
POLYTECHINC OF TURIN

Master’s Degree in Computer Engineering

Master’s Degree Thesis

GAN-based black box evasion attack
against a machine learning botnet

detection system

Supervisors

Prof. Andrea BOTTINO

Prof. Alberto MOZO VELASCO

Candidate

Dario FERRANDINO

October 2022

Summary

Botnets have become an important issue in the domain of computer and network
security as they serve as platform of many threats such as spam, denial of service

attacks, phishing, data thefts, and online frauds. Most of the popular botnet
detection methods consist of monitoring the network, capturing packets,

processing them in a format suitable for botnet detection, inspecting the network
flows and detecting malicious traffic. State of the art Botnet Detectors exploit

machine learning techniques to detect malicious traffic flows. Usually, the
structure and the internal parameters of these models are not observable from the
outside and, therefore, they are considered black-box models. Recently, several

Generative Adversarial Network (GAN) based frameworks, which can successfully
generate adversarial malicious traffic flows examples to fool Intrusion Detection
Systems (IDSs), have been proposed. The purpose of this work is to successfully
train a Generative Adversarial Network to significantly reduce the probability that
the generated adversarial malicious traffic flow examples are detected as effective

botnet attacks from any of the proposed black-box botnet detector using an
architecture which can handle the generation of both numerical and categorical
variables. The aim is to evaluate the improvement that this approach can make

over previous proposed frameworks. The proposed attack frameworks are based on
Wasserstein GAN (WGAN) and Wasserstein GAN with Gradient Penalty

(WGAN-GP), due to their improved stability during training over the original
GAN designed by Goodfellow et al. In general, the architecture consists of a
Generator which transforms the original malicious traffic flow examples into

adversarial malicious ones, and a Critic which tries to learn the black-box botnet
detector. In another version of the attack, the Critic behaves as a standard

WGAN-GP critic to analyze the behaviour of such an attack. In order to ensure
the validity of the generated malicious examples, only the non-functional features
of the attack examples are modified. Using the CTU-13 dataset, successful attacks

have been performed on several types of black-box botnet classifiers, achieving
excellent results.

ii

iii

Acknowledgements

Before any work, I have the honor to express my gratitude to all those who
contributed to the realization of my work.

This document has been drawn up during a 10 months Erasmus program at the
Polytechnic University of Madrid.

It was a new and exciting experience made possible thanks to the support of my
family which has always sustained my academic demands and deeply believe in the

value of education.
I would like to thank the Polytechnic University of Madrid for having accepted me

as a student within their school.
I want to express my heartfelt thanks to "Mr. Alberto Mozo", who trained and

accompanied me throughout this work.
I also thank "Mr. Andrea Bottino", teacher at the Polytechinic University of Turin,

who remotely followed the progresses of the work.
I would like to thank my university’s colleagues for their friendship and the

constant support which has made the academic path easier and funnier.
Finally a special thanks to the Polytechinc of Turin which has always made

available all the resources I needed.

iv

Table of Contents

1 Introduction 2
1.1 Preface . 2

2 Goals and Requirements 4
2.1 Objectives and methodology . 4
2.2 Document Structure . 4

2.2.1 Theoretical foundations . 4
2.2.2 Design principles and Implementation 5
2.2.3 Practical attempts . 5

3 State of The Art 6
3.1 Botnets . 6

3.1.1 Botnet Detection Techniques 6
3.2 Adversarial Machine Learning . 7

3.2.1 Evasion Attacks . 8
3.3 Generative Adversarial Networks 8

3.3.1 Original GAN . 9
3.3.2 Wasserstein GAN . 10

3.4 Wasserstein GAN with gradient penalty 11
3.5 Gumbel-Softmax . 12

3.5.1 Reparametrization Trick . 13
3.5.2 Gumbel-Softmax distribution 13
3.5.3 Straight-Through Gumbel-Softmax Estimator 15

3.6 Related Works . 15

4 Design 16
4.1 Assumptions . 17
4.2 Models with substitute detectors 17
4.3 Model without substitute detector 17
4.4 Critic and Generator networks description 20

4.4.1 Critic . 21
4.4.2 Generator . 21

vi

5 Development 24
5.1 Dataset . 24

5.1.1 Black-box and GAN datasets 24
5.2 Models implementation . 28

5.2.1 Attacks with Substitute Detector 28
5.2.2 Attacks without Substitute Detector 28
5.2.3 Generator . 29
5.2.4 Critic . 30

6 Experiments 32
6.1 Hardware . 32
6.2 Tools . 32
6.3 Black-box Botnet Detectors . 32
6.4 Attacks Evaluation Metrics . 34
6.5 Results . 35

6.5.1 Evasion Rate . 35
6.5.2 Transferability Analysis . 36
6.5.3 Minkowski Distance of the non-functional features 37
6.5.4 Evaluation of the improvement in modifying also categorical

features . 39

7 Conclusions 43
7.1 Success of the attacks . 43

7.1.1 Models with substitute detector 43
7.1.2 Model without substitute detector 44

7.2 Improvement of perturbing categorical features 44
7.3 Efficacy of the Straight-Trough

Gumbel-Softmax Estimator . 44
7.4 Reproducibility of the adversarial examples 45

8 Future Works 46

A Tensorflow main components implementation 47
A.1 Gumbel-Softmax Layer . 47
A.2 Generator . 49
A.3 GAN model class with substitute detector 50

Bibliography 54

vii

List of Tables

5.1 CTU-13 feature description . 25
5.2 Number of examples from each scenario for Black-box and GAN

datasets . 26
5.3 GAN dataset Train Test split . 27
5.4 Generator Model - GAN with substitute detector and softmax acti-

vation for categorical feature generation 29
5.5 Generator Model - GAN with substitute detector and Gumbel-

Softmax activation for categorical feature generation 30
5.6 Generator Model - GAN without substitute detector and Gumbel-

Softmax activation for categorical feature generation 30
5.7 Critic Model . 31

6.1 Evaluation Metrics scores for Black-box classifiers on Black-Box test
set . 33

6.2 Evasion Rate scores on GAN test set 35
6.3 Evasion Rate Scores Transferability Analysis 37
6.4 Evasion rate comparison between perturbing both numerical and

categorical features and only numerical features 39

List of Figures

3.1 Botnet scheme . 7
3.2 Plot of categorical and continuous distributions 12
3.3 Reparametrization Trick . 14
3.4 Temperature, τ , effects on the Gumbel-Softmax distribution (image

from [18]) . 14

viii

4.1 GAN with substitute detector - Training Scheme 20
4.2 GAN without substitute detector - Training Scheme 20
4.3 Generator scheme: the figure shows the architecture of generators

version 1 and 2. Version 3 takes as input only the noise vector. . . . 23

6.1 Plots of Average Minkowski distance between the generated features
of the adversarial examples and the benign and malicious sets -
Attack Version 1 . 40

6.2 Plots of Average Minkowski distance between the generated features
of the adversarial examples and the benign and malicious sets -
Attack Version 2 . 41

6.3 Plots of Average Minkowski distance between the generated features
of the adversarial examples and the benign and malicious sets -
Attack Version 3 . 42

List of Equations

Eq. 3.1 Original GAN objective function 9
Eq. 3.2 Original GAN Generator Loss under discriminator optimality 9
Eq. 3.3 Alternative original GAN Generator Loss 9
Eq. 3.4 Earth Mover Distance . 10
Eq. 3.5 Kantorovic-Rubenstein transformation of Wasserstein Distance 10
Eq. 3.6 K-Lipschitz continuity constraint 10
Eq. 3.7 Wasserstein GAN objective function 11
Eq. 3.8 WGAN generator loss function 11
Eq. 3.10 WGAN-GP critic loss function 12
Eq. 3.11 Reparametrization Trick example 13
Eq. 3.13 Gumbel-Softmax . 13
Eq. 4.1 GAN with substitute detector - Critic Loss 21
Eq. 4.2 GAN without substitute detector - Critic Loss 21
Eq. 4.3 Solution’s Generator Loss 22
Eq. 5.1 Black box dataset numerical variables standardization formula 26
Eq. 5.2 GAN dataset numerical variables standardization formula . 27
Eq. 6.1 Black-box classifiers evaluation metrics 33

ix

Eq. 6.2 Evasion Rate formula . 34
Eq. 6.3 Minkowski Distance . 34
Eq. 6.4 Minkowski distance between a point and a Set 35

x

Acknowledgements

1

Chapter 1

Introduction

1.1 Preface
Machine learning and artificial intelligence technologies have been growing expo-
nentially in the last decades, changing substantially the way humans interacts
with machines and overcoming the performances of the previous state-of-the-art
methods in many tasks and fields, but carrying with them new vulnerabilities and
threats that were previously unknown.

Adversarial machine learning is the study of the attacks on machine learning
algorithms, and of the defenses against such attacks[1].

As much as new learning algorithms have been explored and proved to be
extremely effective and reliable for several application, many researchers have
demonstrated different ways in which it is possible to fool them or change their
behaviour, indeed, such algorithms manifest vulnerabilities and little robustness
against adversarial examples[2][3][4][5].

Machine learning is quickly taking on a key role in organizations value, and as a
result, companies which need to safeguard them is expanding quickly. Adversarial
Machine Learning is thus growing significantly within the software sector. Machine
learning systems are now being secured thanks to investments made by Google,
Microsoft, and IBM.

The most common and most studied forms of adversarial attacks are evasion
attacks. During deployment, the attacker modifies the data to trick classifiers that
have already been trained. They are the most common types of assaults employed
in intrusion and malware scenarios since they are carried out during the deployment
phase. Samples are modified as much as needed to avoid the detection, without
directly affecting the training data.

The tools that have recently attracted many researchers for their astonishing
results, especially in the image generation field, are the Generative Adversarial

2

Introduction

Networks. A GAN is a framework in which two neural network, namely a generator
and a discriminator, compete to improve their ability to generate fake data which
looks real, and to discriminate among real and fake data, respectively. Among the
many applications and fields in which these models can be employed, they result
an optimal tool to craft adversarial examples for black-box evasion attacks.

3

Chapter 2

Goals and Requirements

2.1 Objectives and methodology
The first objective of this work was to describe and produce a Generative Adversarial
Network based model which was able to generate adversarial malicious network flow
examples to fool and evade different types of black-box machine learning botnet
detection systems.
In order to do this, different types of machine learning classifiers were trained and
tested and, then, three types of GAN based frameworks were designed to fool the
black-box classifiers. The three types of developed frameworks slightly change one
from another but all of them is specifically designed to handle the generation of
both numerical and categorical tabular data. The main objective of each attack
framework is to fool as much as possible, the target black-box classifier but the
transferability of each attack is also assessed in order to observe how much the
evasion attack on a specific black-box model can be generalized to other, unknown,
models that have been trained on the same data distribution. Finally the similarity
between the adversarial malicious examples and the original benign and malicious
sets is evaluated to assess how much the considered frameworks are able to retain
the appearance of the malicious examples on the crafted ones. The generated
examples are crafted from the malicious examples present in the CTU-13 dataset,
which will be further described and analyzed in chapter 5.1.

