{

\\
\\ 1859 s

\\.\ %d‘

POLITECNICO DI TORINO

Master degree course in Computer engineering

Master Degree Thesis

Self-Sovereign Identity(SSI) integration
in OpenSSL

Supervisor
prof. Antonio Lioy
Andrea Vesco, Ph.D

Candidate
Alessio CLAUDIO

AA 2021-2022

To my family

Summary

Decentralized digital identity is a concept that is rapidly expanding due to new technologies such
as Distributed Ledger Technology(DLT') which allows the secure storage of unalterable data. The
purpose of this thesis is to implement the Self-Sovereign Identity(SSI) paradigm, a standard pro-
posed by the W3C group of decentralized digital identity, within the most popular and widely
used open-source OpenSSL cryptographic library. This thesis is proposed by the LINKS Founda-
tion Cybersecurity team that is working on a larger research project on SSI. The first part of the
work was done by studying and analyzing the two major current versions of OpenSSL, obtaining
working models that were implemented in software. The next phase was carried out by designing
and developing the actual integration of SSI into OpenSSL, side-by-side with a set of APIs and a
DID Method to enable communication with IOTA’s Tangle. The study concludes with a testing
phase of CRUD operations, also evaluating latency times about the type of public keys used.

Acknowledgements

Thanks to the LINKS Foundation Cybersecurity team for their support in times of need.

Contents

1 Introduction

1.1 Digital identity e
1.1.1 Centralized identity
1.1.2 Federated identity e
1.1.3 Decentralized identity o

Background and related work

2.1 Self-Sovereign Identity
2.1.1 Decentralized identifiers L Lo
2.1.2 DID Document L

2.2 Trust over IP(ToIP)
2.2.1 Governance and Technological layers

2.3 Distributed Ledger Technology (DLT)

24 TOTA . .

25 WAM . . .

2.6 OpenSSL . . . e
2.6.1 Version 1.1.1x o . o 0 e
2.6.2 Version 3.0.x architecture L 0oL
2.6.3 Providers and Crypto design

Design and Implementation

3.1 Case study: tpm2-tss-engine Lo
3.2 Models e e
3.2.1 Loadingakey.
3.2.2 Random number generation L Lo
3.2.3 Signature creation Lo
3.2.4 Signature verification oL oL L
3.3 Design of engine from models oL oL o
3.4 Upgrade the models to 3.0 design L oL
3.4.1 Loading and creationof akeyo oL oL
3.4.2 Random number generation oL L Lo

10
10
10

11
11
11
12
13
14
15
15
16
17
17
19
20

3.4.3 Signature creation and verification oL oL

3.5 Design of provider from models L
3.6 DID operation
3.6.1 Design
3.6.2 API . . .
3.7 DID Method: OTT s
3.8 DID provider
Validation and results
4.1 Testbed o . o
4.2 Create e
4.3 Resolve . . . oL
4.4 Update e
4.5 Revoke oL
4.6 Keytype e

Conclusion and future developments

User Manuals
Al tpm2-tSS-engine e
A.1.1 Requirements and installation L.
AT12 Use . ..o
A2 linksengine
A2.1 Requirements
A.2.2 Installation
A2.3 Use . .. o
A3 linksprovider
A3.1 Requirements
A3.2 Imstallation
A33 Use . .
A4 OpenSSL 3.04 operation DID
A4l Requirements
A4.2 Tnstallation L
A5 didprovider
A5.1 Requirements
A5.2 Installationo L
A.6 Demo application
A.6.1 Imstallation
AB.2 Use . . . o

46
46
47
48
49
50
50

52

B Developer Manuals 60

B.1 linksengine e 60
B.2 linksprovider e 63
B.3 OpenSSL 3.0.4 operation DID 69
B.4 didprovider 69
Bibliography 70

Chapter 1

Introduction

1.1 Digital identity

The problem of reliable identity is a problem that humankind has had from ancient times and
today, with the advent of digitalization, is even more relevant. In the European priorities 2019-
2024 one of the priority areas defined by the European Commission in “A Europe fit for the
digital age” [1] is “European Digital Identity” [2]. First, we must define what is a digital identity.

The digital identity consists of a set of personal information (name, surname, social security
number, ...) and generated data during online activities (search history, electronic transactions,
social media interactions, ...).

Because of the enormous amount of possible data, it opens possible privacy and security risks
like:

e identity fraud.
e identity theft.

e manipulation.

————— -~
(\
Paper PDFs | Centralized Federated User-centric
| |
| I
MNon-digital | Simple I Datais Datais Datais
identity o digitization I locked into managed controlled
documents. | of paper. | silos. by IdPs. by users.
I I
| |
..... N
[1
Po. Scan & Dece
service Upload
Digitization over time. Today. _ _

Figure 1.1. Evolution of identity over time). (Source [3])

Before the Internet era, all identity documents were on paper so was natural to translate them
into PDF format. This solution doesn’t provide any real digital identity, so it was soon replaced
by another method, the centralized identity.

Introduction

1.1.1 Centralized identity

The first iteration of digital identity is the centralized identity, the “one account per service”
paradigm [3], where every service requires an account, and each platform maintains the user
data. This leads to fragmented digital identities where each user has more than one account that
represents his identity.

This form of identity is the simplest but has some major issues:

e security issue - each platform handles its way data protection and there is no guarantee
that everyone follows the best practice and correct legal regulations, leading often to data
loss or data breach;

e lack of control over data - the platforms are in charge of providing the identity, creating
a situation where the user has no power over his data because, to access a certain service,
must rely on that service providing his identity;

e complex user experience - the user has to remember various accounts with different
methods of authentication

1.1.2 Federated identity

Over time some platforms grew bigger and bigger, gaining more money and technical capability,
leading them to effectively control the market. They soon realized how important data and
digital identity are, so they tried to overcome some of the limitations of the centralized approach
by creating a federated identity.

The biggest service providers take care of users’ personal information and provide it to other
platforms, offloading them from the burden of managing it. This approach is called Single Sign
On (SSO) [4]: the identity provider manages the log in process and the user with one account can
access various platforms. This leads to a better user experience but creates some bigger issues:

e monopoly of few platforms - the identity providers gains a lot of power being the few
that manage the user’s identity, creating a monopoly situation;

e lack of control over data - same as the centralized approach

1.1.3 Decentralized identity

The future step of digital identity is a decentralized identity: the user gains full control over his
data and the problems of centralized and federated approaches are gone. The user maintains a
wallet used to store the private keys that replace the passwords and other verified identity details
which contribute to proving the identity. [5] This approach is still in the early days and is being
developed by the “Decentralized Identity Foundation” and the “Trust Over IP Foundation” and
is known as Self-Sovereign Identity.

10

Chapter 2

Background and related work

2.1 Self-Sovereign Identity

SSI is a new concept of decentralized identity where the users create their own digital identity
without being dependent on a central authority. Is based on the Decentralized identifier(DID)
and the Verifiable Credentials (VC)

2.1.1 Decentralized identifiers

The Decentralized Identifiers (DIDs) are a W3C Recommendation [6] that define a global, unique,
verifiable, and decentralized identifier. The DIDs are generated autonomously by the holder of
the digital identity and are used to resolve the DID documents. The DIDs are in form of string
called URI (Uniform Resource Identifiers) formed by three distinct parts

Scheme

-
did:example:123456789%9abcdefghi

T Y
DID Method DID Method-Specific Identifier

Figure 2.1. Example of Decentralized identifier (DID). (Source [6])

Scheme

The prefix did: is the formal syntax for a generic DID.

DID Method
DID Method is the concrete implementation of the system. Usually, a DID Method defines: the

Verifiable registry, the underlying technology in which the data is stored, for example, did:ethr
uses the Ethereum blockchain [7]; the CRUD operation and the format of DID Document.

DID Method-specific identifier

Is a unique identifier inside of that specific DID Method
11

Background and related work

2.1.2 DID Document

DID Document is a document that contains all the information about the digital identity of the
holder, associated with a DID. The usual representation is a JSON file[8] with variable fields
because the core proprieties[9] are almost all optional, leaving the developer the option to choose
which are useful for their platforms. For our project, we decided to use the following core propri-
eties.

