
Politecnico di Torino

Master’s Degree in Computer Engineering

A.a. 2021/2022

Graduation session of October 2022

Design and development of a
cloud-based application for smart

agriculture
Master’s Degree Thesis

Supervisors:

Prof. Claudio Casetti

Prof. Aurelio Somà

Candidate:

Pablo Andres Vejar Gomez

Summary

The agriculture sector has existed for thousands of years, however in the last
period it has been innovating with solutions that improve this practice thanks
to the advancement of technology and the digitization of machines in all
industrial sectors. In this context, a thesis work is proposed in collaboration
with the company WiRail SRL, whose objective is to design and develop
functionalities within a cloud-based web application, which improve and help
users to manage agricultural production through real-time monitoring of their
machines. This work is part of a larger project aimed at developing control
unit devices that monitor and measure parameters of diverse machines of
the agricultural and construction industry, thus providing a whole service of
status-data recollection and data processing.

The monitoring system is composed of three parts, a REST API server, a
data receiver server and a front-end, based on technologies such as Angular,
Spring Boot, Docker, MongoDB, among others. Thus, using this architec-
ture it is shown how the new developments focused on improving the user
experience and adding value to the use of the application were carried out.
In particular, it is illustrated how the concept of activities together with the
concept of Smart farming can significantly improve the management of agri-
cultural machines, integrating them with algorithms and visual monitoring
tools. Furthermore, the validation of design decisions using global standards
of application development is shown. Finally, possible future continuations

ii

of the project are discussed, with adaptations for other platforms and the
implementation of additional functionalities.

iii

Acknowledgements

First of all, I would like to thank the entire WiRail team for their support
and availability during these months of work and development of the thesis,
specially my tutor Angelo. A big thanks to my supervisors, Prof. Aurelio
Somà and Prof. Claudio Casetti, who were available from the first day to
the end.

Thanks to all my friends from Torino, who made my day to day life in
this new stage of my life much nicer and easier, because when you find a
group of people who make you feel like you are at home, everything becomes
better. You guys make being 11.800 kilometers away from home worth it.

Thanks to my friends in Chile, lifelong friends, friends who were funda-
mental in my university period and friends who became closer just before
leaving, thanks for all the support despite the distance and for all the love
that you continue to show me.

A special thanks to my friend Catalina, thank you for always being by
my side and accompanying me in every process from a distance, you have
been a fundamental support in this experience.

Finally, I want to thank my family, because it is thanks to them that I
am in this place today, after almost 7 years of supporting and helping me
in everything I have needed to develop my professional and personal future,
your love and support has been fundamental in my life.

iv

Table of Contents

List of Figures ix

1 Introduction 1
1.1 State of the art of the agricultural sector 2
1.2 Solutions in the market . 3
1.3 Goal of thesis . 9

2 Architecture of System 10
2.1 Control units . 11
2.2 Receiver . 16
2.3 REST API . 17
2.4 Client-side . 19

2.4.1 Maps . 20
2.4.2 Graphics . 21
2.4.3 Reports . 23
2.4.4 Documents . 24
2.4.5 Config . 24

2.5 Database . 24
2.6 Software Technologies . 26

2.6.1 Docker . 26
2.6.2 MongoDB . 28

vi

2.6.3 Angular . 30
2.6.4 Spring Boot . 32
2.6.5 Kibana and ElasticSearch 34
2.6.6 Digital Ocean . 35

2.7 Programming Languages . 35
2.7.1 Java . 36
2.7.2 Typescript . 36

2.8 Performance . 37

3 Preventive Software Maintenance 40
3.1 Initial situation . 40
3.2 User stories analysis . 45

4 Smart Farming 48
4.1 Project approach . 48
4.2 User Stories for new features 50
4.3 Activities as center of management 52

4.3.1 Previous Activity Management 54
4.3.2 Current Activities . 55
4.3.3 Planned Activities 59
4.3.4 Completed Activities 61

4.4 Geofencing . 63
4.4.1 Fields and Work Areas 63
4.4.2 List of Fields . 65
4.4.3 Integration with Activities 66

4.5 Ray Casting Algorithm . 69
4.6 Farm Implements . 71
4.7 Limitations of Project . 74

vii

5 User Experience 76
5.1 Guidelines for improving UX 76
5.2 User-experience and Design Improvements 79

5.2.1 Guides . 79
5.2.2 Statistics for Machines 80
5.2.3 Details on Map . 81
5.2.4 Main Layer Transformation 83

5.3 Results of graphic updates 88

6 Conclusions 89
6.1 Conclusion . 89
6.2 Further Work . 91

Bibliography 92

viii

List of Figures

1.1 Europe Smart Farming Market Growth. 3
1.2 DOT Mobile for construction 6
1.3 DOT Mobile GPS . 6
1.4 WAY web page . 8

2.1 Diagram of system architecture 11
2.2 WiRail control unit - Vineyard Tractors type 12
2.3 WiRail control unit - Precision type 13
2.4 Control unit already installed in machine 15
2.5 Microservices Architecture pattern 18
2.6 SPA lifecycle vs Traditional Page lifecycle 19
2.7 WiRail Map homepage . 21
2.8 WiRail Graphics page . 22
2.9 WiRail Report GPSB3N310 23
2.10 WiRail Report Precision . 23
2.11 Software containers structure 27
2.12 Receiver DockerFile . 28
2.13 REST API Server DockerFile 28
2.14 Client-side DockerFile . 28
2.15 MongoDB architecture . 29
2.16 MongoDB Replica Set . 30

ix

2.17 Angular 8 Architecture . 32
2.18 CPU usage of frontend and REST API 37
2.19 Memory usage of frontend and REST API 37
2.20 Bandwidth of frontend and REST API 38
2.21 CPU usage of receiver . 38
2.22 Memory usage of receiver . 38
2.23 Load (1|5|15) of receiver . 39
2.24 Database storage usage . 39

3.1 Graphics page error . 42
3.2 Empty Documents saved correctly 43
3.3 Validation code introduced for Documents 44
3.4 Validation added to "Save Document" function 45

4.1 Manual activity configuration 54
4.2 Current Activities . 56
4.3 New Activity . 57
4.4 Activity Details . 58
4.5 Activity Position when "Show map" is active 59
4.6 Delete planned activity . 60
4.7 Completed activities list . 62
4.8 Completed activities details 62
4.9 Geofence representation . 63
4.10 New field . 64
4.11 Create new field dialog . 65
4.12 Elements in list . 65
4.13 Delete field . 66
4.14 Field interaction with control unit 67
4.15 Field position reported in activity tab 68
4.16 Implemented code to check if point is inside field 70

x

4.17 Final Path on data with algorithm [beta] 71
4.18 Farm implements section . 73
4.19 Farm implements reports . 74

5.1 Web site guides . 80
5.2 Control Unit guides . 80
5.3 Statistics for specific machine 81
5.4 Old machine summary on map 82
5.5 New machine summary on map 83
5.6 Old menu bar . 84
5.7 New menu bar . 85
5.8 Old list layout . 86
5.9 New list layout . 86
5.10 Old borders on elements . 87
5.11 New borders on elements . 87

xi

Chapter 1

Introduction

The agricultural industry has had a strong impact on the history of mankind
and has been growing strongly over the years. Agriculture plays a vital
role in the economic development of countries, which is why many economic
sectors have set themselves the goal of modernizing the industry and taking
advantage of current technologies.

With the introduction of IoT to the industries, a revolution has been
created such that, technologies and new techniques have managed to be
integrated in various industrial sectors, with the aim of improving the
production and their distribution. This is where the concept of Industry 4.0
is born, which corresponds to the fourth revolution of the industry that is
here to stay and change the way we do things.

The increase of knowledge in computer engineering and the integration
with other disciplines, has transformed IoT and data analysis systems into
an essential feature, resulting into a more optimized and sustainable way of
producing and to allow a better decision making. The value created by these
tools is even greater when the data is applied with other techniques such as
ERP, supply chain, among others.

By combining the concept of Industry 4.0 to agriculture is born what is

1

Introduction

known today as Smart Farming. It corresponds to the use of IoT within farm
devices, which allows building databases that can be shared and used by
multiple entities. This means that financial and time costs caused by human
error can be reduced. Today there are already sensors within the agricultural
sector to monitor soil nutrition, temperature, moisture, parameters associated
with the tools used, among others. This allows the farmer to work on what
really matters and provides benefits.

1.1 State of the art of the agricultural sector

The agricultural production of the European Union is dominated by livestock
products, which correspond to vegetables, fruits, dairy products, wine, grains;
being the most regularly exported products. In spite of this, the EU has
progressively become a bigger importer of agricultural products, due to the
globalization of the world economy and the low costs present in low-income
countries. [1]

In this context, the EU is trying to impose its dominance in agriculture
by including more technologies, aiming at the sustainability of the industry,
i.e. using fewer resources while reducing the impact on the environment. For
this reason, EU member states have begun to prioritize the modernization of
European farms, introducing the concept of Smart Farming as the industry’s
standard of action. Experts predict that the introduction of this new concept
will grow the market rapidly in a short period of time, reaching values of
€6.6 billion by 2023.[2]

The aim in investing in smart agriculture is to make the EU the leader
in technological knowledge and environmentally friendly farming, creating
a model that can be copied by the rest of the world. In this context, a
funding program called The Life GAIA Sense created by an important Greek
association, is aimed at investing in this new technology, giving farmers

2

Introduction

across Europe the opportunity to install sensors in their fields and on their
machines. These sensors can be used to monitor many field conditions and
machine status in order to reduce environmental impact.

Figure 1.1: Europe Smart Farming Market Growth.

Source: www.grandviewresearch.com

1.2 Solutions in the market

The potential growth of Industry 4.0 in agriculture has allowed many agri-
cultural companies to change the way they manage production, opening
up to the integration of new technologies to reduce financial costs and
environmental impacts.

For this reason, several projects are born to provide solutions for the
application of Smart Farming within agricultural enterprises, offering various
opportunities through new technologies. The type of technology of interest
for this thesis corresponds to the monitoring, further analysis and control of
the activity of agricultural implements, such as tractors, plowing machines,
harvesting machines, among others.

3

Introduction

Existing monitoring tools play a fundamental role in agricultural work,
which is to collect data of interest in real time and thus create a complete
database for the analysis of machinery farming behaviors. These tools,
integrated and applied with software engineering, produce user-friendly
products to deliver the Smart Farming experience and provide the opportunity
to improve the outcomes of enterprises and small farmers.

