
POLITECNICO DI TORINO

Master degree course in Computer engineering

Master Degree Thesis

Self-Sovereign Identity(SSI) integration
in OpenSSL

Supervisor
prof. Antonio Lioy
Andrea Vesco, Ph.D

Candidate

Alessio Claudio

AA 2021-2022

To my family

Summary

Decentralized digital identity is a concept that is rapidly expanding due to new technologies such
as Distributed Ledger Technology(DLT) which allows the secure storage of unalterable data. The
purpose of this thesis is to implement the Self-Sovereign Identity(SSI) paradigm, a standard pro-
posed by the W3C group of decentralized digital identity, within the most popular and widely
used open-source OpenSSL cryptographic library. This thesis is proposed by the LINKS Founda-
tion Cybersecurity team that is working on a larger research project on SSI. The first part of the
work was done by studying and analyzing the two major current versions of OpenSSL, obtaining
working models that were implemented in software. The next phase was carried out by designing
and developing the actual integration of SSI into OpenSSL, side-by-side with a set of APIs and a
DID Method to enable communication with IOTA’s Tangle. The study concludes with a testing
phase of CRUD operations, also evaluating latency times about the type of public keys used.

4

Acknowledgements

Thanks to the LINKS Foundation Cybersecurity team for their support in times of need.

5

Contents

1 Introduction 9

1.1 Digital identity . 9

1.1.1 Centralized identity . 10

1.1.2 Federated identity . 10

1.1.3 Decentralized identity . 10

2 Background and related work 11

2.1 Self-Sovereign Identity . 11

2.1.1 Decentralized identifiers . 11

2.1.2 DID Document . 12

2.2 Trust over IP(ToIP) . 13

2.2.1 Governance and Technological layers . 14

2.3 Distributed Ledger Technology (DLT) . 15

2.4 IOTA . 15

2.5 WAM . 16

2.6 OpenSSL . 17

2.6.1 Version 1.1.1x . 17

2.6.2 Version 3.0.x architecture . 19

2.6.3 Providers and Crypto design . 20

3 Design and Implementation 25

3.1 Case study: tpm2-tss-engine . 25

3.2 Models . 25

3.2.1 Loading a key . 26

3.2.2 Random number generation . 26

3.2.3 Signature creation . 27

3.2.4 Signature verification . 29

3.3 Design of engine from models . 31

3.4 Upgrade the models to 3.0 design . 31

3.4.1 Loading and creation of a key . 31

3.4.2 Random number generation . 33

6

3.4.3 Signature creation and verification . 34

3.5 Design of provider from models . 38

3.6 DID operation . 38

3.6.1 Design . 38

3.6.2 API . 41

3.7 DID Method: OTT . 42

3.8 DID provider . 43

4 Validation and results 46

4.1 Testbed . 46

4.2 Create . 47

4.3 Resolve . 48

4.4 Update . 49

4.5 Revoke . 50

4.6 Key type . 50

5 Conclusion and future developments 52

A User Manuals 53

A.1 tpm2-tss-engine . 53

A.1.1 Requirements and installation . 53

A.1.2 Use . 53

A.2 linksengine . 53

A.2.1 Requirements . 54

A.2.2 Installation . 54

A.2.3 Use . 54

A.3 linksprovider . 55

A.3.1 Requirements . 56

A.3.2 Installation . 56

A.3.3 Use . 56

A.4 OpenSSL 3.0.4 operation DID . 57

A.4.1 Requirements . 57

A.4.2 Installation . 57

A.5 didprovider . 57

A.5.1 Requirements . 57

A.5.2 Installation . 58

A.6 Demo application . 58

A.6.1 Installation . 58

A.6.2 Use . 58

7

B Developer Manuals 60

B.1 linksengine . 60

B.2 linksprovider . 63

B.3 OpenSSL 3.0.4 operation DID . 69

B.4 didprovider . 69

Bibliography 70

8

Chapter 1

Introduction

1.1 Digital identity

The problem of reliable identity is a problem that humankind has had from ancient times and
today, with the advent of digitalization, is even more relevant. In the European priorities 2019-
2024 one of the priority areas defined by the European Commission in “A Europe fit for the
digital age” [1] is “European Digital Identity” [2]. First, we must define what is a digital identity.

The digital identity consists of a set of personal information (name, surname, social security
number, ...) and generated data during online activities (search history, electronic transactions,
social media interactions, ...).

Because of the enormous amount of possible data, it opens possible privacy and security risks
like:

❼ identity fraud.

❼ identity theft.

❼ manipulation.

Figure 1.1. Evolution of identity over time). (Source [3])

Before the Internet era, all identity documents were on paper so was natural to translate them
into PDF format. This solution doesn’t provide any real digital identity, so it was soon replaced
by another method, the centralized identity.

9

Introduction

1.1.1 Centralized identity

The first iteration of digital identity is the centralized identity, the “one account per service”
paradigm [3], where every service requires an account, and each platform maintains the user
data. This leads to fragmented digital identities where each user has more than one account that
represents his identity.

This form of identity is the simplest but has some major issues:

❼ security issue - each platform handles its way data protection and there is no guarantee
that everyone follows the best practice and correct legal regulations, leading often to data
loss or data breach;

❼ lack of control over data - the platforms are in charge of providing the identity, creating
a situation where the user has no power over his data because, to access a certain service,
must rely on that service providing his identity;

❼ complex user experience - the user has to remember various accounts with different
methods of authentication

1.1.2 Federated identity

Over time some platforms grew bigger and bigger, gaining more money and technical capability,
leading them to effectively control the market. They soon realized how important data and
digital identity are, so they tried to overcome some of the limitations of the centralized approach
by creating a federated identity.

The biggest service providers take care of users’ personal information and provide it to other
platforms, offloading them from the burden of managing it. This approach is called Single Sign
On (SSO) [4]: the identity provider manages the log in process and the user with one account can
access various platforms. This leads to a better user experience but creates some bigger issues:

❼ monopoly of few platforms - the identity providers gains a lot of power being the few
that manage the user’s identity, creating a monopoly situation;

❼ lack of control over data - same as the centralized approach

1.1.3 Decentralized identity

The future step of digital identity is a decentralized identity: the user gains full control over his
data and the problems of centralized and federated approaches are gone. The user maintains a
wallet used to store the private keys that replace the passwords and other verified identity details
which contribute to proving the identity. [5] This approach is still in the early days and is being
developed by the “Decentralized Identity Foundation” and the “Trust Over IP Foundation” and
is known as Self-Sovereign Identity.

10

Chapter 2

Background and related work

2.1 Self-Sovereign Identity

SSI is a new concept of decentralized identity where the users create their own digital identity
without being dependent on a central authority. Is based on the Decentralized identifier(DID)
and the Verifiable Credentials (VC)

2.1.1 Decentralized identifiers

The Decentralized Identifiers (DIDs) are a W3C Recommendation [6] that define a global, unique,
verifiable, and decentralized identifier. The DIDs are generated autonomously by the holder of
the digital identity and are used to resolve the DID documents. The DIDs are in form of string
called URI (Uniform Resource Identifiers) formed by three distinct parts

Figure 2.1. Example of Decentralized identifier (DID). (Source [6])

Scheme

The prefix did: is the formal syntax for a generic DID.

DID Method

DID Method is the concrete implementation of the system. Usually, a DID Method defines: the
Verifiable registry, the underlying technology in which the data is stored, for example, did:ethr
uses the Ethereum blockchain [7]; the CRUD operation and the format of DID Document.

DID Method-specific identifier

Is a unique identifier inside of that specific DID Method

11

Background and related work

2.1.2 DID Document

DID Document is a document that contains all the information about the digital identity of the
holder, associated with a DID. The usual representation is a JSON file[8] with variable fields
because the core proprieties[9] are almost all optional, leaving the developer the option to choose
which are useful for their platforms. For our project, we decided to use the following core propri-
eties.

Figure 2.2. Example of DID document.

@context

This field is the formal syntax for a generic DID Document and contains the link to the DID W3C
Recommendation.

id

This field associates the DID with the DID Document.

created

This field contains a timestamp of the creation of the DID document.

controller

This field indicates which entity is allowed to make changes in the document.

AuthenticationMethod

This field contains the public key of type type used during the process of authentication.

12

Background and related work

AssertionMethod

This field contains the public key of type type used during the process of verification of a verifiable
credential, owned by the DID subject.

2.2 Trust over IP(ToIP)

Trust over IP[10] project aims to create a scalable, trusted architecture in digital networks which
is usually difficult to establish, especially with a lack of regulatory framework. The trust is usually
a single relation between an entity A that trusts another entity B. This directional relationship
works only in small-scale scenarios but, in bigger communities or digital networks, it becomes
difficult to have only direct trust among all entities. A new concept of trust is created, the
transitive trust or also known as the trust triangle:

Figure 2.3. The trust triangle. (Source [10])

Entity A trusts entity B which trusts entity C, forming a transitive trust relationship between
A and C, with A trusting C because is trusted by B. This model is well applied in the digital
world with the problem of trust in digital identity, explained in Chapter1.1. For example, if A a
platform and B is an identity provider trusted by A, if a user C successfully authenticates with
the system C, receives the trust from B too. ToIP uses this concept of trust with the technological
stack provided by Decentralized Identifier and Verifiable Credentials while adding a Governance
stack.

13

Background and related work

Figure 2.4. The governance trust diamond. (Source [10])

2.2.1 Governance and Technological layers

Trust over IP defines 4 layers among the Governance and Technological stack. The Technological
stack aims to implement the architecture while the Governance stack aims to meet the regulatory
requirements

Figure 2.5. The four layers and two halves of the ToIP stack. (Source [10])

14

Background and related work

Layer 1: Public DID Utilities

Layer 1 is the foundation of the ToIP stack and is based on Distributed Ledger Technologies to
create the DID Methods and the needed Governance Framework.

Layer 2: DIDcomm

Layer 2 is about DIDcomm secure messaging standards [11], a secure way to exchange messages
between peers. Each Holder maintains a wallet containing his cryptographical material and secure
channels are established via DID exchange.

Layer 3: Trust triangle

Layer 3 is the exchange and verification of Verifiable Credential, establishing the triangle of trust
between Holder Issuer and Verifier.

Layer 4: Application ecosystem

Layer 3 is the Application ecosystem where the applications interact with humans to provide a
service in a trusted way.

2.3 Distributed Ledger Technology (DLT)

As seen in the previous chapter, Layer 1 of the ToIP stack is defined by the foundational technology
of the stack namely digital ledger technologies. As seen in the previous chapter, Layer 1 of the
ToIP stack is defined by the foundational technology of the stack namely Distributed Ledger
Technologies (DLT). DLTs are distributed digital ledgers i.e., the information they contain is
replicated at each node and, data entry is done through internal consensus processes. The data
entered are immutable and there is no central control coordinating operations or acting as an
intermediary, leaving total freedom of access and transactions to users[12]. These features of
DLTs are perfect for implementing a DID method.

The project developed by the LINKS Foundation works makes use of Internet of Things(IoT)
devices, so DLT’s choice to develop a DID Method naturally falls on IOTA.

2.4 IOTA

IOTA [13] is a feeless DLT designed to be lightweight enough to run on IoT devices as well. Since
there is no reward for putting a block in the DLT, as IOTA’s main purpose is not profit, miners
are not present instead each user enters and validates transactions.To remove the figure of the
miner, IOTA went beyond the block model of blockchain technology and designed the ”Tangle”,
a mathematical model based on a Directed Acyclic Graph (DAG), where each block validates
several blocks preceding it via ”probabilistic consensus protocol that enables parallel validation
of transactions without requiring total ordering”[14].

The advantage of the Tangle is that it overcomes the bottleneck problem of the blockchain.
In the blockchain system, a transaction is validated only if it is placed in a block, and increasing
the fees to the miner can increase its priority, creating delays or even making transactions with
lower fees unfavorable. In the Tangle, on the other hand, you do not have to reward a miner with
higher and higher fees and each user enters their transaction validating others in the process, in a
parallel way working better with high transaction loads, which instead slows down the blockchain.

15

Background and related work

Figure 2.6. The Tangle. (Source [15])

The Tangle however has a problem, it is not entirely decentralized. Currently, there is a node
under the control of the IOTA Foundation called ”Coordinator” that is responsible for regularly
publishing a zero-value transaction as a checkpoint called a ”milestone” and definitively validates
all functions that directly or indirectly are related to a ”milestone” [16]. This sort of semi-
centralization has triggered heavy criticism from the community that has not gone unheard. The
IOTA Foundation has announced version 2.0 of IOTA that will remove the Coordinator, making
the Tangle decentralized[17].