"@context": ["https://www.w3.0rg/ns/did/v1"],
"id": did:ott:7EE613CFBB64871EFOFE13EC609B30FADID3323C7CEA3635D0F56413
83113CAA",
"created": " 2022-08-17T13:25:45Z2",
"authenticationMethod": {
"id": "did:ott:7EE613CFBB64B71EF9FE13EC609B30FAD1ID3323CTCEA3635
DOF5641383113CAAKKkeys-0",
"type": "RsaVerificationKey2018",
"controller": "did:ott:7EE613CFBB64871EFOFE13EC609B30FADID3323C
7CEA3635DOF5641383113CAA",
"publicKeyPem": " BEGIN PUBLIC KEY \nMIIBIjANBgkqhkiGowoB
AQEFAAOCAQBAMIIBCGKCAQEA08eWOVQ43cZKYBRU3HTY\n3MvriW28sPplozlaBevCF6pbstxUcfSIMbisS
9c+bF76UBC47+HUMWD3Q1pIAZSE4w\n+8xadLy7ERrUbKSShUx4UG5INp /5FsT49b0ddjSmsC2Q14rSua

qeZLNXUb4iyTjR\nS91ZZaVBCg/gkIGcj5IBieHMWLB5ASkOFUWUXOSXY1E0080Ub+YBODMSAHWArLBY
NRGOINUgby7cfoPDO/HESHU1FI9HNI1p0GaQmYsQ8ST40jZCmUm6Q6VKHM11x1xKu\nKzdoMfQ5582X% g
END PUBLIC KEY

"assertionMethod": {

"id": "did:ott:7EE613CFBB6487T1EF9FEL3EC609B30FADID3323CT7CEA3635
DOF5641383113CAARKkeys-1",

"type": "Ed25519VerificationkKey2018",

"controller": "did:ott:7EE613CFBB64871EF9FE13EC609B30FAD1D3323C
7CEA3635DOF5641383113CAA",

"publicKeyPem": " BEGIN PUBLIC KEY
MwKXDUJynbvxP/6eYLQARTZGGzXk9nvaQ3cyoBQ=\n

}

Figure 2.2. Example of DID document.

@context

This field is the formal syntax for a generic DID Document and contains the link to the DID W3C
Recommendation.

id
This field associates the DID with the DID Document.

created

This field contains a timestamp of the creation of the DID document.

controller

This field indicates which entity is allowed to make changes in the document.

AuthenticationMethod

This field contains the public key of type type used during the process of authentication.
12

Background and related work

AssertionMethod

This field contains the public key of type type used during the process of verification of a verifiable
credential, owned by the DID subject.

2.2 Trust over IP(TolIP)

Trust over IP[10] project aims to create a scalable, trusted architecture in digital networks which
is usually difficult to establish, especially with a lack of regulatory framework. The trust is usually
a single relation between an entity A that trusts another entity B. This directional relationship
works only in small-scale scenarios but, in bigger communities or digital networks, it becomes
difficult to have only direct trust among all entities. A new concept of trust is created, the
transitive trust or also known as the trust triangle:

4 N 4 N
Context X Context X

Transitive trust
relationship

O mmz=h T) OLG

\, J/ \, y

Figure 2.3. The trust triangle. (Source [10])

Entity A trusts entity B which trusts entity C, forming a transitive trust relationship between
A and C, with A trusting C because is trusted by B. This model is well applied in the digital
world with the problem of trust in digital identity, explained in Chapterl.1. For example, if A a
platform and B is an identity provider trusted by A, if a user C successfully authenticates with
the system C, receives the trust from B too. TolP uses this concept of trust with the technological
stack provided by Decentralized Identifier and Verifiable Credentials while adding a Governance
stack.

13

Background and related work

Paper or Plastic
Document

Display of
Dacument

Transitive Trust

L .’

L
Direct Trust % N & Direct Trust
/54
Governance Publishes
Authority
Governance
Framework

Figure 2.4. The governance trust diamond. (Source [10])

2.2.1 Governance and Technological layers

Trust over IP defines 4 layers among the Governance and Technological stack. The Technological
stack aims to implement the architecture while the Governance stack aims to meet the regulatory

requirements
TolP Tech I"IO|Ogy Stack TolP Governance Stack
Application Ecosystems Ecosystemn Governance Frameworks
5 = R
Layer 4 .!' E . 'l. Governa/Carilfias
=" marty Frammwonk
Examplo: =
Credential LB o
Exchange g .T 25 g B E = Q
LHYEI' 3 Issuer - =1~ Verifier » =
- Holder o I a a Governa/Certities. q.i‘;;';”"
1l T m: Siory Framework s

Peer-to-Peer Communication Agent/Wallet Governance Frameworks

ulls} oiD .
— . P — ﬁ
= =
Layer 2 =5 | @ — e s
- Connection G - Acenuwatiet Governs/Certifies
joverning entWalle
AgentWallet Agent/Wallet Authority Framework
Public Utilities Utility Governance Frameworks
| -
= H : =] =
Layer 1 DIDmethod 1 "™ DID method 2 rﬂﬁ - E S S—— a Operasar E
Rotes
Utility 1 Utility 2 Governing Utility R =

Authority ~ Framework

Figure 2.5. The four layers and two halves of the ToIP stack. (Source [10])

14

Background and related work

Layer 1: Public DID Utilities

Layer 1 is the foundation of the ToIP stack and is based on Distributed Ledger Technologies to
create the DID Methods and the needed Governance Framework.

Layer 2: DIDcomm

Layer 2 is about DIDcomm secure messaging standards [11], a secure way to exchange messages
between peers. Each Holder maintains a wallet containing his cryptographical material and secure
channels are established via DID exchange.

Layer 3: Trust triangle

Layer 3 is the exchange and verification of Verifiable Credential, establishing the triangle of trust
between Holder Issuer and Verifier.

Layer 4: Application ecosystem

Layer 3 is the Application ecosystem where the applications interact with humans to provide a
service in a trusted way.

2.3 Distributed Ledger Technology (DLT)

As seen in the previous chapter, Layer 1 of the ToIP stack is defined by the foundational technology
of the stack namely digital ledger technologies. As seen in the previous chapter, Layer 1 of the
ToIP stack is defined by the foundational technology of the stack namely Distributed Ledger
Technologies (DLT). DLTs are distributed digital ledgers i.e., the information they contain is
replicated at each node and, data entry is done through internal consensus processes. The data
entered are immutable and there is no central control coordinating operations or acting as an
intermediary, leaving total freedom of access and transactions to users[12]. These features of
DLTs are perfect for implementing a DID method.

The project developed by the LINKS Foundation works makes use of Internet of Things(IoT)
devices, so DLT’s choice to develop a DID Method naturally falls on IOTA.

24 I0TA

IOTA [13] is a feeless DLT designed to be lightweight enough to run on IoT devices as well. Since
there is no reward for putting a block in the DLT, as IOTA’s main purpose is not profit, miners
are not present instead each user enters and validates transactions.To remove the figure of the
miner, [OTA went beyond the block model of blockchain technology and designed the ” Tangle”,
a mathematical model based on a Directed Acyclic Graph (DAG), where each block validates
several blocks preceding it via ”probabilistic consensus protocol that enables parallel validation
of transactions without requiring total ordering” [14].

The advantage of the Tangle is that it overcomes the bottleneck problem of the blockchain.
In the blockchain system, a transaction is validated only if it is placed in a block, and increasing
the fees to the miner can increase its priority, creating delays or even making transactions with
lower fees unfavorable. In the Tangle, on the other hand, you do not have to reward a miner with
higher and higher fees and each user enters their transaction validating others in the process, in a
parallel way working better with high transaction loads, which instead slows down the blockchain.

15

Background and related work

Figure 2.6. The Tangle. (Source [15])

The Tangle however has a problem, it is not entirely decentralized. Currently, there is a node
under the control of the IOTA Foundation called ” Coordinator” that is responsible for regularly
publishing a zero-value transaction as a checkpoint called a ”milestone” and definitively validates
all functions that directly or indirectly are related to a ”milestone” [16]. This sort of semi-
centralization has triggered heavy criticism from the community that has not gone unheard. The
IOTA Foundation has announced version 2.0 of IOTA that will remove the Coordinator, making
the Tangle decentralized[17].

TIOTA recently provided an L2 protocol to enable easy interaction of cryptographic messages
with the Tangle, called STREAMS [18]. STREAMS is developed in the RUST language and
is designed for desktop applications without taking into account the limited resources of IoT
devices. To solve this problem, the Cybersecurity team at the LINKS Foundation collaborated
on the development of an alternative L2 protocol, WAM.

2.5 WAM

WAM is an L2 cryptographic protocol for communicating with the IOTA Tangle, designed to send
a set of logically linked data from a certain index, encrypted and authenticated via Authenticated
Encryption with Associated Data (AEAD) [19], from IoT devices with limited computational and
memory capacity.

