
POLITECNICO DI TORINO

Master’s Course
in Electronic Engineering

Master’s Degree Thesis

Modeling and Mapping of a GoogLeNet CNN
on a Grid of Processing Cells

Supervisors: Candidate:
Prof. Rainer Dömer (UC Irvine) Claudio Raccomandato
Prof. Guido Masera

Academic Year 2021-2022

Abstract

System-level design methodologies evolve in response to increasing complexity of appli-
cations. Transaction-level modeling (TLM) is one technique that allows the designer to
capture the specifications of complex digital systems without defining low-level implemen-
tation details. The Grid of Processing Cells (GPC) has been proposed as a highly scalable
many-core architecture and is modeled using SystemC TLM-2.0 methodology. This the-
sis describes the modeling of a GoogLeNet Convolutional Neural Network (CNN) on the
GPC architecture and evaluates its performance and scalability. The models feature a new
modular Memory Access Resources and Interfaces (MARI) library to improve communi-
cation between modules and assist during profiling. This work also introduces a graphical
CAD software called Map Grid-based Layouts (MapGL) to facilitate the design process,
automatically generate SystemC models, and generate performance reports. Experimental
results evaluate and compare the generated models and show the achieved improvements
in terms of memory usage and speed.

Acknowledgements

I wish to thank Prof. Rainer Dömer and his research group at the University of California
Irvine for allowing me to contribute to their study. Thank you for kindly including me
and making me feel at home during my stay in Irvine.
I also thank Prof. Guido Masera for his presence and valuable advice despite the distance.
I acknowledge my parents and family, who always encouraged me to follow my passions
and laid the foundation for my professional life.
Last but not least, I wish to thank my girlfriend and all the friends I met in Turin who
supported me during these beautiful university years.

Desidero ringraziare il Prof. Rainer Dömer e il suo gruppo di ricerca della University of
California Irvine per avermi permesso di contribuire al loro lavoro. Grazie per avermi
accolto calorosamente e fatto sentire come se fossi a casa durante la mia permanenza a
Irvine.
Ringrazio anche il Prof. Guido Masera per la sua disponibilità e i preziosi consigli nonos-
tante la distanza.
Ringrazio i miei genitori e parenti, i quali mi hanno sempre incoraggiato a perseguire le
mie passioni e hanno posto le basi per la mia vita professionale.
Ultimi ma non per importanza, desidero ringraziare la mia ragazza e tutti gli amici in-
contrati a Torino che mi hanno sostenuto durante questi bellissimi anni di università.

You’ll never be good at anything
before being bad at it first.
[Unknown]

Contents

List of Figures i

List of Tables iii

List of Listings iv

1 Introduction 1
1.1 Thesis structure . 2
1.2 Related Works . 2

1.2.1 SystemC . 2
1.2.2 GPC Architecture . 2
1.2.3 GoogLeNet CNN . 4

1.3 Goals . 5

2 GoogLeNet CNN on GPC (Version 1) 7
2.1 Pen and Paper Mapping . 7

2.1.1 MemTools . 8
2.1.2 Fork and Merge . 10
2.1.3 Inception Block . 11
2.1.4 Complete structure . 12

2.2 Implementation . 12
2.2.1 Parsing . 13
2.2.2 Mapping Validation . 15
2.2.3 Code Generation . 15
2.2.4 Compilation . 19
2.2.5 Profiling . 19

2.3 Limits of the model . 19

3 MARI: Memory Access Resources and Interfaces library 23
3.1 Memory Interfaces . 24
3.2 FIFO Interfaces . 26

3.2.1 Ring Buffering . 27
3.3 Profiling . 27

4 MapGL 31
4.1 Memories and Channels views . 31
4.2 Modules . 33

4.2.1 How to create a module . 34
4.3 Memory Structure . 36
4.4 Project Export . 37

4.4.1 Dependencies . 39
4.5 Profiling . 39

4.5.1 Memories Usage Analysis . 40
4.5.2 Timing Analysis . 42

5 GoogLeNet CNN on GPC (Version 2) 45
5.1 Inception Block . 45
5.2 Complete Structure . 46
5.3 Profiling . 48

6 Experiments and Results 49
6.1 Version 1 . 49
6.2 Version 2 . 50

6.2.1 Memories Usage . 51
6.2.2 Timing . 52

6.3 Comparison . 57

7 Conclusion 59
7.1 Future works . 59

Bibliography 61

List of Figures

1.1 Representation of a 4 by 4 GPC model with “OFF-chip” DRAM memories
[5]. 3

1.2 R-type cell inside the GPC architecture, redrawn from [5]. 3
1.3 GoogLeNet CNN structure, redrawn from [13]. 4

2.1 The structure of the inception blocks inside the GoogLeNet CNN, redrawn
from [16]. 8

2.2 MemTools memory organization, redrawn from [10]. 9
2.3 Fork and Merge operations with MemTools code. 10
2.4 Fork and Merge used as forwarding module. 10
2.5 GoogLeNet CNN on GPC (version 1) inception block design. 11
2.6 GoogLeNet CNN on GPC (version 1) structure. 12
2.7 GoogLeNet CNN on GPC (version 1) complete implementation steps. . . . 14
2.8 GoogLeNet CNN on GPC (version 1) spreadsheet description of the first

inception block. The four paths are highlighted in the bottom image. . . . 16
2.9 Validation algorithm. 17
2.10 Spreadsheet unclear description. 20

3.1 Example of communication between cores using MARI library, Channels
View. 24

3.2 Example of communication between cores using MARI library, Memories
View. 24

3.3 Example of ring buffering inside an 8-byte long FIFO. 27
3.4 Memory access encoding inside the mari.log binary file. 28

4.1 MapGL startup window. 32
4.2 MapGL Memory Structure window. 37
4.3 Error dialog that appears when at least one parameter has still the “val”

attribute null. 37
4.4 Dependencies window. 39
4.5 Error dialog that appears when at least one dependency file cannot be found. 39
4.6 Memories Usage Analysis window. 40
4.7 Timing Analysis window. 42
4.8 Channel communication life span with delays contributions. 43
4.9 Module life span with delays contributions. 43

i

5.1 GoogLeNet CNN on GPC (version 2) inception block design. 46
5.2 GoogLeNet CNN on GPC (version 2) structure. 47

6.1 Memories usage analysis heatmaps of the high-speed (on the left) and low-
speed (on the right) implementations of the GoogLeNet on GPC (version
2). 51

6.2 Timing analysis channel delays’ heatmaps of the high-speed (on the left)
and low-speed (on the right) implementations of the GoogLeNet on GPC
(version 2). 53

6.3 Timing analysis real execution delays’ heatmaps of the high-speed (on the
left) and low-speed (on the right) implementations of the GoogLeNet on
GPC (version 2). 55

ii

List of Tables

3.1 FLAGS field encoding used inside the mari.log file. 28

6.1 Communication delays used for the timing profiling [11]. 53
6.2 Results of the first and second versions of the GoogLeNet on GPC model.

The second version has high-speed and low-speed implementations. 57
6.3 Comparison between the first model and the high-speed and low-speed

implementations. 57

iii

List of Listings

2.1 First Convolutional layer description inside the layers Python dictionary . 13

2.2 Implementation of the conv1_7x7_s2 layer inside checkerboard_user.cpp
file. 18

3.1 Methods declarations of the Mem_if class inside the MARI library. 25

3.2 MARI library FIFO interfaces constructors. 26

4.1 Example of an adder MapGL module implementation. 33

4.2 Example of the JSON file used to import the adder module. 34

4.3 Example of Memories usage analysis report. 40

4.4 Example of Timing analysis report. 44

6.1 Extract of the GoogLeNet CNN on GPC (version 1) profiling report. . . . 49

6.2 Extract of the GoogLeNet CNN on GPC (version 2) memories usage report
for the high-speed implementation. 51

6.3 Extract of the GoogLeNet CNN on GPC (version 2) memories usage report
for the low-speed implementation. 52

6.4 Extract of the GoogLeNet CNN on GPC (version 2) timing report for the
high-speed implementation. 54

6.5 Extract of the GoogLeNet CNN on GPC (version 2) timing report for the
low-speed implementation. 54

iv

6.6 Extract of the GoogLeNet CNN on GPC (version 2) timing report with
layers delays for the high-speed implementation. 56

6.7 Extract of the GoogLeNet CNN on GPC (version 2) timing report with
layers delays for the low-speed implementation. 56

v

Chapter 1

Introduction

Over the last two decades, due to power limitations, computer systems focus shifted from
raising the clock frequency toward the increase in the number of processors [1]. This
phenomenon led to higher design complexity and shared memory contention caused by
the “memory wall” problem [2].

The growth in complexity of applications drives the need for modeling systems at a higher
level of abstraction called Electronic System Level (ESL) [3]. Then, Transaction Level
Modeling (TLM) techniques allow refining portions of the system model towards lower
levels. Nowadays, SystemC represents the language of choice to launch the adoption of
ESL and TLM modeling [4]. It is based on C++, a common language for software and
hardware, and provides simulation concurrency for both of them.

The Grid of Processing Cells (GPC) architecture uses the SystemC TLM2.0 methodol-
ogy and has been proposed to reduce the shared memory bandwidth limitation using
distributed local memories [5]. The structure follows a “checkerboard” pattern in which
processing cores and local memories alternate on a regular 2D mesh. This design increases
the number of pathways between cores, which mitigates the memory contention effect.

This thesis aims to push the GPC architecture’s scalability by designing on it a GoogLeNet
convolutional neural network (CNN) application.
The GoogLeNet is a low-parameter image classification CNN presented during the Ima-
geNet Large-Scale Visual Recognition Challenge (ILSVRC) in 2014 [6].
The regularity of the GoogLeNet CNN structure and the high parallelization of its incep-
tion blocks should allow a straightforward mapping of its layers into the GPC architecture.

1

Introduction

1.1 Thesis structure

Every chapter represents one design step towards creating and profiling the final model.

This introductory chapter discusses the related works and goals of this thesis. Then in
Chapter 2, the first implementation will be presented along with its limitations. Chapter 3
and Chapter 4 describe the two tools created to aid the design of the final model presented
in Chapter 5. Chapter 6 shows the two models’ experimental results and compares them
to quantify the improvements. Finally, Chapter 7 will discuss if the goals have been
achieved and the future work ideas.

1.2 Related Works

This section will briefly describe the three major works related to the thesis: the SystemC
language, the GPC architecture and the GoogLeNet CNN.

1.2.1 SystemC

SystemC is a System Level Design Language (SLDL) that provides constructors required
for modeling hardware within the context of C++ [7][8].

The fundamental design components are the Modules, which are classes derived from the
sc_module class. Similar to VHDL’s entities and architectures, SystemC separates the
interface and implementation of the module by using header and source files.

The SystemC simulator uses a cooperative multitasking model that allows concurrency
simulation of the model. A class called sc_time can be used to track simulation time with
64 bits of resolution. Without introducing any delay, the execution time of every module
is zero. In this case, the SystemC simulator uses delta cycles to perform operations in
parallel.

With SystemC TLM2.0, the communication between modules takes place through memory-
mapped bus models [9]. The TLM2.0 classes are built on top of the SystemC class library
and contain interfaces, sockets, generic payloads and protocols.

1.2.2 GPC Architecture

The GPC is a highly scalable many-processor architecture designed with SystemC TLM2.0
methodology. The structure is constructed by alternating cores and local memory as shown
in Figure 1.1 for a 4 by 4 grid. Since the pattern resembles a checkerboard, the structure
was initially introduced as the “checkerboard” model [5].

2

1.2 – Related Works

Figure 1.1. Representation of a 4 by 4 GPC model with “OFF-chip” DRAM memories [5].

The alternating placement allows for identifying the block called “cell” formed by a core
and a memory. Looking at Figure 1.1, it is possible to recognize two types of cells: the
L-type with the green border and the R-type with the red one.

Every core has a TLM2.0 initiator socket that binds to a maximum of 4 priority-based
multiplexers, one for each surrounding memory. Figure 1.2 shows a detailed representation
of an R-type cell, with multiplexer and the TML2.0 sockets.

Figure 1.2. R-type cell inside the GPC architecture, redrawn from [5].

The advantage of using a distributed memory organization is that every core connects to
smaller memories, which are expected to be faster than large ones.
The contention is reduced by allowing cores only to access the surrounding memories. In
this way, the worst-case scenario is four cores that want to access the same memory. This
is a significant improvement compared to regular multi-processor architectures in which
each core communicates with the same memory. On the other hand, local memories limit
cores to connect with just their neighbors. External DRAM memories act as “highways”

3

Introduction

through which cores far from each other can communicate directly. Of course, external
memories are expected to be slower than the ones “ON-chip”, but for large structures,
that can be a valid option to speed up communication.

Some computer vision applications that make use of the GPC architecture have been de-
signed by the CECS group at the University of California, Irvine [10][11][12].
These works have shown the superiority of the GPC over traditional multi-processor struc-
tures based on shared memory.

1.2.3 GoogLeNet CNN

Figure 1.3. GoogLeNet CNN structure, redrawn from [13].

The problem of assigning a predetermined descriptive label to an input image is known
as image classification.
Convolutional neural networks (CNN) have been used to solve this problem since they
allow fast and relatively accurate classification.

The GoogLeNet is a state-of-the-art CNN for image classification, winner of the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC) 2014 with only 6.67% top-5 error [6].
The network is composed of 22 layers when counting only layers with parameters or 142
if not. Figure 1.3 shows the entire structure of the GoogLeNet CNN.

Caffe is a deep learning framework created by the Berkeley AI Research group (BAIR)
in 2014 that provides a complete toolkit for training, testing, finetuning, and deploying
CNN models [14]. In this thesis, the GoogLeNet Caffe model will be used to extract the
network structure information.

OpenCV is a C/C++ open-source library that provides tools needed to solve real-time
computer vision problems [15]. It also provides constructors that can be used in CNN
applications like the Mat data structure or the Layer class.

A SystemC model of the GoogLeNet CNN that use the Caffe model and OpenCV has
been designed by the CECS group at the University of California, Irvine [16]. This thesis
will use that model as a reference for the new one mapped on the GPC architecture.

4

1.3 – Goals

1.3 Goals

This thesis work aims to achieve the three goals described below.

1. Exploit the scalability of the GPC architecture with a CNN application.
Mapping all the GoogLeNet CNN layers will require at least 142 cores, which is not
trivial for ordinary multi-processor architecture. We want to demonstrate that the
GPC can handle such large applications by creating and testing a working model.

2. Improve the mapping process for GPC-based applications.
Mapping is accomplished by copying and pasting C/C++ algorithms inside the cores
main() function definition in the checkerboard_user.cpp file. Even if this method
works well for small models, it cannot be applied to large applications due to the
time the task demand and the possibility of creating typos inside the code.

3. Create a new way of profiling GPC models.
Obtaining experimental results about the architecture delays, occupied area and
power consumption is challenging for high-level applications. Estimating these re-
sults can be essential to confirm the feasibility of the model. For this reason, we
want to generate a tool that allows evaluating at least part of these data. Ideally,
we also want to use it to profile future models without modifications.

5

6

Chapter 2

GoogLeNet CNN on GPC
(Version 1)

The aim of this chapter is to analyze the design process of the first GoogLeNet CNN
on GPC model, from the Pen and Pencil mapping to the application profiling. The last
paragraph describes the limits of this model which will then be overcome by the new
model in Chapter 5. The actual comparison between the two versions will be analyzed in
Chapter 6.

2.1 Pen and Paper Mapping

The main challenge of this model was its size. To take advantage of the high scalability of
the GPC architecture, it was decided to assign one CNN layer per core. The GoogLeNet
CNN has 142 layers1, so the grid must contain at least 142 cores.

Analyzing the GoogLeNet CNN structure in Figure 1.3, it is possible to notice that the
first and last layers are connected in series, while the nine inception blocks in the middle
repeat themself without any significant change. The inception block has the structure
shown in Figure 2.1.

Considering all this, the real challenge has become finding the best mapping for the
inception block. Two rules were used:

1143 if we consider also the first layer called “data”. However, the testbench already generates the
input data so this layer implementation is not needed.

7

GoogLeNet CNN on GPC (Version 1)

Figure 2.1. The structure of the inception blocks inside the GoogLeNet
CNN, redrawn from [16].

1. Trying to not leave any unused cores to reduce area occupation.

2. The last core of the inception block should be placed close to the first core of the
next block. In this way, repeated blocks will match perfectly.

Looking at Figure 2.1, it is possible to identify 4 paths connected in parallel: 1 formed
by 2 layers, 1 by 3 layers and 2 by 4 layers. The last layer occurs to be part of the block
only two times in the entire structure when the first layer of the next block is a pooling
layer. This means that we have 7 blocks that contain 14 layers/cores and 2 that contain
15 layers/cores.

For the sake of simplicity, we can assume every block to contain 15 layers/cores, this
allows us to have a more regular and modular pattern at the minor cost of 7 extra cores.

2.1.1 MemTools

MemTools is a library written in C++ that allows a FIFO-like communication between
adjacent cores [10]. The shared memory is divided into equal partitions depending on the
required number of channels. Each partition is split into two parts: the counters and the
queue. Every time some data is pushed inside the queue the sent counter is incremented,
while the received counter is incremented when the data is popped. When the queue is
full or empty, the operation remains blocked until a new pop or push from another core
occurs.

Figure 2.2 shows the memory mapping organization. Both counters use four bytes, while
the queue size can be adapted to the quantity of data to store. The designer can also

8

2.1 – Pen and Paper Mapping

Figure 2.2. MemTools memory organization, redrawn from [10].

increase the number of partitions, but the memory size can limit its range.

MemTools Limits

The advantage of using partitions is that it avoids memory segmentation. Other than
that, it comes with limitations.

• Every partition has the same maximum number of slots.

• Every slot has the same size in each partition.

• Even if only one partition is used, the user had to specify the partition id at every
pop or push.

Overall, partitions could only work in specific cases.

