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Summary

In recent times, more and more industries require monitoring and control systems
based on a reliable IT infrastructure. Recently, the traditional electrical grid is
facing similar requirements, as the introduction of renewable sources (e.g., solar
panels, wind farms, and more) drives the need for enhanced monitoring. Since
control systems depend on real-time data to function, it is unacceptable to work
with data that may be obsolete before it reaches the control systems. These issues
are the focus of the edge/fog computing paradigms, which place services close to
the new data sources to enable analysis and computation as soon as the data is
produced.

A scenario where centralized computations shift to the edge requires an in-depth
analysis of a geographically distributed infrastructure, in addition to heterogeneous
hardware as well as physically insecure locations. We also must consider that
resources at the edge are less abundant than in a cloud environment and that
network partitioning events that isolate one or more sites are a possibility. Hence,
each site should therefore be resilient to internal failure and able to resist node,
control plane, and storage failures.

Additionally, another crucial factor is the creation of a fault-tolerant system,
which is realized using redundant components. In addition, increased grid observ-
ability is crucial both to enable a series of mission-critical applications such as
congestion control and fault detection and to balance the power supply and the
demand. As a result, the need for smart power grids has become more and more
prominent because they enable to: (i) use tools to monitor the distributed energy
generation; (ii) share data from sensors and meters; (iii) collect and process data
to control the electrical power system.

Delivering resilient monitoring and computing services that use real-time data
requires strong data resilience. For performing data analysis for statistical meaning
or post-incident analysis, historical data durability is definitely essential too. To
withstand hardware and network failure, mechanisms for performing consistent
disk or volume backups and data replication are required.

This thesis shows a possible approach to build a resilient database cluster and,
consequently, an analysis on resilience in data persistence, on the scalability aspects
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of the entire infrastructure, and on the orchestrator timing involved in a solution
that guarantees self-healing, in the face of the issues mentioned above.
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Chapter 1

Introduction

Over the past 70 years, the power system architecture consisted of big power plants
– such as fossil-fuelled, nuclear power, or hydropower – capable of producing up
to 1000MW and based on centralized control. There was an interaction between
the production system and the transport system in order to ensure always the
same value of frequency and to receive the required amount of energy. While this
portion of the power system had an automatized control, the traditional electrical
distribution systems, responsible of delivering energy to end users by gradually
reducing voltage levels, was almost completely passive, with only local real-time
monitoring and control for the largest loads, but no further interactions between
the power system and the loads were carried out. [1].

The climate changes leading to global warming, driven by the human emissions
of greenhouse gases, required the reduction of the produced CO2. According to
NASA, 2020 tie with 2016 was the warmest year on record, with a long-term record
of the last seven years, when recorded temperatures were, on average, 1,02 C◦
higher than the baseline 1951-1980 mean [3]. The solution thought by the European
Union was to decarbonize energy system by using new renewable, green and clean
sources of energy, with some consequences in terms of power grid management. For
example, the EU with the Clean Energy Package set the target for the 32% for
renewable energy sources in the EU’s energy mix by 2030, and the goal of carbon
neutrality by 2050 [4]. Indeed, the introduction of new power sources has made
the production system distributed and, for this reason, it is no longer tolerable to
have a centralized distribution system.

An increased grid observability is crucial both to enable a series of mission-
critical applications such as congestion control and fault detection [5] and both
to balance the power supply and the demand. In our case, the approach was to
deploy a network of sensors, called Phasor Measurement Units, capable of providing
information about the physical world. Specifically, they are well-known devices
that produce accurate and synchronized voltage/current phasors with sampling
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Introduction

Figure 1.1: Temperature anomaly in C◦ from 1850 to 2020 to respect the common
baseline 1951-1980 mean

From Legambiente climate report 2021 [2] - Berkeley Earth data combined with sea data from UK Hadley center

rates up to 60 measurements per second and are frequently used in transmission
systems. However, there is an increasing interest in PMUs for distribution networks
as well, in order to implement novel schemes for better control and fault location.
As a result, the need for smart power grids has become more and more prominent
because they enable to:

• use tools such as remote reading and load shedding in emergency cases in
order to monitor the distributed energy generation [1];

• share data from sensors and meters;

• collect and process data to control the electrical power system.

However, nowadays, the concept of smart grid 2.0 [6] has been introduced. It refers
to a new design of the smart grid, based on electricity sharing via a plug & play
approach. This means that as soon as a new portion of the grid is attached to the
main grid, it starts exchanging electricity with the rest of the grid, injecting or
absorbing power [7].

1.1 Power grid resiliency with micro-grids
At this point, the concept of micro-grid enters in the picture. A micro-grid is a
local interconnected network for electricity delivery from producers to consumers
with defined electrical boundaries. So, it is a local network of energy production
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and distribution, that normally can work both attached to the main grid, or as an
island, which means autonomously, isolated from the rest of power grid.

The core functionalities for micro-grid technologies are: (i) power generation;
(ii) power storage; (iii) control, manage and measure; (iv) convert and consume [8].

The current concept of micro-grid is different from the past, wherein it was
intended as a backup system of the main grid and it mostly relied on fossil fuels.
Indeed, nowadays micro-grids rely on renewable sources of energy (such as solar
panels or wind turbines) and this innovation enables the improvement of reliability
and the reduction of both the environmental impact and costs.

Since the number of extreme weather events is increasing, as mentioned above,
the resiliency of the power grids is becoming the main requirement. This is one of
the main features of smart grid 2.0. In this case each micro-grid can cooperate with
the main grid supporting it by means of injecting power or exchanging/requiring
electricity as needed. In any case, even if the micro-grid detaches from the main grid,
on purpose or because of unintended events, it can continue to work independently.

The increase of the average temperatures causes a reduction in rainfall, but also
an increase in intense sporadic rainfall with a consequent rise of floods, storms,
and hydro-geological risk [9]. Figure 1.2 shows the increase of extreme weather
events in Italy for each year. It is evident how, in general, climate change causes
an increase in the frequency and intensity of extreme weather phenomena [9], and
people are inevitably obliged to get used to this new normality. For this reason,
it is essential to redesign human infrastructures according to the current climate
changes in order to make them resilient to the weather consequences of this tragic
trend. This updates involve also the electrical power system, which should be able
to predict, react and survive these extreme events. These arrangements are crucial
for the new design of the smart grid 2.0.

1.2 ICT resiliency in a smart grid 2.0
More than 50% of the power consumption in the smart grid 2.0 must be controlled
in real-time, necessitating the computing and the monitoring of a large amount
of data from sensors and devices. The deployment of smart IT technologies and
the use of big data analysis techniques are required for the analysis and processing
of this enormous amount of data as well as the control of the grid [7]. The
post incident analysis conducted after the August 9th, 2019 transmission system
frequency event in Great Britain provides a practical illustration of the need for
data and their usefulness [10]. The authors used the phasor data at their disposal
to try to reconstruct the different stages of the incident and to draw a lesson from
it. Furthermore, a robust ICT infrastructure should offer the power grid resilience.
Two of the key features that must be present in a resilient infrastructure are:
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Figure 1.2: Extreme weather events in Italy for each year
From Legambiente climate report 2021 [2] - Osservatorio Cittá Clima, Legambiente 2021

• services must be watched over in order to restart them if the application or
the node on which it was running fails;

• even the ICT must support the partitioning of the infrastructure, just as
the electrical grid should be able to. Extreme weather conditions, accidental
events, or network failures could isolate one or more electrical power system
sites. When a location is isolated, its ICT infrastructure should be able to
respond and continue operating despite the loss of communication with the
centralized control.

The complexity brought on by the infrastructure’s large geographic distribution
should be handled by the power grid’s ICT. Since it manages hundreds of thousands
of sites, and this number might quickly increase over time, the solution’s scalability
is essential. As a result, the solution must support the plug-and-play electrical
grid concept, allowing additional locations to seamlessly join with the rest of the
infrastructure. Numerous various types of devices and sensors, some of which have
limited computing power, are dispersed throughout the power grid and generate
data over a variety of physical media. This enormous amount of data must safely
reach all users in accordance with their QoS needs, and that is the function of
the power grid’s ICT. All services operating over the smart grid should be able
to generate and consume data, moving transparently between ICT infrastructure
nodes as necessary. To increase the scalability, maintainability, and simplicity of
the applications while still keeping latencies under control and supporting real-
time applications, data should be produced and consumed using an asynchronous
approach.
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1.3 Overview of service resiliency and scalability
on power grids

This thesis work will focus mainly on the analysis of the infrastructure developed
using PMUsim, OpenPDC and MySQL services, analyzing resilience in data
persistence, the scalability aspects of the entire infrastructure and the timing
involved in a solution that guarantees self-healing. Chapter 2 provides an overview
of ICT architecture in power grid systems, which is required to provide context for
understanding the motivation of later choices. Chapter 3 shows a description of the
technology used, namely Kubernetes, with a subsequent presentation of the edge-
oriented solution, K3s. In chapter 4, an architecture is defined, taking into account
the various aspects of the problem, such as service communication, latency issues,
and data resiliency. Chapter 5 shows several solutions that ensure redundancy
between different replicas of the database, highlighting the main advantages and
disadvantages to understand the reason for the choice made. A brief description
of the developed implementation is presented in chapter 6, focusing mainly on
the services used in the infrastructure. It is also explained reason for choosing
some technologies over others. Finally, there are also results that show resource
consumption with this current implementation. In Chapter 7 the concept of self-
healing is mainly deepened with greater attention on the response time of the
orchestrator in the face of possible failures. Chapter 8 presents the simulator used
for a further deepening of the scalability of the infrastructure with the respective
results of the analyses carried out. Chapter 9 sums up the work and points out
possible aspects worth to be further explored.
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Chapter 2

ICT architecture in an
electrical power grid

An overview of the ICT infrastructure in the electrical power grid is what this
chapter aims to do. The models to be used in the exchange of information with
distributed energy resources are defined by the IEC-61850 standard. The electrical
grid can be divided into three slices, each of them having a different role:

• the production system refers to the process of producing electricity, converting
it using the proper current, voltage, and frequency values, and then intro-
ducing it into the transmission system. This was primarily carried out at
large production facilities in the past (such as those that produced coal or
hydroelectricity), but in recent years, many smaller production facilities have
begun to incorporate it (e.g., solar power);

• the transmission system is in charge of transferring electricity from power
plants to distribution systems (i.e. Terna in Italy);

• the distribution system is responsible for getting electricity to the ultimate
customers; normally, the energy providers are in control of this area of the
network.

