
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Informatica

Tesi di Laurea

Android Native Library Fuzzing

Relatori
prof. Antonio Lioy
prof. Mathias Payer

Paolo Celada

Anno Accademico 2021-2022

Summary

Android applications can have part of their components developed in a native language, such as
C or C++. Developers, using the Native Development Kit, pack inside each application a shared
library holding the native implementation of a subset of its methods. The Java Native Interface
(JNI) allows each native method to interact directly with the rest, by providing a means to
create or update Java objects, call Java methods, and several other operations. Two fundamental
reasons lead to its integration: native programs have better performance, a key factor given
Android’s limited hardware, and offer the possibility to reuse tested and optimized native libraries.
Unfortunately, any security guarantees provided by Java are invalidated when using native code.
Native code does not provide temporal or memory safety and is susceptible to format string
vulnerabilities and type confusion, which can all lead to critical consequences, including but not
limited to code execution, privileges escalation, and control flow hijacking.

Security is therefore critical, and yet no public tools testing native components dynamically
exist. Existing tools either perform data-flow static analysis or ignore any side-effect correlated to
them while analyzing the overall application. When fuzzing native libraries in Android, the fuzzing
engine should take into consideration that native code interacts with the rest of the application
using the JNI, and therefore the Android Runtime (ART). If it is not capable of reproducing the
ART behavior, the results generated by the fuzzer, if any, are not valid and reproducible by a
stand-alone Android application.

We propose a framework to dynamically test native components in Android applications. First,
we present the steps required to port a common fuzzing engine, AFL++, on an Android device,
with the necessary patches. Then, we describe the design of a fuzzing harness crafted specifically to
work with Android native components, which loads the ART to fulfill JNI requests, fetch the native
target function address and fork its state at every execution to have the performance benefits of
the fork server. It uses AFL++ as a black-box fuzzer. Considering the scarce performance
when using it on a single Android device, we developed a framework to use such harness on a
phone cluster, parallelizing per device each fuzzing campaign. The framework works together
with a native method’s extractor and is capable of fuzzing each method of a set of Android
applications per name or signature. The results when using the framework on closed-source
Android applications show that it is capable of both reproducing known CVEs in Android native
components, and discovering new bugs. For any bug found, the library is manually analyzed using
common debugging and reversing tools to perform root cause analysis.

3

Acknowledgements

First of all, I would like to thank Prof. Payer and the whole HexHive group for welcoming me
and giving me the opportunity to work on a challenging but fascinating project. In particular, my
thanks go to Luca, who patiently helped and guided me from day one. Then, I am grateful to all
my friends, both the ones I knew since elementary school and the ones I met along my university
journey and my basketball career, which all helped me during stressful times. Among them, I
would like to especially thank my flatmates with whom I shared a considerable amount of time
this past year. Then, my heartfelt thanks go to my girlfriend Giulia, for always being there and
supporting me in this year of exchange. Finally, I would like to express my greatest gratitude to
my family, which supported me in the educational journey that brought me to this achievement
and encouraged me to always give it my best.

4

Contents

1 Android Native Libraries 7

1.1 Background . 7

1.1.1 Android Applications . 8

1.2 Native Development Kit . 8

1.3 Native Libraries in Android Applications . 10

1.3.1 Analysis and Testing . 10

1.4 Java Native Interface . 11

1.4.1 Design . 11

1.4.2 JNI Functions and Primitive Types . 13

1.4.3 Naming Conventions . 14

1.5 Fuzz Testing . 16

1.5.1 Design . 16

1.5.2 Fuzzing libraries . 17

2 Previous Effort 19

2.1 Related Work . 19

2.2 JniFuzzer . 19

2.2.1 Design . 20

2.2.2 Evaluation Results . 20

2.2.3 Limitations . 21

3 Problem Evaluation and Design 22

3.1 JNI Functions Problem Evaluation . 22

3.2 Considered solutions . 22

3.2.1 ART Reuse . 22

3.2.2 Mocks with caching strategy . 24

3.3 AFL++ In Android . 24

3.4 Native Methods Extractor . 24

3.5 Harness Design . 25

3.5.1 Load ART . 25

3.5.2 Function Pointer Extraction . 26

5

3.5.3 Deferred Fork Server . 28

3.5.4 Analyst Harness . 28

3.6 Framework Design . 28

3.7 Manual Set-Up and Usage . 30

3.7.1 AFL++ on Android . 31

3.7.2 NativeExtractor . 32

3.7.3 Harness . 32

3.7.4 AndroidNativeFuzzingFramework . 33

3.7.5 Debug POC . 35

4 Results 36

4.1 Fuzzing Performance . 36

4.2 Bug Reproducibility . 37

4.3 Dataset . 39

4.4 Native Methods Extractor Evaluation . 39

4.5 Fuzzing Results . 39

4.5.1 Stateless Fuzzing Success Rate . 40

4.5.2 Discovered Bugs . 40

5 Conclusion 43

5.1 Future Work . 43

5.1.1 Stateful fuzzing . 43

5.1.2 Binary Instrumentation . 44

Bibliography 45

A AFL++ CoreSight in Android 47

6

Chapter 1

Android Native Libraries

1.1 Background

Android is today the most popular operating system for mobile devices on the market. With its
user-base of over 2.8 billion users, it is used in over 4000+ different devices all around the world,
categorized as smartphones, tablets, and IoT devices [1]. It is an open-source operating system
based on a modified version of the Linux kernel, developed by the Open Handset Alliance and other
companies, with Google as the main sponsor. Currently, there are more than 18 billion different
Android apps delivered as APK via different markets (as shown in more detail in Table 1.1) [2].
Because of its popularity and use, the security of the OS and the running applications is critical
and subject to high interest in the scientific community.

App Market Number of APKs
play.google.com 16,081,405
PlayDrone 1,446,564
appchina 1,127,350
anzhi 1,113,535
VirusShare 182,408
mi.com 113,583
1mobile 57,530
angeeks 55,818
slideme 52,467
fdroid 41,558
unknown 29,161
praguard 10,186
torrents 5,294
freewarelovers 4,145
proandroid 3,683
hiapk 2,512
genome 1,247
apk-bang 363

Table 1.1. Number of application’s APK for several Android markets

Android applications are commonly developed in Java, a high-level language born with the
slogan “Write Once Run Anywhere”, being platform-independent. Any machine equipped with
a Java Virtual Machine (JVM) is able to compile its code, developed using the Java Software
Development Kit (SDK), to an intermediate interpretation called Java Bytecode (.class). Then,
the standard bytecode is expected to run on every of such machines, no matter which one compiled
it. The act of running requires first to be interpreted by the JVM. Interpreting is a live translation
to the corresponding architecture-specific machine code. As this translation is performed on the

7

Android Native Libraries

fly, it introduces a non-negligible performance overhead compared to languages directly compiled
to machine-level code, such as C and C++.

Java is designed with particular attention to its security. Among the security features Java
offers, we highlight the following:

• JVM usage: Java code is compiled and executed in a virtual machine (JVM), and as such
it is possible to perform severe byte-code checks to prevent unauthorized/unwanted control
flow modification and object accesses (for example bounds on checks when dealing with
arrays);

• pointer removal : to prevent common security vulnerabilities such as dangling pointers,
indirect pointer overwriting and use-after-free, Java does not support pointers explicitly
and lets only the JVM use them implicitly;

• memory safety : Java is capable of handling memory automatically, through the use of
the garbage collection mechanism. It mainly helps prevent memory leaks and memory
corruption;

• exception handling : helps preserve the regular flow of the program, by specifying a fixed
approach to handle errors.

Similarly for Android. It adopted Java as the main language for app development from the
early stages. Code is now developed using the Android SDK, it is compiled to JVM Bytecode and
then translated into Dalvik Bytecode(.dex). The Dalvik Bytecode is then run by the corresponding
Dalvik VM, integrated with the JIT compiler, and now substituted by the Android Runtime (ART)
to integrate even more sophisticated optimization techniques. The Dalvik VM is designed by
Google to run on systems with limited hardware resources such as phones, which are delivered with
limited processor speed and memory space. In terms of security and performance, applications
written in Java (and only Java) reflect exactly what is listed in the previous paragraph about
Java programs. They show modest performance, but worst compared to Native code, and inherit
high security from the Java language.

1.1.1 Android Applications

Considering the design of the Android OS and the management of apps [3], each app runs as
an individual Linux process, with its own unique memory space. This was first designed for
security reasons, applying the concept of sandboxing. After booting an Android device, the first
real process started once the Android runtime and the corresponding VM (either ART or Dalvik
depending on the Android version) are set up is the Zygote process. The Zygote process is a
special Android OS process providing code sharing across VM and fast and efficient applications
startup. It preloads all classes and resources that an app will potentially need in its own address
space and it starts listening on a socket for incoming requests from other processes (e.g. the
ActivityManagerService responsible to start new applications). Whenever the user wants to start
a new application, hence a new process, the Zygote handles the request by forking its state,
providing to the new application an already initialized VM. It acts as a parent process for all
applications. The function responsible for this is Zygote.forkAndSpecialize(). The VM that
it provides to the new application can be either Dalvik VM or the Android runtime (ART). The
Dalvik VM is the equivalent of the JVM, it was used until Android 4.4 KitKat. The ART instead
is its successor. The core difference is the principle they follow to interpret Java code. The first
follows JIT (Just-In-Time) compilation achieving low memory consumption, while the latter AOT
(Ahead-Of-Time) compilation, improving application’s overall performance. Focusing on ART, it
is composed of a compiler (dex2oat) and a runtime (libart.so), simply a shared library loaded in
the address space of the process.