Other limitations related to the MemTools library are:

• Push and pop parameters are redundant, this can lead to multiple typographical
errors.

• The memory part occupied by the channel must be cleaned by the user before being
used.

• In a FIFO-like structure, having indexable content is not needed, for this reason,
having slots do not bring any benefit.

9

GoogLeNet CNN on GPC (Version 1)

2.1.2 Fork and Merge

Due to the MemTools partitions limitations, it was decided to not use them and instead
find an alternative. The solution was to specialize some core at splitting or combining
data. These modules were called Fork and Merge and they are basically a deserializer and
a serializer. The way they work is shown in Figure 2.3.

Figure 2.3. Fork and Merge operations with MemTools code.

The Fork is needed when the user wants to push data to more than one core using the
same memory, while the Merge is needed when the user wants to pop data from more than
one core using the same memory.
In the Fork module, the slot length of the input must be equal to the maximum slot
length between all the outputs. In the Merge module, the slot length of the output must
be equal to the maximum slot length between all the inputs.

Figure 2.4. Fork and Merge used as forwarding module.

Both of the modules can be used as a “forwarding” module if only one input and one
output are present, as shown in Figure 2.4.

10

2.1 – Pen and Paper Mapping

2.1.3 Inception Block

Figure 2.5 shows the final version of the inception block that was used for this model. It
is formed of 20 cores, 3 of which are empty, however, the 2 on the top part can be used
by other layers.

Figure 2.5. GoogLeNet CNN on GPC (version 1) inception block design.

Overall, this block requires only 5 cores more than the theoretical 15 due to the use of
Forks and Merges modules.

Looking at Figure 2.5 it is possible to confirm that the two rules imposed for this design
in Section 2.1 have been observed.

11

GoogLeNet CNN on GPC (Version 1)

2.1.4 Complete structure

The spreadsheet with the complete mapping of the first GoogLeNet model is shown in
Figure 2.6.
The three main parts were colored to give the reader a rough idea of the structure.

v

conv1/7x7_s2 > M00 M01 > inception_3a/pool > M02 >inception_3a/pool_proj> M03 >inception_3a/relu_pool_proj> M04 M05 > inception_3b/pool > M06 >inception_3b/pool_proj> M07 >inception_3b/relu_pool_proj> M08 M09 > inception_4a/pool > M0010 >inception_4a/pool_proj> M0011 >inception_4a/relu_pool_proj> M0012

v ^ v ^ v ^ v

M10 < conv1/relu_7x7 M11 > pool2/3x3_s2 > M12 inception_3a/relu_5x5_reduce> M13 M14 > merge14 >>>> M15 >>>>inception_3a/output > M16 inception_3b/relu_5x5_reduce> M17 M18 > inception_3b/output > M19 > pool3/3x3_s2 > M0110 inception_4a/relu_5x5_reduce> M0111 M0112 > inception_4a/output>>>>

v ^ vv v ^ v ^ ^^ vv v ^ v ^ ^^ vv v ^ v ^ ^^

pool1/3x3_s2 M20 > conv2/norm2 M21 inception_3a/5x5_reduce> M22 inception_3a/5x5 > M23 >inception_3a/relu_5x5 M24 M25 inception_3b/5x5_reduce> M26 inception_3b/5x5 > M27 >inception_3b/relu_5x5 M28 M29 inception_4a/5x5_reduce> M0210 inception_4a/5x5 > M0211 >inception_4a/relu_5x5 M0212

v ^ vv ^^ vv ^^ vv ^^

M30 conv2/relu_3x3 M31 < fork31 > M32 > inception_3a/1x1 > M33 >inception_3a/relu_1x1> M34 > merge34 M35 < fork35 > M36 > inception_3b/1x1 > M37 >inception_3b/relu_1x1> M38 > merge38 M39 < fork39 > M0310 > inception_4a/1x1 > M0311 >inception_4a/relu_1x1> M0312 > merge0312

v ^ v ^ v ^ v ^

pool1/norm1 M40 inception_3a/3x3_reduce> M41 >inception_3a/relu_3x3_reduce> M42 > inception_3a/3x3 > M43 >inception_3a/relu_3x3> M44 inception_3b/3x3_reduce> M45 >inception_3b/relu_3x3_reduce> M46 > inception_3b/3x3 > M47 >inception_3b/relu_3x3> M48 inception_4a/3x3_reduce> M49 >inception_4a/relu_3x3_reduce> M0410 > inception_4a/3x3 > M0411 >inception_4a/relu_3x3> M0412

v ^

M50 conv2/3x3 M51 <inception_4d/relu_3x3< M52 < inception_4d/3x3 < M53 <inception_4d/relu_3x3_reduce< M54 <inception_4d/3x3_reduce M55 < inception_4c/relu_3x3< M56 < inception_4c/3x3 < M57 <inception_4c/relu_3x3_reduce< M58 <inception_4c/3x3_reduce M59 <inception_4b/relu_3x3< M0510 < inception_4b/3x3 < M0511 <inception_4b/relu_3x3_reduce< M0512 <inception_4b/3x3_reduce

v ^ v ^ v ^ v ^

conv2/3x3_reduce M60 merge61 < M61 <inception_4d/relu_1x1< M62 < inception_4d/1x1 < M63 < fork64 > M64 merge65 < M65 < inception_4c/relu_1x1< M66 < inception_4c/1x1 < M67 < fork68 > M68 merge69 < M69 <inception_4b/relu_1x1< M0610 < inception_4b/1x1 < M0611 < fork0612 > M0612

v ^ vv ^^ vv ^^ vv ^^

M70 >conv2/relu_3x3_reduce M71 inception_4d/relu_5x5< M72 < inception_4d/5x5 M73 <inception_4d/5x5_reduce M74 M75 inception_4c/relu_5x5< M76 < inception_4c/5x5 M77 <inception_4c/5x5_reduce M78 M79 inception_4b/relu_5x5< M0710 < inception_4b/5x5 M0711 <inception_4b/5x5_reduce M0712 fork0712 <<<<

vv v ^ v ^ ^^ vv v ^ v ^ ^^ vv v ^ v ^ ^^ vvvv

<<<< fork80 <<<< M80 <<<<inception_4d/output < M81 M82 <inception_4d/relu_5x5_reduce M83 < inception_4c/output<<<< M84 <<<< merge85 < M85 M86 <inception_4c/relu_5x5_reduce M87 < inception_4b/output<<<< M88 <<<< merge89 < M89 M0810 <inception_4b/relu_5x5_reduce M0811 < fork0812 <<<< M0812

^ v ^ v ^ v

M90 M91 <inception_4d/relu_pool_proj< M92 <inception_4d/pool_proj< M93 < inception_4d/pool < M94 M95 <inception_4c/relu_pool_proj< M96 <inception_4c/pool_proj< M97 < inception_4c/pool < M98 M99 <inception_4b/relu_pool_proj< M0910 <inception_4b/pool_proj< M0911 < inception_4b/pool < M0912

M1000 > inception_4e/pool > M1001 >inception_4e/pool_proj> M1002 >inception_4e/relu_pool_proj> M1003 M1004 > inception_5a/pool > M1005 >inception_5a/pool_proj> M1006 >inception_5a/relu_pool_proj> M1007 M1008 > inception_5b/pool > M1009 >inception_5b/pool_proj> M1010 >inception_5b/relu_pool_proj> M1011 pool5/7x7_s1 > M1012

^ v ^ v ^ v ^ v

M1100 >>>> fork1100 > M1101 inception_4e/relu_5x5_reduce> M1102 M1103 > inception_4e/output > M1104 > pool4/3x3_s2 > M1105 inception_5a/relu_5x5_reduce> M1106 M1107 > merge1107 >>>> M1108 >>>>inception_5a/output > M1109 inception_5b/relu_5x5_reduce> M1110 M1111 > inception_5b/output > M1112 pool5/drop_7x7_s1

^^^^ vv v ^ v ^ ^^ vv v ^ v ^ ^^ vv v ^ v ^ ^^ v

>>>> fork1200 M1200 inception_4e/5x5_reduce> M1201 inception_4e/5x5 > M1202 >inception_4e/relu_5x5 M1203 M1204 inception_5a/5x5_reduce> M1205 inception_5a/5x5 > M1206 >inception_5a/relu_5x5 M1207 M1208 inception_5b/5x5_reduce> M1209 inception_5b/5x5 > M1210 >inception_5b/relu_5x5 M1211 loss3/classifier < M1212

vv ^^ vv ^^ vv ^^ v

M1300 < fork1300 > M1301 > inception_4e/1x1 > M1302 >inception_4e/relu_1x1> M1303 > merge1303 M1304 < fork1304 > M1305 > inception_5a/1x1 > M1306 >inception_5a/relu_1x1> M1307 > merge1307 M1308 < fork1308 > M1309 > inception_5b/1x1 > M1310 >inception_5b/relu_1x1> M1311 > merge1311 M1312

v ^ v ^ v ^ v

inception_4e/3x3_reduce> M1400 >inception_4e/relu_3x3_reduce> M1401 > inception_4e/3x3 > M1402 >inception_4e/relu_3x3> M1403 inception_5a/3x3_reduce> M1404 >inception_5a/relu_3x3_reduce> M1405 > inception_5a/3x3 > M1406 >inception_5a/relu_3x3> M1407 inception_5b/3x3_reduce> M1408 >inception_5b/relu_3x3_reduce> M1409 > inception_5b/3x3 > M1410 >inception_5b/relu_3x3> M1411 prob M1412

v

Inception BlockFirst Serial Layers Last Serial Layers

Figure 2.6. GoogLeNet CNN on GPC (version 1) structure.

The grid used measures 15 by 13 cells. Of the 195 available cores, 26 were not used.
Some arrows indicate the direction of the stream of data through the grid. The input image
is fed to the model from the top using the external memory. Then, the two memories
to the sides shorten the path between inception blocks on different “rows”. Finally, the
generated array of probabilities is stored in the bottom external memory.

Inside the inception blocks (in red), the four paths of layers run in parallel, while the first
(in yellow) and last (in green) layers of the CNN are connected in series.

2.2 Implementation

The implementation of the GoogLeNet model requires different steps to follow. Figure 2.7
shows the overall process used to automatically generate the model and profile the appli-
cation. The following paragraphs explain in detail all the steps required.

12

2.2 – Implementation

2.2.1 Parsing

The GoogLeNet Caffe (Convolutional Architecture for Fast Feature Embedding) model
was used to obtain pre-trained network parameters [14]. The model includes two files: a
binary .caffemodel file that contains pre-trained parameters such as weights and biases
and a human-readable .prototxt file that describes the network architecture.

The parser.py takes these two files as input and generates, among many other things, a
Python dictionary containing all the required information about the layers, like inputs,
outputs and other parameters. This parser is part of the Netspec generator used to
automatically generate the SystemC model of the GoogLeNet [16].
Listing 2.1 shows the parsing result of the first Convolutional layer.

1 " conv1 /7 x7_s2 ": {
2 "type": " Convolution ",
3 " num_output ": 64,
4 "pad": 3,
5 " kernel ": 7,
6 " stride ": 2,
7 " dilation ": 1,
8 " group ": 1,
9 " weight ": [

10 64,
11 3,
12 7,
13 7
14],
15 "bias": 64,
16 " inputs ": [
17 "data"
18],
19 " outputs ": [
20 " conv1 / relu_7x7 "
21],
22 " input_shape ": [
23 [
24 1,
25 3,
26 224,
27 224
28]
29],
30 " output_shape ": [
31 [
32 1,
33 64,
34 112,
35 112
36]
37]
38 }

Listing 2.1. First Convolutional layer description inside the layers Python dictionary

13

GoogLeNet CNN on GPC (Version 1)

Figure 2.7. GoogLeNet CNN on GPC (version 1) complete implementation steps.

14

2.2 – Implementation

2.2.2 Mapping Validation

In the validation phase the layers dictionary, generated during parsing, is compared with
the application mapping provided by the user.

Using Microsoft Excel as a CAD

Due to the fact that we are working with a grid-based structure, it was decided to use the
.csv file format to describe the user mapping. The main advantage of this choice is that
it is possible to visualize and/or modify .csv files inside spreadsheet editors like Microsoft
Excel. Figure 2.8 shows how the first inception block can be described on the spreadsheet.

The red squares are the cores and must contain the name of the modules associated with
them, while the blue squares are the memories and must contain their own id. The white
squares are used to define the channels and the direction of the “arrows” represent the
direction of the data stream. Finally, the grey squares should not contain anything.

The Validation Algorithm

The .cvs file is passed to the parse_mapping() function to validate the designed structure.

The algorithm iterates between the output channels of each core until the name of one of
the connected modules correspond to the target name. The target is one of the output
names written inside the .prototxt file. When the search finishes without finding the
requested name, a “missing connection” error occurs. When a fork or a merge module is
connected to the core, the algorithm checks its outputs recursively. If the name is found
then the complete searching path is included inside the mapping dictionary along with
the size of the exchanged data. Figure 2.9 shows a simplified version of the validation
algorithm.

Also, a warning is printed on the terminal in case of extra input or output connections.
This allows the identification of subtle mistakes that sometimes do not interfere with the
application execution but increments memory occupation.

2.2.3 Code Generation

The main advantage of this framework is that it automatically generates parts of the
application, in particular the checkerboard_user.cpp and the config.hpp files. The
first one is used to describe the cores’ behavior and the communication between them.
The last one contains macros for each layer parameter and exchanged data size. This
separation allows the user to easily modify parameters or sizes without the need to re-
generate the entire structure, which most of the time remains the same.

The information required to complete the checkerboard_user.cpp are filled inside a

15

GoogLeNet CNN on GPC (Version 1)

Figure 2.8. GoogLeNet CNN on GPC (version 1) spreadsheet description of the first
inception block. The four paths are highlighted in the bottom image.

16

2.2 – Implementation

Figure 2.9. Validation algorithm.

reference file provided by user called checkerboard_user_empty.cpp. This gives the
user a little bit more control over the generated file. The generation algorithm searches
inside the checkerboard_user_empty.cpp file the main() method definitions and the
constructors of all the used cores. The file is scanned line-by-line and Regular Expressions
are used to identify the correct pattern.

Inside the constructor, the layer module will be instantiated and the thread stack size
will be modified accordingly using the set_stack_size() function. While inside the main()
method definition, the MemTools channels will be instantiated and the layer object will
call the run() method, which will read the input data from the channels and generate the
output results.

The layers are declared as template classes into separate header files and make use of
the OpenCV library. The generator automatically includes all the layers classes into the
checkerboard_user.cpp file. As an example, Listing 2.2 shows the implementation of

17

GoogLeNet CNN on GPC (Version 1)

the first layer inside the checkerboard_user.cpp after being generated.

1 void Core00 :: main (){
2
3 // conv1_7x7_s2
4
5 MemTools memIn_up (CoreBus , sig_up , id_to_memAddress (-1, 0) ,

OFF_CHIP_MEMORY_SIZE , 1, CONV1_7X7_S2_MEM_INP0_SLOT_SIZE , 1);
6 memIn_up . InitMem ();
7
8 MemTools memOut_right (CoreBus , sig_right , id_to_memAddress (0, 0) ,

ON_CHIP_MEMORY_SIZE , 1, CONV1_7X7_S2_MEM_OUT0_SLOT_SIZE , 1);
9 memOut_right . InitMem ();

10
11 memIn_up . PopData (conv1_7x7_s2 . inpVec [0]. data ,

CONV1_7X7_S2_MEM_INP0_SLOT_SIZE , 0);
12
13 if(verbosity_level > 0) {
14 printf ("[conv1 /7 x7_s2 (Core00)] %lu bytes popped \n", conv1_7x7_s2 .

inpVec [0]. total ()* conv1_7x7_s2 . inpVec [0]. elemSize ());
15 }
16
17 if (dump_data) {
18 dumpData (STR(DUMP_DATA_FOLDER) " conv1_7x7_s2_in0 .bin", conv1_7x7_s2 .

inpVec [0]. data , CONV1_7X7_S2_MEM_INP0_SLOT_SIZE);
19 }
20
21 conv1_7x7_s2 .run ();
22
23 if(core_size) {
24 std :: string str = "(Core00) conv1_7x7_s2 " + std :: to_string (

conv1_7x7_s2 .size ());
25 storeData (size_file_name . c_str () , str);
26 }
27
28 memOut_right . PushData (conv1_7x7_s2 . outVec [0]. data ,

CONV1_7X7_S2_MEM_OUT0_SLOT_SIZE , 0);
29
30 if(verbosity_level > 0) {
31 printf ("[conv1 /7 x7_s2 (Core00)] %lu bytes pushed \n", conv1_7x7_s2 .

outVec [0]. total ()* conv1_7x7_s2 . outVec [0]. elemSize ());
32 }
33
34 if (dump_data) {
35 dumpData (STR(DUMP_DATA_FOLDER) " conv1_7x7_s2_out0 .bin", conv1_7x7_s2 .

outVec [0]. data , CONV1_7X7_S2_MEM_OUT0_SLOT_SIZE);
36 }
37
38 }

Listing 2.2. Implementation of the conv1_7x7_s2 layer inside checkerboard_user.cpp file.

Looking at Listing 2.2 we can see that the generator produces some extra code needed
to debug and/or profile the application. In particular, “verbose_lev”, “dump_data” and
“core_size” are variables that can be set by the user launching the application with the
options -v/-vv, -dump and -size. All the options and their meaning are explained in the
next paragraph.

18

2.3 – Limits of the model

2.2.4 Compilation

The model was compiled by using the GCC C++ Compiler 9.4.0 and the provided Make-
file. The model makes use of three external libraries: OpenCV 3.4.18, SystemC 2.3.3
language and TLM 2.0.5 (included inside the SystemC language).

Some options can be passed to the executable file by using the command line. The
complete list is shown below:

• -v and -vv activate level 1 and level 2 verbosity. This allows the printing of debug-
ging information on the terminal.

