

POLITECNICO DI TORINO

Collegio di Ingegneria Informatica,

del Cinema e Meccatronica

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Fast and continuous path planning of

ground robots for aerospace exploration

Supervisors

Prof. Alessandro Rizzo

Prof. Marina Indri

Candidate

Gabriella Pace

October 2022

Abstract

The path planning problem is a computational problem which is directed to

search for sequences of positions (or, equivalently, movements) that can take

a vehicle from a starting point to an end point, or even to allow the vehicle

to pass through a predefined sequence of points. The simplest versions have

the sole objective of avoiding areas where the vehicle could not physically

travel or where it would sustain damages, but this almost always generates

more than one valid solution. For this reason, many algorithms also deal at

the very least with choosing the shortest, fastest or safest of these

alternatives to adopt. In addition, a more extensive combination of factors

might be wanted to be taken into account, thus entering into multi-objective

path planning.

This is precisely the cardinal topic of this thesis, in particular it is designed

to be used by rovers for Martian exploration. In fact, the planner is designed

to be integrated into the system created by TAS-I to be deployed on the

Adept Mobile Robots Seekur Jr on their property.

The objectives to be optimized considered here aim to achieve the shortest

and safest path, taking into account the necessary energy consumption or

solar exposure during the journey (since recharging is usually done through

solar panels), and this is achieved through the MOD* Lite incremental

search algorithm (an enhancement of D* Lite).

Contents

Acronyms ... 1

1. Introduction .. 3

1.1 Thesis structure .. 4

2. The path planning problem ... 6

2.1 Global path planning .. 6

2.2 Local path planning .. 7

2.3 Sensors typically employed ... 9

2.3.1 Mapping ... 9

2.3.2 Localization ... 10

2.4 Data structures for terrain representation 12

2.4.1 Grid construction... 13

2.4.2 Scoring strategies ... 14

2.4.3 Graphs ... 15

2.5 Replanning ... 19

3. Search algorithms ... 21

3.1 Single-objective algorithms ... 23

3.1.1 A* .. 23

3.1.2 Dynamic SWSF-FP ... 25

3.1.3 Lifelong Planning A* ... 26

3.1.4 Declinations of the D* ... 27

3.1.5 D* Lite .. 29

3.2 Multi-objective algorithms ... 32

3.2.1 MOGPP .. 33

3.2.2 SPEA2 ... 34

3.2.3 MOA* .. 35

3.2.4 MOD* Lite .. 37

3.3 Heuristic functions ... 39

4. MOD* Lite .. 41

4.1 Structure of Node class .. 42

4.2 Priority queue .. 43

4.3 Functions ... 44

4.4 Procedures ... 45

4.4.1 Main procedure ... 46

4.4.2 Compute MO Paths .. 47

4.4.3 Generate MO Paths .. 49

4.4.4 Update Map .. 52

4.4.5 ReadMap ... 54

5. Integration with TASI ... 55

5.1 Simulation environment... 59

6. Testing .. 60

6.1 Hand generated maps .. 61

6.2 Randomly generated maps .. 65

6.3 Simulation of map integration from different sources 69

6.3.1 Analysis of execution times ... 72

6.3.2 Memory occupation ... 75

6.3.3 CPU usage .. 75

6.4 Implementation in ROS2 ... 77

7. Conclusions and future developments .. 79

List of Figures .. 81

List of Tables .. 82

Bibliography ... 83

1

Acronyms

Dynamic

SWSF-FP

Dynamic Strict Weak Superior Function - Fixed-Point

LPA* Lifelong Planning A*

D* Dynamic A*

MPOs

(MOOP)

Multi-Objective Optimization Problems

NP-hard Nondetermistic Polynomial-time hard

MOPP Multi-Objective Path Planning algorithm

MOGPP Multiobjective Genetic Path Planning

MOEA Multi-Objective Evolutionary Algorithm

SPEA2 Strength Pareto Evolutionaty Algorithm - 2

MOA* Multi-Objective A*

MOD* Lite Multi-Objective D* Lite

IMU Inertial Measurement Unit

ToF Time of Flight

SINAV Soluzioni Innovative per la Navigazione Autonoma Veloce

TAS-I Thales Alenia Space Italia

RoXY Rover eXploration facilitY

AutoNav Autonomous Navigation

ROS2 Robot Operating System - v2

Nav2 Navigation 2

HAL Hardware Abstraction Layer

BT Behavior Tree

2

3

1. Introduction

In the sphere of space exploration, there is a pressing need to develop

increasingly precise and lightweight methods of making rovers autonomous

in order to minimize the damages reported and optimize the time and

resources available. The most common situation is to have a terrestrial rover

(at most aided by the eyes of a drone, but anyway not in real time) having

to locate itself and then navigate the rough terrain such as the one found on

Mars, with almost no prior knowledge of the surrounding environment,

which moreover is mutable over time.

The longest drive in one sol has been 100.3 m, registered by Curiosity on

July 21 (or sol 340) 2013. (Woods, et al., 2014)

In fact, due to the poor lighting conditions and the low computational power

available on-board, the rover needs to stop frequently to recalculate the best

route to take, and this takes longer than the time it actually needs to travel

it.

On the contrary, the need for remote human intervention, or even just to

have data processed by more powerful computers located on Earth, makes

making decisions and carrying out research successfully increases the time

required for each action considerably. A Mars mission is typically forced to

limit itself to one downlink and one uplink in an entire sol (Washington,

Golden, Bresina, Smith, & Anderson, 1999). There is therefore a compelling

need to make the rovers increasingly autonomous in their decision-making

and for longer periods. At the moment, Autonomous Navigation drives are

at least three times slower than drives with directed commands. (Woods, et

al., 2014) This requires improving both their perception of the surrounding

environment and their ability to explore it safely.

It would also be advisable for the rovers to be able to perform more than

one task at the same time, in order to maximize the time available to each

mission and the limited communications available. In this case, however,

many new difficulties arise, including the need for the rovers themselves to

 Introduction

4

be able to find compromises that can carry out multiple actions without

losing or overly penalizing any.

The aim of this thesis is to implement an autonomous navigation algorithm

that takes into account multiple objectives simultaneously.

In particular, it is considered a situation in which the rover in issue is asked

to autonomously reach a point selected by a human operator. Such task is

however done by trying to take the shortest route that will get it to its

objective safely, without draining more of its available energy than necessary

in an attempt to overcome avoidable obstacles, and at the same time trying

to maximize the light absorption of its solar panels, i.e., preferring the most

sunny areas along the way. The last objective becomes interesting since

many rovers currently in use employ solar power as one of their major

sources.

Such an algorithm is, among other things, thought to be embedded in and

integrated with an entire autonomous navigation system that would also

provide mapping, localization, control and locomotion solutions. This

autonomous navigation system is represented by the infrastructure created

in the SINAV (Soluzioni Innovative per la Navigazione Autonoma Veloce)

project carried out to test new navigation possibilities and solutions for space

exploration.

To achieve this goal, the current possibilities and needs of the SINAV project

(explained in more detail later) were evaluated, after which several

algorithms that could integrate well with it were analysed. Among them,

the MOD* Lite algorithm was selected and implemented successfully.

Unfortunately, for various reasons, it was ultimately not possible to attempt

such integration, either in the virtual environment or on the real vehicle.

They are therefore mentioned as necessary developments for the future.

1.1 Thesis structure

The next chapter introduces the problem of path planning, the difficulties

involved, and some approaches for its resolution.

 Introduction

5

Thereafter, the hardware technologies commonly used to provide rovers with

the necessary information about the environment in which they find

themselves will be sounded out. The third chapter then analyses the most

commonly used methodologies for holding and processing the information

thus collected.

In the sixth chapter, a selection of significant algorithms aimed at finding

solutions to the path planning problem are reviewed, exploring in depth, for

those most significant to this discussion, the general operation, strengths

and weaknesses. The next chapter takes a closer look at one of these

algorithms, MOD* Lite, which was chosen for the practical implementation.

Afterwards, the different tests carried out to verify the functionalities of this

algorithm and optimize its execution are presented.

The last chapter draws conclusions from this work and leaves suggestions

for future developments.

6

2. The path planning problem

The path planning problem is a computational problem which is directed to

search for sequences of positions (or, equivalently, movements) that can take

a vehicle from a starting point to an end point, or even allow the vehicle to

pass through a predefined sequence of points. This is a purely geometric

problem, as it does not take into account the flow of time in any way.

In the case of rovers for Martian exploration, path-planning plays a very

important role due to the slow rate of communication. The operator has no

choice but to indicate a desired area to the rover and let the vehicle decide

which path to follow.

The simplest versions have the sole objective of avoiding areas where the

object (vehicle) could not physically travel or where it would sustain

damages, but this almost always generates more than one valid solution. For

this reason, many algorithms also deal at the very least with choosing the

shortest, fastest or safest of these alternatives to adopt.

In addition, a more extensive combination of factors might be wanted to be

taken into account, thus entering into multi-objective path planning.

Another important characteristic to consider is the environment in which

planning is to take place, how much of it is known in advance, how variable

it is over time, and the extent of the area itself.

When the size of the area in which the vehicle has to navigate is large but

at the same time the accuracy required is high, it is often decided to break

the problem down into two phases, a global planning and a local one.

2.1 Global path planning

The global planners deal with the identification of an indicative route on a

low-resolution map, leading theoretically from the starting position to the

ultimate goal of the crossing. This type of planner generally performs very

 The path planning problem

7

well in known, static environments, but can lead to dangerous mistakes in

the case of dynamic circumstances.

These algorithms are in charge of defining paths in a way that reduces the

total cost to reach the objective, without ever putting the safety of the

equipment at risk. In fact, the ultimate objective is to collect as much data

as possible, so compromising some instrument or worse the entire vehicle

would call for the entire mission to be aborted.

This type of algorithm, has a very large research history on graph theory

and artificial intelligence, going all the way back to the Dijkstra algorithm

(Knuth, 1977), which was designed for the offline resolution of the Single

Source Shortest Path problem.

2.2 Local path planning

Local planners have instead the task of detailing the route in the immediate

surroundings of the vehicle, using a higher resolution map (which may have

been captured by the vehicle itself). These planners are therefore much

better suited to dynamic settings but are also much slower, leading to them

being able to operate only on small portions of the total desired path.

Local planners are generally conceived not so much to establish general

crossing strategies, but rather to promote safe and smooth behavior. To this

end, they often come to take into account the specific kinematic and dynamic

characteristics of the vehicle so as to prevent skidding or other hazards.

(Helmick, Angelova, Livianu, & Matthies, 2007) (Jain, et al., 2004)

An important example is the Grid-based Estimation of Surface

Traversability Applied to Local Terrain (GESTALT) (Goldberg, Maimone,

& Matthies, 2002), developed by The Jet Propulsion Laboratory (JPL) and

implemented in Mars exploration rovers. Whenever a new terrain capture is

provided, the traversability map is updated. Then GESTALT calculates the

cost of each possible local trajectory by integrating the traversability values

along that curve, choosing the primitive with the lowest cost.

 The path planning problem

8

A complete planner will then be able to integrate these two features into a

single coherent output. In this way, the rover will be put in good enough

conditions to take fairly long routes, avoiding both large obstacles and small

ones. (Bombini, Coati, Medina, Molinari, & Signifredi, 2015)

First the global planner will be called to operate, and its response will be

provided to the local planner, which will take action if necessary to refine it.

Thereafter, it is most likely that changes to the surrounding environment

will be detected only locally, and thus it will still be the local planner who

will intervene to divert the path where necessary, avoiding straying too far

from the original trajectory.

The basic concept is to start with satellite maps, which provide a very low

resolution of potential obstacles, and generate an initial path hypothesis

having as the final goal an operator specified location. The rover can then

scan its surroundings (local scan) and use this much more detailed

information to correct the route immediately ahead, repeating this process

periodically.

This thesis will focus on algorithms typically used as global planners, but

which are progressively refined enough to sufficiently handle some dynamic

changes in the environment.

 The path planning problem

9

2.3 Sensors typically employed

In robotics there is a continuous research, development and production of

instrumentation that can improve the machines' perception of their

surroundings and their position and orientation in space. Although most of

these are very versatile, they can be broadly divided according to their use,

whether it is to sense the environment or to detect one's location in it.

2.3.1 Mapping

Mapping refers to the phase in which the robot gets to know and construct

a map of his surroundings.

Stereo-cameras can provide outputs in the form of color or black and white

images, but also as point clouds.

At the moment, this is the best method for a navigation on Earth and is

also widely used for space exploration (Guan, Wang, Fang, & Feng, 2014).

As a matter of fact, it provides an accurate and complete description of the

ground, but on the other hand, it takes a lot of memory and computing

power to process such complex images. A possible workaround to the

problem is to process them as point clouds, but these still involve a

considerable effort.

Another technology is represented by spectral sensors obtain information

from across the electromagnetic spectrum. They might use infrared, the

visible spectrum, the ultraviolet, x-rays or some combination of the above.

Between these, some require a huge amount of memory (like the

Hyperspectral datacube) but are mostly used to perform a recognition of

objects, feature that anyway does not perfectly fit the purpose of rough

terrain recognition. (Nieto, Monteiro, & Viejo, 2010)

Others, such as Near-Infrared (NIR) cameras (about 0.78–3 μm), require less

computing power and could provide useful information about the type of

ground surface.

 The path planning problem

10

Thermal cameras have also been considered since widely used on Earth

(Milella, Reina, & Nielsen, 2021), but not knowing the expected performance

given the very low Martian temperatures (on average -63 °C), they are not

among the favoured methods.