IOTA recently provided an L2 protocol to enable easy interaction of cryptographic messages
with the Tangle, called STREAMS [18]. STREAMS is developed in the RUST language and
is designed for desktop applications without taking into account the limited resources of IoT
devices. To solve this problem, the Cybersecurity team at the LINKS Foundation collaborated
on the development of an alternative L2 protocol, WAM.

2.5 WAM

WAM is an L2 cryptographic protocol for communicating with the IOTA Tangle, designed to send
a set of logically linked data from a certain index, encrypted and authenticated via Authenticated
Encryption with Associated Data (AEAD) [19], from IoT devices with limited computational and
memory capacity.

The WAM packet consists of the following fields:

APPDATA and APPDATA LEN

These fields contain, respectively, the data to be entered on the Tangle and their length. In case
the message is too large to send, the data is segmented over multiple packets and linked to each
other via the NEXT IDX field, inserting the index of the next IOTA Chrysalis message.

PUBKEY

It contains the public key to be used in signature verification, contained in the SIGN field.

NEXT IDX

Index of the next IOTA Chrysalis message that contains the next message in the chain. The
indexes are generated with the following algorithm: from a random source the current seed and

16

Background and related work

the seed of the next message in the chain are generated; with the seeds, the key pairs of the
current message and the next message, are generated from the Curve25519 curve; index and next
index are generated by making hashes of the public keys, using the hash function BLAKE2b[20].

SIGN

This field contains the signature of the packet digest with the private key corresponding to the
public key present between the fields. The digest is computed on the fields APPDATA LEN,APPDATA,
PUB KEY and NEXT IDX. The verification process is twofold: the reader of the message verifies the
integrity of the message by recalculating the hash on the parameters and verifying it thanks to
the SIGN field; it also calculates the hash of the PUB KEY field and verifies that it is equal to the
index of the IOTA message. The combination of these checks ensures the integrity of the WAM
packet and comes from the same source.

AUTHSIGN

This field contains a signature computed on the rest of the WAM packet and provides authen-
tication of the packet creator because the private key that generates this signature is protected
by a hardware secure element, while the signature of the SIGN field is generated by a private
key created with each message. The corresponding public key is contained in a public certificate,
verified by a trusted Certification Authority.

The tangle loads the data in the clear so, to ensure confidentiality, the entire packet is encrypted
with the XSalsa20 cipher using a pre-shared key and a nonce generated from a random source.

2.6 OpenSSL

OpenSSL is an open-source project developed by The OpenSSL Project which aims to create “a
robust, commercial-grade, full-featured toolkit for general-purpose cryptography and secure com-
munication” [21]. At the time of the writing, there are two Long Term Support (LTS) versions,
1.1.1x and 3.0.x with a significant difference in the architecture.

2.6.1 Version 1.1.1x

In the 1.1.1x version there are four major components:

17

Background and related work

Figure 2.7. The conceptual components in the OpenSSL 1.1.1 architecture. (Source [22])

Application component

This component contains a set of pre-built OpenSSL applications that interact with the users via
the command line. The applications implement all the features offered by OpenSSL like symmetric
and asymmetric crypto, certificate generation, hashing, etc. using the libssl and libcrypto libraries.

TLS component(libssl)

This component is the implementation of TLS and DTLS protocols using the crypto primitives
from libcrypto

Crypto component(libcrypto)

This component is the implementation of the crypto primitives of all supported algorithms which
are used by all other components. These two levels of API: the EVP high level interface that
splits the functionality from the algorithm implementation(ex EVP sign) and the low-level imple-
mentation dependent commands(ex RSA sign).

Engine component

The engine component allows us to extend the functionality of libcrypto. The engines are loadable
modules used to provide an alternative implementation of cryptographic algorithms, even if not
implemented. By default, OpenSSL contains some Engines but the user can add his own.

18

Background and related work

2.6.2 Version 3.0.x architecture

Version 3.0 is a major release [23] that changes the architecture of the library significantly. The
major changes are:

❼ Introduction of providers;

❼ New key concept in the libcrypto library;

❼ The deprecation of low-level APIs and Engines- low-level APIs were only formally
discouraged in the older versions but now are officially deprecated while Engines are replaced
by Providers. In this version are still working but in future versions, they will be removed.

❼ A new versioning scheme - the patch level now is indicated by the last number of the
version number, while before was a letter at the end of the release version number. For more
info see the OpenSSL Migration Guide [24];

❼ New cryptographic algorithms and deprecation of old ones - the use of deprecated
cryptographic algorithms is discouraged, but still present for compatibility in the legacy
provider.

With the new changes, the architecture receives an important rearrangement.

Figure 2.8. The conceptual components in the OpenSSL 3.0.X to-be architecture . (Source [22])

Application

the command line applications, same as version 1.1.1.

19

Background and related work

Common Services

these are the common blocks used in providers and applications that provide utilities like input
and output handling, common format, etc.

Protocols

Is the block that implements the protocols. E.g., TLS, DTLS, OCSP(Online Certificate Status
Protocol), TS(Timestamp Protocol)

Legacy APIs

The old low-level APIs are kept for backward compatibility.

Core

This component redirects requests for service to the most appropriate provider that supplies it,
following a set of requested properties.

Providers

Providers are the component that collects algorithm implementations. By default, OpenSSL has
5 built-in providers:

❼ Default provider contains all default algorithms and it is loaded if no other provider is
requested;

❼ FIPS provider implements the FIPS validated algorithms, algorithms that follow the
minimum security requirements defined by the publication 140-2 of the Federal Information
Processing Standard (FIPS);

❼ Engines Provider allows the use of old Engines with the new version;

❼ Legacy provider contains the older deprecated algorithms;

❼ 3rd Party Providers allow users to develop and load their providers.

2.6.3 Providers and Crypto design

The major redesign of the libcrypto library is changing the focus from algorithms to operations:
the algorithms are grouped based on their purpose creating macro categories called operations
[25]. Available operations so far:

❼ Digests (OSSL OP DIGEST) - a collection of digest algorithms;

❼ Symmetric ciphers (OSSL OP CIPHER) - a collection of cipher algorithms;

❼ Message Authentication Code (OSSL OP MAC) - a collection of MAC algorithms;

❼ Key Derivation Function (OSSL OP KDF) - a collection of KDF algorithms;

❼ Random Number Generation (OSSL OP RAND) - a collection of random number
generation algorithms and random number sources;

❼ Key Management (OSSL OP KEYMGMT) - a collection of functions for creating,
holding and managing cryptographic keys;

❼ Key Exchange (OSSL OP KEYEXCH) - a collection of key exchange algorithms;

20

Background and related work

❼ Signing and Verification (OSSL OP SIGNATURE) - a collection of signing and ver-
ification algorithms;

❼ Asymmetric Ciphers (OSSL OP ASYM CIPHER) - a collection of asymmetric ci-
pher algorithms;

❼ Asymmetric Key Encapsulation (OSSL OP KEM) - a collection of asymmetric key
encapsulation mechanism algorithms;

❼ Encoding and Decoding (OSSL OP ENCODER/OSSL OP DECODER) - collec-
tion of functions for encoding and decoding a generic function to a specific representation;

❼ Store Management (OSSL OP STORE) - collection of functions for loading a generic
object from a given URI;

Each operation offers a set of predetermined function templates, with fixed input and output
types, to standardize the things to do in that certain function.

There are two types: OSSL FUNC operationname name fn is the function type definition and
OSSL FUNC OPERATIONNAME NAME is a constant that uniquely identifies in the operation that func-
tion.

Figure 2.9. Example of OSSL FUNC. (Source [26])

The following image explains the interaction between the core, the provider, and the user
application. The usual use case of OpenSSL is a user application that wants to perform some
cryptographic operation using one of the supported algorithms.

21

Background and related work

Figure 2.10. The interaction between core and provider. (Source [27])

Load provider

The user calls the OSSL PROVIDER load(ctx, providerid) or is called the default provider im-
plicitly. The core searches in the file system the shared object .so with the corresponding name and,
after allocating the correct amount of memory if not the standard provider, calls the provider’s en-
try point to start his initialization. The provider’s initialization function is OSSL provider init

and has the task to initialize some provider variables with parameters passed by the structure
OSSL DISPATCH to handle the library context and set the dispatch table, a static function that
maps the basic functions of the provider with a unique constant, used by the library to correctly
identifies the function independently by the name given by the developer.

1 static const OSSL_DISPATCH deflt_dispatch_table[] = {

2 { OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))deflt_teardown },

3 { OSSL_FUNC_PROVIDER_GETTABLE_PARAMS, (void

(*)(void))deflt_gettable_params },

4 { OSSL_FUNC_PROVIDER_GET_PARAMS, (void (*)(void))deflt_get_params },

5 { OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))deflt_query },

6 { OSSL_FUNC_PROVIDER_GET_CAPABILITIES,

7 (void (*)(void))ossl_prov_get_capabilities },

8 { 0, NULL }

9 };

Figure 2.11. Example of dispatch table. (Source [28]).

22

Background and related work

1 int ossl_default_provider_init(const OSSL_CORE_HANDLE *handle,

2 const OSSL_DISPATCH *in,

3 const OSSL_DISPATCH **out,

4 void **provctx)

5 {

6 OSSL_FUNC_core_get_libctx_fn *c_get_libctx = NULL;

7 BIO_METHOD *corebiometh;

8
9 if (!ossl_prov_bio_from_dispatch(in)

10 || !ossl_prov_seeding_from_dispatch(in))

11 return 0;

12 for (; in->function_id != 0; in++) {

13 switch (in->function_id) {

14 case OSSL_FUNC_CORE_GETTABLE_PARAMS:

15 c_gettable_params = OSSL_FUNC_core_gettable_params(in);

16 break;

17 case OSSL_FUNC_CORE_GET_PARAMS:

18 c_get_params = OSSL_FUNC_core_get_params(in);

19 break;

20 case OSSL_FUNC_CORE_GET_LIBCTX:

21 c_get_libctx = OSSL_FUNC_core_get_libctx(in);

22 break;

23 default:

24 /* Just ignore anything we don’t understand */

25 break;

26 }

27 }

28 ...

29 *out = deflt_dispatch_table;

30 ossl_prov_cache_exported_algorithms(deflt_ciphers, exported_ciphers);

31
32 return 1;

33 }

Figure 2.12. Example of provider init function. (Source [28]).

Fetch algorithm

The user application request to use a certain algorithm for a determined operation with some
proprieties to the EVP interface. The EVP interface first searches it in the search cache, if
previously cached. If not present calls the provider function PROVIDER QUERY. This function
receives in input an integer that represents the operation’s id and returns, if present the vector
OSSL ALGORITHM, a collection of entries in the form of {Algorithm name, list of proprieties,
implementation function vector}

23

Background and related work

1 static const OSSL_ALGORITHM deflt_digests[] = {

2 /* Our primary name:NIST name[:our older names] */

3 { PROV_NAMES_SHA1, "provider=default", ossl_sha1_functions },

4 { PROV_NAMES_SHA2_224, "provider=default", ossl_sha224_functions },

5 { PROV_NAMES_SHA2_256, "provider=default", ossl_sha256_functions },

6 ...

7 }

8
9 static const OSSL_ALGORITHM *deflt_query(void *provctx, int operation_id,

10 int *no_cache)

11 {

12 *no_cache = 0;

13 switch (operation_id) {

14 case OSSL_OP_DIGEST:

15 return deflt_digests;

16 case OSSL_OP_CIPHER:

17 return exported_ciphers;

18 case OSSL_OP_MAC:

19 return deflt_macs;

20 ...

21 return NULL;

22 }

Figure 2.13. Example of provider query function and one OSSL ALGORITHM
structure. (Source [28]).

After receiving the OSSL ALGORITHM vector, the EVP interface first searches all rows with the
chosen algorithm’s name, then choose the row with the best matching proprieties. The user can
omit the proprieties, resulting in the default search, or define a set of mandatory and optional
properties. In that case, is chosen the row that matches all mandatory properties and has the
major number of matches from the optional ones. From this row is taken the implementation
function vector that consists of a set of tuples in the form of {constant unique integer, pointer
to function . The integers are publicly defined by OpenSSL, so the function pointers are correctly
identified and used to fill the search cache.

1 const OSSL_DISPATCH ossl_pem_to_der_decoder_functions[] = {

2 { OSSL_FUNC_DECODER_NEWCTX, (void (*)(void))pem2der_newctx },

3 { OSSL_FUNC_DECODER_FREECTX, (void (*)(void))pem2der_freectx },

4 { OSSL_FUNC_DECODER_DECODE, (void (*)(void))pem2der_decode },

5 { 0, NULL }

6 };

Figure 2.14. Example of decoder’s implementation function vector. (Source [29]).

Call algorithm

The user application calls the requested EVP function, like EVP DigestUpdate() and the function
pointer previously fetched, is executed.