1.2 Native Development Kit

In June 2009, Android released the first version of the Android Native Development Kit (NDK), a
tool-set that allows app developers to implement part of the application using a native language.

8

Android Native Libraries

The native languages integrated are C, C++, and assembly. Native code is compiled using the
Clang compiler (GCC was provided as an alternative until NDK r17) into a shared library, pack-
aged into the applications APK and integrated with the interpreted side using the Java Native
Interface, in short JNI (explained in details in section 1.4).

For the scope of the project, it is important to list the reasons, with its advantages and
drawbacks, on why the NDK was first introduced.

Advantages

First of all, it often improves the application performance, key factor given Android device’s
limited hardware. It allows code optimization at the assembly level, and it gives developers the
possibility to use processor features that are not available through the SDK. A research conducted
in 2001 by Wentworth and Langan [4] states that the original interpreted Java is around 11 to
20 times slower than its C++ counterpart, while the integration of JIT brought it down to be
only 1.45 to 2.91 times slower (study conducted using Java 1.3 and 4 famous sorting algorithms,
precisely bubble sort, insertion sort, quick sort, and heap sort). JIT is an optimization technique
introduced subsequently in the JVM, allowing translation from Java Bytecode to machine-level
instructions only the first time a method is called. It often happens, but not always, as the inte-
gration directly translates to work for the Dalvik VM, responsible to handle this “context switch”
between compiled and interpreted code. In addition, being compiled prevents the VM to apply
run-time optimizations.
Secondly, it enables reuse of already existing native libraries. It speeds up application develop-
ment with libraries already optimized and tested, removing the need to rewrite them completely.
Various fields benefit from this, mainly:

• graphics operations;

• game engines;

• physical simulations;

• networking operations;

• signal processing ;

• cryptographic operations.

To give some examples, the messaging applicationWhatsApp benefits from it by reusing the native
version of the Open Whisper System’s open-source protocol for cryptographic operations, while
apps like Twitter or Facebook use a library called Fresco for image loading and processing tasks.

Drawbacks

The most important and related one is that compiled code is highly insecure. It does not provide
spatial and temporal memory safety, nor type safety, and can lead to multiple software vulnerabil-
ities. An empirical study from Gang Tan and Jason Croft (2008) [5] on the native code present in
the implementation of the Sun’s JDK reports common patterns of bugs present. All are mapped
to criticalities in the interaction with native code in Android applications. Recurrent patterns
are:

• incorrect exceptions handling, leading to undefined control flow;

• race conditions in file accesses;

• type confusions, between Java and native types;

• buffer overflows;

9

Android Native Libraries

• insufficient error checking.

Their common weakness enumeration is CWE-111 (Direct Use of Unsafe JNI). In addition, native
code is vulnerable to all common compiled language vulnerabilities, that could be either present
in any third-parties libraries used or introduced by the developer itself. Commons are buffer
and arithmetic overflow/underflow, temporal safety violations, format string vulnerabilities, type
confusions [6]. The consequences are code execution, information leaks, privileges escalations,
DOS, control flow hijacking, etc.
Following comes the fact that it highly increases the application’s overall complexity and its
integration prevents the application to be portable to any architecture equipped with a VM. Each
application must be delivered to the end-user with a copy of all used native binaries for each of
the target’s platform. Common ones are aarch64, arm, x86 and x86-64.

1.3 Native Libraries in Android Applications

Given its advantages, an increasing number of companies and their developers decided to opt
for the integration of native components in Android applications. They are present in large and
complex apps asWhatsApp and Instagram, or in small apps used for video conversions, encryption,
image handling and so on. Their presence does not depend on the category of the application, but
more on the requirements and specifications of the software. A study conducted in 2016 by Afonso
et al. [7], even if with a different goal in mind, statically analyzed and filtered a total of 1.2 million
Android apps to extract a subset of 446 thousands apps using native code in some extent. The
percentage of native apps is therefore high, around 37.2%. The common usage pattern found by
just looking at the source code of apps available as open-source (e.g. from the F-droid market [8])
is that developers mostly write multiple native functions only to use them as entry points to some
third-party library functionality. In a single entry function all data handling and conversions
happen, applications states are checked for presence and correctness and then finally there is the
interaction with the native library, via a well defined API. Alternatively, the programmer can
directly use a Java class which underneath has some native methods. In this case, the library is
composed of classes and methods which help the Java programmer interface its application to a
native library (e.g the GIF parser library Android-Gif-Drawable [9]).

1.3.1 Analysis and Testing

Over the years, Google has invested a lot of time and resources to limit the possible security
vulnerabilities in each Android application. From running them in a restricted sandbox (similar
to the one on which Java runs) to restricting inter-app communication to a well-defined API
and using implicitly all security measured provided by leveraging the Linux kernel as foundation.
In addition, considering the original Google Play Android market, all applications are vetted
after being uploaded but before being made public. This allows the discovery of possible bugs
and vulnerabilities early in time. Each application is tested using different static and dynamic
techniques, which mainly target the Java side of the application, while there are no public tools
to target the native side of the application, specifically considering dynamic tools. The latter is
of high importance given the large number of security vulnerabilities introduced. Several causes
make it difficult, mainly:

• closed-source: most Android applications are closed-source, and only the compiled binary of
the native component for each target architecture is available for security analysis. Analyz-
ing the top-18 markets in Table 1.1, only 0.21% of the apps are guaranteed to be open-source.
While Dalvik or Java Bytecode can be decompiled retaining precision, the same can not be
applied to native compiled libraries;

• JNI usage: all native methods use in different amounts the JNI, through the JNIEnv interface
pointer. When testing those methods, if the first parameter is not a valid JNIEnv pointer the
execution terminates in a segmentation fault as soon as the target tries to dereference it at a

10

Android Native Libraries

certain offset. This makes it complicated to analyze it for example using a trivial black-box
fuzzing approach. AFL++ requires that at least one execution terminates successfully with
the provided seeds, and with this set of targets it would not even start;

• analysis tool portability on Android : even if Android is based on the Linux kernel, certain
libraries available are different with respect to their Linux counterpart (e.g libc version for
Android is bionic), and the linker might be unable to resolve certain symbols (e.g. NON-
POSIX extension’s functions);

• stateful analysis: whenever an Android application calls a native method, its execution
depends on a possible state built running the application in a normal environment. This
state is checked or used by the native method itself, and its absence may prevent any valid
analysis of the target. As an example, consider an application using a native library to
perform image processing. In order to apply a sepia filter to an image (with native function
Java com pkg image applySepia), the application first loads the image using another native
function (for example Java com pkg image loadImage). In the case the filter function does
not perform any safety checks and it is invoked without first loading the image, it always
results in a crash;

• guided analysis: considering fuzzing as a dynamic testing technique, black-box only fuzzing
may not be sufficient. To achieve grey-box fuzzing, meaning with coverage instrumentation
guiding the fuzzer to reach deeper into the program, we should statically or dynamically
add instrumentation to the target binary. This is achieved by integrating known tools into
the fuzzing engine.

1.4 Java Native Interface

To enable operational compatibility between the Java and one of the interpreted languages pre-
viously listed, every sort of communication must go through the Java Native Interface.
The Java Native Interface (in short JNI), is a foreign function interface programming framework
that allows developers to utilize the NDK, more specifically libraries developed in C, C++, or
assembly, in an Android application. It makes it possible for Java running in the usual JVM (or
ART in Android) to call and interact directly with any native programs and vice-versa (layout
presented in Figure 1.1). It is composed of several functions and types definitions, all found inside
the jni.h header file, while their implementation in the shared library libart.so. Following a
detailed explanation of its design, the main components, and some usage examples.

1.4.1 Design

The JNI is composed of a set of functions, types, and constants. JNI functions are both defined as
regular functions or through an interface pointer, head of a chain of pointers to a function interface.
The JNI interface pointer points to a per-thread data structure pointer, which itself points to an
array of pointers. Each of these pointers is defined at a fixed offset from the beginning of the
array and points to an interface function. This interface function will then contain the actual
implementation of the JNI function. The overall structure is similar to a C++ virtual method
table or a Microsoft COM interface. A visual description of the pointer’s chain is reported in
Figure 1.2.

It is designed to satisfy the need to change type of language for both Java or Native applica-
tions, and it can be used in two opposite ways.
The first one is to use the JNI to integrate into any Java application components written in C,
C++, and assembly. The native side interacts with the Java side exclusively through a series of
JNI function calls. Looking at the Java side instead, the only addition is a step to load the library
and one to declare methods as native. To load a specific native library into the application, it is
required to call the System.loadLibrary() method by passing as the only argument the name
of the shared library inside a static class initializer in the class using the library. The name of
the library respects the normal pattern, without the prefix lib and the file extension, and it is

11

Android Native Libraries

Class Method

Native Side Java SideJNI

.dll/.so files
(C or C++)

.dex files
(Java)

libart.so
(JNI.h)

Function

● Class
● Object
● Exception
● Method

Call + parameters

Return result

Interact with

Return result

Figure 1.1. Interaction between Java and native side.

the JNI itself in charge to understand which extension to append (.so for Linux systems or .dll
for windows ones). Then, native methods are given a meaningful name, declared using the native
keyword, and are usually private. This tells the Java compiler that the method is provided in a
different language. The methods name influences its corresponding name on the native side, as
seen in subsection 1.4.3. In Figure 1.3 an example showing JNI usage on the Java side.
Another way to use the JNI is to allow any native applications to embed a Java virtual machine
implementation and interact with it. The JVM must be loaded through a function called JNI_-

CreateJavaVM and the methods needed by the JVM framework linked using the corresponding
function interface registerFrameworkNatives. From this moment on, the native application
can use the invocation interface to execute any software components written in Java. The project
strongly depends on both usage cases.