As mentioned above, nowadays, due to the existence of numerous small producers
closer to the consumer, such as solar panels, wind farms, and more, the production
system is no longer the only source of energy. This means that even in distribution
systems, where it is no longer possible to have a completely centralized control, it
was necessary to move this control even to the edge, such as mechanism similar to
that found in the production system.
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ICT architecture in an electrical power grid

Figure 2.1: Electrical hierarchy overview.

2.1 Production system
Energy producers build the production system by generating electricity, collecting
it in the transmission system using a few transformers, and controlling the voltage
and intensity of the electricity. In order for generators to maintain the same value
of frequency and supply the necessary amount of electricity in the electrical grid,
producers must control the frequency of the produced energy in accordance with
the values provided by the national controller. Electromechanical generators, which
are primarily powered by heat engines powered by combustion or nuclear fission, are
the most common way that electricity is produced at a power plant. In alternative,
as shown in Figure 2.4, electricity can be generated by the kinetic energy of wind
and water flow, solar photovoltaic panels and geothermal power and wind turbines.

2.2 Transmission system
Electricity transmission is the stage between producing electricity and distributing
it to consumers. It is carried out with the use of a network architecture comprised of
380 kV, 220 kV, and 130/150 kV electrical towers connected to each other, forming
a single grid that spans the entire country. This system is controlled by some
stations with a set of transformers converting the ultra-high voltage to the high
voltage. Electric substations (often abbreviated SSE) are located near a production
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ICT architecture in an electrical power grid

Figure 2.2: Production systems work in synergy with the transmission system.

plant, at the point of delivery to the end user and at the interconnection points
between the lines: they therefore constitute the nodes of the electricity transmission
network. Substations perform one or more of the following functions:

• interconnect multiple High Voltage power lines at the same voltage level,
creating a network node (via crossbars);

• interconnect several HV power lines with each other at different voltage levels
(through transformers);

• re/phase the apparent power of the network (by means of capacitor banks or
power factor correction inductors, also called "reactors" as they absorb reactive
power);

• convert the voltage from AC to DC and vice versa (conversion substations)
[11].

Even these transformers have some sensors and actuators, the latter are controlled
by devices called IED (Intelligent Electronic Device). All the devices running locally,
e.g.,in a substation, are connected to each other by means of an Ethernet LAN,
which also includes a Station controller, e.g., a server with the proper controlling
software. From this station there is a hierarchy of controllers. First it is connected
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Figure 2.3: ICT network architecture of the transmission system.

to a regional controller, which in turn is further (logically) connected to a national
controller. The physical network connection between each station and the rest of
the ICT network is usually achieved with dedicated links.

The control of the entire infrastructure is fundamental because electricity cannot
be stored, therefore there is the need to guarantee the balance between the produced
energy with the demand. The National Controller is in charge of this dispatching
operation, which is a real-time control. The National Controller collects data
from numerous players involved in both supply and demand, makes predictions
about the country’s electricity needs, and communicates with producers and remote
management centres to module the grid’s supply and structure as necessary [12].
In this case, the network is based on optical fibers running through the overhead
protection cables, but still having a satellite network as backup.

2.3 Distribution system
The primary substations, where high voltage electricity is transformed into medium
voltage, are where the distribution system gets its start. Here, a variety of mea-
surement systems are used to monitor the condition of the transformers and make
necessary corrections opening and closing them, changing the transformation ratio,
in order to maintain the electrical grid’s proper operating point. The medium volt-
age lines, each of which is controlled by a switch, begin here. The medium voltage

9



ICT architecture in an electrical power grid

Figure 2.4: Terna’s transmission system [12].

is changed to low voltage when these lines reach the secondary substations. These
serve as the entry point for low voltage lines that connect user loads, electricity
generation systems, and accumulation systems. These lines may also be equipped
with sensors and metres that can provide data on their operational status. While
data from loads, electricity generation systems, and accumulation systems coming
from the outside could reach the controller in charge of handling it using GSM, 4G,
or powerline, sensors and actuators inside kiosks are connected via Ethernet LAN.
The distribution system has three main levels of control:

• Primary Substations: here there could be data coming from the inside of the
substation, but also for the outside world. This data is sent to the station
controller in charge of performing local control.

• Area control centers: the station controllers of the substations communicate
with the area control center of the geographic area in which they are situated.
This area may include all or part of a city.

• ICT control center: this is the remote monitoring center for the ICT of the
electricity provider. Its responsibilities include setting up all the devices,
monitoring the state of the infrastructure, looking for anomalies like failures
or intrusions, and attempting to recover from incidents. The transmission
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system also contains this component.

Typically, a dedicated WAN network, which may be composed of fibre or a similar
technology, is used to carry data travelling between the control centres. A firewall
protects each area of the network, filtering both incoming and outgoing traffic. An
access point that encrypts both the incoming and outgoing traffic further protects
the entire ICT system. This is due to the fact that various distributors and the
ICT of the transmission system utilise various keys to maintain their independence.
This means that all the outcoming traffic should be decrypted with the internal
key, then encrypted with the key shared with the destination, and then decrypted
again and encrypted with the key of the destination. The same should hold true
for communications between transmission systems of two different countries. This
is necessary because, since Europe uses a single frequency, any changes to that
frequency or failures of individual grid components could affect all other countries,
requiring appropriate responses. This demonstrates how important a good ICT
system is for a functioning power grid. The ICT should be in charge of ensuring
that each component is functioning properly and tuning each of them to achieve
the intended state, but it also has a protective role to play, such as disconnecting a
power plant from the grid when it gets out of frequency. Even while both control
and protection help to maintain the power grid’s proper operational status, they
are completely separate from one another because they have different requirements,
even in terms of response time.

Figure 2.5: Electrical architecture of the distribution system [13].
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Figure 2.6: ICT network architecture in the distribution system [13].
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Chapter 3

Kubernetes

In the last decades some paradigms have been born like CI/CD (Continuous
Integration and Continuous Delivery) and more in general the DevOps model.
These paradigms were born to optimize the software management process, at all
stages of its life cycle.

A first solution, prior to the advent of Docker, was the introduction of virtualiza-
tion technologies for software lifecycle management. All the various virtualization
technologies include virtualization of physical hardware, through the use of a Hy-
pervisor. Each virtual machine is a machine equipped with all the components:
a virtual copy of the hardware that the operating system requires to run, the
applications and their associated libraries and dependencies and also the operating
system (called Guest OS).

However, while they offer a high degree of isolation (each VM is actually a
separate drive) on the other hand one of the main limitations, which makes modern
applications incompatible with virtualization itself, is the significant waste of
computing resources. This limitation results from the overhead of resources due to
the need to execute the guest OS, as well as the applications it runs, thus causing a
degradation of the overall performance of the system. As a result, there was a need
to have a system that maintained the same benefits of virtualization (scalability,
isolation) but with a lower resource consumption.

From this derives the birth of containers that do not virtualize the underlying
hardware, but rather virtualize the operating system (usually Linux), so that each
container includes only the application and its libraries and dependencies. Since
the guest OS is no longer present, containers are lighter and, therefore, faster and
portable than VMs. As a result, Docker and mainstream container technologies,
which quickly took over standard virtual machines, has resulted in a significant
change in application development and deployment during the previous decade.

In Figure 3.1 we can see the evolution of application deployment, from traditional
deployment to container-based deployment.
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Figure 3.1: The various eras of deployment [14].

Container-based applications have become increasingly popular, and the need
to make these applications scalable and resilient has led to the emergence of a
framework that can automate and manage the lifecycle of thousands of containers.
This system is usually an Orchestrator and in our case we use Kubernetes.

A brief overview of the basic concepts of Kubernetes will be given including
core resources and some of its main components.

3.1 Basic Concepts
Key concepts of Kubernetes include:

1. Completely declarative specification: the idea is to describe, using Kubernetes
API objects, the state we want to get and we don’t have to worry about how
we get it;

2. Control Loop-oriented approach: the control plane implements a control loop,
observing the desired state and making changes with the aim of moving the
current state towards the desired one.

The basic deployable execution of a Kubernetes application is a Pod, which is
a group of one or more containers. A Pod’s contents are always co-located and
co-scheduled, and executed in a shared context. In the pod’s manifest we can define
labels to identify the resource, open ports, container restart policy, volumes to be
mounted etc.