With laser sensors, measured data can be represented in a number of ways,

from raw data to parameterized models. They are widely used in robotics

and all kind of autonomous vehicles, since they can provide three-

dimensional measurements in real-time (Geiger, Ziegler, & Stiller, 2011).

With the objective of mapping a desertic terrain, the excellent results in the

recognition of articulated objects could be useless, but the use of laser range

sensors could prove beneficial instead.

In particular, Lidar (Light Detection and Ranging) is currently widely used

both on Earth’s surface and ocean depths by varying laser wavelengths. It

pulses a laser, or laser grid, as the light source for its measurements. With

these measurements, it is able to build a point-cloud, which can be left as it

is or used itself to build a three-dimensional map or an image. As seen in

these situations, it performs very well even in situations with small to no

light available. Therefore, it offers very promising outlets for mapping the

Martian terrain. (Rekleitis, Bedwani, & Dupuis, 2009)

ToF (Time-of-Flight) sensors are instead based on light detection, typically

using a standard RGB camera. This means that, compared to Lidar, it

requires much less specialized equipment. From the measurements obtained,

it is able to create depth maps. The shortcoming of such sensors is exactly

that, namely the fact that depth maps are generally more difficult for

computers to process than point-clouds (Xiao, Liu, & Zhu, 2021).

2.3.2 Localization

The localization phase, alongside the mapping phase, allows the robot to

make an estimate of its position and orientation in space at any given time.

IMUs and odometers are commonly deployed for various purposes among

which is the localization of the vehicle (e.g. the IMU is typically used for the

 The path planning problem

11

anti-tilt system) and can be useful also in adding information to the mapping

of the environment. (Guan, Wang, Fang, & Feng, 2014)

On their own they are currently not considered sufficient to this task, due

to the fact that they are subject to several sources of error and that such

errors in navigation accumulate over time. For short distances, however,

they demonstrate decent accuracy and can therefore lead to real-time

autonomy.

The Pamcam, used by Nasa (Mars Exploration Rovers, s.d.), is able to

determine the position and the direction in which the rover is facing using

the Sun’s movement. Having to wait for the Sun to make an arc in the sky,

it needs to collect data for a long time (about 10 minutes) before providing

an estimation. Additionally, it relies on prior knowledge of the terrain from

satellite images to position itself in space.

 The path planning problem

12

2.4 Data structures for terrain

representation

One of the biggest bottlenecks in streamlining location processes is the

representation of data on maps from the various sensors.

Terrain scans are carried out with three main goals in mind. The first is

obviously the planning of a safe path. The second, is the refinement of the

location estimate, and thus of the trajectory executed, by observing the

terrain freshly traversed. The third, closely related to the second, is the

creation of a more complete map useful for later activities (Rekleitis,

Gemme, Lamarche, & Dupuis, 2007).

For example, laser sensors are able to directly provide a three-dimensional

point-cloud without the need for further processing, so the shortest option

would be to use it as it is provided (Geiger, Ziegler, & Stiller, 2011). There

have been many studies aimed at solving precisely this problem, managing

the high volume of data and the non-uniform density of the scans, and some

of the available options are now analysed.

One of the possibilities are the tree-based data structures, among which we

can mention quad and oct-trees.

Quad-trees lead to ease of data processing, however they are mostly suitable

for representing two-dimensional spaces, thus not sufficient for our purposes.

Oct-trees provide a three-dimensional representation but with a finite

resolution (even the maximum may not be sufficient in some cases).

Moreover, it involves a very high computational load for each update.

The DEM (Digital Elevation Model) is a simple regularly spaced grid of

elevation points that represent the continuous variation of relief over space.

It is, as quad-trees, a 2.5D representation, so they are not able to correctly

represent concave geological structures such as overhangs and caves, which

are by far not negligible in our applications.

 The path planning problem

13

The Grounded Heightmap Tree is data structure for terrain representation

built as a generalization of the DEM.

2.4.1 Grid construction

Starting from the solutions already implemented and rooted in the SINAV

project, which are detailed in the section 5. , the way in which to capture

the terrain features was chosen.

Through the stereo-cameras and sensors, a 3-D map of the terrain, in the

form of a point-cloud, surrounding the rover is generated every few seconds.

From this, the necessary data are then extrapolated.

Solutions commonly applied to provide robots with maps are occupancy grid

maps, semantic ones, and topological ones (Jinming, Xun, Lianrui, & Xin,

2022). Of these, the one that offers the most advantages is the grid map,

which is essentially represented as a quadrilateral grid, and it is the one that

will be considered here. “The occupancy grid map discretizes the spatial

environment perceived by robots into equally sized grids and then applies a

specific probability of occupation to assign the attributes of the grid.” from

(Elfes, 1989)

The entire terrain is subdivided through a tuneable porosity grid, to get an

idea of orders of magnitude, in global planning cells of 3𝑚 × 3𝑚 are usually

chosen, while in local planning smaller cells of about 1𝑚 × 1𝑚 are chosen.

Scores are then assigned to each cell, with the purpose of maintaining the

initial map information. To give practical examples, these scores usually

refer to the average altitude of the terrain in that cell, or its local slope. Or

even, as in our case, the solar exposure to which it would be subjected at

the time of the analysis.

Another important feature of such grids to be established is the specific point

in each square where the rover is considered to be when it is claimed to be

in a given cell, that is, whether in its center, on one of its sides or on one of

its edges. The most common choice, also used here, is to place it in the

center.

 The path planning problem

14

In addition, it is essential to determine how the rover will be able to move

from one cell to another, whether it is only between adjacent cells or also

diagonally (as depicted in Figure 2.1.). As will be explored later, this will

give rise to 4-edge-connected graphs in the first case and 8-edge-connected-

graphs in the second. The second case obviously offers greater mobility and

leads to far more efficient paths, although it involves slightly higher

computational loads by having to explore more possibilities (Wang, et al.,

2022). In this discussion we will focus on movements of the second type.

Figure 2.1. Cell traversability. On the left, the vehicle can only move

between adjacent cells (4-connected). On the right, diagonal

movements are allowed (8-connected)

2.4.2 Scoring strategies

Once the grid is obtained, a score must be assigned to each cell based on the

average characteristics of the terrain it represents.

If, for example, we consider path safety as an objective to be optimized, it

can be associated with different terrain characteristics, such as slope, type

of terrain (sand or rock), or proximity to obstacles that cannot be traversed.

Once the parameters contributing to this assessment have been established,

thresholds are set to differentiate the various possibilities. Within each

threshold, scores, often percentages, are assigned, ranging from the optimal

to the worst situation.

For features such as the elevation of a zone, the scoring can trivially be a

measurement of it.

An example can be seen in Figure 2.2. where the cells marked by the white

Xs are non-traversable obstacles. The other black cells surrounding them are

 The path planning problem

15

a safety measure to keep in consideration the size of the vehicle (schematized

in green) to avoid even partial collision with such obstacles. The remaining

cells have a gradation of grey that visually represents their score, given solely

on the basis of their distance from such off-limits areas.

Figure 2.2. Example of gird scoring. From (Dakulovic & Petrović, 2011).

2.4.3 Graphs

Quoting from Graph Theory: A Problem Oriented Approach (Marcus &

America, 2008): “A graph consists of points, which are called vertices (or

nodes) and connections which are called edges and which are indicated by

line segments or curves joining certain pairs of vertices.” In the graph in the

Figure 2.3. we can see six vertices A, B, C, D, E, connected by five edges.

Figure 2.3. Example of a generic graph.

Edges can be identified by the names of the nodes they connect, so the edge

connecting nodes B and C is named BC. Vertices connected by edges are

 The path planning problem

16

called adjacent, so B is adjacent to C but not to E. The shape and length of

the edge are completely irrelevant.

Throughout this entire discussion we will consider only finite graphs, that

is, containing a finite amount of vertices and edges.

In principle, it is not necessary for edges in graphs to involve directions, but

in our case it is instead an important feature, and the reason why will

become clear shortly. Such graphs are for self-evident reasons referred to as

directed graphs, or digraphs.

There are also graphs that contain a mixture of directed and undirected

edges, called mixed graphs, but these will not be explored further.

In graph theory, a path is a sequence of vertices and edges in a graph about

which it can be said to alternate constantly between vertices and edges,

beginning and ending with vertices, and that each edge in the sequence joins

vertices that follow one immediately after the other in the said sequence.

A feature of graphs that is not strictly necessary but indispensable for our

purpose is the possibility of assigning each edge a "crossing cost". So far, we

actually have considered each edge as equivalent, but they can be given a

weight that makes them more or less easily traversable. The cost of getting

from vertex 𝑛3 to vertex 𝑛2 may thus be different from the cost of getting

from 𝑛3 to 𝑛4, which is obviously influential in choosing the best path to

pursue. An example of such configuration is shown in Figure 2.4.

Figure 2.4. Graph with crossing costs.

Taking then into account the possible directionality of the edges described

earlier, it is possible to have different crossing costs between the outbound

and inbound. So for example looking at the Figure 2.5. it can be said that

 The path planning problem

17

going from 𝑛1 to 𝑛2 has a cost 𝑐12 different from the 𝑐21 cost to make the

opposite transition.

Figure 2.5. Graph with directional crossing cots.

From the extracted grid described earlier, the algorithm presented will have

the task of creating a coherent graph. (Dakulovic & Petrović, 2011) Figure

2.6. helps with a visual representation to explain the process.

Figure 2.6. Generic generation of a graph from a grid.

Each of the cells will be associated with a node, the properties of which will

be discussed in more detail later. All connections, i.e., edges, between the

newly created nodes will then be created. Based on the coordinates, each

node will be connected to its eight neighbors (8-edge connected graph), or

less in case it is at the edge of the map or in areas that are not fully mapped.

An example of the connections between eight nodes, belonging to as many

adjacent cells, is shown in Figure 2.7. Each of these edges will be given

traversal costs, the details of which may vary depending on the application,

as we will see later.

 The path planning problem

18

Figure 2.7. Example of connection between eight nodes.

In some cases, among which the one under consideration falls, costs are

initially associated with cells, and thus with nodes instead of edges. It is

therefore necessary to identify a conversion criterion from the score

associated to a node to a crossing cost associated to its edge, and there are

several currently considered valid. (Marcus & America, 2008)

They can be divided into isotropic and anisotropic, in the former the cost is

the same for both directions of arc travel, while in the latter the direction of

crossing is influential.

A simple example of anisotropy may be choosing as a cost the one of the

arrival node (or, less often used, the one of the source node).

Examples of isotropic examples involve manipulating the two connected

costs, such as selecting the higher one (or, less often, the lower), or

computing the algebraic sum 𝑐𝑜𝑠𝑡12 = 𝑠𝑐𝑜𝑟𝑒𝑛1 − 𝑠𝑐𝑜𝑟𝑒𝑛2.

For this application, however, it was chosen to conform to the methodologies

used by Nav2 in the ROS2 environment, i.e., assigning to the edge between

two cells the maximum cost among those of the two cells themselves. This

is obviously valid for each of the costs included in the analysis.

 The path planning problem

19

2.5 Replanning

An extremely important concern in path planners is the ability to recompute

the path as a result of unexpected changes in the map. Each planner can

react with different efficiencies to such changes, depending on how the

algorithm is implemented. Some are forced to recalculate the entire route

from the beginning, while others are able to take advantage of the

information gathered to modify the one already obtained. Moreover, some

algorithms can handle only changes and not additions or removals of nodes,

while others react quickly to all types of changes.

In any case, in the context of graphs such modifications can be represented

in one of the ways depicted in Figure 2.8., Figure 2.9., Figure 2.10., Figure

2.11.

Figure 2.8. Creation of a new node.

Figure 2.9. Destruction of a node.

Figure 2.10. Deletion of ad edge, i.e. a connection between two nodes.

 The path planning problem

20

Figure 2.11. Change in the crossing cost of an edge.

When there is a need for replanning, it is particularly challenging if heuristic

features are included. This will be explored in more detail in the section 3.3.,

in which the heuristic features are specifically examined.

We will see in the next section some examples of algorithms. It is emphasized

that all of those discussed in depth possess the ability to perform replanning.

21

3. Search algorithms

Over the years, many different algorithms, more or less advanced and

efficient, have been developed to address the path planning problem. The

methodologies attempted are among the most diverse, and thus there are

also different ways to categorize them, the one proposed in Figure 3.1. is

suggested by (Petkov, et al., 2016).

Figure 3.1. 3D Path planning algorithm taxonomy.

This classification is actually valid for both path planning and trajectory

planning. Where path planning deals with finding a continuous curve leading

from one point to another. Trajectory planning, on the other hand, refers to

successive planning concerned with how to move along the calculated path,

thus having time as an additional variable.

In this discussion we will focus only on the category of Node based optimal

algorithms, which best complies with the requirements. Algorithms that fall

into this category share the habit of exploring within a set nodes/cells in a

map. This is done by using maps on which data sensing and processing

procedures have already been performed.

This type of algorithm is always able to find the optimal path, if one exists.

 Search algorithms

22

Algorithms referred to as node-based are also often referred to as network

algorithms, alluding to the fact that they perform their research within the

generated network.

In particular, the algorithms represented in Figure 3.2. are the ones that

lead to the definition of MOD* Lite, the algorithm used for this application,

so they will be examined in more detail.

Figure 3.2. Derivation hierarchy of the MOD* Lite planner.

 Search algorithms

23

3.1 Single-objective algorithms

As already mentioned, the problem of finding the shortest path was one of

the first to be addressed by means of algorithms, and so there are many

solutions and versions of them that are more or less heavily modified. Some

of those that led to the choices made in this thesis will be exposed below.

3.1.1 A*

Introduced in 1968 (Hart, Nilsson, & Raphael, 1968), the A* is an heuristic

search algorithm that functions fundamentally like the classic Dijkstra’s

algorithm. To define the improvement introduced by the A* is the

introduction of the heuristic aspect within the search.