2.2 Document Structure

2.2.1 Theoretical foundations
This document starts by explaining what botnets are and by touching the very
basic principles of adversarial machine learning. Moreover, it provides some basic

4

Goals and Requirements

information about the principles of some of the most known types of GANs. In the
end of this macro-chapter, a brief definition of the Gumbel-Softmax distribution,
for which will be reserved particular attention for the generation of categorical
features, will be provided.

2.2.2 Design principles and Implementation
Following the theoretical part, a general overview of the design of the attack frame-
works will be illustrated to understand the behaviour and the choices made in this
phase; then will follow the description of the dataset used to train both the attack
frameworks and the black-box classifier together with the pre-processing operations
made before starting the training of the models. After this, the implementation
details of the attack frameworks will be shown together with the description of the
dataset used and the training specifics of the black-box classifiers.

2.2.3 Practical attempts
Finally, after having trained the three generators the evasion rate, the transferability
and the similarity to the original examples of the adversarial examples will be
assessed and discussed to extract some useful conclusion. Moreover, we will also
evaluate the improvement that the perturbation of categorical features can bring
to black-box evasion attacks with respect to the perturbation of only numerical
features.

5

Chapter 3

State of The Art

The following chapter will illustrate and explain the main concepts related to the
work as it is meant to provide a baseline to better understand the development
and the context of the research.

3.1 Botnets
Any program which performs any type of activity which aims to damage the system
of a user in an automated way without the user’s knowledge is identified as a bot.
The network made up by all the bots controlled by a botmaster is referred as a
botnet. Botnets are often made up of a large number of hosts that are controlled
by a remote attacker. The attacker controls the hosts by communicating with
the botnets via a Command & Control (C&C) communication channel. This
distinguishes the botnet from other types of malware. For C&C communication,
the attacker may employ different kind of communication protocols such as HTTP,
IRC, etc. The main challenge in defending against such attacks comes precisely
from the huge number of different machines that are involved in the attack which
makes difficult the task to block malicious traffic without accidentally blocking
genuine requests.

3.1.1 Botnet Detection Techniques
Several botnet detection methods have been proposed with the aim to detect
infected hosts and defend against network attacks. One of the techniques to detect
botnet attacks is the signature-based Botnet detection technique. This approach
tries to detects Botnets by analyzing their signatures. Signature-based detection
has several advantages, including a low false alarm rate, fast detection, ease of
implementation, and more information about the type of detected attack, but the

6

State of The Art

Figure 3.1: Botnet scheme

main drawback of such a method is that it can only detect well-known botnets and
fail to detect new type of threats.

Another method is based on inspecting features from the packets, specifically, the
payload of targeted packets in order to detect anomalies and malicious behaviour.
However, as botnet can encrypt the payload, this approach has obvious limitation
and, moreover, inspecting the payload of certain packets can be computationally
expensive and can cause delays in high-speed networks[6][7].

An effective approach to detect botnets is the flow-based detection method which
relies only on the information of packets headers which are aggregated into flows
to compute useful statistics. Since the nature of the problem falls into the category
of classification tasks, many machine learning algorithms such as K-NN, decision
trees, SVM, Deep Neural Networks and others have been applied together with the
flow-based detection method to recognize botnet activities and demonstrated very
important results[8][9].

3.2 Adversarial Machine Learning
The study of attacks on machine learning algorithms, as well as the defenses against
such attacks, is known as adversarial machine learning.

7

State of The Art

3.2.1 Evasion Attacks
In adversarial machine learning, an evasion attack focuses on finding the vulner-
abilities of a machine learning classifier, exploiting them to bypass the model
detection. Evasion attacks do not operate on training data but they rather consist
in modifying or crafting a given example to let it be misclassified by the detector.
For instance, as pointed out by Dalvi et al. in [10], a linear classifier for spam
detection can be easily fooled by adding specific words in the text.

Adversarial Example
An adversarial example is a crafted example that have been purposefully design by
an attacker to force a machine model to misclassify it. Often adversarial examples
are either modelled by a noise distribution or by adding small perturbations into
the original example. The perturbation can be imperceptible and the modified
input can still clearly look as malign to human eyes while the classifier cannot
recognize it.

White Box Attacks
White-box attacks are a type of evasion attacks in which the attacker is supposed
to have access to the machine learning model’s internals, which means that the
architecture, the number and the values of the parameters are known to the attacker.
Moreover, the intruder is supposed to be able to get the model’s predictions for
any provided input example.

Black Box Attacks
In adversarial machine learning, black box attacks are another type of evasion
attacks that apply more constraint to the abilities of the attacker. They presume
that an intruder who wants to evade the detection of a machine learning classifier
can only get the target model’s predictions for given inputs and has no knowledge
about the model structure and its internal parameters. The adversarial example is
constructed, in this case, either with a model developed from scratch or without
any model at all. In any case, the goal of this approach is to generate adversarial
examples that can be transferred to the targeted black box model.

3.3 Generative Adversarial Networks
Generative Adversarial Networks are a class of machine learning models made up by
a generator and a discriminator (or critic in Wasserstein GANs) which compete one
against the other in order to eventually generate new synthetic data which has the
same statistics of real data. The essential concept of a GAN is the indirect training

8

State of The Art

through the discriminator, which is another neural network that can determine
how realistic an input is and whose weights are updated throughout the training
phase as well. This essentially implies that the generator is taught to deceive the
discriminator rather try to reduce the distance between the generated output and
a given example. This allows the model to learn in an unsupervised manner.

3.3.1 Original GAN
The original GAN designed by Godfellow et al.[11] is based on a minimax game in
which the generator and the discriminator are trained to optimize the following
objective function:

min
G

max
D

L(G, D) = E
x∼Pr

[logD(x)] + E
z∼Pz

[log(1−D(G(z)))]

= E
x∼Pr

[logD(x)] + E
x∼Pg

[log(1−D(x))]
(3.1)

where Pr and Pg are respectively the data distribution of real examples and of
the generator, Pz is the noise distribution and gθ is the output of the generator.
The discriminator is a normal classification model which outputs the probability in
the range [0,1] of an input to come from the real distribution Pr. The paper shows
the proof that, when the discriminator is optimal, the generator optimizes:

min
G

L(G, D) = − log(4) + 2JSD(pdata||Pg) (3.2)

which can be considered as optimizing the Jensen-Shannon divergence between
the generative data distribution and the real sample distribution. While the quality
of the generated samples of the original GAN are often regarded as the best,
compared to other generative models, many researches have shown mathematical
and empirical proofs that training a GAN by optimizing the objective function
3.1 is not an easy task and can often lead to training failures due to problems
such as vanishing gradient [12]. In fact, as pointed out by Arjovsky and Bottou
[13], as the discriminator gets better, the gradient with respect to the generator
vanishes, meaning that, since the the approximation of the generator’s loss to eq.
(3.2) depends on the discriminator’s optimality, this can lead to either inaccurate
or vanishing gradients.

Due to vanishing gradients related with the loss function of the generator, the
authors of the original GAN suggest to try to train the generator to optimize:

min
G

L(G, D) = −log(D(G(z)) (3.3)

9

State of The Art

which can avoid the vanishing gradient problem, especially in the early stages
of the learning process of the generator. However, Arjovsky and Bottou show that
also this loss function is not optimal since it produces gradients with high norm and
high variance as discriminator is trained to optimatily, which can lead to unstable
behaviour and slower convergence.

3.3.2 Wasserstein GAN
Wasserstein GAN[14] was proposed by Arjovsky, et al. to improve the training
of Generative Adversarial Networks by means of a new cost function based on a
different distance metric, the Earth Mover Distance (EMD). Considering two data
distributions, p and q, as two amounts of dirt, the EMD, also named Wasserstein
distance, measures the minimum amount of work nedeed to transport the mass of
the data distribution p to the data distirbution q.

W (Pr,Pg) = inf
γ∈

r
(Pr,Pg)

E
(x,y)∼γ

[||x− y||] (3.4)

"where r(Pr,Pg) denotes the set of all joint distributions (x, y) whose marginals
are respectively Pr and Pg. Intuitively,γ(x, y) indicates how much mass must
be transported from x to y in order to transform the distributions Pr into the
distribution Pg"[14].

So, the Wasserstein distance between two data distribution Pr (real) and Pg

(generated) is the infimum among all the ways. r(Pr,Pg), to transport the data.
Since computing r(Pr,Pg) is highly intractable, the authors proposed a trans-

formation based on the Kantorovich-Rubinstein duality:

W (Pr,Pg) = sup
||f ||L≤1

E
x∼Pr

[f(x)]− E
x∼Pg

[f(x)] (3.5)

For the transformation to work, f is demanded to be the supremum over all the
f that are 1-Lipschitz continuous.
In general, a function is K-Lipschitz continuous if and only if exists a real constant,
K ≥ 0, such that, for all x1, x2 ∈ R:

|f(x1)− f(x2)| ≤ |x1 − x2| (3.6)

Which means that the derivative of the function, f , is less than or equal to K
everywhere.
If the function f is not 1-Lipschitz continuous but K-Lipschitz continuous, the
supremum becomes K ∗W (Pr,Pg). So, if f is truly the supremum, the process will,
up to a multiplicative factor, compute the Wasserstein distance. However, there’s

10

State of The Art

no need to know what is the value of K since it will be absorbed in the process of
hyperparameter tuning. Finding the supremum over 1-Lipschitz functions is still
intractable, but, in the new form expressed in 3.5, it is easier to approximate.

In WGAN the discriminator is renamed to "critic" since it doesn’t outputs
probabilities anymore, but scores in the range [−inf, +inf]. The critic is trained
to learn the function, fw, which is parametrized with respect to its weights and
demanded to be K-Lipschitz continuous.

The critic is trained to solve the problem

max
w∈W

E
x∼Pr

[fw(x)]− E
z∼Z

[fw(gθ(z))] (3.7)

to measure the Wasserstein distance between Pr and Pg.
After training the critic with a fixed set of generator weights θ to well approximate

W (Pr,Pθ), the weights of the generator are updated to minimize the distance
between the two distributions:

min
θ

W (Pr,Pθ) = ∇θW (Pr,Pθ) = − E
z∼Z

[∇θfw(gθ(z)] (3.8)

K-Lipschitz continuity is enforced by clipping the value of the weights between a
certain range [−c, +c] and, as stated by the authors of the paper, it is an easy but
terrible way to enforce the constraint. Even if the Wasserstein GAN converges when
the critic is trained until Compared to the Jensen-Shannon distance, Wasserstein
distance is almost differentiable everywhere which allows the discriminator to be
trained to optimality avoiding vanishing gradients and can mitigate the problem of
mode collapse when used as objective function.

