. In recent years, with the
interest in deep metric learning, it is possible to propose a more compact solution
to overcome such problems that exist in both approaches.

2.2 Deep Metric Learning
Traditional machine learning techniques are limited by their ability to process data
on raw data.
Therefore, they need feature engineering, such as preprocessing and feature ex-
traction steps before classification or clustering tasks. All of these steps require
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expertise and they are not directly within the classification structure.
However, deep learning learns the higher level of data directly in the classification
structure. This perspective shows the fundamental difference between traditional
machine learning methods and deep learning.
Unlike traditional machine learning methods, deep learning needs a high size of
data to achieve successful results, since it is not successful enough in low data size.
Besides, deep learning algorithms require a lot of time to train data because of
the high data size and a large number of parameters of the algorithm. Therefore,
NVIDIA introduced a cuDNN GPU-accelerated library for deep neural networks
to perform these high-performance calculations.
Thanks to this library, a lot of deep learning frameworks, such as Caffe, Caffe2,
Chainer, Microsoft CNTK, Matlab, Mxnet, PaddlePaddle, PyTorch, TensorFlow,
have been developed while using the power of GPU. Basic similarity metrics that
are used for data classification are the distances of Euclidean, Mahalanobis, Ma-
tusita [16], Bhattacharyya [1], and Kullback-Leibler [7]. However, these pre-defined
metrics have limited capabilities in data classification.
Hence, an approach based on the Mahalanobis metric was proposed to classify the
data into traditional metric learning to address this problem.
In this approach, the data is transformed into a new feature space with higher
discrimination power.

Usually, metric learning approaches are related to the linear transformation of
the data without any kernel function. However, these approaches are not successful
enough to reveal nonlinear knowledge of the data [29]. For this reason, the expected
outcomes could not be obtained while using metric learning.

Although a solution with a kernel-based approach was provided to overcome
this problem, there is no obvious success due to some issues such as scaling[12].
Unlike traditional metric learning methods, deep learning solves this problem using
activation functions that have nonlinear structure.
Most of the existing deep learning approaches are based on the deep architectural
background rather than the distance metric in a new representation space of the
data. However, distance-based approaches have recently become one of the most
interesting topics in deep learning [6].
While decreasing the distance between dissimilar samples [15], deep metric learning,
which aims to increase the distance between similar samples, is directly related to
the distance between samples. To execute this process, the metric loss function has
been benefited in deep learning. While aiming to bring the samples from the same
classes closer to each other, we pushed the samples from different classes apart
from each other (Figure 2a).

To illustrate this process with a figure, some experiments on the MNIST image
dataset were conducted while using contrastive loss [10].
Distance values represent the mean of distances among similar or dissimilar images
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in Figure 2b. As can be seen in the Figure, the distance value for similar images
decreased step by step after each epoch. On the other hand, the distance value for
dissimilar images also increased at the same. The distance relationship for Siamese
network has been successfully applied in each epoch for similar or dissimilar images
(Figure 2b).

This experiment proves to us that the purpose of the approach can be success-
fully implemented. Deep metric learning consists of three main parts, which are
informative input samples, the structure of the network model, and a metric loss
function. Although deep metric learning especially deals with metric loss function,
informative sample selection also plays a very important role in classification or
clustering.

Informative samples are one of the most substantial elements that increase the
success of deep metric learning. The sampling strategy is capable of increasing
both the success of the network and the training speed of the network. The easiest
way to determine train samples in contrastive loss is by means of randomly chosen
positive or negative pairs of objects. In the beginning, some papers tend to use
easy sample pairs for the Siamese network in embedding learning [10].
However, the authors in [21] emphasized that the learning process could be slowed
down and negatively affected after the network reached an acceptable performance
level. To address this problem, more discriminative models were obtained while
using hard negative mining [21]. Triplet network uses an anchor, a positive, and a
negative sample to train a network for classification.

In [26], it was observed that some easy triplets had no effect in updating a model
due to their poor discriminative power. These triplets cause a waste of time and
resources. For this reason, to overcome these problems, it is very convenient to use
informative sample triplets, and more feasible train models with a better sample
strategy could be provided instead of selecting random samples [26].

Hard negative samples correspond to false-positive samples that are determined
by training data. Semi-hard negative mining used for the first time in [20] aims to
find negative samples within the margin.
Negative samples are farther from the anchor sample when compared with hard
negative mining. There is also a softer transition between positive and negative
samples in this approach. The negative mining relationship according to the
distance among anchor, positive, and negative samples was illustrated for triplet
mining [11], as seen in Figure 4. If the negative samples are too close to the anchor,
we can see that the gradient has a high variance and a low signal to the noise ratio,
according to [16].
Hence, distance weighted sampling was suggested to avoid noisy samples in [16].
Thanks to this method, a wider range of examples as compared with semi-hard
negative mining was also offered. Negative class mining can also be found in the
literature instead of negative sample mining [22].

9
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This approach uses one of each class samples for a negative sample of the triple
network. To achieve this, the authors chose multiple negative samples with a greedy
search strategy To summarize, even if we create good mathematical models and
architectures, the learning ability of the network will be limited, depending on the
discriminating power of the samples that are presented to the network.
Distinguishing training examples should be presented to the network so that the
network can learn better and gain better representation. For this reason, the effect
of the relationship between the samples for deep metric learning should be carefully
examined.
Thus, sample selection will be very useful as a preprocessing step to increase the
success of network model before applying the deep metric learning model. The
results in the literature point out that studies for negative mining in deep metric
learning have a high impact value.
When considering the benefit of choosing informative samples; on the other hand,
the main one could be to avoid overfitting, because similar patterns have similar
interaction when the network is being trained, because overfitting may cause slower
learning or local optimal learning. Moreover, the number of all possible triplets
corresponds O (n3 ) time complexity when we consider a problem with two classes,
which results in a waste of time and unnecessary use of resources. To overcome this
problem, it is enough to only deal with valuable triple samples. Thus, significant
improvements in performance can be achieved after selecting informative samples.