“In 1964 Nils Nilsson invented a heuristic based approach to increase the

speed of Dijkstra's algorithm. This algorithm was called A1. In 1967 Bertram

Raphael made dramatic improvements upon this algorithm, calling it A2,

but failed to show optimality. Then in 1968 Peter E. Hart introduced an

argument that proved A2 was optimal when using a consistent heuristic with

only minor changes. His proof of the algorithm also included a section that

showed that the new A2 algorithm was the best algorithm possible given the

conditions. He thus named the new algorithm in Kleene star syntax to be

the algorithm that starts with A and includes all possible version numbers

or A*” from (Nosrati, Karimi, & Hasanvand, 2012).

To briefly describe how it operates, it can be simply said that this algorithm

keeps updated two lists, usually identified by the names "open" and

"closed." The "closed" one keeps track of nodes that have already been

examined, while the "open" one keeps track of nodes that have yet to be

examined. Obviously, at first the former will be empty and the latter will

instead contain only the starting node.

Each node (𝑛) carries some essential information, namely, the cost to go

from the start node to the node under consideration (which we will call

𝑔(𝑛)), a heuristic estimate of the cost to go from the node in consideration

to the goal node (which we will call ℎ(𝑛)), and a function that keeps in

 Search algorithms

24

memory the estimate for the best possible solution passing through the node.

Such a function can be simply defined as 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛).

It also recalls a pointer pointing to its parent, that is the node from which

to come to minimize the value of the function s 𝑓(𝑛).

The main loop of the algorithm selects time after time the node with the

lowest value of f(n) from the open list, then generates all its possible

successors (represented by 𝑛′). Each time one of them is examined, it is

removed from the open list and placed on the closed list. For each of such

successors, if they turn out to be already in the closed list with an estimate

𝑓 equal or lower they can be safely discarded, and the same can be done if

they turn out to be in the open list with an estimate 𝑓 equal or lower. In

fact, the first case means that it is a node that has already been examined

and in that examination was part of a path leading to it having a better

estimate. The second case tells us that we will have a chance later to re-

examine this node and with a better chance of minimizing the path, so it

would be unnecessarily wasteful to do so now.

If neither of these situations occurs, it is instead a case of removing each of

its copies from the two lists and setting the current node n as the parent of

𝑛′. At this point the values of 𝑛′ will be updated so that 𝑔(𝑛′) equals g(n)

plus the cost of getting from n to 𝑛′, and ℎ(𝑛′) and 𝑓(𝑛′) are calculated

following their definitions. At this point 𝑛′ is put back into the open list.

If the extracted node turns out to be the goal, the path can finally be said

to be complete, so the solution is generated by going back from it to the

start through the pointers to the parents. Otherwise, the cycle starts over

again.

Thanks to its simplicity, while still managing to maintain good accuracy and

speed of execution, A* is still one of the most widely used algorithms in

robotics to this day. In fact, even the navigation2 package developed for

ROS2 uses a slightly modified version of it as a path planner, A* Lite. The

goals of the modifications are mostly to simplify and lighten the execution,

without changing the basic operation.

 Search algorithms

25

3.1.2 Dynamic SWSF-FP

Dynamic SWSF-FP stands for Strict Weak Superior Function - Fixed-Point.

This algorithm was introduced in 1996 (Ramalingam & Reps) as an

incremental search algorithm for the generalization of the Shortest-Path

Problem. It represents a special case of the grammar problem, introduced in

turn by Knuth (1977) as a generalization of the "single-source shortest-path

search problem".

The important aspect introduced by this algorithm is the possibility of

handling several and diverse changes at the same time. In fact, in a single

update there can be a greater or smaller reorganization of the graph,

including multiple changes in the cost of the edges but also addition and

deletion of the edges themselves.

Algorithms already existed to consider one change at a time, whether it was

an insertion, deletion, or modification, but compared to those methods, two

ways are identified to greatly improve performance, which are "combining"

and "cancellation."

"Combining" refers to the case where updates are made by the repeated

application of an algorithm for unit changes, which, however, can result in

a vertex being examined numerous times, each of which will result in that

vertex having semi-updated, temporary values. This waste of resources is

eliminated in the algorithm for heterogeneous changes, which is able to

combine all the necessary changes in a single run for each vertex.

"Cancellation" considers the case where an addition and a deletion have

mutually counteracting effects, but despite this an algorithm for unit

changes will have to perform more than one run anyway, again resulting in

waste. Instead, these solutions make it possible, in a single update, to keep

untouched the vertices that are not affected by the changes.

This algorithm is often and properly described as a "bounded incremental

algorithm," which means that the time it takes to update the solution is

bounded by a ‖𝛿‖ function, which is dependent on the size of the change.

 Search algorithms

26

This dynamic algorithm, in the case of the grammar problem, takes a time

equal to O(‖𝛿‖ (log‖𝛿‖ + 𝑀)) to find a solution, in which 𝑀 represents the

time limit required to compute any given product function.

3.1.3 Lifelong Planning A*

The Lifelong Planning A* algorithm, shortened as LPA*, (Koenig,

Likhachev, & Furcy, Lifelong Planning A, 2004) leverages on the strengths

and generalizes the dynamic characteristic of Dynamic SWSF-FP and the

heuristic ones of A*. It can be applied to problems where the graph is finite

and known from the beginning, but where edge costs may increase or

decrease over time, which actually means that this feature can be used to

work around the system and add or delete nodes.

LPA* is a complete algorithm, meaning it is always able to find the shortest

path, if one exists.

It can be seen as an incremental version of A*, where a change in some

traversal costs does not result in a complete rebuilding of the graph, but

instead it is capable of adjusting to the changes and reducing the amount of

recalculation needed.

As is the case in the A* algorithm, the shortest path can easily be traced

using the constructed tree and going greedily up from cell to cell following

the lowest costs. So during the first execution LPA* works exactly as A*

does.

The differences are noticeable when something changes in the map, and to

reduce the effort in the new search two different approaches are

implemented.

In the first, following what happens in the Dynamic SWSF-FP, all distances

to start that have not been changed are not recomputed, and this is done

by keeping estimates of distances to goal instead of distances to start. In

addition to this, the Dynamic SWSF-FP is stopped immediately when it is

sure that it has found the shortest path from the start vertex to the goal.

In the second heuristic knowledge taken from the A* is used, applied in the

approximation of distances to goal. And this information is used to discern

 Search algorithms

27

which distances to start make sense to calculate and which can be promptly

ignored.

To summarize its behavior, we can define 𝑁 as the set containing all the

vertices of the graph, 𝑝𝑟𝑒𝑑(𝑛) ⊆ 𝑁 will then represent the subset of

predecessors of the vertex 𝑛 ∈ 𝑁. The notation 𝑔∗(𝑛) is usually used to

denote the distance of the generic vertex n from the start node, i.e., the cost

of the shortest path leading from 𝑛𝑠𝑡𝑎𝑟𝑡 to 𝑛. This definition must be subject

to two conditions, namely verifying that 𝑔∗(𝑛𝑠𝑡𝑎𝑟𝑡) = 0 and otherwise

𝑔∗(𝑛) = min 𝑛′∈𝑝𝑟𝑒𝑑(𝑛)(𝑔∗(𝑛′) + 𝑐𝑜𝑠𝑡(𝑛′, 𝑛) in all cases where 𝑛 ≠ 𝑛𝑠𝑡𝑎𝑟𝑡. So

𝑔 corresponds directly to the value of 𝑔 used by the A* algorithm.

The addition is the definition of a value, usually called 𝑟ℎ𝑠(𝑛), that is a one-

step lookahead based on the value of 𝑔 itself, thus potentially being better

informed at any point in the search. The name of this variable comes from

the Dynamic SWSF-FP, where as seen before it represents the value in the

right-hand side of the grammar rule. Its value will always be zero for the

start vertex, while for all other cells it will be equal to the lowest cost g

among all those offered by its neighbors plus the cost of going from that best

neighbor to the cell under consideration.

Thus, for each cell the LPA* maintains these two estimates, 𝑔 and 𝑟ℎ𝑠, of

each cell's distance from the start vertex.

When a vertex is changed, which may involve a change in its cost or

equivalently in its traversability, the vertices in its neighborhood are checked

to see if their information is up to date. If they are found to be inconsistent,

i.e., with 𝑔 ≠ 𝑟ℎ𝑠, it means that they need to be updated and are then placed

in a priority queue, which will examine them one by one, starting with those

most promising for the final path. For each modified vertex there will then

be at least one of its neighbors to be updated, which creates a wave going

back from the initial modification to the start vertex, passing only through

cells that had been explored previously.

3.1.4 Declinations of the D*

Frequently when talking about the D* algorithm it is referred to any of the

following incremental search algorithms:

 Search algorithms

28

• the original D* (Stentz, 1997) which is an informed incremental search

algorithm. It is the Dynamic version of the A*, which locally modifies

the results of previous searches, which allows a decrease of the total time

of a search by up to one or two orders of magnitude compared to A*.

• Focused D (Stentz, 1995) is an informed incremental heuristic search

algorithm that combines ideas of A and the original D*. Focused D*

resulted from a further development of the original D*.

• D* Lite (Koenig & Likhachev, D* lite, 2002) is an incremental heuristic

search algorithm that builds on LPA*.

The one being considered for this thesis is the last one, the D* Lite.

 Search algorithms

29

3.1.5 D* Lite

As mentioned earlier, D* Lite (Koenig & Likhachev, 2002) is an algorithm

that essentially builds on LPA*, so that it is able to implement the same

concepts introduced by D* but with an algorithmically different workflow.

In particular it employs a shorter and simpler algorithm, while maintaining

at least the same efficiency as D*.

Not negligible is then the fact that it also allows for more agile priority

management, as it contains only one tie-breaking criterion.

The algorithm tries to find the path that minimizes the selected objectives

(e.g., by looking for the shortest path), and then the vehicle will follow that

path until it has arrived at its destination, or it will observe non-traversable

cells on its path. In the second case, the best path will be recalculated from

the current position, but retaining all information about the cells that do

not appear to be altered.

For the descriptions that follow, it is necessary to introduce some important

notations.

• 𝑛 : generic node (or pointer to a node)

• 𝑛′ = 𝑛1 : parent of node 𝑛

• 𝑛′′ = 𝑛2 : parent of node 𝑛′

• 𝑁 : finite set of nodes (= vertices) in the graph

• 𝑠𝑢𝑐𝑐𝑠(𝑛), 𝑝𝑟𝑒𝑑(𝑛) ⊆ 𝑁 : set of successors / predecessors of the node n

• 𝑐(𝑛, 𝑛′) : actual cost of moving from node n to node 𝑛′ ∈ 𝑠𝑢𝑐𝑐𝑠(𝑛). It’s

always 0 < 𝑐(𝑛, 𝑛′) ≤ ∞

• 𝑛𝑠𝑡𝑎𝑟𝑡, 𝑛𝑔𝑜𝑎𝑙 ∈ 𝑁 : start and goal nodes

• 𝑔∗(𝑛) : distance from 𝑛𝑠𝑡𝑎𝑟𝑡 to the selected node n

• 𝑔(𝑛) : estimate of the distance 𝑔∗(𝑛)

• ℎ(𝑛) : heuristic value associated to the selected node n, estimates the

cost to traverse from n and n’. It has to respect the following restrictions:

• ℎ(𝑛𝑔𝑜𝑎𝑙 , 𝑛𝑔𝑜𝑎𝑙) = 0

 Search algorithms

30

• ℎ(𝑛, 𝑛𝑔𝑜𝑎𝑙) ≤ 𝑐(𝑛, 𝑛′) + ℎ(𝑛′, 𝑛𝑔𝑜𝑎𝑙) ⇒ valid for all nodes such that

𝑛 ∈ 𝑁 and 𝑛′ ∈ 𝑠𝑢𝑐𝑐(𝑛), 𝑤𝑖𝑡ℎ 𝑛 ≠ 𝑛𝑔𝑜𝑎𝑙.

• 𝑟ℎ𝑠(𝑛) : one-step-lookahead values based on the g-values (so

potentially better informed than 𝑔(𝑛)). It has to respect the

following equation:

𝑟ℎ𝑠(𝑛) = {
 0 𝑖𝑓 𝑛 = 𝑛𝑠𝑡𝑎𝑟𝑡

𝑚𝑖𝑛𝑛′ ∈ 𝑝𝑟𝑒𝑑(𝑛) (𝑔(𝑛′) + 𝑐(𝑛′, 𝑛)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

If 𝑔(𝑛𝑔𝑜𝑎𝑙) = ∞ at the end of the search, then no path is constructed between

𝑛𝑠𝑡𝑎𝑟𝑡 and 𝑛𝑔𝑜𝑎𝑙. However, this would mean that there is no feasible path

between those two nodes since the D* Lite algorithm is complete.

The path from 𝑛𝑠𝑡𝑎𝑟𝑡 to any node n appearing in the selected path can be

constructed by starting from said node n and tracing back, following

repetitively the predecessors that minimize 𝑔(𝑛′) + 𝑐(𝑛′, 𝑛).

A node is defined locally consistent if and only if it results 𝑔(𝑛) = 𝑟ℎ𝑠(𝑛),

conversely it is defined locally inconsistent if and only if it occurs 𝑔(𝑛) ≠

𝑟ℎ𝑠(𝑛). This second situation can be further divided into the cases where it

is locally overconsistent if and only if 𝑔(𝑛) > 𝑟ℎ𝑠(𝑛) and locally

underconsistent if and only if 𝑔(𝑛) < 𝑟ℎ𝑠(𝑛).