3.4 Wasserstein GAN with gradient penalty
An alternative to weight clipping to enforce the constraint of K-Lipschitz conti-
nuity was proposed by Gulrajani et al. [15] based on adding a gradient penalty
regularization term in the cost function of the discriminator. The intuition behind
this method is that, given two distributions Pr Pg in a compact metric space X,
then there exists a 1-Lipschitz function f ∗ which is the optimal solution of (3.5)
and f ∗ has gradient norm 1 almost everywhere. Specifically, they prove that points
interpolated between the real and generated data should have gradient norm of 1
for f [16].

if f ∗ is differentiable, π(x = y) = 0, and xt = tx + (1− t)y with 0 ≤ t ≤ 1, then

P(x,y)∼π[∇f ∗(xt) = y − xt

||y − xt||
] = 1

(3.9)

11

State of The Art

The new constraint is enforced in a soft way: since enforcing gradient norm at
most 1 everywhere is intractable, the authors propose to enforce it only on the
straight lines between pairs of points sampled from the data distribution Pr and
the generator distribution Pg.

L = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + λ E
x̂∼Px̂

[(||∇x̂D(x̂)||2 − 1)2] (3.10)

where λ is the penalty coefficient and is an hyperparameter and x̂ is defined as

x̂ = tx̃ + (1− t)x with t sampled from a uniform distribution U [0,1]

It has been demonstrated that clipping weights to enforce a K-Lipschitz con-
straint biases the critic limiting its capacity of learning complex functions, while,
despite the simplification, enforcing the constraint through gradient penalty experi-
mentally results in better performance.

3.5 Gumbel-Softmax
The process of generating samples of categorical variables in stochastic neural
networks comes with the main issue of sampling from a categorical distribution in
a differentiable way, in order to be able to back-propagate the gradient through the
previous layers. The problem arise from the fact that generative networks model
noise from a continuous distribution to produce an example, but the possible values
of a categorical distribution are discrete as shown in Fig. 3.2 and, therefore, there is
the need to introduce a smooth function that enables to approximate the sampling
process from a categorical distribution in such a way that the back-propagation
algorithm can still work and it is possible to compute a gradient.

(a) Categorical distribution (b) Continuous distribution

Figure 3.2: Plot of categorical and continuous distributions

12

State of The Art

3.5.1 Reparametrization Trick
Drawing a sample from a continuous distribution is an issue when it comes to deal
with the stochasticity of the sampling process. The gradient cannot be computed
directly on a stochastic node which samples from a distribution. Instead, the
Reparametrization trick allows to cast the stochastic process to a linear combi-
nation of deterministic and stochastic elements and back-propagate through the
deterministic ones[17].

For instance, let z be a point sampled from a normal distribution, N(µ, σ), it is
not possible to differentiate a random variable because the parameter we want to
differentiate by parametrize also the density of the distribution. What is better, is
to extrapolate the parameters that describe the random variable, and differentiate
with respect to them:

instead of considering z ∼ N(µ, σ)
let ϵ ∼ N(0,1)
z = µ + σ ∗ ϵ

(3.11)

The example in (3.11) shows a specific application of the reparametrization trick,
but what is important is that, moving out of the stochastic node the parameters
which we want to differentiate by, the behaviour of the model does not change and
the gradient can flow through the previous layers. Figure 3.3 visually shows what
happens when applying the reparametrization trick in a network.

3.5.2 Gumbel-Softmax distribution
The Gumbel-Softmax distribution was introduced independently, in 2016, by two
research teams [18][19]. It is a continuous distribution which enables to approximate
samples from a categorical distribution. Let Z be a categorical variable with class
probabilities π1, π1, ..., πk. Gumbel-Max trick allows to draw samples from Z:

z = one_hot(arg max
i

[gi + log πi]) (3.12)

where g1, g2, ..., gk are i.i.d. samples drawn from Gumbel(0,1). Instead of using
the argmax function which is not differentiable, we can approximate it with the
softmax function which is continuous and differentiable [18].

yi = e
log(πi)+gi

τqk
j=1 e

log(πj)+gj
τ

(3.13)

Eq (3.13) represents a k-dimensional sample vector from the Gumbel-Softmax
distribution. In other words, it only approximates the argmax with a differentiable

13

State of The Art

Figure 3.3: Reparametrization Trick
Inspiered by [18]. On the left a network in which the sample is build directly through a

stochatstic node, the back-prop algorithm cannot work since the node is not
differentiable. On the right the reparametrization trick is applied and the gradient can

flow through the set of parameter θ

function which is the softmax one[20]. As τ −→ 0 samples from this distribution
become one-hot, whereas as τ −→∞ the distribution of probabilities becomes more
uniformly distributed over all the classes.

Figure 3.4: Temperature, τ , effects on the Gumbel-Softmax distribution (image
from [18])

14

State of The Art

3.5.3 Straight-Through Gumbel-Softmax Estimator
Since using continuous approximations during the training of a network and using
one-hot vectors during evaluation can bias the training process and can lead to a
significant drop in performance evaluation, in the forward step we can hard-encode
the soft-encoded vectors, produced by the gumbel softmax activation function,
and back-propagate through the soft-encoded ones which are differentiable, to
approximate the gradient. This technique is known as Straight Through Gumbel
Estimator. [21]

3.6 Related Works
Researchers have shown great interest in the Adversarial Black-Box attack topic
and in Generative Adversarial Networks since they were first designed by Godfellow
et al. and several applications have been explored.

In 2017, Papernot et al., introduced a practical way to perform a black-box
attack to fool a DNN image classifier using a substitute DNN classifier to learn the
black-box model boundaries and craf the adversarial examples through the Fast
Gradient Sign algorithm[5].

As one of the best tools to generate adversarial examples, GANs have been
also used to attack black-box classification systems such as Malware detectors
or Intrusion Detection Systems. Research by Hu and Tan (2017) shown the first
GAN based framework to generate adversarial malware examples named MalGAN
[2]. Their approach was to use the GAN detector to learn the black-box model
decisions, using the labels and the generator to craft adversarial examples adding
to the original malware feature list, irrelevant features, that is, features which do
not affect the validity of the malware. The results proven by the authors were
further confirmed and improved by Kawai, Ota, & Dong [3].

Recently a Generative Adversarial Network-based attack against Intrusion De-
tection Systems was described by Lin, Shi, & Xue, named IDSGAN [4]. It is based
on the Wasserstein GAN model and the results have been obtained by training the
network using the popular NSL-KDD dataset. The assumption that the generated
adversarial examples are still valid comes from the intuition to modify only the
non-functional features of a given example. Each type of network attack flow has
its own list of functional features, so the features to be modified depend on the
type of network attack.

15

Chapter 4

Design

Three different approaches were designed to perform the black-box evasion
attack, they can be distinguished by the training of the Critic, which can act as:

• as substitute detector that tries to learn the black-box model decision bound-
aries

• as a standard WGAN critic

and for the architecture of the Generator, which can have:

• Simple Softmax activation layer for the generation of the categorical features

• Gumbel-Softmax activation layer for the generation of the categorical features

In the following we assign a number to each version:

Version 1. WGAN with substitute detector and Softmax layer for the generation of
categorical features

Version 2. WGAN with substitute detector and Gumbel-Softmax layer for the generation
of categorical features

Version 3. WGAN-GP without substitute detector and Gumbel-Softmax layer for the
generation of categorical features

In this chapter, the design of the project will be illustrated, comprehensive of the
assumptions made, the overall training schemes, the description of the architectures
of the proposed solutions.
Note that in the last case the model critic does not act as a substitute detector,
meaning that the black-box detector is queried only before starting the training
phase, whereas the first two models require to query the black-box model, for the
labels of the generated adversarial examples, at each iteration.

16

Design

4.1 Assumptions
In order to develop the project, the following assumptions were made.

1. The targeted botnet detector is implemented as a machine learning classifier.

2. The attacker has no knowledge about the structure and the internal parameters
of the model, thus, as already discussed in the previous chapters, the type of
the attack is black-box.

3. The attacker can collect a consistent number of malicious and benign network
flow examples to train a GAN, in the order of thousands.

4. The attacker can query the black-box model an unlimited number of times to
obtain the labels for the adversarial examples during training (in the third
approach we will limit this assumption).

4.2 Models with substitute detectors
The overall training scheme of the first two solutions is inspired by either the
MalGAN and IDSGAN models [2][4]. In this case, the critic acts as a substitute
detector, trying to learn the decision boundaries of the black-box detector by
querying the labels for the generated adversarial examples at each iteration. Figure
4.1 summarizes the main steps needed to train the Generative Adversarial Network
to fool the Black-box detector and below the pseudo-code of the training algorithm
is reported.

4.3 Model without substitute detector
In order to limit the ability of the attacker, another attack scheme has been designed.
In the proposed scenario the attacker has the possibility to query the labels for
the malicious and benign examples, only once, before starting the training. The
generator is then trained to modify the non-functional features of the malicious
examples to look as a benign ones through a WGAN-GP training scheme. Figure
4.2 shows the training scheme for this solution.

Since the proposed solutions are all based on the WGAN and WGAN-GP
models, for each generator’s training iteration, the critic must be trained for c extra
steps in order to provide an accurate gradient for the generator. The value of d is
an hyperparameter and should be tuned to train the critic to optimality at each
iteration.

17

Design

Algorithm 1 GAN with substitute detector - Training Pseudocode.
Requires: the training set, the number of epochs, the batch size, the noise
dimension n for the generation of adversarial examples, the number of critic extra
steps, the black-box classifier BB to fool and the value of the clipping constant c.
Objective: training of the generator G to optimize the evasion rate of the generated
adversarial examples.

1: procedure Train(X, epochs, batch_size, n, c_steps, c, BB)
2: ▷ X is the train set of examples
3: ▷ epochs is the number of epochs
4: ▷ batch_size is the number of examples used at every step
5: ▷ n is the dimension of the noise vector
6: ▷ csteps is the number of extra steps to train the critic
7: ▷ c is the clipping constant value
8: ▷ BB is the black-box classifier to query for the labels
9: ▷ Initialization

10: Initialize the generator, G, and the critic, C, networks
11: G← initG()
12: C ← initC()
13: steps← size(X)

batch_size

14: for steps do
15: for c-steps do
16: ▷ Sample a batch of benign examples, B.
17: B ← sample(X, batch_size, label = 0)
18: ▷ Sample a batch of malicious examples, M , and
19: ▷ generate adversarial examples with G(M,N)
20: M ← sample(X, batch_size, label = 1)
21: M ← G(M, N)
22: N ← random(N,−1,1)
23: ▷ Query the Black-box classifier for the labels
24: S ← concat(B, M)
25: Y ← BB(S)
26: B ← S[Y == 0]
27: M ← S[Y == 1]
28: ▷ Update the weights of C, w, according to Eq. (4.1)
29: w ← optimizeC(C(B), C(M))
30: ▷ Clip w in range [-c,+c]
31: w ← clip(c)
32: end for
33: for g-steps do
34: ▷ Sample a batch of malicious examples, M,
35: ▷ and generate adversarial examples with G(M,N)
36: M ← sample(X, batch_size, label = 1)
37: M ← G(M, N)
38: ▷ Update the parameters of G, θ, according to Eq. (4.3)
39: θ ← optimizeG(C(M))
40: end for
41: end for
42: end procedure

18

Design

Algorithm 2 GAN without substitute detector - Training Pseudocode.
Requires: the training set, the number of epochs, the batch size, the noise
dimension N for the generation of adversarial examples, the number of critic extra
steps, the hyperparameter λ.
Objective: training of the WGAN-GP model.