Figure 2.2: Distance Relationship for a Siamese Network (a) Desired handwritten
data discrimination for three and eight digits (b) after Siamese network applied to
MNIST data for three and eight dig
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2.3 Loss function for Deep metric learning
In this section, some loss functions that have been used to apply deep metric
learning in the literature will be highlighted. The way that these functions are used
will also be introduced and some details about their differences will be given. These
functions provide us to increase or decrease the distance between the objects by
looking at their similarity. The goal is to achieve the highest feature representation
between different objects.

2.3.1 Siamese Network
Initially, the Siamese network was used with neural networks for signature verifica-
tion [3].
Different from [3], the Siamese network is based on learning from a discriminative
learning framework for energy-based models [5].
In this approach, two identical images are taken into the Siamese network and a
binary value is obtained as a result of learning from these images. The images are
considered as the same class when they are “0”; if they are “1”, they are considered
as a different class. The Siamese network, as a metric learning approach, receives
pair images, including positive and negative samples to train a network model
(Figure 5) [5].
The distance between these pair images is calculated via a loss function.
Contrastive Loss has been benefited for the Siamese network in the literature [10].
This approach is a study that provides inspiration for researchers working in the
field of deep metric learning. As can be seen in Figure 6a, the siamese network
is a very successful model to maximize or minimize the distance between objects
to improve classification performance. Shared weights that positively affect the
performance of a neural network are used to obtain a meaningful pattern among
images in deep metric learning, as shown in Figure 5.
These weights also have important advantages in terms of time and memory. It is
also possible to combine the Siamese network and Convolutional neural network,
which has important advantages [28], which include similarity learning from direct
image pixels, color and texture information at the same time, and its flexible
structure. In the deep metric learning model [98], two Siamese Convolutional
neural network and Mahalanobis metric were combined for person re-identification,
where the Mahalanobis metric was used to classify the data.
The deep metric learning model was created by limiting the weights to a C constant
while calculating the L2 norm. The authors in [25] combined softmax loss and
center loss for face recognition. While the center loss aims to find a center for deep
features of each class to minimize the distances between deep features and their
class center, like the contrastive loss, the softmax loss aims to find deep features
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that maximize the distances between different classes
Siamese networks [9] are general models for comparing entities. Their applica-

tions include signature [9] and face verification, tracking , one-shot learning, and
others. In conventional use cases, the inputs to Siamese networks are from different
images, and the comparability is determined by supervision

Figure 2.3: The Siamese and Triplet Network

2.3.2 Triplet Network
Triplet networks utilize Euclidean space to compare the objects in the pattern
recognition process, and this approach is directly related to metric learning. As can
be seen in Equation 6, triplet loss first focuses on the similarity between the pair
samples of the same and different classes using shared weights. The classification is
carried out comparing the similarity of pair samples (Figure 6b). Triplet networks
provide a higher discrimination power while using both in-class and inter-class
relations. The authors in [8] proposed a new metric loss that is based on Triplet
network inspired by Siamese network contains three objects, which are formed
positive, negative, and anchor samples [11]. Triplet networks utilize Euclidean
space to compare the objects in the pattern recognition process, and this approach
is directly related to metric learning. As can be seen in Equation 6, triplet loss first
focuses on the similarity between the pair samples of the same and different classes
using shared weights. The classification is carried out comparing the similarity of
pair samples . Triplet networks provide a higher discrimination power while using
both in-class and inter-class relations. The authors in [8] proposed a new metric
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loss that is based on Figure 2.5. Metric loss functions.

Figure 2.4: Metric Loss functions

2.4 Autoencoders
An autoencoder is a specific type of a neural network, which is mainly designed
to encode the input into a compressed and meaningful representation, and then
decode it back such that the reconstructed input is similar as possible to the original
one. This chapter surveys the different types of autoencoders that are mainly used
today. It also describes various applications and use-cases of autoencoders. An
autoencoder is a neural network that learns to reconstruct its original input with
the aim of learning useful representations. The input vector x is first mapped to a
hidden representation z = f(x). The function f is parametrized by the encoder
network using one or more layers of non-linearity. The hidden representation z is
then mapped to the output x̂ = g(z) using the decoder network which parametrizes
the decoder function g. Similar to the encoder network, the decoder network
can consist of multiple layers of non-linearity. The parameters are optimized to
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minimize the following cost function: L(x, g(f(x))) = ||kx̂−xk||22 The cost function
of mentioned equation is usually optimized with an additional constraint to limit
the representational capacity of the autoencoder in order to prevent the autoencoder
from learning the useless identity function. The constraint could be imposed on
the architecture of the autoencoder (e.g., limiting the latent code dimensionality)
or could be in the form of a regularization term in the final objective (e.g., sparsity
constraint). [14]