When a node is found to be locally inconsistent, the algorithm will make

sure to reprocess it to update its g-value and thus make it locally consistent.

The nodes that need to be processed are kept in a priority queue so that the

most promising ones are handled first, allowing the total execution time to

be greatly reduced compared to processing in random order. The criterion

for ordering such queue takes into account several factors, namely the values

of 𝑔, 𝑟ℎ𝑠 and ℎ, combined into a key value 𝑘(𝑛) as follows:

𝑘(𝑠) = [𝑘1(𝑛); 𝑘2(𝑛)]

𝑘1(𝑛) = min(𝑔(𝑠), 𝑟ℎ𝑠(𝑛)) + ℎ(𝑛, 𝑛𝑔𝑜𝑎𝑙) + km

𝑘2(𝑛) = min(𝑔(𝑠), 𝑟ℎ𝑠(𝑛))

(2)

 Search algorithms

31

To order the queue, the two components are considered in lexicographic

order, so 𝑘(𝑛) ≤ 𝑘(𝑛′) if and only if either 𝑘1(𝑛) < 𝑘1(𝑛′) or 𝑘1(𝑛) = 𝑘1(𝑛′)

and 𝑘2(𝑛) ≤ 𝑘2(𝑛′).

The first component of the key corresponds to what is called f-value in the

A* algorithm, and the second component is what in A* is called 𝑔-value.

A heap reordering variable, called 𝑘𝑚, is included in the queue sorting rules

to account for the rover's proceeding along its traversal. It will in fact be

initially set to zero, but incremented whenever any edge cost changes, so as

to discourage the algorithm from retracing the newly traversed sections. It

is updated cumulatively with the heuristic distance between the goal and

the current start node.

The key of each node is constantly maintained, updated each time one the

𝑔 or 𝑟ℎ𝑠 value changes.

During execution, the nodes expanded first are those with the smaller key.

 Search algorithms

32

3.2 Multi-objective algorithms

In the context of path planning, the vast majority of algorithms aim to

minimize path length. Almost always, however, this is not the only

parameter that needs to be kept in check. In general, it would be useful to

take into account the safety of the route, the energy required to undertake

it, perhaps considering that a steeper incline would result in a greater

expenditure, or that in shaded areas solar panels would not be able to fully

recharge the batteries. All these characteristics can obviously bring with

them more or less strict minimum requirements.

In some cases, two or more criteria can be combined to give rise to a

combined third criteria that takes both needs into account. But this is only

possible when these criteria do not have conflicting needs.

For example, going over a terrain relief may be the best choice for the brevity

of the route, but the worst for ensuring the integrity of the vehicle.

In our case the simple brevity of the route is combined with an aspect of

route safety.

There exist many strategies for writing algorithms to deal with multi-

objective problems, among which to name the classics can be mentioned the

Weighted Sum methods, the ε-Constraint methods, and the Weighted

Metric methods (Gunantara, 2018).

In particular then there are obviously algorithms for MPOs that focus

specifically on path planning. Some of these are described below in more

detail in order to frame the choices made for the development of the path

planner in this thesis.

Before beginning the discussion, it is important to briefly define the concept

of dominance between nodes, which in the case of multiobjective replaces

the concept of best node (i.e., minor contribution to the objective function)

that was used for single objectives.

 Search algorithms

33

3.2.1 MOGPP

Very often in real life we come across optimization problems that are NP-

hard (Nondeterministic Polynomial-time hard), meaning that an optimal

solution cannot be found in polynomial time. In these cases, evolutionary

algorithms, which can be classified as "stochastic soft-computing methods,"

come to our aid.

Among them, MOGPP (Oral & Faruk, 2016) is a stochastic evolutionary

algorithm, literally Multi-Objective Genetic Path Planning algorithm, which

offers a soft computing genetic implementation that is able to compute paths

taking into account the optimization of more than one objective. The

algorithm still turns out to be complete, so it can always find a solution if

one exists, but it does not guarantee that this solution is the optimal one.

In MOGPP, a path that consistently leads from the starting point to the

target point is encoded in a chromosome, defining one of the solutions to the

problem. In this genetic analogy, each gene in the chromosome represents a

cell in the pathway, so the chromosomes can have variable lengths.

After randomly identifying paths that constitute alternative solutions, an

evolutionary process that follows a fitness function is applied. Such function

is defined as follows:

𝐹(𝑖) = [
1

𝐿(𝑖)2
,

1

𝑅(𝑖)2
]

(3)

In which, for a generic chromosome 𝑖, 𝐹(𝑖) represents its fitness, 𝐿(𝑖) the

length of the path that it represents, and 𝑅(𝑖) an evaluation of the safety

risk involved in that path. This is obviously in the case where the parameters

to be optimized are the shortness and safety of the pathway, otherwise these

values would be replaced by the current objectives.

To select the parents that will generate offspring chromosomes, through a

crossover operation, a selection mechanism called roulette-wheel is used. The

child chromosomes generated, will also represent valid paths.

Regarding the mutations, they are introduced by initially selecting during

mating a random cell from the chromosome, which will be the point at which

 Search algorithms

34

to divide the pathway into two sub-paths. Of these two alternatives, the one

containing the target point is discarded, and in its place a random pathway

is generated that terminates in the target.

All chromosomes are evaluated according to their fitness functions. After a

predefined number of interactions, the algorithm is stopped and the paths

that bring the best outcomes considering all objectives are selected.

3.2.2 SPEA2

SPEA is an acronym that stands for Strength Pareto Evolutionary

Algorithm, which was presented in 1999 by Zitzler and Thiele. Seeing its

remarkable results, an updated version was proposed in 2001, SPEA2

(Zitzler, Laumanns, & Thiele), that would eliminate the inherent flaws of

its predecessor and include some new discoveries in the sphere of MO

algorithms. It indeed introduces the use of a "fitness assignment scheme"

that takes into account for each element all the other elements it dominates

or is dominated by. Methods for estimating the density of the nearest

neighbor are also embedded, which enables more accurate operation of the

search itself. And moreover, a new truncation technique is employed to

ensure compliance with the boundary solutions.

SPEA is based on the use of a regular population and an external set, i.e.,

an archive, which is initially empty. The main loop of the algorithm

sequentially performs the following steps: first, it copies all the non-

dominated members of the population into the archive. All those dominated

or with duplicate objective values are removed from the archive.

However, a limiting size for the elements that the archive can contain is

defined, and if this is exceeded the excesses are eliminated following a

clustering technique that leaves the non-dominating front unchanged.

Finally, fitness values are assigned to all members, according to different

criteria for the archive and for the population.

Each element 𝑖 in the archive receives a strength value 𝑆(𝑖) between 0 and

1 (excluded) equal to the number of population members that are dominated

by or equal to i, divided by the population size plus one. 𝑆(𝑖) also represents

the fitness value 𝐹(𝑖) of the same element.

 Search algorithms

35

For elements 𝑗 in the population, the fitness value 𝐹(𝑗) is defined as the sum

of all the 𝑆(𝑖) strength values of the archive members that dominate or are

equal to 𝑗, plus one.

At this point binary tournaments have the job of carrying out the mating

selection phase out of all the elements in the archive and population. Finally,

the population is replaced by the offspring resulting from recombinations

and mutations.

In addition, SPEA2 is able to use density information to its advantage

through a more detailed determination of fitness values. Besides, for the

occasion in which the non-dominance front exceeds the archive boundary,

the clustering technique is replaced by a truncation method that avoids the

loss of boundary points. The last essential difference lies in the fact that in

this case only the elements of the archive participate in the mating selection

process.

3.2.3 MOA*

Multi-Objective A* algorithm, introduced in 1991 (Stewart & White), is a

generalization of the A* heuristic search algorithm described above. It falls

into the category of offline algorithms, that is, it attempts to find the entire

solution before starting the navigation.

MOA* has the capability of identifying all of non-dominated paths going

from a specific starting node to a set of target nodes. Like A*, also MOA*

is a complete algorithm when used with admissible heuristic functions.

The algorithm continues to use the sets called "open" and "closed," as is

typical in heuristic searches. Each node is assigned three ratings, 𝑔, ℎ and

𝑓. The need to provide that a node may have multiple parents (backpoints)

leads to the use of some labels. Some definitions:

• 𝑙𝑎𝑏𝑒𝑙𝑘(𝑛′, 𝑛) is a set of accrued costs of the paths from the start going

through 𝑛 and 𝑛′ and which are not dominated by any of the detected

paths up to iteration 𝑘 − 1.

• 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑠𝑘 is the set of costs associated with the current (iteration

𝑘) best solution identified.

 Search algorithms

36

• 𝑔𝑘(𝑛) is a set of “non-dominated accrued costs for node 𝑛” at any given

iteration 𝑘. Basically it is the set of all the cost vectors for paths going

from start to 𝑛 that are not dominated, discovered within iteration 𝑘.

• 𝑓𝑘(𝑛) is the set of node selection values associated with node 𝑛 during

iteration k.

To summarize the unfolding of the algorithm, we begin by saying that the

open list begins by containing only the start node and the closed list is

initially empty.

A loop then deals with iteratively finding a subset of nodes found in open

that have at least one value of 𝑓 that is not dominated by any solution

already found or by any other potential solutions still waiting in open.

If this subset turns out to be empty, we can say that the best solution

identified so far is the definite one, and the cycle is terminated.

If, on the other hand, it is not empty, a node is chosen within it to be

expanded, and this choice is made according to the heuristic function. That

node is then removed from open and placed on the closed list.

At this stage, if the extracted node turns out to be the goal node, it is

directly added to the current solution and its cost added to 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑠,

removing from 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡𝑠 itself any members that turn out to be

dominated. In case it is an ordinary node, all its successors are generated. If

there are none, again the cycle is terminated, otherwise an internal cycle is

triggered to evaluate them one by one. If successor 𝑛′ has been newly

generated, a backpointer is instantiated from it and the value of 𝑙𝑎𝑏𝑒𝑙(𝑛′, 𝑛)

is assigned as defined above.

If, on the other hand, the successor had been already generated previously,

for each path up to 𝑛′ that was potentially undominated that was discovered

it is checked that its cost is in 𝑙𝑎𝑏𝑒𝑙(𝑛′, 𝑛) and in 𝑔(𝑛′). If the cost was not

already present in 𝑔(𝑛′), then that cost and all those associated with paths

leading to 𝑛′ are purged from 𝑙𝑎𝑏𝑒𝑙(𝑛′, 𝑛). If 𝑛′ was present in closed, it is

removed and moved to open.

Then the whole cycle is repeated until it is terminated for one of the reasons

already described.

 Search algorithms

37

When MOA* is applied to problems with a single objective, the result is

exactly the same as if A* was used.

3.2.4 MOD* Lite

The Multi-Objective D* Lite algorithm is an incremental algorithm which

extends form the D* Lite described earlier.

It has been shown, for example by (Oral & Faruk, MOD* Lite: An

Incremental Path Planning Algorithm Taking Care of Multiple Objectives,

2016), that it brings numerous advantages over its counterparts described

in this thesis.

This algorithm was chosen for the development of this thesis for a few

reasons of different nature. First, as far as integration into the SINAV

project is concerned, it has until now only featured path planning algorithms

with single objectives. Thus, the multiobjective feature represents an

innovative approach to the problem and a challenge for subsequent

integration with the mapping modules.

Among the many multi-objective algorithms then, MOD* Lite has

advantages due to the specific strategies it employs. To begin with, it is a

complete algorithm, so it always provides a solution if one exists, and it is

capable of generating optimal or suboptimal but acceptable results in fully

observable environments.

It is in general slightly less accurate than MOA*, but it offers worse

execution speeds, which is indeed a cardinal aspect of the project. MOGPP,

on the other hand, despite having very similar execution times to MOD*

Lite, fails often to find optimal or suboptimal solutions, especially for large

sized maps. This is of course because MOGPP does not guarantee Pareto

optimality. By letting it run for very long times it is able to achieve

acceptable solutions, but the requirement for speed in execution would be

completely missed.

SPEA2 is, among the multiobjective algorithms described, the one that

claims the best execution times. Unfortunately, however, this feature is also

accompanied by the worst solutions among such algorithms, to the point of

being very often unacceptable.

 Search algorithms

38

Therefore, the choice is narrowed down to MOA* and MOD* Lite. (Xue &

Sun, 2018) shows, however, that MOD* Lite is able to provide better results

even in the case of partially observable or dynamic environments. The choice

therefore fell on this one.

The details of the characteristics of MOD* Lite and its functioning will be

described in section 4.

 Search algorithms

39

3.3 Heuristic functions

Whenever the need to identify a heuristic approximation within the

algorithms has been mentioned, it has not been specified how this would be

implemented. This is because there are for each case several possible choices,

more or less appropriate depending on the problem being addressed. A good

heuristic function will allow the algorithm to turn around quickly and find

the optimal solution, while a poor one might lead to increasing the execution

time without bringing any benefit, or even lead the search to wrong choices,

risking to find sub-optimal solutions or no solution at all.

To discern among the possibilities and choose the best heuristic function, it

must first be admissible, which means that it must never overestimate the

cost required to get from start to goal. For if this were to happen, the cost

of the optimal solution might be greater than the actual cost, and this would

lead that solution to be discarded over one that is actually worse.

Naturally, the function cannot have excessively low values either, otherwise

it would fail to concentrate the expansion of nodes towards the goal node.

Another extremely important aspect to keep in mind is the speed with which

the result of the heuristic function can be computed while still maintaining

sufficient accuracy. The point for a fair compromise can vary depending on

both the specific application and the algorithm in use. For example, some

applications may have no time limit but need an extremely precise path,

while others may necessarily require a blazing-fast response. In general, it

has been proven that in most cases having a function that comes up with a

good estimate while taking a short time to do so is far preferable to one that

obtains a perfect estimate but takes a huge amount of time to do it.