Pointer

● per-thread JNI data
structure

● called
JNINativeInterface_

Array of Function
Pointers

Pointer

Pointer

Pointer

…
Interface Function

Interface Function

Interface Function

JNI Interface Pointer

● usually defined as
JNIEnv *env

Figure 1.2. JNI Interface pointer structure (source: Oracle).

12

https://docs.oracle.com/en/java/javase/17/docs/specs/jni/design.html

Android Native Libraries

1 package com.name.jni.package

2 public class JNI{

3 /* Load native library */

4 static {

5 System.loadLibrary("nativeLibrary");

6 }

7
8 /* Call native method */

9 public static void main(String[] args) {

10 new HelloWorldJNI().nativeMethod();

11 }

12
13 /* Native method declaration */

14 private native void nativeMethod();

15 }

Figure 1.3. Library loading and native method definition example.

1.4.2 JNI Functions and Primitive Types

Interface pointers and their implementations are key for the communication between the two
contexts, and there are a total of two:

• JNINativeInterface: called JNIEnv, it points to an array of interface functions that deal
directly with parameters transfer, methods calls, objects interaction, exception handling,
and many more operations between the two sides. There are a total of 229 of these functions;

• JNIInvokeInterface: called JavaVM, it similarly points to an array of interface functions used
to handle VM-related operations, such as fetching the corresponding JVM environment,
handling threads, and destroying the VM;

In Table 1.2, some of the most used functions are reported for both interface pointers, with
self-explicates names.

Data types instead are mapped depending on the type in the Java programming language.
Primitive types, which include int, float and char, directly map into the respective JNI ver-
sion, respectively jint, jfloat and jchar. Reference types instead, mainly array, classes, and
instances of a class, are passed by reference to the native code and should be handled only through
appropriate JNI functions. Signatures of each type are represented in the JNI using smali, the
Java VM type representation [10].

JNINativeInterface JNIInvokeInterface
NewObject DestroyJavaVM
FindClass AttachCurrentThread
GetMethodID DetachCurrentThread
CallCharMethod GetEnv
CallVoidMethod AttachCurrentThreadAsDaemon
NewStringUTF
GetStringUTFChars
ReleaseStringUTFChars
...

Table 1.2. Most used functions for each interface pointer.

13

Android Native Libraries

1.4.3 Naming Conventions

The JNI helps the runtime finds and links the implementation of native methods. Developers
can decide to follow each one of the two possible naming conventions. The first follows a pattern
defined name generated by the JNI itself, while the second one is a dynamic mapping of the
preferred name and the function name of the Java implementation.

Pattern defined

A native method is defined inside the application’s package and the corresponding Java class.
When the building toolkit used (for example Gradle for Android Studio) invokes the Java compiler
javac, a header file is automatically generated. It defines the name, parameters, and return type
of any native methods defined in the application. The name of the function is composed of:

• A fixed Java prefix;

• the package name;

• the class name;

• the method name, as defined in the Java class;

• the mangled argument signature preceded by two underscore symbols, for overloaded native
methods.

In-between all fields the underscore symbol, escaped with _1 in case it is present in one of the
names composing it. (Figure 1.4). All symbols are exported from the library, and the JVM look
them up dynamically with dlsym.

1 #include <jni.h>

2
3 /* Pattern defined native method implementation */

4 JNIEXPORT void JNICALL Java_com_name_jni_package_JNI_nativeMethod

5 (JNIEnv *env, jobject thisObject) {

6 printf("Hello␣World!");

7 }

Figure 1.4. Pattern defined methods implementation.

Dynamic linking

This convention is more involved. It requires slightly more code by the programmer and it is
error-prone, but might be preferred in some cases. The developer is in charge of registering them
explicitly. Native methods can now take any preferred name and their implementation can be
updated at runtime, relieving some of the VM workloads. In addition, it is useful when a native
application having loaded a Java VM needs to link a Java method with a function defined in the
native application itself. The VM would not be able to link against this function as it would search
only in native libraries, not in the native application itself. The programmer is required to write
inside the native library the implementation of a function called JNI_OnLoad. Its function interface
is defined inside the jni.h header file, and it is the first function searched and called, if present, by
the JavaVM after loading the library with System.loadLibrary. It is therefore common behavior
to use it to set up any state needed by the native library itself. The implementation must then
contain a call to RegisterNatives, interface function part of the JNIEnv array of functions. It
takes as parameters the class in which the methods are being registered, a JNINativeMethod

14

Android Native Libraries

structure containing information about the methods, and the number of methods. The structure
JNINativeMethod is composed of: the method’s name, as defined on the Java side, the smali
signature specifying the method’s parameters and return type, and the address of the methods
implemented on the native side. A trivial example is shown in Figure 1.5, together with the
JNINativeMethod structure definition. When following the dynamic linking convention only the
JNI_OnLoad is exported, producing faster and smaller code, and avoiding the risk of collision with
symbols of other libraries.

It is important to notice that for both conventions all methods always include as the first two
parameters the JNI environmental pointer and the Java object that the method is attached to,
respectively JNIEnv * and jobject.

1 /* Structure used by RegisterNatives to declare native methods via

dynamic linking */

2 typedef struct {

3 char *name;

4 char *signature;

5 void *fnPtr;

6 } JNINativeMethod;

1 #include <jni.h>

2
3 /* Native method implementation */

4 JNIEXPORT void JNICALL newNativeMethod

5 (JNIEnv *env, jobject object) {

6 printf("Hello␣World!");

7 }

8
9 /* Structure used by RegisterNatives */

10 static JNINativeMethod methods[] = {

11 {"nativeMethod", "()", (void *) &newNativeMethod}

12 };

13
14 /* Function called when loading the native library */

15 JNIEXPORT jint JNI_OnLoad(JavaVM *vm, void *reserved) {

16 JNIEnv *env;

17 jclass clazz;

18
19 // Retrieve JNIEnv * and native method’s class

20 (*vm)->GetEnv(vm, (void **)&env, JNI_VERSION_X_X);

21 clazz = (*env)->FindClass(env, className);

22 ...

23 // Register native methods via dynamic linking

24 (*env)->RegisterNatives(clazz, methods, sizeof(methods) /

sizeof(methods[0]));

25 ...

26 }

Figure 1.5. JNINativeMethod structure and dynamic linking of methods implementation.

15

Android Native Libraries

1.5 Fuzz Testing

Fuzz testing is a dynamic software testing technique, fully automated, in which a software com-
ponent is tested by invoking it with unexpected, random, or invalid inputs. The final goal is to
be able to detect as many crashes or hangs as possible from the program under test (or PUT), by
following a quasi brute-force approach. It is a probabilistic testing technique based on multiple
single concrete executions, and full data-flow coverage could be achieved only if run for an infinite
amount of time (considering non-trivial code bases under test). Data-flow coverage is the process
of considering all possible cases in a program execution based on how a variable can be defined and
used. The overall process is considered to be sound, scalable, but incomplete. It is sound because,
whenever a bug is found, it directly generates a proof of concept (POC). It, therefore, does not
produce any false positives, contrary to the behavior of static testing techniques such as symbolic
execution. It is scalable as it can be easily applied to large code bases. Lastly, it is incomplete be-
cause it is impossible to expect that the fuzzer will cover all possible inputs, and so control flows,
due to the random nature of the input generation. Due to its high efficiency, simplicity, and sound-
ness, it is subject to multiple research papers improving its effectiveness. One of the challenges
remaining is the ability to port it to different domains, from kernels to web applications to An-
droid applications. Common fuzzing engines include coverage-guided fuzzers like AFL [11], fuzzer
developed by M. Zalewski and now substituted with its community-maintained fork AFL++ [12],
but also honggfuzz [13], libFuzzer [14], and others. Each has its unique characteristics, but the
main idea behind remains the same.

1.5.1 Design

The key idea behind a fuzzer is to intentionally produce and provide malformed inputs into a
system to generate and record a crash. It is composed of different components smoothly interacting
with each other, carefully set up to achieve efficient target execution. Following the detailed
description, with a visual representation in Figure 1.6. As fuzzing can be ported to several
different domains, we focus on native code fuzzing.

Target Definition

The target program must be an executable binary that accepts some form of input from the
user, e.g. from stdin. It then performs operations using such input, possibly triggering a crash.
It is important to notice that a bug does not always trigger a crash, so an abnormal program
termination. To avoid limiting the ability to find crashes to architectural violations (page faults,
division by zero, etc.), assertion failures, or mitigations, often the target code is compiled with
some form of sanitization, for example ASAN [15]. Another improvement given by the target
binary is if it has been compiled with coverage instrumentation, or it has been statically rewritten
to add it, meaning to transform the target executable to add instrumentation instructions while
maintaining the original functionality. This helps the fuzzing engine achieve better code coverage,
mutating the input using coverage feedback from the program itself. Both have their pros and
cons, in terms of techniques complexity, performance, and ability to find new bugs.

Input Generation

An initial seed set needs to be provided to the fuzzer so that new inputs generated will be
based on it. Having a diverse and complete set of initial seeds is key for efficient fuzzing. A
single input can be generated following a pre-defined model, or it can be mutation-based if it
includes deterministic and havoc phases, such as bits flipping, randomization, slicing, merging,
and replacing inputs. Moreover, inputs most of the time must conform to API specifications that
the target program must follow to avoid stopping as soon as those are checked. This is retrieved
either by the program API when available, by source code analysis, or by reversing the program
binary.