Figure 2.5: Auto encoder

2.5 Variational Autoencoders
The VAE is inspired by the Helmholtz Machine (Dayan et al., 1995) which was
perhaps the first model that employed a recognition model. However, its wake-
sleep algorithm was inefficient and didn’t optimize a single objective. The VAE
learning rules instead follow from a single approximation to the maximum likelihood
objective. VAEs marry graphical models and deep learning.
The generative model is a Bayesian network of the form p(x|z)p(z), or, if there are
multiple stochastic latent layers, a hierarchy such as p(x|zL)p(zL|zL1)...p(z1|z0).
Similarly, the recognition model is also a conditional Bayesian network of the form
q(z|x) or as a hierarchy, such as q(z0|z1)...q(zL|X).
But inside each conditional may hide a complex (deep) neural network, e.g.z|xf(x, ϵ),
with f a neural network mapping and ϵ a noise random variable. Its learning
algorithm is a mix of classical (amortized, variational) expectation maximization
but through the reparameterization trick ends up backpropagating through the
many layers of the deep neural networks embedded inside of it[14].
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Figure 2.6: Variational Auto encoder

2.6 Condtional Variational Autoencoders
Conditional variational autoencoders (CVAEs) are versatile deep generative models
that extend the standard VAE framework by conditioning the generative model
with auxiliary covariates.
The original CVAE model assumes that the data samples are independent, whereas
more recent conditional VAE models, such as the Gaussian process (GP) prior
VAEs, can account for complex correlation structures across all data samples.
While several methods have been proposed to learn standard VAEs from partially
observed datasets, these methods fall short for conditional VAEs.
Conditional VAEs (CVAEs) [Sohn et al., 2015] were proposed as an extension to the
VAE that models the distribution of the high-dimensional output as a generative
model conditioned on auxiliary covariates (control variables). The CVAE model
offers an approach to control the data generating process of a VAE and thereby
perform structured output predictions.
However, though the standard VAEs and CVAEs are powerful generative models for
complex datasets, they ignore the possible correlations between the data samples.
Recent work has extended the VAE modelling framework to incorporate arbitrary
correlations across all data samples by replacing the i.i.d. standard Gaussian
prior with a Gaussian process (GP) prior [Casale et al., 2018, Fortuin et al., 2020,
Ramchandran et al., 2021]. These GP prior VAEs are also conditional generative
models as the generative process depends on auxiliary covariates (such as time,
image rotation, etc.). GP prior VAEs have been demonstrated to be especially well
suited for temporal and longitudinal datasets.
Many real-world datasets, such as clinical studies, usually contain a significant
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number of missing values. Moreover, real-world datasets contain variables that can
be regarded as either covariates or dependent variables, both with varying amounts
of missing information. For example, in a clinical study, dependent variables can
comprise of lab measurements of a participant’s blood sample, whereas covariates
may contain information about the participant, such as age, sex, height, etc. Recent
papers have demonstrated the ability of VAEs to handle missing values and have
shown good imputation performance for the dependent variables.
However, these models either do not incorporate the auxiliary variables or do
not account for the missing values in the auxiliary variables. In other words, no
methods have been developed to learn CVAEs with missing auxiliary variables[14].

Figure 2.7: Conditional Variational Auto encoder

2.7 Long Short-term memory Architecture
The LSTM contains special units called memory blocks in the recurrent hidden
layer. The memory blocks contain memory cells with self-connections storing the
temporal state of the network in addition to special multiplicative units called gates
to control the flow of information. Each memory block in the original architecture
contained an input gate and an output gate.

The input gate controls the flow of input activations into the memory cell.
The output gate controls the output flow of cell activations into the rest of the
network. Later, the forget gate was added to the memory block [4]. This addressed
a weakness of LSTM models preventing them from processing continuous input
streams that are not segmented into subsequences.

The forget gate scales the internal state of the cell before adding it as input to the
cell through the self-recurrent connection of the cell, therefore adaptively forgetting
or resetting the cell’s memory. In addition, the modern LSTM architecture contains
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peephole connections from its internal cells to the gates in the same cell to learn
precise timing of the outputs [19]. An LSTM network computes a mapping from
an input sequence x = (x1, ..., xT ) to an output sequence y = (y1, ..., yT ) by
calculating the network unit activations using the following equations iteratively
from t = 1 to T :

LSTM : hl−1
t , hl

t−1, cl
t−1 → hl

t, cl
t

i
f
o
g

 =


sigm
sigm
sigm
tanh

T2n,4n

A
hl−1

t

hl
t−1

B

cl
t = f ⊙ cl

t−1 + i ⊙ g

hl
t = o ⊙ tanh(cl

t)

In these equations, sigm and tanh are applied element-wise. the logistic sigmoid
function, and i, f , o and c are respectively the input gate, forget gate, output
gate and cell activation vectors, all of which are the same size as the cell output
activation vector m,

is the element-wise product of the vectors, g and h are the cell input and cell
output activation functions, generally and in this paper tanh, and ϕ is the network
output activation function, softmax in this paper [17].
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Figure 2.8: LSTM architecture
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Chapter 3

Data and Model

In this chapter, the Train, validation and Test datasets plus the pre-processing
steps will be explained. Moreover, we will describe the proposed model.