For the correct operation and access of technologies of this type to the
market, it is important to highlight the following conditions for competition:

• Produce monitoring tools at low economic cost;

• Work on a Wireless Sensor Network;

• Simplicity, robustness and confidence in the quality of the product;

• Possibility of geo-localization of equipment;

• Have a high compatibility with existing agricultural machinery;

• Low power requirements;

The following are some of the existing alternatives in the market that
offer the above mentioned services.

Dot Mobile (Punto Mobile)

DOTMobile is a telemetry platform for the monitoring and management of
vehicles. Currently, they offer automotive services, for agriculture, construc-
tion, nautical and work in general. They are present in US and Europe with
a coverage in more than 100 countries and with 3 real companies: DotMobile
Inc, Punto Mobile Srl and I.T.Comm Srl.

The technology provided by this company offers solutions for real-time
location and monitoring, in order to reduce management costs and optimize

4

Introduction

work. This is achieved through the implementation of on-board sensors inside
its devices, such as CAN BUS, Analog/Digital Input, Mileage, etc. Moreover,
they allow to obtain a tracking of the historical data on cartography, allowing
the users to visualize the routes made and the position of their machines on
a map.

At the moment of analyzing the digital platform, it can be observed that
the application has the following characteristics:

• Graphical visualization of a map with the position of the machines next
to the terrain where they perform activities;

• Visualization of machine performance analyses;

• Visualization of the machine paths;

• Possibility to configure the security of your machines;

• Scheduling or predicting maintenance;

From the analysis, it can be concluded that, like many competitors in
the sector, they use Google Maps to record the position of their machines.
They also use similar strategies to record the routes, i.e. taking the position
recorded by the GPS and joining the points.[3]

5

Introduction

Figure 1.2: DOT Mobile for construction

Figure 1.3: DOT Mobile GPS

6

Introduction

W.A.Y Srl. - Where Are You?

WAY Srl is a company that was born as a technology partner for IoT solutions
applied to localization and advanced management of vehicles, people and
goods in motion. Thus, one of its work areas corresponds to the application
of industry 4.0 in agriculture, proposing to the market a kit called Kit
WAY4FARM.[4]

As many companies do in this sector, WAY offers monitoring services,
giving way to a better management and optimization of resources to agricul-
tural companies. The WAY4FARM Kit solution of this company consists of
the following:

• A device to be installed on the agricultural machine to enable remote
monitoring and command management functionalities;

• A CANBUS interface programmed and assembled for the purpose of
reading and interpreting the telemetry data diagnosed by the machine;

• Installation services of the devices directly on the machines at the
customer’s site;

• Access to a web platform to take advantage of the services offered for a
period of 5 years;

• SIM and telephone communication for data transfer to cloud platform

• Software support and maintenance services for installed devices

The device is equipped with a SIM for bidirectional data transmission
between the cloud platform and the agricultural machine. After the collection
of diagnostic data, users can access the website to take advantage of all
functionalities made available by the company. These functions include the
following:

7

Introduction

• Show in detail the status of digital or analog sensors that detect that a
vehicle is operating;

• Follow a vehicle on the map as it travels, view the route and all activities
done during a day. Possibility of highlight stopping points with time
duration;

• Display the current position of all machines on the map or of a specific
fleet;

• Check the status of activities of each area by accessing real-time and
historical data with details of sensors for each of the positions surveyed;

After analyzing the company’s website, it can be seen that they also
use google technology to give function to their maps. However, the user
experience at the level of graphical interaction with the application does not
provide great value. Figure 1.4 shows one of the pages of the application,
where the work areas are managed together with the machines.

Figure 1.4: WAY web page

8

Introduction

1.3 Goal of thesis

The objective of this thesis is to carry out an integrated development and
design of new software functionalities to an existing system in a company
that impulses Smart Farming, applying software development techniques
considering the user requirements and user experience issues. This work
aims to create new tools as well as update the existing ones, that are able
to meet the new requirements of customers and the agricultural market by
improving the management of agricultural production.

The work will be validated by testing with real users who have real needs,
and provide feedback as the new tools are released.

9

Chapter 2

Architecture of System

In this chapter the overall architecture of the actual system will be presented,
together with a brief presentation of the technologies that compose it.

All design and architecture decisions were made by previous engineers
that had the opportunity to work on this project. These decisions were taken
considering different factors such as a possible growth of the system due to
an increment in connections, changes in requirements by stakeholders, ease
to modifications to code, among others.

A graphic representation of the system and its components is presented
in figure 2.1.

10

Architecture of System

Figure 2.1: Diagram of system architecture

2.1 Control units

The structure of this monitoring system has several pillars and basements,
nevertheless one of the most important parts of this project are the control
units. They allow the connection between the receiver and the machine
by using a TCP connection (Transmission Control Protocol) through the
modem inside the control unit. Consequently, all data transmission is sent
to a domain instead of a specific IP address, since in case of changes in the
address of the system server, all functionalities can keep working without
the necessity of updating the firmware of the control unit.

Agricultural machinery and platforms vehicles are very diverse and fulfill
different goals in their industry, therefore control units cannot be the same
for all machines. Every control unit is assembled and configured depending
on its final purpose, which means that electronic components inside the
devices can also vary. For the matter of this project, there are 10 different
types listed as follows:

11

Architecture of System

• Baler: Mostly used for hay baler farming machines

• Vineyard Tractors: Used in generic type of tractor of a specific company

• Construction Machines: Used for electric self-lifting scaffolding of a
specific company

• GPSB3M4: Used for GPS monitoring of a specific company’s machines
with focusing on preventive maintenance of 4 specific parameters

• GPSB3N2: Used for monitoring of construction machines, such as
hydraulic systems for lifting with the addition of two machine type-
specific parameters: height and tilt of the telescopic boom

• GPSB3N3: Used for monitoring of construction machines, such as cranes

• GPSB10N5S3: Used for monitoring of construction machines, such as
cranes with the addition of parameters taken directly from the car’s
engine control unit from the CANbus line

• Precision: Used for electric self-lifting scaffolding of specific machine
models with a specific position-precision request within a range of less
than one meter from the machine

Figures 2.2 and 2.3 show two different types of control units that are
applied in different farming machines.

Figure 2.2: WiRail control unit - Vineyard Tractors type

12

Architecture of System

Figure 2.3: WiRail control unit - Precision type

At the beginning of a connection, every control unit or asset receives a
command that declares the configuration that defines the behaviour with
which it should operate. This command corresponds to a transmission string,
where every sub-string is separated by a comma and ended by a carriage
return followed by a lined feed, i.e. \r \n. Once the connection has been
established and the control unit has received its configuration through a
command, it starts to collect the specified data, save it on its own sd and
then send them to database through the receiver connection.

The process of transmission of strings occurs in an interval of time that is
predefined by the clients or by the administrator of the company, it usually
goes from every 2 minutes to every 8 minutes and it follows the next pattern:

1. A new communication socket is opened and the control unit sends its
parameters such as serial number.

2. The receiver recognises the other part of the connection and sends the
command that will define the behaviour of the asset.

3. The transmission of strings starts following the defined interval.

As previously mentioned, all control units are different and have different
parameters that they can measure. Hence, strings sent from the asset can
be different in quantity of measured parameters and type of the represented

13

Architecture of System

data, whether they are an integer or a float point number, a Boolean or
a string. Nevertheless, these strings can be classified in two types: header
string and node string.

A header string is used as the first package sent after the connection
for the receiver to recognise the asset. It contains the following standard
parameters:

• Hub ID: A unique serial number that identifies the control unit. It is
defined by fabric and used as an identifier in the system.

• Value: A specific value for the machine’s time in sending a header string

• AssetV: The value in milliseconds of the period that the asset sends a
string

On the other hand, a node string contains all the information about the
state of the machine and its parameters. As an example, a Precision type
control unit has the following parameters:

• Presenza Uomo: This boolean parameter is used to identify whether a
person is present inside the vehicle.

• Hand-break: Corresponds to a boolean parameter that shows if the
hand-brake of the machine is on or off.

• Alternator: The proper operation of the alternator with preventive alerts
in case of failure.

• Latitude: Represents the latitude coordinate of the GPS inside the
control unit.

• Longitude: Represents the longitude coordinate of the GPS inside the
control unit.

14

Architecture of System

• Point Of Interest (POI): Represents the precise GPS coordinates to
schedule the geographical point of start or end of a specific processing.

• Speed: Integer value that shows the speed of the vehicle where the aset
is installed.

• Acknowledged (Ack): Corresponds to a boolean parameter that can
be altered by the user, depending on whether he or she recognises the
activity of the running control unit.

In order to not overflow the communication channels, there is a maximum
limit of 30 strings per minute; when a limit violation occurs, the receiver
closes the connection and sets the control unit to an alarm state, sending a
notification to the client.

Figure 2.4: Control unit already installed in machine

15

Architecture of System

2.2 Receiver

The receiver is modelled as a Client-Server model, which is a distributed
architecture that partitions tasks between two subjects, one being the server
or provider of resources, and the other being the client or service requester.
This complex structure is mainly in charge of handling the multiple connec-
tions of control units, using the TCP method through the use of sockets to
collect data these assets send constantly; with a maximum capacity of 500
connections simultaneously.

As mentioned in the previous chapter, control units are classified depending
on their final purposes, therefore inside the receiver all types are modelled as
different services with functionalities that change in base of the requirements.
Consequently, the complexity of this structure increments based on new
developments and requirements that the market or final clients could have.

Currently, the main functions that the receiver implements are the follow-
ing:

• Connection manager: As already mentioned, the receiver is in charge
of managing the connections of the machines and recognizing them to
iterate over the data they send. The receiver handles also in a case
where a control unit is not recognized or does not exist at all.

• Connection notifications: Every time a recognised machine connects,
if so desired by the client, a connection notification is sent to those in
charge of the control unit.

• Parameter management: The receiver is capable of modifying parameters
belonging to the machines if the commands so indicate.

• Fault notifications: Every time a machine presents incorrect or unusual
parameters, which could imply a problem with the machine, it takes

16

Architecture of System

care of notifying clients and interested parties about the status of the
asset.

• Data correctness verification: Since some control units send a lot of data
in a short time, it is possible that some measurements are not exactly
accurate. For this reason, a verification of the parameters received by the
control units is performed inside the receiver and managed depending
on the case.

The technologies implemented in the receiver and its structure allow this
component to be scalable in the amount of functionalities it can execute.
This gives way for future works, where functionalities can be added to make
this component more versatile, complete and optimal.