The WAM packet consists of the following fields:
APPDATA and APPDATA _LEN
These fields contain, respectively, the data to be entered on the Tangle and their length. In case

the message is too large to send, the data is segmented over multiple packets and linked to each
other via the NEXT_IDX field, inserting the index of the next IOTA Chrysalis message.

PUBKEY

It contains the public key to be used in signature verification, contained in the SIGN field.

NEXT_IDX

Index of the next IOTA Chrysalis message that contains the next message in the chain. The
indexes are generated with the following algorithm: from a random source the current seed and

16

Background and related work

the seed of the next message in the chain are generated; with the seeds, the key pairs of the
current message and the next message, are generated from the Curve25519 curve; index and next
index are generated by making hashes of the public keys, using the hash function BLAKE2b[20].

SIGN

This field contains the signature of the packet digest with the private key corresponding to the
public key present between the fields. The digest is computed on the fields APPDATA_LEN,APPDATA,
PUB_KEY and NEXT_IDX. The verification process is twofold: the reader of the message verifies the
integrity of the message by recalculating the hash on the parameters and verifying it thanks to
the SIGN field; it also calculates the hash of the PUB_KEY field and verifies that it is equal to the
index of the IOTA message. The combination of these checks ensures the integrity of the WAM
packet and comes from the same source.

AUTHSIGN

This field contains a signature computed on the rest of the WAM packet and provides authen-
tication of the packet creator because the private key that generates this signature is protected
by a hardware secure element, while the signature of the SIGN field is generated by a private
key created with each message. The corresponding public key is contained in a public certificate,
verified by a trusted Certification Authority.

The tangle loads the data in the clear so, to ensure confidentiality, the entire packet is encrypted
with the XSalsa20 cipher using a pre-shared key and a nonce generated from a random source.

2.6 OpenSSL

14

OpenSSL is an open-source project developed by The OpenSSL Project which aims to create “a
robust, commercial-grade, full-featured toolkit for gemeral-purpose cryptography and secure com-
munication” [21]. At the time of the writing, there are two Long Term Support (LTS) versions,
1.1.1x and 3.0.x with a significant difference in the architecture.

2.6.1 Version 1.1.1x

In the 1.1.1x version there are four major components:

17

Background and related work

Applications Component

II

~

LS Component

II

Crypto Component

Engines Comporent

Figure 2.7. The conceptual components in the OpenSSL 1.1.1 architecture. (Source [22])

Application component

This component contains a set of pre-built OpenSSL applications that interact with the users via
the command line. The applications implement all the features offered by OpenSSL like symmetric
and asymmetric crypto, certificate generation, hashing, etc. using the libssl and libcrypto libraries.

TLS component(libssl)

This component is the implementation of TLS and DTLS protocols using the crypto primitives
from libcerypto

Crypto component(libcrypto)

This component is the implementation of the crypto primitives of all supported algorithms which
are used by all other components. These two levels of API: the EVP high level interface that
splits the functionality from the algorithm implementation(ex EVP_sign) and the low-level imple-
mentation dependent commands(ex RSA_sign).

Engine component

The engine component allows us to extend the functionality of libcrypto. The engines are loadable
modules used to provide an alternative implementation of cryptographic algorithms, even if not
implemented. By default, OpenSSL contains some Engines but the user can add his own.

18

Background and related work

2.6.2 Version 3.0.x architecture

Version 3.0 is a major release [23] that changes the architecture of the library significantly. The
major changes are:

e Introduction of providers;
e New key concept in the libcrypto library;

e The deprecation of low-level APIs and Engines- low-level APIs were only formally
discouraged in the older versions but now are officially deprecated while Engines are replaced
by Providers. In this version are still working but in future versions, they will be removed.

e A new versioning scheme - the patch level now is indicated by the last number of the
version number, while before was a letter at the end of the release version number. For more
info see the OpenSSL Migration Guide [24];

e New cryptographic algorithms and deprecation of old ones - the use of deprecated
cryptographic algorithms is discouraged, but still present for compatibility in the legacy
provider.

With the new changes, the architecture receives an important rearrangement.

Ap

=
o
o
Bt
(=]
3
in

Common Protocols Legacy APls

- -

FIPS Provider

Figure 2.8. The conceptual components in the OpenSSL 3.0.X to-be architecture . (Source [22])

w

Default Provider Engine Legacy 3rd Party

Providers Provider Providers

Application

the command line applications, same as version 1.1.1.

19

Background and related work

Common Services

these are the common blocks used in providers and applications that provide utilities like input
and output handling, common format, etc.

Protocols

Is the block that implements the protocols. E.g., TLS, DTLS, OCSP(Ounline Certificate Status
Protocol), TS(Timestamp Protocol)

Legacy APIs

The old low-level APIs are kept for backward compatibility.

Core

This component redirects requests for service to the most appropriate provider that supplies it,
following a set of requested properties.

Providers

Providers are the component that collects algorithm implementations. By default, OpenSSL has
5 built-in providers:

e Default provider contains all default algorithms and it is loaded if no other provider is
requested;

e FIPS provider implements the FIPS validated algorithms, algorithms that follow the
minimum security requirements defined by the publication 140-2 of the Federal Information
Processing Standard (FIPS);

¢ Engines Provider allows the use of old Engines with the new version;
e Legacy provider contains the older deprecated algorithms;

e 3rd Party Providers allow users to develop and load their providers.

2.6.3 Providers and Crypto design

The major redesign of the libcrypto library is changing the focus from algorithms to operations:
the algorithms are grouped based on their purpose creating macro categories called operations
[25]. Available operations so far:

e Digests (OSSL_OP_DIGEST) - a collection of digest algorithms;

¢ Symmetric ciphers (OSSL_OP_CIPHER) - a collection of cipher algorithms;

e Message Authentication Code (OSSL_OP_MAC) - a collection of MAC algorithms;
e Key Derivation Function (OSSL_OP_KDF) - a collection of KDF algorithms;

¢ Random Number Generation (OSSL_OP_RAND) - a collection of random number
generation algorithms and random number sources;

¢ Key Management (OSSL_OP_KEYMGMT) - a collection of functions for creating,
holding and managing cryptographic keys;

¢ Key Exchange (OSSL_OP_KEYEXCH) - a collection of key exchange algorithms;
20

Background and related work

e Signing and Verification (OSSL_OP_SIGNATURE) - a collection of signing and ver-
ification algorithms;

¢ Asymmetric Ciphers (OSSL_OP_ASYM _CIPHER) - a collection of asymmetric ci-
pher algorithms;

e Asymmetric Key Encapsulation (OSSL_OP_KEM) - a collection of asymmetric key
encapsulation mechanism algorithms;

¢ Encoding and Decoding (OSSL_OP_ENCODER/OSSL_OP_DECODER) - collec-
tion of functions for encoding and decoding a generic function to a specific representation;

e Store Management (OSSL_OP_STORE) - collection of functions for loading a generic
object from a given URI,

Each operation offers a set of predetermined function templates, with fixed input and output
types, to standardize the things to do in that certain function.

There are two types: 0SSL_FUNC_operationname name_fn is the function type definition and
0SSL_FUNC_OPERATIONNAME_NAME is a constant that uniquely identifies in the operation that func-
tion.

Figure 2.9. Example of OSSL_FUNC. (Source [26])

The following image explains the interaction between the core, the provider, and the user
application. The usual use case of OpenSSL is a user application that wants to perform some
cryptographic operation using one of the supported algorithms.

21

Background and related work

1. Load Provider
Global Search Dispatch
Properties Cache Table

2.1. Fetch
Algorithi

2, Fetch
Algorithm

&k 1.2.1. Register

3. call i Query Functions
Algorithm 3.1. call

Algorithm

Figure 2.10. The interaction between core and provider. (Source [27])

Load provider

The user calls the 0SSL_PROVIDER load(ctx, providerid) or is called the default provider im-
plicitly. The core searches in the file system the shared object .so with the corresponding name and,
after allocating the correct amount of memory if not the standard provider, calls the provider’s en-
try point to start his initialization. The provider’s initialization function is 0SSL_provider_init
and has the task to initialize some provider variables with parameters passed by the structure
0SSL_DISPATCH to handle the library context and set the dispatch table, a static function that
maps the basic functions of the provider with a unique constant, used by the library to correctly
identifies the function independently by the name given by the developer.