• -img <path-to-img-file> let the user choose the input image of the GoogLeNet
CNN. By default, it is the ./img/space_shuttle.jpg

• -dump lets the application generate binary files containing the cores inputs and
outputs FIFOs content during the simulation.

• -sizes <path-to-size-file> lets the application generate a human-readable file con-
taining the intrinsic memory usage of the layer during the simulation. This file can
be used to improve the profiling results by passing it to the profiler.py.

2.2.5 Profiling

The profiler aims to generate a report containing useful information about memory usage.

It requires the mapping dictionary generated in the validation phase and optionally the
file generated by passing the -sizes option to the application before launching it. The first
one contains information about the inputs and outputs channels and the exchanged data
size, everything related to the shared memory usage. The last one contains the memory
occupation of every single layer, also called local usage because this data is stored in the
memory inside the same cell. The total memory usage is the sum of the shared and the
local usages.

The results of the profiling will be discussed in Chapter 6.

2.3 Limits of the model

The first GoogLeNet CNN on GPC model shows that it is feasible to design large applica-
tions on the GPC architecture. However, this implementation is far from perfect. During
the design process compromising was necessary more than once. In this section, we will
describe the problems faced in the first model, which will be solved in the second version
of the model, as explained in Chapter 5.

19

GoogLeNet CNN on GPC (Version 1)

MemTools, Fork and Merge

MemTools limitations have been already discussed in Subsection 2.1.1. Avoiding partitions
led to the use of Fork and Merge modules throughout the structure. Considering that
the inception block requires 5 extra cores due to these modules and that inside the CNN
9 inception blocks are present, we could reduce by 45 the required number of cores. In
percentage, we have a reduction of about 23% of the all grid area occupation by improving
the multi-channel implementation.

Hard profiling

The data structures created by parsing the CNN information simplify the code generation,
not the profiling. The mapping dictionary does not let the designer quickly obtain essential
information, such as the grid size. This data needs to be searched inside the generated
code, increasing the profiling complexity. The complete memory usage report requires the
simulation of the application, which could be avoided by using an improved data structure.
Without these difficulties, other types of reports would have been designed, such as one
about application delays.

Microsoft Excel is not a CAD

Describing the structure using spreadsheet editors works well for simple designs, but when
a core has multiple inputs or outputs is much more complex.

Figure 2.10. Spreadsheet unclear description.

Figure 2.10 shows a case in which the format used becomes unclear. In the example, we
have three FIFOs: the first connects Core10 to Core00, the second Core10 to Core11 and

20

2.3 – Limits of the model

the third Core10 to Core20. Since Core10 has three outputs, we cannot know to which
one the correct FIFO is attached.
A possible solution is to impose an output order from top to bottom, but we have to
adjust Core10 accordingly every time, which becomes cumbersome.
For our model, this was possible because, during the validation phase, the algorithm
automatically ordered every output. Without the network information provided by the
Caffe model, this would be much more tricky.

Other than that, the spreadsheets allow us to visualize the data flow of the model, but
it is not possible to edit the channels or modules parameters from there. For this rea-
son, spreadsheets could be used during the first steps of the design process but not for
debugging or fine-tuning, which makes their usage limited.

21

22

Chapter 3

MARI: Memory Access
Resources and Interfaces
library

MARI library is a novel alternative to the MemTools library described in Subsection 2.1.1.

The GPC architecture aims to solve the shared memory bottleneck problem [2], still
present in modern multi-processor structures, using local shared memories. Lowering the
congestion and the need for caches allows designers to increase the number of cores inside
the chip, which leads to an increase in memory accesses.
Considering all that, formal communication protocols between cores are crucial for large
applications like the GoogLeNet model.

MARI library aims to simplify interactions between cores by providing a set of high-level
communication channel interfaces, which emulate the behavior of commonly used channels
throughout a memory. In this thesis work, we will only present the FIFO, but other types
of channels will be implemented in the future, like Stacks (LIFO).
This library also introduces the Memory Interface that virtually attaches the selected core
to one of its surrounding memories.

The relation between channel interfaces and channels is comparable to memory interfaces
and memories. Interfaces allows the user to alter the state of specific data structures
through operations like push(), pop(), read() or write(). On the other hand, data structures
like channels or memories are passive containers that store data in a precise format.

Channel interfaces require a memory interface by which they can communicate with the
memory. When the user instantiates a new channel interface inside the core, a portion of

23

MARI: Memory Access Resources and Interfaces library

the shared memory is initialized to contain the channel. For the communication to work,
all the cores in play must know the channel’s exact length and location (offset) inside the
memory.
MARI library distinguishes between input and output channel interfaces. For a FIFO
channel, the input interface communicates with the FIFO head, while the output with its
tail.

Figure 3.2 and Figure 3.1 show two views of a simple example of communication between
cores through the use of FIFOs.

Figure 3.1. Example of communication between cores using MARI library, Channels View.

Figure 3.2. Example of communication between cores using MARI library, Memories View.

3.1 Memory Interfaces

The most important difference from its predecessor (MemTools) is that MARI introduces
the concept of Memory Inteface.

24

3.1 – Memory Interfaces

In the MemTools library, creating more than one channel using the same memory is com-
plex1. Partitions are sub-channels inside the object that “embed” the memory interface.
MARI’s solution is to separate the channel from the memory interface.

First, the user creates a memory interface of type Mem_if for each memory he wants
to use. Then the memory interface is passed by reference to every instantiated channel
interface that uses a portion of that memory for its channel. This process works well
because, in reality, channels are an abstraction; there are no hardware FIFOs, just one
memory. Moreover, creating memory interfaces take away from the user the tedious task
of initializing every channel with memory-related parameters except the offset. However,
in the MARI library, the offsets of the channels are simpler to investigate because they
are relative to the start address of the memory interface to which they are connected.
Listing 3.1 shows the parameters required to construct a Mem_if object.

1 Mem_if (tlm :: tlm_initiator_socket <>& socket , sc_core :: sc_event &int_sig ,
uint32_t startAddr);

2 void write (uint32_t id , uint32_t mem_offset , void *data , uint32_t len);
3 void write (uint32_t mem_offset , void *data , uint32_t len);
4 void read(uint32_t id , uint32_t mem_offset , void *data , uint32_t len);
5 void read(uint32_t mem_offset , void *data , uint32_t len);

Listing 3.1. Methods declarations of the Mem_if class inside the MARI library.

The first argument references the TLM2.0 initiator socket through which the interface
communicates with the memory.
The second argument is a reference to the SystemC event called every time a channel
interface changes the content of the memory, as an interrupt signal.
The last argument is the physical starting address assigned to the shared memory.

It is possible to read and write from memory through the use of the channels interfaces
or by simply calling the read() and write() methods declared inside the Mem_if class, as
shown in Listing 3.1.
Referencing a Mem_if object allows accessing a specific memory without passing all these
parameters again. The reasons why read() and write() methods have multiple implemen-
tations will be explained in Section 3.3.

1It should be possible to create different channels in the same memory by adjusting their starting
address accordingly. However, MemTools describe the startAdress parameter used to construct a
channel as “the starting address of the memory unit” suggesting that its value should not change when
referring to the same memory.

25

MARI: Memory Access Resources and Interfaces library

3.2 FIFO Interfaces

MARI library contains 3 type of FIFO interfaces: FIFO_in, FIFO_out and FIFO_inout.

• FIFO_in connects to the input of a FIFO. The user can push data through it and
check if it is full.

• FIFO_out connects to the output of a FIFO. The user can pop data through it and
check if it is empty.

• FIFO_inout connects to one side of a channel composed of two FIFOs in opposite
directions. The user can push and pop data through this channel and check whether
it is full or empty. Basically, it is a FIFO_in combined with a FIFO_out.

The way all FIFOs work is much simpler compared to MemTools.
MARI keeps the sent and received counters, but there are no partitions and slots. MARI’s
FIFOs store data in bytes, so it is up to the user to decide the size of each element inside
the queue2. Listing 3.2 shows the parameters required to construct the three types of
FIFO interface objects.

1 FIFO_in (Mem_if &mem_if , uint32_t mem_offset , uint32_t size);
2 FIFO_in (uint32_t id , Mem_if &mem_if , uint32_t mem_offset , uint32_t size);
3 void push(void* data , uint32_t len = 1);
4 bool full ();
5
6 FIFO_out (Mem_if &mem_if , uint32_t mem_offset , uint32_t size);
7 FIFO_out (uint32_t id , Mem_if &mem_if , uint32_t mem_offset , uint32_t size);
8 void pop(void* data , uint32_t len = 1);
9 bool empty ();

10
11 FIFO_inout (Mem_if &mem_if , uint32_t mem_offset , uint32_t size);
12 FIFO_inout (uint32_t id , Mem_if &mem_if , uint32_t mem_offset , uint32_t size);

Listing 3.2. MARI library FIFO interfaces constructors.

All the FIFO interface constructors require the reference to a memory interface, the lo-
cation inside the memory expressed as the number of bytes from the starting address
(offset)3 and the size of the queue in bytes.

2If the length of the FIFO and the element size are multiple of 4 bytes there is a reduction of
memory accesses, due to the 32-bit interface implementation of GPC memories.

3Zero is the first available offset in each memory.

26

3.3 – Profiling

The reasons why the constructors have multiple implementations will be explained in
Section 3.3.

3.2.1 Ring Buffering

The mechanism in which data is pushed or popped inside the queue recall the one used
for ring (or circular) buffers.
When the queue is empty, the FIFO interface writes/reads from the queue’s first to last
byte. Once it reaches the end, the writing/reading starts over from the first byte. When
some bytes are pushed while the queue is full, the FIFO interface raises the interrupt event
to inform the other cores that the queue is full and waits until new space is available.
On the other hand, if some bytes are popped while the queue is empty, the FIFO interface
raises the interrupt event to inform the other cores that the queue is empty and waits
until some data is written. Figure 3.3 shows an example of the ring buffering mechanism
while pushing 10 bytes inside an 8-byte long FIFO.

Figure 3.3. Example of ring buffering inside an 8-byte long FIFO.

Looking at Figure 3.3, we can see that the FIFO waits for the 4 bytes to be popped before
pushing the 2 remaining bytes.

3.3 Profiling

MARI library allows the user to extract data about the memory accesses that can improve
the profiling quality of the model.

27

MARI: Memory Access Resources and Interfaces library

Compiling the library with the “DEBUG_TIMING” macro defined enables the generation
(during the simulation) of a binary file called mari.log, which contains the record of all
the memory accesses.

Since, in many cases, the number of interactions with the memories could be high, the file
has been encoded to reduce its size. Figure 3.4 shows how every access has been encoded.

Figure 3.4. Memory access encoding inside the mari.log binary file.

Operation Encoding Operation Meaning

READ 0b0000XXXX Reading through a memory interface.

WRITE 0b1000XXXX Writing through a memory interface.

POP_READ 0b0000XXXX Reading performed by a FIFO interface
during a pop operation.

POP_WRITE 0b1000XXXX Writing performed by a FIFO interface
during a pop operation.

PUSH_READ 0b0100XXXX Reading performed by a FIFO interface
during a push operation.

PUSH_WRITE 0b1100XXXX Writing performed by a FIFO interface
during a push operation.

ACT_POP 0b0010XXXX The operation that actually reads the queue
performed by a FIFO interface during a pop.

ACT_PUSH 0b1110XXXX The operation that actually writes the queue
performed by a FIFO interface during a push.

INIT_POP 0b1001XXXX Writing performed by a FIFO_out interface
during the initialization.

INIT_PUSH 0b1101XXXX Writing performed by a FIFO_in interface
during the initialization.

Table 3.1. FLAGS field encoding used inside the mari.log file.

All the values stored inside the file use the big-endian ordering notation.
Starting from the right, the first 4 bytes are the length in bytes of the data written or
read inside the memory.
Then there are the two 6-byte-long simulation time stamps in picoseconds taken at the end
and the beginning of the memory access. Only the SystemC simulator scheduler advances

28

3.3 – Profiling

the simulation time, so these stamps are platform-independent.
The last 4 bytes are used for identification purposes. Table 3.1 shows the encoding used
for the FLAGS field, which identifies the operation performed.

For the ID field, the user can choose the encoding he prefers. In the GoogLeNet on GPC
model (version 2), the first 10 bits are used to identify the grid coordinates of the memory
that has been written/read. Each coordinate requires 5 bits instead of just 4 because it
accepts -1 and 17 values to identify external memories.
The last 14 bits are a unique number associated with each channel inside the memory.
The ID values can be passed as the first argument of the read() and write() methods or
of the FIFO interfaces constructors, as shown in Listing 3.1 and Listing 3.2. The flags
cannot be modified by the user. By default, the ID value is 0xFFFFFF, which stands for
“NO ID”.

The mari.log file will be an essential ingredient for the MapGL timing reports generation,
as discussed in Chapter 4.

29

30

Chapter 4

MapGL

MapGL (Map Grid-based Layouts) is a CAD software written using the PyQt5 library [17].
It lets the user design custom applications for the GPC architecture. MapGL can auto-
generate the SystemC model and create reports that give the user important information
about memories usage and execution delays. The software structure was designed with
modularity in mind so that it can be extended to other architectures in the future.

MapGL lets the user focus on the application design without caring about the specific
programming language description, making the project highly reusable and portable. The
entire MapGL design can be saved within a single JSON file.

Inside the MapGL editor, every design is defined by using Modules and Channels. A
module is a component that can be attached to a core of the GPC to describe its behavior.
In order to use it, the user must drag and drop the module on one of the cores. On the
other hand, a channel allows two or more cores to communicate. The SystemC code
generator fully uses the MARI library to implement channels.

4.1 Memories and Channels views

On launch, MapGL is set on Memories View by default as shown in Figure 4.1. The user
can then switch between views using the two buttons on top.

In Memories View, the user can look at a more “realistic” representation of the structure.
The blue squares represent the memories, while the red squares the cores. Both memories
and cores contain parameters that the user can adjust. To do this, the component that
has to be modified must be selected by clicking on it. By doing that, its parameters list
will appear on the Parameters tab on the right and the user will be able to modify it. On

31

MapGL

Figure 4.1. MapGL startup window.

the other hand, by clicking on the white background, it is possible to edit the parameters
of the GPC itself, like grid width and height.

In Channels View, the user can visualize all the underlying interconnections between
cores. Here, new channels can be created by clicking on one of the four memory interfaces
that surround each core and then clicking again on a different memory interface. This
action will render a black arrow between the two interfaces, representing the newly created
channel. This operation will abort if the two interfaces are not connected to the same
memory.
A channel can be deleted by simply clicking on it and pressing “Delete” on the keyboard.
As for the Memory view, the user can modify core or channel parameters through the
Params tab after clicking on one of these components.

In both views, it is possible to copy and paste core or channel parameters. To do that,
the user has to first select a core or a channel by clicking on it and then press “Ctrl+C”
on the keyboard to copy its parameters into the internal clipboard. Then, the user has to
select another existing core or channel and press “Ctrl+V” to update all its parameters
with the ones copied.

On both views, zooming is possible by using the mouse wheel or pressing “Ctrl+Plus”
or “Ctrl+Minus” on the keyboard. The architecture can be auto-fitted into the view by
pressing “Ctrl+F”.

32

4.2 – Modules

4.2 Modules

A module in MapGL describes the behavior of a core.
Every core can have just one module assigned to it, but it is possible to use the same
module for different cores. The three main characteristics that every module should have
are:

• A name, required for identification.

• Some parameters, which increase customization and reusability of the Module.

• Some dependencies, the files that contain the Module’s declaration and definition.

How the module is defined depends on the exported project language. At the moment,
MapGL only allows generating SystemC projects1, so modules must be defined using C++
function templates.

Listing 4.1 shows one of the possible definitions of an adder as a MapGL module:

1 template < uint8_t bytes_size >
2 void adder (FIFO_out & in_a , FIFO_out & in_b , FIFO_in & out_sum) {
3
4 // getting the inputs
5 uint64_t a, b;
6 in_a.pop (&a, bytes_size);
7 in_b.pop (&b, bytes_size);
8
9 // adding together a and b

10 uint64_t sum = a + b;
11
12 // generating the output
13 out_sum .push (&sum , bytes_size);
14
15 }

Listing 4.1. Example of an adder MapGL module implementation.

For SystemC-based projects, the module is the code a core executes during the application
simulation. In this specific example, Listing 4.1 makes the processor behave like an adder.
At this stage of development, the designer does not need to know the hardware implemen-
tation of the core’s processor. This simplification reduces the simulation time and speeds
up the design process.

1In the future MapGL may support VHDL export.

33

MapGL

4.2.1 How to create a module

In this paragraph, the adder MapGL module will be used as a reference to explain the
process of creating a module from scratch.

The first step is to describe in C/C++ the main algorithm that our core will execute.
Then, we need to put it inside the definition of a function template or a regular function,
as shown in Listing 4.1. The function’s name will be our module’s name.

Exported SystemC project uses MARI library FIFOs to handle cores’ communications.
Our newly created module has to use the FIFOs interfaces (instantiated inside its core)
to exchange data with the surrounding cores. To do that, we must pass our function the
references to those interfaces. The main advantage of using references is that it detaches
the FIFO interface from the module implementation. In other words, we can freely adjust
the channel parameters without touching the module to which it is bound.

The FIFO_out interfaces are the inputs of the module, while the FIFO_in interfaces are
the outputs2. Looking at Listing 4.1 we can see that the pop() and push() methods are
called in the beginning and end of our function to collect and transmit data.

The final step is to increase the customization of our module by adding extra parameters3.
We can pass that to our function, as we did for FIFO interfaces, or we can use the
template parameter list. MapGL editor always treats module parameters like constants,
so it is recommended to use template parameters when this is possible. For example,
in Listing 4.1, the integer type of the “bit_size” parameter allows it to be a template
parameter. On the other hand, FIFOs interfaces cannot be template parameters because
they are references, so they are passed as regular function arguments.