2.3 REST API (Server)

The server is modeled with a microservices architecture, which corresponds
to a typology of software development that works as a set of small services
that run independently and autonomously, providing a completeness of the
application at the time of joining them. Each microservice has a unique
database and performs specific functions, yet they can communicate with
each other through the use of APIS.[5]

This type of architecture has remarkable advantages compared to other
types of architectures. The following is a list of the main advantages:

• The use of a microservices architecture avoids overloading the application,
since each service is independent and can operate autonomously;

• In the event of failure of one of the services, the entire application is
prevented from crashing, since the other microservices can continue to
operate;

17

Architecture of System

• This type of architecture allows flexibility when adding new services in
case of application growth, since it is not necessary to modify the entire
infrastructure of the project to add a new service;

• In case of maintenance, costs are more economical and efforts more
simple, since it is not necessary to intervene on the entire structure;

Figure 2.5: Microservices Architecture pattern

The REST API in this project is mainly in charge of controlling data
access permissions and responding to requests made from the client-side. In
addition, inside the server are stored some elements that are used as common
resources of consumption of the client, such as user guides, images of the
machines, documents for mails, among others.

18

Architecture of System

2.4 Client-side (Frontend)

The client-side or frontend corresponds to the interactive part of the project
that links all the components to make them visible and available to final
users. This component is based on Angular -technology that will be explained
later-, which means that the web application is developed using the concept
of dynamic Single-Page Applications (SPAs).
A SPA is a web application that handles user interaction in such a way
that it dynamically rewrites the entire contents of the current web page,
showing the user the new data from the server. This contrasts with the
default method that web browsers have of loading entire new pages. Thus, it
allows the application to be more efficient by increasing the transition speed,
therefore eliminating page refreshes and making the website feel more like a
native application.[6]

Figure 2.6: SPA lifecycle vs Traditional Page lifecycle

An nginx server has been used in this project as a support to issue the

19

Architecture of System

REST API calls. In addition, a famous software called Gzip has been used
to reduce the dimensions of the transferred pages, which means an increase
in the loading speed of the pages.

The application is composed of several pages that provide the necessary
functionalities for the administration of the control units and the visualization
of the data collected by them. In the following sub-chapters the main pages
and their features are presented.

2.4.1 Map

This page corresponds to the homepage of the application because it shows
one of the most important information for the final users, the geographical
location of their machines. On this page all the machines associated to the
user’s account can be displayed. There are two display modes available for
the type of machines under study. The first one is "Last Position" which
shows the last GPS position retrieved by the control unit, and the second
mode called "Date Range" shows the route made by a machine between the
two selected deadlines.

The map service used is that of Google, due to its immediate integration
with Angular. In addition, this API offers the ability to customize the maps,
choosing the type of layers to use and the option to hide information that
may be unnecessary for end users, such as bars, pharmacies, supermarkets,
among others, rendering more visible streets or field boundaries.

Among the graphical decisions oriented to the user experience that were
made are the following:

• Each control unit is represented by a circle of a random color, differenti-
ating it from the others;

• The representative circles are clickable, showing the detail of the last con-
nection and giving the possibility to go to other pages of the application

20

Architecture of System

to see more detailed information;

• If the "Date range" mode is selected, the trip display allows you to
differentiate the starting point and the end point using two different
icons;

• A search bar is provided so that users can insert a specific machine and
not see all existing information on the map;

Figure 2.7: WiRail Map homepage

2.4.2 Graphics

The charts section is available only for some types of machines, so those users
whose accounts have one or more machines of the specific type associated
with them, can access and view data on these charts. This functionality
receives a date range and an identifier that is sent through the search engine
to look for the specific control unit. The graphed data is as follows:

• Speed versus time

• Instantaneous consumption versus time

21

Architecture of System

• Motor loading versus time

• Engine RPM versus time

Figure 2.8: WiRail Graphics page

Since the amount of data collected by the server is high, at the time of
graphing it has been decided to filter and normalize the data that are very
similar to each other, otherwise the page would take a long time to load and
create the graphs. In this way, if a user requests graphs with a range of one
month, the data displayed will not be for every second, but for every hour.

In the case that a user does not specify anything in the search, the
application will show the data of all the machines that have registered
activities within the selected date range. This does not make much sense
in terms of user experience, since it does not add value to the user not
being able to visualize separately how their machines behave and thus make
comparisons that can impact the management of agriculture.

These charts are developed with the Chart.js library, which is fully com-
patible with Angular and receives constant updates. This is an important
starting point, since in order to update and realize new functionalities, it is
necessary to use libraries that are up to date with the latest technologies.

22

Architecture of System

2.4.3 Reports

Reports are one of the main tools of the application to illustrate the data
collected by the control units. Currently, the data visible on each machine
depends on the typology of the control unit, since as mentioned in previous
paragraphs, each asset takes data depending on the assembly and customer
requirements. Figures 2.9 and 2.10 show a graphical display of data from
two different machines.

Figure 2.9: WiRail Report GPSB3N310

Figure 2.10: WiRail Report Precision

Data visualization is organized by "jobs", this means that every time
a machine is turned on, an activity entity is automatically created and
associated to the data collected by the machine on the corresponding date,

23

Architecture of System

having also the possibility to create it automatically. Then, inside the reports
page the user can visualize all the data organized by the activity performed.

2.4.4 Documents

The documents page has all the bureaucratic management for the uploading
of documents related to control unit procurement contracts. This page
allows users to fill in their administrative data to generate all the necessary
documents for signing to the contract for the use of the service. In addition,
users belonging to the administrative part can modify the information entered
and view historical documents.

2.4.5 Config

Within the configuration page, users are given the ability to view the full
list of their control units along with details related to recent activity. Final
users can view two tabs, one allows them to create a scheduled job instead
of being created automatically by the control unit and another tab to review
the maintenance status and the hours remaining for maintenance.

The functionalities available on this page depend on the role that the user
has in his account, for example, an administrator of the company has access
to the entire list of control units, to the list of all associated companies and
to all created users, but a user who has contracted the services to control his
tractor can only see the details of his machine.

2.5 Database

For any IoT system to work properly, database is essential. Therefore, having
a well structured and secure database according to the necessities of the
system can differentiate a good product from a precarious one.

24

Architecture of System

Database on this project is organised as a non-relational database, as
a consequence of the properties that define it, such as the different types
of control units that can exist. Thus, it gives a possibility of an ease in
producing new modifications or adding new entities.

Specifically, the database is organised in documents representing entities
that are defined according the requirements of the project. Here is a list of
all existing documents:

• Assets: All information related to control unit is inserted here.

• Companies: Manages information about companies that are present in
the project.

• Docs: Corresponds to a backup of all bureaucratic procedures associated
to the sell of a control unit.

• Jobs: Saves information about location and data of the activity executed
by a control unit.

• Push: Manages information about the notification system of the project.

• Sensor-Data: All parameters gathered by the control units are inserted
here.

• User-Tokens: Saves the status of the registration of a user.

• Users: Manages personal information of users affiliated to the program.

This project depends on database, whether it is to save all data collected
from control units or to show important information to users. The incredibly
big amount of data that a system like this collects, leads to the use of
denormalized data in their database. This ensures a very high performance
in read/write queries due to the minimization of the number of physical

25

Architecture of System

tables that need to be accessed in order to retrieve the data [1], leading into
less access to disk locations.

The database program chosen is MongoDB, since it is a source-available
cross-platform document-oriented database and it is classified as a NoSql
database, hence, all data is denormalized. More details about the technology
are explained in chapter 2.6.1.[7]

2.6 Software Technologies

An IoT system of this caliber needs to be well integrated in all of its parts,
in consequence all chosen technologies that build this project are worldwide
known and used for even bigger platforms, such as Microsoft Office, PayPal,
Gmail, among others.

The following chapters show the technologies that compose the system
together with a general decription of their roles.

2.6.1 Docker

Docker is an open-source project that automates the process of deployment
of an application by using the concept of software containers. Thus, giving
an extra layer of abstraction and automation for having virtual applications
in multiple operating systems.

A software container is a standard unit that through packaging all the
dependencies and the code itself, allows the running of an application in
a quick and reliable way in different computing environments[8]. A visual
representation of how a container is composed is available in figure 2.5.

26

Architecture of System

Figure 2.11: Software containers structure

Docker has been a revolution in the world of software development, since
it has allowed to replace the use of virtual machines that can emulate any
operating system over the native one of the server. However, the use of
virtual machines means a great cost in terms of data storage and build
speed. On the other hand, technologies that use containers, such as Docker,
deliver good results when it comes to build speed, since they include only
high-level software and are easy to modify and rebuild. Furthermore, they
offer simplicity when developing an ecosystem, since there are varieties of
public containers already developed for direct use in databases, messaging,
among others.[9]

In order to create the containers, Docker defines a new concept called
Images. These images are basically instructions or templates on how to
create a container. This means that all the necessary instructions to carry
out the building are present within this document. Specifically, it is made
up of steps or layers that follow a logical order to, from a base image, create
a real container by adding the necessary pieces.

Inside this project, Docker has been used for building all parts of the
architecture, i.e, the receiver, the REST API server and the client-side
application.

27

Architecture of System

DockerFile

As mentioned in the previous paragraph, Docker is present in all three main
components of the project. For this reason, to create the 3 corresponding
images, a tool of this technology called DockerFile is used. DockerFiles are
text documents that contains all the commands a user could call on the
command line to assemble an image [10].

All Dockerfiles used for the receiver, API server and client-side app are
available in figures 2.6, 2.7 and 2.8 respectively.

Figure 2.12: Receiver DockerFile

Figure 2.13: REST API Server DockerFile

Figure 2.14: Client-side DockerFile

2.6.2 MongoDB

As presented in previous paragraphs, the technology in charge of managing
the database of this project is MongoDB. This program has an architecture

28

Architecture of System

composed of 3 parts: Routers, Config Servers and Shards.

Figure 2.15: MongoDB architecture

Routers, also called mongos, are in charge of instantiating routes for the
input queries, in addition to writing the operations to the shards within the
clusters. On the other hand, Config Servers store in memory the metadata of a
shared cluster, which represents the state and organization of all components
and data within the cluster. Finally, Shards correspond to the data containers.
From version 3.6 of MongoDB, the shards must be deployed as a replica set,
in order to ensure redundancy and high availability.

For the purposes of this project, the paid service of the MongoDB company
called MongoDB Atlas is used. Corresponds to a cloud service that manages
databases using mongo. The structure offered by this service corresponds to
a Cluster with only one Shard, a Replica Set that consists of a primary node
and two secondary ones, as can be seen in figure 2.10 [11].

29

Architecture of System

Figure 2.16: MongoDB Replica Set

The architecture previously presented allows MongoDB to offer the fol-
lowing characteristics:

• Scalability: It is always possible to add new shrads in order to increment
size of database.