16

Android Native Libraries

Target Environment

When fuzzing non-stand-alone programs, the execution environment in which the fuzzer runs
the program must conform with the one expected by the program itself. In particular, when
fuzzing libraries API, very often those must be called together with some environment state that
is checked or used by the function itself and created by other parts of the program before the target
function is called in a regular execution. To create a reliable and valid state, the fuzzing engine
can leverage symbolic execution as an initial phase. Symbolic execution allows generalizing the
execution of a program, by considering all possible inputs at once during an abstract execution.
Inputs do not hold concrete values but symbolic ones, and the program execution is translated into
a mathematical set of constraints. By solving them, it is possible to generate a concrete execution.
Fuzzing benefits from it in particular when fuzzing libraries. In this use case, symbolic execution
can abstract the program execution until the library call, solve the generated constraints, and
provide the fuzzer a valid state so that the library function is used as expected.

Fork Server

Component introduced later in AFL and other fuzz engines as a form of optimization technique to
increase throughput (executions per second). The fork server is injected as instrumentation into
the target, and it is controlled through an IPC mechanism. It reduces the performance bottleneck
generated by the execve syscall by stopping the execution at the beginning of the main function
(the driver) and forking a child which inherits the program state generated during program and
AFL initialization. The fork is executed in an infinite loop, and the instrumentation code is placed
either before the actual target operations, or wherever deemed necessary when fuzzing libraries
with the use of a fuzzing harness, a function in the middle between the fuzzer and the target
responsible for calling it with the input generated by the fuzzer.

Fork Server

Input Corpus

Fuzzing Engine

Mutations

PUT

Coverage

Crash

Figure 1.6. General design of a fuzzing framework.

1.5.2 Fuzzing libraries

Fuzzing libraries has a slightly different approach, due to the absence of a main function. Here
the analyst must write a fuzzing harness (or stub) that reads the input generated by the fuzzer

17

Android Native Libraries

and call the function following its API. It follows a unit test approach. The driver differs based on
the target function, and it requires manual work from the analyst. Most library interfaces check
parameters and states right at the beginning, therefore the driver must be carefully constructed
to feed a valid input. In libFuzzer a function called LLVMFuzzerTestOneInput acts as the driver.

Following, we present a complete and highly extensible black-box fuzzing framework to target
the native components of Android applications. It tries to address each of the proposed problems,
by integrating already existing techniques into an Android device, together with newly added com-
ponents. Then, we test the framework on some real-world open-source applications to understand
its effectiveness and its limitations, and we finally move on to testing some public closed-source
applications to discover new bugs.

18

Chapter 2

Previous Effort

2.1 Related Work

Static and dynamic software testing techniques have caught the attention of a high number of
researchers and computer engineers. In vetting android applications, several different techniques
have been developed over the years, each targeting a different component. While there is a great
number of works that target the Java side of each application, either statically [16, 17, 18, 19, 20]
or dynamically [21, 22, 23], few have been developed to consider the native components. None of
the Java state-of-the-art analysis frameworks support cross-language analysis. When reaching a
native function call, all tools apply a conservative model and ignore any side-effect correlated to
it, leading to high imprecision in the analysis results. This result in unsoundness.

The works trying to address the problem perform mostly data-flow static analysis, considering
that data can change “context” multiple times. For example, StubDroid [24] automatically infers
library models for taint-analysis, using only their binary distributions, so that tools like FlowDroid
do not have to re-analyze the library for each app. It is tested on the Android runtime library
and results in a performance improvement of over 90% compared to using the static tool alone.
Another interesting work is presented by Fourtounis et al [25]. Their approach manages to track
and recover all calls to Java methods performed inside the native code through the JNI interface
pointer, in large Android and Java applications. They do so via binary scanning, searching in
all native libraries for constant strings matching Java methods name and Java VM types. Once
constructed a set, a tool named Native-Scanner follows their propagation and identifies all entry
points to Java code from native code without fully tracking all native calls (e.g. call-graph edges).
The main drawbacks highlighted are that the tool is not specifically built for Android, so it misses
all Android framework APIs calls, and has a hard time identifying obfuscated strings. To solve
the first, Samhi et al. [26] improved it by implementing a framework called NativeDiscloser as
part of a bigger tool, JuCify. Overall its goal is to move towards a unified static analysis tool
able to perform precise cross-language analysis for all code in Android applications. It merges
extracted call graphs from both sides of the application to construct a final model usable by
common Android analysis frameworks. The de-obfuscation part instead has been addressed by
Kan et al. [27]

2.2 JniFuzzer

Considering our main goal, which is constructing a framework capable of fuzzing Android native
libraries starting from each native Java entry point, the most related previous effort comes from
the work by Claudio Rizzo carried out at the University of London, with their framework Jni-
Fuzzer [28]. We present its design, its use in real-world applications, and the results generated,
as a valid, although limited, alternative to our approach. To the best of our knowledge, this is
the only other previous effort on the subject.

19

Previous Effort

2.2.1 Design

When a programmer defines a native method on the Java side, it writes its implementation in
the native language. After compilation, its symbols are exported and visible to the Android
Runtime so that linking against it is possible dynamically, precisely when the runtime invokes
system.loadLibrary(). Considering that each symbol is exported and accessible by any program
loading the library, there is no need to simulate the Java user interface as it is possible to directly
invoke the method. Invocation happens exactly as when using any shared library in C or C++.
With this in mind, the framework consists of 3 components, as schematized in Figure 2.1.

Mock the JNI Environment

The native side of a real-word native application must both be able to handle and convert ar-
guments to their native counterparts and interact directly with objects, classes, and methods of
the Java side. As seen in subsection 1.4.2, this is managed by the JNINativeInterface interface
pointer, with all function pointers populated at during initialization by the ART. If a native
method is invoked by passing an invalid JNIEnv pointer, it crashes as soon as it encounters a
portion of code requiring it. To solve this problem, the solution they propose is to mock a subset
of the JNI functions with a custom implementation, so that their invocations will not crash the
target. To avoid mocking the total of 229 of these, they analyzed a few of the target apps to
determine the most used ones following a trial-and-error approach and limited their tool to target
native functions using only this subset. To feed the target with each mocked implementation, a
custom JNIEnv structure is required, with interface pointers pointing to the custom implementa-
tion. Similarly, for data types, a mocked version is provided to the target, and again only a subset
of all available data types are implemented (in this case only java.lang.String and integer).

Function Pointer Extraction

As presented in subsection 1.4.3, there are 2 ways a developer can register native methods: either
the VM is responsible for the creation of each function prototype on the native side, using a
pre-defined pattern as a naming convention, or the developer implement a function called JNI_-

OnLoad to register them dynamically when loading the library. For the first case, the native
symbol is extracted using the pattern-generated name as it is (e.g performing a symbol lookup
operation with dlsym). For the second case instead, the only possible way is to provide a mock
implementation of the RegisterNatives JNI function so that, when invoked by JNI_OnLoad,
provides the pointer directly.

Target Execution

An executor component fetches the target function pointers from the extractor, reads the input
generated by any fuzzer (e.g AFL), and passes it as input to the target function after conversion.
Only one function must be implemented for each fuzzing campaign, and it is the one in charge of
reading the input from the fuzzer. The inputs available are limited by the implemented mocked
data types.

2.2.2 Evaluation Results

Using the apps from Androzoo as a test set, they were able to test the framework on 4171 APKs,
each containing native methods, on different Android emulators. Considering that JniFuzzer can
handle only API calls with a mocked implementation, this resulted in overall 69 native methods
of which only one with both an integer and a string as a parameter, while the rest with integers
only. The methods were contained in 32 different applications. The reports showed a total of 3
bugs, consisting of an arbitrary read, an arbitrary write, and a stack-based buffer overflow.

20

Previous Effort

*.so static
extractor

dynamic
extractor

Fuzzer

strategies

Plugins

Report

Signature

JNI Mocks

ExecutorExtractor

function_ptr()

Error

Figure 2.1. Design of JniFuzzer framework.

2.2.3 Limitations

As it is the first approach to fuzzing native components, it is subject to several limitations. We
list a few of them:

• Stateful fuzzing : the native method is called without any build-up state, limiting the scala-
bility of the framework to functions either performing some initialization or able to execute
alone;

• Triggerable bugs at user level : even if there is a bug in native code, it might be not reachable
from a user-controlled input in the Java application. This limits the importance of the
discovered bug;

• JNI environment mocks: testable targets are limited by the JNI API used. To be able to
fuzz any target, one would either need to implement the mock of each API function (229)
or write an automatic stub generator;

• Guided fuzzing : fuzzing is performed in a black-box fashion, due to the lack of source code.
For AFL, this translates to dummy mode, in which input is generated randomly without
any coverage information, starting only from a set of seeds. Binary rewriting techniques or
hardware feedback mechanisms (as AFL++ Coresight [29]) can solve this problem;

21

Chapter 3

Problem Evaluation and Design

3.1 JNI Functions Problem Evaluation

In fuzz testing, the binary under test should run without crashes when executed with valid input.
Considering Android applications and their native methods, they all contain the JNIEnv interface
pointer as the first argument. It allows the use of additional functions provided by the runtime
environment to enable interoperability between the two worlds. To be able to execute such a
target during fuzz testing, we must guarantee that each target function uses a valid interface
pointer. When an invalid interface pointer is provided to a target function using it, the function
terminates with a segmentation fault the first time it is dereferenced and used. To understand
its usage frequency among Android applications, we statically analyzed a set of open-source
applications provided by F-droid. The set comprehends a total of 3832 applications, not counting
versions (∼250GB). The results of source code analysis using both python and bash are shown
in Table 3.1. As we can see from this initial analysis, out of all F-droid applications only 340
of them contained native code and all used at least once the interface pointer. It is therefore
impossible to consider fuzzing without first addressing this problem. The most recurrent ones are
functions dealing with strings and Java methods. While it would be trivial to provide a custom
implementation of a function like GetStringUTFChars, that simply returns an array of bytes
representing a Java string, functions like FindClass or CallVoidMethod would be respectively
difficult or impossible to mock retaining the original functionality, because the first one would
require to mock a Java class, while the second to transfer execution to a Java method.