1 static const OSSL_DISPATCH deflt_dispatch_table[] = {
2 { OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))deflt_teardown 1},
3 { OSSL_FUNC_PROVIDER_GETTABLE_PARAMS, (void

(%) (void))deflt_gettable_params },
{ OSSL_FUNC_PROVIDER_GET_PARAMS, (void (%) (void))deflt_get_params },
{ OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))deflt_query },
{ OSSL_FUNC_PROVIDER_GET_CAPABILITIES,

(void (%) (void))ossl_prov_get_capabilities },

{ 0, NULL }

© 00 O U

Figure 2.11. Example of dispatch table. (Source [28]).

22

Background and related work

1 int ossl_default_provider_init(const OSSL_CORE_HANDLE *handle,
2 const OSSL_DISPATCH *in,

3 const OSSL_DISPATCH x**out,

4 void **provctx)

5 {

6 OSSL_FUNC_core_get_libctx_fn *c_get_libctx = NULL;

7 BIO_METHOD *corebiometh;

8

9 if (lossl_prov_bio_from_dispatch(in)

10 || tossl_prov_seeding_from_dispatch(in))

11 return 0;

12 for (; in->function_id !'= 0; in++) {

13 switch (in->function_id) {

14 case OSSL_FUNC_CORE_GETTABLE_PARAMS:

15 c_gettable_params = OSSL_FUNC_core_gettable_params(in);
16 break;

17 case OSSL_FUNC_CORE_GET_PARAMS:

18 c_get_params = 0SSL_FUNC_core_get_params(in) ;
19 break;

20 case OSSL_FUNC_CORE_GET_LIBCTX:

21 c_get_libctx = 0SSL_FUNC_core_get_libctx(in);
22 break;

23 default:

24 /* Just ignore anything we don’t understand */
25 break;

26 }

27 }

28

29 *out = deflt_dispatch_table;

30 ossl_prov_cache_exported_algorithms(deflt_ciphers, exported_ciphers);
31

32 return 1;

33 2

Figure 2.12. Example of provider init function. (Source [28]).

Fetch algorithm

The user application request to use a certain algorithm for a determined operation with some
proprieties to the EVP interface. The EVP interface first searches it in the search cache, if
previously cached. If not present calls the provider function PROVIDER_QUERY. This function
receives in input an integer that represents the operation’s id and returns, if present the vector
0SSL_ALGORITHM, a collection of entries in the form of {Algorithm name, list of proprieties,
implementation function vector}

23

Background and related work

1 static const OSSL_ALGORITHM deflt_digests[] = {

2 /* Our primary name:NIST name[:our older names] */

3 { PROV_NAMES_SHA1, "provider=default", ossl_shal_functions },

4 { PROV_NAMES_SHA2_224, "provider=default", ossl_sha224_functions 1},
5 { PROV_NAMES_SHA2_256, "provider=default", ossl_sha256_functions 1},
6 ...

7 %

8

9 static const OSSL_ALGORITHM *deflt_query(void *provctx, int operation_id,
10 int *no_cache)

11 {

12 *no_cache = 0;

13 switch (operation_id) {

14 case 0SSL_OP_DIGEST:

15 return deflt_digests;

16 case 0SSL_OP_CIPHER:

17 return exported_ciphers;

18 case 0SSL_OP_MAC:

19 return deflt_macs;

20 ..

21 return NULL;

22 %}

Figure 2.13. Example of provider query function and one OSSL_ALGORITHM
structure. (Source [28]).

After receiving the 0SSL_ALGORITHM vector, the EVP interface first searches all rows with the
chosen algorithm’s name, then choose the row with the best matching proprieties. The user can
omit the proprieties, resulting in the default search, or define a set of mandatory and optional
properties. In that case, is chosen the row that matches all mandatory properties and has the
major number of matches from the optional ones. From this row is taken the implementation
function vector that consists of a set of tuples in the form of {constant unique integer, pointer
to function . The integers are publicly defined by OpenSSL, so the function pointers are correctly
identified and used to fill the search cache.

1 const OSSL_DISPATCH ossl_pem_to_der_decoder_functions[] = {

2 { OSSL_FUNC_DECODER_NEWCTX, (void (%) (void))pem2der_newctx 1,
3 { OSSL_FUNC_DECODER_FREECTX, (void (*)(void))pem2der_freectx },
4 { OSSL_FUNC_DECODER_DECODE, (void (*)(void))pem2der_decode 1,
5 { 0, NULL }

6 1};

Figure 2.14. Example of decoder’s implementation function vector. (Source [29]).

Call algorithm

The user application calls the requested EVP function, like EVP_DigestUpdate () and the function
pointer previously fetched, is executed.

24

Chapter 3

Design and Implementation

In this chapter will be presented the work done for this thesis, from the initial study and design
phase to the actual final implementation, and explained some choices made.

3.1 Case study: tpm2-tss-engine

After an initial phase of studying the work and the state of the art, it came naturally to wonder
which version of OpenSSL to start with. Currently, there are two LTS versions, the 1.1.1x and
the new 3.0.x version. As an initial choice, it was decided to start with version 1.1.1x because,
being the longest-lived version, it has code stability, fewer bugs, and is not subject to change.

The initial goal is to analyze how this version would work, and how Self-Sovereign Identity
could be integrated. To do this, the first step was to analyze and study an engine because it
perfectly shows the interaction between OpenSSL, the engine, and a cryptographic implementa-
tion. It was decided to study the engine that allows the use of TPM2.0[30] with the OpenSSL
applications, the tpm2-tss-engine[31]. This engine uses the TPM Software Stack (TSS)[32], the
middle-level APIs Enhanced System API (ESAPI)[33], to communicate with the TPM. This en-
gine supports:

¢ Random number generation hardware;
¢ RSA and ECDSA sign and verification,;

e TLS secure channel with TPM protected key.

The engine does not support the creation of keys, but it is provided with an external program,
tpm2tss-genkey [34], that generates RSA and ECDSA volatile TPM protected keys. To generate
persistent keys, the tpm2-tools must be used instead of the program|[35].

3.2 Models

In studying the operation of the tpm2-tss-engine, it was evident that its operations, net of specific
differences required by the underlying cryptographic implementation, follow a pattern. For each
operation, the workflow was studied, and the generic model explaining the pattern was extracted.
Each model shows the interaction between the OpenSSL library, the engine, and the back-end
implementation and they will be the basis for a better understanding of the library and for defining
the integration requirements of Self-Sovereign Identity.

In the following sections, each model is analyzed in detail.

25

Design and Implementation

3.2.1 Loading a key

The first model made deals with the loading of a TPM key. The key generation model is not
present because in the engine studied, key creation is not present but is done by an external
program, and since the models study the interaction between OpenSSL, the engines, and the
actual cryptographic implementation, it was chosen not to include it.

Model: Loadkey

Implementation | Engine | OpenssL |

input: |

- The engine for this callback (unused). e-=>load_privkey(e, key_id, ui_method, callback_data)/

-key_id The name of the file with the key data. e->load_pubkey(e, key_id, ui_method, callback_data);
-ui The ui functions for querying the user(unused). |~€

-cb_data Callback data(unused).

2 Engine_load_key(e, key_id, ui_method, callback_data)

_ 3implementation_get_key(key_id)

-

4 implementation_key

Implementation's form of the key Iﬁ

L
>

5 key=EVP_PKEY_new() | OpenSSL generic structure to hold
diverse types of asymmetric keys

alt) [implementation_key->type == rsa]
6 rsa_key=RSA_new()

sets EVP_PKEY object with key parameter from 'T 7 Engine_convert_key(rsa_key.implementation_key)

the implementation's object key

8 EVP_PKEY assign_RSAlkey, rsa_key)

[implementation_key->type == ecc]
| 9 eckey = EC_KEY_new()
| 10 Engine_convert_keyleckey.implementation_key)
| 11 EVP_PKEY_assign_EC_KEY(key, eckey)
| output: 12 key
i -loaded EVP_PKEY key >

Implementation | Engine | OpenssL |

Figure 3.1. OpenSSL1.1.1 model for loading a key

OpenSSL calls the engine’s function passing the key id as arguments. The engine uses the id
to retrieve the key encoded in the implementation form. After allocating a EVP_PKEY, an OpenSSL
object that holds various types of asymmetric keys, depending on the key type of the appropriate
object is allocated and the key is properly translated by filling this object. After filling the
EVP_PKEY with the newly generated object, is returned to OpenSSL.

3.2.2 Random number generation

The model of random number generation is very simple. OpenSSL calls the engine’s function
passing a buffer to fill with a certain number of random bytes. If requested by the implementation,
the engine calls the function that seeds the random number generation and then calls the actual
implementation’s random function that fills the buffer. At the end of the function, the buffer is
returned to OpenSSL.