• Connectivity: Thanks to developed drivers connection is almost imme-
diate.

• Schema flexibility: There are no limitations on how to build documents,
hence they can contain any type of data.

• Data redundancy: As a consequence of replica sets, data cannot be lost.

2.6.3 Angular

Angular is a specialized framework for the development of web and mobile
applications mainly for companies that require a robust and progressive
system. This technology was developed and is currently maintained by
Google, which is why many large companies in the world use it, such as Delta,
Santander banks, Paypal, Overleaf, among others. Despite the difficulty to

30

Architecture of System

implement it within a system, once overcome, it can lead to very complete
products.

There are many aspects in favor of using this technology, since it is created
by a serious company and present all over the world, it can be expected
that any problems related to the framework will be solved in a relatively
immediate way. Moreover, this ensures that the updates will last for a
long time, which means that a Long Term Support is guaranteed. Another
advantage is the integration with the Material Design language, which is also
developed by Google and is friendly to almost any user. The same applies for
the components developed by Google, which allows a quick and immediate
integration into the systems to be developed.

In the context of the project, one of the advantages described above
is exploited, which corresponds to the integration of one of the products
developed by Google: Google Maps. The role of this product within the
system is essential, since it uses the geopositioning of the machines to monitor
various factors that ultimately give added value to customers.

Undoubtedly, Angular corresponds to a complete framework for developing
a serious and robust application, which has a high learning cost but with
very rewarding performance rewards.

31

Architecture of System

Figure 2.17: Angular 8 Architecture

2.6.4 Spring Boot

Spring Boot is an open-source micro framework created by Pivotal. This
technology provides a platform for Java developers to start developing a
self-configurable, production-grade Spring application.

There are other Spring frameworks available in the market, these offer
dependency injection functionality that allows objects to define their own
dependencies, which once ready the Spring container will inject into them.
This is useful when developing applications consisting of isolated components
ideal for microservices or distributed network applications. However, these
frameworks require significant amounts of time and knowledge to configure,
setup and deploy applications. This is why Spring Boot comes into play,
as it mitigates all these efforts and reduces them thanks to 3 important
capabilities:

32

Architecture of System

Autoconfiguration

Autoconfiguration means that when an application is initialized, it already
has pre-configured dependencies that do not need to be configured manually.
This is a consequence of the fact that Spring Boot comes with built-in
autoconfiguration capabilities that will generate the packages depending
on the imposed settings. One of the main advantages of this capability is
the high speed of spring-base application development and the reduction of
human errors.

Opinionated approach

This capability corresponds to the use of an opinionated approach to add
initial dependencies based on the needs of the project. Therefore, following
its own judgment, Spring Boot decides for us which packages to install and
which values to use. The needs of the project can be defined during the
initialization process, where the process of choosing between multiple starter
dependencies called spring starters must be carried out.

Standalone applications

Finally, this technology helps developers to create applications that simply
run, allowing the creation of software that do not need an external web
server, by combining with a server such as Tomcat or Netty in the initial
phase [12].

In the context of the project, this technology was one of the important
factors for the initial development of the receiver and server at code level,
since being a relatively small development team, it made the work easier in
terms of time and human efforts. However, this advantage is not the only
reason to use Spring Boot within the system, in addition to the above, it has
a facility to integrate with databases and modules that are of great help to

33

Architecture of System

complete all possible axes of a server. The main modules made available are:

• Spring Boot Starter Web: This submodule allows the construction of a
web application with little configuration compared to other alternatives;

• Spring Boot Starter Security: Corresponds to the module in charge of
security. It is characterized by reinforcing all the restrictive policies of
the created endpoints, thus creating a configuration that concentrates
everything in a single endpoint;

• Spring Boot Starter MongoDB: Spring provides drivers already created
and complete for the integration of databases such as Mongo within the
applications built, again requiring configuration. It also takes care of
the mapping of java objects, allowing database operations to be only
function calls. However, this module works only for simple operations, in
the case of wanting to make more complete calls, it must be integrated
with other tools such as aggregations;

• Spring Boot Starter Validation: Allows the automatic management of
input validation operations within the REST API server;

• Spring Retry: Provides the ability to automatically re-invoke a failed
operation, allowing the application to continue running despite errors
that may be transitive or momentary;

• Spring Boot Starter Test: Specialized module to create necessary tests
within the created application;

2.6.5 Kibana and ElasticSearch

The importance of logs in a company that manages tons of data becomes
paramount. Whether it is to detect common mistakes made by users, devel-
opers, bugs in code or just for security purposes. For this reason, the system

34

Architecture of System

has its own logging technique that connects to Elasticsearch and Kibana,
allowing the developing team to do specific queries to check at logs and find
errors.

2.6.6 Digital Ocean

Digital Ocean is an American provider of private virtual servers used to
deploy the project into the cloud. This technology uses the concept of virtual
machines (VMs), specifically, Linux-based VMs that run on the Digital Ocean
hardware.

Currently, this project is using 3 instances of virtual servers:

• Maia: This server has the purpose of containing stage developments of
the 3 main components: receiver, REST API server and frontend.

• Elk: The Elk server contains mainly the frontend and the REST API
Server.

• Theo: Its purpose its deploying the receiver with all the necessary
parameters to accomplish its purpose.

2.7 Programming Languages

Within the present project there are two main programming languages,
whose choice was strongly linked to the technologies described above due to
compatibility. The programming languages used are Java and Typescript.
The former is used for the components associated with the receiver and the
REST API, and the latter for the frontend integration with Angular. The
following is a brief description of the mentioned languages and their uses in
today’s software development world.

35

Architecture of System

2.7.1 Java

Java is a high-level, class-based, object-oriented programming language that
is designed to have as few implementation dependencies as possible [13]. It is
a general-purpose programming language, which allows to build applications
for various platforms without the need to recompile them, such as televisions,
tablets, cell phones, computers, among others. This language adheres to the
WORA requirements, which stands for Write Once Run Anywhere.

The syntax of this language is very similar to that of C and C++, but has
less low-level qualities than both. However, it is highly used for developments
that provide dynamic capabilities that are usually not available in low-level
languages. For the purposes of this project, this programming language has
been used to develop the receiver and the Rest API, due to its compatibility
with Spring Boot.

2.7.2 Typescript

TypeScript is a free and open source programming language developed
and maintained by Microsoft [14]. It corresponds to a somewhat stricter
evolution of Javascript, which adds strict scripting to the language. Being
an evolution of Javascript, programs written with Javascripts can be valid
within a Typescript program.

This language can be used to create both client-side and server-side
applications, however for the purposes of this project it has been used only
to develop the frontend side of the system.

The advantage of using TypeScript, is that you can define files dedicated
to the variable type information of existing javascript libraries, as C++
header files do when describing the structure of objects. This allows easier
recognition of all functions and values defined in the files.

36

Architecture of System

2.8 Performance

To better understand the capabilities of the current infrastructure to support
the project, it is important to evaluate and analyze the performance of the
architecture with the current number of users, control units and data traffic.

Currently, the client-side or frontend together with the REST API server
are hosted on a machine with 4 GB RAM, 2 vCPU and 80 GB disk memory.
This server is physically located in Frankfurt. The features of this server
make sense as the amount of users and, therefore, API requests is increasing,
due to the growing market.

Figure 2.18: CPU usage of frontend and REST API

Figure 2.19: Memory usage of frontend and REST API

37

Architecture of System

Figure 2.20: Bandwidth of frontend and REST API

On the other hand, the receiver is hosted by a machine with 2 GB of
RAM, 2vCPU and 60 GB of disk memory.

The company has more than 600 registered control units, however the
maximum number of simultaneous connections never exceeds 200. For this
reason, the graphs shown correspond to 170 simultaneous connections for
the receiver and about 20 - 30 user connections to the site per day.

Figure 2.21: CPU usage of receiver

Figure 2.22: Memory usage of receiver

38

Architecture of System

Figure 2.23: Load (1|5|15) of receiver

The database on the other hand, is hosted in Azure through MongoDB
Atlas. The configuration of this machine is similar to that of the receiver
with 2 GB of RAM, 2 vCPUs and a disk memory usage of 10 GB. At the
moment, the memory used by the database is approximately 3.1 GB as can
be seen in the graph of figure 2.24. In this case, the machine is underutilized,
since on average and at most only 4% of the CPU is used.

Figure 2.24: Database storage usage

From the graphs we can see that the server and client-side is at a regular
performance, since the CPU does not take values higher than 50%, however,
the memory usage remains constant at a percentage close to 90%. This
means that an upgrade should be performed in the near future to meet the
demands of the requests.

Finally, the receiver is in a process of growth due to the increasing number
of existing control units, however, for the purposes of the current architecture,
the only parameter that is at risk would be Memory and Load, since Load is
very close to being 1, so the queue is filling up and there is a risk of exceeding
the threshold that slows down the services.

39

Chapter 3

Preventive Software
Maintenance

In this chapter all the work done prior to the development of the new
functionalities will be presented.

Software maintenance is the process of modifying and updating the soft-
ware according to the customer needs or changes inside the system where the
program is based. This process has several objectives such as correcting bugs
or issues, to improve overall performance or to upgrade the user experience
while using the software.

3.1 Initial situation

One of the initial challenges on this thesis was to study the existing application
and understand the distribution and function of the components present,
with the objective of performing a panoramic analysis on the operation and
interaction with the user. Once the analysis was done, it was concluded that
the application had a regular functioning with the following problems:

40

Preventive Software Maintenance

• Data integrity issues: There are problems with data integrity in the sense
that the variation of one or more characters can result in application
crashes or delivery of incorrect results, as for example in the documents
section, where there can be two entities with the same ID but with
different upper and lower case letters.

• Outdated components: Within some components that depended on
external libraries, problems were found with functionality that had been
deprecated due to updates and were still in use, which can lead to
malfunction and loss of data.

• Verification Problems: There were some forms that could be sent empty,
which generated confusion on users and administrators. Moreover, there
were not verification of data types, so if a field was supposed to be a
number the user could write a phrase with alphabetic characters. There
was not enough verification to allow sending requests with parameters
that were mandatory but empty, such as in the documents section.

• Malfunctioning API endpoints: Some endpoints in charge of delivering
information to the client-side to visualize some views were not working
correctly. This happened because some of the internal structures of the
sensor data were modified without updating the services in charge of
returning them, so it generated an internal error in the application that
prevented to visualize, for example, the graphs.