3.2 Considered solutions

The JniFuzzer framework addresses this problem by implementing a mocked version of the most
used JNI functions, when possible. Even if we decided to go in the direction of building on such
previous effort, this solution would still be both incomplete and imprecise. Mocking all JVM
functionalities is practically impossible while retaining the original precision. We now present
other possible solutions we considered for this problem, ranking them by feasibility.

3.2.1 ART Reuse

The core idea behind this solution is the need to have for each fuzzing execution a valid VM to
provide as state, capable of executing such JNI calls. Considering what was introduced in subsec-
tion 1.1.1, during application start-up the Zygote process forks and provides to each application
an initialized VM. With this in mind, the fuzzing harness would need to act somewhat like the
Zygote process. It would need to start and load the VM, and then fork its state for every fuzzing
execution. Considering that Android applications are highly multi-threaded, this does not come
with ease. Each Android application is started with the main thread, the UI thread, responsible

22

Problem Evaluation and Design

JNI Method Name # Apps Using It
GetStringUTFChars 238
FindClass 231
NewStringUTF 207
ReleaseStringUTFChars 201
GetMethodID 186
GetArrayLength 179
DeleteLocalRef 167
GetFieldID 145
NewGlobalRef 143
GetObjectClass 137
NewObject 127
GetStaticMethodID 123
NewByteArray 118
CallObjectMethod 116
DeleteGlobalRef 113
NewIntArray 113
CallVoidMethod 111
SetObjectArrayElement 110
NewObjectArray 109
Total Apps 340

Table 3.1. Usage frequency of JNI functions in Android applications

for everything happening on screen. To avoid using it for expensive or asynchronous tasks, it
often delegates work to worker threads preventing the Application Not Responding dialog. The
different threads classes available are:

• AsyncTask : helps get work on/off the UI thread;

• HandlerThread : deals with callbacks;

• ThreadPoolExecutor : manages the creation of groups of threads to efficiently deal with
parallel tasks;

• IntentService: service intent requests.

The number of threads is not fixed and depends on the application, but it is always greater
than 1. For a simple application such as HelloJNI-Callback [30] 11 or 12 threads start each run,
depending on the number of binder threads. The fork system call when invoked in a program
with multiple threads clones only the calling thread. The reason behind this design choice is to
prevent problems derived from changes to the program’s persistent state from threads not aware
of each other.

To test this solution, we first tried to simply fork a toy application state (HelloJNI-callback)
from its native side, then moved to fork a VM loaded manually by a native program. In the first
case, the parent process proceeded without any issues with the regular control flow, while the
child process was only able to execute native code. For instance, calls such as CallVoidMethod or
return instructions, requiring the JIT compiler to compile Java code on the fly, were not able to
execute as the JIT pool worker thread in charge of it was not present. For the second case instead,
a VM loaded manually always starts 11 threads, but of which only 1 performs all tasks, the main
thread. The other threads started but left sleeping are: Jit thread pool, 4 runtime workers, signal
catcher, HeapTaskDaemon, ReferenceQueueD, FinalizerDaemon and FinalizerWatchd. Forking
its state resulted in only the main thread propagating to the child process, as expected, but
without losing any program functionality.

This first solution is the one fully developed and integrated with AFL++. Its design and
components are presented in detail in section 3.5.

23

Problem Evaluation and Design

3.2.2 Mocks with caching strategy

The key insight of this second considered solution is the fact that fuzzers such as AFL++ ap-
ply only very small modifications to each input fed to the target. They apply bit-flips, slicing,
randomization, and other transformations that end up modifying only a small portion of bytes.
Therefore, we can suppose that between two runs a high number of calls to JNI methods have as
input and output similar, or even equal, values. Storing such values in a cache DB improves per-
formance, as it theoretically works without the constant need of a JVM running in the background
fulfilling requests, after a first stabilization period.

We now present a possible design for such a solution. Each target native function is provided
with a mocked JNI environment as the first argument. Each mocked JNI function first performs
a cache lookup using the inputs arguments received with the JNI call. If there is a cache hit, it
returns the output provided by the DB lookup. If rather, it results in a cache miss, each mocked
method starts the JVM (as presented in subsection 3.5.1) and uses the execution’s output of the
real JNI method to create a new cache entry. Then, it returns such entry to the calling program.
It is evident that for each fuzzing campaign on one or multiple targets the cache DB should be
first populated with valid entries. It, therefore, needs an initial stabilization period showing poor
performance. When fully populated instead we expect a high number of cache hits, drastically
increasing performance. One problem that should be considered as well is the low number of
cache hits when dealing with variable data.

This solution was considered as a backup solution, to be implemented only in case the ART
reuse one did not work. As instead we were able to fully implement the ART use, it can be seen
as an optimization upgrade in the case the ART reuse solution shows scarce performance.

3.3 AFL++ In Android

Even if Android is built on top of the Linux kernel, it shares little in common with typical Linux
distributions. Android uses libraries specifically built for it, it is not as customizable and requires
a rooted device to acquire root privileges. The main problem when porting large software to
Android, such as AFL++, is the presence of the Bionic standard C library instead of the classical
GNU C Library (glibc). It was designed to best suit devices with less memory and processor
power as Android ones, and it does not implement all of C11 and POSIX functions. About 70 are
missing (as of Android Oreo) [31], causing the linker to be unable to find several symbols during
compilation.

As a consequence, AFL++ does not compile out of the box in Android. To port it to Android,
we had to apply a set of patches to the AFL++ source code. Each one of them, with the required
prerequisites, is listed in subsection 3.7.1. AFL++ then works with clang-13 only and instrument
code in CLASSIC mode.

3.4 Native Methods Extractor

The first step to automatically test applications is to extract their native methods. This helps
us filter our unwanted applications, manually inspect possible vulnerable functions (given their
name), and inspect popular signatures of such functions to automate the testing process. As we
showed before, an Android application does not always have a native component, and when it
does the name of its functions can vary. Consequently, we can not inspect exclusively the native
side. We integrated two existing tools into a bigger tool, called Native Method Extractor, to
inspect the Java side of a large set of Android APK and extract useful information. The design
is reported in Figure 3.1.

It first extracts the lib/ folder present in APKs with native components. It contains all
shared libraries, and it is present only if the application uses them. Then, the extractor uses
both Jadx [32] and QDox [33]. Jadx is a Dex to Java decompiler, capable of retrieving the entire
app source code from an APK file while retaining precision. It is necessary to have the extractor

24

Problem Evaluation and Design

works with QDox, a high-speed, small footprint parser capable of fully extracting class, interface,
and method definitions. It is provided as a Java library (jar file) and we use it to extract for each
method declared as native its signature and all parameters needed to construct its pattern-based
name: the package name, the class name, and the method name. Only the native declaration
is extracted, not the method’s use. As Jadx can not decompile 100% of the code, QDox occurs
in some errors for certain decompiled applications. This is minor, as it rarely occurs and the
probability of finding an error in the same Java file where a native method is declared is low (as
shown in section 4.4). To deal with it, we ignore files with decompilation errors.

It produces as output both a list of native methods for each analyzed application together
with its signature, and a sorted frequency list of signatures. The latter is used by the following
tools to automate the fuzzing procedure.

Extractor
Analyze-native-signature
● set-up folder structure
● start extractor
● count signature

occurrence

Jadx
(APK decompiler)

QDox
(Java parser)

Signatures
report

Figure 3.1. Native method extractor design and components.

3.5 Harness Design

As explained in subsection 1.5.2, to fuzz test libraries the analyst first prepares a fuzzing driver,
or harness, built specifically for the target function. The harness is in charge of setting up a valid
environment for the target function to run, reading inputs provided by the fuzzing engine, and
moving execution to the target function with those as parameters. These steps are still valid when
fuzzing Android native components. In this section, we present the design and components of a
working harness stub, crafted specifically for our targets. In short, it:

• automatically loads the ART, to guarantee JNI functionalities;

• fetches the target function pointer by loading the native library, to call during fuzzing;

• sets up a deferred fork server.

From the point of view of the analyst instead, it is only required to add a small harness driver
to define the targeted function signature, read the needed parameters from stdin or file and call
the target function. The overall design is shown in detail in Figure 3.2.