24

Chapter 3

Design and Implementation

In this chapter will be presented the work done for this thesis, from the initial study and design
phase to the actual final implementation, and explained some choices made.

3.1 Case study: tpm2-tss-engine

After an initial phase of studying the work and the state of the art, it came naturally to wonder
which version of OpenSSL to start with. Currently, there are two LTS versions, the 1.1.1x and
the new 3.0.x version. As an initial choice, it was decided to start with version 1.1.1x because,
being the longest-lived version, it has code stability, fewer bugs, and is not subject to change.

The initial goal is to analyze how this version would work, and how Self-Sovereign Identity
could be integrated. To do this, the first step was to analyze and study an engine because it
perfectly shows the interaction between OpenSSL, the engine, and a cryptographic implementa-
tion. It was decided to study the engine that allows the use of TPM2.0[30] with the OpenSSL
applications, the tpm2-tss-engine[31]. This engine uses the TPM Software Stack (TSS)[32], the
middle-level APIs Enhanced System API (ESAPI)[33], to communicate with the TPM. This en-
gine supports:

❼ Random number generation hardware;

❼ RSA and ECDSA sign and verification;

❼ TLS secure channel with TPM protected key.

The engine does not support the creation of keys, but it is provided with an external program,
tpm2tss-genkey [34], that generates RSA and ECDSA volatile TPM protected keys. To generate
persistent keys, the tpm2-tools must be used instead of the program[35].

3.2 Models

In studying the operation of the tpm2-tss-engine, it was evident that its operations, net of specific
differences required by the underlying cryptographic implementation, follow a pattern. For each
operation, the workflow was studied, and the generic model explaining the pattern was extracted.
Each model shows the interaction between the OpenSSL library, the engine, and the back-end
implementation and they will be the basis for a better understanding of the library and for defining
the integration requirements of Self-Sovereign Identity.

In the following sections, each model is analyzed in detail.

25

Design and Implementation

3.2.1 Loading a key

The first model made deals with the loading of a TPM key. The key generation model is not
present because in the engine studied, key creation is not present but is done by an external
program, and since the models study the interaction between OpenSSL, the engines, and the
actual cryptographic implementation, it was chosen not to include it.

Figure 3.1. OpenSSL1.1.1 model for loading a key

OpenSSL calls the engine’s function passing the key id as arguments. The engine uses the id
to retrieve the key encoded in the implementation form. After allocating a EVP PKEY, an OpenSSL
object that holds various types of asymmetric keys, depending on the key type of the appropriate
object is allocated and the key is properly translated by filling this object. After filling the
EVP PKEY with the newly generated object, is returned to OpenSSL.

3.2.2 Random number generation

The model of random number generation is very simple. OpenSSL calls the engine’s function
passing a buffer to fill with a certain number of random bytes. If requested by the implementation,
the engine calls the function that seeds the random number generation and then calls the actual
implementation’s random function that fills the buffer. At the end of the function, the buffer is
returned to OpenSSL.

26

Design and Implementation

Figure 3.2. OpenSSL1.1.1 model for generating a random number

3.2.3 Signature creation

The signature creation in OpenSSL 1.1.1 is dependent on the algorithm and there are two levels,
the high-level EVP calls the low-level algorithm-dependent implementation. In the following
models, the low-level implementation is analyzed because is the most meaningful.

27

Design and Implementation

Figure 3.3. OpenSSL1.1.1 model for generating a RSA signature

OpenSSL calls the engine’s function passing as arguments the data to be signed, the buffer
to fill with the computed signature, the RSA key object holding the private RSA key, and an
integer that indicates which padding. The engine sets up the context, an object that holds the
data needed by the implementation and fills it. Then calls the implementation function to pad the
data, if needed, and finally calls the implementation function that returns the actual signature.
After copying the signature in the buffer, returns it to OpenSSL.

The ECDSA signature generation is similar but the OpenSSL functions for ECDSA are dif-
ferent with different input parameters and return values.

28

Design and Implementation

Figure 3.4. OpenSSL1.1.1 model for generating an ECDSA signature

OpenSSL calls the engine’s function passing as arguments the data to be signed, the length
of the passing data, and the ECDSA key object holding the private key. The engine set up the
context, an object that holds the data needed by the implementation and fills it. The EC object
key is translated into the implementation key, by setting up the curve and points. Then calls the
implementation function that returns the actual signature and, after copying the signature in the
buffer, returns it to OpenSSL the size of the computed signature.

3.2.4 Signature verification

The signature verification in OpenSSL 1.1.1, similarly to the signature creation, is dependent on
the algorithm and there are two levels, the high-level EVP calls the low-level algorithm-dependent
implementation. In the following models, is analyzed the low-level implementation because is the
most meaningful.

29

Design and Implementation

Figure 3.5. OpenSSL1.1.1 model for verifying a RSA signature

OpenSSL calls the engine’s function passing as arguments: the indicator of which digest
algorithm was used on data, the digest itself, the digest length, the signature data to verify, the
length of the signature, and the RSA key object holding the public key. The RSA object key
is translated into the implementation key form, by setting up the important parameters. Then
the engine calls the implementation function that returns the decrypted digest from the signature
data. The engine returns to OpenSSL the comparison value between the decrypted data and the
passed digest data. If the return value is zero then the signature is correct and the verification is
successful.

The ECDSA signature generation is similar but the OpenSSL functions for ECDSA are dif-
ferent with different input parameters.

Figure 3.6. OpenSSL1.1.1 model for verifying an ECDSA signature

OpenSSL calls the engine’s function passing as arguments: the digest to verify, the digest
length, the signature data to verify, and the EC key object holding the public key. From the
implementation is retrieved the information about the curve used and then the EC object key

30

Design and Implementation

is translated into the implementation key form, by setting up the important parameters. After
that the engine calls the implementation function that verifies the passed signature and, if the
signature verification is successful, the engine returns 1 to OpenSSL, and 0 otherwise.

3.3 Design of engine from models

After developing the models, the next step was to practice with the engines. Functions from the
Mbed-TLS[36] library were chosen as cryptographic primitives because they are easy to use, and
written in the C language as OpenSSL. To test the truthfulness of the models, it was decided
to implement them. and a mock-up engine was produced with: RSA and ECDSA key loading
capability, signing and verification with the same algorithms, and random number generation;
More detailed information can be found in the developer manual.

3.4 Upgrade the models to 3.0 design

For the sake of completeness, the new version of OpenSSL was considered and studied as described
in the chapters 2.5.2. It has emerged how this version was created with the idea in mind of crypto-
agility and code cleanliness by trying to standardize the functions of all the algorithms dealing
with the same operation. Individual functions have been divided into smaller functions with
specific tasks, and context creation, previously analyzed and recognized as an operation often
performed, is now officially standardized and present in most operations by dedicated function.

3.4.1 Loading and creation of a key

The first noticeable thing, compared to the model of the previous version, is its strong modularity
because it goes from one macro function to multiple small and specialized functions. In addition,
the creation of the key as well as its loading has also been analyzed.

31

Design and Implementation

Figure 3.7. OpenSSL 3.0 model for loading a key 1/2

OSSL FUNC keymgmt new and OSSL FUNC keymgmt free

These functions are concerned with creating and destroying a context, the key object and even-
tually filling it.

OSSL FUNC keymgmt gen init

This function takes care of creating a context used during the key generation. Through the params
vector, some optional generation information can also be specified to be added to the context.

32

Design and Implementation

Figure 3.8. OpenSSL 3.0 model for loading a key 2/2

OSSL FUNC keymgmt gen

This function takes care of generating the key by calling the implementation function based on
the key type, filling the previously generated context

OSSL FUNC keymgmt import

This function deals with importing a key. Using the selection flag, it is possible to select which
part of the key to load. The provider calls the appropriate implementation function and returns
the result to OpenSSL

3.4.2 Random number generation

This model is very similar to its previous model but a context creation and distraction has
been added that can be used during random generation. The major difference is found in the
generation function which is designed to support more complex and secure generation. One may
define minimum safe bits, additional entropy sources, and a prediction resistance flag to force
reseeding from a live entropy source.

33

Design and Implementation

Figure 3.9. OpenSSL model for generating a random numer

3.4.3 Signature creation and verification

This model has undergone a substantial change from its previous model. Since OpenSSL 3.0
has grouped the algorithms that deal with the same functions into groups called operations, now
creation and verification of a signature have the same model, regardless of the algorithm chosen.

34

Design and Implementation

Figure 3.10. OpenSSL model for generating a signature 1/2

OSSL FUNC signature newctx and OSSL FUNC signature freectx

These functions are concerned with creating and destroying a provider-side context used by the
provider during the signature creation phase.

OSSL FUNC signature sign init

This function is used for the preparation of a context used during the signing. Through the
object passed as parameter provkey, the provider sets the key that will be used during the
signing. Optionally, through the vector params it is possible to set parameters that are needed
during the signing phase.

35

Design and Implementation

Figure 3.11. OpenSSL model for generating a signature 2/2

OSSL FUNC signature sign

This function deals with the creation of the signature. As parameters, it receives the previously
created context and sets it; the data to be signed and its length in bytes; the buffer to be filled
with the signature; a parameter siglen which can be an integer indicating the maximum size
of the signature or NULL. If sig is NULL than the provider uses the implementation function to
estimate the maximum signature size, writes it in *siglen and returns to OpenSSL. If sig is not
NULL, the provider uses the implementation function to generate the signature, using the correct
function based on the key type with its required parameters. It fills the buffer sig and returns
to OpenSSL 1 or 0 to indicate success or failure, respectively.

36

Design and Implementation

Figure 3.12. OpenSSL3.0 model for verifying a signature 1/2

OSSL FUNC signature newctx and OSSL FUNC signature freectx

These functions are concerned with creating and destroying a provider-side context used by the
provider during the signature creation phase.

OSSL FUNC signature verify init

This function is used for the preparation of a context used during the verification. Through
the object passed as parameter provkey, the provider sets the key that will be used during the
verification. Optionally, through the vector params it is possible to set parameters that are needed
during the verification phase.

Figure 3.13. OpenSSL3.0 model for verifying a signature 2/2

37

Design and Implementation

OSSL FUNC signature verify

This function takes care of signature verification. As parameters, it receives the previously created
context and sets it; the signed data and its length in bytes; the signature to be verified, and its
length in bytes. The provider uses the implementation function to generate the signature, using the
correct function according to the type of key and the required parameters. The implementation
performs the verification and returns the result to the provider. Based on the response, the
provider returns to OpenSSL 1 or 0 to indicate success or failure, respectively.

3.5 Design of provider from models

The updated models show how this version aims to have more uniform code, greater simplicity
of development, and more detailed parameter handling. Exactly as I did with the templates,
I updated the engine by writing the corresponding provider. At the level of functionality, it
remained similar but in addition, it has an internal ECDSA and RSA key generation, all again
taking advantage of the cryptographic primitives offered by Mbed-TLS[36] library. Another new
feature compared to the engine, is the presence of an encoder, a unit of code that is responsible
for changing the encoding of an object, for example, a key from its internal representation to
PEM encoding. More detailed information can be found in the developer manual.

3.6 DID operation

After analyzing both versions of OpenSSL it was decided that the best version to develop our work
was 3.0. Being the latest version there was guaranteed to be more time support, more innovation
to the thesis, and in general, the best at the code level highlighted in the previous paragraphs.
The first step in integrating Self-Sovereign Identity into OpenSSL 3.0 is to design and develop an
operation involving DIDs and a set of supporting APIs.

3.6.1 Design

To define a new operation you must first define a constant indicating the new operation. In openss-
l/include/openssl/core dispatch.h the operation OSSL OP DID was added and assigned a unique
number. The next step is to define the functions that make up the operation. Through the
#defines we define the integers that identify the functions. With the OSSL CORE MAKE FUNC

macro, you define the function template in the form return type, function name, input
parameters

38

Design and Implementation

1 #define OSSL_OP_DID 23

2 ...

3 #define OSSL_FUNC_DID_CREATE 1

4 #define OSSL_FUNC_DID_RESOLVE 2

5 #define OSSL_FUNC_DID_UPDATE 3

6 #define OSSL_FUNC_DID_REVOKE 4

7 OSSL_CORE_MAKE_FUNC(void *, did_create, (void *sig1, size_t siglen1,int

type1,void *sig2, size_t siglen2,int type2))

8 OSSL_CORE_MAKE_FUNC(int, did_resolve, (char * index, DID_DOCUMENT* did_doc))

9 OSSL_CORE_MAKE_FUNC(int, did_update, (char * index, void *sig1, size_t

siglen1,int type1,void *sig2, size_t siglen2,int type2))

10 OSSL_CORE_MAKE_FUNC(int, did_revoke, (char * index))

Figure 3.14. Functions defining the operation DID.