3.1 What is Solar Energy
Solar energy is sunlight that has been transformed into thermal or electrical energy.
The United States contains among of the world’s most prolific and cleanest solar
resource bases. Solar energy is the most abundant and clean renewable energy
source currently available. Solar technology can capture this energy for a range
of purposes, such as electricity generation, interior lighting, and water heating for
household, commercial, and industrial use.
Photovoltaics, solar heating and cooling, and concentrating solar power are the
three basic methods for utilizing solar energy. To power anything from small gadgets
like calculators and traffic signs up to homes and huge commercial enterprises,
photovoltaics directly convert sunshine into electricity via an electrical process. Both
solar heating and cooling (SHC) and concentrating solar power (CSP) applications
employ the heat produced by the sun to run conventional electricity-generating
turbines in the case of CSP power plants or to offer space or water heating in the
case of SHC systems.
Solar energy is a very adaptable energy source that may be used to create utility-
scale solar power plants or distributed production systems that are placed at or
close to the point of use (similar to traditional power plants). Using cutting-edge
solar + storage technologies, both of these approaches can also store the energy
they generate for distribution when the sun goes down. In order to move the U.S.
toward a clean energy economy, solar power coexists with other technologies like
wind power in a complicated and interconnected electricity infrastructure in the
country.
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For consumers and companies to have equal access to sustainable energy tech-
nologies like solar, all of these applications rely on supportive regulatory frameworks
at the local, state, and federal levels.

Figure 3.1: Photo of sample Solar site

3.2 Data
NREL’s Solar Power Data for Integration Studies are synthetic solar photovoltaic
(PV) power plant data points for the United States representing the year 2006.
This dataset consists of 34 sites of solar photovoltaic (PV) power plants located in
the Oklahoma State. The data has been recorded for every 5 minutes. We picked
1/10 portion of the data as the test data samples, 1/10 as the validation data
points and the rest is dedicated to the training data samples.

3.3 Data Pre-processing
Based on the extracted data from the solar photovoltaic (PV) power plants located
in the Oklahoma State, we decided to omit zero powers and the related date from
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Local Time Power
1/1/2006 0:00 0
1/1/2006 0:05 0

... ...
12/31/2006 8:45 11.5

Table 3.1: Input data from one site in Oklahoma State

the train, validation and test datasets. this operation leads to a better forecasting
result in the final model.

Listing 3.1: Python code for pre-processing
1 import pandas as pd
2 import numpy as np
3 import math
4 df = pd . read_csv ( ’ / content / dr i v e /MyDrive/ Dataset /Actual_34 .05_−97.15

_2006_UPV_50MW_5_Min. csv ’ )
5 pr in t ( df . head ( ) )
6 df= df [ df [ ’ Power (MW) ’ ] != 0 . 0 ]
7 time = pd . to_datetime ( df . pop ( ’ LocalTime ’ ) )
8 s e r i e s = df [ ’ Power (MW) ’ ]
9 s e r i e s . index = time

3.4 Proposed Model
In this study, we aim to learn the probability distribution function (PDF) of the
PV in Solar Power time series to predict the future values of the time series. The
proposed methodology will be explained in the following sections.

3.5 Kernel Regression Problem
The standard regression task is to estimate an unknown function f : RD −→ R
based solely on a training set of (possibly noisy) evaluations (x1, y1), ..., (xn, yn).
Here yi = f(xi) + ϵ, where ϵ represents some small noise.

Specifically, for some distribution of test points xt, our task is to find an estimator
f̂ : RD −→ R of f that minimizes some loss function (e.g., squared error) over the
distribution of test points.

In kernel regression, the value of yt = f(xt) is approximated by a weighted
average of the training where kij = k(xi, xt) >= 0 is referred to as the kernel
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function.
A wide variety of kernel functions have been studied in prior literature, e.g.,
Gaussian, triangular, spherical, wave, etc.. To make the estimate ŷt truly local, the
kernel function k(xi, xt) should decay rapidly with increasing (squared) distance
d(xi, xt). The optimal rate of decay depends on the noisiness and smoothness
of the function f, the density of the training samples, and the scale of the input
features.
Hence the choice of kernel function may require great care, especially in high
dimensional spaces. Several publications elaborate on how to chose the right kernel
function for a given data set [24]. Additionally, kernel functions may have several
tunable parameters pertaining to the rate of decay; these also must be set properly
to obtain good performance on the regression task.

In [24] the author presents the algorithm Metric Learning for Kernel Regression
(MLKR) for learning an appropriate distance function for kernel regression.
The approach applies to any distanced-based kernel function

k(xi, xj) = kD(Dθ(xi, xj)) (3.1)

with differentiable dependence on parameters θ specifying the distance function
Dθ. Specifically, MLKR consists of setting initial values of θ, and then adjusting
the values using a gradient descent procedure:

∆θ = −ϵ
∂L

∂θ
(3.2)

where ϵ is an adaptive step-size, and the loss function L is the cumulative
leave-one-out quadratic regression error of the training samples:

L = Σ(yi − ŷi)2 (3.3)

with ŷi defined as in 3.1. Of course, other methods for minimizing 3.3 such as
conjugate gradient, stochastic gradient or BFGS may also be used and might lead
to faster convergence results. While MLKR may apply to many types of kernel
functions and distance metrics, we hereafter focus the exposition on a particular
instance of the Gaussian kernel and Mahalanobis metric, as these are used in our
empirical work. The Gaussian kernel is generally defined as follows:

kij = 1
σ

√
2π

e
−d(xi, xj)

σ2 (3.4)

where d( xi, xj) is the squared distance between the vectors xi and xj . As the
constant factor before the exponent in 3.4 cancels out in 3.1, we will drop it for
simplification. Also, we will absorb σ2 in d() and can fix σ = 1.
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A Mahalanobis metric is a generalization of the Euclidean metric, in which the
squared distance between two vectors xi and xj is defined as

d( xi, xj) = ( xi xj)T M( xi xj) (3.5)

where M can be any symmetric positive semidefinite1 real matrix. (Setting M to
the identity matrix recovers the standard Euclidean metric.) Figure 1 illustrates the
difference between a Mahalanobis metric and the Euclidean metric on a synthetic
regression example.
Unfortunately, learning the matrix M directly requires enforcing a positive semi-
definite constraint during optimization. This is non-linear and expensive to satisfy.
One way to eliminate this expensive constraint is to decompose M as