In choosing the heuristic function to be used for this thesis, in addition to

the elements just considered, it was also taken into account the ease with

which it could then integrate with the simulation environments. It was

therefore chosen to include the heuristic component, as we shall see in MOD*

Lite, in the form of the distance between a given node and the goal node.

The function is simply defined as the area line distance between the two

nodes, therefore using only the coordinate values to compute it. This makes

 Search algorithms

40

it a fast computation and certainly admissible, as each cell will then have

an additional cost based on its slope or exposure. In the event that the

terrain turns out to be perfectly flat, at most the heuristic and true value

will be equivalent.

As mentioned in section 2.5., the case of heuristic features being involved in

replanning brings up several problems. Let us return for a moment to the

problem mentioned earlier about avoiding assigning too low values to

heuristic functions. In the case of replanning, it means that the traversability

cost of at least one node has changed between one cycle and the next. This

means that the minimum cost in the map must be recomputed each time,

because it could be increased or decreased. This computation has a linear

cost for each of the nodes that have changed. Thus, if heuristic values are

included to calculate the priority of the nodes to be analysed, which happens

very often, all the values ruling such queue should be recomputed too.

For this problem (Koenig & Likhachev, D* lite, 2002) proposes as a solution

the use of an auxiliary variable. A "key modifier" that is incremented each

time the rover makes a move. Its definition and use are discussed in more

detail in the section 4. In this solution, the heuristic values are quickly

updated at the beginning of each cycle by adding to them the current key

modifier.

This value should theoretically be subtracted as the vehicle approaches the

goal and distances decrease. However, this would involve recalculating all

the keys, which could be decreased only within certain limits. Therefore, to

make the process faster, it is chosen to perform the reverse operation, adding

a uniform offset to the queue. It must be kept in mind, however, that this

solution leads to error accumulation in the long run.

41

4. MOD* Lite

MOD* Lite is a domain-independent search algorithm that can be used

whenever the surrounding environment is at least partially observable. The

step up from D* Lite is to allow one to define a set of objectives instead of

a single one, and for each of them it can be decided whether to minimize or

maximize it in the trajectory.

Two objectives that are mutually independent are considered in this study,

but the algorithm presented can be applied to a larger number of objectives

without any modification (except, of course, the need for more information

to be fed to the system).

However, the first criterion is itself made up of a combination of two

objectives, namely, the brevity of the route and its safety. This is done by

letting each cell have the cost of it being reached from one of its neighbours

(brevity) added to the cost related to the local slope (safety).

MOD* Lite inherits all the variables previously considered in the explanation

of D* Lite.

In this application, the simple line distance between the two points under

consideration was chosen as the heuristic function ℎ(𝑛, 𝑛′), but this choice

can be changed without altering the operation of the whole algorithm.

However, some substantial differences must be pointed out. Primarily, the

variable cost must now contain more than one value (for us, two values) per

cell, and will thus change from being a single variable to being a vector.

Same fate will obviously have 𝑔 and 𝑟ℎ𝑠, which in particular becomes:

𝑟ℎ𝑠(𝑛) = {
ObjectiveBase 𝑖𝑓 𝑛 = 𝑛𝑠𝑡𝑎𝑟𝑡

nonDom𝑛′ ∈ 𝑝𝑟𝑒𝑑(𝑛) sum(𝑔(𝑛′), 𝑐(𝑛′, 𝑛)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4)

Where ObjectiveBase is a base vector with as many entries as many

objectives we are considering, each of which will be equal to zero if the

 MOD* Lite

42

corresponding objective is to be minimized and equal to inf if it is to be

maximized.

An important difference created by having vector costs instead of single

values is the fact that the concepts of minimum and maximum are no longer

so easily applicable. Indeed, there may be a situation in which considering

the first elements of both vectors results in the first being minor, but

considering the second the situation is reversed; taking, for example, two

vectors 𝑎 = (3,4) and 𝑏 = (5, 2) we have that for the first elements 3 < 5,

but for the seconds 4 > 2, so neither vector can be said to be less or greater

than the other. This situation falls under what will henceforth be described

as non-dominance.

In the case where dominance can be instead established, it can still be further

described. With 𝑎 = (3, 4) and 𝑏 = (2, 1) we find ourselves in the situation

where a completely dominates b, since every value of a is less than its

corresponding value in 𝑏, while with 𝑎 = (3,4) and 𝑏 = (5,4) we will simply

say that a dominates 𝑏. Of course, the case of equality, in which all values

of the two vectors are two by two equivalent, remains in effect.

From here on, we will use the concept of dominance in two quite different

situations. The first, more straightforward, is used to describe the

relationship between precisely two vectors, most often 𝑔 and 𝑟ℎ𝑠, or a

combination of 𝑐 and 𝑔. But dominance terminology will also be applied

with improper language to a pair of nodes. In this case what will actually be

compared are the keys of the two nodes under investigation, as these keys

can be seen as two-element vectors.

4.1 Structure of Node class

A C++ class was tailored to accurately and adequately represent each node.

The informations it carries include some intrinsic variables, such as a pair

structure that stores its coordinates, the information about whether it is the

start node, the goal one or any other, a vector for each between 𝑐𝑜𝑠𝑡, 𝑔, 𝑟ℎ𝑠

values. Another pair structure contains the key that will be used for sorting

in the queue.

 MOD* Lite

43

Then it contains a vector that remembers the pointers to all adjacent nodes

(for, of course, a maximum of 8) and an unordered map that keeps in

memory all the parents so far detected.

The only criterion it possesses is the minor operator (<), which allows the

priority queue to automatically sort itself according to the rules described

here. As mentioned earlier, sorting involves the lexicographic comparison of

the keys.

A parallel class to this, dummyNode, was created as a transient container

to be used when reading new maps. Its purpose is explained later in the

procedure UpdateMap.

4.2 Priority queue

As in D* Lite, MOD* Lite also maintains a priority queue of all the

inconsistent nodes, sorted by a combination of 𝑔, 𝑟ℎ𝑠 and ℎ, so that the

most promising vertices are expanded first. The sorting criterion also

remains the same, based on the keys already described above, with the only

change being on the type of variable containing the various costs (from

singular values to vectors). At the top of the queue will be the nodes with

the minor keys, which could therefore make the final path as little worse as

possible, in fact you will see in the description of the algorithm how the

elements to be expanded will be extracted precisely from the top of the

queue.

To fulfill the functionality of this variable, several data structures offered by

different libraries were considered. Through consultation of some

benchmarks (one of which is found in (Benchmark of major hash maps

implementations, s.d.)) and personal testing of std::set,

stl::priority_queue, and boost::heap::fibonacci_heap, the final choice

fell on std::set. Indeed, this structure offered the best assortment of

features for its assigned purpose and the best performances.

 MOD* Lite

44

4.3 Functions

• domination(v1, v2) : given two vectors (which will always have the

same length), this function returns the type of dominance between the

two. The results can be either of the following:

the first vector completely dominates the second, the first vector

dominates the second, the vectors are equal, the second vector dominates

the first, the second vector completely dominates the first, neither vector

dominates the other.

• single_domination(f1, f2) : does the same thing as domination(v1,

v2) but for individual values. The results options here are obviously

reduced: the first value completely dominates the second, the vectors

are equal, the second value completely dominates the first.

This division between the two functions is necessary to avoid ambiguity

in the case of singular values, and to facilitate the writing considering

the different types of variables in use.

• nonDom(g, rhs) : return the non-dominated value between the given

𝑔 and 𝑟ℎ𝑠 values. If they’re equal or none dominates, the default return

is the 𝑟ℎ𝑠 value.

• vector_sum(v1,v2) : simply performs the element-by-element sum of

the two vectors, but in addition handles the case where one of them is

a null vector, returning the other one as the result.

• heuristic(n) : represents the heuristic function described earlier, thus

with the purpose of approximating values. In the definition chosen, it

returns as the value the shortest aerial path length between the node

provided as input and the starting node, ignoring the fact that the path

will only be able to move from one cell to another.

• calculateKey(n) : calculates and updates the key values of the input

node, following the formulations described in the Eq. (2).

• compute_cost(n) : as the name suggests, computes and returns the

cost vector to be assigned to the edge connecting the two nodes in input.

 MOD* Lite

45

The rule chosen is to select the largest cost from the two initially

assigned to the two nodes.

• findAdjacents(n) & addAdj(n,coord) : these two functions are

respectively concerned with finding out whether the eight nodes adjacent

to the node in input exist in the grid, and if so, inserting them into the

vector that accounts for them.

• nonDom_succs(n) : this function is used in two slightly different

ways. In the first, it is responsible for searching and returning for all

successors of the input node that are non-dominated with respect to the

multiobjective consisting of 𝑐 + 𝑔. In the second, it instead returns the

minimum value of the same multiobjective 𝑐 + 𝑔 that it can find among

all the successors of the input node.

So the search is the same in both cases, what changes is just the type of

output.

• update_rhs(n) : when called, this function updates the 𝑟ℎ𝑠 value of

the input node with the minimum that can be obtained from the

successors (via the nonDom_succs(n) function described earlier), unless

the node is the goal, in which case in fact the 𝑟ℎ𝑠 value is never updated.

It then recalculates the key values for the node and places it back in the

appropriate position of the priority queue.

• updateAdjacents(n) : simply calls the update_rhs(n) function for all

nodes adjacent to the one entered as input.

• start_doesNot_dominate(n) : is a support function that verifies

that the input node is not dominated by the start node. Its practicality

will be clear later.

4.4 Procedures

This section describes the main procedures that the algorithm has to carry

out during its operation, obviously translated into the form of functions.

 MOD* Lite

46

4.4.1 Main procedure

This is the main function that is entered as soon as the program is launched.

First, the data is extracted from the first map, and once the choice of the

goal node is received, it is placed in the priority queue as the first element.

Now the procedure computeMOPaths can be executed for the first time.

At this point a loop begins that will continue until the goal is reached by

the vehicle. It consists of collecting all the paths that are generated by the

generateMOPaths procedure and, if it turns out to be non-empty, presenting

it as the output. In the case that it turns out to be empty instead, the user

will be alerted to the temporary inability to trace a consistent path, and the

algorithm will remain waiting for changes in the map.

In both cases, the following execution is expected to present changes in the

map or the start and/or goal points, so the priority queue is emptied and

the updateMap function is called again.

 Procedure 1. Main of the MOD* Lite algorithm

 1: function MODLite()

 2: updateMap()

 3: calculateKey(ngoal)

 4: queue.insert(ngoal)

 5: computeMOPaths()

 6: while(nstart != ngoal)

 7: solutionPaths = generateMOPaths()

 8: if(solutionPaths.empty())

 9: no solution found

10: else

11: send path

12: updateMap()

 MOD* Lite

47

4.4.2 Compute MO Paths

This function deals with giving all nodes eligible to be part of the final path

the correct g-values, taking into account all objectives to be optimized.

Starting from the objective node, we trace back to the starting node.

This procedure requires no input and returns no output, but it performs a

series of operations and alterations on the variables involved.

As soon as the function is called, it first updates the key of the starting node,

because such value is needed for the check that will be now described.

Then it begins a loop that continues until it happens that the starting node

dominates the node that is at the top of the priority queue, or of course that

queue is empty.

After passing this check, the first element from the priority queue is

extracted, and its key is updated to account for any changes that have

occurred between its inclusion in the queue and the current manipulation.

If that new key is found to be greater than the initial one, it means that it

is probably no longer the best element to expand and is therefore reinserted

in the most appropriate place in the queue.

Otherwise, its consistency is checked. If the node in question is

overconsistent (𝑟ℎ𝑠 < 𝑔) its value of 𝑔 can be automatically updated to

match that of 𝑟ℎ𝑠. Then nodes adjacent to it are updated, which will

obviously be affected by this change in cost.

If it is found to be underconsistent (𝑟ℎ𝑠 > 𝑔), it means that the existing

value of 𝑔 is no longer valid and is therefore reset to be infinite. In this case,

in addition to updating adjacent nodes, the function is called to also refresh

the 𝑟ℎ𝑠 value of the node itself.

The third and final possible case is that none of 𝑟ℎ𝑠 and 𝑔 completely

dominate the other (local non-consistency), so the node's 𝑔 is set equal to

the non-dominated element between the two, and the adjacent nodes are

updated.

 MOD* Lite

48

Procedure 2. Compute MO Paths

 1: function ComputeMOPaths()

 2: calculateKey(nstart)

 3: while(!queue.empty() &&

start_doesNot_dominate(queue.top))

 4: noldKey = queue.top

 5: queue.erase(queue.top)

 6: nnewKey = allNodes.find(noldKey) //search the

 corresp. node in the list using the coordinates

 7: calculateKey(nnewKey)

 8: if (noldKey < nnewKey)

 9: queue.insert(nnewKey) //put it back in queue

10: else if (nnewKey.rhs completely dominates nnewKey.g)

11: nnewKey.g = nnewKey.rhs

12: updateAdjacents(nnewKey)

13: else if (nnewKey.g completely dominates nnewKey.rhs)

14: nnewKey.g = ∞

15: update_rhs(nnewKey)

16: updateAdjacents(nnewKey)

17: else

18: nnewKey.g = nonDom(nnewKey.g, nnewKey.rhs)

20: updateAdjacents(nnewKey)

 MOD* Lite

49

4.4.3 Generate MO Paths

Using the g-values determined by computeMOPaths, this function takes care

of putting together the actual path, this time starting from the start node

and proceeding to the goal.

Internally to this function, a queue named expandingStates is maintained to

keep track of which nodes in the neighborhood need to be updated, and it

follows a simple First-In-First-Out sorting. The first element inserted in such

queue is the start node.