These functions will be implemented by providers and, regardless of the underlying DID
Method, should follow the following guidelines:

did create

This function has to create a DID document and write it into the DID Method, starting with two
public keys, authentication, and assertion, of type type and length siglen. the return value is a
void* to pass a generic structure, depending on the developer’s needs.

did resolve

This function searches for a DID document from the DIDMethod, starting with the DID and possi-
bly filling in the empty structure DID DOCUMENT. The return value is an integer indicating the result
of the resolve: DID OK the document was found and received correctly; DID NOT FOUD the docu-
ment was not found; DID REVOKED the document was found but was revoked; DID INTERNAL ERROR

represents a generic error received during the process of the resolve.

did update

This function updates a DID document starting with the DID to be updated and the new keys
to be embedded in the document in the same form as did create. The return value is an inte-
ger indicating the result of the update: DID OK the document was found and modified correctly;
DID NOT FOUD the document was not found; DID REVOKED the document was found but was re-
voked; DID INTERNAL ERROR represents a generic error received during the process of the update.

did revoke

This function revokes a DID document starting with the DID. The return value is an inte-
ger indicating the result of the revoke: DID OK the document was found and revoked success-
fully;DID NOT FOUD the document was not found; DID REVOKED the document has already been
revoked; DID INTERNAL ERROR represents a generic error received during the revoke process.

Data structures

OpenSSL has two types of structures: internal, which can be used only by OpenSSL, and external,
which can also be used by applications by including the correct .h file. This division was created

39

Design and Implementation

to make the data structures opaque so that, in case of changes due to future updates, applications
do not have to be modified. Following this philosophy, there have also been two levels of structures
for the DID operation, recognizable by the uppercase name for the external ones and lowercase
for the internal ones.

The first structure is DID CTX, a context to be used in conjunction with the API, and the
second structure is DID DOCUMENT, which represents a DID document within the application.
In openssl/include/openssl/types.h correspondence between external and internal structures are
defined.

1
2 typedef struct did_ctx_st DID_CTX;

3 typedef struct did_document_st DID_DOCUMENT;

Figure 3.15. Declaration of external data structures.

Internal structures are defined in openssl/include/crypto/did.h.

1
2 struct did_ctx_st {

3 OSSL_LIB_CTX *libctx;

4 char *methodtype;

5 /* Method associated with this operation */

6 OSSL_FUNC_did_create_fn *didprovider_create;

7 OSSL_FUNC_did_resolve_fn *didprovider_resolve;

8 OSSL_FUNC_did_update_fn *didprovider_update;

9 OSSL_FUNC_did_revoke_fn *didprovider_revoke;

10 OSSL_PROVIDER *prov;

11 };

12
13 struct did_document_st {

14 //authorization methods

15 unsigned char * sig1;

16 size_t siglen1;

17 int type1;

18 //assertion methods

19 unsigned char * sig2;

20 size_t siglen2;

21 int type2;

22 };

Figure 3.16. Definition of internal data structures.

did ctx st/DID CTX

This is a context used in conjunction with the API. The fields *didprovider create, *didprovider-
resolve, *didprovider update, and *didprovider revoke are function pointers that contain
the implementations of the provider *prov, obtained after the fetch phase. The fields *libctx and
methodtype are currently present only for possible future compatibility, in case of applications
that will use different library contextsOSSL LIB CTX or different DID method implementations in
the same provider.

40

Design and Implementation

did document st/DID DOCUMENT

This is a context that represents internally to OpenSSL a DID document. The sig field is the
pointer to a buffer containing a public key of type type, length siglen in PEM format. The
authorization method is defined by variable set 1, while 2 represents the assertion method.

3.6.2 API

The set of supporting APIs, defined in openssl/include/openssl/did.h and implemented in openss-
l/crypto/did/did meth.c, are explained below.

DID CTX new and DID CTX free

These functions create and release the object DID CTX.

DID DOCUMENT new and DID DOCUMENT free

These functions create and release the object DID DOCUMENT.

DID DOCUMENT set

This function fills an object DID DOCUMENT with the signatures, their type, and their length.

DID DOCUMENT set auth key and DID DOCUMENT set assertion key

These functions set the authorization key and assertion key, respectively.

DID DOCUMENT get auth key and DID DOCUMENT get assertion key

These functions get the authorization key and assertion key, respectively.

DID fetch

This function takes care of searching CRUD functions against a certain DID Method chosen by the
parameter *algorithm. It calls OpenSSL’s internal ossl provider query operation function,
which, by calling the provider query function of the provider previously loaded into the context,
returns if present the OSSL DISPATCH vector. If present, it searches all rows for the implementation
corresponding to the chosen DID Method and, thanks to the unique function identifiers, fills in
the empty function pointers present in the context.

DID create

This function executes the provider create function. On input it receives the DID CTX object
and the DID DOCUMENT object pre-filled. After doing an input check it calls the context function
pointer containing the function found during DID fetch and returns the pointer to the newly
created DID document, or NULL in case of failure.

DID resolve

This function executes the provider’s resolve function. As input, it receives the DID CTX object,
a string containing the DID to be searched for, and the empty DID DOCUMENT object that will be
filled if found. After checking the inputs it returns the context function pointer containing the
function found during DID fetch.

41

Design and Implementation

DID update

This function executes the provider’s update function. As input, it receives the DID CTX object,
a string containing the DID to be updated, and the DID DOCUMENT object containing the updated
document. After doing an input check it returns the context function pointer containing the
function found during DID fetch.

DID revoke

This function executes the provider’s revoke function. As input it receives the object DID CTX,
a string containing the DID to be revoked. After doing an input check it returns the context
function pointer containing the function found during DID fetch.

To make these functions exportable, in addition to defining them in the public .h file, all of
them were also added to the openssl/util/libcrypto.num file in this form since all of libcrypto’s
public functions are in this file.

1 DID_fetch 5558 3_0_4 EXIST::FUNCTION:

2 DID_CTX_new 5559 3_0_4 EXIST::FUNCTION:

3 DID_create 5560 3_0_4 EXIST::FUNCTION:

4 ...

Figure 3.17. Definition of exportable libcrypto function.

3.7 DID Method: OTT

The DID method chosen to use the integration of Self Sovereign Identity in OpenSSL is the DID
method, designed by the LINKS Foundation, did:ott which uses as the underlying technology
the Distributed Ledger Technology (DLT) provided by Iota, designed as a scalable, lightweight
solution perfect for an Internet-of-Things (IoT) ecosystem, and WAM as the communication
protocol, again developed by LINKS Foundation from an IoT perspective. As a starting point, a
library was provided containing what is needed to write and read from the DLT, through a read
function (WAM read) and a write function (WAM write) and an object, WAM channel, containing
the data needed for communication. Read and write functions work on the WAM packet and
allow it to read and write the APPDATA field, then take care of the rest of the protocol previously
described in section 2.5. Specifically, the APPDATA field is filled with a text string containing the
DID Document. Since it is a JSON document and there is no native support in the C language,
the open-source cJSON [37] library that takes care of parsing has been added as support. As for
the key types the DID method currently supports Ed25519, RSA, and ECDSA Secp256k1 curves
keys.

save channel and load channel

This function is responsible for saving and loading the WAM channel structure, representing the
communication channel with the DLT of a certain DID, created at its creation and used in revoke
update operations.

did ott create

This function implements the create function of the DID method OTT. The function as input
parameters receives an empty did new pointer that will be filled with the string containing the

42

Design and Implementation

future DID and a method structure that acts as a container for the data needed to create the
DID method, to be filled in by the caller. It first initializes a new WAM channel by loading the
pre-shared key, the IOTA endpoint (dev net in our case), and a context for authentication. From
the newly created channel we extract the source index i.e., the DID Method-Specific Identifier, as
explained in Figure 2.1. Then the string containing the DID document in JSON form is created
from the fields in the method structure using the functions offered by cJSON. Finally the function
WAM write is called which creates the WAM packet and sends it to the tangle. If the message
is successfully sent, the channel is saved by calling the function save channel and the string
containing the new DID is created by having it pointed to by did new and the function returns
the constant DID CREATE OK.

did ott resolve

This function implements the resolve function of the DID method OTT. The function as input
parameters receives an empty structure did document representing the DID document to be filled
in case of success for the resolve and a string pointer *did containing the DID to be found. It
first initializes a new WAM channel by loading the pre-shared key, the IOTA endpoint (dev net in
our case). From the DID string, we get the index which is loaded into the channel for reading.
Then the function WAM read is called in a while loop, with the loop condition of receiving a valid
message. For each iteration, it checks that the next index, which is the future DID Method-
Specific Identifier is not equal to all zeros. In that case, it means that the document was found
but was revoked so it returns the constant DID RESOLVE REVOKED. If it exits the loop it checks that
there was at least one document found otherwise it returns the constant DID RESOLVE NOT FOUND.
If a document was found the text string is parsed and the did document object is re-created,
filling the input parameter and returning the constant DID RESOLVE OK.

did ott update

This function implements the update function of the DID OTT method. The function receives
as input parameters a pointer did containing the DID to be updated and the structure method

containing the data of the document to be updated. As a first step, the function load channel

is called, which takes care of loading the channel allocated upon creation of the DID document.
Then, starting from the method structure, the DID document is created, in the same manner
as the create function. The newly updated document is then passed to the WAM write function,
which sends it to the tangle. If it is successfully sent, the new DID is obtained from the channel
index and the input parameter did is modified, returning the constant DID UPDATE OK

did ott revoke

This function implements the revoke function of the DID OTT method. The function receives
as input parameters a pointer did that contains the DID to be revoked. As a first step, the
function load channel is called, which takes care of loading the channel allocated upon creation
of the DID document. The function WAM write is called by setting the revoke flag to true which
produces a message with next index with all zeros, making a revoked DID document immediately
recognizable. In case of success, it returns the constant DID REVOKE OK.

3.8 DID provider

To use the method DID along with OpenSSL’s new DID operation, a provider is needed to link
the API with the OTT functions. Following the knowledge gained from the models and the test
provider, the didprovider was developed to provide OpenSSL with the CRUD functions of the
DID method OTT.

43

Design and Implementation

1 static const OSSL_ALGORITHM didprovider_did[] = {

2 {"ETH","provider=didprovider", didprovider_fake_functions},

3 {"OTT","provider=didprovider", didprovider_crud_functions},

4 { NULL, NULL, NULL }

5 };

6 ..

7 static const OSSL_ALGORITHM* didprovider_query_operation(void* provCtx, int

id,int* no_cache)

8 {

9 *no_cache = 0;

10 printf("DID QUERY\n");

11 switch (id) {

12 case OSSL_OP_DID:

13 return didprovider_did;

14 break;

15 }

16 return NULL;

17 }

Figure 3.18. Provider query of didprovider.

The function of provider query provides the vector of algorithms OSSL ALGORITHM in case the
DID operation is requested. This vector contains two algorithms, one that mimics the presence
of a DID Method ETH formed only by empty functions for testing purposes, and the OTT that
implements the DID Method OTT functions. The function vector OSSL DISPATCH contains tuples
of functions and unique identifiers. Below is a brief explanation of the functions.

1 const OSSL_DISPATCH didprovider_crud_functions[] = {

2 {OSSL_FUNC_DID_CREATE, (void(*)(void))didprovider_create},

3 {OSSL_FUNC_DID_RESOLVE, (void(*)(void))didprovider_resolve},

4 {OSSL_FUNC_DID_UPDATE, (void(*)(void))didprovider_update},

5 {OSSL_FUNC_DID_REVOKE, (void(*)(void))didprovider_revoke},

6 { 0, NULL }

7 };

Figure 3.19. Provider query of didprovider.

didprovider create

This function receives as input the two public keys of the DID document, their length and type, and
fills the method structure. It allocates an empty string of DID length and calls the did ott create

method function by passing it the structure and string. If successful, this function returns the
string of the new DID or NULL in case of error.

didprovider resolve

This function receives as input the DID to be found and the empty OpenSSL structure DID DOCU-

MENT. The function allocates an empty structure did document and passes it to the DID Method
function did ott resolve. If the resolve returns DID RESOLVE ERROR, DID RESOLVE REVOKED or

44

Design and Implementation

DID RESOLVE NOT FOUND this function returns DID INTERNAL ERROR, DID REVOKED or DID NOT FO-

UND, respectively. If the resolve returns successfully, the supporting API function DID DOCUMENT set

is called to fill in the DID DOCUMENT structure, using the data contained in the did document struc-
ture. Finally, the provider function returns success via the constant DID OK.

didprovider update

This function receives as input the DID to be updated and the two public keys of the updated
DID document, their length, and type. It fills the method structure and calls the did ott update

method function by passing it the structure and the DID. If successful, the function returns the
constant DID OK or DID INTERNAL ERROR if unsuccessful.

didprovider revoke

This function receives as input the DID to be revoked. It calls the method function did oct revoke

passing it the structure and the DID. If successful, the function returns the constant DID OK or
DID INTERNAL ERROR if unsuccessful.