1: procedure Train(X, epochs, batch_size, n, c_steps, λ)
2: ▷ X is the train set of examples
3: ▷ epochs is the number of epochs
4: ▷ batch_size is the number of examples used at every step
5: ▷ n is the dimension of the noise vector
6: ▷ csteps is the number of extra steps to train the critic
7: ▷ λ is the hyperparameter of the critic cost function
8: ▷ Initialization
9: Initialize the generator, G, and the critic, C, networks

10: G← initG()
11: C ← initC()
12: steps← size(X)

batch_size

13: for steps do
14: for c-steps do
15: ▷ Sample a batch of benign examples, B.
16: B ← sample(X, batch_size, label = 0)
17: ▷ Generate adversarial examples with G(N)
18: N ← random(N,−1,1)
19: M ← G(N)
20: ▷ Update the weights of C, w, according to Eq. (4.2)
21: w ← optimizeC(C(B), C(M))
22: end for
23: for g-steps do
24: ▷ Generate adversarial examples with G(N)
25: M ← G(M, N)
26: ▷ Update the parameters of G, θ, according to Eq. (4.3)
27: θ ← optimizeG(C(M))
28: end for
29: end for
30: end procedure

19

Design

Figure 4.1: GAN with substitute detector - Training Scheme

Figure 4.2: GAN without substitute detector - Training Scheme

4.4 Critic and Generator networks description
In the following sections more accurate descriptions of the neural network architec-
tures of the generators and critics are provided.

20

Design

4.4.1 Critic
The critic is a Deep Neural Network. The most important feature of this model
is that, in order to approximate the Wasserstein distance, it’s output layer must
be a single neuron with a linear activation function, as the critic does not outputs
probabilities but scores.

Solutions with substitute detector
To train the critic to learn the black-box classifier, in the scheme in which the critic
acts as a substitute detector, both benign and adversarial malicious examples are
labelled according to the black-box predictions. Then, the model’s weights are
updated according to the following loss function:

LC = max
w∈W

E
x∈BBbenign

[fw(x)]− E
x∈BBmalicious

[fw(x)] (4.1)

where BBmalicious and BBbenign are respectively the set of samples labelled as
malicious and benign by the black-box classifier and fw(x) is the score given by the
critic. This objective function should let the GAN’s critic learn to maximize the
scores difference between the samples of the two sets. As the function learned by the
critic must satisfy the K-Lipschitz continuity constraint, the values of the weights
are clipped after each update in the range [−c, +c]. Value of c is an hyperparameter
and should be carefully selected.

Solution without substitute detector
For the version without substitute detector, the proposed loss function is based
on the WGAN-GP model, which models the noise samples to look as the benign
non-functional features:

LC = max
w

E
x̃∼Pg

[fw(x̃)]− E
x∼Pr

[fw(x)] + λ E
x̂∼Px̂

[(||∇x̂fw(x̂)||2 − 1)2] (4.2)

Where Pg, Pr and Px̂ are the data distributions explained in 3.4. In this case
the K-Lipschitz continuity constraint is enforced by the gradient penalty term. The
value of λ is an hyperparameter.

4.4.2 Generator
The generator is a Deep Neural Network as the critic. For the versions with the
substitute detector, the input to the generator are the non-functional features of
the original malicious example that we aim to perturb and a noise vector of size
M , whereas, for the version without substitute detector, the input is only the noise
vector of size M .

21

Design

As an important difference compared to related works such as MalGAN and
ISDGAN, the proposed framework train the generator to be able to produce a
set of both numerical and categorical outputs. To do so, the approach is the one
proposed in [21]. On top of the last layer we stack a dense layer with a number of
neuron equal to the number of categories we aim to represent, for each categorical
variable. In the output layer, the outputs of all the dense layers are concatenated.

When training the critic, the generated inputs have to be one-hot encoded,
predicted by the black-box detector, and then fed to the critic, whereas, when
training the generator, the feature vectors can either be soft-encoded or one-hot
encoded, in this way the training of the generator should converge.

The first solution with substitute detector uses a normal softmax activation
function for the categorical dense layers, when training the critic the argmax
function is applied on each soft-encoded vector to obtain a one-hot encoded vector
for each categorical feature, while, when training the generator, we keep the soft-
encoded vectors as they are, to be able to back-propagate the gradient through the
generator layers.

The second and the third solution, instead use the Gumbel-Softmax as activation
function (see eq. 3.13) for the dense categorical layers. The critic is then fed with
one-hot encoded vectors as well but the gradient is computed through the soft-
encoded output. In this case, the output for the categorical variables is always a
one-hot encoded vector both when training the Generator and the Critic. Using
a low value for the temperature τ , the soft-encoded output is very similar to the
one-hot one, thus, the soft version approximates better the one-hot encoded output.
The latter method should provide a better feedback when training the generator
since the critic deals only with discrete values of the categorical inputs, while the
former method allows the critic to receive continuous inputs for the categorical
inputs.

An implementation of the Gumbel-Softmax layer is provided in A.1. For all the
three versions, the numerical features are generated by a separate dense layer with
hyperbolic tangent activation function.

The original non-functional features in the original malicious examples are
substituted by the ones produced by the generator. The new generated malicious
example are subsequently fed into the critic. The generator’s weights are then
updated by the following loss function:

LG = min
θ
− E

m,n∈M,N
[fw(gθ(m, n))] (4.3)

where M is the original training set of malicious examples, N is the noise vector
and θ is the set of weights of the generator network.

In Figure 4.3 is shown a generic scheme of the generator network.

22

Design

Figure 4.3: Generator scheme: the figure shows the architecture of generators
version 1 and 2. Version 3 takes as input only the noise vector.

23

Chapter 5

Development

In this chapter are provided a brief description of the CTU-13 dataset, the division
of data into the Black-Box and GAN datasets, their respective pre-processing, and
the implementation details of the GAN models, comprehensive of the values used
for the hyperparameters.

5.1 Dataset
The CTU-13 dataset is a dataset which contains examples of real network botnet,
normal and background traffic. The dataset is divided into 13 scenarios, all of them
captured in the CTU University, Czech Republic, in 2011. Each scenario contains
background and normal traffic and botnet traffic related to a specific malware and
to a different number of infected computers in the network. The authors of the
dataset processed the captured packets to obtain bidirectional netflows files and
manually labelled the flows examples in a very detailed way. In Table 5.1 are listed
the features which describe each example of the CTU-13 dataset.

5.1.1 Black-box and GAN datasets
As a primary constraint to avoid to invalidate the work, the examples used to
train the black-box and GAN models must be different, and, moreover, we want
the black-box classifier to be capable of recognizing most of the original malicious
examples that the GAN is going to modify.

To satisfy these requirements, examples from different scenarios have been
selected to build the black-box model dataset, including examples from the same
scenario used to train the GAN, to ensure that the black-box classifier can correctly
recognize the original malicious traffic flows that the GAN will perturb.
Among all the examples present in the dataset, those that have been chosen to

24

Development

CTU-13 features
Feature Description

StartTime start time of the attack, each record has a different timestamp in the format yyyy/MM/dd HH:mm:\.ffffff
Dur duration of the attack specified in seconds

Proto protocol used e.g. ’tcp’, ’udp’, ’icmp’...
SrcAddr source IP address

Sport source port address from where the traffic was originated, values are both in hexadecimal and integer format
Dir direction of the traffic represented with values ’->’, ’?>’, ’<->’, <?>, ’who’, ’<-’, <?’

DstAddr destination IP address
Dport destination port address where the traffic was directed, values are bot in hexadecimal and integer format
State state of the transaction, depends on the protocol used
sTos source type of service field
dTos destination type of service field

TotPkts total transaction packet count
TotBytes total transaction bytes
SrcBytes total transaction bytes from source to destination

Label detailed traffic label

Table 5.1: CTU-13 feature description

build the black-box and GAN dataset are only the ones for which the label starts
with "From-Botnet" or with "From-Normal", in fact, as stated by the authors of the
CTU-13 dataset: "Please note that the labels of the flows generated by the malware
start with "From-Botnet". The labels "To-Botnet" are flows sent to the botnet by
unknown computers, so they should not be considered malicious perse. Also for
the normal computers, the counts are for the labels "From-Normal". The labels
"To-Normal" are flows sent to the botnet by unknown computers, so they should
not be considered malicious perse."[22].

To build the GAN dataset, examples from only one scenario were selected,
corresponding to a specific botnet attack, since the non-functional features that
are going to be modified depend on the specific attack we aim to perform.

In Table 5.2 the exact number of examples from each scenario, used to build
the Black-box and GAN datasets, is shown. The column "valid flows" indicate the
number of examples whose label starts with "From-Normal" or with "From-Botnet".

Black-box dataset pre-processing

The black-box dataset was pre-processed according to the following steps:

• Drop features ’StartTime’, ’SrcAddr’,’DstAddr’,’State’

• Create a new column ’target’ with value 0 if the corresponding label starts
with "From-Normal", 1 if it starts with "From-Botnet", 2 otherwise

• Keep only rows with target values equal to 0 or 1

25

Development

Scenario Total flow examples valid flows Black-box set GAN set
3 4,710,638 143,125 143,125 -
4 1121076 277,75 277,75 -
5 129,832 5,561 5,561 -
7 114,077 1,732 1,732 -
10 1,309,791 122,157 79,402 42,755
11 107,251 10,873 10,873 -
12 325,471 9,783 9,783 -
13 1,925,149 71,782 71,782 -

Table 5.2: Number of examples from each scenario for Black-box and GAN
datasets

• Fill the null values with -1 (null values in columns ’Sport’, ’Dport’, ’sTos’,
’dTos’)

• Convert all ’Sport’ and ’Dport’ values to integer format

• One-hot encode ’dTos’, ’sTos’, ’Dir’ and ’Proto’ variables

• Standardize numerical feature in range [0,1] with the following formula:

Xstd = X −min(X)
max(X)−min(X) (5.1)

GAN dataset pre-processing

Examples from scenario 10 of the CTU-13 dataset were selected to train and
test the GAN, as shown in table 5.2. This scenario mostly contains flow examples
of DDoS attacks.

The following pre-processing steps were performed on the GAN dataset before
training GAN:

• Drop features ’StartTime’, ’SrcAddr’,’DstAddr’,’State’

• Create a new column ’target’ with value 0 if the corresponding label starts
with "From-Normal", 1 if it starts with "From-Botnet", 2 otherwise

• Keep only rows with target values equal to 0 or 1

• Fill the null values with -1 (null values in columns ’Sport’, ’Dport’, ’sTos’,
’dTos’)

26

Development

• Convert all ’Sport’ and ’Dport’ values to integer format

• One-hot encode ’dTos’, ’sTos’, ’Dir’ and ’Proto’ variables

• Standardize numerical feature in range [-1,1] with the following formula:

Xstd = X −min(X)
max(X)−min(X) ∗ (1 + 1)− 1 (5.2)

It is important to note that the encoding depends on the data available in the
dataset, so GAN and Black-Box datasets have different encodings.