26

Design and Implementation

Fage Header

Model: Rand

Implementation | Engine |OpenSSL

input: !
-output buffer i _ 1 meth-=bytes(buf, num)

-number of bytes to generate

2 Engine_rand(buf, num)

3 implementation_get seedl()

seed

o
-

5 implementation_rand(buf, num, seed)

A

output:
-return ret=1 on success, 0 on failure 6 ret -
-output buffer filled | -

4 |

Implementation Engine OpenssL

Figure 3.2. OpenSSL1.1.1 model for generating a random number

3.2.3 Signature creation
The signature creation in OpenSSL 1.1.1 is dependent on the algorithm and there are two levels,

the high-level EVP calls the low-level algorithm-dependent implementation. In the following
models, the low-level implementation is analyzed because is the most meaningful.

27

Design and Implementation

Model: RSA sign

Implementation | Engine | OpenSSL|

input: |

-tbslen Length of the data to be signed [. .
-tbs The data to be signed. | :RSA_private_encryptitbslen, ths, sig,
-sig The buffer to write the signature to | = ctx->pkey->pkey rsa.rctx->pad_mode);

-ctx->pkey->pkey.rsa The rsa key object
-rctx-=pad_mode The padding scheme to be used

2 Engine_rsa_sign(flen,from,to,rsa,padding)

3 ctx=new_CTX()

4 prepare_ctx(ctx, rsa)

prepare the context with correct parameters
required by the implementation

implementation_RSA_padding_add(&ctx digest.buffer[0],
ctx digest.size,from,flen,padding);

A

6 RSA_to_implementation_key(key,rsa);

sets implementation's object key with key parameter from
the rsa object

7 implementation_RSA_signl&ctx, flen.from.key padding);

Y

9 memcpyl(to, &sig->buffer{0]);

output:
-return size of the returned signature or 0 on failure
-signature in the buffer “to” |

-
>

Implementation | Engine | OpenSSL|

Figure 3.3. OpenSSL1.1.1 model for generating a RSA signature

OpenSSL calls the engine’s function passing as arguments the data to be signed, the buffer
to fill with the computed signature, the RSA key object holding the private RSA key, and an
integer that indicates which padding. The engine sets up the context, an object that holds the
data needed by the implementation and fills it. Then calls the implementation function to pad the
data, if needed, and finally calls the implementation function that returns the actual signature.
After copying the signature in the buffer, returns it to OpenSSL.

The ECDSA signature generation is similar but the OpenSSL functions for ECDSA are dif-
ferent with different input parameters and return values.

28

Design and Implementation

Model: ECDSA sign

Implementation | Engine | OpenssL |

input: |
-dgst The data to be signed !

-dlen Length of the data from buffer. |
-kinv Ignored

-rp Ignored

-eckey The ECC key object

_ 1 ECDSA_do_sign_ex(dgst. dlen. kinv. rp. eckey);

2 Engine_ecdsa_sign(dgst, dgst_len, inv, rp, eckey)

3 ctx=new_CTX()

4 prepare_ctx{ctx, eckey)

I

I

i

I

i

I

| prepare the context with correct parameters
| required by the implementation

I
i
h
i
i
I
I
i

5 ECDSA_to_implementation_key(key.eckey);

sets implementation's object key
with key parameter from the EC object

6 implementation_ECDSA_sign(&ctx, key,&sig, dgst, dlen);

7 sig

8 memcpylto, &sig-=buffer[0]);

output:
-return size of the computed signature, 0 on failure
-signature in the buffer to

Implementation ‘ Engine | | OpenssL |

Figure 3.4. OpenSSL1.1.1 model for generating an ECDSA signature

OpenSSL calls the engine’s function passing as arguments the data to be signed, the length
of the passing data, and the ECDSA key object holding the private key. The engine set up the
context, an object that holds the data needed by the implementation and fills it. The EC object
key is translated into the implementation key, by setting up the curve and points. Then calls the
implementation function that returns the actual signature and, after copying the signature in the
buffer, returns it to OpenSSL the size of the computed signature.

3.2.4 Signature verification

The signature verification in OpenSSL 1.1.1, similarly to the signature creation, is dependent on
the algorithm and there are two levels, the high-level EVP calls the low-level algorithm-dependent
implementation. In the following models, is analyzed the low-level implementation because is the
most meaningful.

29

Design and Implementation

Model: RSA verify

Implementation | Engine | OpenssL |

input:

-dtype NID of the digest algorithm to use
-m digest

-m_length digest length

| rsa_verify(dtype, m,
-sigbuf RSA signature to verify =<

m_length. sigbuf,siglen, rsa)

-siglen RSA signature length
-rsa The RSA object

Engine_rsa_verify(dtype.m,
m_length, sigbuf.siglen, rsa)

3 RSA_to_implementation_key(key.rsa);
with key parameter from the rsa object

decrypt_buf=implementation_RSA_public_decrypt
(siglen, sigbuf, key, padding);

—

5 ret=compare_digest(decrypt_buf.m.m_length.type)

compare digest given with the one decrypted
depending on the digest type

>

output
-return 1 of on successful verification
-0 on otherwise

I
|

|

I

|

I

|

|

| 5 , X

| sets implementation's object key
i

|

T

I

|

I

|

|

Implementation | Engine | ‘ OpenssL

Figure 3.5. OpenSSL1.1.1 model for verifying a RSA signature

OpenSSL calls the engine’s function passing as arguments: the indicator of which digest
algorithm was used on data, the digest itself, the digest length, the signature data to verify, the
length of the signature, and the RSA key object holding the public key. The RSA object key
is translated into the implementation key form, by setting up the important parameters. Then
the engine calls the implementation function that returns the decrypted digest from the signature
data. The engine returns to OpenSSL the comparison value between the decrypted data and the
passed digest data. If the return value is zero then the signature is correct and the verification is
successful.

The ECDSA signature generation is similar but the OpenSSL functions for ECDSA are dif-
ferent with different input parameters.

Model: ECDSA verify

Implementation | Engine | OpenssL ‘

INput:

-dgst pointer to the hash value to verify

-dgstlen length of the hash value

-sig ECDSA_SIG structure that contains the signature
-eckey EC_KEY object containing a public EC key

ECDSA_do_verify(dgst,
dgstlen,sig,siglen, eckey)

| Engine_ecdsa_do_verify(dgst, i
| dgstlen,sig.siglen, eckey))

3 ec_get_curve_id(key, &curveld)

4 ECDSA_to_implementation_key(eckey. key) | sets implementation's ohject key
with key parameter from the EC object

ret=implementation_ecc_verify(

sigDer, sigDerSz, dgst. dgstlen, &key); compare digest given with the one decrypted Iﬁ

-0 on otherwise

Implementation | Engine | OpenssL ‘

Figure 3.6. OpenSSL1.1.1 model for verifying an ECDSA signature

output:
-return 1 of on successful verification

OpenSSL calls the engine’s function passing as arguments: the digest to verify, the digest
length, the signature data to verify, and the EC key object holding the public key. From the
implementation is retrieved the information about the curve used and then the EC object key

30

Design and Implementation

is translated into the implementation key form, by setting up the important parameters. After
that the engine calls the implementation function that verifies the passed signature and, if the
signature verification is successful, the engine returns 1 to OpenSSL, and 0 otherwise.

3.3 Design of engine from models

After developing the models, the next step was to practice with the engines. Functions from the
Mbed-TLS[36] library were chosen as cryptographic primitives because they are easy to use, and
written in the C language as OpenSSL. To test the truthfulness of the models, it was decided
to implement them. and a mock-up engine was produced with: RSA and ECDSA key loading
capability, signing and verification with the same algorithms, and random number generation;
More detailed information can be found in the developer manual.

3.4 Upgrade the models to 3.0 design

For the sake of completeness, the new version of OpenSSL was considered and studied as described
in the chapters 2.5.2. It has emerged how this version was created with the idea in mind of crypto-
agility and code cleanliness by trying to standardize the functions of all the algorithms dealing
with the same operation. Individual functions have been divided into smaller functions with
specific tasks, and context creation, previously analyzed and recognized as an operation often
performed, is now officially standardized and present in most operations by dedicated function.

3.4.1 Loading and creation of a key
The first noticeable thing, compared to the model of the previous version, is its strong modularity

because it goes from one macro function to multiple small and specialized functions. In addition,
the creation of the key as well as its loading has also been analyzed.