45

Chapter 4

Validation and results

This chapter describes how the work was validated and the results obtained. A case of a user
developing his application to take advantage of the features offered by OpenSSL in the DID domain
was simulated as an application scenario. The user is interested in: creating a DID document,
checking that the creation was successful, making a change to that document, checking that the
change was successful, performing a revocation of his DID document, and finally checking that the
revocation was successful. A demo application has been developed that performs the previously
described operations, specifically:

❼ Key creation phase - For completeness, this phase is added, although it is not directly
present in the demo application, which expects public key files in PEM format, as it is not
important in the OpenSSL perspective because the library is designed to be modular so
it must have no internal dependencies and work out-of-the-box with any key in the right
format. To create keys, one can take advantage of the applications offered by OpenSSL.
Specifically, if you want to create software public keys you can use the command openssl

pkeyutl [38] and generate the key pair and then use the algorithm-specific command, for
example, openssl rsa [39] with the -pubout parameter in the case of RSA keys. If, on the
other hand, you are interested in non-volatile key pairs protected by TPM2.0, you can take
advantage of the combination of the tpm2provider provider and the tpm2-tools, creating
a persistent key bound to a handle and then using the algorithm-specific command, for
example, openssl rsa [39] with the -pubout parameter specifying -provider tpm2 and -
handle [handle id]. An example is present among the tests provided on the tpm2-provider
repository [40].

❼ Loading phase - Through the command OSSL PROVIDER load the providers default and
didprovider are loaded, which are responsible for loading keys and performing DID opera-
tions, respectively. The empty DID document is then instantiated via the DID DOCUMENT new

command and the didprovider functions are loaded via the DID fetch command. Finally,
the keys are loaded into the application using the functions offered by OpenSSL and the
DID DOCUMENT structure is then filled using the DID DOCUMENT set command.

❼ Execution phase - The DID document is added to the DLT by the command DID create

followed by a subsequent DID resolve. As a further check, the two public keys contained
in the received document are extracted by the commands DID DOCUMENT get auth key and
DID DOCUMENT get assertion key. An updated DID document is then created with dif-
ferent keys and loaded with the command DID update followed by a resolve to check and
extract the keys, the same way as the create function. Finally, the updated document is
revoked thanks to the DID revoke and checked via the resolve.

4.1 Testbed

The demo application was tested on two different systems. The first is a Raspberry Pi 4 model B
[41] with Raspberry Pi OS installed via the provided software Raspberry Pi Imager and a virtual

46

Validation and results

machine on which is installed Ubuntu 20. After several tests, it quickly became apparent how
the two platforms have very similar latency on CRUD operations because the wait time is not
given by the processing power of the CPU but by the time to wait for processing by the Iota
node. The first test was to measure operations regardless of what type of public keys are used.
Each operation is measured individually, with a particular interest in the resolve operation. In
one iteration of the demo application is measured one create function, one update function, one
revoke function, and three resolve functions, for a total of 24 iterations.

Operation Mean Median
Create 14.6 10.1
Resolve 0.6 0.6
Update 14 8.4
Revoke 2.6 2

Table 4.1. Mean and median latency of the CRUD operations, in seconds.

With the collected data, the mean, i.e., the sum of the data divided by its number, and the
median, i.e., the middle value or the mean of the middle two in the case of even element of
numbers, were calculated.

It is evident from the results that the slowest operations are Create and Update. Resolve is
the fastest and Revoke is quite fast. The results are consistent but it is interesting to go and look
at the time distributions in detail to try to better understand the individual functions.

4.2 Create

The Create function has very scattered times, with noticeable peaks as long as 30 or 40 seconds.
This may be caused by the write function on the DLT in that after sending a message, it remains
in a queue until it is validated by other messages, adding a random component to the timings.
From the distributions, however, we can see that in 24 iterations 50% of the timings are within 10
seconds, in line with the median, but specifically, we can record in the range of 5 to 10 seconds.
This time is perfectly acceptable because the Create function is called only once when the DID
document is created.

47

Validation and results

Figure 4.1. Scatter plot of the latency times of the create function

4.3 Resolve

Resolve is the most important function because it is used more times in DID communication
than any other function, often in contexts where low latencies are important. From the mean
and median we can see that it is the fastest function and it is easy to imagine why: resolve only
makes a read request from the DLT and does not send data, reducing both network latency and
waiting time because there is no need for message validation and IOTA’s internal algorithms are
well optimized. From the latency graph, there is an increasing trend in the number of iterations.
In the first twenty iterations, it stays around 0.4s while from 20 to 60 iterations it rises around
0.6s and from 60 onwards it tends to rise around 0.8s. A possible explanation can be found in
IOTA’s Congestion Control Algorithm[42], which adjusts the traffic according to the load and the
number of requests because, having generated 72 requests to resolve to the node from the same
IP address in a short time, it could be that the node lowers the priority to requests sent by the
demo application. In any case, hardly more than 20 resolutions are executed in a short time, so
bring the average request to 0.4 seconds, an acceptable time for the resolve function.

48

Validation and results

Figure 4.2. Scatter plot of the latency times of the resolve function

4.4 Update

The update function has a similar situation to the create function, with long and variable times
due to a write in the DLT. The latencies are also similar ranging between 5 and 10 seconds in
50% of cases, with sporadic very long spikes. However, the time is acceptable because updating
a DID document is a process that is done very few times and never in situations where latency
matters.

Figure 4.3. Scatter plot of the latency times of the update function

49

Validation and results

4.5 Revoke

The revoke function is a special case: in the same way, as create and update it does a write on
the DLT via the write function, but at the same time most iterations take less than two seconds.
This is due to a very small message sent to the DLT. This is a time well above what is needed for
a one-time revocation.

Figure 4.4. Scatter plot of the latency times of the revoke function

4.6 Key type

The revoke latency shows how the duration of functions may also be related to the size of the
DID document. It comes naturally to consider how the latency of CRUD functions changes as
the size of the DID document changes, and as it stands, the only variable parts are the public
keys. I first evaluate how the size in bytes of the DID document changes if it is created only
with the same type of key among the supported ones, i.e. Ed25519, RSA, ECDSA Secp256k1 and
compare it with the average byte size of the first test, since the keys were changed between the
create function and the update function .

Mixed type Ed25519 RSA 1024 RSA 2048 RSA 4096 ECDSA
1189 946 1262 1626 2334 1092

Table 4.2. Size in bytes of the message sent to the DLT by key type.

It is evident from the data that keys of type Ed25519 and type RSA 4096bit are the keys that
produce the most different documents concerning the size. Therefore, the latencies generated by
documents containing only Ed25519 and RSA 4096bit keys were analyzed. From the size, it is
immediately clear that the performance of ECDSA keys will be in line with that of Ed25519 keys
and RSA 1024bit and 2048bit keys in line with the results of the first test.

Twenty-five iterations of the demo application were run according to key type, then peaks
were removed from the data, and the mean and median were calculated.

50

Validation and results

Figure 4.5. Comparison of the latency times based on the key type

The starting hypothesis was that as document size increased, average latency increased. This,
however, occurred only partially. The data show that the test with mixed keys, document size
1189 bytes, is on average slightly faster than in the case with RSA 4096bit keys, with document
size 2334 bytes, except for the case of revoke which is slower. In contrast, the test with Ed25519
keys that produces the smallest document, of 946 bytes, has no less latency and is slightly slower
than in the case of mixed keys. This difference can be attributed to the fact that nodes can be
loaded and take longer, regardless of the message size, also the difference in DID document size
in the 3 cases is small.

From these analyses, it can be seen that there is not much difference in using different key
types, increasing the document size may have small increases in latencies but does not change the
order of magnitude of the times. Net of random spikes, the create and update functions on average
have between 5s and 15s latency, the revoke function under 3s, and the resolve function remains
stable between 0.4s and 0.s. All of these times are acceptable for the needs of DID documents
and do not highlight preferred key types, leaving the choice of type up to the user based on his
or her needs.

51

Chapter 5

Conclusion and future
developments

This thesis project is part of a larger research project on Self-Sovereign Identity carried out by the
LINKS Foundation that aims at the development and integration of SSI into modern commonly
used technologies. The work was based on the desire to integrate SSI within the most popular
and widely used open-source cryptographic library OpenSSL.

To achieve that goal, the work started with a phase of the initial study of the problem and
the state-of-the-art in this field. Currently, there are two Long-term support versions and it was
decided to start from the 1.1.1 version of OpenSSL which led to the development of minimal
models of operation and applied in the development of a test engine. The study then focused on
the new version, 3.0, with its operation and new features. The results were satisfactory for our
project needs so it was decided to update the models with the changes and consequently write a
provider from those models.

After gaining familiarity with the last version of the library, the final part of the thesis then
focused on the actual design of the integration of SSI into OpenSSL through the creation of a
new operation to manage DIDs, supporting APIs, and a provider. In addition, a DID Method
was developed using IOTA’s tangle as the architecture. The thesis project concluded with a
final testing phase, carried out through a proof of concept that combined and validated the DID
method, provider, operation, and API. The results showed that the latency times of the functions
are acceptable for our designated use and that there is no public key type that guarantees lower
latency times.

Possible future developments of this thesis are many. The models developed in the study phase
were used to familiarize with the engines and providers but provide important information on how
they should be developed in the specific case of RNG, signature creation, and verification, so in
case a new software or hardware cryptographic implementation like a new secure element will
be easy to adapt and develop an engine/provider based on the models. Another possible future
development will be the integration of the DID operation with another project in the current
development, namely the TLS connection using DID documents instead of x509 certificates. The
APIs will also need to be reviewed and adapted to the future needs required by that project.
Regarding the DID method, it will be necessary to update it when IOTA 2.0 is released.

52

Appendix A

User Manuals

This section explains how to install and how use the software.

A.1 tpm2-tss-engine

This engine, developed by the community Linux TPM2 & TSS2 Software [31], allows the func-
tionality of TPM2.0 to be used with OpenSSL 1.1.1x.

A.1.1 Requirements and installation

The requirements and installation guide can be found in the INSTALL.md file in the official
repository [43].

A.1.2 Use

To use the engine there are two methods: within your developed code or at the command line.

In your code, this command should be added before any cryptographic operations

ENGINE *e = ENGINE_by_id("tpm2tss");

if(!e) exit(EXIT_FAILURE);

and this command should be added at the end to free the object.

ENGINE_free(e);

To use it at the command line just add -engine tpm2tss to the supported OpenSSL com-
mands. The list of supported OpenSSL applications can be found in the Github description
[31].

A.2 linksengine

Linksengine is an engine developed for OpenSSL 1.1.1x as a test of the models studied. It
uses the cryptographic primitives of Mbed-TLS and implements: RSA and ECDSA key loading;
random number generation; signing and verification of RSA-PKCS1.5 and ECDSA algorithms
(SECP256R1, SECP521R1, SECP192K1 curves). Being a test program to get familiar with the
engines, it should not be considered a complete example of an engine implementing all available
library functions and applications.

53

User Manuals

A.2.1 Requirements

The following dependencies must be installed before installing linksengine.

OpenSSL 1.1.1x

OpenSSL 1.1.x can be found in the OpenSSL’s official site[44].

Mbed-TLS 2.28

The engine is based on Mbed-TLS’s cryptographic primitives and must be installed following the
official instructions [36] or, if available in your distro, using this command

sudo apt install libmbedtls-dev

A.2.2 Installation

After correctly editing the installation path and include path in the Makefile according to your
system, run the following commands

sudo make

sudo make install

make tests

A.2.3 Use

To test this engine, a set of tests is given and they are called simply by calling the chosen test
[TEST NAME] with this line command

./test/[TEST_NAME].sh

[TEST NAME] is the name of one of the following tests:

❼ ecdsa sign failtest - This test creates a random digest, signs it through the engine using
ECDSA as the algorithm, makes a change to the digest, and verifies that the signature check
fails both with the engine and without.

❼ ecdsa sign prime256v1 - This test creates a random digest, signs it via the engine using
ECDSA curve prime256v1 as the algorithm, and verifies that the signature verification is
correct both with the engine and without.

❼ ecdsa sign secp192k1 - This test creates a random digest, signs it via the engine using
ECDSA curve secp192k1 as the algorithm, and verifies that the signature verification is
correct both with the engine and without

❼ ecdsa sign secp521r1 - This test creates a random digest, signs it via the engine using
ECDSA curve secp521r1 as the algorithm, and verifies that the signature verification is
correct both with the engine and without.

❼ random - This test generates 300 bytes of random text using the engine.