M = AT A (3.6)

where the ith row of A is the corresponding eigenvalue of M. Substituting 3.6
into 3.5 enables us to express the Mahalanobis distance as the Euclidean distance
after the mapping x → A x: d( xi , xj ) = kA( xi xj )k 2 . (7) Equation (6)
allows us to rewrite (3) in terms of the unconstrained matrix A, instead of M. Let
y^i be the target estimate of vector f( xi). The gradient of (3) with respect to A
can be stated as

∂L

∂A
= 4AΣ(yi − ŷi)2Σ(ŷj − yj)2kijxix

T
j (3.7)

where xij = ( xi xj ). We note that minimizing 3.3 gives us a kernel function
in a entirely data-driven, non-parametric way. There are no parameters to tune,
apart from the initialization of A and the gradient stepsize. Also, the algorithm
learns its own scaling (in the form of A) and is therefore invariant to the scaling of
the input vectors. In our experiments, we usually initialized with the

3.6 Time Series Approximation by PDF learning
Here, our problem is to capture a probability distribution P (x) over n-dimensional
data points X in a potentially high dimensional vector space.

In fact, we want to be able to generate many samples X∗ as close as possible to
X . As the complexity of the dependencies between variables of grows, the difficulty
of learning the true P (X) increases. Hence, we define a “latent variable”-based
model in which the hidden random vector Z embody the major characteristics of
P (X) (e.g. the PDF of the future PV, or any desired nodal PDF in the whole
dataset).

More specifically, is sampled following some unknown distribution P (Z) over
the high dimensional space Z . To justify that our approach is generative (i.e.

23



Data and Model

Figure 3.2: An illustration of kernel regression under varying distance metrics.
The color of the points represents the function value. The circle shows the radius
that encapsulates 95the weights. The function value is estimated at a test point
at the center. Left: With the use of the Euclidean Distance metric, the kernel is
spherical and ignores the present structure that points along the diagonal share
similar function values. Right: After training, under the Mahalanobis metric, the
kernel function follows the direction of the target function. The radius has also
shrunk and has therefore adapted to the relatively densely sampled and noiseless
training samples. identity matrix. If local minima are a concern, one can use
several runs with different random initializations and choose the outcome with
minimum training error L.

the model can generate samples X∗ ), we ensure that there exists at least one
configuration ẑ in Z that causes the model to generate some sample X̂ in X .
Assuming a family of deterministic functions f(z, θ) with parameters θ , each
“latent variable-parameter” pair is mapped to a sample in using f : Z ∗ θ −→ X
. We find an optimal θ , In this case, the probability of f creating an output X∗

similar to the observed data X is maximized; hence, our optimization is written as:

θ̂ = argmaxθ[P (X) =
Ú

f(z, θ)P (z)dz] (3.8)

Theorem (1): In any space A, any complicated probability density function
over samples can be modeled using a set of dimA random variables with normal
distribution, mapped through a high capacity function[13]. We consider the z
belongs to the distribution N(0, I)
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θ̂ = argmaxθ

Ú
N(X|f(z, θ), σ2 ∗ I)N(z|0, I)dz (3.9)

To solve 3.9 we have Q(Z|X) and we compute it using the Kullback–Leibler
(KL) divergence:

KL[Q(z)||p(z|X)] = Ez Q[logQ(z) − log(p|X)] (3.10)

In order to generate X (that is, create samples X∗ ), our objective is to maximize
logP (x) while minimizing the KL divergence; hence, we minimize

Ez Q[P (X|z) − KL[Q(z|X)||p(z)]] (3.11)

using SGD.

3.7 Error Function
Our aim is to integrate the Mlkr approach to the generative framework which
consists of the encoder and decoder architectures. The error function for the new
network can be written as:

L = ||y − yt||2 + KL[Q(z|X, y)||p(z)] + ||y − yt∗||2 (3.12)

3.8 Learning Algorithm
This model is very effective to learn better features and distance measurement at
the same time, since the metric learning can guide the network to learn better
parameters.
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Algorithm 1 Learning Algorithm for Deep metric learning for pdf learning. Good
values are α = 0.001 or 0.0001

1: procedure Algorithm(α, Xtrain, Ytrain)
2: ▷ α is the learning rate
3: ▷ for each training epoch
4: for i = 1,2,3, .., n do
5: for [Xbatch, Ybatch] in [Xtrain, Ytrain] do
6: ▷ Calculate forward propagation
7: Calculate f(Xbatch)
8: ▷ Calculate Error function based on 3.12
9: Calculate L according to 3.6

10: Calculate Pdf according to 3.10
11: Calculate gradients w.r.t the L , A , W
12:
The output is the deep model parameterized by W (i) , b(i) and the learned linear
transformation A.
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Chapter 4