In a container environment, configuration cannot always be known at the time of
deployment, may vary over time, and may be used again. ConfigMaps and Secrets
both provide the option to build straightforward key-value pairs that can be used
as strings in pod templates or mounted as files in pods’ volumes. However, pods
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Figure 3.2: Architecture Kubernetes [15].

usually are not deployed "as is", applications are mainly deployed as deployments.
If the Pods need to track state, consider the StatefulSet resource.

Deployment is a resource that permits to create stateless Pod and to define the
number of replicas. It creates ReplicaSet in the background and it, in turn, creates
Pod. It permits to scale up and down the number of replicas of a specific Pod.
The deployment controller will enable self-healing by ensuring that the number
of running replicas remains constant and, if necessary, restarting containers or
reinstantiating pods. These things are useful for stateless application, where there
is no persistent data. StatefulSets, instead, are valuable for application that require
persistent data. In this case each pod has a specific storage volume. Persistence
is managed through the PersistentVolume and PersistentVolumeClaim resources,
the first represent a piece of storage in the cluster, that resides in physical drive
whereas the latter represent the request for a persistent volume made by a user, so
it tells that a pod wants to access to a given piece of storage. Since the pods can
be updated, be deleted and be rescheduled changing their address, in Kubernetes
there is a way to expose applications in a stable way. It is the Service and it is
used to make a pod reachable either at cluster level or from outside the cluster. In
the Service’s manifest we must specify a label selector that should match the target
pods, the ports to be exposed and the target ports of the container in the pods.
Basically we have three type of services: (1) ClusterIP, which permits to expose an
application only inside the cluster; instead, Node Port and Load Balancer permit
to expose application outside the cluster.
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3.2 Core Modules
A Kubernetes cluster is composed of nodes and there are two types of nodes: master
node and worker node.

Kubernetes runs your workload by placing containers into Pods to run on Nodes.
A node may be a virtual or physical machine, depending on the cluster. Each node
is managed by the control plane and contains the services necessary to run Pods
[16].

Kubernetes control plane consists of a collection of processes running on the
cluster:

1. The Master Node is a collection of four processes that run on a single node in
the cluster, which is designated as the main node. They are:

(a) kube-apiserver: it is the front-end for the Kubernetes control plane, so it
is the component that exposes the kubernetes API [17];

(b) etcd is the backing store of kubernetes, it is a consistent and highly
available key-value store. Its high availability mode enables cluster to
have more than one master and reduce outages due to master failures
[17];

(c) kube-scheduler, a component that decides in which node to schedule a
new pod, based on the pod resources, taints, affinities and other kind of
configurable constraints [17];

(d) kube-controller-manager, a component that runs the different controller
processes. Example of controllers are: Node controller, deployment con-
troller, Service Account and Token controllers. They are responsible to
move the current state towards the desired state [17].

2. Also, there are other processes that we find in both a master and a worker
node:

(a) kubelet, an agent that is responsible of making sure that containers
declared in a Pod are running. It checks the liveness of each pod telling
all the above information to kube-apiserver. The kubelet takes a set of
PodSpecs and ensures that the containers described in those PodSpecs
are running and healthy [17];

(b) kube-proxy, a network proxy that runs on each node in your cluster, imple-
menting part of the Kubernetes Service concept. Kube-proxy maintains
network rules on nodes that network communication to Pods from network
sessions inside or outside of the cluster [17];
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Figure 3.3: Kubernetes Components [17].

(c) CNI (Container Network Interface) is a CNCF project that defines a speci-
fication and libraries for configuring network interfaces in Linux containers.
If a CNI network plugin is installed in a cluster, it is automatically done
in each node. It is responsible for: (i) inserting a NIC into the container
namespace and making any necessary changes on the host to attach the
NIC to the network; (ii) perform the IP configuration [17];

(d) CSI, Container Storage Interface like CNI is a specification for developing
storage drivers plugins used in linux containers. A CSI might bring
features such as volume replication, snapshotting and backup.

3.3 K3s
k3s is packaged as a single binary, that makes easier the installation of a cluster
simplifying the setup and management. It also aims to reduce the overall load on
the host machines due to the removal of several lines of code from the codebase
that are needed only when Kubernetes is run on a cloud provider environment.
For this reason it is called “lightweight Kubernetes”, as also demonstrated and
analyzed in Bohm and Wirtz [18], in which a comparison with the microk8s and
with vanilla Kubernetes is shown. The researchers used four Ubuntu 20.04 Virtual
Machines (VMs) with 2 vCPUs, 4 GB memory and an SSD with a capacity of 50
GB each. The results showed that CPU and memory resource usage were quite
similar, with k3s using the lowest amount of disk space in comparison to the other
two.
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Figure 3.4: Resource utilization for K8s, MicroK8s, and K3s [18].

So, since k3s has low memory/cpu footprint, as shown in Figure 3.4, it works
well on bare metal with relatively low computational resources, especially for edge
devices or IoT appliances.

K3s comes packed with a set of dependencies,

• containerd,

• CoreDNS,

• a local path provisioner CNI is present to give the possibility to mount volumes
from the node’s filesystem without the need to manually install plugins.

• a default ingress controller,

• an embedded load balancer,

• an embedded network policy controller,

• a default lightweight CNI Flannel [19].

The user has the option to alter the behaviour of the cluster by disabling any of
the above plugins. The installation script provided allows to set all of the upstream
Kubernetes parameters as well as a few particular flags that are specific to k3s-only
behaviours.
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Chapter 4

Orchestrated architecture
for the power grid

4.1 Service and infrastructure resiliency
The difficulty of a geographically distributed infrastructure is relevant in a scenario
when centralized computations shift to the edge. The infrastructure could include
physically insecure sites and hardware from different manufacturers.

We also must consider that resources at the edge are less abundant than in a
cloud environment and those network partitioning events that isolate one or more
sites are a possibility. Each site must therefore be able to resist network partition
and isolation from the cloud, and it is obvious that a fully centralized control plane
cannot be the answer. Kubernetes is considered the foundation of the architecture
described in this chapter and it can be very useful in orchestrating workloads.

4.1.1 Services
The services considered are PMUs and PDCs:

• PMUs (Phasor Measurement Unit) require physical hardware and, being
measurements units (data producers), their location is bounded. Therefore
their placement is considered fixed and might be in each site (Secondary and
Primary stations as well as production sites);

• PDCs (Phasor Data Concentrator) are services that can act both as data
producer and consumer. They are defined in IEEE C37.247 as a set of functions
that produce an order output of the syncrophasors collected by the PMUs.
Each instance can be connected to several PMUs to collect data and can
produce one or more output that can be used by other applications or PDCs
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as input. Being software services with no special hardware needs, they can
then be placed anywhere they are needed.

4.1.2 Data resiliency
Delivering resilient monitoring and computing services that use real-time data
requires strong data resilience. For performing data analysis for statistical meaning
or post-incident analysis, historical data durability is definitely essential. In order
to withstand hardware and network failure, mechanisms for performing consistent
disk or volume backups and data replication are required.

At the cluster level, a first level of data resilience should be achieved so that
data is duplicated across multiple nodes rather than being bound to a single node.
At a larger scale, another level of data resilience should be attained by performing
regular backups and pushing them to the cloud so that analysts may access the
data.

4.2 Data flow and communication resiliency
Table 4.1 shows the number of primary and secondary stations across the years
reported in the Development plan 2021-2023 of e-distribuzione [20], a company
inside the Enel group operating in the electrical distribution sector. The plan shows
that over the past six years, the number of stations (secondary and primaries) in
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their distribution grid has increased. Furthermore, the number of sites can increase
quickly, necessitating a scalable solution that enables the addition of new sites
to the group as effortlessly as feasible. Since there are hundreds of thousands of
peripheral sites involved, as shown in the table, each one should be independent
from centralized control so that it is possible for it to continue operating even if it
is isolated.

2015 2016 2017 2018 2019 2020
Primary substations 2.188 2.195 2.199 2.203 2.200 2.336
Secondary substations 441.056 442.418 443.774 445.159 446.411 447.250

Table 4.1: Number of primary and secondary station over years 2015-2020 [20].

The proposed ICT architecture must take into account the data of the table 4.1
and, therefore, it becomes necessary to have a huge network of sensors, capable of
providing information about the physical world and interacting with each other
with the aim of increasing the observability of the power system. In addition, the
collected data should be later stored, processed, and analyzed in order to control
and optimize the behavior of the grid.

Various network problems must be taken into account in the implementation
of the ICT architecture. Thus, the proposed architecture should be able to:
(i) minimize network path lengths, (ii) improve network stability, (iii) improve
resilience and reduce network perturbations (packet loss, jitter) caused by buffer
bloat (although the former seems to have limited importance in modern edge
networks) and (iv) reduce the network latency.

The distribution system typically depends on the general-purpose network
connectivity provided by telecommunications companies, frequently through a
3G/4G/5G mobile connection. In contrast to the transmission system, where the
IT network topology typically follows the topology of the power grid (often, optical
fibres lay together with electrical cables in the same location) and is privately
self-managed by the energy provider. As a result, communication between two
sites, especially the traffic between PMU and the Low-Level PDC and/or between
the Low-Level PDC and the High-Level PDC) in the distribution system of the
network requires transit through the telecommunication provider’s network since
the topology of the power grid differs from the physical structure of the IT network.
This means that, as shown in the Figure 4.1, it is likely that the sites of the
distribution system are not directly connected by dedicated links but rather that
a transit through the network of the telecommunications provider is necessary
to get from one site to another. This has a significant impact on the overall IT
architecture since the physical topology of the IT network determines where to
deploy redundant IT services and helps to improve communications and cut down
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Figure 4.1: Example of ICT network architecture in order to show the path of
the packets.

on latency.
Knowing the path of traffic is extremely important for optimizing it and reducing

latency. For example, we can assume to have at a high level an architecture like the
one in Figure 4.1: a lower level PDC for each site of the power grid, collecting the
data of the local PMUs. It redirects the input stream to one of the many higher
level PDCs, located inside the primary station. Then the latter in turn redirects
its input data stream to a third-level PDC, located in the ISP, where the output
can be sent as input of the local state estimator or other applications performing
data processing or storage of historical data.