41

Preventive Software Maintenance

After the generated analysis, most of the bugs and errors were individually
identified through manual integration testing in order to mitigate them. Once
identified, the code of the parts involved was modified to correct the operation.
As an example, we take two specific cases, the first one corresponds to the
error shown in figure 3.1, whose reason was an error in the API service due
to the fact that the method was not updated while the data structure to
which it queried changed. The second one, corresponds to the possibility of
sending "forms" of invalid documents to the database, and that the server
processes them to be accepted even though they are empty or erroneous.
For this specific case, the client-side component was modified to perform
verification using Angular technology. In figures 3.3 and 3.4 is present the
modified code that solved this issue.

Figure 3.1: Graphics page error

42

Preventive Software Maintenance

It was possible to obtain a good starting point for the new interfaces after
the identified problems were solved, since this allowed to attack every weak
point of the project and repair them in order to get a more solid basement.

Figure 3.2: Empty Documents saved correctly

43

Preventive Software Maintenance

Figure 3.3: Validation code introduced for Documents

44

Preventive Software Maintenance

Figure 3.4: Validation added to "Save Document" function

3.2 User stories analysis

To better understand the initial situation of the application, an analysis of
the user stories -a tool used in software engineering to describe a functionality
from the eyes of a final users- was performed. A user story is composed as
follows: "As a role, I want to action do that benefit". Then, this same
method will be used at the end to describe the newly added functionality.

Within this project there are 5 different roles: System Administrator,
WiRail Administrator, Company Administrator, Service Company user and
Client Company user. In this context, user cases were made for the last 3
user types, since administrative roles have access to all functionalities. Below
are 3 tables with the user cases, a column to check if it was implemented and
another one to define if the operation is correct or incorrect due to failures

45

Preventive Software Maintenance

or bugs.

Table 3.1: Company Administrator user stories

User story Implemented Correctly
Functioning

As a company administrator I want
to check all the control units

Yes Yes

As a company administrator I want
to know the position of my control
units

Yes Yes

As a company administrator I want
to check all documents related to con-
trol units

Yes Yes

As a company administrator I want
to see the position of my control units

Yes Yes

As a company administrator I want
to see graphed information gathered
by sensors so that I can check all
machines’ performance

Yes No

Table 3.2: Service Company user stories

User story Implemented Correctly
Functioning

As a service company user I want to
complete all bureaucratic documen-
tation

Yes No

As a service company user I want
to know the position of my client’s
control units

Yes Yes

As a service company user I want to
create accounts for my clients

Yes Yes

Although not all user stories are presented in the three tables above, it
can be seen that there are indeed problems with the operation of some of
the functionalities, causing them to not be able to enjoy the full potential of

46

Preventive Software Maintenance

Table 3.3: Client Company user stories

User story Implemented Correctly
Functioning

As a client company user I want to
program an activity for my machine

Yes No

As a client company user I want
to download the reports of my ma-
chine’s activity

Yes Yes

As a client company user I want to
receive a monthly report mail of my
machine’s activity

Yes Yes

As a client company user I want to
lock my control unit

Yes Yes

a platform of this kind and causing the user to have a bad experience when
using the application.

47

Chapter 4

Smart Farming

The following chapter will make an outline of the whole process of design
and development of the project, taking into consideration all the steps
performed that allowed to reach the final result and product. In particular,
it is intended to show all the software development carried out with the
technologies described above together with all its stages, i.e. the initial
requirements analysis, the limits of the approach during the development of
the tools and the successive operational modality.

The main focus of the work carried out always corresponds to the applica-
tion of tools that facilitate the application of smart farming in the company,
delivering new value propositions to the final customers that improve the
management and control of their machines.

4.1 Project approach

The initial approach to a new project tends to be impulsive and full of ideas
that sometimes exceed its limits, especially in areas of software engineering
where there is a wide range of development possibilities. For this reason,
it is important to establish a line of organization of the work to be done,

48

Smart Farming

establishing clear and achievable objectives considering the own resources
and limits, putting into practice the multiple strategies that exist for the
development and design of information technologies.

In this line, it was decided to opt for existing strategies that guide and
define the development processes, such as agile methodologies. These method-
ologies allow the development of new functionalities to be more flexible,
accepting changes along the way depending on the needs of the users and the
team itself. At the same time, the new tools created are released consistently,
with the possibility of improvements and response to possible changes in a
fast way. However, due to the characteristics of the team and the company,
some applications of the strategy had to be adapted.

Among the principles applied to carry out the project, the following were
considered:

• Software always in operation before comprehensive documentation

• Collaboration with the customer rather than contractual negotiations

• Responding to change rather than sticking to the plan.

Following these principles, the project was carried out by holding brief
meetings at the beginning of each week to establish the weekly objectives,
which could be subject to change depending on the client’s needs. Thus,
tools such as Trello were used to organize the activities to be developed,
producing a Backlog of things to do, describing the objective of each activity
and its priority; in addition, the Issues section available in Github were used
to register every time an error was found or a change was required from the
users, defining priorities per task and responsibilities.

49

Smart Farming

4.2 User Stories for new features

In order to better organize the further development and to document the new
features, it was decided to perform an analysis of the new user requirements
through User Stories as was done in the previous chapter. Thus, the stories
were divided by type of user to obtain the following definition:

Table 4.1: Client Company and Service Company user stories

User story
As a client/service company user I want to check the current activities of
my machines
As a client/service company user I want to check the planned activities
of my machines
As a client/service company user I want to check the completed activities
of my machines
As a client/service company user I want to see details of my machine’s
current activity
As a client/service company user I want to write notes on the creation of
my activities
As a client/service company user I want to delete a planned activity
As a client/service company user I want to see reports of a completed
activity
As a client/service company user I want to confirm a current activity so
that I can acknowledge the job
As a client/service company user I want to confirm a completed activity
so that I can acknowledge the job
As a client/service company user I want to draw a field on the map of
my work area
As a client/service company user I want to associate my working area to
my activity
As a client/service company user I want to search activities based on
parameters of my machines
As a client/service company user I want to identify my field with a name
As a client/service company user I want to browse my fields and see
details and location

50

Smart Farming

Table 4.2: Company Administrator user stories

User story
As a company administrator user I want to browse all current activities
of all machines under my company
As a company administrator user I want to browse all planned activities
of all machines under my company
As a company administrator user I want to browse all completed activities
of all machines under my company
As a company administrator user I want to browse all fields created by
service users and clients
As a company administrator user I want to delete a field of one of my
service users or clients
As a company administrator user I want to see technical details of the
machines under my company
As a company administrator user I want to see reports of my machines’
implements

As can be seen in tables 4.1, 4.2 and 4.3, the user stories are developed in 3
main elements: activities, fields and farm implements. Likewise, these stories
are useful to guide the line of work and to achieve a better organization
of the time available by concentrating on these 3 elements and developing
functionalities that meet the user’s expectations, always considering variables
such as security, good programming and code writing practices, application
integrity and performance.

Although user stories superficially define an end goal on the part of the
users, they do not describe all the additional work that must be done to
meet these requirements. For example, when modifying an entity used to
represent activities, all new services must be modified and created to meet
the end goal.

51

Smart Farming

Table 4.3: WiRail Administrators user stories

User story
As a WiRail administrator user I want to add a current activity for all
machines under all companies
As a WiRail administrator user I want to browse all current activities of
all machines under all companies
As a WiRail administrator user I want to plan an activity for all machines
under all companies
As a WiRail administrator user I want to browse all planned activities of
all machines under all companies
As a WiRail administrator user I want to browse all completed activities
of all machines under all companies
As a WiRail administrator user I want to confirm activities for all
machines under all companies
As a WiRail administrator user I want to browse all fields created
As a WiRail administrator user I want to delete a field
As a WiRail administrator user I want to see technical details of the
machines under all companies
As a WiRail administrator user I want to add farm implements to
machines of all companies
As a WiRail administrator user I want to specify measure parameters for
implements
As a WiRail administrator user I want to see reports of implements
already on fields

4.3 Activities as center of management

The activities, or in its original language "commesse", correspond to the
system unit that manages all the jobs performed by the control units. The
presence of these entities is absolutely primordial, since they allow the
connection between the control unit and the web site to work, in order to
record all the data collected during the activity’s duration. This is because
the first action that a control unit performs is to search for an activity to
connect to, and therefore, without the existence of a "commessa" it would

52

Smart Farming

not be possible to save the data in the database. In addition, these allow
to establish certain characteristics to the jobs, such as the job’s description,
registering the associated responsible, the place where the activity occurs, the
date when it is carried out, among others, and it also allows the association
with all the parameters that are collected by the site.

Currently, there are two types of activity, the first one is the automatic
activity and the second one is the manual activity. More details about both
types are presented below.

• Automatic Activities: The automatic activities correspond to those
jobs in which the user does not make a record of the activity through
the service prior to the connection or switching on of the control unit.
As mentioned in the previous paragraph, it is mandatory that there is a
current activity for the correct operation and connection of the control
unit with the server, this is because at the connection time with the
server, it is consulted if there is an activity with a start date less and
end date greater than the current time. If this does not happen, an
activity is automatically created, whose duration is from the moment of
connection of the device until 23:39 of the same day. Thus, each data
that the control unit registers within this data range is associated with
the automatically created job.

• Manual Activities: Manual activities are all those registered through
the web site, prior to switching on the control unit and connecting to
the network. These can be entered thanks to the provision of a "New
activity" functionality within the application. Consequently, at the
moment of connection, if it is turned on within the range specified in
the activity, the control unit associates it directly by displaying the
information on the screen and collecting the data within the job.

53

Smart Farming

4.3.1 Previous Activity Management

In the version prior to the intervention of the application, the management
of the activities or "commessa" took place inside the configuration tab of the
control unit. In this place, under the asset details there was a tab called
"Commessa corrente" to visualize the current job or, if one was not present,
the empty fields to enter an activity manually. As can be seen in figure 4.1,
this screen has two different functionalities. The first of these functionalities
corresponds to a green button with a "+" sign, which cancels all the fields
presented in the tab and replaces the current activity -if present-. For this
reason, a user after entering his manual activity, would press this button
thinking that it was used to save, thus canceling all the data entered. The
second functionality corresponds to a "Reset to previous job", represented
by a simple arrow that, in case a previous activity exists, resets all the form
fields with the activity details.

Figure 4.1: Manual activity configuration

The previously described functionalities caused confusion within users of
all types, including the administrator users belonging to the company, since

54

Smart Farming

it had a strange and unfriendly behavior with the user. Furthermore, there
were problems when saving changes in the activity, as there were bugs and
errors in the code related to the activities. Among these confusions, there
was also the fact that if a current activity was entered for a time after the
current time, the system did not show it and there was no way to modify it,
which generated the feeling that "the application does not work well". The
same thing happened if the end time was changed to an hour earlier, there
was no way to verify if the change was actually made or neither modify it.