This procedure can be essentially divided into two phases. The first one,

involves a loop that examines the entire expandingStates queue until it is

emptied.

Once an element is extracted (which will be symbolized by 𝑛), its non-

dominated successors are identified (through the nonDom_succs function

described earlier) and are processed one at a time. Each of these successors

is symbolized by 𝑛1.

If n has no parents, and this is only the case when n is the start node, surely

its successors will also not yet have parents, so n is added as a parent of 𝑛′

with cost equal to the cost to traverse from n to 𝑛′.

Otherwise, if node n already has any defined parents, they are used to

compute an auxiliary value called cumulative cost, in the code represented

by the vector cumulativeCs. It consists, as the name suggests, of the

cumulative sum of all the elements of the cost vectors associated with all

the parents, plus yet the multiobjective cost of going from n to its successor

𝑛′ under consideration.

At this point, if 𝑛′ is found to have no parents assigned yet, it is assigned

the node n as a parent with cost equal to cumulativeCs. Otherwise, it is

checked whether or not the node 𝑛 with cumulativeCs cost would be a clear

improvement over the parents already possessed. If yes, this is replaced. If,

on the other hand, it is found to be in a case of non-complete dominance,

each of the values in cumulativeCs is compared with each value of the parent

𝑛′′ costs. In case of equality or dominance, the corresponding cost is removed

from the list. At the end of the comparison, if all the costs of 𝑛′′ are

 MOD* Lite

50

dominated, 𝑛′′ it is removed from the parents of 𝑛′, and if cumulativeCs

still contains non-dominated costs n is added as the parent of 𝑛′.

The pseudo code described in Procedure 3 may help to understand the flow

of this process.

At the end of the first phase, if 𝑛 is among the parents of 𝑛′ and 𝑛′ is not

already in the expansion queue, it is placed in it.

In the second phase the actual output, namely the vector of pointers

solutionPaths, is composed. As the last element, of course, is inserted the

final goal of the path.

Then, until the start node is reached, the parents of each node are examined

by going backwards.

For each node, the parent node that dominates or completely dominates the

others is identified, it is inserted into the solution vector and set as the target

for the next loop.

If the node being examined has no parent, it means that a complete path

could not be found, so the solution vector is emptied and the function is

terminated.

Procedure 3. GenerateMOPaths()

 1: function GenerateMOPaths()

 //FIRST PHASE

 2: expandingStates.push_back(nstart)

 3: while (!expandingStates.empty())

 4: n = expandingStates.front()

 5: nonDomSuccs = nonDom_succs(n)

 6: for (n’ : nonDomSuccs)

 7: if (n.parents.empty()) //iff n = nstart

 8: n’.parents.insert(p=n, c=cost(n, n’))

 9: else

10: for (n’ : n.parents)

 MOD* Lite

51

11: cumulativeCs = sumallParents(cost) +

cost(n,n’)

12: if (n’.parents.empty())

13: n’.parents.insert(p=n,

c=cumulativeCs)

14: else

15: for (n’’ : n’.parents)

16: if (n’’.cost = cumulativeCs ||

n’’.cost completely dominates cumulativeCs)

17: break

18: else if (cumulativeCs

completely dominates n’’.cost)

20: n’.parents.erase(n’’)

21: n’.parents.insert(p=n,

c=cumulativeCs)

22: else {

23: for (cC : cumulativeCs)

24: for (eC : n’.parents(n’’).cost)

25: if (cC = eC || eC dominates cC)

26: cumulativeCs.erase(eC)

27: break

28: else if (cC dominates eC)

29: cumulativeCs.erase(cC)

30: break

31: if (!cumulativeCs.empty())

32: n’.parents.insert(p=n,c=cumulativeCs)

 }

33: if (n’.parents.contains(n) &&

!expandingStates.contains(n’))

34: expandingStates.push_back(n’)

 //SECOND PHASE

35: n = ngoal

36: solutionPaths.push_back(n)

 MOD* Lite

52

27: while (n != nstart)

38: if (n.parents.empty()) //failed to generate path

39: solutionPaths.clear();

40: return

41: for (n’ : n.parents)

42: min_parent = parent with the minimum cost

42: solutionPaths.push_back(min_parent)

43: n = min_parent

44: return solutionPaths

4.4.4 Update Map

The first task performed by this procedure is to call the ReadMap function,

which reads the most recent map and extracts data from it for all cells. The

nodes of the new map are at this point all contained in a list called newMap.

Each of the nodes in this list is examined, first by determining whether or

not it is already among the ones in the map used up to the previous run. If

no node with the same coordinates is found, presumably the camera has

detected peripheral areas never explored before and it is obviously added to

the list and the flag signaling a change in the map is raised.

On the other hand, if the coordinates are already associated with a node,

the other characteristics, namely node type and cost, are compared. If a

change is detected, the node is updated and the flag for the change is raised.

In this case, however, other operations are required, which are useful for

keeping the various connections in order, i.e., updating the 𝑟ℎ𝑠 value and

resetting parent relationships. In addition, edges connecting such nodes to

their neighbours must be updated.

In the event that a cell undergoes a change that makes it no longer

traversable, the node associated with it will not be destroyed, but its cost

will be set equal to infinity, which will automatically exclude it from any

possible path.

 MOD* Lite

53

If the vehicle has moved, that is the coordinates of the start node have

changed, 𝑘𝑚 is increased by a value equal to the heuristic distance between

the start and the goal.

Finally, the computeMOPaths procedure is called again.

Procedure 4. Update Map()

 1: function UpdateMap()

 2: ReadMap()

 3: for (n : newMap)

 4: if (n not already in allNodes list)

 5: allNodes.add(n)

 6: newNodes.push_back(n) //keep track of new cells

 7: nodes_changes = true

 8: else

 9: if (n.cost || n.nodeType have been modified)

10: update cost or nodeType

11: update_rhs(n)

12: n.parents.clear()

13: nodes_changes = true

14: if (nodes_changes)

15: for (nn : newNodes)

16: findAdjacents(nn)

17: if (vehicle_moved)

18: k_m += heuristic(ngoal)

19: computeMOPaths()

 MOD* Lite

54

4.4.5 ReadMap

This function is responsible for translating the maps that are fed to the

algorithm, whatever format they are in.

Section 6. describes in detail all the tests performed, and for each of those

this function took on slightly different characteristics.

Specifically, in the initial case of manually constructed maps, this function

handled exactly this construction.

In the case of tests with custom random generated maps, these were in the

form of images in bitmap format, with each pixel representing a cell. The

numerical value in greyscale of each of these pixels would then represent the

altitude, slope, or solar exposure score of the corresponding cell. The

ReadMap function would simply pick up these values one by one, so that

they would be usable by the algorithm.

In addition, to make the simulation more realistic, it was thought to provide

the algorithm with a less detailed global map, which would however be more

accurate around the vicinity of the rover. Here, too, the ReadMap function

took care of reading the data provided by two parallel images, from the more

blurred one first, updating only the cells around the current position with

pixels from the more focused image.

Of course, to consider the multiobjective feature of the algorithm, a different

image was provided for each objective, whose data was then merged into

those of the various nodes.

The starting and ending points of the wanted path, could be provided by

the user at the beginning of the simulation or set intrinsically. The same

applies to the update of the rover's position during the traverse.

The same function was then updated and modified to accommodate the

needs of simulations with ROS2, which involved interacting with the map

input from other Nav2 packages.

55

5. Integration with TASI

The exploration of path planning algorithms and the subsequent operational

implementation of MOD* Lite were driven not only by the purposes of

research but also, and more importantly, by the objective of integrating such

a planner into a real-world application.

Specifically, the system aimed at accommodating such integration is part of

a TAS-I program. Thales Alenia Space, in collaboration with the Polytechnic

University of Turin, is carrying out the SINAV research project for rovers

aimed at space exploration.

The rover in question is an Adept Mobile Robots Seekur Jr under their

ownership, constantly tested, both in its software and hardware features, in

their RoXY facility. RoXY, acronym of Rover eXploration facility, is a

structure in the TAS-I Turin complex that houses a reconstruction of the

Martian terrain and the various challenges that it may present.

Figure 5.1. shows schematically the complete system that regulates the

operation of the Autonomous Navigation thought and designed for SINAV.

Figure 5.1. AutoNav system architecture.

The HAL, composed of ROS nodes, provides the framework compatibility

to all the sensors integrated on the rover.

 Integration with TASI

56

The localization subsystem collects data from the several sensors and the

wheel odometry and from these calculates an estimate of the rover's position.

The mapping subsystem collects the depth information and translates it into

a Traversability Score Map. The planning subsystem, which is the one

mostly considered in this thesis, is responsible for providing a consistent and

safe path to traverse the map. The control subsystem is responsible for

following to the best of the rover's ability the path provided by the planner,

correcting any errors between the desired trajectory and the one actually

followed. Finally, the locomotion layer translates everything into explicit

commands for each wheel to achieve the necessary movements.

The deliberative layer consists of a behavior tree or user-supplied commands.

The rover's locomotion system consists of four wheels with each side having

its two corresponding wheels driven by a single motor. The movements are

therefore regulated by skid-steering, which leads to some additional

difficulties in odometry measurements, because two instantaneous rotation

centres (ICRs) must be taken into account for the computations, which then

vary over time.

If, in addition to this, one considers the inevitable involuntary slips that the

rover undergoes during its traverse, mechanical odometry, albeit at a high

publish rate, can certainly provide a valuable aid but cannot be considered

sufficient to verify the performed motions.

As for the rover's perception of its surroundings, it is equipped with several

sensors. In particular:

• Stereo-camera : StereoLabs ZED 2;

• ToF : LucidLabs Helios2+;

• IMU : Xsens 630;

With these, an adequate localization of the rover and a description of its

environment can be obtained.

In particular, stereo-cameras are able to provide a complete description of

the terrain in the form of a point-cloud.

Thus, the element with which the developed planner must interface

regarding the perception of the external environment are maps, already

 Integration with TASI

57

captured and partially processed. Concealed in each of these are the values

to be used to evaluate each cell according to the objectives to be minimized

that have been selected.

Considering the planners already implemented and tested in SINAV, it was

decided to opt for a more complex planner that would take more than one

element into account, as opposed to classic planners that optimize only for

the shortest path.

As for the choice of objectives to optimize, it came down to finding the

shortest, safest route that offers the most solar exposure. The latter, proves

to be relevant in the case of Martian rovers that rely much of their energy

on what they gain from solar panels.

In Figure 5.2. is depicted the flow of information leading from the perception

of the external world to the implementation of the desired movements.

Figure 5.2. Flow of information between the AutoNav systems.

For this thesis, the general operation and strategies used in the state-of-the-

art MOD* Lite algorithm were studied in depth. This study was used to be

able to write out a code that would fulfill all its functionalities in a complete

 Integration with TASI

58

planner. For this purpose, the C++ language was chosen to be used, which

allowed to obtain a suitably efficient software.

After thoroughly testing the operation of the generated code, followed a

phase of optimizing it from the standpoint of solution accuracy, execution

speed and memory occupancy.

Then the entire code was wrapped in a plugin that would make it possible

to include this planner in the simulation environment used in the SINAV

project, namely ROS2's Nav2 package. This will be discussed in more detail

in the section 6.4 .

 Integration with TASI

59

5.1 Simulation environment

Before getting to test the various software in RoXY, computer-simulated

tests are performed, so as to initially minimize the risks of damaging the

equipment and, above all, to have a more controlled environment in which

to be sure of proper operation. In this way it is also possible to simulate

extreme situations that would be difficult, expensive or dangerous to

reproduce in real life.

ROS2, widely used in space research, is also the tool used in SINAV to fulfill

this purpose.

The Nav2 project, developed for ROS2, has its roots in the benefits found

by the Navigation Stack used in ROS. It is useful in all applications involving

robotic navigation, the most common of which is to find a safe route for a

mobile robot to move between two points. But at the same time it is useful

for the purpose of following dynamic points. “This will complete dynamic

path planning, compute velocities for motors, avoid obstacles, and structure

recovery behaviors.”

Each action is represented by its own separate node, which communicates

with the BT through ROS2 action servers.

To create complex navigation behaviors, it is possible to combine more than

one controller plugins, planners and recoveries in each of its servers.

In order to insert the built planner into the Nav2 environment, it is necessary

to create a new ROS2 package that contains it. A plugin was written for

this purpose, which would then allow interaction between the new package

and the rest of the environment. To simulate the other functionality needed

for navigation, the already available packages were exploited, for

localization, mapping and control.

60

6. Testing

To comply with the computational limitations outlined above and to

simplify integration with the rest of the system, the main body of the planner

was written using the C++ language.

First, all necessary unit tests were performed to ensure the proper

functioning of each function under all verifiable conditions.

The earliest practical tests were carried out on small, manually generated

maps, so that the expected global situation could be known precisely at each

moment of execution, and thus check the correct operation of each function.

Later a short script was written using Python language. This was done in

order to be able to perform some tests that would ensure the greatest amount

of scenarios covered. Such a script is able to generate in the form of bitmap

images a large number of random maps, while still respecting parameters to

make them realistic. For example, a Gaussian function was used to soften

the fluctuations in values. It is also possible to tune some parameters, such

as total area, average slope variation and of course the amount of maps to

generate.

The results for altitudes and those for slopes are connected by a function

that through a derivative obtains the latter from the former.

The bitmap images are then read by the planner (a mechanism that mirrors

the behavior it should have during normal operation), which then gets the

necessary data from them and turns them into nodes.

Subsequently, the tests were moved to the ROS2 environment for greater

integration with the other components that form an autonomous navigation

system.