However from the point of view of IT architecture, looking at Figure 4.1 and
following the traffic, it might be clear how the exchanged data across many times
the public network:

1. PMU data exits the electricity provider network and, through a 5G antena,
enters the ISP network;

2. the data stream must cross the Milan Internet eXchange (assuming that we
are considering the network of Milan), to allow the exchange of data between
different Internet Service Providers (ISP);
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3. from the MIX, it is routed again to another ISP, the one directly connected to
the GSE;

4. from the latter network, it is routed to the power provider network in order
to be delivered to the PDC;

5. the output stream of the PDC needs to go back to the GSE’s ISP network;

6. finally, the stream reaches the state estimator.

It is important to notice the ICT network of the distribution system is completely
different from the architecture of the electricity network (shown in Figure 2.5) .
The ICT network uses one or more telecommunication provider network and in this
way the data traffic of the distribution system follows the path mentioned above.
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Chapter 5

Redundancy Database

A fault-tolerant system strongly requires the redundancy of the components, in this
way a system works even in the face of a fault. In particular, with the replicated
databases it is no longer enough to maintain and control a single server, but now
it is necessary to manage a much greater number. In addition, since the servers
collaborate with each other, there is the need to solve several problems, such as
network partitioning or split-brain scenarios.

As a result, the ultimate difficulty is to combine database and data replication
logic with the logic of having several servers coordinated in a consistent and simple
manner. So, having many servers agree on the status of the system and the data
on each change that the system undergoes. The final goal would be to have a
distributed database system capable of behaving as a single database or capable of
converging all components to the same state [21].

From the current architecture, an interesting fact has arisen: MySQL represents
a Single Point of Failure because it is the Pod that allows PDCs to read their
configuration, but it is also where the PDC stores the data streams they receive
from PMUs. So its failure results in a lot of lost data for the entire duration of
the downtime. Therefore, it is necessary to lower, if not reset, the downtime in
order to ensure greater resilience of the database. In order to realize this in the
next section, various solutions that guarantee the redundancy of MySQL have been
analyzed and they come shown the various tried solutions.

5.1 Single-Master vs Multi-Master
There are several solutions that provide different methods of data replication. These
mechanisms come into play when you want to have a live backup of information
or when you want to adopt a solution that guarantees us greater reliability and
availability of data. In the next section the two main replication methods are
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presented: (i) Master-Slave replication; (ii) Master-Master replication.

5.1.1 Single-Master
In a single-master solution, there is only a master node capable of accepting both
writing and reading operations and, also, more replicas (slaves) that accept only
reading operations. The data storage process is first carried out in the master node
and then the data will be copied to the slave nodes, asynchronously.

The main advantages of this solution are:

1. the possibility of decoupling the reading operations from the writing operations,
in such a way as to reduce the computational load in the master node;

2. it is very fast and doesn’t impose any restrictions on performance [22].

The disadvantages, instead, are:

1. the asynchronous replication approach reduces reliability. Asynchronous
replication works in the same way as store-and-forward. Each change is made
in the master node and then propagated and applied to the other nodes in
the cluster at regular intervals. Using this type of replication, a certain time
interval is required before all nodes reach the convergence of data. As a result,
failure of the master node, before replication operation, causes data loss;

2. a significant increase in writing operations can cause congestion in the master
node, and the only method to scale the writing operations is to expand the
master node’s processing capacity [22];

3. when a master node failure, an implementation of a mechanism capable of
electing a new master node is required [23].

From the implementation point of view there is also another limitation: in the
PDC yaml file you can only specify a database URL to contact. This requires a
mechanism to expose the master Pod through a Service K3s NodePort and also
implements a logic capable of attaching a new Pod as an endpoint in case the
master fails, as shown in Figure 5.1.

5.1.2 Multi-Master
In a multi-master solution, the hierarchy between databases is broken down and it
is assumed that you have two or more master nodes where both read and write
operations are allowed. In addition, this solution requires the implementation of a
synchronization mechanism and management of concurrent writes.

The main advantages of this solution are:
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Figure 5.1: What should be done for proper operation on Kubernetes when a
Master Node fails.

1. the ability to scale the infrastructure not only by increasing the computational
capacity of the nodes but also by adding other master nodes [22];

2. greater reliability and resilience, since the probability that all nodes will fail
at the same time, is very low and, moreover, even if a node fails there would
be other nodes capable of handling requests;

3. there is no need for any mechanism of the election of a new master;

4. since it is based on synchronous replication, you can be confident that you
will not lose committed data in case one of the Master node fails;

5. regarding Kubernetes, another great advantage is that there is the possibility
to expose the entire cluster through a single Service K3s, which will act as a
Load-Balancing among the nodes available.

The disadvantages, instead, are:

1. it uses more bandwidth because it is based on synchronous replication;

2. the cluster performance is limited by the worst node, the so-called short board
effect (bucket law);

3. adding a new node is expensive because when you add a new node, you must
copy the complete data set from one of the existing nodes. You must copy
100GB of data if the existing database contains 100GB of data.
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5.2 Redundancy for MySQL
In this section a description of several used solutions will be provided. In addition,
the reason why one solution was chosen over another will be stated. The several
used solutions are:

• MySQL Operator Oracle – Single Master,

• MySQL Group Replication – Single Master,

• Bitnami Chart MYSQL - Single-master,

• MySQL Group Replication – Multi Master,

• Percona XtraDB Cluster - Multi Master.

5.2.1 MySQL Operator Oracle – Single Master
The MySQL Operator for Kubernetes was created by the MySQL team at Oracle
and it is an operator responsible for the setup and management, including periodic
updates and backups, of a MySQL Innodb Cluster within a Kubernetes cluster
[24]. The main key features of this solution are:

1. Self-healing solution: it provides a (i) complete high availability solution for
MySQL running on Kubernetes and (ii) it is built on InnoDB storage, using
group replication;

2. Backup and restore databases, which permits to create a backup on-demand
or schedule a time period;

3. Monitoring: the operator has a built-in Prometheus metrics entry point [25].

The figure 5.2 shows an overview of the infrastructure:
Currently, the main limitations are:

1. the database backup is implemented using mysqldump,

2. it doesn’t support bootstrapping a new database from SQL script or from
backup.[25]

Another important limitation regarding Kubernetes is that:

• the operator keeps the cluster healthy. It changes the role of the master to
another MySQL instance and starts a new MySQL instance. This means that,
before the problem was the failure of the node where the single instance of the
MySQL pod was running, now the problem is the failure of the node where
the operator is running.
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Figure 5.2: Infrastructure overview [25].

5.2.2 Bitnami Chart MySQL - Single-master
This chart bootstraps a MySQL replication cluster deployment on a Kubernetes
cluster using the Helm package manager [26]. Compared to the previous solution,
this solution does not have an “operator”, but it does not implement a Master
election process. So, in case of a failure of the master node, it is necessary to wait
for its re-creation.

5.2.3 MySQL Group Replication – Single and Multi Master
MySQL Group Replication ensures a strong correlation between servers belonging
to the same group. Also here, there are two modes of operation: (i) single-master
with the automatic master election, in which only one server at a time accepts
updates; (ii) multi-master mode, in which all servers can accept updates, even if
released at the same time.

There are two important automatisms: (i) the view of the group is consistent
and available for all servers at any given point in time. Both servers can exit and
join the group and servers can leave the group unexpectedly, in which case the
fault detection mechanism detects it and notifies the group that the group has
changed. (ii) automatic protection mechanism from the split-brain event: for a
transaction to commit, the majority of the group has to agree on the order of a
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given transaction in the global sequence of transactions. Each server independently
decides whether to commit or cancel a transaction, but every server must come to
the same conclusion. The system cannot advance if there is a network split caused
by members who are unable to come to an agreement, so long as this problem is
not fixed [21].

Group Replication operates either in single-master mode or in multi-master
mode. The group’s mode is a group-wide configuration setting, specified by the
group_replication_single_master mode system variable, which must be the same
on all members. ON means single-master mode, which is the default mode, and
OFF means multi-master mode [21].

Single-Master

Figure 5.3: New master Election [21].

In single-master mode there is only one server configured in read-write mode
and it is typically the first server to bootstrap the group. All the other members in
the group are set to read-only mode (with super_read_only variable set ON). The
member that is designated as the master server can change in the following ways:

• if the existing master leaves the group, whether voluntarily or unexpectedly, a
new master is elected automatically, as shown in the figure 5.3;

• you can appoint a specific member as the new master using the
group_replication_set_as_master() function [21];

This solution guarantees that the database service is continuously available.
However, the usage of a connector, router, or load balancer, is fundamental to
redirect the clients toward a different server in the group, when the group member
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connected to the client becomes unavailable. This solution does not have an inbuilt
method to do this.

In addition, for Kubernetes, the main limitation is that in case of failure of the
Master node it is useful to hook the new master to the Service K3s.