❼ rsa sign - This test creates a random digest, creates an RSA random key pair, signs the
digest both through the engine and without, using the RSA algorithm with pkcs1.5 padding,
and verifies that the two signature files are identical.

54

User Manuals

❼ rsa sign failtest - This test creates a random digest, creates an RSA random key pair,
signs the digest through the engine using the RSA algorithm with pkcs1.5 padding. It then
makes a modification to the digest and creates a signature with the same key on the modified
digest without the engine and verifies that the two signature files are different.

❼ rsa sign withpad - This test creates a random digest smaller than the block size, creates
an RSA random key pair, signs the digest both through the engine and without, using RSA
algorithm with pkcs1.5 padding, and verifies that the two signature files are identical.

❼ rsa verify eng - This test creates a random digest, creates an RSA random key pair and
divides the public and private key, signs the digest with the engine using the RSA algorithm
with pkcs1.5 padding. Then, it performs signature verification with the engine checking
that it is successful.

❼ rsa verify eng sign no eng - This test creates a random digest, creates an RSA random
key pair and divides the public and private key, signs the digest without the engine using
the RSA algorithm with pkcs1.5 padding. Then, it performs signature verification with the
engine checking that it is successful.

❼ rsa verify failtest - This test creates a random digest, creates an RSA random key pair and
divides the public and private key, signs the digest with the engine using the RSA algorithm
with pkcs1.5 padding. Then, modifies the digest and performs signature verification with
the engine checking that fails.

❼ rsa verify no eng - This test creates a random digest, creates an RSA random key pair and
divides the public and private key, signs the digest with the engine using the RSA algorithm
with pkcs1.5 padding. Then, it performs signature verification without the engine checking
that it is successful.

❼ rsa verify pss - This test creates a random digest, creates an RSA random key pair and
divides the public and private key, signs the digest both through the engine and without,
using RSA algorithm with PSS padding. Then, it performs signature verification with and
without the engine, checking that it is successful in both cases.

❼ rsa verify withpad - This test creates a random digest smaller than the block size, creates
an RSA random key pair and divides the public and private key, signs the digest with
the engine using the RSA algorithm with pkcs1.5 padding. Then, it performs signature
verification with and without the engine, checking that it is successful in both cases.

❼ x509 ec - This test creates an ECDSA curve secp521r1 key pair then creates the self-signed
certificate on the private key. Finally, it creates a TLS server using the key and certificate.

❼ x509 rsa - This test creates an RSA 2048 key pair and then creates the self-signed certificate
on the private key. Finally, it creates a TLS server using the key and certificate.

To use the engine in your code you must add this code before any cryptographic operations

ENGINE *e = ENGINE_by_id("linksengine");

if(!e) exit(EXIT_FAILURE);

and this command should be added at the end to free the object.

ENGINE_free(e);

A.3 linksprovider

Linksprovider is a provider developed for OpenSSL 3.0.x as a test of the models studied. It uses
the cryptographic primitives of Mbed-TLS and implements: RSA and ECDSA key generation; a
set of encoding functions; random number generation; signing and verification of RSA-PKCS1.5
and ECDSA algorithms (SECP256R1, SECP521R1, SECP192K1, SECP384R1 curves). Being a
test program to get familiar with the engines, it should not be considered a complete example of
an engine implementing all available library functions and applications.

55

User Manuals

A.3.1 Requirements

The following dependencies must be installed before installing linksprovider.

OpenSSL 3.0.x

OpenSSL 3.0.x can be found in the OpenSSL’s official site [44].

Mbed-TLS 2.28

The provider is based on Mbed-TLS’s cryptographic primitives and must be installed following
the official instructions [36] or, if available in your distro, using this command

sudo apt install libmbedtls-dev

A.3.2 Installation

After correctly editing the installation path and include path in the Makefile according to your
system, run the following commands

sudo make

sudo make install

make tests

A.3.3 Use

To test this provider, a set of tests is given and they are called simply by calling the chosen test
[TEST NAME] with this line command

./test/[TEST_NAME].sh

[TEST NAME] is the name of one of the following tests:

❼ rsa testkey - This test creates with the provider an RSA key pair and tests that, both the
public and private parts are valid.

❼ ec testkey - This test creates with the provider a pair of ECDSA keys with the curve of
your choice between secp384r1, secp192k1, secp521r1, prime256v1 based on which row you
remove the comment and tests that, both the public and private parts are valid.

❼ rsa sign - This test creates a random digest, creates an RSA random key pair with the
provider, and divides the public and private keys. Then, it signs the digest using the RSA
algorithm with pkcs1.5 padding, and verifies it, checking that it is successful.

❼ rsa sign prov - This test creates a random digest, creates an RSA random key pair with
the provider, and divides the public and private keys. Then, it signs the digest with the
provider using the RSA algorithm with pkcs1.5 padding, and verifies it, checking that it is
successful.

❼ rsa sign prov verif prov - This test creates a random digest, creates an RSA random key
pair with the provider, and divides the public and private keys. Then, it signs the digest
with the provider using the RSA algorithm with pkcs1.5 padding, and verifies it with the
provider, checking that it is successful.

❼ ec sign - This test creates with the provider a pair of ECDSA keys, with the curve of
your choice between secp384r1, secp192k1, secp521r1, prime256v1 based on which row you
remove the comment, and divides the public and private key. Then, it signs the digest using
the ECDSA algorithm, and verifies it, checking that it is successful.

56

User Manuals

❼ ec sign prov - This test creates with the provider a pair of ECDSA keys, with the curve of
your choice between secp384r1, secp192k1, secp521r1, prime256v1 based on which row you
remove the comment, and divides the public and private key. Then, it signs the digest with
the provider using the ECDSA algorithm, and verifies it, checking that it is successful.

❼ ec sign prov verif prov - This test creates with the provider a pair of ECDSA keys, with
the curve of your choice between secp384r1, secp192k1, secp521r1, prime256v1 based on
which row you remove the comment, and divides the public and private key. Then, it signs
the digest with the provider using the ECDSA algorithm, and verifies it with the provider,
checking that it is successful.

❼ random - This test generates 1000 bytes of random text using the provider.

To use the provider in your code you must add this code before any cryptographic operations

OSSL_PROVIDER *provider = OSSL_PROVIDER_load(NULL, id));

if (provider == NULL) exit(EXIT_FAILURE);

and this command should be added at the end to free the object.

OSSL_PROVIDER_unload(provider);

A.4 OpenSSL 3.0.4 operation DID

This is the modified version of OpenSSL with integrated the new operation to handle DIDs and
their supporting APIs.

A.4.1 Requirements

The requirements are the same as the official version, which can be found on the OpenSSL’s
official github [45].

A.4.2 Installation

In the OpenSSL directory and launch these commands

./Configure

sudo make

sudo make install

in case of problems when launching OpenSSL commands use this command

sudo ldconfig

(or sudo ldconfig [file .so path])

A.5 didprovider

This provider allows the CRUD functions of the DID method OTT to be used with the modified
version of OpenSSL.

A.5.1 Requirements

The following dependencies must be installed before installing didprovider.

57

User Manuals

Iota.c

Iota.c from branch dev [46]. First of all, keep a note of the installation path([Iotapath]).

git clone --branch dev https://github.com/iotaledger/iota.c.git

cd iota.c

mkdir build && cd build

cmake -DCMAKE_C_COMPILER=gcc -DCMAKE_CXX_COMPILER=gcc

-DIOTA_WALLET_ENABLE:BOOL=FALSE -DWITH_IOTA_CLIENT:BOOL=TRUE

-DCMAKE_INSTALL_PREFIX=✩PWD -DCryptoUse=libsodium ..

Go to the folder [Iotapath]/iotac/cmake and open the file sodium.cmake and, in the row CONFIGURE COM-

MAND, add cxxflags=-fPIC and remove -no shared. Then run these commands

sudo make

sudo make install

In case of runtime problems of didprovider, you need to copy the files regarding libsodium.so

in the folder [Iotapath]/iotac/build/lib and move them to the dedicated shared libraries folder on
your system.

OpenSSL 3.0.4 operation DID

see section A.4

A.5.2 Installation

In the Makefile, change the inclusion path of iota.c files accordingly with your [Iotapath] and the
installation path and include path according to your system. Then run these commands

sudo make

sudo make install

A.6 Demo application

This application tests the modified version of OpenSSL with the DID operation and its DID
provider.

A.6.1 Installation

Check the OpenSSL .h file inclusion path according to your system, possibly modifying it in the
Makefile, then run this command

sudo make

A.6.2 Use

The demo is ready to use i.e. already provided with public keys. With OpenSSL it is possible
to generate other public keys paying attention to that: they are in PEM format; they are of one
of the supported types and the filename is the same as the ones present. The demo application
takes care of creating a DID document from the provided keys, does the resolve function of the
new DID, does update the document with other keys, and lastly revokes it. A more detailed
description can be found in section 4.

To get it started this command is used

58

User Manuals

./main.o

Each step of the program is shown on the screen, each operation is verified by a subsequent
resolve, and thanks to the API created, the keys entered in the document are extracted, allowing
verification with the input keys.

Given the modular nature of the API and the provider, it is possible to implement your code
that also partially performs one of the operations performed by the demo application. In any
case, the code should contain the following commands

//load the did provider for did operations

provider = OSSL_PROVIDER_load(NULL, "didprovider");

if(provider == NULL){

printf("DID provider load failed\n");

goto error;

}

//Creation of new did context

didctx = DID_CTX_new(provider);

if(didctx == NULL){

printf("DID CTX new failed\n");

goto error;

}

//Creation of new did document

did_doc = DID_DOCUMENT_new();

if(did_doc == NULL){

printf("DID document new failed\n");

goto error;

}

ret = DID_fetch(NULL,didctx,"OTT","property");

if(ret == 0){

printf("DID fetch failed\n");

goto error;

}

With this piece of code, you load the didprovider, create an empty context, create an empty
structure where you insert the DID Document, and finally fetch the instructions into the context.
With the context loaded in this way, you can call one of the four CRUD functions explained in
section 3.6.2. To test and validate the code you can, in addition to the provided on-screen output,
either run the resolve function after one of the other functions or use DID DOCUMENT get auth key

or DID DOCUMENT get assertion key on an obtained document to extract the public keys and
compare them with the expected ones. Another possible way to validate is to search in IOTA
Explorer [47], with devnet as the network, for the massage index created after a create, update
or revoke operation. On the site it will be possible to see that there is a message on that index.

59

Appendix B

Developer Manuals

This section explains in detail how software works

B.1 linksengine

This software is divided into several modules on multiple files: links-engine.c contains the control
and general functions of the engine; ecc.c contains all functions regarding ECDSA algorithms;
rsa.c contains all functions regarding RSA algorithms; rand.c contains all functions regarding
random number generation.

Below, the most important functions to understand its operation are given and briefly ex-
plained.

bind

Input parameters:

❼ ENGINE *e - pointer to the ENGINE object, used by some others OpenSSL’s setters
function

❼ const char *id - unused

Return values:

❼ 1 - on success

❼ 0 - on failure

This is the first function that is called when the engine starts and loads all the functions offered
and calls the init functions of the various modules.

init rand

Input parameters:

❼ ENGINE *e - passed to the ENGINE set RAND function

Return values:

❼ 1 - on success

❼ 0 - on failure

In engines to define RNG functions, one must fill in a function structure where each parameter indi-
cates a specific function. This function sets the structure through the command ENGINE set RAND.

60

Developer Manuals

random bytes

Input parameters:

❼ unsigned char *buf - buffer to be filled with random data

❼ int num - size in bytes of random data to be created

Return values:

❼ 1 - on success

❼ 0 - on failure

This function is responsible for generating random bytes. After initializing the entropy structure of
Mbed-TLS mbedtls entropy init(&entropy), it generates random bytes through the function
mbedtls entropy func via a while loop because the function, in the single iteration, generates at
most MBEDTLS ENTROPY BLOCK SIZE.

init rsa

Input parameters:

❼ ENGINE *e - pointer to the ENGINE object, used by the RSA OpenSSL’s setters function

Return values:

❼ 1 - on success

❼ 0 - on failure

This function deals with modifying the standard RSA functions of OpenSSL. Since there are only a
few modified functions, it copies the standard methods via the command RSA PKCS1 OpenSSL and
then individual functions are modified via the appropriate functions, e.g. RSA meth set priv enc.

rsa priv enc

Input parameters:

❼ int from - the data to be signed

❼ const unsigned char *flen - length of the from buffer

❼ unsigned char *to - the buffer to write the signature to

❼ RSA * rsa - the RSA key object

❼ int padding - the padding scheme to be used

Return values:

❼ size t size - size of the returned signature

❼ 0 - on failure

This function performs the encrypt function using the private key in RSA, used to perform
signature and authentication. After a padding check, the Mbed-TLS creation context is initialized
via mbedtls rsa init and the RSA key, in OpenSSL form, is translated into the form accepted
by Mbed-TLS by copying the individual fields from Bignum [48] to string and then imported
into the mpi [49] form via mbedtls mpi read string. The context is loaded with the RSA key
parameters and then signed according to the padding type, mbedtls rsa private in the case
without padding or mbedtls rsa rsassa pkcs1 v15 sign for PKCS1V1.5 padding.