The adversarial attack that has been performed addresses only the ICMP
DDoS malign flows. In this case the non-functional features taken into
account are ’Sport’, ’Dport’, ’sTos’, ’dTos’. The first two are treated as
numerical features in the range [0,65535], the other two are categorical variables
which values can be ’0.0’ or ’-1.0’.

In the CTU-13 dataset the port number of an ICMP packet does not represent
the port used for the connection, obviously, since it would not make any sense, we
were not able to fully understand to which feature is mapped, it could probably be
the service and the related code of the ICMP protocol.

Before training the GAN, its dataset is divided into Train and Test sets
as shown in table 5.3.

Benign Examples Malign Examples (only ICMP flows) Train Set Malign Test Set Malign
5,511 37,133 5,511 31,622

Table 5.3: GAN dataset Train Test split

27

Development

5.2 Models implementation
In the following chapters will be reported the implementation details of the proposed
solutions, including the hyperparameters related to the overall model and those
specific to the Generator and to the Critic. The values reported are the one that
should be used to reproduce the results.

Note that the training process is very susceptible to changes in the hy-
perparameters. The values indicated in this paper have been tested and allow a
smooth training process, when changing the architectures of the two competing
networks or the noise vector size or the networks optimizers, the training process
could become unstable or, in the worst cases, could never converge.

5.2.1 Attacks with Substitute Detector
The attacks that were performed training the critic as a substitute detector are
based on the WGAN model and share the same hyperparameters values.

• noise vector size M : 6

• batch size : 64

• critic extra steps (d) : 7

• epochs : 200

• generator optimizer : RMSProp, α : 10−5

• critic optimizer: RMSProp, α : 10−5

• weight clipping constant c : 0.01

5.2.2 Attacks without Substitute Detector
The GAN model used to perform the black-box evasion attack without substitute
detector is based on a different GAN model, that is the one with gradient penalty.
Hence, the hyperparameters are different

• noise vector size M : 6

• batch size : 64

• critic extra steps (d) : 5

• epochs: 500

28

Development

• generator optimizer: Adam, α : 10−4 , β1 : 0.0, β2 : 0.9

• critic optimizer: Adam, α : 10−4 , β1 : 0.0, β2 : 0.9

• regularization parameter λ : 10.0

5.2.3 Generator
As described in chapter 4.2 and 4.3 solutions with substitute detector take as input
two vector, one containing the non-functional features of the original malicious
examples and a noise vector, while the solution without substitute detector take as
input only the noise vector.

For each attack version the hidden layers of the generator are three and their
dimensions are [32,64,32] respectively, each of them use Leaky ReLU as activation
function with slope set to 0.2.

The last hidden layer, as described in chapter 4.4.2, is linked to three dense
layers, one for the generation of the numerical variables which has 2 neurons and
hyperbolic tangent activation function in order to generate values in the range [-1,1]
that is the same range the numerical features in the training set were pre-processed.
The other two dense layers are used to generate the corresponding encoded vectors
of the categorical variables ’sTos’ and ’dTos’.

The summaries of the architectures are reported in table 5.4,5.5,5.6.

Layer type Output shape Connected to
input_features (None, 6) —

input_noise (None, 6) —
concatenate_input (None, 12) [input_features, input_noise]

Dense_1 (None, 32) concatenate_input
Activation_1(LeakyReLU) (None,32) Dense_1

Dense_2 (None, 64) Activation_1
Activation_2(LeakyReLU) (None, 64) Dense_2

Dense_3 (None, 32) Activation_2
Dense_numerical (None, 2) Activation_2

Dense_cat_1 (None, 2) Activation_2
Dense_cat_2 (None, 2) Activation_2

Activation_3(tanh) (None,2) Dense_numerical
Activation_4(Softmax) (None,2) Dense_cat_1
Activation_5(Softmax) (None,2) Dense_cat_2

concatenate_output (None, 6) [Activation_3, Activation_4, Activation_5]

Table 5.4: Generator Model - GAN with substitute detector and softmax activation
for categorical feature generation

29

Development

Layer type Output shape Connected to
input_features (None, 6) —

input_noise (None, 6) —
concatenate_input (None, 12) [input_features, input_noise]

Dense_1 (None, 32) concatenate_input
Activation_1(LeakyReLU) (None,32) Dense_1

Dense_2 (None, 64) Activation_1
Activation_2(LeakyReLU) (None, 64) Dense_2

Dense_3 (None, 32) Activation_2
Dense_numerical (None, 2) Activation_2

Dense_cat_1 (None, 2) Activation_2
Dense_cat_2 (None, 2) Activation_2

Activation_3(tanh) (None,2) Dense_numerical
Activation_4(Gumbel-Softmax) (None,2) Dense_cat_1
Activation_5(Gumbel-Softmax) (None,2) Dense_cat_2

concatenate_output (None, 6) [Activation_3, Activation_4, Activation_5]

Table 5.5: Generator Model - GAN with substitute detector and Gumbel-Softmax
activation for categorical feature generation

Layer type Output shape Connected to
input_noise (None, 6) —

concatenate_input (None, 12) [input_features, input_noise]
Dense_1 (None, 32) concatenate_input

Activation_1(LeakyReLU) (None,32) Dense_1
Dense_2 (None, 64) Activation_1

Activation_2(LeakyReLU) (None, 64) Dense_2
Dense_3 (None, 32) Activation_2

Dense_numerical (None, 2) Activation_2
Dense_cat_1 (None, 2) Activation_2
Dense_cat_2 (None, 2) Activation_2

Activation_3(tanh) (None,2) Dense_numerical
Activation_4(Gumbel-Softmax) (None,2) Dense_cat_1
Activation_5(Gumbel-Softmax) (None,2) Dense_cat_2

concatenate_output (None, 6) [Activation_3, Activation_4, Activation_5]

Table 5.6: Generator Model - GAN without substitute detector and Gumbel-
Softmax activation for categorical feature generation

5.2.4 Critic
The critic model is a Deep Neural Network classification model that takes as input
a vector of size equal to the size of the full network flow example (i.e. not only
the features generated by the generator) and has two hidden layers of dimension
[100,50] respectively. The output layer consists of a single neuron with linear
activation function.
The critic architecture is the same for all the proposed attack versions.

30

Development

Table 5.7 shows the critic model summary.

Layer type Output shape
input_features (None, 20)

Dense_1 (None, 100)
Activation_1(LeakyReLU) (None,100)

Dense_2 (None, 50)
Activation_2(LeakyReLU) (None, 50)

output (None, 1)

Table 5.7: Critic Model

31

Chapter 6

Experiments

In this chapter the hardware specifics, the black-box classifiers training and evalua-
tion, and the metrics used to evaluate the GAN based attacks will be illustrated.

6.1 Hardware
The training of the GAN and all the experiments were run on a server image in the
Polytechnic of Turin’s BigDataLab cluster equipped with Intel(R) Xeon(R) Gold
6140 CPU @ 2.30GHz, 72 logical CPUs, 390 GB available memory.

6.2 Tools
The main tools, used to develop the project, which deserve a mention are:

• TensorFlow: a free and open-source software library for machine learning
and artificial intelligence. It can be used across a range of tasks but has a
particular focus on training and inference of deep neural networks.

• JupyterLab: a web-based user interface for Project Jupyter which allows to
work with documents and activities such as Jupyter notebooks, text editors,
terminals, and custom components in a flexible, integrated, and extensible
manner.

6.3 Black-box Botnet Detectors
Three machine learning models were trained to act as black-box detectors. The
three models are a Support Vector Machine (SVM), a Random Forest (RF) and a
Multilayer Perceptron (MLP) classifier.

32

Experiments

The SVM classifier has a RBF kernel function and the default parameters of
the sklearn library.

The RF model parameters are the sklearn default ones except for the number of
estimators which is set to 300.

The MLP network has three hidden layers of [100,200,100] neurons and ReLU
activaion function. The output layer is made up of one neuron with sigmoid
activation function. The MLP classifier has been trained for 100 epochs with batch
size set to 512.

All the classifiers were evaluated on the Black-box test set in terms of both
accuracy, recall and F1 score.

acc = Ycorrect

#Y

precision = TP

TP + FP

recall = TP

TP + FN

F1 score = 2 ∗ precision ∗ recall

precision + recall

(6.1)

The accuracy metric is the base metric when evaluating machine learning
classifiers and shows the ratio between the correctly classified examples and the
total number of examples.

High values of recall are appreciable, since we want the classifiers to be able to
recognize the most of the attacks, whereas high values of F1 score indicate that the
model is correctly classifying the true class but it is not mispredicting the other
class.

SVM RF MLP
Accuracy 99.92% 99.98% 99.96%

Recall 99.90% 99.98% 99.96%
F1 score 99.91% 99.98% 99.96%

Table 6.1: Evaluation Metrics scores for Black-box classifiers on Black-Box test
set

33

Experiments

6.4 Attacks Evaluation Metrics
The main evaluation metric, used to assess the results obtained from the training
process of the GAN, is the Adversarial Examples Evasion Rate. The evasion
rate is the percentage of generated malicious examples that successfully passed the
detection.

Er = #Xadv_evaded

#Xadv

∗ 100 (6.2)

Moreover, the Transferability Analysis was performed to evaluate the capacity
of the generated adversarial examples to fool the other classifiers. Transferability
captures the ability of an attack against a machine-learning model to be effective
against a different, potentially unknown, model. To evaluate the transferability
rate, we generate adversarial examples with a GAN specifically trained to fool a
given black-box detector (e.g. SVM) and, then, we compute the evasion rate on
the other black-box models (e.g. RF and MLP).

In order to establish whether the generated features are more similar to those of
the benign class or are still similar to those of the malicious class, the average
Minkowski distance between the generated non-functional features of the gener-
ated adversarial examples and the non-functional features of the examples of the
normal and botnet classes has been evaluated.

The Minkowski distance metric is a generalization of the Euclidean and Man-
hattan distance metrics. The Minkowski distance of order p between two points X
and Y is defined as:

X = (x1, x2, ..., xn), Y = (y1, y2, ..., yn)

D(X, Y) = (
nØ

i=1
|xi − yi|p)(1/p)

(6.3)

34

Experiments

In order to compute the distance between the non-functional features of a
generated adversarial example and a set of examples, S, we compute the Minkowski
distance between the non-functional features of the generated example and all the
examples in a set, S, and then calculate the average.

S ∈ {Snormal, Sbotnet}, Y ∈ S

avg_D(X, S) = 1
m

mØ
j=1

D(X, Y (j)) (6.4)

6.5 Results
In the following are shown the best results obtained in terms of the evaluation
metrics explained above: evasion rate, transferability analysis and the average
Minkowski distance between the non-functional features of the generated examples
and both the benign and malicious sets.