Multi-Master

In multi-master mode no member has a special role. Any member can process
write transactions, even if they are issued concurrently. Also in this case, if an
unexpected server exit happens and a member stops accepting write transactions,
clients connected to it can be redirected to any other member that is in read-write
mode. Since this solution does not handle client-side failover, as before, you need
an external framework, proxy or connector to solve this problem.

Another important implementing limitation is that multi-master mode groups do
not support tables with multi-level foreign key dependencies. This is because foreign
key constraints that result in cascading operations executed by a multi-master
mode group can result in undetected conflicts and lead to inconsistent data across
the members of the group [21]. The solution is changing the openPDC.sql.template
architecture in the openpdc-init container.

5.3 Percona XtraDB Cluster
Percona XtraDB Cluster (PXC) is a fully open-source high-availability solution for
MySQL. It integrates Percona Server for MySQL and Percona XtraBackup with
the Galera library to enable synchronous multi-master replication [27].

The most prominent feature of PXC is to solve the replication delay problem,
belonging to a master-slave architecture, and it is basically achieved by using real-
time synchronization. Because synchronous replication applies any modifications
to all sites involved in the replication environment as part of a single transaction,
each node of the cluster will have the same set of synchronized data.

The main benefits of this solution are:

• prevents downtime and data loss;

• there is no need for remote access because when you execute a query, it is
executed locally on the node;

• there is no central management. You can lose any node at any point in time,
and the cluster will continue to function without any data loss;

• high availability;
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Figure 5.4: Percona XtraDB Cluster Architecture

• good solution for scaling both a write and a read workload. You can put read
and write queries to any of the nodes [27];

• regarding Kubernetes, there is no longer the problem of the previous solutions.
Since each node is equal, as shown in figure 5.4, it is enough to have a single
K3s service to expose the entire cluster (specifically, the StatefulSet resource of
the Cluster is exposed by the K3s Service). However, in this case, each client
(PMUs in our case) establishes a TCP connection with one of the database
replica, so when this node goes down we have to force the establishment of a
new TCP connection towards another node (this code was realized into the
liveness probe of the PDC pod).

Instead, the main drawbacks are:
• overhead of provisioning new node. A new node must replicate the entire data

set from an existing node when you add it. If it is 100 GB, it copies 100 GB
[27];

• any updated transaction needs to pass the global verification before it can be
executed on other nodes;
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Figure 5.5: Galera with MySQL Architecture [28].

• because it relies on synchronous replication, additional bandwidth is needed.;

• you have several duplicates of data: for 3 nodes you have 3 duplicates [27];

• the cluster performance is limited by the worst node, the so-called short board
effect.

Percona XtraDB Cluster is based on Percona Server for MySQL running with
the XtraDB storage engine. Basically, Percona Server is a fork of MySQL e XtraDB
is a fork of storage engine InnoDB.

This solution uses the Galera library, which is an implementation of the write set
replication (wsrep) API. As shown in the figure 5.5, the wsrep API is an interface
between the database server and its the replication provider (Galera in our case).
Galera library provides a synchronous multi-master replication plug-in for InnoDB.
An application can write to any node in a Galera cluster, and transaction commits
are then applied on all servers, via a certification-based replication.

Certification-based replication executes transactions in a single node and, at
commit time, runs a coordinated certification process to enforce global consistency.
A broadcast service is used to establish global coordination. The fundamental
principle is that up until the commit point, a transaction is carried out ordinarily.
The primary keys of the altered rows and all database changes performed by the
transaction are collected into a writeset at this time (but before the actual commit
has taken place). After that, the remaining nodes receive a replication of this
writeset. Then, all nodes execute a deterministic certification test, wherein they
check whether the content of the writeset is applicable, using the collected primary
keys. Naturally, if the certification test fails, the writeset is dropped and the original
transaction is rolled back. If the test succeeds, the transaction is committed and
the writeset is applied on each node [29].
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Figure 5.6: What is Certification based Replication? [29]

To sum up:

• Galera replication happens at transaction commit time, by broadcasting
transaction write set to the cluster for applying and by executing a certification-
based process;

• client connects directly to the DBMS and experiences close to native DBMS
behavior;

• wsrep API (write set replication API), defines the interface between Galera
replication and the DBMS.

Another main feature is the High Availability: if we have a setup with 2-3 nodes,
PXC will continue to work, without any data loss, even if any of the nodes take
down (due to a node crashing or if it becomes unreachable over the network) or if
we shut down any node to perform maintenance.

When a new node joins a cluster or when the failed node restarts working, it
will be automatically synchronized with the other nodes thanks to State Snapshot
Transfer (SST). It refers to a full data copy from one cluster node (i.e., a donor)
to the joining node (i.e., a joiner) [30]. Therefore, Percona XtraDB Cluster uses
Percona XtraBackup for State Snapshot Transfer and the wsrep_sst_method
variable is always set to xtrabackup-v2.

Additionally, Percona XtraBackup is based on InnoDB’s crash-recovery func-
tionality. This works because InnoDB maintains a file called transaction log. To
recover from an unexpected MySQL server exit, InnoDB automatically checks the
logs file and performs a roll-forward of the database to the present [21].
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5.4 OpenEBS for resilient data persistency
Since Kubernetes relies on plugins and volume abstractions to isolate storage
hardware from applications and services, it is by nature infrastructure agnostic.
Containers, on the other hand, are transient and instantly delete all data when
they end. Using volumes and persistent volumes, Kubernetes allows containerized
applications to store and persist data on physical storage devices [31].

Because the goal is to have resilient and persistent data, OpenEBS is the solution
adopted. This solution is highly suitable and compatible with Percona and is very
simple to setup.

OpenEBS allows mapping the virtual disk of the MySQL Pod with the volume
of the node where it is running with a 1:1 ratio.

The Figure 5.7 shows a high-level view of the current implementation of MySQL
replicas within the Kubernetes cluster.

To connect applications directly with storage from a single node, OpenEBS
leverages LocalPV provisioners. This storage object, known as LocalPV, is subject
to the availability of the node on which it is mounted [32].

Local volumes seem not appropriate for all applications because they can only be
accessed from a single node and are dependent on that node’s availability. A local
volume used by a pod won’t be accessible if a node becomes unhealthy, making
it impossible for the pod to run. Depending on the durability properties of the
underlying disk, applications employing local volumes must be able to withstand
this reduced availability as well as potential data loss [33]. Despite this, the main
feature of OpenEBS is its High Availability. This means that the loss of any node
results in the loss of only those volume replicas present on that node and that
availability is provided at the application level, thanks to the presence of three
replicated pods. When a node fails, the volume data can still be accessed at the
same performance levels because it can be synchronously replicated at other nodes.
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Figure 5.7: Deployment model [34].
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Chapter 6

Implementation

In this chapter, a description of specific components and their used configuration
will be provided. In addition, it will be stated the reason for such components and
how they have been adapted to be run as containers, if necessary.

6.1 Infrastructure

6.1.1 Orchestrator
The architecture is heavily based on Kubernetes, which includes implementations
targeting also low-resource devices. It has a large software ecosystem that can
give well-tested solutions for many common problems, such as data redundancy,
in addition to its native features (e.g., automatic service restart/re-spawn in case
of failure, multi-master capabilities, etc.). The Kubernetes distribution chosen
for edge sites is K3s, which has a very low resource consumption (CPU, RAM,
disk) and a very straightforward configuration. Orchestrator redundancy has been
achieved with multiple masters (some active and others in standby). The idea is to
put a K3s cluster in each station.

K3s has been configured to have master redundancy using the embedded etcd
option. This allowed having a highly available control plane capable of withstanding
a master node failure due to the takeover of the lead by another one in stand-by.
Focusing on a single station the realization of the cluster is based on four nodes
– three masters and one slave – in order to guarantee the correct functioning of
the cluster even in the face of a failure in any of the nodes with the consequent
transition of its instances in the nodes properly running.

In addition, the default configuration has been modified to minimize the time
between detecting a node failure and re-spawning the services that were previously
operating on the failed node from 5 minutes (the default setting) to 40 seconds.
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This was accomplished by changing the API server options:

• default-not-ready-toleration-seconds set to 20. This configures the default
annotation that is placed in every pod that defines how much time should be
tolerated for a pod to be in node in a NotReady state;

• default-unreachable-toleration-seconds set to 20. As the previous one sets the
interval tolerated for a pod to be in a node in a Unreachable state.

Experimental results will be shown in the next chapter but it is to be noted
that in Kubernetes a node goes into the NotReady state after 40 seconds of being
unreachable or, better said, at the fourth time that a node’s kubelet is polled and
no response is received. This interval is also configurable and taking also this one
into account brings the restart of pods, in case of a node failure, to around a minute
after the failure.

6.2 Services
The main components are OpenPDC, PMUsim, and MySQL.

• OpenPDC is an open-source implementation of the IEEE C37.247-2019 stan-
dard which describes the specifications for PDC functions. It is written in
C# and developed by the Grid Protection Alliance. Configuring the PDC
connection to PMUs is done by the OpenPDC manager helper, which gives
this possibility through a user interface although available only on Windows
systems. The ability to visualize real-time graphs of measurements obtained
by the PMUs connected to the openPDC Manager is a significant benefit.

• PMUsim is an open-source, C-based, IEEE C37.118-complaint PMU simulator
tool, allowing to generate random synchrophasors. When you launch the
PMUsim application, the main process forks and the newly created process
starts the PMU-server, which is in charge of connecting to the PDC and
generating random synchrophasors. The main process, on the other hand, is
responsible for drawing the GUI and connecting with the PMU-server process,
via signals, in order to apply the configurations made by the user via the GUI.