The above described and the analysis made at the beginning, led to the
conclusion that greater importance should be given to the management of
activities, since they are the basis that connects all the structures present
in the system, whether it is in reports, in the configuration of the control
units, in the graphs and in the maps. For this reason, it was not sustainable
to have a non-functional and non user-friendly service to manage this issue.
Thus, it was decided to reorganize the whole structure and to create a system
for the management of the activities, which would add value to the users
and facilitate the organization of their work. The following sub-chapters
present in detail the development of what is now called "Activities", which
corresponds to a new option within the main menu and includes a series of
tools to manage the work of the final users.

4.3.2 Current Activities

The first section of the "Activities" tab corresponds to "Current". Within this
option are all those activities that occur within a period that includes the cur-
rent time, i.e. if we represent it with a mathematical language we can define
the following: Start Date Activity ≤ Actual Hour ≤ End Date Activity.

A new view that continues with the general design of the application was
developed, making available a screen divided in two, where on the left side
there are three main elements: a search engine, a list of activities and a

55

Smart Farming

button to create a new activity. Regarding the search engine, it is a tool that
finds the activities from an input entered by the user, which can correspond
to any characteristic related to the job, whether it is the identifier, the
company, the number plate of the control unit, among others. Then, the list
of activities is designed in such a way that it is pleasing to the eye and user
friendly, thus presenting a clickable rectangle with rounded edges for each
activity, where the machine’s number plate, the identification of the activity,
start date, end date and a button to acknowledge the activity are displayed.
This last information can be updated either from the site or directly from
the control panel, the information will always be displayed in real time.

Figure 4.2: Current Activities

The "new job" button offers the possibility to create a new activity with
a friendly and easy to use design. Hence, a modal opens covering half of
the screen, where the user must select a control unit within the list in order
to complete the rest of the data: identification, start date, end date, city,
address, notes and speed if it corresponds to a specific type of control unit. If
the start date is later than the current time, the activity would not correspond
to a current one, so it is redirected to the planned activities tab, which will

56

Smart Farming

be discussed in the next sub-chapter, but if it does correspond to a current
activity, the newly created activity is saved and displayed immediately.

Figure 4.3: New Activity

When selecting a specific activity, the right part of the screen will be
activated showing a card element with all the information separated by
section offering also the possibility to edit the current activity. As seen in the
figures, the first section offers a panoramic detail of the machine where the
control unit is installed, i.e. plate number, client company, service company,
the total working hours of the machine, the telephone number of the person
in charge and if available, a picture of the machine. Moreover, after the
details, the activity section is available, where the user can see more or less
the same variables as when creating a new job, such as identification, dates,

57

Smart Farming

address and a section of notes. In addition, the hours of planned work for the
activity are presented together with a checkbox to show the current position
of the job in case it corresponds to a manually entered activity, whereas in
the case of an automatic one, the last position delivered by the machine is
taken. Finally, if a change has been made, a button will be activated to
update the activity and its components.

Figure 4.4: Activity Details

58

Smart Farming

Figure 4.5: Activity Position when "Show map" is active

4.3.3 Planned Activities

The second section of the new tab "Activities" corresponds to "Plan", which
contains all the activities planned for a period whose initial time is greater
than the current time, so by performing the same mathematical representation
performed in the previous subchapter, the following is defined for the time
of the activity: Actual Hour < Start Date Activity.

This new and innovative tool allows users to plan activities to develop
them later, and thus achieve a more organized and orderly work with respect
to the use of automatic activities. This new view has a similar design to that
of the Current tab, in order to maintain the general style of the section and

59

Smart Farming

allow users to adapt more quickly to new changes.

As in the previous section, the screen is divided in two, where the left
side has a list of all planned activities, a button to create new activities
and a search engine. These elements have the same characteristics as those
present in the Current tab. On the other hand, on the right side there is
the same card with the details of the machine, the activity and the position
where it will be carried out. It gives the possibility to edit the job with
all its parameters, and it adds an extra functionality that corresponds to
the deletion of the planned activity in case of cancellation of the working
activity.

Figure 4.6: Delete planned activity

60

Smart Farming

4.3.4 Completed Activities

Finally, the third section of the "Activities" tab corresponds to "Completed",
which as the name indicates, contains all the activities already completed
within a period of time. Within the "Completed Activity" category are all
those activities that fulfill the following relation: End Date Activity < Actual
Hour. However, in order to request the information, a date limit is requested
within the search so as not to overload the server, so that all completed
activities are delivered within the defined range.

This new tool allows users to keep a history of all activities performed
in order to access relevant information such as the job site, machine details
at the time of the activity and direct redirection to the associated reports,
continuing with the same graphical style of the other sections.

As in the previous two sections, a two-part design is implemented, where
on the left side there is a list of all the activities that meet the search criteria
entered in the search engine, and on the right side the complete detail of the
activity along with the possibility to view the associated reports. In addition,
the user is allowed to confirm the activity even if it is already finished, as
some customers perform this procedure after the jobs have been completed.

61

Smart Farming

Figure 4.7: Completed activities list

Figure 4.8: Completed activities details

62

Smart Farming

4.4 Geofencing

As the name says, Geofencing is a technology based on establishing a ge-
ofence, which basically corresponds to a virtual fence on a real map. This
can be described as an invisible perimeter that delimits a real geographic
area in any possible way and shape. Then, this area is exploited to take
advantage of services that use geolocation through GPS, such as businesses,
markets, restaurants, municipalities, the government and in our case, preci-
sion and telemetry projects. From what the market currently offers, there is
a great need to implement functionalities such as these, as they are gradually
becoming the standard for telemetry companies.

Figure 4.9: Geofence representation

4.4.1 Fields and Work Areas

The integration of geofencing in the project is done through a new tool
made available in the "Acitivity" tab. It allows the final users to design
their own fields or work areas on a map runned by google. This tool called
"drawing" was modified and adapted to the application to have a harmonious
design and operation, also more functionalities were added through "event
listeners", that is actions that are triggered by the occurrence of a specific
event. Specifically, event listeners were added at the moment of clicking on

63

Smart Farming

the map and at the moment of finishing a representative polygon inside the
map.

To accomplish this goal, a new button called "New Field" was made
available that activates the functionality to draw on the map and displays
a couple of key elements to tell the user what to do. As shown in Figure
4.11, a small GIF is provided to indicate how to use the tool and a banner
to indicate that the "draw your new field" mode is active. When the new
"draw" mode is activated, the user can start drawing on the map by creating
points, so that the system takes the longitude and latitude of each one and
saves them in an array when closing the figure, that is when the last point
matches the first point created.

Figure 4.10: New field

Then, a new dialog or pop-up window automatically opens to enter the
field identifier or name, which is unique for each client, along with a short
description or notes about the field characteristics. Notes are not mandatory
but highly recommended to better identify and describe the work to be done
in the field and make it available on future reports.

64

Smart Farming

Figure 4.11: Create new field dialog

4.4.2 List of Fields

As written in the user stories of previous chapters, it is important to keep
a record of all the fields created by the users, since each client may have
different amounts of lands where work is done. Consequently, a list of all the
fields created by the clients was made available, because they’re a natural
way to summarize content and optimize scannability when reading.

65

Smart Farming

Figure 4.12: Elements in list

The list can be displayed automatically after creating a new field, or
simply by using the gray bar with an arrow on the left side of the map. As
can be seen in figure 4.12, each item in the list has the main information of
the created entity, i.e. the field name, the notes entered and the user who
created it. In addition, only for WiRail users, the name of the company of
the field, the service and the corresponding client company are shown, in
order to identify each field in a faster and easier way. Furthermore, there are
two new available functionalities within each card in the list, the first one is
to delete the fields in case of errors or termination of use of the field, and
the second one is the redirection in the map of the field when clicking on it.

Figure 4.13: Delete field

4.4.3 Integration with Activities

The integration of fields into the monitoring system changes the dynamics
with which data collection and activities are handled. This is due to the fact
that, as mentioned in previous paragraphs, the activities have an address
and a city to identify the place of work, however, with the new modifications

66

Smart Farming

it is possible to associate a field directly to the work. This means that within
the information of an activity, instead of showing the address and city to
the operator, the name of the field and the corresponding number are shown
within the list of fields created by that client. Consequently, as shown in
Figure 4.14, the control unit shows the customer the current job together
with the field code and the name of the field to be addressed.

Figure 4.14: Field interaction with control unit

67

Smart Farming

Figure 4.15: Field position reported in activity tab

Regarding the dynamics of the data collection of each activity, it opens
a lot of doors to improve the accuracy of the GPS antennas integrated in
the control units, thus taking advantage of the potential of the IoT tools
under development. For the moment, an algorithm has been developed to
identify each time a point sent by the control unit, whose current activity is
associated with a field already existing in the cast, is within the limits of the
terrain. Thus, if a point sent is outside the limits, it is not recorded in the
database, since it corresponds to an error of accuracy of the antenna, on the
other hand, if a point is sent from inside the field, then it is taken, evidenced
on the map and recorded within the activity.

68

Smart Farming

4.5 Ray Casting Algorithm

As presented in the previous sub-chapter, the introduction of geofencing
and its integration with the activities made it necessary to take measures to
improve the geopositioning service of the entire system. In this sense, it was
thought to take advantage of the new implementation of the fields to delimit
the zones where the control units actually perform the data collection. This
is of great importance, since many times GPS antennas are not accurate
due to errors in the connection with the satellites or the lack of them, which
can lead to errors that mean kilometers of inaccuracy and show incorrect
data to the final users. This in turn could generate a feeling of uncertainty
and distrust in the service delivered by the company, thus harming the
productivity and experience of the final users.

As a consequence of what was presented in the preceding paragraph, an
algorithm must be implemented to detect whether a certain pair of geographic
coordinates is located within a zone on the map delimited by a polygon.
Thus, it was decided to implement the Ray Casting Algorithm, also known
as crossing number algorithm, which corresponds to an algorithm recognized
in 1962 [15]. This algorithm is based on a simple geometrical observation:
if a point moves infinitely along a ray to a defined point and crosses one of
the boundaries of a polygon, possibly many times, it means that this ray is
alternately entering and leaving from the outside to the inside of the figure.
Thus, it is defined that after two border crossings the point moving along
the ray goes to the outside of the figure, i.e., a point is outside a polygon if
its corresponding ray intersects the figure an even number of times, while if
this number is odd, the point is inside the polygon.