6.5.1 Evasion Rate
In Table 6.2 are reported, for each black-box classifier, the original malicious
detection rate (True Positive Rate, TPR) and the evasion rate achieved on the
GAN test set by each GAN trained to fool the respective black-box model. Each
row corresponds to a different version of the attack, the enumeration of the attack
versions follows the one shown at the beginning of chapter 4.

An high evasion rate score indicates the success of the attack. GANs already
demonstrated to be an effective tool to craft adversarial examples, as shown in
other related works [4] [2] [3], so, the results were expected to be better or similar
to the ones already obtained in the other works. In this first analysis the attack are
evaluated only on the specific black-box classifier that they were trained to fool.

RF SVM MLP
Original TPR on GAN test set 99.99% 100.00% 99.99%
GAN Version 1 - Evasion Rate 97.62% 100.00% 100.00%
GAN Version 2 - Evasion Rate 98.31% 99.99% 100.00%
GAN Version 3 - Evasion Rate 22.36% 96.82% 70.05%

Table 6.2: Evasion Rate scores on GAN test set

35

Experiments

As shown in Table 6.2, both version 1 and version 2 of the attack framework
achieved great results and almost completely evaded all the black-box detectors.
Regarding the two GAN based frameworks with substitute detector, the second
version, with the Gumbel-Softmax layer, achieved slightly better results. On the
contrary, the third version of the attack performed poorly in terms of evasion rate,
even if it achieved appreciable scores on the MPL and SVM models, it cannot fool
the Random Forest one.

Still, the main advantage of the third attack version is that it does not require
to query the black-box classifier for the labels at each iteration, hence it is faster
to train and easier to implement and, still, can produce interesting results. Indeed,
worse results were expected for the version 3, since it is not "guided" by the
output of the black-box detector in the training phase, but the main threat of
this approach is that almost every attacker with a minimum knowledge about
Generative Adversarial Networks can launch the attack.

The obtained scores demonstrated that the first two versions of the attacks
were successful and that the GAN model can produce good adversarial examples
even modifying only a small subset of the original features, which are, in this case,
two numerical features, namely ’Sport’ and ’Dport’, and two categorical features,
namely ’sTos’ and ’dTos’.

6.5.2 Transferability Analysis
In Table 6.3 are shown the scores achieved by the GANs trained to fool a specific
classifier in terms of evasion rate on all the considered black-box models, all the
scores have been obtained on the GAN test set.

It is important to note that the way in which the GAN is trained relies on the fact
that the generator tries to fool the GAN critic, and then the generated examples
are evaluated on another model. For this reason, it should not be surprising that
the adversarial examples generated to fool a specific model can transfer and fool
other classifiers.

The results obtained in terms of transferability of the adversarial attacks demon-
strate the capacity of most of the adversarial examples to fool other, potentially
unknown, models. The Random Forest model, which is usually regarded as a
robust model against adversarial attacks, shows, indeed, the worst results in terms
of evasion rate as it is the model which is more resistant to all the attacks.

The differences in transferability between the version 1 and 2 of the attack is
not really appreciable when observing the results obtained, however it seems that,
on average, the version with the Gumbel-Softmax layer can generalize a better the
evasion attack when evaluated on other other models. The results obtained on

36

Experiments

RF SVM MLP
GAN Version 1

GAN Trained to fool RF 97.62% 100.00% 99.49%
GAN Trained to fool SVM 100.00% 100.00% 100.00%
GAN Trained to fool MLP 4.55% 100.00% 100.00%

GAN Version 2
GAN Trained to fool RF 98.31% 99.67% 99.69%

GAN Trained to fool SVM 13.52% 99.99% 99.99%
GAN Trained to fool MLP 99.85% 99.98% 100.00%

GAN Version 3
GAN Trained to fool RF 22.36% 98.23% 67.44%

GAN Trained to fool SVM 19.49% 96.82% 65.84%
GAN Trained to fool MLP 26.64% 95.93% 70.05%

Table 6.3: Evasion Rate Scores Transferability Analysis

the first and second versions of the attack show that the generated examples can
almost completely transfer to at least one other black-box classifier.

The third version of the attack obtained the worst scores in terms of transfer-
ability, however it is interesting to note that, compared to the other two versions
of the attack, the results are stable, independently of the model the GAN was
trained to fool, on all the black-box classifiers, while the other attacks achieved
unexpected results when the GAN model was trained to fool different black-box
classifiers. This is not surprising since, in the third version, the black-box classifier
is queried only once before starting, but not involved during the training process.
Being a completely different type of attack, compared to the other two versions,
the attack without substitute detector shows different properties and advantages
such as the possibility to predict with a discrete precision the evasion rate on other
black-box classifiers training the model to fool a generic black-box detector.

6.5.3 Minkowski Distance of the non-functional features
In Figures 6.1, 6.2, 6.3 are shown the plots of the average Minkowski distance
(with root value, p = 4) between the generated non-functional features of the
adversarial examples and those of the original malicious and benign sets. Since we
are computing the distance between one-hot encode features, namely ’sTos’ and
’dTos’ (in the range [0,1]), and numerical features, namely ’sport’ and ’dport’ (in
the range [0,65535], the numerical feature have been standardized in the range [0,1]
before evaluating the distances, to avoid to bias the computation. If the generated
non-functional features are more similar to the benign set, the points should lie

37

Experiments

below the blue line, otherwise they should be above it.
It is important to note that if the generated non-functional features are similar

to the benign set, a domain expert could still recognize the adversarial example and
take the necessary countermeasures, Indeed, the main issue of adversarial examples
is that, often, they can’t be easily recognized by the human eye, and can escape
the detection of machine learning classifiers.

The Average Minkowski distance between the generated non-functional features
of the adversarial examples and the malicious and benign sets evaluated on the
attack version 1 are shown in Figure 6.1. It is evident that all the generated features
are all very similar to the benign set and much different from the malign one. The
fact that all the points lie almost in the same portion of the plot could indicate
a poor capacity in producing different outputs and could be a symptom of mode
collapse, meaning that the generated features all assume almost the same values.
Passing directly the softmax distribution of categorical features to the GAN critic
seems to led the generator to produce the same values for each input.

38

Experiments

In Figure 6.2 the Average Minkowski distance between the generated non-
functional features of the adversarial examples and the malicious and benign sets
evaluated on the attack version 2 are shown. Compared to the first attack version,
the one with the Gumbel-Softmax layer seems to generate features with higher
variance in the features ranges. Notably, the plot 6.2a and 6.2c show that some
points are also closer to the malicious set than to the benign one, meaning that it
is harder to recognize them, even for a domain expert.

Finally, in Figure 6.3 the Average Minkowski distance between the generated
non-functional features of the adversarial examples and the malicious and benign
sets evaluated on the attack version 3 are shown. The generated features, as
expected, span across wider ranges of values. This property of the generator is
certainly desired as it allows to produce different examples, but at the same time
it must be remembered that, for black-box models such as the random forest, most
of the examples are unable to evade the detection.

6.5.4 Evaluation of the improvement in modifying also
categorical features

In order to asses the improvement that the perturbation of categorical features can
bring in the success of a black-box evasion attack, we compare the evasion rate of
the attack when using a generator network which handles only categorical features
and the attack framework GANV2, which handles both numerical and categorical
features.

The number of modified features is higher when perturbing also categorical
features, so we expect higher evasion rates. In table ?? are shown the results of
such comparison.

RF SVM MLP

GAN Version 2 (substitute
detector and Gumbel-Softmax)

98.31% 99.99% 100.00%

GAN (substitute detector and
only numerical features)

1.24% 97.36% 91.83%

Table 6.4: Evasion rate comparison between perturbing both numerical and
categorical features and only numerical features

39

Experiments

(a) Random Forest

(b) Support Vector Machine

(c) Multilayer Perceptron

Figure 6.1: Plots of Average Minkowski distance between the generated features
of the adversarial examples and the benign and malicious sets - Attack Version 1

40

Experiments

(a) Random Forest

(b) Support Vector Machine

(c) Multilayer Perceptron

Figure 6.2: Plots of Average Minkowski distance between the generated features
of the adversarial examples and the benign and malicious sets - Attack Version 2

41

Experiments

(a) Random Forest

(b) Support Vector Machine

(c) Multilayer Perceptron

Figure 6.3: Plots of Average Minkowski distance between the generated features
of the adversarial examples and the benign and malicious sets - Attack Version 3

42

Chapter 7

Conclusions

7.1 Success of the attacks

As the first objective of the work is to define whether or not is it possible to fool
the black-box botnet detectors, we can evaluate the success of the designed attack
frameworks observing the results collected in the experiments.

7.1.1 Models with substitute detector

The first and second versions of the attack frameworks were both able to fool
the respective black-box models they were trained for, reason why it is definitely
possible to assert that these two attack frameworks were successful and all the
black-box classifiers were almost completely evaded. In spite of everything, the
transferability analysis shows that in some cases the performances of the generator
in terms of evasion rate can decrease drastically.

Regarding the quality of the generated features of the adversarial examples, the
generators trained with these methodologies do not provide remarkable results,
since they show high similarity among them but they are very different from the
ones of the real malicious examples. In this way it could be easy to counter the
evasion of such examples. The generator that use the Gumbel-Softmax layer for
the generation of the categorical features seems to provide examples whose features
are less similar to each other, spanning over a wider range of values. The ability
to generate more different outputs is surely due to the stochasticity introduced
by the Gumbel-Softmax output layer which allows to sample from the categorical
distribution and which still provides a way to differentiate through the sampling
operation.

43

Conclusions

7.1.2 Model without substitute detector
As already discussed, the third attack version is the one that provides the worst
results in terms of evasion rate. However, the the last approach is the one that
allows to train the generator to produce the biggest quantity of different examples.
On the other side, using this approach, results on more robust black-box models
can be very bad, and, in general, the attacks have an higher probability to fail.
Hence, an improvement on the version three could be a modified loss function or a
little relaxation on the ability of the attacker to query the black-box model, in order
to find a reasonable trade-off between the evasion rate score and the difference
between the generated flow examples. Moreover, this approach requires much less
time to train the generator and, in some case, the attack can still be considered
successfull.

7.2 Improvement of perturbing categorical fea-
tures

As shown in Table ??, by perturbing also the categorical features of the malicious
examples it’s possible to increase the evasion rate of the attack. In some cases
it is also needed to do this so that the attack can be considered successful. This
shows a correlation between the number of feature that can be perturbed and the
probability that an adversarial example bypass the detection. Surely it is an issue
that has to be considered in the domain of machine learning security.

7.3 Efficacy of the Straight-Trough
Gumbel-Softmax Estimator

Even if, theoretically, the Gumbel-Softmax distribution and the Straight-Through
Gumbel-Softmax estimator provide a better way to generate categorical features,
allowing to one-hot encode the categorical feature and well approximate the categor-
ical distribution in a differentiable way, instead of directly passing the continuous
representation of the same to the critic, the results and the evidence of the su-
periority of the approach is not much visible. The second version of the attack
framework seems to provide better property in producing different outputs but in
terms of evasion rate the version one reaches better or similar scores.