• MySQL is a well known DBMS, which is needed since OpenPDC can store its
configuration in DBs. In this case it has been used to store data (measurements)
and it is needed by OpenPDC software to read and store its configuration. In
our scenario three instances of MySQL database, configured in multi-master
mode, are run in every cluster so that PDCs can easily reach their configuration
and so that we have a database cluster capable of tolerate node fault.

37



Implementation

6.2.1 Percona XtraDB Cluster and OpenEBS
The data persistence problem is addressed by Kubernetes with built-in abstractions
such as PersistentVolumes and PersistentVolumeClaims; however, the default driver
provides basic data persistence but does not provide data replication. Conse-
quently, the proposed solution introduces an additional layer of abstraction for
data persistence leveraging the enhanced storage features provided by Percona and
OpenEBS.

The Percona XtraDB Cluster (PXC) is a MySQL high-availability solution
that is fully open source. It combines Percona Server for MySQL and Percona
XtraBackup with the Galera library to enable synchronous multi-master replication,
which ensures data synchronization between multiple replicated MySQL nodes. A
cluster is made up of nodes, each of which contains the same set of data that is
synced across nodes.

Percona XtraDB Cluster can be configured with OpenEBS volumes via the
OpenEBS Local PV storage engine. OpenEBS is the leading Open Source imple-
mentation of the Container Attached Storage(CAS) pattern [35]. OpenEBS helps
to deploy Kubernetes Stateful Workloads that require fast and highly durable,
reliable, and scalable Container Attached Storage [34]. In addition, it permits
attaching each instance volume to a distinct physical data volume created on the
node itself and the OpenEBS instances are coordinated to guarantee that any data
is replicated on different physical volumes (hence nodes).

6.3 Results from the current implementation
This paragraph will offer an evaluation of the proposed solution.

Only Linux-based operating systems have been taken into consideration be-
cause the workloads are designed to run in containerized environments. Every
measurement has been conducted using Ubuntu 20.04 as the base OS to maintain
consistency and allow a fair comparison. The x86 architecture is being taken into
consideration, and table 6.1 contains more details about the used machine.

A sophisticated container orchestration solution like Kubernetes is not just a
tiny piece of software; orchestration requires constant communication with the
container runtime backend, monitoring of active resources, and either executing or
interacting with the control plane. The sysstat tool, which automatically collects
data using Linux primitives, has been used to collect metrics for CPU and memory
usage. Every test scenario has been set up in a setting that is similar to reality,
with PDCs linked to remote PMUs providing output streams and also storing
received streams into the databases.

Values for CPU use indicate the amount of time the CPU is not idle. The
values taken into account are the average values across all CPUs at a specific
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Architecture x86 (64-bit)
Machine VM

Linux kernel 5.4.0-122-generic
CPU Model Intel Core i7-6700
CPU Cores 4

CPU Frequency 3.4 GHz
Memory size 6 GB

Disk size 40 GB (SSD)
OS Ubuntu 20.04.4 LTS

Table 6.1: Specifications of the machine used to carry out the tests

Figure 6.1: CPU and Memory Usage of the demo deployed in a 4 node cluster
(x64)

time, and they are displayed as box plots to highlight the values with the highest
frequency and separate them from outliers. Memory usage values simply represent
the non-free memory at a given time.

A general evaluation of the presented demo is shown in the Figure 6.1. In all
the nodes we have the system pods both the ones related to OpenEBS and to the
Kubernetes system. Resource usage clearly shows a higher usage in master node 1
(approximately 17-27%), where the low-level PDC is running. This is because, as
mentioned above, the PDC is responsible for receiving, processing, analyzing, and
saving the received data stream. Therefore, in this case, an important notice is that
the node running the low-level PDC shows a consumption similar to the other nodes,
in which, instead, we find the OpenEBS pods needed for the High-Availability of
the database (in this case the analysis was conducted using a virtual machine with
Intel i7-6700 CPU model).
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Figure 6.2: Increasing the number of connected PMUs, the number of bytes
written increases

Figure 6.3: Galera replication latency.

Another important thing to note is that replication of MySQL has been scheduled
in the worker node and as a result, this shows high CPU consumption (approximately
18%). Finally, the scheduling of MySQL pods in master2 and master3 nodes also
results in increased memory consumption.

6.3.1 Results about PXC Implementation
This section shows the results about the High-Availability of the database. They
regard both the number of bytes written on MySQL pods and the latency needed
for the synchronization of nodes, considering also that the analysis was carried out
on a real K3s cluster. In addition, there is an analysis of how the system reacts to a
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failure both on the node in which the system is writing, and on a replication node.
Percona Monitoring and Management was used to take measurements (PMM).

Oracle MySQL Community Edition, Oracle MySQL Enterprise Edition, and Mari-
aDB are just a few of the MySQL varieties that Percona Monitoring and Man-
agement delivers actionable performance statistics for. The InnoDB and XtraDB
storage engines are tracked by PMM, which also offers specialized dashboards for
specific engine information. [36].

The figure 6.2 shows the number of bytes written per second on a MySQL
node as the number of PMUs connected to the single PDC increases. The results
show that one PMU writes about 30kB/s of data; while three PMUs connected to
the same PDC generate about 80kB/s of data. It is important to note that the
trend is not perfectly linear because the PDC performs data aggregation operations
trying to optimize the writing of the data stream received. However, increasing the
number of PMUs connected, also the incoming traffic increases and consequently
the replicated traffic into other nodes.

The figure 6.3 shows the replication latency on group communication. It measures
latency from the time point when a writeset is sent out to the time point when am
ACK is received. Since replication is a group operation, latency essentially is given
by the slowest ACK and longest RTT in the cluster [37]. As can be seen from the
graph, the average latency for data replication is about 2.5 ms.

The figures 6.4a and 6.4b show what happens when a "replica pod" fails. In
the beginning, the application establishes a stateful TCP connection with one of
the three nodes and will write always and only on this, consequently "replica pod"
stands for one of the other replicas where no write operations take place. So, in
this case, the TCP connection was established with the pod MySQL-0 (fig. 6.4a)
and the other two pods receiving the replicated data from it. When a replica pod
fails (in this case the replica MySQL-1 fails), the data are still written into the
remaining nodes (fig. 6.4b). One important thing to note is that in the failed node
there was also a PMU scheduled and for this reason, we can note a slight deflection.

Instead, in the scenario represented in fig. 6.5, the node running the MySQL pod,
with which a TCP connection was previously opened, is analyzed. As mentioned
above, the application establishes a stateful TCP connection with one of the three
nodes and will write always and only on this. So “writing pod" stands for the pod
where writing operations take place. Therefore, in this scenario, the "writing pod"
is isolated. As shown in figure 6.5a, there is a time interval when there is no traffic
because as soon as the node where you are writing fails, a «pending» connection
remains open to this pod and the only way to force the application to write to
another pod is to launch the command Initialize in the OpenPDC GUI or to write
a script that periodically launches this command. In the current implementation,
instead, there is a liveness probe in the PDC code that periodically checks how
many nodes are running and if one of the nodes fails, as a result, the liveness probe
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(a) Incoming Traffic (b) Replicated Traffic

Figure 6.4: What happens when a replica pod fails?

(a) Incoming Traffic (b) Replicated Traffic

Figure 6.5: What happens when a writing pod fails?

fails and the pod is restarted. If the liveness probe fails, it means that the PDC can
reach a lower number of nodes and, therefore, as a result, that network partitioning
has occurred.

According to figure 6.5a, We can deduce that the write operations are first
carried out in the node called MySQL-2 and then, after performing the liveness
probe, a TCP connection with the node called MySQL-1 is restored. From the figure
6.5b, instead, we can deduce that, after the failure, the operations of replication
happen only in the node properly in execution.
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Orchestrator reaction times

In distributed systems and in an electrical context the resilience and self-healing
of the adopted solution are key features. In addition, in order to ensure system
availability and reliability, another important aspect is the ability to react quickly
in the face of a fault.

In order to create resilient and self-healing applications, Kubernetes provides,
through the ReplicaSet resource, the possibility to create N replicas of the same
service. In this way, we would be able to have a resilient system able to tolerate
n<N failures. It might be interesting to guarantee the above-mentioned reliability,
simply by creating different replicas of the same service; but doing that, we will
have implementation problems because:

1. you can not use multiple instances of PMU since they should share the same
device and, therefore, compete for the same hardware;

2. Kubernetes is not suitable to replicate the PMU data stream in different PDCs
(a PMU sends to one and only one PDC);

3. having replicated PDC would mean that the data stream received by the
different PMUs, must then be aggregated before further processing.

Therefore, in our case the possibility of creating replicas does not provide benefits,
and as a result, scenarios are evaluated in which we only have a single replicated
service.

Further analysis are evaluated against two possible failures:

1. container restart after an unexpected failure. Specifically, the fault was
simulated by forcibly sending a "kill" signal inside the container, thus killing
the process delegated to the exchange of synchrophasor. In addition, a
liveness probe inserted into the PMU pods guarantees to periodically verify its
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Figure 7.1: PDC Behavior when PMU no longer sends data.

operability and, in the event of failure, the Orchestrator becomes responsible
for rescheduling the container;

2. inaccessibility of a node, due to network partitioning, and consequent rewriting
of pods into a healthy node.

Three shell were mainly used:

1. the first runs a script for the command tcpdump. It is useful for measuring
the time required by PMU and PDC to restore their communication, and
monitoring the actual exchange of network packets between components.

2. the second executes the kill of the process, thus simulating the failure of the
Pod.