To use our custom module, we need to import it inside the MapGL editor. However,
MapGL cannot import .hpp or .cpp files directly4. We first need to create a JSON file
containing our module’s name and parameters, plus the relative paths to the .hpp and
.cpp files in which our module is defined.
Listing 4.2 shows the JSON file implementation of the adder module in Listing 4.1.

1 {
2 " header_files " : ["./ adder .hpp"],
3 " source_files " : ["./ adder .cpp"],
4 " modules " : {

2For those familiar with VHDL, we are basically describing the entity of our module.

3For those familiar with VHDL, we are implementing generics in our module.

4In the future, a parser will be created to import these types of files.

34

4.2 – Modules

5 " adder " : {
6 "in_a" : {
7 "val" : null ,
8 "type" : "str"
9 },

10 "in_b" : {
11 "val" : null ,
12 "type" : "str"
13 },
14 " out_sum " : {
15 "val" : null ,
16 "type" : "str"
17 },
18 " bit_size " : {
19 "val" : 1,
20 "min" : 1,
21 "max" : 8,
22 " template " : true
23 }
24 }
25 }
26 }

Listing 4.2. Example of the JSON file used to import the adder module.

The key “modules” contains the parameters of all the modules defined inside the depen-
dency files. However, in this example, it is just the adder module.
We can add attributes to each parameter, enabling unique behaviors inside the MapGL
editor. For example, in Listing 4.2, the “bit_size” value is restricted between 1 and 8 by
using “min” and “max” attributes. So inside the MapGL editor, the user cannot modify
the “bit_size” value outside this range.

The “val” attribute is the parameter default value and must always be present. At the
moment, its value can only be one of three types: integer (int), floating-point (float) or
string (str).
The “val” attribute can also be null, but MapGL will raise an error if the user exports
the project while at least one parameter has its value null. This solution prevents the
user from leaving critical parameters unset, like names of input or output channels, which
would cause compiling errors.
The MapGL editor can detect a parameter type by reading its value. However, if its
default value is null, the detection will not work, so the user must specify a type for that
parameter by using the “type” attribute.

The complete list of all attributes is shown below:

• val sets the parameter’s default value and must always be present. Its value can be
null, an integer, a floating-point number or a string.

• type is only required when the val attribute is null. The accepted values are “int”,
“float” and “str”.

35

MapGL

• min sets the lower limit of the parameter value. By default, this attribute is equal
to minus infinite.

• max sets the upper limit of the parameter value. By default, this attribute is equal
to plus infinite.

• readonly does not allow the user to change the parameter’s value when set to true.
Even if it is not modifiable, the value still appears in the MapGL editor. By default,
this attribute is equal to false.

• template tells the code generator to put the parameter’s value inside the template
parameter list when set to true. Otherwise, it will be passed to the function as an
argument. By default, this attribute is equal to false.

• size contains the memory occupation in bytes of the module. Its value will be used
during the generation of the memories usage report. By default, this attribute is
equal to zero.

• label is the identification name that the MapGL editor shows for this specific module
instance. The original name of the module will be used when its value is not set. By
default, this attribute is empty.

After the JSON file importation, our custom module would appear on the Modules tab on
the left, under the “User” section. To use it, the designer has to drag and drop it inside
one of the cores blocks in red.

4.3 Memory Structure

The MapGL editor automatically handles the structure and order in which the channels
are stored inside the memories. This automatization prevents memory segmentation, but
sometimes, it is necessary to visualize and manually change the memory mapping.

The memory structure window allows the designer to visualize and change the order in
which the channels are stored without generating unwanted “holes” inside the memory.

The window can be opened by double-clicking on a memory or a channel. Figure 4.2
shows a possible layout of one of the GPC memories displayed through the help of the
Memory Structure window.

Looking at Figure 4.2, we notice how the table represents the memory while the rows are
the continuous channels sorted by offset. When the size of one channel is modified, its
relative memory addresses shrink accordingly. Then, the offset of all the other channels
inside the same memory is adjusted to avoid segmentation.
All the rows can be moved inside the table by drag-and-drop, allowing the designer to
change channel ordering.

36

4.4 – Project Export

Figure 4.2. MapGL Memory Structure window.

4.4 Project Export

The MapGL editor allows designers to convert their mapping into actual models by au-
tomatically generating all the necessary files for the project. In this thesis work, we will
analyze the SystemC export process because it is the only one that MapGL supports at
the moment.

Figure 4.3. Error dialog that appears
when at least one parameter has still the
“val” attribute null.

Before generating the code, a check is per-
formed to control that all the parameters
have values different from null. If not, the
dialog shown in Figure 4.3 pops up and the
export stops. In the dialog, MapGL tells
the designer which parameters must be set.
If the control does not find any errors, an-
other window allows the user to choose the
output folder in which the SystemC project
will be generated.

The list below shows the steps that the
generator follows to construct the project:

37

MapGL

1. Create the ./src, ./inc and ./obj folders.

2. Create copies of the checkerboard_arch.cpp, mari.cpp and std_modules.cpp files
inside the ./src folder.

3. Create copies of the checkerboard_arch.h, mari.hpp, std_modules.hpp and opencv.hpp
files inside the ./inc folder.

4. Create a copy of the top.cpp file inside the output folder and rename the file has
tb_<project_name>.cpp.

5. Create a copy of the dependencies source files inside the ./src folder and of the
dependencies header files inside the ./inc folder.

6. Generate the config.hpp file inside the ./inc folder.

7. Generate the checkerboard_user.hpp file inside the ./inc folder.

8. Generate the checkerboard_user.cpp file inside the ./src folder.

9. Generate the Makefile inside the output folder.

The checkerboard_arch.cpp and checkerboard_arch.h files contains the SystemC model
description of the GPC architecture.

The mari.cpp and mari.h files contains the MARI library interfaces used for the channels
implementation.

The std_modules.cpp and std_modules.hpp files contain the SystemC MapGL standard
modules description. These modules are the ones that appear on the Modules tab by
default on MapGL startup. At the moment, they are all embedded into every exported
project automatically.

The opencv.hpp file contains all the functions and includes related to the OpenCV li-
brary. Currently, it is embedded in every exported project automatically because the
CNN MapGL standard modules use it.

The top.cpp file contains the definition of the top model, a stimulus module, a monitor
module, the sc_main() and a DumpMemory() function useful for debugging purposes.
This file aims to be a bare-bone testbench implementation that allows the designer to
start simulating the application easily.

38

4.5 – Profiling

After the export, the paths to the SystemC and OpenCV libraries must be adjusted
manually inside the Makefile to make it work properly. Then, the SystemC project
can be compiled using the command “make all”, which will generate the application’s
executable.

4.4.1 Dependencies

The MapGL editor automatically handles the dependency files passed during the impor-
tation of custom modules. However, sometimes can be useful to visualize and manually
add or remove dependencies to the project.

Figure 4.4. Dependencies window.

Figure 4.5. Error dialog that appears when
at least one dependency file cannot be found.

The Dependencies window shown in Fig-
ure 4.4 allows the designer to list and man-
age third-party files.
Since, at the moment, only SystemC ex-
port is allowed, the dependency files can
be of two types: C/C++ header or source
files. The designer must press the respec-
tive “Add” button to add one of the two.
A window will allow the user to select the
dependency file. Then, a new row will ap-
pear, containing the path to the chosen file
relative to the project location.
By pressing the “Remove” and “Browse...”
buttons, it is possible to remove or change
the file’s location.
When the box’s border is red, MapGL
could not find the file. In this case, the
solution is to modify the path using the
“Browse...” button or to remove it. If nei-
ther of the two things can be done, the
user will be unable to export the project
as the error message shown in Figure 4.5
will appear.

4.5 Profiling

Once the mapping has been completed, MapGL allows designers to perform two types
of analysis. The memories usage analysis requires just the information provided during
the design process. On the other hand, the timing analysis needs the SystemC project
to be exported and compiled. In other words, the first does not require the model to be
simulated, while the second does.

39

MapGL

4.5.1 Memories Usage Analysis

The memories usage analysis evaluates how much each memory is occupied by channels
and cores (modules) data. It can also be used to check if memory is overflowing, meaning
that the stored data size is larger than the memory itself.

Figure 4.6. Memories Usage Analysis window.

The Memories Usage Analysis window,
shown in Figure 4.6, lets the user config-
ure some of the analysis parameters.
The “Output Directory” field contains the
relative path to the folder in which all the
files generated during the analysis will be
placed. In the example, the output direc-
tory corresponds to the project folder.
The checkbox “Generate heatmap” lets
the user decide whether to generate the
model’s heatmap image or not. The Mem-
ories usage heatmap allows the user to
roughly estimate how much data is con-
tained inside each memory.

The analysis will start immediately after pressing the “Generate” button on the bottom-
right of the window. It usually takes only a few milliseconds to be performed. Then,
a report file containing all the detailed information about the memories usages will be
generated in the output directory, along with the heatmap image if the checkbox was
checked.

Memories Usage Report

An example of a memories usage report is shown in Listing 4.3.
The preamble presents general information about the project.
The Summary section shows the analysis results performed on the overall structure.
The Memories usage section shows the list of memories sorted by the most to least oc-
cupied. The “Core usage” represents the portion of memory required by the core on the
same cell. On the other hand, the “Challels usage” represents the combination of all the
parts of memory used by its channels. Finally, the “Total” is the sum of the core and
channels usages. When the “Total” value is higher than the actual memory size, the term
“OVF” will appear next to it and an error message will be shown on the first line of the
file. In this way, the user could quickly identify memory overflows.
Two other sections list the same data from the core’s and channels’ perspectives sorted
by memory occupation.

40

4.5 – Profiling

1 ***
2 * MEMORIES USAGE REPORT
3 *
4 * Project : canny_GPC .json
5 * Version : 1.0.0
6 * Date : sab ott 01 12:51:05 2022
7 *
8 * Grid Width : 2
9 * Grid Height : 4

10 * Memories Size : 134217728 bytes
11 ***
12
13 ***
14 * Summary
15 ***
16 Total Cores Memories Usage : 2819563 bytes
17 Total Channels Memories Usage : 691456 bytes
18 Total Memories Usage : 3511019 bytes
19 Most Used Memory by Cores : Mem30 (Core Memory Usage : 614417 bytes)
20 Most Used Memory by Channels : Mem20 (Channels Memory Usage : 153616 bytes)
21
22 ***
23 * Memories Usage
24 ***
25 Memory ID: Core Usage : Channels Usage : Total :
26 Mem30 614417 153616 768033 bytes
27 Mem20 460812 153616 614428 bytes
28 Mem31 438378 153616 591994 bytes
29 Mem10 460912 76808 537720 bytes
30 Mem21 460820 76808 537628 bytes
31 Mem01 384112 0 384112 bytes
32 Mem11 0 76808 76808 bytes
33 Mem00 112 184 296 bytes
34
35 ***
36 * Cores Memories Usage
37 ***
38 Core ID: Module : Memory Usage :
39 Core30 non_max_supp 614417 bytes (Mem30)
40 Core10 blur_y 460912 bytes (Mem10)
41 Core21 magnitude_x_y 460820 bytes (Mem21)
42 Core20 derivative_x_y 460812 bytes (Mem20)
43 Core31 apply_hysteresis 438378 bytes (Mem31)
44 Core01 blur_x 384112 bytes (Mem01)
45 Core00 make_gaussian_kernel 112 bytes (Mem00)
46 Core11 0 bytes (Mem11)
47
48 ***
49 * Channels Memories Usage
50 ***
51 Channel ID: Memory Usage :
52 smoothedim (FIFO_10_0) 76808 bytes (Mem10)
53 tempim (FIFO_11_0) 76808 bytes (Mem11)
54 delta_x1 (FIFO_20_0) 76808 bytes (Mem20)
55 delta_y1 (FIFO_20_1) 76808 bytes (Mem20)
56 magnitude1 (FIFO_21_0) 76808 bytes (Mem21)
57 delta_x2 (FIFO_30_0) 76808 bytes (Mem30)
58 delta_y2 (FIFO_30_1) 76808 bytes (Mem30)
59 magnitude2 (FIFO_31_0) 76808 bytes (Mem31)
60 nms (FIFO_31_1) 76808 bytes (Mem31)
61 kernel2 (FIFO_00_0) 92 bytes (Mem00)
62 kernel1 (FIFO_00_1) 92 bytes (Mem00)

Listing 4.3. Example of Memories usage analysis report.

41

MapGL

4.5.2 Timing Analysis

The timing analysis allows the designer to estimate channels’ and modules’ delays. This
analysis gives a rough idea of the application performance, but the results are only as
accurate as the delay values that are provided to the simulator since MapGL works with
high-level models.

Figure 4.7. Timing Analysis window.

The Timing Analysis window, shown in
Figure 4.7, lets the user configure some of
the analysis parameters.
The first three fields that can be adjusted
are the local memories read and write de-
lays and the multiplexers propagation de-
lay. These values can be chosen based on
real hardware components, giving more ac-
curate results or arbitrarily chosen ones.
The “Output Directory” field contains the
relative path to the folder in which all the
generated files will be located.
The “Generate heatmap” checkbox lets the
designer decide whether to generate the

model delays heatmaps. In this case, the analysis will create three heatmaps that show
the contribution of the channels, cores and idles delays.
Finally, the “Activate verbose” checkbox lets the designer decide whether to print debug-
ging messages to the terminal.

When the “Generate” button is clicked, a dialog will pop up, allowing the designer to
choose the exported SystemC project location. The reason is that the timing analysis
uses the SystemC project simulation to get the data required to calculate the final results.
After selecting the folder, MapGL will make a copy of the project. Inside the copied
folder, the application will be compiled and executed in debug mode, which generates
the mari.log file described in Section 3.3. For this reason, before performing the timing
analysis, the designer must ensure that the project compiles and executes without errors.

Using the time stamps of all the memory accesses inside the mari.log file, MapGL can
reconstruct the delays of channels and then modules.

During a FIFO communication the channel can enter into two different phases: idle or
execution. The channel is in the idle phase when it is waiting for cores to push or pop
data, while it is in the execution phase when the channel reads or writes the memory. The
times spent into these phases are called idle delay and real execution delay.
The sum of these two delays is called execution delay and, by definition, is the time
interval from the start of the first memory access to the end of the last one for that
specific channel.

42

4.5 – Profiling

Finally, we have the latency, which is the span between the start of the first memory
access and the start of the actual memory read or write operation (defined in Section 3.3
as act_pop and act_push).
Figure 4.8 shows the life span of the channel communication with the time spent in each
of the previously mentioned phases.

Figure 4.8. Channel communication life span with delays contributions.

On the other hand, modules have three phases: idle, execution or communication. The
module is in the idle phase when at least one of its channels is in the idle phase and it is in
the communication phase when at least one of its channels is in the execution phase. For
the modules, the idle delay is the sum of the idle delays of its channels and the channels
delay is the sum of the real execution delays of its channels.
When the module is not in one of these two phases, it is in the execution phase, in which
it executes its algorithm. The time spent in this phase is called real execution phase.
The modules’ latency is defined as the interval from the start of the simulation to the first
pop operation performed by one of its channels.
The execution delay is the span between the first pop and the last push operations or it
can also be defined as the sum of the idle, channels and real execution delays.
Figure 4.9 shows the life span of the module with the time spent in each of the previously
mentioned phases.

Figure 4.9. Module life span with delays contributions.

43

MapGL

Timing Report

An example of a timing report is shown in Listing 4.4.
The initial part shows general information about the project and its parameters.
The Cores Delays section shows the previously described delays’ values calculated for ev-
ery core. The list is sorted by using the real execution delay.
On the other hand, the Channels Delays section shows the channels’ communication de-
lays. There are two lists, one for the push and one for the pop operation and they are
sorted by using the real execution delay.