Implementation and Results

4.1 Pytorch Framework

The open-source deep learning framework PyTorch is renowned for its adaptability
and simplicity. This is made possible, in part, by its interoperability with Python,
a well-liked high-level programming language used by data scientists and machine
learning engineers.
Deep learning models, a type of machine learning frequently used in applications
like image recognition and language processing, may be built using PyTorch, a fully
featured framework. Most machine learning developers find it reasonably simple
to understand and use because it is written in Python. PyTorch stands out for
its superior GPU support and usage of reverse-mode auto-differentiation, which
permits dynamic modification of computation graphs. It is therefore a well-liked
option for quick testing and prototyping.
Because it is built in Python and leverages that language’s imperative, define-by-
run eager execution mode, which executes actions as they are called from Python,
PyTorch is particularly well-liked among Python developers. According to a poll,
AI and machine learning activities are becoming increasingly important as the use
of the Python programming language grows, and PyTorch is being more often used
to support these tasks. PyTorch is a solid option for Python developers who are
new to deep learning because of this, and an expanding collection of deep learning
courses are built using PyTorch. Since the API hasn’t changed much over the years,
seasoned Python developers should have little trouble understanding the code.
Smaller projects and rapid prototyping are two areas where PyTorch excels. It is
favored by the academic and scientific communities due to its versatility and ease
of usage.
A group of nested functions are applied to input parameters by neural networks
to change the input data. By computing their partial derivatives (gradients) with
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respect to a loss metric, deep learning aims to optimize these parameters, which
consist of weights and biases and are stored as tensors in PyTorch. Forward
propagation involves feeding input parameters into the neural network, which then
outputs a confidence score to nodes in the following layer up until the output layer,
which is where the error of the score is determined. The errors are transmitted back
through the network again through backpropagation as part of a technique called
gradient descent, and the weights are changed to improve the model. Facebook

Figure 4.1: Pytorch cycle

programmers have been putting a lot of effort into enhancing PyTorch’s useful
applications. Just-in-time compilation and support for Google’s TensorBoard
visualization tool are two recent improvements. Additionally, ONNX (Open Neural
Network Exchange) support has been increased, allowing developers to choose the
deep learning frameworks or runtimes that are most effective for their applications.

4.2 Implementation
Here, we describe that the proposed model consists of three main parts, the first
part which is called the feature extraction function will use the LSTM architecture
plus the Kernel Metric Learning approach.
the Kernel metric approach is used to improve the result of the function with
minimizing the Mean Squared Loss.
The extracted features of the input X and the actual label will be forwarded to
the encoder architecture. The encoder architecture consists of two to four Linear
Layers and in the final layers the parameters for mapping the input to a new space
will be calculated.
Finally, the Z parameter and the extacted features of the input X will be forwarded
to the decoder architecture in the Conditional Variational Auto-encoder, the decoder
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Figure 4.2: Network graph in Pytorch

contains two to four Linear layer and in the final layer the generated label and its
probability can be calculated. in this version the decoder’s output dimension is
equal to 1 and the result of training and evaluation of different metrics are shown
in the next section. For the Testing Architecture, the Encoder architecture in the
Conditional Variational Autoencoder will be removed and the generated results
will be obtained by passing a random number from the N(0,1).

Figure 4.3: Implemented Architecture
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4.3 Hyperparameters

4.3.1 Learning Rate

The learning rate is a hyperparameter that determines how much to alter the model
each time the model weights are updated in response to the predicted error. It can
be difficult to choose the learning rate since a number that is too little could lead
to a lengthy training process that could become stuck, but a value that is too large
could lead to learning a suboptimal set of weights too quickly or to an unstable
training process.

When constructing your neural network, the learning rate can be the most
crucial hyperparameter. Therefore, understanding how to conduct research into
the impact of learning rate on model performance and to develop an intuitive
understanding of the dynamics of learning rate on model behavior is crucial.

4.3.2 Window Length

The number of samples in a time series that are used as input for prediction is
represented by window length. In this study, sliding windows are utilized. The
time series window moved over the time window. The model receives input from
window elements at each step to create predictions, after which the window is slid
forward and the process is repeated. More information is taken into account when
making predictions with larger windows, however very big windows might reduce
the sensitivity of the forecasts and produce highly smooth predictions. Here we
considered 288 which is the data in 48 hours as the sliding time window.

4.4 Evaluation Metric
Since we have 34 sites in our datasets, first, each metric is applied to a specific
dataset and the final result will be the average of all the applied metrics.

4.4.1 Root Mean Square Error

The reason of choosing this metric is having more readable evaluation, regardless
of data scale [13]. The lower the value of RSME the better is the result.

RMSE =
ó

1
n

Σn
i=1(yi − fi) (4.1)
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4.4.2 Mean Absolute Error
A metric that tells us the mean absolute difference between the predicted values
and the actual values in a dataset. The lower the MAE, the better a model fits a
dataset.

MAE = 1
n

nØ
i=1

|fi − yi| (4.2)

4.5 Training the model
We trained the mentioned model for 50 and 100 epochs. our hyper-parameters are
learning rate, number of neurons and layers in encoder/decoder and the number of
LSTMs.

4.5.1 Model 1
In this configuration, we chose the learning rate equal to 0.001 and we trained the
model for 50 epochs with 32 neurons as input for the 4 blocks of the encoder and
decoder. the number of hidden layers in LSTM is equal to 1.As we can see in the
shape, the learning curve is not enough smooth , so we need to normalize the labels
and then change the hyper-parameters.

4.5.2 Model 2
In this configuration, we chose the learning rate equal to 0.0001 and we trained the
model for 100 epochs with 32 neurons as input for the 4 blocks of the encoder and
decoder.the number of hidden layers in LSTM is equal to 4. As we can see in the
shape, decreases rapidly and it shows that the learning rate is low for this dataset.

4.5.3 Model 3
In this configuration, we chose the learning rate equal to 0.001 and we trained the
model for 100 epochs with 32 neurons as input for the 4 blocks of the encoder and
decoder.the number of hidden layers in LSTM is equal to 2.