3.5.1 Load ART

JNI provides a rich set of APIs, some of which allow native code to create and interact with
a Java program, more precisely a JVM. This specific part of the JNI API is called Invocation
API. The JNI function JNI_CreateJavaVM (contained in libart.so) loads and initializes a Java
VM and returns a pointer to the JNI environment interface pointers, JNIEnv. It takes three
parameters: the first two are pointers to such interface pointers, while the third one is a structure
called JavaVMInitArgs that provides arbitrary VM start-up options. In it, we can specify where

25

Problem Evaluation and Design

 Harness

load_art()
● create ART
● populate JavaVM and

JNIEnv

findFunctionPtrSharedLib()

Pattern-defined
● dlsym()

Dynamic-linking
● call JNI_OnLoad
● provide mock

version of
RegisterNatives

● provide real version
of all others JNI
functions

JNI_OnLoad()
● set-up eventual state

(most generic solution)

Fork
Server

Analyst-harness
● read fuzzer input

(stdin or file)
● convert input to Java

types

target()

main()

AFL++crash
Report

Figure 3.2. Harness design and components.

the VM will look for both the APK file and the native libraries that compose the application (in
Figure 3.3 at lines 7 and 8). All other options are not important to the understanding of the
design.

Then, we fetch its symbol with a library lookup using function dlsym and we call it. Before
returning to the harness itself, the ART also needs to have registered some framework native
methods used internally. We can do so by calling function registerFrameworkNatives inside
libandroid_runtime.so. Inside there is a call to JNI function RegisterNatives, exactly as we
would do when dynamically linking native methods in Java. The complete portion of C++ code,
without error checking, is presented in Figure 3.3. In lines 4 and 5, targetAppPath is the path to
the folder containing the application under test, composed of an APK file and the lib directory
with all native libraries. In Figure 3.2, it is implemented by the component load art.

3.5.2 Function Pointer Extraction

To deal with function pointer extraction, it is important to notice that most functions imple-
menting Java native methods are exported by a shared library. Exporting has the advantage of
preventing usage of undocumented API, such as symbols not exported, it reduces the risk of sym-
bol collision with other libraries and decreases the program’s startup time due to a lower number
of symbols needed to be processed by the dynamic loader. Considering our objective, it allows
fetching symbols through a simple library look-up when its full name is known. Two cases should
be considered, depending on the convention followed to register such native methods (introduced
in subsection 1.4.3):

• Pattern defined : when the native side function is named following a defined structure (Java -
com package class method), opening and calling dlsym on the target libraries provides us
with a valid function pointer;

• Dynamic linking : when instead the native side follows a dynamic naming scheme, through
JNI_OnLoad, RegisterNatives and the JNINativeMethod struct, we can not construct a
name based on the Java components and perform the symbol look-up. Luckily, the structure
JNINativeMethod contains as hard-coded strings Java side methods names, together with
their native function pointers. To retrieve a single one, we provide to JNI_OnLoad, as first

26

Problem Evaluation and Design

1 static auto load_art() -> std::pair<JavaVM *, JNIEnv *>

2 {

3 // Set-up required arguments

4 std::string apk_path = "-Djava.class.path=" + targetAppPath +

"/base.apk";

5 std::string lib_path = "-Djava.library.path=" + targetAppPath

+ "/lib/arm64-v8a";

6 JavaVMOption opt[] = {

7 { apk_path.c_str(), nullptr},

8 { lib_path.c_str(), nullptr}

9 };

10 JavaVMInitArgs args = {

11 JNI_VERSION_1_6,

12 std::size(opt),

13 opt,

14 JNI_FALSE

15 };

16
17 // Open shared libraries and fetch symbols

18 void * libart = dlopen("libart.so", RTLD_NOW);

19
20 void * libandroidruntime = dlopen("libandroid_runtime.so",

RTLD_NOW);

21
22 auto JNI_CreateJavaVM = (JNI_CreateJavaVM_t *)dlsym(libart,

"JNI_CreateJavaVM");

23
24 auto registerNatives = (registerNatives_t

*)dlsym(libandroidruntime, "registerFrameworkNatives");

25
26 // Create JVM

27 std::pair<JavaVM *, JNIEnv *> ret;

28 int res = JNI_CreateJavaVM(&ret.first, &ret.second, &args);

29 auto [vm_tmp, env_tmp] = ret;

30
31 // Register defaults native methods

32 jint res1 = registerNatives(env_tmp, 0);

33
34 return ret;

35 }

Figure 3.3. Native C++ code to create and load ART.

argument, a fake JavaVM *, with all original Java VM functions except the GetEnv one, of
which we provide a mocked version, called GetEnv_fake. Inside it, we again build a fake
JNIEnv structure, with all valid JNIEnv functions except the RegisterNatives one. This
last function instead, when called by the real JNI_OnLoad only via the JNIEnv structure,
intercepts the call to the real RegisterNatives and searches in the array of structures for a
method with a name matching. When it finds one it saves the corresponding function pointer
in a global variable for later usage when fuzzing. For example, if the harness needs to find a
method with a pattern defined name as Java com name jni package JNI nativeMethod, and
this exact string used in the dlsym look-up does not produce any result, then it must look
for an entry of structure JNINativeMethod with nativeMethod as name when intercepting
the RegisterNatives call.

27

Problem Evaluation and Design

In Figure 3.2, everything is implemented by the component findFunctionPtrSharedLib.

To have the most generic solution possible, without considering the potential state generated
by the Java side, we call, if present, JNI_OnLoad from the target function shared library. This is
useful as it happens that some native libraries generate an initial native state as the first thing
when the library is loaded. We are fuzzing native methods that might depend on such state, so
it is best to have the call to JNI_OnLoad to set it up.

3.5.3 Deferred Fork Server

Initializing the JavaVM and fetching the target function pointer is time-consuming. On a Google
Pixel 4 device, it takes about 0.37 seconds to perform both tasks. To avoid repeating those
steps for each fuzzing execution, we specify to AFL++ to set up a deferred fork server. It is
accomplished by calling AFL_INIT at the right position in the harness, after the initialization
phase but before any operation dealing with fuzzer inputs, so that the fork system call is called
at this exact position. AFL++ then handles automatically the rest.

Using the fork server with the ART, we are following the solution introduced in subsec-
tion 3.2.1. When we create and load the ART for the first time, around 11 or 12 threads start. As
soon as we fork the process after the first target execution, only the main thread remains alive.
The main thread is in charge of performing all JNI-related work, and it is capable of executing
Java calls from the native side. This is exactly what is needed to guarantee that the fuzzer will
not simply crash when encountering a particular JNI call, which is the case when using partial
mocks instead of the real JVM/ART.

3.5.4 Analyst Harness

Lastly, the analyst is required to manually add a small portion of code which depends on the target
function signature and the strategy chosen for fuzzing it. It is, accordingly, easier to implement
it manually, and it is divided into two parts:

• function signature: defines in the harness the signature of the function under test. This is
done by declaring a global type, used later to save the fetched target function pointer;

• AFL++ input : implements a small portion of code that initializes, reads, and converts to
JNI types the input generated by the fuzzer, after the deferred fork server. Then, such input
is passed when calling the target function.

Considering that all native functions take as a second parameter a valid Java object, of the
class defining the native method, we allocate it by using its class and the JNI. The name of the
class is retrieved from the target function pattern defined name.

3.6 Framework Design

Launching a fuzzing campaign on a single native method requires following a set of steps. These
include fetching the application and the library holding the target function implementation, setting
up the fuzzing environment and its start-up. We automate every step as much as possible. Then,
we address the problem of having low execution per second using the harness, by exploiting
AFL++ in parallel mode. It allows running up to N concurrent fuzzing jobs with virtually no
performance hit, with N being at most the number of cores available on the device. Finally, we
port the automated solution to a phone cluster, with everything handled by a fuzzing manager.
With the fuzzing manager, we can run N parallel fuzzing campaigns on each device, targeting in
a single run multiple native functions with the same signature.

The design of the complete framework is reported in Figure 3.5. It is composed of 3 tools: a
fuzzing driver based on target functions signature called fuzzing driver, a fuzzing driver based on
target function name called fuzzing one and a fuzzing manager handling both tools on a phone
cluster.

28

Problem Evaluation and Design

Fuzzing driver

It fuzzes for a given amount of time each native function contained in a target APK folder with a
specific signature. It supports input from AFL++ either from stdin or file and can run parallel
fuzzing campaigns on a specified number of cores. To provide to the harness the triplet Java
function name, application’s name, and native library name containing the function, it performs
an extra step. The first two are given by the signature file generated by the Native Method
Extractor, while the library name is retrieved either by looking at its symbols, for pattern defined
methods, or its strings, for dynamic-linking methods. When it launches AFL++ on multiple cores,
it must detach as soon as a single process is started. For this, we use the trailing ampersand (&),
which forks and runs the command asynchronously in a separate sub-shell. To terminate a process
after an amount of time the timeout command. In line 14 instead, it forces the process running
the script to wait for the termination of all started processes. In its absence, the script would
not respect the number of cores provided, and it will try to start as many fuzzing campaigns as
possible, often crashing the device. Its pseudo-code is reported in Figure 3.4.

1 Compile harness with afl-clang++

2 Extract methods with a certain signature

3 FOR all extracted methods:

4 Derivate the corresponding app name and native library

5 IF selected #cores > 1:

6 FOR 1 to selected #cores:

7 IF read from file then

8 Launch AFL++ for an amount of time in

master-slave mode (with @@)

9 ELSE

10 Launch AFL++ for an amount of time in

master-slave mode

11 Wait for all processes to finish

12 ELSE

13 IF read from file then

14 Launch AFL++ for an amount of time (with @@)

15 ELSE

16 Launch AFL++ for an amount of time

Figure 3.4. Fuzzing driver pseudo-code.

Fuzzing one

Similarly, it fuzzes for a given amount of time a single native method contained in a target APK
folder given its pattern-based name. The pseudocode is as the one shown in Figure 3.4, with the
only variation that it does not loop for all methods, and it searches for a single method in the
same set of signature files generated by the Native Methods Extractor. Similarly, it retrieves the
function’s name, the application’s name, and the library’s name as in the fuzzing driver.