1 ***
2 * TIMING REPORT
3 *
4 * Project : canny_GPC .json
5 * Version : 1.0.0
6 * Date : sab ott 01 12:55:43 2022
7 *
8 * Grid Width : 2
9 * Grid Height : 4

10 * Memory Write Delay : 2.50e -09 s
11 * Memory Read Delay : 2.50e -09 s
12 * Mux Delay : 2.50e -10 s
13 ***
14
15 ***
16 * Cores Delays
17 ***
18 Core ID: Module : Latency : Exec Delay : Idle Delay : Channels Delay : Real Exec Delay :
19 Core10 blur_y 1.000 e+06 8.174 e+07 4.445 e+07 2.881 e+05 3.700 e+07 ns
20 Core01 blur_x 1.000 e+06 4.454 e+07 9.307 e+06 2.401 e+05 3.500 e+07 ns
21 Core30 non_max_supp 9.198 e+07 3.467 e+07 1.734 e+07 3.361 e+05 1.700 e+07 ns
22 Core21 magnitude_x_y 9.184 e+07 1.772 e+07 3.360 e+05 3.841 e+05 1.700 e+07 ns
23 Core31 apply_hysteresis 1.093 e+08 3.050 e+07 1.731 e+07 1.921 e+05 1.300 e+07 ns
24 Core20 derivative_x_y 8.264 e+07 9.720 e+06 2.400 e+05 4.801 e+05 9.000 e+06 ns
25 Core00 make_gaussian_kernel 1.000 e+06 2.985 e+02 1.425 e+02 1.480 e+02 8.000 e+00 ns
26
27 ***
28 * Channels Delays
29 ***
30
31 PUSH:
32
33 Channel ID: Latency : Exec Delay : Idle Delay : Real Exec Delay :
34 tempim (FIFO_11_0) 4.521124 e+07 3.360605 e+05 1.440225 e+05 1.920380 e+05 ns
35 magnitude2 (FIFO_31_0) 1.094114 e+08 1.440335 e+05 4.801450 e+04 9.601900 e+04 ns
36 smoothedim (FIFO_10_0) 8.259530 e+07 1.440265 e+05 4.800750 e+04 9.601900 e+04 ns
37 delta_x1 (FIFO_20_0) 9.178734 e+07 1.440265 e+05 4.800750 e+04 9.601900 e+04 ns
38 delta_y1 (FIFO_20_1) 9.207539 e+07 1.440265 e+05 4.800750 e+04 9.601900 e+04 ns
39 magnitude1 (FIFO_21_0) 1.092674 e+08 1.440265 e+05 4.800750 e+04 9.601900 e+04 ns
40 delta_x2 (FIFO_30_0) 9.193136 e+07 1.440265 e+05 4.800750 e+04 9.601900 e+04 ns
41 delta_y2 (FIFO_30_1) 9.221942 e+07 1.440265 e+05 4.800750 e+04 9.601900 e+04 ns
42 imageout (FIFO_down_0) 1.396995 e+08 1.152180 e+05 6.720850 e+04 4.800950 e+04 ns
43 nms (FIFO_31_1) 1.266035 e+08 4.800950 e+04 0.000000 e+00 4.800950 e+04 ns
44 kernel1 (FIFO_00_1) 1.000008 e+06 1.485000 e+02 7.450000 e+01 7.400000 e+01 ns
45 kernel2 (FIFO_00_0) 1.000156 e+06 1.420000 e+02 6.800000 e+01 7.400000 e+01 ns
46
47
48 POP:
49
50 Channel ID: Latency : Exec Delay : Idle Delay : Real Exec Delay :
51 tempim (FIFO_11_0) 4.525924 e+07 3.360635 e+05 1.440225 e+05 1.920410 e+05 ns
52 magnitude2 (FIFO_31_0) 1.094595 e+08 1.440385 e+05 4.801650 e+04 9.602200 e+04 ns
53 delta_x2 (FIFO_30_0) 9.197937 e+07 1.440295 e+05 4.800750 e+04 9.602200 e+04 ns
54 delta_x1 (FIFO_20_0) 9.183534 e+07 1.440295 e+05 4.800750 e+04 9.602200 e+04 ns
55 delta_y2 (FIFO_30_1) 9.226742 e+07 1.440295 e+05 4.800750 e+04 9.602200 e+04 ns
56 magnitude1 (FIFO_21_0) 1.093154 e+08 1.440295 e+05 4.800750 e+04 9.602200 e+04 ns
57 delta_y1 (FIFO_20_1) 9.212339 e+07 1.440295 e+05 4.800750 e+04 9.602200 e+04 ns
58 smoothedim (FIFO_10_0) 8.264331 e+07 1.440295 e+05 4.800750 e+04 9.602200 e+04 ns
59 imagein (FIFO_up_0) 1.011521 e+07 9.602350 e+04 4.801100 e+04 4.801250 e+04 ns
60 nms (FIFO_31_1) 1.266515 e+08 4.803600 e+04 1.450000 e+01 4.802150 e+04 ns
61 kernel1 (FIFO_00_1) 1.000018 e+06 2.065000 e+02 1.295000 e+02 7.700000 e+01 ns
62 kernel2 (FIFO_00_0) 1.000205 e+06 1.025000 e+02 1.650000 e+01 8.600000 e+01 ns

Listing 4.4. Example of Timing analysis report.

44

Chapter 5

GoogLeNet CNN on GPC
(Version 2)

This chapter aims to describe the design process that led to an improved version of the
GoogLeNet on GPC model presented in Chapter 2. The MARI library and the MapGL
editor, introduced in Chapter 3 and Chapter 4, cover a central role in the development.

The comparison of the experimental results obtained by the two versions will be analyzed
in Chapter 6.

5.1 Inception Block

The inception block structure is the first significant improvement over the old model.
By using MARI instead of the MapGL library, it is possible to remove the Fork and Merge
Modules presented in Subsection 2.1.2. The simplified implementation of the inception
block is shown in Figure 5.1.

This new version contains 15 cores without leaving any unused ones. According to the
analysis made in Section 2.1, this is theoretically the most packed obtainable structure. In
comparison, the first implementation used 20 cores, which, in percentage, are 25% more
cores.

The last layer is placed close to the first core of the next inception block to increase its
repeatability, like in the first version.

45

GoogLeNet CNN on GPC (Version 2)

Figure 5.1. GoogLeNet CNN on GPC (version 2) inception block design.

5.2 Complete Structure

After completing the new inception block design, we started mapping the application
using MapGL.
The mapping process lasted longer than the old spreadsheet implementation since, in this
case, the designer must manually write the value of every module and channel parameter.
The previous GoogLeNet on GPC version automatically filled the parameters, parsed from
the .prototxt file, during the generation phase.
Unfortunately, MapGL does not include such a parser at the moment. However, the
possibility of copying all the parameters of other completed modules came in handy.

The CNN layers used for the previous GoogLeNet model were converted into MapGL mod-
ules by following the steps described in Subsection 4.2.1. The process required squeezing
the C++ template class definitions inside template functions.
Then, these modules were included in the standard modules package of the MapGL editor
to be reused in future CNN-related applications.

Figure 5.2 shows the final MapGL mapping of the GoogLeNet on GPC (version 2) model.

46

5.2 – Complete Structure

conv1/7x7_s
2

inception_3a
/5x5_reduce

inception_3a
/5x5

inception_3a
/relu_5x5

inception_3b
/5x5_reduce

inception_3b
/5x5

inception_3b
/relu_5x5

inception_4a
/5x5_reduce

inception_4a
/5x5

inception_4a
/relu_5x5

conv1/
relu_7x7

inception_3a
/

relu_5x5_red
uce

inception_3a
/relu_1x1

inception_3a
/output

inception_3b
/

relu_5x5_red
uce

inception_3b
/relu_1x1

inception_3b
/output

inception_4a
/

relu_5x5_red
uce

inception_4a
/relu_1x1

inception_4a
/output

pool1/3x3_s2 pool2/3x3_s2 inception_3a
/1x1

inception_3a
/

relu_pool_pr
oj

forw1to4 inception_3b
/1x1

inception_3b
/

relu_pool_pr
oj

pool3/3x3_s2 inception_4a
/1x1

inception_4a
/

relu_pool_pr
oj

conv2/norm2 inception_3a
/pool

inception_3a
/pool_proj

inception_3a
/relu_3x3

inception_3b
/pool

inception_3b
/pool_proj

inception_3b
/relu_3x3

inception_4a
/pool

inception_4a
/pool_proj

inception_4a
/relu_3x3

pool1/norm1 inception_3a
/3x3_reduce

inception_3a
/

relu_3x3_red
uce

inception_3a
/3x3

inception_3b
/3x3_reduce

inception_3b
/

relu_3x3_red
uce

inception_3b
/3x3

inception_4a
/3x3_reduce

inception_4a
/

relu_3x3_red
uce

inception_4a
/3x3

conv2/
relu_3x3

inception_4d
/3x3

inception_4d
/

relu_3x3_red
uce

inception_4d
/3x3_reduce

inception_4c
/3x3

inception_4c
/

relu_3x3_red
uce

inception_4c
/3x3_reduce

inception_4b
/3x3

inception_4b
/

relu_3x3_red
uce

inception_4b
/3x3_reduce

conv2/3x3_re
duce

inception_4d
/relu_3x3

inception_4d
/pool_proj

inception_4d
/pool

inception_4c
/relu_3x3

inception_4c
/pool_proj

inception_4c
/pool

inception_4b
/relu_3x3

inception_4b
/pool_proj

inception_4b
/pool

conv2/3x3

inception_4d
/

relu_pool_pr
oj

inception_4d
/1x1 forw1to4

inception_4c
/

relu_pool_pr
oj

inception_4c
/1x1 forw1to4

inception_4b
/

relu_pool_pr
oj

inception_4b
/1x1 forw1to4

forw2 inception_4d
/output

inception_4d
/relu_1x1

inception_4d
/

relu_5x5_red
uce

inception_4c
/output

inception_4c
/relu_1x1

inception_4c
/

relu_5x5_red
uce

inception_4b
/output

inception_4b
/relu_1x1

inception_4b
/

relu_5x5_red
uce

conv2/
relu_3x3_red

uce

inception_4d
/relu_5x5

inception_4d
/5x5

inception_4d
/5x5_reduce

inception_4c
/relu_5x5

inception_4c
/5x5

inception_4c
/5x5_reduce

inception_4b
/relu_5x5

inception_4b
/5x5

inception_4b
/5x5_reduce

inception_4e
/5x5_reduce

inception_4e
/5x5

inception_4e
/relu_5x5

inception_5a
/5x5_reduce

inception_5a
/5x5

inception_5a
/relu_5x5

inception_5b
/5x5_reduce

inception_5b
/5x5

inception_5b
/relu_5x5 pool5/7x7_s1

inception_4e
/

relu_5x5_red
uce

inception_4e
/relu_1x1

inception_4e
/output

inception_5a
/

relu_5x5_red
uce

inception_5a
/relu_1x1

inception_5a
/output

inception_5b
/

relu_5x5_red
uce

inception_5b
/relu_1x1

inception_5b
/output

pool5/
drop_7x7_s1

forw1to4 inception_4e
/1x1

inception_4e
/

relu_pool_pr
oj

pool4/3x3_s2 inception_5a
/1x1

inception_5a
/

relu_pool_pr
oj

forw1to4 inception_5b
/1x1

inception_5b
/

relu_pool_pr
oj

loss3/
classifier

inception_4e
/pool

inception_4e
/pool_proj

inception_4e
/relu_3x3

inception_5a
/pool

inception_5a
/pool_proj

inception_5a
/relu_3x3

inception_5b
/pool

inception_5b
/pool_proj

inception_5b
/relu_3x3

inception_4e
/3x3_reduce

inception_4e
/

relu_3x3_red
uce

inception_4e
/3x3

inception_5a
/3x3_reduce

inception_5a
/

relu_3x3_red
uce

inception_5a
/3x3

inception_5b
/3x3_reduce

inception_5b
/

relu_3x3_red
uce

inception_5b
/3x3 prob

Inception BlockFirst Serial Layers Last Serial Layers

Figure 5.2. GoogLeNet CNN on GPC (version 2) structure.

This version makes use of a 15 by 10 grid. Of the 150 available cores, only one was not
used. Overall, this solution contains only 7 cores more than the optimal implementation
of 142 cores, as described in Section 2.1.
These extra cores were mainly used to allow all the inception blocks to have the same
structure, which keeps the mapping simple.

As for the first GoogLeNet on GPC model, some colors were used to identify the three
main parts of the structure. The first serial layers are in yellow, the last serial layers are
in green, and the parallel layers inside the inception blocks are in red. In this version, we
also used the top external memory to receive the input image, the two memories on the
sides to shorten the path between cores and the bottom memory to store the output data.

It is worth mentioning that, in the left part, we use one core to “forward” the data from
both the first layers and the sixth inception block. This solution is possible thanks to the
versatility of the MARI library channels.

47

GoogLeNet CNN on GPC (Version 2)

5.3 Profiling

The application’s profiling was performed using the memories usage and timing analyses
provided by the MapGL editor. These two analyses require the mapping generated in the
previous paragraph.

In the first version of the GoogLeNet on GPC model, the FIFOs sizes were set equal to
the input data size. In other words, every MemTools FIFO has just one slot.
This solution works well when the designer wants to maximize the application speed
without caring about the occupation of memories.

The new GoogLeNet model can easily modify all the channel parameters, thanks to the
use of MapGL. For this reason, it was decided to make two implementations of the same
model: one high-speed and one low-speed. The high-speed implementation reduces the
application delay by increasing memories usages. The low-speed implementation reduces
memories usages and increases the application delay.
However, the first version of the model will be compared only to the high-speed imple-
mentation because both maximize the FIFOs sizes.

For all the modules used until now, it was assumed that their execution delay was equal
to zero. At this level of abstraction, it is impossible to know all the timing specifications
of the processor used in the final architecture.

The closest we can get to obtaining some rough values was by running the layers on a
known processor and calculating the required execution delays.
The processor used is an Intel Xeon E3-1240 with a clock frequency of 3.4 GHz. The
installed operating system in which the analyses were performed is CentOS 7.6 and sim-
ulation times were measured using /usr/bin/time [16].
Delays were calculated 500 times using the same image to obtain more reliable results.

The results of all the analyses will be discussed in Chapter 6.

48

Chapter 6

Experiments and Results

In this chapter, we will analyze and compare the results of the two model versions.
All the results are just rough estimations since the application has been designed using a
high-level of abstraction.

6.1 Version 1

The profiling of the first version of the GoogLeNet on GPC model generates a report
containing all the memory occupations divided by shared, local and total usage. The
shared usage is the memory’s channels occupation, the local usage is the data occupation
of the core inside the same cell and the total usage is the sum of the previous two.

Listing 6.1 shows an extract of the GoogLeNet CNN on GPC (version 1) report.

1 **
2 module : checkerboard
3 date: Thu Sep 22 18:44:49 2022
4 **
5
6 Grid Height : 15
7 Grid Width : 13
8
9 ON -Chip Mem Size : 0 x00800000 (8388608) bytes

10 OFF -Chip Mem Size : 0 x20000000 (536870912) bytes
11
12 Total Cores Memories Usage : 140212032 bytes
13 Total Channels Memories Usage : 71774144 bytes
14 Total Memories Usage : 211986176 bytes
15
16 The memory that has the higher shared usage : M00 3211264 bytes
17 The memory that has the higher local usage : M10 6422528 bytes
18 The most used memory : M10 9633792 bytes

49

Experiments and Results

19
20 The core that uses local memory the most : conv1_relu_7x7 (Core10) 6422528 bytes
21
22 Memories usage : Shared Local Total
23 M10 3211264 6422528 9633792 bytes
24 M00 3211264 3851264 7062528 bytes
25 M20 2408448 4014080 6422528 bytes
26 M21 1204224 4816896 6021120 bytes
27 M30 802816 4816896 5619712 bytes

Listing 6.1. Extract of the GoogLeNet CNN on GPC (version 1) profiling report.

Looking at Listing 6.1, we notice that our chosen mapping lets memory M10 overflow.
To solve this problem, we can try to find a different mapping or manually modify the
generated checkerboard_user.cpp file. In this case, we manually adjusted the FIFO
(shared memory) size by dividing its length in half. The conv1/relu_7x7 module needs
to send the two halves of the data one by one, slightly increasing the overall delay but
avoiding the memory overflow.
In the end, M10 shared memory occupation becomes 1605632 bytes, leading to a total
memory occupation of 8028160 bytes.

This solution dedicates lots of memory to the channels to maximize the model’s speed.

For this model, the timing profiling was too complex to implement.
Nevertheless, we can obtain the application delay by simply printing the time stamp of
the SystemC simulator at the end of the simulation. Before doing that, the memories
and multiplexer delays must be adjusted manually inside the generated code through the
macros present inside the checkerboard_user.cpp file. The used values are discussed in
Subsection 6.2.2.
When the simulation ended, the printed application delay was 158784755 ns.

6.2 Version 2

For the new model, we analyzed both the memory usage and the timing of the two
implementations: high-speed and low-speed.
For the high-speed case, we set the length of the FIFOs equal to the size of the data to
send/receive so that the operation takes just one transfer. For the low-speed case, we set
the length of all the FIFOs to an arbitrary value of 64 bytes, except the first and the last,
which use the top and bottom external memories. The reason is that the size of these
memories is not related to the architecture.

Finally, another timing profiling was performed for both implementations, where each
layer had an execution delay calculated as described in Section 5.3.