31

Design and Implementation

Model: Create and Load key

Implementation ‘ ‘ Provider OpenssL ‘

| 1 05SL_FUNC_keymgmt_new(provctx); !

create a provider side key object.

The provider context provctx is passed
and may be incorporated in the key object,
but that is not mandatory.

Implementation_key *k= OPENSSL_zalloc(
sizeof{implementation_key));

3 load_datalk,provctx);

4k,

Y

| 5OSSL_FUNC_keymgmt_gen_init(
provctx, selection, params)

T
i
|
|
|
|
|
|
|
|
|
|
|
|
i
i
|
|
|
|
|
|
|
|
|
|
|
| |
i -
-
|
|
|
|
|
|
|
|
|
|
|
|
i
i
|
|
|
|
|
|
|
|
|
|
|
|
i
T

should create the key object generation context

and initialize it with selections,

which will determine what kind of contents

the key object to be generated should get.

The params. if not NULL, should be set on the context.

Implementation_keygen *kg= OPENSSL_zalloc(
sizeof{implementation_keygen));

7 load_datalkg.provctx);

8 keymgmt_gen_set_params(kg, params)

-
>

Implementation ‘ ‘ Provider OpenssL ‘

Figure 3.7. OpenSSL 3.0 model for loading a key 1/2

OSSL_FUNC _keymgmt_new and OSSL_FUNC _keymgmt _free

These functions are concerned with creating and destroying a context, the key object and even-
tually filling it.

OSSL_FUNC _keymgmt_gen_init

This function takes care of creating a context used during the key generation. Through the params
vector, some optional generation information can also be specified to be added to the context.

32

Design and Implementation

Implementation | Provider OpenssL |

| 10 055L_FUNC_keymgmt_gen(ctx,ch,charg) |

The callback cb should be called at regular intervals

| the key object generation and return the result.
| with indications on how the key object generation progresses.
|

alt | [rsal

implementation_

11 create_RSAkey(ctx-=k, ctx);

A

[ecc]

implementation_

12 create_ECkey(ctx-=k, ctx);

A

L
>

-loaded EVP_PKEY key

i output: IT 13 ctx->key

should import data indicated by selection
into keydata with values taken from

the OSSL_PARAM array params

return 1 for success or 0 on error

alt / | [selection &

| OSSL_KEYMGMT_SELECT_PUBLIC_KEY]
i

. 15 load_publicpart(keydata, params)

OS5L_FUNC_keyrmgmt_import(
keydata,selection.,params);

A

|
[selection &
0SSL_KEYMGMT_SELECT_PRIVATE_KEY]

' _ 16 load_privatepartikeydata, params)

[selection &
0SSL_KEYMGMT_SELECT_KEYPAIR]

:’ 17 load_keypair(keydata, params)

18 ret

L
>

. 19 0S5L_FUNC_keymgmt_free(keydata);

€

| 20 free(keydata);

21

L
| F

A I,
Implementation Prcvider‘ |OpenSSL |

Figure 3.8. OpenSSL 3.0 model for loading a key 2/2

OSSL_FUNC _keymgmt_gen

This function takes care of generating the key by calling the implementation function based on
the key type, filling the previously generated context

OSSL_FUNC _keymgmt_import

This function deals with importing a key. Using the selection flag, it is possible to select which
part of the key to load. The provider calls the appropriate implementation function and returns
the result to OpenSSL

3.4.2 Random number generation

This model is very similar to its previous model but a context creation and distraction has
been added that can be used during random generation. The major difference is found in the
generation function which is designed to support more complex and secure generation. One may
define minimum safe bits, additional entropy sources, and a prediction_resistance flag to force
reseeding from a live entropy source.

33

Design and Implementation

Model3.0: Random Number Generation

Implementation | I Pravider| | OpenssL
@000 — L
0SSL_FUNC_rand_newctx(
1 woid *provctx, void *parent,
const OSSL_DISPATCH *parent_calls);

| Create specific context'ﬁ

-

Implementatlon CTX *c= OPENSSL_zalloc(
sizeof(Implementation_CTX));

3 load_data_into_ctx({provctx,c);

4c

-
0SSL_FUNC_rand_generate(void *ctx, unsigned char *out,
size_t outlen,unsigned int strength,
int prediction_resistance,
const unsigned char *addin, size_t addin_len);

|
|
|
i
i
|
r

-out buffer to fill
-outlen size in bytes to generate
-strength generated bytes will meet the specified security
-prediction_resistance flag if true, the bytes will be produced
after reseeding from a live entropy source
-Additional input addin of length addin_len bytes can optionally be provided

6 implementation_get seed()
3

| 8 implementation_rand(out, outlen, seed)
s

output:
-return ret=1 on success, 0 on failure 9 ret
-output buffer "out"filled of outlen bytes

|
| 10 O0SSL_FUNC_rand_freectx(void *ctx);
<
|11 free(c);
|

Implementation | Prc\nder OpenSSL |

Figure 3.9. OpenSSL model for generating a random numer

| Destroy specific context 'ﬁ

|
i
i
i
I
i
i
| |
' 7 seed !
I
i
i
]
i
]
i

|
|
|
|
|
|
|
|
|
|
|
|
| -

=
|

3.4.3 Signature creation and verification
This model has undergone a substantial change from its previous model. Since OpenSSL 3.0

has grouped the algorithms that deal with the same functions into groups called operations, now
creation and verification of a signature have the same model, regardless of the algorithm chosen.

34

Design and Implementation

Model3.0: Signature creation

Implementation | | Provider OpenSSL |

| Create specific contextlﬁ ' _ 1 055L_FUNC_signature_newctx(provctx.propg);!

Implementation_CTX *c= OPENSSL_zalloc(

2 sizeof{implementation_CTX));

3 load_data_into_ctx(provectx,cl;

Y

0SSL_FUNC_signature_sign_init(i
ctx, provkey, params))

initializes a context for signing given
a provider side signature context in the ctx parameter,

a pointer to a provider key object in the provkey parameter
optionally params

6 signature_set_ctx_params(ctx, params)

7 set_ctx_key(ctx, provkey)

Implementation | | Provider OpenSsL |

Figure 3.10. OpenSSL model for generating a signature 1/2

-

OSSL_FUNC _signature_newctx and OSSL_FUNC _signature_freectx

These functions are concerned with creating and destroying a provider-side context used by the
provider during the signature creation phase.

OSSL_FUNC_signature_sign_init

This function is used for the preparation of a context used during the signing. Through the
object passed as parameter provkey, the provider sets the key that will be used during the
signing. Optionally, through the vector params it is possible to set parameters that are needed
during the signing phase.

35

Design and Implementation

Implementation Provider OpenssL

0SSL_FUNC_signature_sign(

8 ctx, sig, siglen, sigsize, ths, thslen)

! input: !
i -ctx signature context i
! -tbs The data to be signed. !
| -thslen length of data to be signed in byte |
! -sig the buffer to write the signature to or NULL !
| -siglen sig should not exceed sigsize |
! or if sig is NULL then the maximum length !
| of the signature should be written in *siglen |

alt [sig == NULL]
9 siglen = estimate_signature_size(ctx);

10 siglen

Y

alt [rsa]

implementation_RSA_sign{
11 ctx, sig, siglLen,
sigSize, ths, thsLen, ctx->padMode);

[ec]
implementation_ECDSA_sign(
12 ctx, sig, sigLen,
sigSize, ths, thsLen);

-
-

13 sig

-signature in the buffer "sig"

|
|

r >
|

| output:

i -return 1 on success or 0 on failure

|

|

| Destroy specific context = | < 15 OS5L_FUNC_signature_freectx(void *ctx);

16 free(c);

Implementation Provider OpenssL

Figure 3.11. OpenSSL model for generating a signature 2/2

OSSL_FUNC _signature_sign

This function deals with the creation of the signature. As parameters, it receives the previously
created context and sets it; the data to be signed and its length in bytes; the buffer to be filled
with the signature; a parameter siglen which can be an integer indicating the maximum size
of the signature or NULL. If sig is NULL than the provider uses the implementation function to
estimate the maximum signature size, writes it in *siglen and returns to OpenSSL. If sig is not
NULL, the provider uses the implementation function to generate the signature, using the correct
function based on the key type with its required parameters. It fills the buffer sig and returns
to OpenSSL 1 or 0 to indicate success or failure, respectively.