69

Smart Farming

Figure 4.16: Implemented code to check if point is inside field

In the case of the present application, the google API related to the
implementation of maps and the delimitation of the zones, has a tool to
determine if a certain coordinate is within a polygonal zone formed by more
than 3 points, however, this functionality is only available at a graphical
level (frontend) and not at a logical or server level. This generates a problem,
since the coordinates are collected in real time by the receiver server and
must be verified at that time and thus, avoid storing in memory data that
are incorrect and inaccurate. For this reason, it was necessary to implement
a solution at the server level that verifies in real time if a point corresponds
or not to an integer data.

In this context, a simplified version of the algorithm was implemented
using a semi-infinite projection of a horizontal ray for each point being
evaluated. Due to the amount of information received by the server, it was
decided to implement this alternative on the test server to evaluate the
behavior in real time, so this functionality is not yet available to final users.

The implemented algorithm performs a check of all the times that this semi-
infinite ray crosses some edge of the figure using a for cycle and validations
which determine if the point is inside or not. The implemented code can be
seen in the figure 4.16.

On the test server, a provisional view was created to visualize the data
collected using the algorithm, resulting in what is shown in Figure 4.17.

70

Smart Farming

As can be seen, all the points that the control unit records are within the
field boundaries. However, because the mode for recording the trajectory
on the map is linear, some lines cross the edges of the polygon without
showing a realistic trajectory. For this reason, these changes are still under
development and testing, in order to achieve a better and more accurate
monitoring system.

Figure 4.17: Final Path on data with algorithm [beta]

4.6 Farm Implements

Another of the axes of this project is to work for an important aspect of the
agricultural activity, in this case the farm implements. This machinery plays
a fundamental role for the realization of the production activities, carrying

71

Smart Farming

out different phases of an agricultural production such as harvesting, pluming,
shredding, etc.

Given the importance of the role of the implements, it was proposed to
modify the control units in order to monitor them and provide data to the
clients to optimize their functionalities always through the implementation
of smart farming. To start with the initial phase of this mini-project, the
system had to be updated at all levels: receiver, server and client-side. Thus,
the services at receiver level were modified, creating new entities in order to
receive data from these machines and process them, to later show them to
the client through the reports mentioned at the beginning of this thesis.

First of all, this new type of control unit allows the customer to insert
data such as minimum and maximum RPM of the machinery and the bearing
diameter, if it exists within the type of implement. This data can be modified
both from the site and from the control unit and is updated in real time. In
addition, company administrators must insert the corresponding machine
codes with a maximum of 4 different machines per control unit. For this, it
was made available in the configuration section of the control unit, a new
tab to insert the corresponding data and observe the type of work performed
by the implement, as can be seen in the image 4.18.

72

Smart Farming

Figure 4.18: Farm implements section

Once the farm implement information is validated, the control unit can
access the network, so the user must select the type of work from the device
screen to update it in the corresponding section of the site, thus starting the
data collection. In this way, the information related to the machinery is also
updated in the corresponding activity, being added to the machine details
with a new section "Farm implements" and in the reports of the control panel
if it has collected the data correctly. Figure 4.19 shows the information
collected by the implement in the application reports.

73

Smart Farming

Figure 4.19: Farm implements reports

This new tool is being evaluated directly by the final clients, since it
corresponds to a new project and to a direct intervention on the control
devices. It is therefore necessary to wait for their feedback in order to
proceed with the development of this part of the project and wait for the
data collection to effectively measure the impact of the introduction of farm
implement monitoring on the management of customer activity.

4.7 Limitations of Project

In every project there are limitations that in one way or another prevent or
hinder the progress of a line of work, which is why the previous organization
is important and plays a key role in the development. For this reason,
as explained at the beginning of this chapter, it was decided to use agile
strategies to be prepared for any unpredictable change in the course of the
project, whether due to changes in the requirements of the final users, human
resources and timing problems, etc.

In the context of this project, the initial limitations corresponded to the
difficulty of understanding the code and the structure of the system, due to
the fact that there was not enough documentation of the application and its

74

Smart Farming

details. In addition, there was no IT representative to guide me and indicate
the steps to follow for each task to be performed. However, in the end this
was a positive aspect for my learning, the development of my skills and my
personal development within the work team.

As the stages of the project progressed, new limitations began to be created
that sometimes prevented the natural progression of the development, such as
the fact that the code was not being maintained regularly and had not been
modified for a number of months before I started my intervention. For this
reason, there were many libraries and frameworks that did not have versions
adapted to the current requirements of the application, as for example the
library in charge of illustrating the graphics. Also, some of the components
had a considerable amount of bugs and erroneous behaviors due to the lack
of maintenance and updates.

Finally, one of the strongest limitations in the course of the project was
the lack of time and the difficulty of knowing how to manage it well, since it
is a large and complex application that requires constant maintenance and
updating. Thus, the fact of having worked on this project for only 5 months
meant a limitation for the possible improvements and solutions that were
proposed at the beginning of the thesis activity. For this same reason, some
of the functionalities are still in beta versions as of today because they are
being tested by the final users, waiting to receive comments and feedback
so that the company can continue advancing in the development of this
project.

75

Chapter 5

User Experience

In this chapter all graphic updates will be presented as a separate chapter
together with the validation of the previous chapter’s developments, since
they were developed with the main objective of improving the user experience
of the application. These decisions will also be validated following the Nelson
Norman Group Design for UX guidelines.

User experience is a concept that describes how a user experiences and
interacts with a certain product or service. It is composed by three main
concepts that come from the person in study: efficiency, utility and ease of
use. Having a good user experience is important for all kind of designers,
developers and creators, since they can mark negatively the use of a product,
ruining a whole system. For this reason, it was proposed as an additional
objective of the thesis to update the current application to a more user-
friendly one, focusing on design and usability of the whole system.

5.1 Guidelines for improving UX

Within the work of this thesis it was considered as a transversal objective to
improve the user experience, since, it is useless to add new functionalities

76

User Experience

if the user is not able to use them in a correct way. For this reason, as a
personal work guide the usability heuristics of the user’s interaction with
the systems of the Nelson Norman group was used, which corresponds to a
leading user-experience research association that has offered its consulting
services to large companies such as Google, National Geographic, Visa, Sony,
among others [16].

This group of researchers has proposed 10 heuiristics to guide the design
and user-experience of applications, corresponding to the following [17]:

1. Visibility of system status: The design of the tools should always
inform the users about the things that are happening, through feedback
in an adequate response time.

2. Match between system and the real world: The design should
always be written in the language of the users, i.e. words, phrases and
concepts familiar to the users should be used to make the information
appear in a logical order.

3. User control and freedom: Deliver a feeling of control and freedom to
the user when committing actions by mistake, thus leaving an emergency
exit to reestablish the unwanted action without having to go through a
lengthy process.

4. Consistency and standards: Users should not have to wonder if
different words, situations or actions mean the same thing, so there is a
duty to follow industry conventions and not waste the user’s time.

5. Error prevention: The best designs are those that prevent the oc-
currence of problems, so it is important to eliminate conditions that
could generate errors, check each condition before sending requests to
the servers, provide users with a confirmation button each time they

77

User Experience

commit an action and above all, display good error messages each time
one occurs.

6. Recognition rather than recall: The memory demand on users
should be minimized by making elements, actions and options more
visible. Thus, the user should not have to remember information from
one part of the interface to another. For example, field labels or menu
items should always be visible and available when needed.

7. Flexibility and efficiency of use: Shortcuts can speed up the in-
teraction for the "expert user" so that the design can satisfy both the
inexperienced and the expert user. It is important to allow users to
customize frequent actions.

8. Aesthetic and minimalist design: The interfaces present in the
application should not contain information that is not useful or important
to the user. Every piece of irrelevant information competes with the
relevant information, decreasing its visibility, so it is important to avoid
showing data that is not interesting to the final users.

9. Help users recognize, diagnose, and recover from errors: The
user should be encouraged to suggest solutions to eventual errors, there-
fore, it is important to have error messages expressed in normal language,
without error codes.

10. Help and documentation: The best sites are those where no addi-
tional explanation is required to use them, however, it is sometimes
necessary to provide documentation to better understand how the user
can compete their activities.

These heuristics were applied almost entirely in the new tools that were
developed throughout the work, thus observing a great change within the

78

User Experience

web application that were quickly noticed by the final users, increasing the
use of the application and decreasing the number of calls from customers
who did not understand how to use some features of the site.

The following chapter will show in detail how these heuristics were applied
in the project along with the description of the final objective.

5.2 User-experience and Design Improvements

Among the modifications aimed at improving the user experience within the
application, are the addition of two new items in the main menu, modifications
within the main map (a tool frequently used by users), changes in the graphic
design of some elements and the addition of new control and verification
elements.

The new items added in the menu correspond to Guides and Statistics,
which fulfill the objectives mentioned in heuristics 1 and 10.

5.2.1 Guides

Within this new page, various types of user guides are made available to
users, both for the control units and the tools within the site. This new page
is divided and customized by company, since not all companies have the
same type of control units and the same access to the different functionalities.
For example, some companies do not have access to items such as graphics,
as these are tools that can be exploited by companies with a specific type of
control unit.

As shown in the image, the guides correspond to an accordion menu with
two types of guides, the first one related to the site and the second one to
the machines owned by the clients. Thus, within the guides proposed in the
first part there are instructions on how to compile the documents, how to
use the map, how to organize the activities, how to use the reports, among

79

User Experience

others. On the other hand, in the machines section, there are guides on how
to install the control unit in the different models of machines owned by the
customers.

Figure 5.1: Web site guides

Figure 5.2: Control Unit guides

5.2.2 Statistics for Machines

The statistics page provides users to observe historical status parameters
of their machines, choosing a time window along with a frequency that

80

User Experience

can be daily, weekly, monthly, semi-annual or annual. In this first stage it
was decided to develop only pie charts, but in the future it is planned to
implement other types of statistics that may interest users.

As shown in the figure, this page is composed of a search engine, a
frequency selector and the information. Among the parameters selected for
display are Engine Load and Instantaneous Consumption together with the
meaning of the colors represented in the graph, which correspond to levels
with different values.

Figure 5.3: Statistics for specific machine

5.2.3 Details on Map

Among the list of changes aimed at improving the user experience, is the
change to the map and the visualization of the control units. At the beginning
of the project, the application only showed a little information about the
machine, such as last update, machine plate number and other data, as shown
in figure 5.4. With the new change made, now every time a user clicks on
the circle that represents a control unit, they will see the information of the
machine where the following data will me shown: plate number, information

81

User Experience

about the connection, a picture of the machine, the model of the machine
where the control unit is installed, information about the customer and the
service that has sold it and finally, a couple of functional buttons that lead
to the reports and/or graphics if they are available.