50

6.2 – Version 2

6.2.1 Memories Usage

Figure 6.1 shows the heatmaps generated after the memories usage analysis of the high-
speed and low-speed implementations.

conv1/7x7_s2 M00
inception_3a/
5x5_reduce

M01
inception_3a/

5x5
M02

inception_3a/
relu_5x5

M03
inception_3b/
5x5_reduce

M04
inception_3b/

5x5
M05

inception_3b/
relu_5x5

M06
inception_4a/
5x5_reduce

M07
inception_4a/

5x5
M08

inception_4a/
relu_5x5

M09

conv1/
relu_7x7

M10
inception_3a/

relu_5x5_reduce
M11

inception_3a/
relu_1x1

M12
inception_3a/

output
M13

inception_3b/
relu_5x5_reduce

M14
inception_3b/

relu_1x1
M15

inception_3b/
output

M16
inception_4a/

relu_5x5_reduce
M17

inception_4a/
relu_1x1

M18
inception_4a/

output
M19

pool1/3x3_s2 M20 pool2/3x3_s2 M21
inception_3a/

1x1
M22

inception_3a/
relu_pool_proj

M23 forw1to4 M24
inception_3b/

1x1
M25

inception_3b/
relu_pool_proj

M26 pool3/3x3_s2 M27
inception_4a/

1x1
M28

inception_4a/
relu_pool_proj

M29

conv2/norm2M30
inception_3a/

pool
M31

inception_3a/
pool_proj

M32
inception_3a/

relu_3x3
M33

inception_3b/
pool

M34
inception_3b/
pool_proj

M35
inception_3b/

relu_3x3
M36

inception_4a/
pool

M37
inception_4a/
pool_proj

M38
inception_4a/

relu_3x3
M39

pool1/norm1 M40
inception_3a/
3x3_reduce

M41
inception_3a/

relu_3x3_reduce
M42

inception_3a/
3x3

M43
inception_3b/
3x3_reduce

M44
inception_3b/

relu_3x3_reduce
M45

inception_3b/
3x3

M46
inception_4a/
3x3_reduce

M47
inception_4a/

relu_3x3_reduce
M48

inception_4a/
3x3

M49

conv2/
relu_3x3

M50
inception_4d/

3x3
M51

inception_4d/
relu_3x3_reduce

M52
inception_4d/
3x3_reduce

M53
inception_4c/

3x3
M54

inception_4c/
relu_3x3_reduce

M55
inception_4c/
3x3_reduce

M56
inception_4b/

3x3
M57

inception_4b/
relu_3x3_reduce

M58
inception_4b/
3x3_reduce

M59

conv2/3x3_reduce M60
inception_4d/

relu_3x3
M61

inception_4d/
pool_proj

M62
inception_4d/

pool
M63

inception_4c/
relu_3x3

M64
inception_4c/
pool_proj

M65
inception_4c/

pool
M66

inception_4b/
relu_3x3

M67
inception_4b/
pool_proj

M68
inception_4b/

pool
M69

conv2/3x3M70
inception_4d/
relu_pool_proj

M71
inception_4d/

1x1
M72 forw1to4M73

inception_4c/
relu_pool_proj

M74
inception_4c/

1x1
M75 forw1to4M76

inception_4b/
relu_pool_proj

M77
inception_4b/

1x1
M78 forw1to4M79

forw2 M80
inception_4d/

output
M81

inception_4d/
relu_1x1

M82
inception_4d/

relu_5x5_reduce
M83

inception_4c/
output

M84
inception_4c/

relu_1x1
M85

inception_4c/
relu_5x5_reduce

M86
inception_4b/

output
M87

inception_4b/
relu_1x1

M88
inception_4b/

relu_5x5_reduce
M89

conv2/
relu_3x3_reduce

M90
inception_4d/

relu_5x5
M91

inception_4d/
5x5

M92
inception_4d/
5x5_reduce

M93
inception_4c/

relu_5x5
M94

inception_4c/
5x5

M95
inception_4c/
5x5_reduce

M96
inception_4b/

relu_5x5
M97

inception_4b/
5x5

M98
inception_4b/
5x5_reduce

M99

inception_4e/
5x5_reduce

M1000
inception_4e/

5x5
M1001

inception_4e/
relu_5x5

M1002
inception_5a/
5x5_reduce

M1003
inception_5a/

5x5
M1004

inception_5a/
relu_5x5

M1005
inception_5b/
5x5_reduce

M1006
inception_5b/

5x5
M1007

inception_5b/
relu_5x5

M1008 pool5/7x7_s1 M1009

inception_4e/
relu_5x5_reduce

M1100
inception_4e/

relu_1x1
M1101

inception_4e/
output

M1102
inception_5a/

relu_5x5_reduce
M1103

inception_5a/
relu_1x1

M1104
inception_5a/

output
M1105

inception_5b/
relu_5x5_reduce

M1106
inception_5b/

relu_1x1
M1107

inception_5b/
output

M1108
pool5/

drop_7x7_s1
M1109

forw1to4 M1200
inception_4e/

1x1
M1201

inception_4e/
relu_pool_proj

M1202 pool4/3x3_s2 M1203
inception_5a/

1x1
M1204

inception_5a/
relu_pool_proj

M1205 forw1to4 M1206
inception_5b/

1x1
M1207

inception_5b/
relu_pool_proj

M1208
loss3/

classifier
M1209

inception_4e/
pool

M1300
inception_4e/
pool_proj

M1301
inception_4e/

relu_3x3
M1302

inception_5a/
pool

M1303
inception_5a/
pool_proj

M1304
inception_5a/

relu_3x3
M1305

inception_5b/
pool

M1306
inception_5b/
pool_proj

M1307
inception_5b/

relu_3x3
M1308 M1309

inception_4e/
3x3_reduce

M1400
inception_4e/

relu_3x3_reduce
M1401

inception_4e/
3x3

M1402
inception_5a/
3x3_reduce

M1403
inception_5a/

relu_3x3_reduce
M1404

inception_5a/
3x3

M1405
inception_5b/
3x3_reduce

M1406
inception_5b/

relu_3x3_reduce
M1407

inception_5b/
3x3

M1408 prob M1409

0 8388608

conv1/7x7_s2 M00
inception_3a/
5x5_reduce

M01
inception_3a/

5x5
M02

inception_3a/
relu_5x5

M03
inception_3b/
5x5_reduce

M04
inception_3b/

5x5
M05

inception_3b/
relu_5x5

M06
inception_4a/
5x5_reduce

M07
inception_4a/

5x5
M08

inception_4a/
relu_5x5

M09

conv1/
relu_7x7

M10
inception_3a/

relu_5x5_reduce
M11

inception_3a/
relu_1x1

M12
inception_3a/

output
M13

inception_3b/
relu_5x5_reduce

M14
inception_3b/

relu_1x1
M15

inception_3b/
output

M16
inception_4a/

relu_5x5_reduce
M17

inception_4a/
relu_1x1

M18
inception_4a/

output
M19

pool1/3x3_s2 M20 pool2/3x3_s2 M21
inception_3a/

1x1
M22

inception_3a/
relu_pool_proj

M23 forw1to4 M24
inception_3b/

1x1
M25

inception_3b/
relu_pool_proj

M26 pool3/3x3_s2 M27
inception_4a/

1x1
M28

inception_4a/
relu_pool_proj

M29

conv2/norm2M30
inception_3a/

pool
M31

inception_3a/
pool_proj

M32
inception_3a/

relu_3x3
M33

inception_3b/
pool

M34
inception_3b/
pool_proj

M35
inception_3b/

relu_3x3
M36

inception_4a/
pool

M37
inception_4a/
pool_proj

M38
inception_4a/

relu_3x3
M39

pool1/norm1 M40
inception_3a/
3x3_reduce

M41
inception_3a/

relu_3x3_reduce
M42

inception_3a/
3x3

M43
inception_3b/
3x3_reduce

M44
inception_3b/

relu_3x3_reduce
M45

inception_3b/
3x3

M46
inception_4a/
3x3_reduce

M47
inception_4a/

relu_3x3_reduce
M48

inception_4a/
3x3

M49

conv2/
relu_3x3

M50
inception_4d/

3x3
M51

inception_4d/
relu_3x3_reduce

M52
inception_4d/
3x3_reduce

M53
inception_4c/

3x3
M54

inception_4c/
relu_3x3_reduce

M55
inception_4c/
3x3_reduce

M56
inception_4b/

3x3
M57

inception_4b/
relu_3x3_reduce

M58
inception_4b/
3x3_reduce

M59

conv2/3x3_reduce M60
inception_4d/

relu_3x3
M61

inception_4d/
pool_proj

M62
inception_4d/

pool
M63

inception_4c/
relu_3x3

M64
inception_4c/
pool_proj

M65
inception_4c/

pool
M66

inception_4b/
relu_3x3

M67
inception_4b/
pool_proj

M68
inception_4b/

pool
M69

conv2/3x3M70
inception_4d/
relu_pool_proj

M71
inception_4d/

1x1
M72 forw1to4M73

inception_4c/
relu_pool_proj

M74
inception_4c/

1x1
M75 forw1to4M76

inception_4b/
relu_pool_proj

M77
inception_4b/

1x1
M78 forw1to4M79

forw2 M80
inception_4d/

output
M81

inception_4d/
relu_1x1

M82
inception_4d/

relu_5x5_reduce
M83

inception_4c/
output

M84
inception_4c/

relu_1x1
M85

inception_4c/
relu_5x5_reduce

M86
inception_4b/

output
M87

inception_4b/
relu_1x1

M88
inception_4b/

relu_5x5_reduce
M89

conv2/
relu_3x3_reduce

M90
inception_4d/

relu_5x5
M91

inception_4d/
5x5

M92
inception_4d/
5x5_reduce

M93
inception_4c/

relu_5x5
M94

inception_4c/
5x5

M95
inception_4c/
5x5_reduce

M96
inception_4b/

relu_5x5
M97

inception_4b/
5x5

M98
inception_4b/
5x5_reduce

M99

inception_4e/
5x5_reduce

M1000
inception_4e/

5x5
M1001

inception_4e/
relu_5x5

M1002
inception_5a/
5x5_reduce

M1003
inception_5a/

5x5
M1004

inception_5a/
relu_5x5

M1005
inception_5b/
5x5_reduce

M1006
inception_5b/

5x5
M1007

inception_5b/
relu_5x5

M1008 pool5/7x7_s1 M1009

inception_4e/
relu_5x5_reduce

M1100
inception_4e/

relu_1x1
M1101

inception_4e/
output

M1102
inception_5a/

relu_5x5_reduce
M1103

inception_5a/
relu_1x1

M1104
inception_5a/

output
M1105

inception_5b/
relu_5x5_reduce

M1106
inception_5b/

relu_1x1
M1107

inception_5b/
output

M1108
pool5/

drop_7x7_s1
M1109

forw1to4 M1200
inception_4e/

1x1
M1201

inception_4e/
relu_pool_proj

M1202 pool4/3x3_s2 M1203
inception_5a/

1x1
M1204

inception_5a/
relu_pool_proj

M1205 forw1to4 M1206
inception_5b/

1x1
M1207

inception_5b/
relu_pool_proj

M1208
loss3/

classifier
M1209

inception_4e/
pool

M1300
inception_4e/
pool_proj

M1301
inception_4e/

relu_3x3
M1302

inception_5a/
pool

M1303
inception_5a/
pool_proj

M1304
inception_5a/

relu_3x3
M1305

inception_5b/
pool

M1306
inception_5b/
pool_proj

M1307
inception_5b/

relu_3x3
M1308 M1309

inception_4e/
3x3_reduce

M1400
inception_4e/

relu_3x3_reduce
M1401

inception_4e/
3x3

M1402
inception_5a/
3x3_reduce

M1403
inception_5a/

relu_3x3_reduce
M1404

inception_5a/
3x3

M1405
inception_5b/
3x3_reduce

M1406
inception_5b/

relu_3x3_reduce
M1407

inception_5b/
3x3

M1408 prob M1409

0 8388608

Figure 6.1. Memories usage analysis heatmaps of the high-speed (on the left) and
low-speed (on the right) implementations of the GoogLeNet on GPC (version 2).

Looking at the top-left part of the two heatmaps, we notice that, as aspected, in the
high-speed implementation, the memories are redder than in the low-speed one, meaning
they are more used. We can also notice that the first layers of the GoogLeNet CNN
are the ones that require bigger FIFOs or more space for the core’s data. However,
both implementations were designed without memory overflow, as confirmed by the two
extracts of the memories usage reports shown in Listing 6.2 and Listing 6.3.

1 ***
2 * MEMORIES USAGE REPORT
3 *
4 * Project : googlenet_GPC_high_speed .json
5 * Version : 1.0.0
6 * Date : sab ott 01 12:43:30 2022
7 *
8 * Grid Width : 10
9 * Grid Height : 15

10 * Memories Size : 8388608 bytes
11 ***
12
13 ***
14 * Summary
15 ***
16 Total Cores Memories Usage : 122867776 bytes
17 Total Channels Memories Usage : 52152724 bytes
18 Total Memories Usage : 175020500 bytes
19 Most Used Memory by Cores : Mem10 (Core Memory Usage : 6422528 bytes)
20 Most Used Memory by Channels : Mem00 (Channels Memory Usage : 3211272 bytes)
21
22 ***
23 * Memories Usage

51

Experiments and Results

24 ***
25 Memory ID: Core Usage : Channels Usage : Total :
26 Mem10 6422528 1605644 8028172 bytes
27 Mem00 3851264 3211272 7062536 bytes
28 Mem20 4014080 2408456 6422536 bytes
29 Mem30 4816896 802824 5619720 bytes
30 Mem50 4816896 802824 5619720 bytes

Listing 6.2. Extract of the GoogLeNet CNN on GPC (version 2) memories usage report
for the high-speed implementation.

1 ***
2 * MEMORIES USAGE REPORT
3 *
4 * Project : googlenet_GPC_low_speed .json
5 * Version : 1.0.0
6 * Date : sab ott 01 12:40:23 2022
7 *
8 * Grid Width : 10
9 * Grid Height : 15

10 * Memories Size : 8388608 bytes
11 ***
12
13 ***
14 * Summary
15 ***
16 Total Cores Memories Usage : 122867776 bytes
17 Total Channels Memories Usage : 12528 bytes
18 Total Memories Usage : 122880304 bytes
19 Most Used Memory by Cores : Mem10 (Core Memory Usage : 6422528 bytes)
20 Most Used Memory by Channels : Mem31 (Channels Memory Usage : 144 bytes)
21
22 ***
23 * Memories Usage
24 ***
25 Memory ID: Core Usage : Channels Usage : Total :
26 Mem10 6422528 72 6422600 bytes
27 Mem30 4816896 72 4816968 bytes
28 Mem50 4816896 72 4816968 bytes
29 Mem1209 4108096 72 4108168 bytes
30 Mem20 4014080 72 4014152 bytes

Listing 6.3. Extract of the GoogLeNet CNN on GPC (version 2) memories usage report
for the low-speed implementation.

6.2.2 Timing

MapGL timing analysis evaluates channels’ delays using three parameters: the memory
read and write delays and the multiplexer propagation delay. The designer can set their
values before starting the simulation.

The memory read and write delays were referred from [18]. In this case, we assumed that

52

6.2 – Version 2

the OFF-chip memories are DRAM, while the ON-chip memories are SRAM.
The OFF-chip memory read and write delay values were set inside the testbench manually.

The propagation delay of the multiplexer was arbitrarily chosen to be one-tenth of the
ON-chip memory read/write delay.

The chosen communication delays are shown in Table 6.1.

Delay Type Delay [ns]
OFF-chip memory read (DRAM) 50
OFF-chip memory write (DRAM) 50
ON-chip memory read (SRAM) 2.5
ON-chip memory write (SRAM) 2.5

Multiplexer propagation 0.25

Table 6.1. Communication delays used for the timing profiling [11].

Figure 6.2 shows the channel delays’ heatmaps generated after the timing analysis of the
high-speed and low-speed implementations.