3. in the third there is a script to analyze at any moment of time the current
state of the Pods, according to Kubernetes.

tcpdump output showed that:

1. even if in Running state for Kubernetes, the PMU waits for a request to
open a TCP connection from the PDC and starts sending data after the
three-way-handshake;

2. after the connection fails, simulated through the kill process, the PDC
attempts to establish a TCP connection with the PMUs, sending SYN packets
at regular 10 seconds intervals, as demonstrated in figure 7.1, and as soon as
the PMU returns up, a new TCP connection will be established..

44



Orchestrator reaction times
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Figure 7.2: Data flow restart time interval in case of Nginx, PMUs, and PDCs.

In the Figure 7.2 there is an analysis of the orchestrator reaction time comparing
the timing of recreation of a nginx pod (a cloud-native application) with the timing
of the services of PMU and PDC (non cloud-native applications).

From this figure, we can see that Nginx, cloud-native application, has a restart
time that hardly exceeds 5s. Instead, PMU and PDC, non-cloud-native applications,
have a reboot time that is between 6 − 12 seconds for the PMU and 18 − 25 seconds
for the PDC.

Some considerations on the PMU are: (i) as long as the PMU are in a state
of "Terminating" according to Kubernetes, they continue to send data; (ii) if the
PMUs return to a state of "Running", again according to Kubernetes, it does not
mean that they are sending data. They start sending data after establishing a TCP
connection with the low-level PDC, as soon as it receives a SYN package from it.

The proposed results raise some additional considerations: (i) in our setup, the
Kubernetes control plane checks the status of the specific service every 5s (e.g.,
healthy, unhealthy). The orchestrator’s contribution to the overall restart time can
therefore never, in the worst case, exceed 5s and may even be further decreased
by configuration. The remaining time is thus related to the service control logic
to re-instantiate the communication and can be reduced only with proper code
refactoring. (ii) currently, there is no automated recovery process in place in the
event of a monitoring service failure; instead, manual intervention is still frequently
needed. This implies that monitoring services have different resiliency requirements,
compared to control services, and can withstand longer service disruption (e.g.,
minutes), without compromising the smart-grid operability.
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Figure 7.3: Time required to recover services on a disconnected node.

The second scenario is about the simulation of the unreachability of one node. A
case of network partitioning has been induced, pushing firewall rules in iptables
to isolate the node from the rest of the infrastructure. In this context, it has been
reduced to 20 seconds (rather than the default 5 minutes) the maximum time that
a pod can remain scheduled in a node in a NotReady state; and reduced to 20 sec
the maximum time that a pod can remain in a node in an Unreachable state. This
means that nodes are periodically interrogated to determine their reachability and
possibly mark them as Unreachable.

So, the time between the detection of a failed node and the rescheduling of
the services present in this node was measured. In the Figure 7.3 we can see the
reaction times that come into play in this scenario:

1. how long the master node takes to recognize a failed node and set its status
as NotReady/Unreachable;

2. time to re-create all the containers hosted in the failed node and to restore
the application data flow;

3. total time to restore service on running nodes.

Specifically, the time required to identify a node failure strongly depends on
Kubernetes control logic and experiences substantial variability, depending on the
moment of the failure and the next node health check. It is also important to note
that the calculation of the time needed to restore the actual operation of the cluster
depends strictly on what was previously scheduled in the failed node. Indeed, the

46



Orchestrator reaction times

overall re-creation interval is strictly constrained to the slowest service (i.e., PDC).
Still, even in the worst case, the proposed infrastructure can recover to node failure
event within 70s, well below the requirements.
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Scalability and Resiliency
Evaluation

This chapter provides an explanation of the simulator used and the results obtained.
There are several reasons for using a simulator, such as making tasks easier and
saving significant amount of development time. The simulator has been used mainly
to deepen the analysis of two scenarios: (i) show CPU consumption of the low-level
PDC; (ii) analyze the resilience of the infrastructure, injecting failure at run-time.

8.1 What is CloudSim?
CloudSim Plus is a Java 8 simulation framework that allows modelling and simula-
tion of different cloud computing services [38]. The framework allows developers
to specify the characteristics of different entities of a cloud provider such as: (i)
physical resources like datacenters, physical machines (hosts or servers) and network
assets; (ii) logical resources like storage area networks (SANs), network topolo-
gies and applications; (iii) the virtualization layer that provides elements such as
virtual machines (VMs) to enable virtualizing physical and logical resources; (iv)
requirements and behaviour of applications and workloads.

It automates the management of all these resources that are provided as a
service, working as virtual machine monitors (hypervisors or simply VMMs) that
perform low level administration tasks such as: (i) VM lifecycle management (like
creation, start, stop, destruction, placement and migration); (ii) management of
active physical machines for energy saving; (iii) scheduling of VMs execution inside
PMs and applications execution inside VMs; (iv) allocation of VMs for application
and management of application lifecycle inside VMs [38].

The main entities to define on are Cloudsim: Host, VM/Container and Cloudlet.
Hosts emulate a physical machine and for each of them it is necessary to establish:
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1. CPU’s cores;

2. MIPS CPU (Million Instruction per Second), that is the CPU clock speed;

3. RAM;

4. Storage;

5. Availabe Bandwidth;

The VM represents the virtual machine (or we can assume the container) running
inside a Host and has the main task of running applications (called Cloudlets).
Also for the VM it is necessary to establish the same features of the Host.

Finally, Cloudlets represent applications running within the VM. Each of them
is defined in terms of computational resources occupied within the VM in which it
is running. As a result, the cloudlet also needs to define the above. In our scenario,
Cloudlets are the PMU and PDC processes that exchange data. Specifically, in
the exchange is also implemented a double level of aggregation between a low level
PDC and a high level PDC.

Other inputs depend, instead, from the analyzed scenario:

1. in a scenario where we want to analyze CPU consumption as the number of
PMUs connected to the PDC increases, it is necessary to establish:

(a) the number of PMUs connected to each low level PDC,
(b) the number of Clusters. A CLUSTER consists of an aggregation of several

secondary station (called Host in CloudSim),
(c) the number of cores to be assigned to each Host.

2. when we want to analyze the failure of a Host (the physical machine) it is
necessary to establish

(a) the number of expected failures at each instant of time;
(b) the instants of time when failures occur.

Instead for the outputs we could have:

1. an output that shows the impact that the scheduling of a PDC has on a Host,
in terms of CPU consumption and bandwidth;

2. in the scenario of host failure, an output showing availability. "Availability"
means the number of hosts available to run the PDC at the time of migration.

In summary, both outputs and inputs depend strictly on the scenario analyzed.
The only fixed values are given by the architecture skeleton and therefore by the
computational resources available in each entity.
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8.2 Results

8.2.1 CPU and Bandwidth Analysis
The goal of this analysis is to show the trend of CPU consumption on the station
where the low-level PDC is scheduled, as the number of connected PMUs increases.
This analysis allows us to understand how the computational resources of the PDC
code are able to saturate the resources available in the host machine, so it permits
us to quantify the degree of saturation of computing resources.

The code includes the placement of a PMU in each station, a PDC in only one
of the other secondary stations and, in addition, allows you to change the number
of PMUs connected to each PDC. As a first model, the distribution system stations
are represented aggregating four Raspberry Pi4B with the following computational
capabilities: (i) CPU with 4 cores of 1.5GHz (Cortex A72), (ii) 4GB of RAM, (iii)
256GB of disk.

The code also allows to define more CLUSTERS – a CLUSTER is the set of
more secondary stations (called Host in CloudSim) characterized by the same
computational capacity – in order to analyze several different scenarios at the same
time. The code allows to define multiple CLUSTERS because the computational
capabilities of the Raspberry, in which the PDC is scheduled, will always be lower
than the four total cores. This happens because likely in the same Raspberry are
scheduled other system Pods (Kubernetes control plane, OpenEBS, MySQL and so
on).

In the Figure 8.1, which shows the infrastructure designed with CloudSim, we
can see an example with two clusters, in which the Raspberry are characterized by
a different number of available cores, respectively two and three cores. Additionally,
the router is the aggregation of all the possible network components placed between
several secondary stations.

The study started with the evaluation of the resource consumption requested
by PDC and PMU in a real K3s cluster and then it was expanded by using the
simulator.

Figure 8.2 estimates the trend of CPU consumption (y-axis) as the number of
PMUs connected to the PDC increases (x-axis), based on the number of cores that
the PDC code can use, respectively one, two or three cores. This analysis allows us
to quantify the degree of saturation of computing resources.

In addition, the study was conducted in two phases: in the first one, we considered
the PDC code monolithic and not parallelizable; instead, in the second phase we
assumed that the code will use multiple core, so as to carry out a preliminary
analysis in the event that in the future the PDC code becomes parallelizable.

From the figure 8.3 we can deduce that when the CPU reaches the maximum of
100%, bandwidth consumption begins to degrade, due to the degradation of CPU
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Figure 8.1: Infrastructure designed with CloudSim

Figure 8.2: CPU Consumption

performance and, therefore, to a smaller number of packets analyzed. Specifically, it
would seem that the low utilization of the bandwidth is an advantage; however, it is
observed that the ideal trend is considerably different from the real one because of a
degradation of the performances of the CPU, and consequently the used bandwidth
decreases.