The change in the map arose thanks to direct meetings with customers
who told us the need to see details of the machine when viewing the position
on the map, so they could more easily identify the machines that have been
leased or sold, in order to track the activities and working hours.

Figure 5.4: Old machine summary on map

82

User Experience

Figure 5.5: New machine summary on map

In figure 5.5 the new graph of the machines on the map together with the
available information is shown.

5.2.4 Main Layer Transformation

Among the considerations when developing a current web application, it is
important to maintain an updated and modern design, as this provides an
experience more attached to what users are used to. It is for this reason
that it was decided to make an update of the main layer graphics of the
application, giving the user a renewed experience with new ways to interact
with the application.

The changes made correspond to the passage of a square graphic to one
with rounded edges, to give a sense of modernity to the application. Thus,
each element that was inside a square structure has more oval edges as shown
in the following images. In addition, a hidden slider menu was changed to a
minimized version but always present on the user’s screen, so it will be easier
for the user to associate the different icons to the functionalities present.

83

User Experience

The above changes are illustrated in the following figures.

Figure 5.6: Old menu bar

84

User Experience

Figure 5.7: New menu bar

85

User Experience

Figure 5.8: Old list layout

Figure 5.9: New list layout

86

User Experience

Figure 5.10: Old borders on elements

Figure 5.11: New borders on elements

87

User Experience

5.3 Results of graphic updates

Although the work done in the paragraphs described above has not been
extensive, it has meant a great advance for the project and the application
itself, because the users have been able to adopt new ways of controlling
their machines and interacting with the system. It has also provided new
opportunities to unblock the company’s consultation systems, since by making
available the installation guides for the control units and the use of the site,
users are invited to inform themselves autonomously.

Another important aspect is that these changes motivate users to keep
asking for more improvements, which shows that the customer is interested
in the system and wants to contribute to its growth.

88

Chapter 6

Conclusions

This chapter will present the final conclusions of the thesis work that corre-
spond to a summary of work done within this experience, the aspects to be
improved by the writer of this thesis and a brief vision of the possible future
works to be developed.

6.1 Conclusion

In the work carried out in this thesis, an effort was made to improve the
management of agricultural activities through the development of new smart
farming tools, based both on the state of the art and on the improvement of
the response mode to market and final users’ demand that has not yet been
fully completed.

Once a general picture of the current situation of smart farming in the
industry was made, various solutions present in the agricultural market were
analyzed, which gave an overview of the objectives that could be established
as a team. Thus, we started with a linear process whose beginning was the
analysis of the initial situation of the system and the capabilities that it had
to allow an orderly, clear development with specific objectives. This meant

89

Conclusions

using tools associated with the development and design of globally adapted
software, which corresponds to the analysis of the requirements of the final
users or stakeholders of an application, thus creating use cases that come to
describe how the user interacts with the application and what is obtained as a
benefit from this interaction. As described in this thesis, after performing the
analysis we proceeded with the first phase of the project, which corresponds
to a general maintenance of the system and the updating of the present
components, with the objective of establishing a base for the successive
steps. For example, the update of the library that manages the interface
of the graphs together with the endpoints related to the data collection, or
the change of the component in charge of managing the documents that
previously had errors and undesired behaviors, which caused a negative
experience for the users.

Subsequently, we began with the development of the tools described in this
thesis, which have had as main success the delivery of more opportunities
to improve the management of agricultural activities of the users, thus
improving the interaction that the user has with the application. This was
carried out following again the user requirements analysis strategies, carrying
out most of the proposed new features. Thus, a new concept "activity as the
center of agricultural management" was developed, which allowed orienting
the users to a better management. This was proven by the interest shown
by the end customers at the time of the release of the new versions and by
the increased interaction with the application.

All the work done, shows that one of the main aspects when considering
the development of new technologies, is that of user interaction or user
experience, an aspect that is constantly addressed in the curriculum of
the career, because they are the final users who determine the needs and
requirements that the product must satisfy. For this reason, throughout
the course of the thesis, the general objective has been to optimize the user

90

Conclusions

interaction with the application.

6.2 Further work

The growth of market interest in the solution proposed by the company
behind this project is evident, the number of control units sold has been
increasing over the months. This gives way to the questioning about the
growth of the project and its future steps, since it must have a system
prepared for the market demand. Thus, as further work we propose a focus
on the ability to scale the project in all senses, either in the number of
contemporary connections, quantity and quality of functionality, optimizing
security and the flow of user interaction with the system and increasing the
database space. Specifically, the focus should be on changing the structure
of the server in charge of receiving the connections from the control units,
in order to increase the number of available connections without affecting
the connection flow, avoiding data and time losses. In addition, to ensure
a greater openness to the agricultural market, a focus must be placed on
improving the usability of the system, adding new functionalities that meet
and exceed market standards. This, through improving the current user
experience by improving the design of the site and all the elements that
compose it. Specifically, we propose an improvement to the main reports
page, giving the possibility to visualize the data in an interactive, clear and
optimized way in the parameters that users are most interested in, thus
adding a new value to the system that will surely allow a growth of the
project.

91

Bibliography

[1] ERS/USDA. Agriculture In The European Union. Beef 2 Live. Aug.
2022. url: https://beef2live.com/story-agriculture-european-

union-131-108887 (cit. on p. 2).

[2] TERRATECH. Smart Agriculture in Europe. University of Porto (UPorto).
Jan. 2022. url: https://www.terratechmsc.eu/smart-agricultur

e-in-europe/ (cit. on p. 2).

[3] DOTMobile. Piattaforma Telematica per il Monitoraggio e la Gestione
di Mezzi e Attrezzature. DOTMobile. url: https://puntomobile.it/

funzionalita/ (cit. on p. 5).

[4] WAY4FARM. La soluzione WAY4FARM per Trattori e Macchinari
Agricoli. WAY. 2022. url: https://www.waynet.it/industria-4-

0/agricoltura-4-0/ (cit. on p. 7).

[5] Google. Che cos’è l’architettura dei microservizi? Google. 2022. url:
https : / / cloud . google . com / learn / what - is - microservices -

architecture (cit. on p. 17).

[6] Wikipedia. Single-page application. Wikipedia. 2022. url: https://en.

wikipedia.org/wiki/Single-page_applicatione (cit. on p. 19).

[7] MongoDB. About us. MongoDB. url: https://www.mongodb.com/

(cit. on p. 26).

92

https://beef2live.com/story-agriculture-european-union-131-108887
https://beef2live.com/story-agriculture-european-union-131-108887
https://www.terratechmsc.eu/smart-agriculture-in-europe/
https://www.terratechmsc.eu/smart-agriculture-in-europe/
https://puntomobile.it/funzionalita/
https://puntomobile.it/funzionalita/
https://www.waynet.it/industria-4-0/agricoltura-4-0/
https://www.waynet.it/industria-4-0/agricoltura-4-0/
https://cloud.google.com/learn/what-is-microservices-architecture
https://cloud.google.com/learn/what-is-microservices-architecture
https://en.wikipedia.org/wiki/Single-page_applicatione
https://en.wikipedia.org/wiki/Single-page_applicatione
https://www.mongodb.com/

BIBLIOGRAPHY

[8] Docker. Use containers to Build, Share and Run your applications.
Docker. url: https://www.docker.com/resources/what-containe

r/ (cit. on p. 26).

[9] IBM. Containers. IBM. url: https://www.ibm.com/cloud/learn/

containers (cit. on p. 27).

[10] Docker Docs. Dockerfile reference. Docker. 2022. url: https://docs.

docker.com/engine/reference/builder/ (cit. on p. 28).

[11] MongoDB. MongoDB Manual. MongoDB. 2021. url: https://www.

mongodb.com/docs/manual/core/sharded-cluster-query-router/

(cit. on p. 29).

[12] Tom King. What Is Spring Boot? Fusion Reactor TM. 2020. url:
https://www.fusion-reactor.com/blog/technical-blogs/what-

is-spring-boot/ (cit. on p. 33).

[13] Wikipedia. Java (Programming Language). Wikipedia. 2022. url: h

ttps://en.wikipedia.org/wiki/Java_(programming_language)

(cit. on p. 36).

[14] Wikipedia. Typescript. Wikipedia. 2022. url: https://es.wikipedia.

org/wiki/TypeScript (cit. on p. 36).

[15] Wikipedia. Point in polygon. Wikipedia. 2021. url: https : / / en .

wikipedia.org/wiki/Point_in_polygon (cit. on p. 69).

[16] Nielsen Norman Group. Usability and UX Consulting. Nielsen Norman
Group. 2022. url: https://www.nngroup.com/consulting/ (cit. on
p. 77).

[17] Jakob Nielsen. 10 Usability Heuristics for User Interface Design. Nielsen
Norman Group. 2020. url: https://www.nngroup.com/articles/

ten-usability-heuristics/ (cit. on p. 77).

93

https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.ibm.com/cloud/learn/containers
https://www.ibm.com/cloud/learn/containers
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://www.mongodb.com/docs/manual/core/sharded-cluster-query-router/
https://www.mongodb.com/docs/manual/core/sharded-cluster-query-router/
https://www.fusion-reactor.com/blog/technical-blogs/what-is-spring-boot/
https://www.fusion-reactor.com/blog/technical-blogs/what-is-spring-boot/
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://es.wikipedia.org/wiki/TypeScript
https://es.wikipedia.org/wiki/TypeScript
https://en.wikipedia.org/wiki/Point_in_polygon
https://en.wikipedia.org/wiki/Point_in_polygon
https://www.nngroup.com/consulting/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/

	List of Figures
	Introduction
	State of the art of the agricultural sector
	Solutions in the market
	Goal of thesis

	Architecture of System
	Control units
	Receiver
	REST API
	Client-side
	Maps
	Graphics
	Reports
	Documents
	Config

	Database
	Software Technologies
	Docker
	MongoDB
	Angular
	Spring Boot
	Kibana and ElasticSearch
	Digital Ocean

	Programming Languages
	Java
	Typescript

	Performance

	Preventive Software Maintenance
	Initial situation
	User stories analysis

	Smart Farming
	Project approach
	User Stories for new features
	Activities as center of management
	Previous Activity Management
	Current Activities
	Planned Activities
	Completed Activities

	Geofencing
	Fields and Work Areas
	List of Fields
	Integration with Activities

	Ray Casting Algorithm
	Farm Implements
	Limitations of Project

	User Experience
	Guidelines for improving UX
	User-experience and Design Improvements
	Guides
	Statistics for Machines
	Details on Map
	Main Layer Transformation

	Results of graphic updates

	Conclusions
	Conclusion
	Further Work

	Bibliography