All these tests will now be exposed in more detail.

 Testing

61

6.1 Hand generated maps

As mentioned, the first tests were carried out through small maps crafted

purposely by hand, each with specific characteristics. In fact, in this way it

was possible to verify the correct functioning of the algorithm not only in

its entirety, but also by looking at each intermediate step, so that any

inconsistencies could be easily detected.

An example of the desired process is shown in Figure 6.2., it is highly

downsized from the actual dimensions used to facilitate visualization. Figure

6.1. can be observed for a description of the adopted symbology.

Figure 6.1. Legend for nodes.

 Testing

62

Figure 6.2. Execution progression for path finding.

 Testing

63

Figure 6.3. Resulting path for the first iteration.

Once the first run is finished and a route is identified, it may happen, for

example, that a node changes its crossing score, as highlighted in Figure 6.4.

Figure 6.4. A new map reading is provided. Node (1,1) experienced

a change in its crossing cost (highlighted in yellow).

With a similar unfolding, but starting this time with some already known

data, the algorithm takes care of adjusting the route, if necessary, as is seen

in Figure 6.5. Note that in this case the rover has not yet moved, and

therefore the start node has not been changed.

 Testing

64

Figure 6.5. Result of the re-planning.

All the cases listed in the section 2.5. have been tested several times, with

varying and also interconnected scenarios.

 Testing

65

6.2 Randomly generated maps

Once the correct performance was established in the case of small, custom-

built maps, the need to expand the tests was addressed. This was done to

make sure that significantly larger maps were available to test performance

with larger data loads. The other motivation was to introduce the random

aspect into the tests, to try to include all possible configurations,

complications and special cases that might not come easily to mind.

A Python script was used to provide the algorithm with a large number of

different maps. Once some parameters have been set for the desired variance

and size, as well as the type of data to be represented (altitude, slope, or

solar exposure), the script takes care of generating images that simulate the

scanning of a map. The images were saved in greyscale bitmap format. Each

pixel of such images represents a map cell, where its value in grayscale is an

evaluation respectively of its altitude or slope.

An example of the maps 1000x1000 thus generated is shown in Figure 6.7.

and Figure 6.9., representing altitude and slope, respectively. A

visualization, for representational purposes only, of the same maps in three-

dimensional view is shown above the respective two-dimensional versions, in

Figure 6.6. and Figure 6.8.

The coloring of the maps in these images is for illustrative purposes only;

those used for testing are, as anticipated, in greyscale.

An example of such a map is shown in Figure 6.10. For better visibility of

the computed path, smaller maps, 500x500 in size, will be represented from

here on. This figure shows the slope of the area, where the darker areas

represent a gentler slope, which is therefore more convenient to travel on.

Instead, the map for solar exposure is processed from the altitude map, as

shown in Figure 6.11., assuming in this the light source positioned on the

right of the image.

As a matter of fact, it can be seen in Figure 6.12. how the path generated

for this map, highlighted by the green line, tends to move more in the darker

areas, while still maintaining the tendency not to deviate from the shortest

path (which would obviously be a straight line).

 Testing

66

Figure 6.6. Three-dimensional view of the height map.

Figure 6.7. Bi-dimensional view of the height map.

 Testing

67

Figure 6.8. Three-dimensional view of the slope distribution.

Figure 6.9. Bi-dimensional view of the slope distribution.

 Testing

68

Figure 6.10. Example of a random

generated height map in greyscale,

500x500 pixels.

Figure 6.11. Example of solar

exposure distribution obtained from

Figure 6.10.

Figure 6.12. Solution path (green line)

computed for the map in Figure 6.10.

These tests also made it possible to detect and correct some inefficiencies in

the algorithm. In particular, identifying which points in the algorithm took

the longest to process, and on which it was therefore important to place

more attention so that they would be as optimized as possible. Similarly,

some redundancies in variables were resolved to lighten the total impact on

memory and avoid buildups.

These tests were carried out on more than three hundred maps of size

1000x1000 cells (or pixels).

 Testing

69

6.3 Simulation of map integration from

different sources

To simulate a more similar environmental awareness to the one obtained in

real applications, some workarounds were adopted to achieve the

corresponding mappings.

Once a random map was created, exactly as in the previous tests, a blurred

copy was created, in which all details were thus considerably flattened.

During the reading phase, the algorithm could then rely its observations on

the entire blurred map and enrich them with detailed data coming only from

the area in the direct vicinity of the starting node. More precisely, in a

square with semi-side equal to 50 cells/pixel, obviously centered in the start

node.

Figure 6.13. shows the result of the first run of the planner using these

conditions. Again, for greater visibility of the paths here are depicted smaller

maps, with 500x500 dimensions. Note in the upper left corner a piece of the

square with more prominent details. Again, the green line represents the

path calculated by the planner at the time of the data acquisition.

Figure 6.13. Initial path for mixed maps.

In the following images (Figure 6.14.), it is possible to appreciate the

continuation of the algorithm as the rover moves forward, until the

algorithm terminates due to the objective node being reached. As the vehicle

moves to follow the computed path, the awareness of different areas of the

 Testing

70

map also changes, which leads the planner to eventually refine its

assessments.

Again, the planner correctly succeeds in finding the path that best manages

to compromise between the various objectives set.

Figure 6.14. Evolution of the map and best path.

Besides the general correctness of the solutions, there is a need to evaluate

the performance of the algorithm. For this purpose, detailed evaluations of

memory usage and the time required are uncovered in the section

immediately following.

An important parameter for evaluating such performance is however the size

of the subset of nodes expanded during full execution.

 Testing

71

A representation of this exact evaluation can be seen in Figure 6.15., where

the nodes that have been examined and expanded are highlighted in yellow.

It is important to keep in mind that whenever a node undergoes a change

in one of the values of its cost vector, it is automatically placed in the

expansion queue. This clearly causes a fairly large subset of expansion in the

case under consideration, which involves updating costs by following the

rover's movements. Despite this, it is appreciated how nodes that would

stray too far from the optimal path are never considered, thus greatly

limiting waste.

Figure 6.15. Highlighting of expanded nodes.

 Testing

72

6.3.1 Analysis of execution times

In order to measure the performance of the algorithm, and improve it where

necessary, several estimates were made concerning different areas.

First and foremost, the execution times required to accomplish both a

complete path search and the times required for the most significant

subroutines were measured. In particular, attention was paid to UpdateMap,

which takes care in its first execution to create all the necessary nodes and

edges, and in subsequent executions to update the graph where the costs

might be found to have changed. Next attention is paid to the functions

ComputeMOPaths and GenerateMOPaths, which are concerned respectively

with assigning to all nodes that have the potential to be part of the path

the correct values of 𝑔, and with using those values to backwardly construct

a consistent path.

Table 6.1. shows the different periods of time, in seconds, required for these

subroutines and for each individual cycle, where a complete cycle is

considered from the time a map is started to be read until the output of a

finished path.

Each of the columns represents a new algorithm call, that is, a reading of a

new map where the rover turns out to have moved along the path.

execution 0 1 2 3 4

UpdateMap() 0,711 s 0,012 s 0,017 s 0,023 s 0,025 s

ComputeMOPaths() 4,031 s 0,047 s 0,069 s 0,071 s 0,182 s

GenerateMOPaths() 0,004 s 0,004 s 0,004 s 0,003 s 0,003 s

TOTAL 4,747 s 0,065 s 0,092 s 0,103 s 0,215 s

5 6 7 8 9

UpdateMap() 0,021 s 0,026 s 0,022 s 0,021 s 0,020 s

ComputeMOPaths() 0,179 s 0,080 s 0,100 s 0,167 s 0,053 s

GenerateMOPaths() 0,003 s 0,003 s 0,001 s 0,000 s 0,000 s

TOTAL 0,208 s 0,114 s 0,129 s 0,193 s 0,077 s

Table 6.1. Example of execution times for a complete path traversal.

 Testing

73

Looking at the first row, it can be easily seen that the first translation of

the map is the most time-consuming, as it involves creating from scratch

the entire graph representing all the necessary nodes and edges. From the

second execution onward, in which only a few nodes undergo changes, the

execution time is greatly reduced and almost constant.

The same observation can be made for ComputeMOPaths, which at first

execution must assign the 𝑔 values to all nodes that compete to be part of

the path to the goal node. In the first execution, this function represents by

far the largest expense in terms of time. From the second execution onward,

its contribution is limited to re-evaluating some of the nodes and thus the

time is shortened. In addition, it can be seen that as the execution

progresses, the time still gradually decreases, which is expected since the

path yet to be re-evaluated gets progressively shorter, which is

understandable.

Also for GenerateMOPaths, despite requiring much less time, a decreasing

trend can be identified, caused by the shortening of the required path.

The total time reveals how the first round takes a not insignificant amount

of time, while from the second onward the timeframes are almost always

well below the 0,2 second mark. This complies with the desired behavior,

allowing the rover to perform most of the work before starting the

navigation, and instead be able to very quickly perform replanning on the

fly, without the need to stand still during the process.

These same measurements were repeated many times, using different maps

and situations each time, but maintaining the same distance between the

start node and the goal node so as to be comparable. From these data, the

averages on execution times shown in Table 6.2. were derived.

 Testing

74

average time

(including first ex.)

average time

(except first ex.)

UpdateMap() 0,089 s 0,022 s

ComputeMOPaths() 0,492 s 0,114 s

GenerateMOPaths() 0,003 s 0,003 s

TOTAL 0,588 s 0,143 s

Table 6.2. Average execution times for the principal subroutines.

These times are, however, obviously only a very approximative indication,

since they are measured while running on a standard personal computer,

and not on space grade hardware. It is expected that in real cases all times

will be greatly increased. But this does not prevent important assessments

from being made.

Indeed, it is clear that to further reduce the time impact of the algorithm

the first point to be further optimized is the GenerateMOPaths procedure.

 Testing

75

6.3.2 Memory occupation

In space applications, the hardware used has more limited capabilities than

what is used on Earth, so the amount of memory used to perform each task

is an important characteristic.

Using the tools provided by Visual Studio, tests were conducted on the

amount of memory required to run this algorithm.

The data given below in Figure 6.16. refer specifically to the last of the tests

carried out with differentiated focus maps, this case being the most wasteful.

This is of course after implementing various techniques to improve memory

waste where possible.

Figure 6.16. Memory occupation.

In the figure it is possible to appreciate the trend of memory occupied during

a little more than two cycles of execution.

The descending peaks are due to the deletion of some lists and queues as the

path is defined and provided as output. The immediately subsequent rise is

due to the renewal of such data and the reading of the new maps for a new

execution.

It is clear how this aspect of the algorithm can be further optimized by

choosing the most appropriate types of variables and trying to identify

further data that are retained longer than necessary.

6.3.3 CPU usage

For the same reasons just described, it is important to keep track of the

power usage, since the rover has a finite amount available for all its

activities.

 Testing

76

Again thanks to the Visual Studio tools, data was collected on CPU

utilization during execution, depicted in Figure 6.17. Clearly this is very

dependent on the device on which the tests are run, thus of less real value,

but it again served to try to optimize the algorithm as much as possible.

In fact, in addition to the total utilization, a close look was taken at the

computational effort required by individual functions and sub-functions, so

as to identify and improve from time to time those that were most

influential.

Figure 6.17. Percentage of the CPU utilization.

In this case, apart from the quick initial rise, utilization is maintained

roughly constant throughout the entire execution.

Again, it is undoubtedly possible to further optimize the utilization of the

resources that are available.

 Testing

77

6.4 Implementation in ROS2

After confirming the proper functioning of the planner in all previous tests

and optimizing the algorithm as much as possible with regard to required

power, occupied memory, and execution speed, it was time to integrate it

into an environment that simulates interaction with the other components

of a complete autonomous navigation system.

To this end, for reasons elaborated earlier in section 5.1., ROS2 is used

(ROS2 Foxy, s.d.), specifically by embedding within the Nav2 environment

(Nav2 - Navigation 2 1.0.0 documentation, s.d.).

The Robot Operating System is a collection of open-source software drivers,

libraries and state-of-the-art tools for building robot applications of any

kind. Nav2 is one of the aforementioned tools, designed specifically for the

development of all applications involving the mobility, more or less

autonomous, of a robot.

ROS processes can be described as nodes in a graph structure (unrelated to

the graphs we have defined for search algorithms). Such processes are

connected by edges, which in this case take the shape of topics. Through

topics the nodes, or processes, can transmit messages to each other

containing data of various kinds, call the functionality of other nodes, and

provide themselves services.

A plugin was created specifically to interface with the already modular

structure of Nav2. In this way, the new module can use all the functionality

already present, such as the costmap layer, controller, and behavior tree.

With the help of Gazebo and ROS packages that handled its functionalities,

it was possible to complete the simulations. Gazebo (Gazebo, s.d.) is a

simulator for indoor and outdoor environments, robots and robot

populations, closely interconnected with ROS2 functionality.

Once the initial position of the rover, initially designated by Gazebo, was

found, it was manually communicated to the planner via the user interface.

After that, the desired target position could easily be marked on the map.

At this point the planner receives information from the various modules

 Testing

78

about the costmap, the start position, and goal position. Then, it takes care

exactly as in the previous cases to calculate an appropriate path. By sending

that point-by-point information back to the controller, the rover can move

to achieve the desired behavior.

The Figure 6.18. represents a screen capture during a simulation. The rover

is the Turtlebot3, hardly visible in the image but present just below and to

the right of center of the map, covered by numerous reference systems.

The path computed at the time of capture can be seen represented purple,

and it would slightly adjust as the rover gained new data. Indeed, the square

area where the rover directly, and therefore more accurately, perceives its

surroundings is highlighted in more saturated colors.