conv1/7x7_s2 M00
inception_3a/
5x5_reduce

M01
inception_3a/

5x5
M02

inception_3a/
relu_5x5

M03
inception_3b/
5x5_reduce

M04
inception_3b/

5x5
M05

inception_3b/
relu_5x5

M06
inception_4a/
5x5_reduce

M07
inception_4a/

5x5
M08

inception_4a/
relu_5x5

M09

conv1/
relu_7x7

M10
inception_3a/

relu_5x5_reduce
M11

inception_3a/
relu_1x1

M12
inception_3a/

output
M13

inception_3b/
relu_5x5_reduce

M14
inception_3b/

relu_1x1
M15

inception_3b/
output

M16
inception_4a/

relu_5x5_reduce
M17

inception_4a/
relu_1x1

M18
inception_4a/

output
M19

pool1/3x3_s2 M20 pool2/3x3_s2 M21
inception_3a/

1x1
M22

inception_3a/
relu_pool_proj

M23 forw1to4 M24
inception_3b/

1x1
M25

inception_3b/
relu_pool_proj

M26 pool3/3x3_s2 M27
inception_4a/

1x1
M28

inception_4a/
relu_pool_proj

M29

conv2/norm2M30
inception_3a/

pool
M31

inception_3a/
pool_proj

M32
inception_3a/

relu_3x3
M33

inception_3b/
pool

M34
inception_3b/
pool_proj

M35
inception_3b/

relu_3x3
M36

inception_4a/
pool

M37
inception_4a/
pool_proj

M38
inception_4a/

relu_3x3
M39

pool1/norm1 M40
inception_3a/
3x3_reduce

M41
inception_3a/

relu_3x3_reduce
M42

inception_3a/
3x3

M43
inception_3b/
3x3_reduce

M44
inception_3b/

relu_3x3_reduce
M45

inception_3b/
3x3

M46
inception_4a/
3x3_reduce

M47
inception_4a/

relu_3x3_reduce
M48

inception_4a/
3x3

M49

conv2/
relu_3x3

M50
inception_4d/

3x3
M51

inception_4d/
relu_3x3_reduce

M52
inception_4d/
3x3_reduce

M53
inception_4c/

3x3
M54

inception_4c/
relu_3x3_reduce

M55
inception_4c/
3x3_reduce

M56
inception_4b/

3x3
M57

inception_4b/
relu_3x3_reduce

M58
inception_4b/
3x3_reduce

M59

conv2/3x3_reduce M60
inception_4d/

relu_3x3
M61

inception_4d/
pool_proj

M62
inception_4d/

pool
M63

inception_4c/
relu_3x3

M64
inception_4c/
pool_proj

M65
inception_4c/

pool
M66

inception_4b/
relu_3x3

M67
inception_4b/
pool_proj

M68
inception_4b/

pool
M69

conv2/3x3M70
inception_4d/
relu_pool_proj

M71
inception_4d/

1x1
M72 forw1to4M73

inception_4c/
relu_pool_proj

M74
inception_4c/

1x1
M75 forw1to4M76

inception_4b/
relu_pool_proj

M77
inception_4b/

1x1
M78 forw1to4M79

forw2 M80
inception_4d/

output
M81

inception_4d/
relu_1x1

M82
inception_4d/

relu_5x5_reduce
M83

inception_4c/
output

M84
inception_4c/

relu_1x1
M85

inception_4c/
relu_5x5_reduce

M86
inception_4b/

output
M87

inception_4b/
relu_1x1

M88
inception_4b/

relu_5x5_reduce
M89

conv2/
relu_3x3_reduce

M90
inception_4d/

relu_5x5
M91

inception_4d/
5x5

M92
inception_4d/
5x5_reduce

M93
inception_4c/

relu_5x5
M94

inception_4c/
5x5

M95
inception_4c/
5x5_reduce

M96
inception_4b/

relu_5x5
M97

inception_4b/
5x5

M98
inception_4b/
5x5_reduce

M99

inception_4e/
5x5_reduce

M1000
inception_4e/

5x5
M1001

inception_4e/
relu_5x5

M1002
inception_5a/
5x5_reduce

M1003
inception_5a/

5x5
M1004

inception_5a/
relu_5x5

M1005
inception_5b/
5x5_reduce

M1006
inception_5b/

5x5
M1007

inception_5b/
relu_5x5

M1008 pool5/7x7_s1 M1009

inception_4e/
relu_5x5_reduce

M1100
inception_4e/

relu_1x1
M1101

inception_4e/
output

M1102
inception_5a/

relu_5x5_reduce
M1103

inception_5a/
relu_1x1

M1104
inception_5a/

output
M1105

inception_5b/
relu_5x5_reduce

M1106
inception_5b/

relu_1x1
M1107

inception_5b/
output

M1108
pool5/

drop_7x7_s1
M1109

forw1to4 M1200
inception_4e/

1x1
M1201

inception_4e/
relu_pool_proj

M1202 pool4/3x3_s2 M1203
inception_5a/

1x1
M1204

inception_5a/
relu_pool_proj

M1205 forw1to4 M1206
inception_5b/

1x1
M1207

inception_5b/
relu_pool_proj

M1208
loss3/

classifier
M1209

inception_4e/
pool

M1300
inception_4e/
pool_proj

M1301
inception_4e/

relu_3x3
M1302

inception_5a/
pool

M1303
inception_5a/
pool_proj

M1304
inception_5a/

relu_3x3
M1305

inception_5b/
pool

M1306
inception_5b/
pool_proj

M1307
inception_5b/

relu_3x3
M1308 M1309

inception_4e/
3x3_reduce

M1400
inception_4e/

relu_3x3_reduce
M1401

inception_4e/
3x3

M1402
inception_5a/
3x3_reduce

M1403
inception_5a/

relu_3x3_reduce
M1404

inception_5a/
3x3

M1405
inception_5b/
3x3_reduce

M1406
inception_5b/

relu_3x3_reduce
M1407

inception_5b/
3x3

M1408 prob M1409

0 4014111500

conv1/7x7_s2 M00
inception_3a/
5x5_reduce

M01
inception_3a/

5x5
M02

inception_3a/
relu_5x5

M03
inception_3b/
5x5_reduce

M04
inception_3b/

5x5
M05

inception_3b/
relu_5x5

M06
inception_4a/
5x5_reduce

M07
inception_4a/

5x5
M08

inception_4a/
relu_5x5

M09

conv1/
relu_7x7

M10
inception_3a/

relu_5x5_reduce
M11

inception_3a/
relu_1x1

M12
inception_3a/

output
M13

inception_3b/
relu_5x5_reduce

M14
inception_3b/

relu_1x1
M15

inception_3b/
output

M16
inception_4a/

relu_5x5_reduce
M17

inception_4a/
relu_1x1

M18
inception_4a/

output
M19

pool1/3x3_s2 M20 pool2/3x3_s2 M21
inception_3a/

1x1
M22

inception_3a/
relu_pool_proj

M23 forw1to4 M24
inception_3b/

1x1
M25

inception_3b/
relu_pool_proj

M26 pool3/3x3_s2 M27
inception_4a/

1x1
M28

inception_4a/
relu_pool_proj

M29

conv2/norm2M30
inception_3a/

pool
M31

inception_3a/
pool_proj

M32
inception_3a/

relu_3x3
M33

inception_3b/
pool

M34
inception_3b/
pool_proj

M35
inception_3b/

relu_3x3
M36

inception_4a/
pool

M37
inception_4a/
pool_proj

M38
inception_4a/

relu_3x3
M39

pool1/norm1 M40
inception_3a/
3x3_reduce

M41
inception_3a/

relu_3x3_reduce
M42

inception_3a/
3x3

M43
inception_3b/
3x3_reduce

M44
inception_3b/

relu_3x3_reduce
M45

inception_3b/
3x3

M46
inception_4a/
3x3_reduce

M47
inception_4a/

relu_3x3_reduce
M48

inception_4a/
3x3

M49

conv2/
relu_3x3

M50
inception_4d/

3x3
M51

inception_4d/
relu_3x3_reduce

M52
inception_4d/
3x3_reduce

M53
inception_4c/

3x3
M54

inception_4c/
relu_3x3_reduce

M55
inception_4c/
3x3_reduce

M56
inception_4b/

3x3
M57

inception_4b/
relu_3x3_reduce

M58
inception_4b/
3x3_reduce

M59

conv2/3x3_reduce M60
inception_4d/

relu_3x3
M61

inception_4d/
pool_proj

M62
inception_4d/

pool
M63

inception_4c/
relu_3x3

M64
inception_4c/
pool_proj

M65
inception_4c/

pool
M66

inception_4b/
relu_3x3

M67
inception_4b/
pool_proj

M68
inception_4b/

pool
M69

conv2/3x3M70
inception_4d/
relu_pool_proj

M71
inception_4d/

1x1
M72 forw1to4M73

inception_4c/
relu_pool_proj

M74
inception_4c/

1x1
M75 forw1to4M76

inception_4b/
relu_pool_proj

M77
inception_4b/

1x1
M78 forw1to4M79

forw2 M80
inception_4d/

output
M81

inception_4d/
relu_1x1

M82
inception_4d/

relu_5x5_reduce
M83

inception_4c/
output

M84
inception_4c/

relu_1x1
M85

inception_4c/
relu_5x5_reduce

M86
inception_4b/

output
M87

inception_4b/
relu_1x1

M88
inception_4b/

relu_5x5_reduce
M89

conv2/
relu_3x3_reduce

M90
inception_4d/

relu_5x5
M91

inception_4d/
5x5

M92
inception_4d/
5x5_reduce

M93
inception_4c/

relu_5x5
M94

inception_4c/
5x5

M95
inception_4c/
5x5_reduce

M96
inception_4b/

relu_5x5
M97

inception_4b/
5x5

M98
inception_4b/
5x5_reduce

M99

inception_4e/
5x5_reduce

M1000
inception_4e/

5x5
M1001

inception_4e/
relu_5x5

M1002
inception_5a/
5x5_reduce

M1003
inception_5a/

5x5
M1004

inception_5a/
relu_5x5

M1005
inception_5b/
5x5_reduce

M1006
inception_5b/

5x5
M1007

inception_5b/
relu_5x5

M1008 pool5/7x7_s1 M1009

inception_4e/
relu_5x5_reduce

M1100
inception_4e/

relu_1x1
M1101

inception_4e/
output

M1102
inception_5a/

relu_5x5_reduce
M1103

inception_5a/
relu_1x1

M1104
inception_5a/

output
M1105

inception_5b/
relu_5x5_reduce

M1106
inception_5b/

relu_1x1
M1107

inception_5b/
output

M1108
pool5/

drop_7x7_s1
M1109

forw1to4 M1200
inception_4e/

1x1
M1201

inception_4e/
relu_pool_proj

M1202 pool4/3x3_s2 M1203
inception_5a/

1x1
M1204

inception_5a/
relu_pool_proj

M1205 forw1to4 M1206
inception_5b/

1x1
M1207

inception_5b/
relu_pool_proj

M1208
loss3/

classifier
M1209

inception_4e/
pool

M1300
inception_4e/
pool_proj

M1301
inception_4e/

relu_3x3
M1302

inception_5a/
pool

M1303
inception_5a/
pool_proj

M1304
inception_5a/

relu_3x3
M1305

inception_5b/
pool

M1306
inception_5b/
pool_proj

M1307
inception_5b/

relu_3x3
M1308 M1309

inception_4e/
3x3_reduce

M1400
inception_4e/

relu_3x3_reduce
M1401

inception_4e/
3x3

M1402
inception_5a/
3x3_reduce

M1403
inception_5a/

relu_3x3_reduce
M1404

inception_5a/
3x3

M1405
inception_5b/
3x3_reduce

M1406
inception_5b/

relu_3x3_reduce
M1407

inception_5b/
3x3

M1408 prob M1409

0 4967427000

Figure 6.2. Timing analysis channel delays’ heatmaps of the high-speed (on the left) and
low-speed (on the right) implementations of the GoogLeNet on GPC (version 2).

Looking at Figure 6.2 seems that the two heatmaps look identical even if the channels
should be faster in one implementation and slower in the other.
The reason is that the delays are normalized to the highest value. On the contrary, in the
memories usage heatmaps in Figure 6.1, we notice a color difference because values are
normalized to the memory size. The memory dimensions depend on the GPC grid size,
so it remains the same in the two implementations.

We can also notice a correlation between the timing heatmaps in Figure 6.2 and the

53

Experiments and Results

memories usage heatmaps in Figure 6.1. The similarity in behavior is present because, by
increasing the quantity of data to send, we increase the channel delay.

Listing 6.4 and Listing 6.5 shows the extracts of the timing reports of the two implemen-
tations.

1 ***
2 * TIMING REPORT
3 *
4 * Project : googlenet_GPC_high_speed .json
5 * Version : 1.0.0
6 * Date : sab ott 01 12:43:59 2022
7 *
8 * Grid Width : 10
9 * Grid Height : 15

10 * Memory Write Delay : 2.50e -09 s
11 * Memory Read Delay : 2.50e -09 s
12 * Mux Delay : 2.50e -10 s
13 ***
14
15 ***
16 * Cores Delays
17 ***
18 Core ID: Module : Latency : Exec: Idle: Channels : Real Exec:
19 Core81 inception_4d / output (concat) 7.463 e+07 1.474 e+06 9.565 e+05 5.175 e+05 0.000 e+00 ns
20 Core71 inception_4d / relu_pool_proj (relu) 7.575 e+07 6.274 e+04 0.000 e+00 6.274 e+04 0.000 e+00 ns
21 Core50 conv2 / relu_3x3 (relu) 3.960 e+07 3.011 e+06 0.000 e+00 3.011 e+06 0.000 e+00 ns
22 Core70 conv2 /3 x3 (convolution) 3.760 e+07 2.007 e+06 2.000 e+00 2.007 e+06 0.000 e+00 ns
23 Core1408 inception_5b /3 x3 (convolution) 9.094 e+07 7.058 e+04 0.000 e+00 7.058 e+04 0.000 e+00 ns
24 Core1407 inception_5b / relu_3x3_reduce (relu) 9.090 e+07 4.706 e+04 0.000 e+00 4.706 e+04 0.000 e+00 ns
25 Core84 inception_4c / output (concat) 7.227 e+07 1.443 e+06 9.408 e+05 5.018 e+05 0.000 e+00 ns

Listing 6.4. Extract of the GoogLeNet CNN on GPC (version 2) timing report for
the high-speed implementation.

1 ***
2 * TIMING REPORT
3 *
4 * Project : googlenet_GPC_low_speed .json
5 * Version : 1.0.0
6 * Date : sab ott 01 12:33:49 2022
7 *
8 * Grid Width : 10
9 * Grid Height : 15

10 * Memory Write Delay : 2.50e -09 s
11 * Memory Read Delay : 2.50e -09 s
12 * Mux Delay : 2.50e -10 s
13 ***
14
15 ***
16 * Cores Delays
17 ***
18 Core ID: Module : Latency : Exec: Idle: Channels : Real Exec:
19 Core86 inception_4c / relu_5x5_reduce (relu) 8.798 e+07 5.694 e+04 2.784 e+04 2.911 e+04 0.000 e+00 ns
20 Core96 inception_4c /5 x5_reduce (convolution) 8.733 e+07 6.744 e+05 3.118 e+05 3.627 e+05 0.000 e+00 ns
21 Core19 inception_4a / output (concat) 6.808 e+07 1.416 e+07 1.354 e+07 6.209 e+05 0.000 e+00 ns
22 Core09 inception_4a / relu_5x5 (relu) 6.906 e+07 1.710 e+05 1.128 e+05 5.822 e+04 0.000 e+00 ns
23 Core84 inception_4c / output (concat) 8.688 e+07 3.117 e+06 2.496 e+06 6.209 e+05 0.000 e+00 ns
24 Core85 inception_4c / relu_1x1 (relu) 8.673 e+07 3.041 e+05 1.489 e+05 1.552 e+05 0.000 e+00 ns
25 Core28 inception_4a /1 x1 (convolution) 6.728 e+07 7.984 e+05 3.909 e+05 4.075 e+05 0.000 e+00 ns

Listing 6.5. Extract of the GoogLeNet CNN on GPC (version 2) timing report for
the low-speed implementation.

The latency is the time from the start of the simulation to the first value popped. The

54

6.2 – Version 2

execution delay is the time from the first pop to the last push. The idle delay is the span
in which the core waits for the other cores to push or pop the data. The channel delay is
the time spent for communication purposes. Finally, the real execution delay is the time
spent elaborating the data, which in this case is zero since we did not specify any delay
inside our modules.

The values are sorted using the real execution delay, but in this case, they are basically
randomly ordered.

The overall application delay of the high-speed implementation was 81708403 ns, while
for the low-speed was 104018256 ns. The delay is reduced by 21% in the high-speed im-
plementation but memories usage increases by 42%.

Adding delays to the layers

The last timing profiling was performed by adding the execution delays calculated as
described in Section 5.3 to each layer. These values are only used to get a rough estimation
of the overall application behavior. They are not to be intended as accurate performance
results.

Figure 6.3 shows the real execution delays’ heatmaps generated after analyzing the high-
speed and low-speed implementations.