36

Design and Implementation

Model3.0: Signature verify

Implementation | | Provider OpenssL |

Create specific context ' _ 1 0S5L FUNC_signature_newctx(provctx.propgl; !
<

Implementation_CTX *c= OPENSSL_zalloc(
sizeof{implementation_CTX));

3 lpad_data_into_ctx(provetx,c);

4c

| >

i
i
i
i
i
i |:|1 5 0S5L_FUNC_signature_verify_init{ctx.provkey.params)
| initializes a context for verifying a signature given

| a provider side signature context in the ctx parameter,

| a pointer to a provider key object in the provkey parameter
| optionally params

i

i

i

i

6 signature_set_ctx_params(ctx, params)

7 set_ctx_key(ctx, provkey)

-

Implementation | Provider OpenssL |

Figure 3.12. OpenSSL3.0 model for verifying a signature 1/2

OSSL_FUNC _signature_newctx and OSSL_FUNC _signature_freectx

These functions are concerned with creating and destroying a provider-side context used by the
provider during the signature creation phase.

OSSL_FUNC _signature_verify_init

This function is used for the preparation of a context used during the verification. Through
the object passed as parameter provkey, the provider sets the key that will be used during the
verification. Optionally, through the vector params it is possible to set parameters that are needed
during the verification phase.

Implementation | Provider OpenssL |

input: |
-ctx signature context !
-ths The signed data i
-thslen length of the signed data in byte |

i
|

| 0SSL_FUNC_signature_verify(
| -sig the signature

i

|

ctx, sig, siglen, sigsize, ths, thslen)

-siglen signature size in byte

alt [rsa]

implementation_RSA_verify(

2 ctx, sig, siglen, ths, thslen, ctx->padMode);

[ecc]

implementation_ECDSA_verify(

10 5y, sig, siglen, ths, thslen);

11 ret

>

output ﬁ 12 ret

-return 1 on success or 0 on failure

I
Destroy specific context H | 13 055L_FUNC_signature_freectx(void *ctx);

I14 free(c): !

-

Implementation | | Provider OpenssL |

Figure 3.13. OpenSSL3.0 model for verifying a signature 2/2

37

Design and Implementation

OSSL_FUNC _signature_verify

This function takes care of signature verification. As parameters, it receives the previously created
context and sets it; the signed data and its length in bytes; the signature to be verified, and its
length in bytes. The provider uses the implementation function to generate the signature, using the
correct function according to the type of key and the required parameters. The implementation
performs the verification and returns the result to the provider. Based on the response, the
provider returns to OpenSSL 1 or 0 to indicate success or failure, respectively.

3.5 Design of provider from models

The updated models show how this version aims to have more uniform code, greater simplicity
of development, and more detailed parameter handling. Exactly as I did with the templates,
I updated the engine by writing the corresponding provider. At the level of functionality, it
remained similar but in addition, it has an internal ECDSA and RSA key generation, all again
taking advantage of the cryptographic primitives offered by Mbed-TLS[36] library. Another new
feature compared to the engine, is the presence of an encoder, a unit of code that is responsible
for changing the encoding of an object, for example, a key from its internal representation to
PEM encoding. More detailed information can be found in the developer manual.

3.6 DID operation

After analyzing both versions of OpenSSL it was decided that the best version to develop our work
was 3.0. Being the latest version there was guaranteed to be more time support, more innovation
to the thesis, and in general, the best at the code level highlighted in the previous paragraphs.
The first step in integrating Self-Sovereign Identity into OpenSSL 3.0 is to design and develop an
operation involving DIDs and a set of supporting APIs.

3.6.1 Design

To define a new operation you must first define a constant indicating the new operation. In openss-
l/include/openssl/core_dispatch.h the operation 0SSL_OP_DID was added and assigned a unique
number. The next step is to define the functions that make up the operation. Through the
#defines we define the integers that identify the functions. With the 0SSL_CORE_MAKE FUNC
macro, you define the function template in the form return type, function name, input
parameters

38

Design and Implementation

#define OSSL_OP_DID 23

#define OSSL_FUNC_DID_CREATE 1

#define OSSL_FUNC_DID_RESOLVE 2

#define OSSL_FUNC_DID_UPDATE 3

#define OSSL_FUNC_DID_REVOKE 4

0SSL_CORE_MAKE_FUNC(void *, did_create, (void *sigl, size_t siglenl,int
typel,void *sig2, size_t siglen2,int type2))

0SSL_CORE_MAKE_FUNC(int, did_resolve, (char * index, DID_DOCUMENT* did_doc))

OSSL_CORE_MAKE_FUNC(int, did_update, (char * index, void *sigl, size_t
siglenl,int typel,void *sig2, size_t siglen2,int type2))

10 O0SSL_CORE_MAKE_FUNC(int, did_revoke, (char * index))

N O U W N

© oo

Figure 3.14. Functions defining the operation DID.

These functions will be implemented by providers and, regardless of the underlying DID
Method, should follow the following guidelines:

did_create

This function has to create a DID document and write it into the DID Method, starting with two
public keys, authentication, and assertion, of type type and length siglen. the return value is a
void* to pass a generic structure, depending on the developer’s needs.

did_resolve

This function searches for a DID document from the DID Method, starting with the DID and possi-
bly filling in the empty structure DID_DOCUMENT. The return value is an integer indicating the result
of the resolve: DID_OK the document was found and received correctly; DID_NOT_FOUD the docu-
ment was not found; DID_REVOKED the document was found but was revoked; DID_INTERNAL_ERROR
represents a generic error received during the process of the resolve.

did_update

This function updates a DID document starting with the DID to be updated and the new keys
to be embedded in the document in the same form as did_create. The return value is an inte-
ger indicating the result of the update: DID_OK the document was found and modified correctly;
DID_NOT_FOUD the document was not found; DID_REVOKED the document was found but was re-
voked; DID_INTERNAL_ERROR represents a generic error received during the process of the update.

did_revoke

This function revokes a DID document starting with the DID. The return value is an inte-
ger indicating the result of the revoke: DID_OK the document was found and revoked success-
fully;DID_NOT_FOUD the document was not found; DID_REVOKED the document has already been
revoked; DID_INTERNAL_ERROR represents a generic error received during the revoke process.

Data structures

OpenSSL has two types of structures: internal, which can be used only by OpenSSL, and external,
which can also be used by applications by including the correct .h file. This division was created

39

Design and Implementation

to make the data structures opaque so that, in case of changes due to future updates, applications
do not have to be modified. Following this philosophy, there have also been two levels of structures
for the DID operation, recognizable by the uppercase name for the external ones and lowercase
for the internal ones.

The first structure is DID_CTX, a context to be used in conjunction with the API, and the
second structure is DID_DOCUMENT, which represents a DID document within the application.
In openssl/include/openssl/types.h correspondence between external and internal structures are
defined.

\}

typedef struct did_ctx_st DID_CTX;
3 typedef struct did_document_st DID_DOCUMENT;

Figure 3.15. Declaration of external data structures.

Internal structures are defined in openssl/include/crypto/did.h.

1

2 struct did_ctx_st {

3 0SSL_LIB_CTX *1libctx;

4 char *methodtype;

5 /* Method associated with this operation */
6 OSSL_FUNC_did_create_fn *didprovider_create;
7 0SSL_FUNC_did_resolve_fn *didprovider_resolve;
8 0SSL_FUNC_did_update_fn *didprovider_update;
9 0SSL_FUNC_did_revoke_fn *didprovider_revoke;
10 OSSL_PROVIDER *prov;

11 3

12

13 struct did_document_st {

14 //authorization methods

15 unsigned char * sigl;

16 size_t siglenil;

17 int typel;

18 //assertion methods

19 unsigned char * sig2;

20 size_t siglen2;

21 int type2;

22 };

Figure 3.16. Definition of internal data structures.

did_ctx_st/DID_CTX

This is a context used in conjunction with the API. The fields *didprovider_create, *didprovider—
_resolve, *didprovider_update, and *didprovider_revoke are function pointers that contain
the implementations of the provider *prov, obtained after the fetch phase. The fields *1ibctx and
methodtype are currently present only for possible future compatibility, in case of applications
that will use different library contextsOSSL_LIB_CTX or different DID method implementations in
the same provider.

40

Design and Implementation

did_document_st/DID_DOCUMENT
This is a context that represents internally to OpenSSL a DID document. The sig field is the

pointer to a buffer containing a public key of type type, length siglen in PEM format. The
authorization method is defined by variable set 1, while 2 represents the assertion method.

3.6.2 API

The set of supporting APIs, defined in openssl/include/openssl/did.h and implemented in openss-
I/crypto/did/did_meth.c, are explained below.

DID_CTX_new and DID_CTX _free

These functions create and release the object DID_CTX.