4.6 Comparison with other methods

4.6.1 Convolutional Graph Autoencoder
In [19] A novel deep generative model, Convolutional Graph Autoencoder, is
presented for a new problem, nodal distribution learning in graphs. The model
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Figure 4.4: Model 1 learning curve

model MAE RSME time
Model 3 0.108 0.358 10-min
Model 3 0.578 0.450 30-min
Model 3 0.690 0.712 1-hour
Model 3 0.866 0.957 3-hour
Model 3 0.963 1.098 6-hour

Table 4.1: Evaluation of the best trained model

captures deep convolutional features from an arbitrary graph-structured data, to
learn the corresponding probability densities of nodes. Here, the problem of spatio-
temporal solar irradiance forecasting is presented as a graph distribution learning
problem where each node of the graph represents a solar irradiance measurement
site, while each edge represents the distance between the sites. Using graph spectral
convolutions, the spatial features of the solar data are extracted, that are further
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Figure 4.5: Model 2 learning curve

used by an encoding and decoding ANN to capture the distribution of future solar
irradiance. Our deep learning model is used to provide probabilistic forecasts for
the National Solar Radiation Database. Simulation results show better reliability,
sharpness and Continuous Ranked Probability Score compared to recent baselines
in the literature.

4.6.2 Deep Convolutional Graph Rough Auto-encoder
In [13] presents a novel deep generative model, convolutional graph rough variational
autoencoder, to learn the probability densities of a graph of photovoltaic sites. Here,
we formulate the PV power forecasting problem as a graph distribution learning
where each PV site is modeled as a node in the graph, and the distance between
sites is modeled by edges in the graph. The model applies a deep convolutional
graph to extract spatial features between the nodes in the graph. Further, the
extracted features are fed to a rough variational auto-encoder to estimate the
probability density of future PV power outputs.

Based on the comparison result, the proposed model in this study achieved 0.2
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Figure 4.6: Model 3 learning curve

more performance in case of MAE and RSME.
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Future Work

The proposed solution can be modified in different sections, such as changing
the generative back-bone architecture and applying the final models on different
datasets. The use of deep metric learning in novel algorithms in Image processing
is increasing and one of the algorithms that we want to propose will be the use of
Convolutional LSTM on the Image datasets and analyzing the final results in the
Domain Adaptation field. Deep metric learning is an efficient approach to extract
useful features from different types on Input datasets.
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Conclusion

A novel deep generative model, Metric LSTM Conditional Variational Autoencoder,
is presented for power probability distribution in Solar Power Dataset. The model
captures features using LSTM and optimizes them with using metric learning
extracting the predicted label from each node’s neighbors.
to learn the corresponding probability densities of the output power, the problem
of Solar Power forecasting is presented as a feature extraction function problem
where the output of the function for each data will be calculated by minimizing
it with respect to the the output of Kernel metric learning for each data point’s
neighbors.
Applying the Kernel Metric method on whole data points was computationally
expensive so this method was applied only on the nearest neighbors of the data
point, with selecting the proper number of neighbors which is equal to the square
root of data samples the performance of the model was close to the ideal case.
the outputs of the feature extraction function are further used by an encoding
and decoding ANN to capture the distribution of future solar power. This deep
learning model is used to provide probabilistic forecasts for the Solar Power Data
which are synthetic solar photovoltaic (PV) power plant data points for the United
States representing the year 2006. Simulation results shows the great performance
in terms of Mean Absolute Error and RMSE.
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Appendix A

A.1 Implemented Code

1 c l a s s DenseLSTM(nn . Module ) :
2 de f __init__( s e l f , input_dim , hidden_dim , lstm_layers , encoder_dim

,max_number , b i d i r e c t i o n a l=Fal se ) :
3 super (DenseLSTM , s e l f ) . __init__ ( )
4 s e l f . input_dim = input_dim
5 s e l f . hidden_dim = hidden_dim
6 s e l f . l a y e r s = lstm_layers
7 s e l f . b i d i r e c t i o n a l = b i d i r e c t i o n a l
8 s e l f . encoder_dim=encoder_dim
9 s e l f . max_number=max_number

10 s e l f . lstm = nn .LSTM( input_s ize=s e l f . input_dim ,
11 hidden_size=s e l f . hidden_dim ,
12 num_layers=s e l f . l aye r s ,
13 b i d i r e c t i o n a l=s e l f . b i d i r e c t i o n a l )
14 s e l f . act1 = nn .ReLU( )
15

16 s e l f . encoder1= nn . Linear ( s e l f . hidden_dim+1, s e l f . encoder_dim )
17 s e l f . r e l u1=nn .ReLU( )
18 s e l f . encoder2= nn . Linear ( s e l f . encoder_dim , s e l f . encoder_dim )
19 s e l f . r e l u2=nn .ReLU( )
20 s e l f . encoder3= nn . Linear ( s e l f . encoder_dim , s e l f . encoder_dim

)
21 s e l f . r e l u3=nn .ReLU( )
22 s e l f . encoder4= nn . Linear ( s e l f . encoder_dim , 2)
23 s e l f . r e l u4=nn .ReLU( )
24 s e l f . encoder5= nn . Linear ( s e l f . encoder_dim , 2)
25 s e l f . r e l u5=nn .ReLU( )
26

27 # decoder s t r u c t u r e
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28 s e l f . decoder1= nn . Linear (2+ s e l f . hidden_dim , s e l f . encoder_dim
)

29 s e l f . r e lud1=nn .ReLU( )
30 s e l f . decoder2= nn . Linear ( s e l f . encoder_dim , 2∗ s e l f .

encoder_dim )
31 s e l f . r e lud2=nn .ReLU( )
32 s e l f . decoder3= nn . Linear (2∗ s e l f . encoder_dim , 4∗ s e l f .