conv1/7x7_s2 M00
inception_3a/
5x5_reduce

M01
inception_3a/

5x5
M02

inception_3a/
relu_5x5

M03
inception_3b/
5x5_reduce

M04
inception_3b/

5x5
M05

inception_3b/
relu_5x5

M06
inception_4a/
5x5_reduce

M07
inception_4a/

5x5
M08

inception_4a/
relu_5x5

M09

conv1/
relu_7x7

M10
inception_3a/

relu_5x5_reduce
M11

inception_3a/
relu_1x1

M12
inception_3a/

output
M13

inception_3b/
relu_5x5_reduce

M14
inception_3b/

relu_1x1
M15

inception_3b/
output

M16
inception_4a/

relu_5x5_reduce
M17

inception_4a/
relu_1x1

M18
inception_4a/

output
M19

pool1/3x3_s2 M20 pool2/3x3_s2 M21
inception_3a/

1x1
M22

inception_3a/
relu_pool_proj

M23 forw1to4 M24
inception_3b/

1x1
M25

inception_3b/
relu_pool_proj

M26 pool3/3x3_s2 M27
inception_4a/

1x1
M28

inception_4a/
relu_pool_proj

M29

conv2/norm2M30
inception_3a/

pool
M31

inception_3a/
pool_proj

M32
inception_3a/

relu_3x3
M33

inception_3b/
pool

M34
inception_3b/
pool_proj

M35
inception_3b/

relu_3x3
M36

inception_4a/
pool

M37
inception_4a/
pool_proj

M38
inception_4a/

relu_3x3
M39

pool1/norm1 M40
inception_3a/
3x3_reduce

M41
inception_3a/

relu_3x3_reduce
M42

inception_3a/
3x3

M43
inception_3b/
3x3_reduce

M44
inception_3b/

relu_3x3_reduce
M45

inception_3b/
3x3

M46
inception_4a/
3x3_reduce

M47
inception_4a/

relu_3x3_reduce
M48

inception_4a/
3x3

M49

conv2/
relu_3x3

M50
inception_4d/

3x3
M51

inception_4d/
relu_3x3_reduce

M52
inception_4d/
3x3_reduce

M53
inception_4c/

3x3
M54

inception_4c/
relu_3x3_reduce

M55
inception_4c/
3x3_reduce

M56
inception_4b/

3x3
M57

inception_4b/
relu_3x3_reduce

M58
inception_4b/
3x3_reduce

M59

conv2/3x3_reduce M60
inception_4d/

relu_3x3
M61

inception_4d/
pool_proj

M62
inception_4d/

pool
M63

inception_4c/
relu_3x3

M64
inception_4c/
pool_proj

M65
inception_4c/

pool
M66

inception_4b/
relu_3x3

M67
inception_4b/
pool_proj

M68
inception_4b/

pool
M69

conv2/3x3M70
inception_4d/
relu_pool_proj

M71
inception_4d/

1x1
M72 forw1to4M73

inception_4c/
relu_pool_proj

M74
inception_4c/

1x1
M75 forw1to4M76

inception_4b/
relu_pool_proj

M77
inception_4b/

1x1
M78 forw1to4M79

forw2 M80
inception_4d/

output
M81

inception_4d/
relu_1x1

M82
inception_4d/

relu_5x5_reduce
M83

inception_4c/
output

M84
inception_4c/

relu_1x1
M85

inception_4c/
relu_5x5_reduce

M86
inception_4b/

output
M87

inception_4b/
relu_1x1

M88
inception_4b/

relu_5x5_reduce
M89

conv2/
relu_3x3_reduce

M90
inception_4d/

relu_5x5
M91

inception_4d/
5x5

M92
inception_4d/
5x5_reduce

M93
inception_4c/

relu_5x5
M94

inception_4c/
5x5

M95
inception_4c/
5x5_reduce

M96
inception_4b/

relu_5x5
M97

inception_4b/
5x5

M98
inception_4b/
5x5_reduce

M99

inception_4e/
5x5_reduce

M1000
inception_4e/

5x5
M1001

inception_4e/
relu_5x5

M1002
inception_5a/
5x5_reduce

M1003
inception_5a/

5x5
M1004

inception_5a/
relu_5x5

M1005
inception_5b/
5x5_reduce

M1006
inception_5b/

5x5
M1007

inception_5b/
relu_5x5

M1008 pool5/7x7_s1 M1009

inception_4e/
relu_5x5_reduce

M1100
inception_4e/

relu_1x1
M1101

inception_4e/
output

M1102
inception_5a/

relu_5x5_reduce
M1103

inception_5a/
relu_1x1

M1104
inception_5a/

output
M1105

inception_5b/
relu_5x5_reduce

M1106
inception_5b/

relu_1x1
M1107

inception_5b/
output

M1108
pool5/

drop_7x7_s1
M1109

forw1to4 M1200
inception_4e/

1x1
M1201

inception_4e/
relu_pool_proj

M1202 pool4/3x3_s2 M1203
inception_5a/

1x1
M1204

inception_5a/
relu_pool_proj

M1205 forw1to4 M1206
inception_5b/

1x1
M1207

inception_5b/
relu_pool_proj

M1208
loss3/

classifier
M1209

inception_4e/
pool

M1300
inception_4e/
pool_proj

M1301
inception_4e/

relu_3x3
M1302

inception_5a/
pool

M1303
inception_5a/
pool_proj

M1304
inception_5a/

relu_3x3
M1305

inception_5b/
pool

M1306
inception_5b/
pool_proj

M1307
inception_5b/

relu_3x3
M1308 M1309

inception_4e/
3x3_reduce

M1400
inception_4e/

relu_3x3_reduce
M1401

inception_4e/
3x3

M1402
inception_5a/
3x3_reduce

M1403
inception_5a/

relu_3x3_reduce
M1404

inception_5a/
3x3

M1405
inception_5b/
3x3_reduce

M1406
inception_5b/

relu_3x3_reduce
M1407

inception_5b/
3x3

M1408 prob M1409

0 69080000000

conv1/7x7_s2 M00
inception_3a/
5x5_reduce

M01
inception_3a/

5x5
M02

inception_3a/
relu_5x5

M03
inception_3b/
5x5_reduce

M04
inception_3b/

5x5
M05

inception_3b/
relu_5x5

M06
inception_4a/
5x5_reduce

M07
inception_4a/

5x5
M08

inception_4a/
relu_5x5

M09

conv1/
relu_7x7

M10
inception_3a/

relu_5x5_reduce
M11

inception_3a/
relu_1x1

M12
inception_3a/

output
M13

inception_3b/
relu_5x5_reduce

M14
inception_3b/

relu_1x1
M15

inception_3b/
output

M16
inception_4a/

relu_5x5_reduce
M17

inception_4a/
relu_1x1

M18
inception_4a/

output
M19

pool1/3x3_s2 M20 pool2/3x3_s2 M21
inception_3a/

1x1
M22

inception_3a/
relu_pool_proj

M23 forw1to4 M24
inception_3b/

1x1
M25

inception_3b/
relu_pool_proj

M26 pool3/3x3_s2 M27
inception_4a/

1x1
M28

inception_4a/
relu_pool_proj

M29

conv2/norm2M30
inception_3a/

pool
M31

inception_3a/
pool_proj

M32
inception_3a/

relu_3x3
M33

inception_3b/
pool

M34
inception_3b/
pool_proj

M35
inception_3b/

relu_3x3
M36

inception_4a/
pool

M37
inception_4a/
pool_proj

M38
inception_4a/

relu_3x3
M39

pool1/norm1 M40
inception_3a/
3x3_reduce

M41
inception_3a/

relu_3x3_reduce
M42

inception_3a/
3x3

M43
inception_3b/
3x3_reduce

M44
inception_3b/

relu_3x3_reduce
M45

inception_3b/
3x3

M46
inception_4a/
3x3_reduce

M47
inception_4a/

relu_3x3_reduce
M48

inception_4a/
3x3

M49

conv2/
relu_3x3

M50
inception_4d/

3x3
M51

inception_4d/
relu_3x3_reduce

M52
inception_4d/
3x3_reduce

M53
inception_4c/

3x3
M54

inception_4c/
relu_3x3_reduce

M55
inception_4c/
3x3_reduce

M56
inception_4b/

3x3
M57

inception_4b/
relu_3x3_reduce

M58
inception_4b/
3x3_reduce

M59

conv2/3x3_reduce M60
inception_4d/

relu_3x3
M61

inception_4d/
pool_proj

M62
inception_4d/

pool
M63

inception_4c/
relu_3x3

M64
inception_4c/
pool_proj

M65
inception_4c/

pool
M66

inception_4b/
relu_3x3

M67
inception_4b/
pool_proj

M68
inception_4b/

pool
M69

conv2/3x3M70
inception_4d/
relu_pool_proj

M71
inception_4d/

1x1
M72 forw1to4M73

inception_4c/
relu_pool_proj

M74
inception_4c/

1x1
M75 forw1to4M76

inception_4b/
relu_pool_proj

M77
inception_4b/

1x1
M78 forw1to4M79

forw2 M80
inception_4d/

output
M81

inception_4d/
relu_1x1

M82
inception_4d/

relu_5x5_reduce
M83

inception_4c/
output

M84
inception_4c/

relu_1x1
M85

inception_4c/
relu_5x5_reduce

M86
inception_4b/

output
M87

inception_4b/
relu_1x1

M88
inception_4b/

relu_5x5_reduce
M89

conv2/
relu_3x3_reduce

M90
inception_4d/

relu_5x5
M91

inception_4d/
5x5

M92
inception_4d/
5x5_reduce

M93
inception_4c/

relu_5x5
M94

inception_4c/
5x5

M95
inception_4c/
5x5_reduce

M96
inception_4b/

relu_5x5
M97

inception_4b/
5x5

M98
inception_4b/
5x5_reduce

M99

inception_4e/
5x5_reduce

M1000
inception_4e/

5x5
M1001

inception_4e/
relu_5x5

M1002
inception_5a/
5x5_reduce

M1003
inception_5a/

5x5
M1004

inception_5a/
relu_5x5

M1005
inception_5b/
5x5_reduce

M1006
inception_5b/

5x5
M1007

inception_5b/
relu_5x5

M1008 pool5/7x7_s1 M1009

inception_4e/
relu_5x5_reduce

M1100
inception_4e/

relu_1x1
M1101

inception_4e/
output

M1102
inception_5a/

relu_5x5_reduce
M1103

inception_5a/
relu_1x1

M1104
inception_5a/

output
M1105

inception_5b/
relu_5x5_reduce

M1106
inception_5b/

relu_1x1
M1107

inception_5b/
output

M1108
pool5/

drop_7x7_s1
M1109

forw1to4 M1200
inception_4e/

1x1
M1201

inception_4e/
relu_pool_proj

M1202 pool4/3x3_s2 M1203
inception_5a/

1x1
M1204

inception_5a/
relu_pool_proj

M1205 forw1to4 M1206
inception_5b/

1x1
M1207

inception_5b/
relu_pool_proj

M1208
loss3/

classifier
M1209

inception_4e/
pool

M1300
inception_4e/
pool_proj

M1301
inception_4e/

relu_3x3
M1302

inception_5a/
pool

M1303
inception_5a/
pool_proj

M1304
inception_5a/

relu_3x3
M1305

inception_5b/
pool

M1306
inception_5b/
pool_proj

M1307
inception_5b/

relu_3x3
M1308 M1309

inception_4e/
3x3_reduce

M1400
inception_4e/

relu_3x3_reduce
M1401

inception_4e/
3x3

M1402
inception_5a/
3x3_reduce

M1403
inception_5a/

relu_3x3_reduce
M1404

inception_5a/
3x3

M1405
inception_5b/
3x3_reduce

M1406
inception_5b/

relu_3x3_reduce
M1407

inception_5b/
3x3

M1408 prob M1409

0 69080000000

Figure 6.3. Timing analysis real execution delays’ heatmaps of the high-speed
(on the left) and low-speed (on the right) implementations of the GoogLeNet
on GPC (version 2).

In this case, the two heatmaps are the same by definition. We notice that the conv2/3x3
module has a higher execution delay than the other modules.
In future models, we could increase the size of the FIFOs for that particular core to

55

Experiments and Results

mitigate the bottleneck. Another solution could be splitting that module’s operations
into two cores.

This time, the reports shown in Listing 6.4 and Listing 6.5 are sorted correctly, thanks to
the non-zero real execution delays. This way, we can have a rough idea of which cores are
the slowest inside the structure for future improvements.

1 ***
2 * TIMING REPORT
3 *
4 * Project : googlenet_GPC_high_speed .json
5 * Version : 1.0.0
6 * Date : sab ott 01 12:55:21 2022
7 *
8 * Grid Width : 10
9 * Grid Height : 15

10 * Memory Write Delay : 2.50e -09 s
11 * Memory Read Delay : 2.50e -09 s
12 * Mux Delay : 2.50e -10 s
13 ***
14
15 ***
16 * Cores Delays
17 ***
18 Core ID: Module : Latency : Exec: Idle: Channels : Real Exec:
19 Core70 conv2 /3 x3 (convolution) 7.486 e+07 7.109 e+07 2.000 e+00 2.007 e+06 6.908 e+07 ns
20 Core46 inception_3b /3 x3 (convolution) 1.951 e+08 3.529 e+07 0.000 e+00 6.272 e+05 3.466 e+07 ns
21 Core00 conv1 /7 x7_s2 (convolution) 1.753 e+07 3.602 e+07 7.150 e+06 2.383 e+06 2.648 e+07 ns
22 Core1402 inception_4e /3 x3 (convolution) 3.230 e+08 1.842 e+07 0.000 e+00 2.352 e+05 1.818 e+07 ns
23 Core43 inception_3a /3 x3 (convolution) 1.667 e+08 1.810 e+07 0.000 e+00 4.391 e+05 1.766 e+07 ns
24 Core51 inception_4d /3 x3 (convolution) 2.918 e+08 1.499 e+07 0.000 e+00 2.117 e+05 1.478 e+07 ns
25 Core05 inception_3b /5 x5 (convolution) 1.908 e+08 1.245 e+07 0.000 e+00 2.509 e+05 1.220 e+07 ns

Listing 6.6. Extract of the GoogLeNet CNN on GPC (version 2) timing report with
layers delays for the high-speed implementation.

1 ***
2 * TIMING REPORT
3 *
4 * Project : googlenet_GPC_low_speed .json
5 * Version : 1.0.0
6 * Date : sab ott 01 12:58:38 2022
7 *
8 * Grid Width : 10
9 * Grid Height : 15

10 * Memory Write Delay : 2.50e -09 s
11 * Memory Read Delay : 2.50e -09 s
12 * Mux Delay : 2.50e -10 s
13 ***
14
15 ***
16 * Cores Delays
17 ***
18 Core ID: Module : Latency : Exec: Idle: Channels : Real Exec:
19 Core70 conv2 /3 x3 (convolution) 7.691 e+07 7.401 e+07 2.446 e+06 2.484 e+06 6.908 e+07 ns
20 Core46 inception_3b /3 x3 (convolution) 2.023 e+08 3.618 e+07 7.447 e+05 7.762 e+05 3.466 e+07 ns
21 Core00 conv1 /7 x7_s2 (convolution) 1.753 e+07 3.887 e+07 9.534 e+06 2.860 e+06 2.648 e+07 ns
22 Core1402 inception_4e /3 x3 (convolution) 3.396 e+08 1.875 e+07 2.792 e+05 2.911 e+05 1.818 e+07 ns
23 Core43 inception_3a /3 x3 (convolution) 1.721 e+08 1.872 e+07 5.213 e+05 5.433 e+05 1.766 e+07 ns
24 Core51 inception_4d /3 x3 (convolution) 3.055 e+08 1.529 e+07 2.513 e+05 2.620 e+05 1.478 e+07 ns
25 Core05 inception_3b /5 x5 (convolution) 1.988 e+08 1.281 e+07 2.978 e+05 3.105 e+05 1.220 e+07 ns

Listing 6.7. Extract of the GoogLeNet CNN on GPC (version 2) timing report with
layers delays for the low-speed implementation.

56

6.3 – Comparison

In this case, the overall application delay of the high-speed implementation was 351072036
ns, while for the low-speed was 369080897 ns. These results are much higher than the
previous case in which the layer execution delay was equal to zero. The channels’ con-
tributions to the application delay are minimal using these delay values. Modifying the
layers’ execution delays can drastically change the results.

The aim of this last profiling was just to show how to use the timing profiling of MapGL
at its highest potential, not to get any accurate results.

6.3 Comparison

In this section, we will compare the first version of the model with the high-speed and
low-speed implementations of the second one.
For an even comparison, we will consider only the profiling results in which the layers’
execution delays are equal to zero.

Table 6.2 shows the results of the three models, while Table 6.3 shows how the high-speed
and low-speed implementations perform compared to the first version of the model.

Grid size Total memories usage [MB] Total delay [ms]

1st version 15 × 13 210 159

2st version
(high-speed) 15 × 10 175 82

2st version
(low-speed) 15 × 10 123 104

Table 6.2. Results of the first and second versions of the GoogLeNet on GPC model.
The second version has high-speed and low-speed implementations.

Grid size Total memories usage Total delay

high-speed −23.1% −16.8% −48.5%

low-speed −23.1% −41.6% −34.5%

Table 6.3. Comparison between the first model and the high-speed and low-
speed implementations.

The results in Table 6.2 are not to be considered accurate, they are just rough estimations.

57

Experiments and Results

More interesting are the percentages in Table 6.3, which give an idea of the improvements
from the first to the second model.

One of the main reasons for the superiority of the second version over the first is the
reduction of almost one-fourth of the grid size. By reducing the number of cores used, the
application becomes faster and uses fewer memories.

Another critical factor is the number of accesses to external memories. Both models use
the two side memories to shorten the path between inception blocks, which ideally is a
good solution. However, Table 6.1 shows that DRAMs are much slower than SRAMs.
The first version of the model pushes the same data through the side memories four
times, while the second version pushes it just one time, thanks to the use of the forw1to4
module. This lack drastically increases the first version application delay. However, this
effect could be mitigated by reducing access delays to external memories.

58

Chapter 7

Conclusion

In this thesis, we described the design process and the profiling of two versions of the
GoogLeNet on GPC model. We also introduced the MARI library and the MapGL editor
that aids the analysis and mapping of new GPC applications.

The GoogLeNet model allowed us to exploit the scalability of the GPC architecture by
designing and making simulations on a grid of up to 195 cores.

Using the MapGL editor, we created, visualized and modified our mapping without using
any specific programming language. It also allowed us to save our project and automati-
cally generate the SystemC model. Ultimately, we profiled our application using MapGL
integrated tool for the memories usage and timing analysis.

7.1 Future works

Even using MapGL, mapping large applications on the GPC still requires lots of effort.
Sometimes, a minor detail can lead the designer to redesign the entire structure.
A possible solution could be the implementation of an auto-mapper, which exploits all
the possible mappings and chooses the best according to some constraints imposed by the
designer. For each mapping, the auto-mapper could check the results of the application
profiling, searching for critical paths or memory overflows. All the information extracted
from the profile reports could be used to find the best mapping possible.
For CNN applications, the Caffe model file format that describes the network structure
represents the perfect input. The auto-mapper can also decide whether a core should use
one or more memories to store data or whether to use external or local memories.

At the moment, MapGL supports only SystemC export. However, it could be possible

59

Conclusion

in the future to export projects using other languages, such as VHDL or SystemVerilog.
The editor works at a high level of abstraction and is modular, so it should not be too
complex to implement. The limit could still come from the language itself.

It could also be possible to include inside MapGL the possibility to map application using
other many-processor architectures. For example, one of them could be a 3D version of
the GPC introduced in [5].

60

Bibliography

[1] L. Azriel, A. Mendelson, and U. Weiser, “Peripheral memory: a technique for fighting
memory bandwidth bottleneck,” IEEE Computer Architecture Letters, vol. 14, no. 1,
pp. 54–57, 2015.

[2] S. A. McKee, “Reflections on the Memory Wall,” in Proceedings of the 1st Conference
on Computing Frontiers, CF ’04, (New York, NY, USA), p. 162, Association for
Computing Machinery, 2004.

[3] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski, and J. Teich,
“Electronic system-level synthesis methodologies,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1517–1530, 2009.

[4] D. C. Black, J. Donovan, B. Bunton, and A. Keist, SystemC: From the Ground Up.
Springer US, 2010.

[5] R. Dömer, “A Grid of Processing Cells (GPC) with Local Memories,” tech. rep.,
CECS, University of California, Irvine, 2022.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2015.

[7] W. Müller, W. Rosenstiel, and J. Ruf, eds., SystemC: Methodologies and Applications.
USA: Kluwer Academic Publishers, 2003.

[8] “IEEE Standard for Standard SystemC Language Reference Manual,” IEEE Std
1666-2011 (Revision of IEEE Std 1666-2005), pp. 1–638, 2012.

[9] J. Aynsley, “OSCI TLM-2.0 Language Reference Manual,” Open SystemC Initiative
(OSCI), 2009.

[10] A. Daroui, “A Loosely-Timed TLM-2.0 Model of a JPEG Encoder on a Checkerboard
GPC,” UC Irvine, 2022.

[11] V. B. Govindasamy and R. Dömer, “Mapping of an APNG Encoder to the Grid of
Processing Cells Architecture,” UC Irvine, 2022.

61

BIBLIOGRAPHY

[12] Y. Wang and R. Dömer, “A Scalable SystemC Model of a Checkerboard Grid of
Processing Cells,” UC Irvine, 2022.

[13] G. Bortolan, I. Christov, and I. Simova, “Potential of rule-based methods and deep
learning architectures for ecg diagnostics,” Diagnostics, vol. 11, no. 9, 2021.

[14] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv
preprint arXiv:1408.5093, 2014.

[15] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Realtime computer vision
with opencv: Mobile computer-vision technology will soon become as ubiquitous as
touch interfaces.,” Queue, vol. 10, p. 40–56, apr 2012.

[16] E. M. Arasteh and R. Dömer, “Systematic Evaluation of Six Models of GoogLeNet
using PDES,” UC Irvine, 2021.

[17] J. M. Willman, Beginning PyQt. Apress, 2020.

[18] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hard-
ware Software Interface ARM Edition. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1st ed., 2016.

62

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Thesis structure
	Related Works
	SystemC
	GPC Architecture
	GoogLeNet CNN

	Goals

	GoogLeNet CNN on GPC (Version 1)
	Pen and Paper Mapping
	MemTools
	Fork and Merge
	Inception Block
	Complete structure

	Implementation
	Parsing
	Mapping Validation
	Code Generation
	Compilation
	Profiling

	Limits of the model

	MARI: Memory Access Resources and Interfaces library
	Memory Interfaces
	FIFO Interfaces
	Ring Buffering

	Profiling

	MapGL
	Memories and Channels views
	Modules
	How to create a module

	Memory Structure
	Project Export
	Dependencies

	Profiling
	Memories Usage Analysis
	Timing Analysis

	GoogLeNet CNN on GPC (Version 2)
	Inception Block
	Complete Structure
	Profiling

	Experiments and Results
	Version 1
	Version 2
	Memories Usage
	Timing

	Comparison

	Conclusion
	Future works

	Bibliography