As with real data, one-hot encoded vectors are sent to the discriminator when
using the hard Gumbel-softmax and the Straight Through estimator, in this way,
the discriminator should be better at discriminating between real (one-hot) and
false (not one-hot) data (if the softmax output is passed). Still, the advantage of the
method is that it is surely straightforward and easy to implement, but the results,

44

Conclusions

in terms of evasion rate, are similar to the ones in which the Gumbel-Softmax
distribution is not applied.

7.4 Reproducibility of the adversarial examples
Even if we considered two of the attacks as successful, major issues can hinder
the development of the attack. For instance, in this work we assumed that there
were four non-functional features in a ICMP DDoS malicious traffic flow. One of
the obstacles in reproducing such adversarial malicious traffic flows could be due
mainly from the way the traffic flows are collected and summarized. Moreover,
it is not trivial to respect the time constraints and to know how the features are
collected and extracted in the target network before hand.

45

Chapter 8

Future Works

We have demonstrated the feasibility of a black-box attack using a different dataset
with respect to the previous works on the same topic (IDSGAN) by adopting a
slightly different architecture and approach.

The great weakness of the work is the assumption that the adversarial malicious
examples are still valid after changing the non-functional features. The replication
of such an attack should be demonstrated in a real world environment and involves
several other issues such as the collection of the malicious data to train the GAN
model.

In this specific context we assumed that there exist a set of non-functional
features for each botnet attack. Before starting to develop strategies and techniques
to secure machine learning algorithms against this type of black-box evasion attacks,
a further research on the feasibility and complexity of the attack should be performed
in this direction. If the assumption on the validity of the adversarial attacks is
denied, the feasibility of the attack also falls.

However, a possible way to make the classifiers more robust against black-box
evasion attack could be to train several classifiers with different algorithms and
choose randomly the classifier that should provide the prediction for each input.
In this way the attack based on the GAN should have less percentages of success,
since the decision boundaries of the black-box model would change at each input.

At the best of our knowledge there isn’t still an effective and standard method
to avoid such attacks. Depending on the domain of application some solutions
could be applied to mitigate the attack.

46

Appendix A

Tensorflow main components
implementation

A.1 Gumbel-Softmax Layer

Listing A.1: GumbelSoftmaxLayer implementation
1 from typing import Optional
2 import t en so r f l ow as t f
3 from ten so r f l ow import Tensor , TensorShape , one_hot , squeeze ,

stop_gradient
4 from ten so r f l ow . keras . l a y e r s import Layer
5 from ten so r f l ow . keras . u t i l s import r e g i s t e r _ k e r a s _ s e r i a l i z a b l e
6 from ten so r f l ow . math import l og
7 from ten so r f l ow . nn import softmax
8 from ten so r f l ow . random import c a t e g o r i c a l , uniform
9

10 TOL = 1e−20
11 de f gumbel_noise (shape : TensorShape) −> Tensor :
12 " " " Create a s i n g l e sample from the standard (l o c = 0 , s c a l e = 1)

Gumbel d i s t r i b u t i o n . " " "
13 # G_i can be approximated with −l og (− l og (Uniform (0 , 1)))
14 uniform_sample = uniform (shape , seed =0, dtype = t f . dtypes . f l o a t 6 4

)
15 re turn −l og (− l og (uniform_sample + TOL) + TOL)
16

17 @ r e g i s t e r _ k e r a s _ s e r i a l i z a b l e (name=’ GumbelSoftmaxLayer ’)
18 c l a s s GumbelSoftmaxLayer (Layer) :
19 "A Gumbel−Softmax l a y e r implementation that should be stacked on

top o f a c a t e g o r i c a l f e a t u r e l o g i t s . "
20

21 de f __init__(s e l f , tau : f l o a t = 0 . 2 , name : Optional [s t r] = None ,
∗∗ kwargs) :

47

Tensorflow main components implementation

22 super () . __init__(name=name , ∗∗ kwargs)
23 s e l f . tau = tau
24

25 de f c a l l (s e l f , _input) :
26 " " " Computes Gumbel−Softmax f o r the l o g i t s output o f a

p a r t i c u l a r c a t e g o r i c a l f e a t u r e . " " "
27 noised_input = _input + gumbel_noise (t f . shape (_input))
28 soft_sample = softmax (noised_input / s e l f . tau , −1)
29 hard_sample = t f . argmax (soft_sample , t f . dtypes . f l o a t 6 4)
30 hard_sample = squeeze (one_hot (c a t e g o r i c a l (l og (soft_sample) ,

1) , y = t f . s top_gradient (hard_sample) − soft_sample +
soft_sample

31 re turn y
32

33 de f get_conf ig (s e l f) :
34 c o n f i g = super () . get_conf ig () . copy ()
35 c o n f i g . update ({ ’ tau ’ : s e l f . tau })
36 re turn c o n f i g

48

Tensorflow main components implementation

A.2 Generator

Listing A.2: Generator build function
1 de f get_generator_model (gumbel = False , sub s t i tu t e_de t e c t o r = True) :
2 g_hidden_layers = [3 2 , 6 4 , 3 2]
3 # Input l a y e r
4 no i s e = l a y e r s . Input (shape = (NOISE_DIM,) ,name = " input_noise ")
5 x = None
6 i f s ub s t i tu t e_de t e c to r :
7 example = l a y e r s . Input (shape = (INPUT_DIM_GEN,) , name = "

input_example ")
8 x = Concatenate (ax i s = 1) ([example , no i s e])
9 e l s e :

10 x = no i s e
11 # Hidden l a y e r s
12 f o r n , i in z ip (g_hidden_layers , range (l en (g_hidden_layers))) :
13 x = l a y e r s . Dense (n , use_bias = True , name = f " g_hidden_layer{

i +1}") (x)
14 x = l a y e r s . LeakyReLU(alpha = 0 . 2) (x)
15 numerical_gen = l a y e r s . Dense (NUM_VAR, use_bias = True , a c t i v a t i o n

= " tanh " , name = ’ gen_numerical_variables_output ’) (x)
16

17 dtos_gen = None
18 stos_gen = None
19 i f gumbel == True :
20 dtos_dense = l a y e r s . Dense (dtos_nvalues , use_bias = True , name

= " d to s_ log i t s ") (x)
21 stos_dense = l a y e r s . Dense (stos_nvalues , use_bias = True , name

= " s t o s _ l o g i t s ") (x)
22 dtos_gen = GumbelSoftmaxLayer (name = " dtos_output ") (

dtos_dense)
23 stos_gen = GumbelSoftmaxLayer (name = " stos_output ") (

stos_dense)
24 e l s e :
25 dtos_gen = l a y e r s . Dense (dtos_nvalues , use_bias = True ,

a c t i v a t i o n = " softmax " , name = " dtos_output ") (x)
26 stos_gen = l a y e r s . Dense (stos_nvalues , use_bias = True ,

a c t i v a t i o n = " softmax " , name = " stos_output ") (x)
27 out = Concatenate (ax i s = 1) ([numerical_gen , dtos_gen , stos_gen])
28 g_model = None
29 i f s ub s t i tu t e_de t e c to r :
30 g_model = keras . models . Model ([example , no i s e] , out , name="

generato r ")
31 e l s e :
32 g_model = keras . models . Model (no i se , out , name=" generato r ")
33 re turn g_model

49

Tensorflow main components implementation

A.3 GAN model class with substitute detector

Listing A.3: GAN model class with substitute detector
1 c l a s s GAN(keras . Model) :
2 de f __init__(
3 s e l f ,
4 noise_dim ,
5 bb_model_type = "MLP" ,
6 bb_model_file = " " ,
7 c r i t i c_ex t r a_s t ep s =3,
8 gumbel = False ,
9 s u b s t i t u t e = False

10) :
11 super (WGAN, s e l f) . __init__ ()
12

13 s e l f . bb_model_type = bb_model_type
14 s e l f . bb_model_file = bb_model_file
15 s e l f . noise_dim = noise_dim
16 s e l f . d_steps = c r i t i c_ex t r a_s t ep s
17 s e l f . c r i t i c = get_cr it ic_model ()
18 s e l f . g enerato r = get_generator_model (s e l f . gumbel , s e l f .

s u b s t i t u t e)
19 s e l f . black_box_detector = get_blackbox_model (s e l f .

bb_model_type , s e l f . bb_model_file)
20

21 de f compi le (s e l f , d_optimizer , g_optimizer , d_loss_fn , g_loss_fn)
:

22 super (WGAN, s e l f) . compi le ()
23 s e l f . d_optimizer = d_optimizer
24 s e l f . g_optimizer = g_optimizer
25 s e l f . d_loss_fn = d_loss_fn
26 s e l f . g_loss_fn = g_loss_fn
27

28 de f t r a i n (s e l f , data , epochs = 500 , batch_size = 32 ,
gan_weights_dir = " " , debug = False) :

29

30 # s p l i t datase t i n to ben and mal
31 xmal = data [data [’ t a r g e t ’] == 1] . drop (’ t a r g e t ’ , ax i s = 1)
32 xben = data [data [’ t a r g e t ’] == 0] . drop (’ t a r g e t ’ , ax i s = 1)
33 xmal . reset_index (drop = True , i n p l a c e = True)
34 xben . reset_index (drop = True , i n p l a c e = True)
35

36 pr in t ("−−−")
37 pr in t (" Attacking " , bb_model_type , " b lack box model ")
38 pr in t (" Model weights w i l l be s to r ed at " , gan_weights_dir)
39 pr in t ("−−−")
40

50

Tensorflow main components implementation

41 # Pred ic t l a b e l s f o r benign examples with the blackbox
de t e c t o r

42 to_predict = u t i l s . prepare_for_black_box (xben , gan_scaler ,
gan_encoders , gan_ohe_columns , gan_ohe_indexes , num_col ,
saved_dict , bb_scaler , bb_columns , bb_encoders , s c enar io , debug =
False)

43 yben_blackbox = s e l f . black_box_detector . p r e d i c t (to_predict) .
round () . reshape (xben . shape [0] ,)

44

45 d_losses = []
46 g_los se s = []
47 s t ep s = round (xmal . shape [0] / batch_size)
48

49 f o r epoch in range (epochs) :
50 d_avg_loss = 0 .0
51 g_avg_loss = 0 .0
52 pr in t (" Epoch " , epoch+1)
53 f o r s tep in range (s t ep s) :
54

55

56 f o r i in range (s e l f . d_steps) :
57

58 # Batch o f benign examples
59 xben_batch = xben . sample (BATCH_SIZE)
60 yben_batch = yben_blackbox [xben_batch . index]
61

62 # Batch o f malign examples
63 xmal_batch = xmal . sample (BATCH_SIZE)
64

65 no i s e = np . random . normal (s i z e =(xmal_batch . shape
[0] , s e l f . noise_dim))

66 gen_samples = s e l f . g enerato r ([xmal_batch . i l o c
[: , [1 , 2 , 6 , 7 , 8 , 9]] , no i s e] , t r a i n i n g=True)