encoder_dim )
33 s e l f . r e lud3=nn .ReLU( )
34 s e l f . decoder4= nn . Linear (4∗ s e l f . encoder_dim , 1)
35 s e l f . r e lud4=nn .ReLU( )
36

37

38 s e l f .A= np . i d e n t i t y ( s e l f . hidden_dim , dtype = f l o a t )
39 s e l f .A= torch . t enso r ( s e l f .A, dtype=torch . f l o a t ,

requ i res_grad = True )
40

41 s e l f . l inear_yhat= nn . Linear ( s e l f . hidden_dim , 1)
42

43

44 de f encoder ( s e l f , f e a t u r e s ) :
45

46 X= s e l f . encoder1 ( f e a t u r e s )
47 X= s e l f . r e l u1 (X)
48 X= s e l f . encoder2 (X)
49 X= s e l f . r e l u2 (X)
50 X= s e l f . encoder3 (X)
51 X= s e l f . r e l u3 (X)
52 miu= s e l f . encoder4 (X)
53 miu= s e l f . r e l u4 (miu )
54 sigma= s e l f . encoder5 (X)
55 sigma=s e l f . r e l u5 ( sigma )
56

57 re turn miu , sigma
58

59

60 de f decoder ( s e l f , f e a t u r e s ) :
61

62 X= s e l f . decoder1 ( f e a t u r e s )
63 X= s e l f . r e lud1 (X)
64 X= s e l f . decoder2 (X)
65 X= s e l f . r e lud2 (X)
66 X= s e l f . decoder3 (X)
67 X= s e l f . r e lud3 (X)
68 X= s e l f . decoder4 (X)
69 X= s e l f . r e lud4 (X)
70

71 re turn X
72
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73 de f forward_features ( s e l f , inputs , l a b e l s ) :
74 out = inputs . unsqueeze (1 )
75 out , (h_n , c_n) = s e l f . lstm ( out )
76 out = s e l f . act1 ( out )
77 re turn out , ( h_n , c_n)
78

79

80

81 de f r eparamete r i z e ( s e l f , mu, l ogvar ) :
82 std = torch . exp (0 . 5∗ l ogvar )
83 eps = torch . randn_like ( std )
84 re turn mu + eps ∗ std
85

86 de f nearest_ne ighbors ( s e l f , X_train , y_train , f e a tu r e s _ i ,
l a b e l s ) :

87 X_list= f e a t u r e s _ i
88 X_list=X_list . detach ( ) . cpu ( )
89 l a b e l s=l a b e l s . detach ( ) . cpu ( )
90 X_train = X_train . detach ( ) . cpu ( ) . numpy( )
91 y_train = y_train . detach ( ) . cpu ( ) . numpy( )
92 f e a t u r e s _ i= f e a tu r e s _ i . detach ( ) . cpu ( ) . numpy( )
93

94 nsamples , nx , ny = X_train . shape
95 d2_train_dataset = X_train . reshape ( ( nsamples , nx∗ny ) )
96

97 nsamples , nx , ny = f ea t u r e s_ i . shape
98 d2_f_x = f ea t u r e s_ i . reshape ( ( nsamples , nx∗ny ) )
99 n=i n t (math . s q r t ( nsamples ) )

100 i f n>=1000:
101 n=1000
102 knn_model = KNeighborsRegressor ( n_neighbors=n)
103 knn_model . f i t ( d2_train_dataset , y_train )
104 d i s tance s , i n d i c i e s= knn_model . kne ighbors (d2_f_x)
105

106 f o r x in X_list :
107 k l a t e s t=0
108 y l a t e s t=0
109 f o r j in i n d i c i e s :
110

111 f_j = X_train [ j ]
112 l a b e l s _ j = y_train [ j ]
113 f_j=torch . t enso r ( f_j )
114 f o r k in f_j :
115 equal=torch . a l l c l o s e (x , k )
116 i f equal i s Fa l se :
117 x=s e l f .A∗x
118 k=s e l f .A∗k
119 d i j= torch . d i s t ( x , k , p=2)
120 k i j =1/math . s q r t (2∗math . p i ) ∗ torch . exp(−1∗ d i j )
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121 k l a t e s t+=k i j
122 y l a t e s t+=l a b e l s ∗ k i j
123

124 yhat= y l a t e s t / k l a t e s t
125 re turn yhat
126

127

128 de f forward ( s e l f , inputs , l a b e l s , x l i s t , y l i s t ) :
129 out , ( fxi_h , fx i_c ) = s e l f . fo rward_features ( inputs , l a b e l s )
130 x l i s t = torch . cat ( ( x l i s t , out ) , 0)
131 y l i s t = torch . cat ( ( y l i s t , l a b e l s ) , 0)
132 y_hat = s e l f . nearest_ne ighbors ( x l i s t , y l i s t , out , l a b e l s )
133 y_hat=y_hat . to ( dev i ce )
134 l a b e l s= l a b e l s . reshape ( l en ( l a b e l s ) , 1 )
135 out= out . reshape ( l en ( l a b e l s ) , s e l f . hidden_dim )
136 f e a t u r e s = torch . cat ( [ out , l a b e l s ] , 1)
137 miu , sigma= s e l f . encoder ( f e a t u r e s )
138 z= s e l f . r eparamete r i z e (miu , sigma )
139 f e a t u r e s = torch . cat ( [ z , out ] , 1)
140 pdf= s e l f . decoder ( f e a t u r e s )
141 re turn pdf , y_hat , miu , sigma
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