Fuzzing manager

This is a python script instead, managing all operations to port both previous tools on a phone
cluster. It does so via ADB commands, and the use of a custom ADB python library. It has 4
functionalities implemented:

• fuzz signature: it starts the fuzzing driver script on each phone, after having transferred
the entire framework on it and having set the CPU frequency scaling to PERFORMANCE. It

29

Problem Evaluation and Design

uses the nohup command to detach from the process on one phone and move to the next
one. Once started on 1 core, there are 3 sets of processes running: one for the fuzz signature
script, another one for AFL++, and the last one for the harness itself;

• fuzz one: similarly, it starts the fuzzing one script on each phone, after setting the same
initial conditions.

• check : it performs an intermediate or final check on all fuzzing campaigns by pulling from
each device the entire output directory. It then extracts fuzzing statistics;

• kill fuzzer : it terminates all processes related to a fuzzing campaign, for each device, using
their PIDs.

Phone Cluster

Fuzzing-driver
(per signature)

Fuzzing-one
(per method)

Fuzzing-manager
(coordinate all via ADB)

fuzz_onekill_fuzzer fuzz_signature check

Compile harness and launch
fuzzing campaigns

Figure 3.5. Fuzzing framework design and components.

.

3.7 Manual Set-Up and Usage

In the following section, we list the steps required to start fuzzing an android APK native method.
The overall set of tools groups down to 4, mainly:

• patched AFL++: AFL++ with patches required to start on an Android device, because of
multiple missing dependencies;

• NativeExtractor : the tool performs an initial APK analysis. It extracts and analyzes all Java
method with a native implementation and count the occurrence of each method’s signature
to then fuzz them in an automated fashion;

• Harness: it is used together with AFL++ to fuzz a single native method. It provides the
soundest result when fuzzing a method considering its API specifications;

• AndroidNativeFuzzingFramework : complete framework porting parallel fuzzing of Android
applications native methods on multiple devices, based either on a single method’s name or
on multiple methods sharing the same signature.

30

Problem Evaluation and Design

3.7.1 AFL++ on Android

We now present the steps required to port AFL++ to Android, with the needed source-code
patches. As our framework will not need to instrument any program except for a small harness,
which we are not interested in testing, the AFL++ build presented instruments only in CLASSIC
mode.

Prerequisites

Firstly, the Android device must be rooted. This is required to access and preload libraries present
in system-level directories (e.g apex/ or system/), and then later use all computational power of
the device for short-lived processes as the ones fuzzing campaigns usually start. Secondly, a set
of packages are needed by the compilation tool-chain. Termux application is not required, but it
facilitates access to an Android shell and offers a patched and recompiled version of all common
Linux tools for Android (e.g grep, file, readelf and many others). As an alternative everything
can be done over ADB. The needed packages are make, libandroid-shmem, which emulates SYSV
shared memory on top of ashmem shared memory system, and ndk-sysroot for unified headers.
Lastly, clang as C compiler. At the moment of the project Termux only provided clang-v13, and
we only focused on building AFL++ with it. Later on, Termux updated it to clang-v14, and
given that Termux does not keep packages version history, Clang-v13 should be installed from
the corresponding .deb files, together with version 13 of libcompiler-rt, libllvm, lld and llvm. It
is worth noticing that GCC is deprecated in Android NDK and, although few un-official versions
exist, clang is preferred.

Patches

Patches should be applied to AFL++ source code, and are relative to the release 4.00c (of January
26th, 2022). The list of patches is as follows:

• POSIX compliance issue: in src/afl-ld-lto.c:148, deprecated POSIX function index()

should be substituted with its counterpart strchr(), as it is missing from the Bionic libc.

• LLVM symbols: symbols present in libLLVM-13.so shared library are needed by afl-cc

during execution. Without them, when testing the AFL++ compiler compilation stops
due to it being unable to open split-switches-pass.so, compare-transform-pass.so
and split-compares-pass.so because of missing symbols. Simply preloading the shared
library, by setting the LD_PRELOAD environmental variable to its path, solves the prob-
lem. When clang is installed following the prerequisites, the library is located under
/data/data/com.termux/files/usr/lib/;

• afl-cc symbols: AFL++ compiler afl-cc is unable to find symbols present in object file
afl-compiler-rt.o, required to run. It is solved by manually adding the path to the file,
contained in AFL++ main directory, as a parameter passed to the compiler invocation using
cc_params[] inside its source file, src/afl-cc.c;

• MMAP missing symbols: GNUmakefile:299 checks whether or not the target device can
use shm or mmap to handle shared memory operations. It creates and executes a simple
C program, calling both shmget and shmctl, and based on the result decides which one
to use. The Bionic libc does not provide shm_open and shm_unlink symbols, used to cre-
ate, open and remove/unlink POSIX shared memory objects. The program run in Android
returns 0 even if symbols are missing from MMAP, causing symbol’s missing exception
during the linking phase. Changing the comparison from 1 to 0, resulting in shm usage,
solves the problem. For Samsung A40 devices instead, we had to force shm usage also
in instrumentation/afl-compiler-rt.o.c, by conditionally compiling only shmat oper-
ations when in Android. This is the most general solution to still guarantee compatibility
in non-Android machines;

31

Problem Evaluation and Design

• Compilation test : as we said before, our patches make AFL++ target instrumentation works
in CLASSIC-mode only. Even if not strictly required, to pass the instrumentation test auto-
matically performed by AFL++ after compilation, we should add in GNUmakefile.llvm:459

the compilation flag –afl-CLASSIC ;

While running AFL++ on android together with ASAN, we discovered a bug in the im-
plementation of AFL++ specifically for Android. It resulted in a heap-buffer overflow pre-
venting the regular AFL++ startup, due to a wrong string length value passed to memchr in
src/afl-fuzz-stats.c:62.

Then, by simply running make the compilation process terminates correctly.

3.7.2 NativeExtractor

Extracting and analyzing native methods and their signatures are the first steps towards fuzzing
them. There are two requirements. The first is to have inside a folder target_APK/ a folder for
each app, containing a base.apk file. The second instead, is to have the Java decompiler jadx
built from source (running ./gradlew dist inside its source directory). Then to use, run:

$./analyze_native_signatures.sh qdox

It groups by and counts the number of methods per signature, and it generates for each app a file
named signatures_pattern.txt containing a list of the native methods present inside each APK
with their pattern-based name, with its extracted signature. It also creates a /lib/arm64-v8a

folder with all native libraries inside. Both the file and the folder are needed by the Android-
NativeFuzzingFramework when fuzzing a single method or per signature, therefore the extractor
should be run once before performing any real fuzzing analysis on a set of target applications.
As example, a portion of the file signatures_pattern.txt for an antivirus app is (with format
JavaName return_type:arg1_type,arg2_type,...):

Java_com_trustlook_sdk_offlinescan_OfflineScanner_offlineScan

int:String,String,

Java_com_tencent_mmkv_MMKV_reKey boolean:String,

Java_com_tencent_mmkv_MMKV_removeValuesForKeys void:String[],

Java_com_tencent_mmkv_MMKV_trim void:

3.7.3 Harness

The harness is used to fuzz a single native method. Before starting the fuzzing campaign, the
analyst should write the fuzzing driver itself. It is in charge of reading the input generated by the
fuzzer, converting it to Java types, and providing it to the target function, after having defined
the target function type. In Figure 3.6 we report one of the harness used to test a GIF library
in a messaging application. The target function, called Java pl droidsonroids gif GifInfoHandle -
openByteArray, loads a GIF image from a Java byte-array. The harness reads the GIF file into a
buffer and converts it into a Java byte-array. Then, it provides the Java byte-array jbyteArray

to the native function.

After creating a valid harness, we can compile it and start fuzzing. As a prerequisite, the target
application should have both a base.apk file and a library folder of the form /lib/arm64-v8a,
often contained in the same directory, the harness as a c++ file, AFL++ compiled with the
required patches for Android and afl-clang++ location set in PATH. To compile the harness with
–afl-CLASSIC instrumentation, we first preload symbols from LLVM-13 required by AFL++,
then we compile. The sequence of commands is the following:

$ export LD_PRELOAD="/path/to/libLLVM-13.so"

$ afl-clang++ --afl-classic -Wall -std=c++17 -Wl,--export-dynamic harness.cpp

-o harness

32

Problem Evaluation and Design

Then we launch the fuzzing campaign. The harness requires a few command line parameters
to understand what to fuzz and where to locate the necessary files. It needs specified:

• the target app path;

• the library name containing the target function;

• the target function name, as it would be in the case it is defined following the pattern defined
approach;

• an optional file path containing a valid input to feed to the target. This is optional as
AFL++ can provide input through stdin. When instead it provides it through a file, this
last parameter is substituted with @@, and AFL++ is in charge of replacing it with the
correct file name.

We set LD_LIBRARY_PATH to the location of libraries required by AFL++, for example libart.so
and the target library, and LD_PRELOAD to the C++ shared runtime. Finally, to launch the fuzzing
campaign:

$ export LD_PRELOAD="/path/to/libc++_shared.so"

$ export LD_LIBRARY_PATH="/apex/com.android.art/lib64:/path/to/target_app/lib/

arm64-v8a:/system/lib64"

$ afl-fuzz -i <input_dir> -o <output_dir> -- ./harness <path/to/target_app>

<lib_name> <target_name> [@@]

3.7.4 AndroidNativeFuzzingFramework

In section 3.6 we presented the design of the fuzzing framework. It supports parallel fuzzing cam-
paigns using a single device based on either method’s name or signature, or a phone cluster. The
names of the scripts handling each case are respectively fuzzing_one.sh, fuzzing_driver.sh
and fuzzing_manager.py. We go into usage details for each one of them.