DID_DOCUMENT _new and DID_DOCUMENT _free

These functions create and release the object DID_DOCUMENT.

DID_DOCUMENT _set

This function fills an object DID_DOCUMENT with the signatures, their type, and their length.

DID DOCUMENT set_auth_key and DID DOCUMENT set_assertion_key

These functions set the authorization key and assertion key, respectively.

DID_DOCUMENT _get_auth_key and DID_DOCUMENT _get_assertion_key

These functions get the authorization key and assertion key, respectively.

DID _fetch

This function takes care of searching CRUD functions against a certain DID Method chosen by the
parameter #*algorithm. It calls OpenSSL’s internal ossl_provider_query_operation function,
which, by calling the provider_query function of the provider previously loaded into the context,
returns if present the 0SSL_DISPATCH vector. If present, it searches all rows for the implementation
corresponding to the chosen DID Method and, thanks to the unique function identifiers, fills in
the empty function pointers present in the context.

DID _create

This function executes the provider create function. On input it receives the DID_CTX object
and the DID_DOCUMENT object pre-filled. After doing an input check it calls the context function
pointer containing the function found during DID_fetch and returns the pointer to the newly
created DID document, or NULL in case of failure.

DID _resolve

This function executes the provider’s resolve function. As input, it receives the DID_CTX object,
a string containing the DID to be searched for, and the empty DID_DOCUMENT object that will be
filled if found. After checking the inputs it returns the context function pointer containing the
function found during DID_fetch.

41

Design and Implementation

DID _update

This function executes the provider’s update function. As input, it receives the DID_CTX object,
a string containing the DID to be updated, and the DID_DOCUMENT object containing the updated
document. After doing an input check it returns the context function pointer containing the
function found during DID _fetch.

DID _revoke

This function executes the provider’s revoke function. As input it receives the object DID_CTX,
a string containing the DID to be revoked. After doing an input check it returns the context
function pointer containing the function found during DID_fetch.

To make these functions exportable, in addition to defining them in the public .h file, all of
them were also added to the openssl/util/libcrypto.num file in this form since all of libcrypto’s
public functions are in this file.

DID_fetch 5558 3_0_4 EXIST::FUNCTION:
DID_CTX_new 5559 3_0_4 EXIST::FUNCTION:
DID_create 5560 3_0_4 EXIST::FUNCTION:

W N =

Figure 3.17. Definition of exportable libcrypto function.

3.7 DID Method: OTT

The DID method chosen to use the integration of Self Sovereign Identity in OpenSSL is the DID
method, designed by the LINKS Foundation, did:ott which uses as the underlying technology
the Distributed Ledger Technology (DLT) provided by Iota, designed as a scalable, lightweight
solution perfect for an Internet-of-Things (IoT) ecosystem, and WAM as the communication
protocol, again developed by LINKS Foundation from an IoT perspective. As a starting point, a
library was provided containing what is needed to write and read from the DLT, through a read
function (WAM_read) and a write function (WAM_write) and an object, WAM_channel, containing
the data needed for communication. Read and write functions work on the WAM packet and
allow it to read and write the APPDATA field, then take care of the rest of the protocol previously
described in section 2.5. Specifically, the APPDATA field is filled with a text string containing the
DID Document. Since it is a JSON document and there is no native support in the C language,
the open-source ¢JSON [37] library that takes care of parsing has been added as support. As for
the key types the DID method currently supports Ed25519, RSA, and ECDSA Secp256k1 curves
keys.

save_channel and load_channel

This function is responsible for saving and loading the WAM_channel structure, representing the
communication channel with the DLT of a certain DID, created at its creation and used in revoke
update operations.

did_ott_create

This function implements the create function of the DID method OTT. The function as input
parameters receives an empty did_new pointer that will be filled with the string containing the

42

Design and Implementation

future DID and a method structure that acts as a container for the data needed to create the
DID method, to be filled in by the caller. It first initializes a new WAM_channel by loading the
pre-shared key, the IOTA endpoint (dev net in our case), and a context for authentication. From
the newly created channel we extract the source index i.e., the DID Method-Specific Identifier, as
explained in Figure 2.1. Then the string containing the DID document in JSON form is created
from the fields in the method structure using the functions offered by cJSON. Finally the function
WAM_write is called which creates the WAM packet and sends it to the tangle. If the message
is successfully sent, the channel is saved by calling the function save_channel and the string
containing the new DID is created by having it pointed to by did new and the function returns
the constant DID_CREATE_OK.

did_ott_resolve

This function implements the resolve function of the DID method OTT. The function as input
parameters receives an empty structure did_document representing the DID document to be filled
in case of success for the resolve and a string pointer *did containing the DID to be found. It
first initializes a new WAM_channel by loading the pre-shared key, the IOTA endpoint (dev net in
our case). From the DID string, we get the index which is loaded into the channel for reading.
Then the function WAM_read is called in a while loop, with the loop condition of receiving a valid
message. For each iteration, it checks that the next_index, which is the future DID Method-
Specific Identifier is not equal to all zeros. In that case, it means that the document was found
but was revoked so it returns the constant DID_RESOLVE_REVOKED. If it exits the loop it checks that
there was at least one document found otherwise it returns the constant DID_RESOLVE_NOT_FOUND.
If a document was found the text string is parsed and the did_document object is re-created,
filling the input parameter and returning the constant DID_RESOLVE_OK.

did_ott_update

This function implements the update function of the DID OTT method. The function receives
as input parameters a pointer did containing the DID to be updated and the structure method
containing the data of the document to be updated. As a first step, the function load_channel
is called, which takes care of loading the channel allocated upon creation of the DID document.
Then, starting from the method structure, the DID document is created, in the same manner
as the create function. The newly updated document is then passed to the WAM_write function,
which sends it to the tangle. If it is successfully sent, the new DID is obtained from the channel
index and the input parameter did is modified, returning the constant DID_UPDATE_OK

did_ott_revoke

This function implements the revoke function of the DID OTT method. The function receives
as input parameters a pointer did that contains the DID to be revoked. As a first step, the
function load_channel is called, which takes care of loading the channel allocated upon creation
of the DID document. The function WAM_write is called by setting the revoke flag to true which
produces a message with next_index with all zeros, making a revoked DID document immediately
recognizable. In case of success, it returns the constant DID_REVOKE_OK.

3.8 DID provider

To use the method DID along with OpenSSL’s new DID operation, a provider is needed to link
the API with the OTT functions. Following the knowledge gained from the models and the test
provider, the didprovider was developed to provide OpenSSL with the CRUD functions of the
DID method OTT.

43

Design and Implementation

1 static const OSSL_ALGORITHM didprovider_did[] = {

2 {"ETH","provider=didprovider", didprovider_fake_functions},

3 {"0TT", "provider=didprovider", didprovider_crud_functions},

4 { NULL, NULL, NULL }

5 3}

6 ..

7 static const OSSL_ALGORITHM* didprovider_query_operation(void* provCtx, int
id,int* no_cache)

8 {

9 *no_cache = 0;

10 printf ("DID QUERY\n");

11 switch (id) {

12 case 0OSSL_OP_DID:

13 return didprovider_did;

14 break;

15 }

16 return NULL;

17 2

Figure 3.18. Provider query of didprovider.

The function of provider_query provides the vector of algorithms 0SSL_ALGORITHM in case the
DID operation is requested. This vector contains two algorithms, one that mimics the presence
of a DID Method ETH formed only by empty functions for testing purposes, and the OTT that
implements the DID Method OTT functions. The function vector 0SSL_DISPATCH contains tuples
of functions and unique identifiers. Below is a brief explanation of the functions.

1 const OSSL_DISPATCH didprovider_crud_functions[] = {

2 {0SSL_FUNC_DID_CREATE, (void(*)(void))didprovider_createl,

3 {0SSL_FUNC_DID_RESOLVE, (void(*)(void))didprovider_resolve},
4 {0SSL_FUNC_DID_UPDATE, (void(*) (void))didprovider_update},

5 {0SSL_FUNC_DID_REVOKE, (void(*)(void))didprovider_revokel,

6 { 0, NULL }

7}

Figure 3.19. Provider query of didprovider.

didprovider_create

This function receives as input the two public keys of the DID document, their length and type, and
fills the method structure. It allocates an empty string of DID length and calls the did_ott_create
method function by passing it the structure and string. If successful, this function returns the
string of the new DID or NULL in case of error.

didprovider_resolve

This function receives as input the DID to be found and the empty OpenSSL structure DID_DOCU-
MENT. The function allocates an empty structure did_document and passes it to the DID