61

Developer Manuals

rsa pub dec

Input parameters:

❼ int flen - length of the from buffer

❼ const unsigned char *from - buffer to decrypt

❼ unsigned char *to - buffer to place plaintext in

❼ RSA *rsa - the RSA key object

❼ int padding - the padding scheme to be used

Return values:

❼ size t size - size of the returned plaintext on success

❼ -1 - on failure

This function performs the decryption function using the public key in RSA. After a padding
check, the Mbed-TLS creation context is initialized via mbedtls rsa init and the RSA key, in
OpenSSL form, is translated into the form accepted by Mbed-TLS by copying the individual
fields from Bignum to string and then imported into the mpi form via mbedtls mpi read string.
The context is loaded with the public RSA key and then verified according to the padding type,
mbedtls rsa public in the case without padding, or mbedtls rsa rsassa pkcs1 v15 decrypt

for PKCS1V1.5 padding.

init ecc

Input parameters:

❼ ENGINE *e - unused

Return values:

❼ 1 - on success

❼ 0 - on failure

This function deals with modifying the standard ECDSA functions of OpenSSL. Since there are
only a few modified functions, it copies the standard methods via the command EVP PKEY meth new-

(EVP PKEY EC, 0); and then individual functions are modified via the appropriate functions, e.g.
EVP PKEY meth set sign.

pkey ecdsa sign

Input parameters:

❼ EVP PKEY CTX *ctx - PKEY context of operation

❼ unsigned char *sig - buffer to hold signature data or NULL to indicate the request of
length signature

❼ size t *sigLen - length of signature buffer

❼ const unsigned char *tbs - bo Be Signed data.

❼ size t tbsLen - length of To Be Signed data.

62

Developer Manuals

Return values:

❼ 1 - on success

❼ 0 - on failure

This function signs data with a private EC key. The Mbed-TLS creation context and key object is
initialized via mbedtls ecdsa init and mbedtls ecp keypair init, respectively. The ECDSA
key object is extracted from the EVP PKEY object, alongside the information about the curve and
the group. With this information, the Mbed-TLS key object is filled by copying the individual
fields from Bignum to string and then imported into the mpi form via mbedtls mpi read string.
After loading the key inside the context via mbedtls ecdsa from keypair, the signature is created
with the function mbedtls ecdsa write signature det.

pkey ecdsa verify

Input parameters:

❼ EVP PKEY CTX *ctx - pkey context of operation

❼ unsigned char *sig - signature data

❼ size t *sigLen - length of signature data

❼ const unsigned char *tbs - to be signed data.

❼ size t tbsLen - length of to be signed data.

Return values:

❼ 1 - on successful verification

❼ 0 - on failure

❼ -1 - on error

This function verifies a signature with a public EC key. The Mbed-TLS creation context and
key object is initialized via mbedtls ecdsa init and mbedtls ecp keypair init, respectively.
The ECDSA public key object is extracted from the EVP PKEY object, alongside the information
about the curve and the group. With this information, the Mbed-TLS key object is filled by
copying the individual fields from Bignum to string and then imported into the mpi form via
mbedtls mpi read string. The signature is verified with the function mbedtls ecdsa verify.

B.2 linksprovider

This software is divided into several modules on multiple files: links-provider.c contains the con-
trol and general functions of the provider;bio prov.c, taken from the OpenSSL library, contains
some library functions to handle buffers and library context; keymgmt.c contains all functions to
create RSA and EC keys; encoder.c contains all functions to encode the generated data; signa-
ture.c contains all functions to create and verify RSA and ECDSA signatures; rand.c contains all
functions regarding random number generation.

Below, the most important functions to understand its operation are given and briefly ex-
plained.

63

Developer Manuals

OSSL provider init

Input parameters:

❼ const OSSL DISPATCH **out - pointer used to be pointed to the provider dispatch
table

❼ const OSSL CORE HANDLE *handle - pointer to be set in the provider context

❼ void **provctx - provider context to be passed to other functions

❼ const OSSL DISPATCH *in - vector from which the parameters to be set are extracted

Return values:

❼ 1 - on success

❼ 0 - on failure

This is the provider input function that is responsible for receiving the initial parameters, the
library context, and providing the provider function vector.

links query operation

Input parameters:

❼ void* provCtx - unused

❼ int id - an integer that represents the operation id to be fetched

❼ int* no cache - unused

Return values:

❼ OSSL DISPATCH * pointer - pointer of the OSSL DISPATCH id type

❼ NULL - on failure

This function is called by OpenSSL whenever it wants to access implementations of the op-
erations provided by the provider. Based on the Operation Id it returns the corresponding
OSSL ALGORITHM vector.

links rsa/ec keymgmt gen init

Input parameters:

❼ void *provctx - provider context of operation

❼ int selection - unused

❼ const OSSL PARAM params[] - vector from which the parameters to be set are ex-
tracted

Return values:

❼ RSA CTX/EC CTX *gen - the context of generation created

❼ NULL - on failure

These functions perform the preparatory operations for key generation and call the function that
defines the command-definable parameters.

64

Developer Manuals

links rsa/ec keymgmt gen

Input parameters:

❼ void *ctx - the previously created context of generation

❼ OSSL CALLBACK *cb - unused

❼ void *cbarg - unused

Return values:

❼ RSA PKEY/EC PKEY - on successful creation returns the key object filled

❼ NULL - on failure

These functions perform key generation. In the case of RSA keys, the function initializes a context
RSA PKEY containing the RSA key parameter variables and, via the command mbedtls rsa gen key,
generates the key which is then exported to the context via the command mbedtls rsa export.
In the case of ECDSA keys, the function initializes a context EC PKEY containing the ECDSA key
parameter variables. It loads the group and the curve and then generates the key thanks to the
function mbedtls ecp gen keypair.

links rsa/ec keymgmt gettable params

Input parameters:

❼ void *provctx - unused

Return values:

❼ OSSL PARAM * gettable - vector containing the obtainable parameters

These functions return a structure OSSL PARAM in which, for each line, it indicates a parameter type
that can be extracted from the key of that particular algorithm. For example, OSSL PARAM BN(-

OSSL PKEY PARAM RSA N, ...) indicates that the N parameter of an RSA key can be extracted
in a variable of type Bignum.

links rsa/ec keymgmt get params

Input parameters:

❼ void *keydata - key object

❼ OSSL PARAM params[] - vector from which set the requested parameters

Return values:

❼ 1 - on success

❼ 0 - on failure

These functions extract the parameters defined in the function links rsa/ec keymgmt gettable-

params. The function receives as input a vector OSSL PARAM that contains the parameters to be
extracted. Through the function p = OSSL PARAM locate(params, param name); it looks for
the parameter named param nameand, after having retrieved the parameter from the key object,
is inserted in the vector.

65

Developer Manuals

links rsa/ec keymgmt import types

Input parameters:

❼ int selection - unused

Return values:

❼ OSSL PARAM * rsa/ec key params - vector containing the importable parameters

These functions return a structure OSSL PARAM in which, for each line, it indicates a parameter type
that can be imported for that particular algorithm. For example, OSSL PARAM BN(OSSL PKEY PARAM-

RSA N, ...) indicates that the RSA key can import the N parameter of type Bignum.

links rsa/ec keymgmt import

Input parameters:

❼ void *keydata - key object

❼ int selection - an integer indicating which part of the key to import

❼ OSSL PARAM params[] - vector from which import the parameters

Return values:

❼ 1 - on success

❼ 0 - on failure

❼

These functions extract the parameters defined in the function links rsa/ec keymgmt import-

types. The function receives as input a vector OSSL PARAM that contains the parameters to be
imported. Through the function p = OSSL PARAM locate(params, param name); it looks for
the parameter named param name and, in case it is found, it is pointed to by p and and can be
imported in the key.

links rsa/ec encoder encode text

Input parameters:

❼ void *ctx - context of the encoding process

❼ const void *key - key to encode

❼ OSSL CORE BIO *cout - BIO buffer to fill

❼ OSSL PASSPHRASE CALLBACK *cb, const OSSL PARAM key abstract[],
void *cbarg - unused

Return values:

❼ 1 - on success

❼ 0 - on failure

These functions take care of printing the key passed to the screen, for example in the case of
parameter -text during generation. Each key parameter is transformed into a string and printed
through the BIO printf command, with a buffer pointing to stdout.

66

Developer Manuals

links rsa/ec encoder encode PEM

Input parameters:

❼ void *ctx - context of the encoding process

❼ const void *key - key to encode

❼ OSSL CORE BIO *cout - BIO buffer to fill

❼ OSSL PASSPHRASE CALLBACK *cb, const OSSL PARAM key abstract[],
void *cbarg - unused

Return values:

❼ 1 - on success

❼ 0 - on failure

These functions take care of transforming the key in Mbed-TLS form to a string in PEM format.
After creating a new BIO buffer [50], the key is saved in PEM form by the following function
mbedtls pk write key pem in a temporary buffer and finally copied to the BIO buffer through
the function BIO write.

links rand instantiate and links rand uninstantiate

Input parameters:

❼ void *ctx - context of operation

❼ unsigned int strength,int prediction resistance,const unsigned char *pstr, size t
pstr len,const OSSL PARAM params[] - unused

Return values:

❼ 1 - on success

❼ 0 - on failure

These functions instantiate and free the contexts used during the creation of random bytes.

links rand generate

Input parameters:

❼ void *ctx - context of the encoding process

❼ unsigned char *out - buffer to be filled with random data

❼ size t outlen - size in bytes of the random data to be generated

❼ unsigned int strength, int prediction resistance,const unsigned char *adin, size t
adinlen -unused

Return values:

❼ 1 - on success

❼ 0 - on failure

This function generates random bytes. Bytes are generated through the repetition of the function
mbedtls ctr drbg random as, at each iteration, it generates at most MBEDTLS CTR DRBG MAX-

REQUEST bytes.

67

Developer Manuals

links rsa/ec signature sign init

Input parameters:

❼ void *ctx - signature context to be filled

❼ void *provkey - provider context to be added in the signature context

❼ const OSSL PARAM params[] - vector from which set the requested parameters

Return values:

❼ 1 - on successful verification

❼ 0 - on failure

These functions set the default parameters for signature generation and some configurable pa-
rameters passed from the params vector.

links rsa/ec signature sign

Input parameters:

❼ void *ctx - signature context previously filled

❼ unsigned char *sig - signature data

❼ size t *sigLen - length of the computed signature or NULL, in that case, this variable will
be filled with an estimation of signature size

❼ const unsigned char *tbs - to be signed data.

❼ size t tbsLen - length of to be signed data.

Return values:

❼ 1 - on success

❼ 0 - on failure

These functions deal with signature creation. If the functions receive the field containing the
buffer where to save the signature, they return the estimate of how much the signature will
occupy for that particular type of algorithm, otherwise, they take care of generating the sig-
nature. In the case of RSA keys, the Mbed-TLS context is initialized via mbedtls rsa init

and the RSA key is imported in via the function mbedtls rsa import. The signing then is
performed through the function mbedtls rsa pkcs1 encrypt. In the case of ECDSA keys, the
context of Mbed-TLS is created through the function mbedtls ecdsa init. After loading the key
within the context via mbedtls ecdsa from keypair, the signature is created with the function
mbedtls ecdsa write signature det.

links rsa/ec signature verify init

Input parameters:

❼ void *ctx - verification context to be filled

❼ void *key - object that contains the key

❼ const OSSL PARAM params[] - vector from which set the requested parameters

68

Developer Manuals

Return values:

❼ 1 - on success

❼ 0 - on failure

These functions set the default parameters for signature verification.

links rsa/ec signature verify

Input parameters:

❼ void *ctx - verification context previously filled

❼ unsigned char *sig - signature data

❼ size t *sigLen - length of the signature

❼ const unsigned char *tbs - to be signed data.

❼ size t tbsLen - length of to be signed data.

Return values:

❼ 1 - on successful verification

❼ 0 - on verification failure

These functions deal with signature verification. In the case of RSA keys, the Mbed-TLS context
is initialized via mbedtls rsa init and the RSA key is imported in via the function mbedtls rsa-

import and then, the verification is performed through the function mbedtls rsa rsassa pkcs1-

v15 verify. The result of the function is returned. In the case of ECDSA keys, the con-
text of Mbed-TLS is created through the function mbedtls ecdsa init. After loading the key
within the context via mbedtls ecdsa from keypair, the signature is verified with the function
mbedtls ecdsa read signature and the result of the verification is returned.