However, the bandwidth does not represent a limit since the traffic exchanged
between a PMU and a low-level PDC is 25 packets of 36 Bytes and, moreover,
the traffic exchanged between the low-level and high-level PDC is always a few
hundred bytes. In the simulation bandwidth consumption is given by the following
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Figure 8.3: Bandwidth Consumption

formula: (x − 1) · y + x · delta , where x is equal to the number of PMUs connected
to the PDC; y is the traffic exchanged between a PMU and a low level PDC, which
is equal to (25packets · 36Bytes); finally, delta is given by the increased traffic
exchanged between the low-level PDC and the high-level PDC.

From these results we can deduce, for example, that, supposing that the code of
the PDC is parallelizable and that it uses 2 cores of the Raspberry, we can connect
up to a maximum of 6 PMU and in this case the consumption of the two cores
would be about 95%. Another example could be that using only one core we can
connect up to a maximum of 2 PMUs.

Latency due to Computing

Figure 8.4 shows how the latency, required for processing a packet, depends on the
number of cores used. Also in this graph, as in the previous one, the number of
PMUs connected to the PDC is represented on the x-axis, while the y-axis shows
the latency due to the computational resources. It is important to note that if we
had enough resources available each packet should be processed without delays
due to computing; since the available resources are lower than the required, we
have a higher processing time for each packet. For this reason, once the limit value
is exceeded, there is a processing delay due to CPU overhead. In this case, the
latency is identified as the difference between the time actually taken to process a
packet (given by the output of the simulator) and the time theoretically necessary.
This figure, also, shows several lines that refer to cases with different core numbers
available. As is evident from the figure, by increasing the number of cores, the
processing latency decreases at the same PMUs connected.
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Figure 8.4: Latency due to Computing - Single Core vs Multi Core

What CPU do we need?

So far, it has been identified the limit value of PMUs connected to PDC to allow
the system to function properly, by using a Raspberry. Then, instead, it was
analyzed what type of CPU (specifically how many Cores and MIPS) is necessary
for the proper functioning of the system for a value higher than the limit value. As
mentioned above, not all available cores are used by the PDC, but we must assume
that in the Raspberry in which the PDC is scheduled there are also other system
pods.

The figures 8.5, 8.6, and 8.7 show the number of PMUs connected to the PDC on
the x-axis, while the y-axis shows the MIPS value necessary to avoid a degradation
of communications. Figure 8.5 shows some examples of CPUs that could be used
as the number of PMUs connected to the PDC varies, in the single-core case. It is
clear, from the figure, how, using a Raspberry, we can connect up to a maximum of
two PMUs; while if we want to connect more than 9 PMUs it is necessary to have
a CPU that has a single core clock speed higher than 4.10GHz. The figure 8.6,
instead, shows that, by using the same CPUs, whether the PDC code could exploit
two cores, we could connect up to a maximum of 19 PMU. Finally, the figure 8.7
shows that if the PDC code is capable of leveraging three cores, we can link up to
a maximum of 30 PMUs for each PDC.

So, as is evident from the previous figures, increasing the number of MIPS
required by the PDC, it is necessary to have more and more powerful CPUs or,
whether the PDC’s code is parallelizable, to use more cores of the CPU in parallel.
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Figure 8.5: MIPS required by PDC vs MIPS available on CPU - Single core

Figure 8.6: MIPS required by PDC vs MIPS available on CPU - Dual core
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Figure 8.7: MIPS required by PDC vs MIPS available on CPU - Three cores

8.2.2 Host Failure
This second scenario was implemented by simulating the failure of Raspberry at
run-time in order to analyze the resilience of the infrastructure. Failures were
injected following the modeling in figure 8.8. In the analysis, this modeling seemed
the most realistic in terms of possible failures over time. For this reason, it has an
exponential trend and shows cumulative failures (y-axis) as the months (x-axis)
increase. It is also possible to note that, going forward in time, failures become
more and more frequent.

It is important to highlight that failures are injected randomly. This means
that, for example, the first 4 failures can affect the 4 Raspberry of the same station
or can be distributed between Raspberry belonging to different stations. Based on
this randomness the migration of the PDC can take place at different times.

Specifically, the focus has been placed on the station where the PDC is running
(the PDC is the only element in the simulator that can be migrated). So far we
have seen that a higher number of PMUs connected to the PDC causes a high
computation load on the PDC itself. Regarding failures, however, a larger number
of connected PMUs ensures a greater availability of Station, where possibly migrate
the PDC. So, from a consumption point of view, it would be better to have fewer
PMUs connected to the PDC; from an availability point of view it would be better
to have more PMUs connected to the PDC (since in this way we would have more
Stations available, which use fewer resources, where to migrate the PDC).
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Figure 8.8: Cumulative Failures over Time

Figure 8.9: Station Available on CloudSim

For example, as shown in the fig. 8.9, supposing you have two clusters with a
PMU:PDC ratio of 3:1, in case of failure of the PDC, we would have four more
Stations where to migrate the PDC (red arrows); if instead, we assume to have
a PMU ratio 5:1 PDC, we would have 8 Stations available where to migrate the
PDC.

When the resources available in the station are less than those necessary for
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Figure 8.10: Availability of Stations

the proper functioning of the system, the PDC must migrate and the simulator
output shows Host availability, which defines how many Stations still have enough
resources to run the PDC. Availability (y-axis), in percentage, is calculated using
the below formula:

white space to separate rows

(number_hosts_available_to_execute_pdc)
(number_hosts_total) ∗ 100

white space to separate rows

The Figure 8.10 shows how the availability increases, in the case of a possible
migration, as the number of PMUs connected to the PDC increases.

For example, looking at the Figure 8.10, with 3 PMU connected to the PDC
having an average availability of 30% means that, when a failure of the station
where the PDC is running occurs, there are still on average 30% of stations available
where the PDC can migrate (because they still have sufficient resources available).
Since failures are injected randomly at run-time, in order to obtain almost reliable
results the code has been executed 20 times for each number of PMU connected
and then the results are shown through box-plots.

In any case, the goal is to show that connecting multiple PMUs to a PDC
increases availability in the event of a failure (as opposed to increased resource
consumption).
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Conclusions and future work

The work of this thesis analyzed the resiliency needed in the aforementioned
infrastructure in the electric scenario. Initially, the analysis focused on the resilience
of single clusters but can be extended to each of them. Storage resiliency has been
taken into account and considered a critical part of the architecture. As a result,
several configurations have been analyzed to ensure the high availability of the
database and, in the end, Percona XtraDB Cluster was chosen. Its main strengths
are: (i) high availability, (ii) prevents downtime and data loss, (iii) and provides
linear scalability for a growing environment [27]. The evaluation focused on the
overhead brought by the orchestrator, as well as storage resiliency and the time
taken by Kubernetes to react to simulated faults. Then the analysis was extended
using the Cloudsim simulator in order to evaluate both the overhead brought by
an increasing number of PMU connected to one PDC and the availability of Hosts
upon the occurrence of a failure.
The results show relevant information necessary to design edge clusters both in
hardware resources and number of nodes. The analysis of the consumption of the
hardware resources gives a general view on the minimal amount of resources to
use in order to guarantee the correct operation of the infrastructure. On the other
hand, the analysis of reaction times provides a general overview of Kubernetes
behavior and shows areas that need to be tuned to enhance response times in the
event of failures. Moreover, analysis using CloudSim shows that a Host’s hardware
resources consumption is closely related to the services they run, in particular, the
PDC service requires a considerable computational load. In addition, another result
shows that a growing number of Hosts within a cluster ensures greater availability
and reliability of the entire infrastructure.
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9.1 Future work
This thesis analyzed the infrastructure built with K3s and the other services already
mentioned, with the aim of finding its critical points and analyzing its feasibility in
an edge computing context. Several interesting conclusions have emerged both on
the timing at stake and on possible single points of failure of the infrastructure. In
this work, OpenEBS together with Percona XtraDB Cluster, were used to ensure
the high availability of the database within a single cluster. Some of the other
solutions listed above weren’t designed with this use case in mind, but they might
be modified in the future to fully satisfy the requirements. Several considerations
regarding database management remained open: (i) the use of a technology other
than MySQL (for example Microsoft SQL Server, MariaDB, PostgreSQL etc.); (ii)
the analysis of replication latency and the implementation of the current solution
in a geo-distributed environment; (iii) using OpenEBS to provide backup of the
database.

As presented in Chapter 7, the contribution of the orchestrator on the final
restart time cannot exceed 5s, so this means that the remaining time is thus related
to the service control logic to re-instantiate the communication and can be reduced
only with proper code refactoring. Another problem that might suggest code
refactoring is the one presented in section 6.3.1. In this case, the PDC code does
not provide a solution for the management of a TCP connection in a "pending"
state and consequently causes an almost "manual" management in case of network
partitioning.

From the analysis carried out with CloudSim it is clear that the main problem
is to have the PDC code monolithic and not parallelizable. Breaking this code
down into microservices, or at least manually changing the code so that it can run
on multiple cores, would increase the scalability of the infrastructure. Also from
the analysis extracted from the simulator was born a question about the stations
where the PDC is scheduled: these are stations that require a high computational
capacity and therefore you could think of creating stations of different capacities
to better support the scheduling of the PDC itself.

Other possible continuations concerns: (i) the analysis of latency in packet
transmission with the infrastructure proposed in section 4.2, considering the path
that packets take from when they are generated to the area control center; (ii)
analysis of database capacity and the number of past information you need to store.
Of course, with a continuous write to the database, it is necessary to establish
a target value, beyond which it is necessary to empty the database in order to
continue with the subsequent writes.

The resource requirements for each of the above prospective directions should
then be assessed in order to determine the costs associated with adding these more
features to the systems.
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