Figure 6.18. Screen capture of the planner operation in a ROS simulation.

Again, the planner was able to calculate and convey the shortest and safest

route within the provided map. Unfortunately, it was not possible to test its

full potential by adding sun exposure data among the input information. In

fact, it is necessary to slightly modify some characteristics of the structure

of the Nav2 data flow in order to allow the simultaneous reception of two

maps that are completely unrelated to each other. This definitely represents

an aspect to be investigated in future.

79

7. Conclusions and future

developments

During the development of this thesis, many of the aspects involved in the

successful operation of a path planner were addressed and analysed. After

analysing many algorithms, the choice fell on MOD* Lite.

This algorithm was then implemented into a complete, working code. Test

phases followed by optimization phases were then performed alternately. In

this way it was possible to ensure that the planner was as optimized as

possible and that it was able to generate consistent and acceptable paths

under potentially any condition. It has also been equipped with features and

parameters that make it easily adaptable to different types of tests and allow

refined tuning for future tests.

All tests, either purpose-built or in a simulation environment, reported the

expected results, assuring once again that the planner is robust and reliable.

The planner thus composed was also successfully integrated into the ROS2

environment.

Future work to take this project forward should first involve further low-

level optimization of the code that translates the entire algorithm.

Optimization should focus both on execution time and, more importantly,

on the amount of memory required for the process. These two tasks would

obviously be mutually beneficial.

In second place, it would be worth expanding the tests carried out with the

help of ROS2, so as to provide for better integration of more than one

costmap at the same time, to give proper attention to the multiobjective

feature of MOD* Lite. Indeed, at the present time, in these simulations it is

able to optimize for the shortest and safest path, but not to receive data on

sun exposure. This therefore prevents it from optimizing for this additional

objective.

 Conclusions and future developments

80

Absolutely no less important, would be the use of the three-dimensional

scanning of the entire environment present in RoXY, to replace the generic

maps used so far. This would make it possible to test how well the planner

works on a terrain that is much more realistic than either the random maps

or the maps provided by Gazebo. Since it is also a terrain that has already

been extensively tested, it would be interesting to find out how well it

performs in this real scenario compared to other planners already in use.

Ultimately, the natural progression of this work would be the integration of

this planner into the AutoNav system developed for the Seekur rover,

currently used for the test in RoXY.

This would allow, among other things, the use of real data on solar exposure

given under different weather conditions. It would remove an additional

layer of uncertainty due to human error in artificially creating these data.

Some testing under these conditions would also allow for better calibration

of the best features for the input maps and for some of the algorithm's

internal variables. The most obvious among these is the heuristic function,

which could be questioned again if the results required it.

The future of the SINAV project more generally will certainly involve the

continued search for innovative solutions in all phases that constitute

autonomous navigation, from the selection of the hardware to the software

implementations.

81

List of Figures

Figure 2.1. Cell traversability. On the left, the vehicle can only move

between adjacent cells (4-connected). On the right, diagonal movements are

allowed (8-connected) .. 14

Figure 2.2. Example of gird scoring. From (Dakulovic & Petrović, 2011). 15

Figure 2.3. Example of a generic graph. .. 15

Figure 2.4. Graph with crossing costs. .. 16

Figure 2.5. Graph with directional crossing cots. 17

Figure 2.6. Generic generation of a graph from a grid. 17

Figure 2.7. Example of connection between eight nodes. 18

Figure 2.8. Creation of a new node. .. 19

Figure 2.9. Destruction of a node. ... 19

Figure 2.10. Deletion of ad edge, i.e. a connection between two nodes. 19

Figure 2.11. Change in the crossing cost of an edge. 20

Figure 3.1. 3D Path planning algorithm taxonomy. 21

Figure 3.2. Derivation hierarchy of the MOD* Lite planner. 22

Figure 5.1. AutoNav system architecture. ... 55

Figure 5.2. Flow of information between the AutoNav systems. 57

Figure 6.1. Legend for nodes. .. 61

Figure 6.2. Execution progression for path finding. 62

Figure 6.3. Resulting path for the first iteration. 63

Figure 6.4. A new map reading is provided. Node (1,1) experienced a change

in its crossing cost (highlighted in yellow). ... 63

Figure 6.5. Result of the re-planning. .. 64

Figure 6.6. Three-dimensional view of the height map. 66

82

Figure 6.7. Bi-dimensional view of the height map. 66

Figure 6.8. Three-dimensional view of the slope distribution. 67

Figure 6.9. Bi-dimensional view of the slope distribution. 67

Figure 6.10. Example of a random generated height map in greyscale,

500x500 pixels. .. 68

Figure 6.11. Example of solar exposure distribution obtained from Figure

6.10. .. 68

Figure 6.12. Solution path (green line) computed for the map in Figure 6.10.

 ... 68

Figure 6.13. Initial path for mixed maps. ... 69

Figure 6.14. Evolution of the map and best path. 70

Figure 6.15. Highlighting of expanded nodes. ... 71

Figure 6.16. Memory occupation... 75

Figure 6.17. Percentage of the CPU utilization. 76

Figure 6.18. Screen capture of the planner operation in a ROS simulation.

 ... 78

List of Tables

Table 6.1. Example of execution times for a complete path traversal. 72

Table 6.2. Average execution times for the principal subroutines. 74

83

Bibliography

(n.d.). Retrieved from Nav2 - Navigation 2 1.0.0 documentation:

https://navigation.ros.org/

Benchmark of major hash maps implementations. (n.d.). Retrieved from

https://tessil.github.io/2016/08/29/benchmark-hopscotch-map.html

Bombini, L., Coati, A., Medina, J., Molinari, D., & Signifredi, A. (2015). A

general purpose approach for global and local path planning

combination.

Dakulovic, M., & Petrović, I. (2011). Two-way D* algorithm for path

planning and replanning. Robotics Auton. Syst., 59, 329-342.

Elfes, A. (1989). Occupancy Grids: A Probabilistic Framework for Robot

Perception and Navigation. University, Pittsburgh, PA, USA,

Carnegie Mellon.

Gasparetto, A., Boscariol, P., Lanzutti, A., & Vidoni, R. (2015, 03). Path

Planning and Trajectory Planning Algorithms: A General Overview.

Mechanisms and Machine Science, 29, 3-27. doi:10.1007/978-3-319-

14705-5_1

Gazebo. (n.d.). Retrieved from https://classic.gazebosim.org

Geiger, A., Ziegler, J., & Stiller, C. (2011). StereoScan: Dense 3d

reconstruction in real-time. IEEE Intelligent Vehicles Symposium,

IV, 963-968.

Goldberg, S., Maimone, M., & Matthies, L. (2002). Stereo vision and rover

navigation software for planetary exploration. IEEE Aerospace

Conference, 5(5-2025-5-2036).

Guan, X., Wang, X., Fang, J., & Feng, S. (2014, 11). An innovative high

accuracy autonomous navigation method for the Mars rovers. Acta

Astronautica, 104, 266–275. doi:10.1016/j.actaastro.2014.08.001

 Bibliography

84

Gunantara, N. (2018). A review of multi-objective optimization: Methods

and its applications. Cogent Engineering, 5(1).

doi:10.1080/23311916.2018.1502242

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968, July). A Formal Basis for

the Heuristic Determination of Minimum Cost Paths. IEEE

Transactions on Systems Science and Cybernetics, vol. 4, 4(2), 100-

107. doi:10.1109/TSSC.1968.300136

Helmick, D., Angelova, A., Livianu, M., & Matthies, L. (2007). Terrain

Adaptive Navigation for Mars Rovers. IEEE Aerospace Conference,

1-11.

Jain, A., Balaram, J., Cameron, J., Guineau, J., Lim, C., Pomerantz, M., &

Sohl, G. (2004). Recent developments in the ROAMS planetary rover

simulation environment. IEEE Aerospace Conference Proceedings, 2,

861-876.

Jinming, Z., Xun, W., Lianrui, X., & Xin, Z. (2022). An Occupancy

Information Grid Model for Path Planning of Intelligent Robots.

ISPRS International Journal of Geo-Information, 11(4), 231.

Retrieved from https://doi.org/10.3390/ijgi11040231

Knuth, D. E. (1977). A generalization of Dijkstra’s algorithm. Information

Processing Letters, 6(1), 1-5. doi:https://doi.org/10.1016/0020-

0190(77)90002-3

Koenig, S., & Likhachev, M. (2002). D* lite. In A. P. Press (Ed.), Eighteenth

National Conference on Artificial Intelligence and Fourteenth

Conference on Innovative Applications of Artificial Intelligence (pp.

476-83). Edmonton, Alberta, Canada: Rina Dechter, Michael J.

Kearns and Richard S. Sutton. Retrieved from

http://www.aaai.org/Library/AAAI/2002/aaai02-072.php

Koenig, S., Likhachev, M., & Furcy, D. (2004). Lifelong Planning A.

Artificial Intelligence 155.1 , 93-146.

Marcus, D. A., & America, M. A. (2008). Graph Theory: A Problem

Oriented Approach. The Mathematical Association of America Press.

 Bibliography

85

Mars Exploration Rovers. (n.d.). Retrieved from

https://mars.nasa.gov/mer/mission/rover/eyes-and-senses/

Milella, A., Reina, G., & Nielsen, M. (2021, 04). A multi-sensor robotic

platform for ground mapping and estimation beyond the visible

spectrum.

Nidhal, K. T.-O. (2021, 8). Sea Lion Optimization Algorithm for Solving the

Maximum Flow Problem. International Journal of Computer Science

and Network Security (IJCSNS), 20(8), 30-68.

Nieto, J., Monteiro, S., & Viejo, D. (2010). 3D geological modelling using

laser and hyperspectral data. IEEE International Geoscience and

Remote Sensing Symposium (IGARSS)., 1‐7.

Nosrati, M., Karimi, R., & Hasanvand, H. A. (2012, November 23).

Investigation of the(star) search algorithms: Characteristics, methods

and approaches. World Applied Programming - TI Journals, 2(4),

251-256.

Oluwaseun, O. M., Adefemi, A. A., Olatayo, M. O., & Bukola, O. B. (2022).

An Improved multi-objective a-star algorithm for path planning in a

large workspace: Design, Implementation, and Evaluation. Scientific

African, 15, e01068. doi:https://doi.org/10.1016/j.sciaf.2021.e01068

Oral, T., & Faruk, P. (2016). MOD* Lite: An Incremental Path Planning

Algorithm Taking Care of Multiple Objectives. IEEE Transactions

on Cybernetics, 46(1), 245-257. doi:10.1109/TCYB.2015.2399616

Oral, T., & Polat, F. (2012). A Multi-objective Incremental Path Planning

Algorithm for Mobile Agents. In 2012 IEEE/WIC/ACM

International Conferences on Web Intelligence and Intelligent Agent

Technology (Vol. 2, pp. 401-408). IEEE Computer Society.

Petkov, P., Yang, L., Qi, J., Song, D., Xiao, J., Han, J., & Xia, Y. (2016,

07 04). Survey of Robot 3D Path Planning Algorithms. Journal of

Control Science and Engineering. doi:10.1155/2016/7426913

Ramalingam, G., & Reps, T. (1992, May). An Incremental Algorithm for a

Generalization of the Shortest-Path Problem. Journal of Algorithms

- University of Wisconsin Technical Report, 21(2), 267-305.

 Bibliography

86

Rekleitis, I. a.-L., Gemme, S., Lamarche, T., & Dupuis, E. (2007, 06).

Terrain Modelling for Planetary Exploration. 243-249.

doi:10.1109/CRV.2007.63

Rekleitis, I., Bedwani, J.-L., & Dupuis, E. (2009, 06). Autonomous planetary

exploration using LIDAR data. 3025-3030.

doi:10.1109/ROBOT.2009.5152504

ROS2 Foxy. (n.d.). Retrieved from https://docs.ros.org/en/foxy/index.html

Stentz, A. (1995). The focussed d^* algorithm for real-time replanning.

IJCAI, 95, pp. 1652-1659.

Stentz, A. (1997). Optimal and Efficient Path Planning for Partially Known

Environments. In Intelligent Unmanned Ground Vehicles:

Autonomous Navigation Research at Carnegie Mellon (pp. 203-220).

Boston, MA: Hebert Martial H., Thorpe Charles, Stentz Anthony.

Stewart, B., & White, I. C. (1991). Multiobjective A. Journal of the ACM,

38(4), 775-814.

Wang, H., Lou, S., Jing, J., Wang, Y., Liu, W., & Liu, T. (2022, 02). The

EBS-A* algorithm: An improved A* algorithm for path planning.

PLOS ONE, 17(2), 1-27. doi:10.1371/journal.pone.0263841

Washington, R., Golden, K., Bresina, J., Smith, D., & Anderson, C. (1999).

Autonomous rovers for Mars exploration. IEEE Aerospace

Conference, 1, pp. 237-251. Aspen, CO, USA.

Woods, M., Shaw, A., Tidey, E., Pham, B., Lacroix, S., Mukherji, R., . . .

Chong, G. (2014, 10). Seeker – Autonomous Long Range Rover

Navigation for Remote Exploration. Journal of Field Robotics, 31,

940. doi:10.1002/rob.21528

Xiao, J., Liu, M., & Zhu, Z. (2021). Low walk error multi-stage cascade

comparator for TOF LiDAR application. Microelectronics Journal,

116. doi:10.1016/j.mejo.2021.105194

Xue, Y., & Sun, J.-Q. (2018). Solving the Path Planning Problem in Mobile

Robotics with the Multi-Objective Evolutionary Algorithm. Applied

Sciences, 8(9). doi:10.3390/app8091425

 Bibliography

87

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the

Strength Pareto Evolutionary Algorithm. TIK-report, 103.