B.3 OpenSSL 3.0.4 operation DID

Previously explained in section 3.6.1.

B.4 didprovider

Previously explained in section 3.8.

69

Bibliography

[1] A Europe fit for the digital age, https://ec.europa.eu/info/strategy/

priorities-2019-2024/europe-fit-digital-age_en

[2] European Digital Identity, https://ec.europa.eu/info/strategy/

priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en

[3] Introduction to Digital Identity by walt.id, https://walt.id/s/

Introduction-to-Digital-Identity-waltid.pdf

[4] D. W. Chadwick, “Federated identity management”, Foundations of Security Analysis and
Design V (A. Aldini, G. Barthe, and R. Gorrieri, eds.), pp. 96–120, Springer, 2009, DOI
10.1007/978-3-642-03829-7 3

[5] How Decentralized Identity Is Reshaping Privacy For Digital Identi-
ties, https://www.forbes.com/sites/forbestechcouncil/2021/12/10/

how-decentralized-identity-is-reshaping-privacy-for-digital-identities/

[6] W3C Recommendation Decentralized Identifiers (DIDs) v1.0, https://www.w3.org/TR/

did-core/

[7] Ethr-DID Library repository, https://github.com/uport-project/ethr-did
[8] JSON - Introduction, https://www.w3schools.com/js/js_json_intro.asp
[9] W3C Recommendation Decentralized Identifiers (DIDs) v1.0 chapter Core Properties, https:

//www.w3.org/TR/did-core/#did-document-properties

[10] Introduction to Trust Over IP Version 2.0, https://trustoverip.org/wp-content/

uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf

[11] DIDComm Messaging v2.x Editor’s Draft, https://identity.foundation/

didcomm-messaging/spec/

[12] A. Deshpande, K. Stewart, L. Lepetit, and S. Gunashekar, “Distributed ledger technolo-
gies/blockchain: Challenges, opportunities and the prospects for standards”, Overview report
The British Standards Institution (BSI), vol. 40, 2017, p. 40

[13] IOTA foundation website, https://www.iota.org/
[14] The Tangle, https://wiki.iota.org/learn/about-iota/tangle
[15] S. Popov, “The tangle”, White paper, vol. 1, no. 3, 2018
[16] A simple explanation of the IOTA Coordicide, https://medium.com/@markusgebhardt/

a-simple-explanation-of-the-iota-coordicide-8c9362472188

[17] Roadmap to Decentralization, https://wiki.iota.org/learn/about-iota/

roadmap-to-decentralization

[18] IOTA Streams, https://www.iota.org/solutions/streams
[19] P. Rogaway, “Authenticated-encryption with associated-data”, Proceedings of the 9th ACM

Conference on Computer and Communications Security, Washington, DC (USA), 2002,
pp. 98–107

[20] M. J. Saarinen and J. P. Aumasson, “The BLAKE2 Cryptographic Hash and Message Au-
thentication Code (MAC).” RFC-7693, November 2015, DOI 10.17487/RFC7693

[21] The OpenSSL project, https://www.openssl.org/
[22] OpenSSL Strategic Architecture, https://www.openssl.org/docs/

OpenSSLStrategicArchitecture.html

[23] OpenSSL version, https://www.openssl.org/docs/man3.0/man3/OpenSSL_version.html
[24] OpenSSL migration guide, https://www.openssl.org/docs/man3.0/man7/migration_

guide.html

[25] OpenSSL crypto, https://www.openssl.org/docs/manmaster/man7/crypto.html

70

https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/europe-fit-digital-age/european-digital-identity_en
https://walt.id/s/Introduction-to-Digital-Identity-waltid.pdf
https://walt.id/s/Introduction-to-Digital-Identity-waltid.pdf
https://doi.org/10.1007/978-3-642-03829-7_3
https://www.forbes.com/sites/forbestechcouncil/2021/12/10/how-decentralized-identity-is-reshaping-privacy-for-digital-identities/
https://www.forbes.com/sites/forbestechcouncil/2021/12/10/how-decentralized-identity-is-reshaping-privacy-for-digital-identities/
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://github.com/uport-project/ethr-did
https://www.w3schools.com/js/js_json_intro.asp
https://www.w3.org/TR/did-core/#did-document-properties
https://www.w3.org/TR/did-core/#did-document-properties
https://trustoverip.org/wp-content/uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf
https://trustoverip.org/wp-content/uploads/Introduction-to-ToIP-V2.0-2021-11-17.pdf
https://identity.foundation/didcomm-messaging/spec/
https://identity.foundation/didcomm-messaging/spec/
https://www.iota.org/
https://wiki.iota.org/learn/about-iota/tangle
https://medium.com/@markusgebhardt/a-simple-explanation-of-the-iota-coordicide-8c9362472188
https://medium.com/@markusgebhardt/a-simple-explanation-of-the-iota-coordicide-8c9362472188
https://wiki.iota.org/learn/about-iota/roadmap-to-decentralization
https://wiki.iota.org/learn/about-iota/roadmap-to-decentralization
https://www.iota.org/solutions/streams
https://doi.org/10.17487/RFC7693
https://www.openssl.org/
https://www.openssl.org/docs/OpenSSLStrategicArchitecture.html
https://www.openssl.org/docs/OpenSSLStrategicArchitecture.html
https://www.openssl.org/docs/man3.0/man3/OpenSSL_version.html
https://www.openssl.org/docs/man3.0/man7/migration_guide.html
https://www.openssl.org/docs/man3.0/man7/migration_guide.html
https://www.openssl.org/docs/manmaster/man7/crypto.html

Bibliography

[26] provider-encoder, https://www.openssl.org/docs/man3.0/man7/provider-encoder.

html

[27] OpenSSL 3.0.0 Design, https://www.openssl.org/docs/OpenSSL300Design.html
[28] OpenSSL default provider source code, https://github.com/openssl/openssl/blob/

master/providers/defltprov.c

[29] OpenSSL default provider: decoder operation source code, https://github.com/openssl/
openssl/blob/master/providers/implementations/encode_decode/decode_pem2der.c

[30] Trusted Platform Module Library Part 1: Architecture Level 00 Revision 01.59,
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_

Architecture_pub.pdf

[31] tpm2-tss-engine, https://github.com/tpm2-software/tpm2-tss-engine
[32] TPM Software Stack (TSS), https://trustedcomputinggroup.org/work-groups/

software-stack/

[33] TCG TSS 2.0 Enhanced System API (ESAPI) Specification Version 1.00 Revi-
sion 14, https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1p0_

r14_pub10012021.pdf

[34] tpm2tss-genkey manual page, https://github.com/tpm2-software/tpm2-tss-engine/

blob/master/man/tpm2tss-genkey.1.md

[35] tpm2-tools manual: tpm2 evictcontrol, https://github.com/tpm2-software/

tpm2-tools/blob/master/man/tpm2_evictcontrol.1.md

[36] Mbed-TLS 2.28 repository, https://github.com/Mbed-TLS/mbedtls/tree/v2.28.0
[37] cJSON, https://github.com/DaveGamble/cJSON
[38] openssl-pkeyutl, https://www.openssl.org/docs/manmaster/man1/openssl-pkeyutl.

html

[39] openssl-rsa, https://www.openssl.org/docs/manmaster/man1/openssl-rsa.html
[40] tpm2-openssl rsa createak sign handle.sh test, https://github.com/tpm2-software/

tpm2-openssl/blob/master/test/rsa_createak_sign_handle.sh

[41] Raspberry Pi 4 Model B specifications, https://www.raspberrypi.com/products/

raspberry-pi-4-model-b/specifications/

[42] Explaining the IOTA Congestion Control Algorithm, https://blog.iota.org/

explaining-the-iota-congestion-control-algorithm/

[43] tpm2-tss-engine/INSTALL.md, https://github.com/tpm2-software/tpm2-tss-engine/

blob/master/INSTALL.md

[44] OpenSSL source, https://www.openssl.org/source/
[45] OpenSSL installation instructions, https://github.com/openssl/openssl/blob/master/

INSTALL.md

[46] iotaledger repository, https://github.com/iotaledger/iota.c/tree/dev
[47] IOTA Explorer, https://explorer.iota.org/devnet
[48] bn, https://www.openssl.org/docs/man1.0.2/man3/bn.html
[49] mbedTLSLibrary bignum.h File Reference, https://os.mbed.com/users/ansond/code/

mbedTLSLibrary/docs/tip/bignum_8h.html

[50] BIO, https://wiki.openssl.org/index.php/BIO

71

https://www.openssl.org/docs/man3.0/man7/provider-encoder.html
https://www.openssl.org/docs/man3.0/man7/provider-encoder.html
https://www.openssl.org/docs/OpenSSL300Design.html
https://github.com/openssl/openssl/blob/master/providers/defltprov.c
https://github.com/openssl/openssl/blob/master/providers/defltprov.c
https://github.com/openssl/openssl/blob/master/providers/implementations/encode_decode/decode_pem2der.c
https://github.com/openssl/openssl/blob/master/providers/implementations/encode_decode/decode_pem2der.c
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://github.com/tpm2-software/tpm2-tss-engine
https://trustedcomputinggroup.org/work-groups/software-stack/
https://trustedcomputinggroup.org/work-groups/software-stack/
https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1p0_r14_pub10012021.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1p0_r14_pub10012021.pdf
https://github.com/tpm2-software/tpm2-tss-engine/blob/master/man/tpm2tss-genkey.1.md
https://github.com/tpm2-software/tpm2-tss-engine/blob/master/man/tpm2tss-genkey.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_evictcontrol.1.md
https://github.com/tpm2-software/tpm2-tools/blob/master/man/tpm2_evictcontrol.1.md
https://github.com/Mbed-TLS/mbedtls/tree/v2.28.0
https://github.com/DaveGamble/cJSON
https://www.openssl.org/docs/manmaster/man1/openssl-pkeyutl.html
https://www.openssl.org/docs/manmaster/man1/openssl-pkeyutl.html
https://www.openssl.org/docs/manmaster/man1/openssl-rsa.html
https://github.com/tpm2-software/tpm2-openssl/blob/master/test/rsa_createak_sign_handle.sh
https://github.com/tpm2-software/tpm2-openssl/blob/master/test/rsa_createak_sign_handle.sh
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://blog.iota.org/explaining-the-iota-congestion-control-algorithm/
https://blog.iota.org/explaining-the-iota-congestion-control-algorithm/
https://github.com/tpm2-software/tpm2-tss-engine/blob/master/INSTALL.md
https://github.com/tpm2-software/tpm2-tss-engine/blob/master/INSTALL.md
https://www.openssl.org/source/
https://github.com/openssl/openssl/blob/master/INSTALL.md
https://github.com/openssl/openssl/blob/master/INSTALL.md
https://github.com/iotaledger/iota.c/tree/dev
https://explorer.iota.org/devnet
https://www.openssl.org/docs/man1.0.2/man3/bn.html
https://os.mbed.com/users/ansond/code/mbedTLSLibrary/docs/tip/bignum_8h.html
https://os.mbed.com/users/ansond/code/mbedTLSLibrary/docs/tip/bignum_8h.html
https://wiki.openssl.org/index.php/BIO

	Introduction
	Digital identity
	Centralized identity
	Federated identity
	Decentralized identity

	Background and related work
	Self-Sovereign Identity
	Decentralized identifiers
	DID Document

	Trust over IP(ToIP)
	Governance and Technological layers

	Distributed Ledger Technology (DLT)
	IOTA
	WAM
	OpenSSL
	Version 1.1.1x
	Version 3.0.x architecture
	Providers and Crypto design

	Design and Implementation
	Case study: tpm2-tss-engine
	Models
	Loading a key
	Random number generation
	Signature creation
	Signature verification

	Design of engine from models
	Upgrade the models to 3.0 design
	Loading and creation of a key
	Random number generation
	Signature creation and verification

	Design of provider from models
	DID operation
	Design
	API

	DID Method: OTT
	DID provider

	Validation and results
	Testbed
	Create
	Resolve
	Update
	Revoke
	Key type

	Conclusion and future developments
	User Manuals
	tpm2-tss-engine
	Requirements and installation
	Use

	linksengine
	Requirements
	Installation
	Use

	linksprovider
	Requirements
	Installation
	Use

	OpenSSL 3.0.4 operation DID
	Requirements
	Installation

	didprovider
	Requirements
	Installation

	Demo application
	Installation
	Use

	Developer Manuals
	linksengine
	linksprovider
	OpenSSL 3.0.4 operation DID
	didprovider

	Bibliography