67 xgen_batch = u t i l s .
gen_samples_and_keep_unmodified (xmal_batch , gen_samples)

68 xgen_batch = pd . DataFrame (xgen_batch . numpy() ,
columns = columns)

69

70 # Pred ic t l a b e l s o f a d v e r s a r i a l examples with the
blackbox de t e c t o r

71 to_predict = u t i l s . prepare_for_black_box (
xgen_batch , gan_scaler , gan_encoders , gan_ohe_columns ,
gan_ohe_indexes , num_col , saved_dict , bb_scaler , bb_columns ,
bb_encoders , s c enar io , debug = False)

72 ygen_batch = s e l f . black_box_detector . p r e d i c t (
to_predict) . round () . reshape (to_pred ict . shape [0] ,)

73

74 # Group examples p r ed i c t ed as malign and benign

51

Tensorflow main components implementation

75 mal = t f . convert_to_tensor (pd . concat ([xgen_batch [
ygen_batch == 1] , xben_batch [yben_batch == 1]]))

76 ben = t f . convert_to_tensor (pd . concat ([xgen_batch [
ygen_batch == 0] , xben_batch [yben_batch == 0]]))

77

78 with t f . GradientTape () as tape :
79 D_mal = s e l f . c r i t i c (mal , t r a i n i n g=True)
80 D_ben = s e l f . c r i t i c (ben , t r a i n i n g=True)
81

82 # Calcu la te the c r i t i c l o s s us ing the c r i t i c ’
s s c o r e s

83 d_loss = s e l f . d_loss_fn (mal_scores = D_mal ,
ben_scores = D_ben)

84 d_avg_loss += d_loss
85

86 # Get the g rad i en t s w. r . t the c r i t i c l o s s
87 d_gradient = tape . g rad i en t (d_loss , s e l f . c r i t i c .

t r a i n a b l e _ v a r i a b l e s)
88

89 # Update the weights o f the c r i t i c us ing the
c r i t i c opt imize r

90 s e l f . d_optimizer . apply_gradients (z ip (d_gradient ,
s e l f . c r i t i c . t r a i n a b l e _ v a r i a b l e s))

91

92 # Clip the weights o f the c r i t i c
93 f o r w in s e l f . c r i t i c . t r a i n a b l e _ v a r i a b l e s :
94 w. a s s i gn (t f . cl ip_by_value (w, −c l ip_const ,

c l ip_cons t))
95

96 # Batch o f malign examples
97 xmal_batch = xmal . sample (BATCH_SIZE)
98

99

100 with t f . GradientTape () as tape :
101 no i s e = np . random . normal (s i z e =(xmal_batch . shape

[0] , s e l f . noise_dim))
102 gen_samples = s e l f . g enerato r ([xmal_batch . i l o c

[: , [1 , 2 , 6 , 7 , 8 , 9]] , no i s e] , t r a i n i n g=True)
103 xgen_batch = u t i l s .

gen_samples_and_keep_unmodified (xmal_batch , gen_samples)
104

105 # Get the c r i t i c s c o r e s f o r generated examples
106 D_gen = s e l f . c r i t i c (xgen_batch , t r a i n i n g=True)
107

108 # Calcu la te the generato r l o s s
109 g_loss = s e l f . g_loss_fn (D_gen)
110 g_avg_loss+= g_loss
111

112 # Get the g rad i en t s w. r . t the genera tor l o s s

52

Tensorflow main components implementation

113 gen_gradient = tape . g rad i en t (g_loss , s e l f . g enera tor .
t r a i n a b l e _ v a r i a b l e s)

114

115 # Update the weights o f the generator us ing the
generato r opt imize r

116 s e l f . g_optimizer . apply_gradients (z ip (gen_gradient ,
s e l f . g enerato r . t r a i n a b l e _ v a r i a b l e s))

117

118 # Early stop cond i t i on
119 i f (epoch > 0) and (abs (g_avg_loss − g_los se s [−1]) <

10∗∗(−5)) :
120 stop = True
121

122 d_losses . append (d_avg_loss /(s t ep s ∗ s e l f . d_steps))
123 g_los se s . append (g_avg_loss/ s t ep s)
124

125 pr in t (f " C r i t i c Loss : { d_losses [−1]} ")
126 pr in t (f " Generator Loss : { g_los se s [−1]} ")
127

128 s e l f . g enerato r . save_weights (gan_weights_dir+" / "+
bb_model_type+" . ckpt ")

129 i f s top == True :
130 re turn (g_losses , d_losses , epoch+1)
131

132 re turn (g_losses , d_losses , epochs)

53

Bibliography

[1] Mazaher Kianpour and Shao-Fang Wen. «Timing attacks on machine learning:
State of the art». In: Proceedings of SAI Intelligent Systems Conference.
Springer. 2019, pp. 111–125 (cit. on p. 2).

[2] Weiwei Hu and Ying Tan. «Generating adversarial malware examples for
black-box attacks based on GAN». In: arXiv preprint arXiv:1702.05983 (2017)
(cit. on pp. 2, 15, 17, 35).

[3] Masataka Kawai, Kaoru Ota, and Mianxing Dong. «Improved malgan: Avoid-
ing malware detector by leaning cleanware features». In: 2019 interna-
tional conference on artificial intelligence in information and communication
(ICAIIC). IEEE. 2019, pp. 040–045 (cit. on pp. 2, 15, 35).

[4] Zilong Lin, Yong Shi, and Zhi Xue. «Idsgan: Generative adversarial networks
for attack generation against intrusion detection». In: Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer. 2022, pp. 79–91 (cit. on
pp. 2, 15, 17, 35).

[5] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. «Practical black-box attacks against machine
learning». In: Proceedings of the 2017 ACM on Asia conference on computer
and communications security. 2017, pp. 506–519 (cit. on pp. 2, 15).

[6] Muhammet Fatih Akbaş, Cengiz Güngör, and Enis Karaarslan. «Usage of
machine learning algorithms for flow based anomaly detection system in
software defined networks». In: International Conference on Intelligent and
Fuzzy Systems. Springer. 2020, pp. 1156–1163 (cit. on p. 7).

[7] Fariba Haddadi, Duc Le Cong, Laura Porter, and A Nur Zincir-Heywood. «On
the effectiveness of different botnet detection approaches». In: International
conference on information security practice and experience. Springer. 2015,
pp. 121–135 (cit. on p. 7).

[8] Abdurrahman Pektaş and Tankut Acarman. «Deep learning to detect botnet
via network flow summaries». In: Neural Computing and Applications 31.11
(2019), pp. 8021–8033 (cit. on p. 7).

54

BIBLIOGRAPHY

[9] Matija Stevanovic and Jens Myrup Pedersen. «An efficient flow-based bot-
net detection using supervised machine learning». In: 2014 International
Conference on Computing, Networking and Communications (ICNC). 2014,
pp. 797–801. doi: 10.1109/ICCNC.2014.6785439 (cit. on p. 7).

[10] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, and Deepak Verma. «Adver-
sarial classification». In: Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. 2004, pp. 99–108 (cit. on
p. 8).

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. «Generative
adversarial nets». In: Advances in neural information processing systems 27
(2014) (cit. on p. 9).

[12] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. «Which training
methods for GANs do actually converge?» In: International conference on
machine learning. PMLR. 2018, pp. 3481–3490 (cit. on p. 9).

[13] Martin Arjovsky and Léon Bottou. «Towards principled methods for training
generative adversarial networks». In: arXiv preprint arXiv:1701.04862 (2017)
(cit. on p. 9).

[14] Martin Arjovsky, Soumith Chintala, and Léon Bottou. «Wasserstein genera-
tive adversarial networks». In: International conference on machine learning.
PMLR. 2017, pp. 214–223 (cit. on p. 10).

[15] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. «Improved training of wasserstein gans». In: Advances in
neural information processing systems 30 (2017) (cit. on p. 11).

[16] J. Hui. «WGAN — Wasserstein GAN & WGAN-GP». In: [online] Medium.
Available at: <https://jonathan-hui.medium.com/gan-wasserstein-gan-wgan-
gp-6a1a2aa1b490> [Accessed 24 June 2022] (2022) (cit. on p. 11).

[17] E. Benjaminson. «The Gumbel-Softmax Distribution. [online]». In: Sas-
safras13.github.io. Available at: <https://sassafras13.github.io/GumbelSoftmax/>
[Accessed 27 June 2022]. (2020) (cit. on p. 13).

[18] Eric Jang, Shixiang Gu, and Ben Poole. «Categorical reparameterization with
gumbel-softmax». In: arXiv preprint arXiv:1611.01144 (2016) (cit. on pp. 13,
14).

[19] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. «The concrete distribu-
tion: A continuous relaxation of discrete random variables». In: arXiv preprint
arXiv:1611.00712 (2016) (cit. on p. 13).

55

https://doi.org/10.1109/ICCNC.2014.6785439

BIBLIOGRAPHY

[20] W. Wong. «What is Gumbel-Softmax? A differentiable approximation to sam-
pling discrete data». In: [online] Medium. Available at: <https://medium.com/p/7f6d9cdcb90e>
[Accessed 20 June 2022] (2020) (cit. on p. 14).

[21] Ramiro Camino, Christian Hammerschmidt, and Radu State. «Generating
multi-categorical samples with generative adversarial networks». In: arXiv
preprint arXiv:1807.01202 (2018) (cit. on pp. 15, 22).

[22] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. «An
empirical comparison of botnet detection methods». In: computers & security
45 (2014), pp. 100–123 (cit. on p. 25).

56

	Introduction
	Preface

	Goals and Requirements
	Objectives and methodology
	Document Structure
	Theoretical foundations
	Design principles and Implementation
	Practical attempts

	State of The Art
	Botnets
	Botnet Detection Techniques

	Adversarial Machine Learning
	Evasion Attacks

	Generative Adversarial Networks
	Original GAN
	Wasserstein GAN

	Wasserstein GAN with gradient penalty
	Gumbel-Softmax
	Reparametrization Trick
	Gumbel-Softmax distribution
	Straight-Through Gumbel-Softmax Estimator

	Related Works

	Design
	Assumptions
	Models with substitute detectors
	Model without substitute detector
	Critic and Generator networks description
	Critic
	Generator

	Development
	Dataset
	Black-box and GAN datasets

	Models implementation
	Attacks with Substitute Detector
	Attacks without Substitute Detector
	Generator
	Critic

	Experiments
	Hardware
	Tools
	Black-box Botnet Detectors
	Attacks Evaluation Metrics
	Results
	Evasion Rate
	Transferability Analysis
	Minkowski Distance of the non-functional features
	Evaluation of the improvement in modifying also categorical features

	Conclusions
	Success of the attacks
	Models with substitute detector
	Model without substitute detector

	Improvement of perturbing categorical features
	Efficacy of the Straight-Trough Gumbel-Softmax Estimator
	Reproducibility of the adversarial examples

	Future Works
	Tensorflow main components implementation
	Gumbel-Softmax Layer
	Generator
	GAN model class with substitute detector

	Bibliography