Fuzzing one.sh

It fuzzes a given native method for a certain amount of time on a specified number of cores in
parallel. To invoke it, run:

$./fuzzing_one.sh <method-chosen> <time-to-fuzz> <input-dir> <output-dir>

<read-from-file[0|1]> <AFL_DEBUG[0|1]> <parallel-fuzzing[0|N]>

The available parameters, with a similar description in the help manual, are:

• method-chosen: method chosen from analyze_native_signatures.sh script, as fuzzing
target;

• time-to-fuzz : time to fuzz each method for, as float[s|m|h|d] (s=seconds, m=minutes, h=hours,
d=days);

• input-dir : fuzzing input directory name, populated with meaningful seeds (same as required
by regular AFL++);

• output-dir : fuzzing output directory name, it will be populated automatically by the frame-
work depending on the parameters used;

• read-from-file: flag to specify if harness will read from file (1) or from stdin (0) the input
generated by AFL++;

• AFL DEBUG : set to use AFL++ in debug mode;

• parallel-fuzzing : specify the number N of cores to use for a parallel fuzzing campaign (if N
is greater than the maximum number of available cores, then the maximum is used).

33

Problem Evaluation and Design

1 #include <jni.h>

2
3 /* Target function type definition */

4 typedef jlong function_t(JNIEnv *, jclass __unused, jbyteArray);

5
6 /* Harness main function */

7 int main(int argc, char *argv[]) {

8 ...

9 // ART startup (JNIEnv *, JavaVM *), function pointer

extraction and deferred fork server

10 ...

11
12 // Variable definitions

13 jbyteArray byteArray;

14 jclass MainActivityCls;

15
16 // Read bytes from GIF input file and save them into a buffer

17 std::ifstream fileStream(argv[2]);

18 fileStream.seekg(0, std::ios::end);

19 fileLen = fileStream.tellg();

20 fileBuf = new char[fileLen];

21 fileStream.seekg(0, std::ios::beg);

22 fileStream.read(fileBuf, fileLen);

23 fileStream.close();

24
25
26 // Convert into jbyteArray

27 byteArray = env->NewByteArray(fileLen);

28 env->SetByteArrayRegion(byteArray, 0, fileLen, (const jbyte *)

fileBuf);

29
30 // Call target function

31 info = targetFunctionPtr(env, MainActivityCls, byteArray);

32
33 }

Figure 3.6. Manual harness example for a GIF loading native method.

Fuzzing driver.sh

Similarly, it takes as parameter a function signature as the ones generated by analyze_native_-

signatures.sh, it searches inside the target_APK/ directory for methods having the same sig-
nature, and it fuzz for a certain amount of time each one of them, on a maximum of N cores (N
being the maximum number of cores available on the device). To use it:

$./fuzzing_driver.sh <signature-chosen> <time-to-fuzz> <input-dir>

<output-dir> <read-from-file[0|1]> <AFL_DEBUG[0|1]>

<parallel-fuzzing[0|N]>

Fuzzing manager.py

This python script instead is responsible of orchestrating the start-up, termination and interme-
diate check-ups of a fuzzing campaign on a phone cluster. It handles connections over ADB, so
as a prerequisite it requires that all phones have ADB debugging enabled and are connected to

34

Problem Evaluation and Design

a central machine using either a TCP/IP connection or multiple USB ports. Like all previous
scripts, each device must have a working AFL++ built for Android. Then, it is invoked as follows:

$ python fuzzing_manager.py [-h] --action {fuzz_signature,fuzz_one,check,

kill_fuzzer} [--target TARGET] [--fuzz_time FUZZ_TIME] [--from_file

FROM_FILE] [--parallel_fuzzing PARALLEL_FUZZING]

The options available, listed in the help manual, are:

• action: can be either fuzz signature, fuzz one, check and kill fuzzer. It specifies the action
to perform, with self-explanatory names;

• target : when fuzzing signature or fuzz one, indicates respectively the name of the target
function and the signature;

• fuzz time: time to fuzz each method for, as float[s|m|h|d] (s=seconds, m=minutes, h=hours,
d=days);

• from file: flag to specify if harness will read from file (1) or stdin (0) the input generated
by AFL++, as before;

• parallel fuzzing : specify the number N of cores to use for a parallel fuzzing campaign (if N
is greater than the maximum number of available cores, then the maximum is used).

3.7.5 Debug POC

Once satisfied with the results, hopefully with some crashes detected by AFL++, the target
function reporting a crash can be debugged using GDB. To do so, we should run the harness
similarly as when fuzzing, but passing as input file, or stdin, the POC generated. Inside GDB,
to focus only on the currently running thread, it is best to run set scheduler-locking step.
This stops other threads from “seizing the prompt” by preempting the current thread while
stepping. To launch GDB, the commands are as follows:

$ export LD_LIBRARY_PATH="/apex/com.android.art/lib64:/path/to/target_app/lib/

arm64-v8a:/system/lib64

#␣read␣input␣from␣file

$␣gdb␣--args␣./harness␣<path/to/target_app>␣<lib_name>␣<target_name>␣POC

#␣read␣input␣from␣stdin

$␣gdb␣--args␣./harness␣<path/to/target_app>␣<lib_name>␣<target_name>␣<␣POC

Together with GDB, we debug it with ASAN and reverse it with tools like Ghidra [34] and
Radare2 [35]. A partial implementation of ASAN is available by preloading its library, such that
it intercepts functions like malloc, free and others to apply safety checks, and then calls the
original function. Before launching the harness, preload it by running:

$ export LD_PRELOAD=path/to/clang/13.0.1/lib/android/libclang_rt.asan-aarch64-

android.so:$LD_PRELOAD

35

Chapter 4

Results

4.1 Fuzzing Performance

In this section, we present the performance of the AFL++ fuzzer used in different contexts. We
tested each use-case on two devices, a Google Pixel 4 and a Samsung A40. In Table 4.1 are
reported the hardware specifications for each device.

Google Pixel 4 Samsung A40
Chipset Qualcomm SM8150 Snapdragon 855 SAMSUNG Exynos 7 Octa 7904
CPU Octa-core Octa-core
Core #0 1.78 GHz Kryo 485 1.6 GHz Cortex-A53
Core #1 1.78 GHz Kryo 485 1.6 GHz Cortex-A53
Core #2 1.78 GHz Kryo 485 1.6 GHz Cortex-A53
Core #3 1.78 GHz Kryo 485 1.6 GHz Cortex-A53
Core #4 2.42 GHz Kryo 485 1.6 GHz Cortex-A53
Core #5 2.42 GHz Kryo 485 1.6 GHz Cortex-A53
Core #6 2.42 GHz Kryo 485 1.8 GHz Cortex-A73
Core #7 2.84 GHz Kryo 485 1.8 GHz Cortex-A73

Table 4.1. Hardware specification of the Google Pixel 4 and the Samsung A 40 Android devices

Android Performance Test

First, to have a baseline comparison of our harness, we used the test-performance.sh script
present in the AFL++ main folder to test AFL++ performance on an Android device, without
considering the harness and Android applications in general. The script compiles and fuzzes for
30 seconds a simple c file, which reads input from either stdin, command line or file, and then
returns. For both devices, the fuzzing campaign was run on the most performing core (2.84GHz
for the Google Pixel 4, while 1.8 GHz for the Samsung A40), after setting each CPU’s scaling
governor algorithm to maximum performance, and achieved respectively 2900 and 1130 executions
per second.

Harness Performance Test

Then, we tested the harness performance using a modified version of the HelloJNI-Callback [30]
test app provided by Android as a NDK example. The native method under test is Java_com_-
example_hellojnicallback_MainActivity_stringFromJNI, patched to take as input a Java
string, convert it into a native string, append the device’s architecture to it and then return it as
a Java string. With the same set-up as for the Android performance test, the fuzzing campaign

36

Results

was stable at 119.8 executions per second for the Google Pixel 4, and 47.0 executions per second
for the Samsung A40.

As we can see, when using the harness the fuzzing performance has a big drop (95.8%). The
degradation is to be attributed to the use of the deferred fork server. We noticed that this behavior
is present even in binaries not using our harness, only a deferred fork server initialization on an
Android device. Although it reduces fuzzing performance for a normal binary, it does the opposite
when used with a harness performing costly operations during initialization, like loading the ART
and performing symbol’s lookup. To prove this claim, we measure the fork server effectiveness
by registering the performance degradation when removing it from our harness. For the Google
Pixel 4 only, we have a 97.5% slowdown, which brings down executions per second from 119.8 to
3. It is therefore essential to have it.

Framework Performance Test

Lastly, we tested performance for both devices using the complete framework, so fuzzing on
each device varying the number of cores. With the same PUT, we collected the data shown in
Figure 4.1. The histogram on the left side reports the average executions per second on a single
core, depending on the number of cores fuzzing in parallel. The histogram on the right side,
instead, reports the total number of executions per second achievable on a single device when
varying the number of cores used for fuzzing in parallel. As expected, the value on a single core
decreases when increasing the number of cores used, achieving only virtually no performance
degradation, while the total number of executions per second increases. The peak for the Google
Pixel 4 is when 4 cores are used, because of the high difference in frequency with the remaining
cores. For the Samsung A40 instead, the peak is reached when all 8 cores run in parallel, and it
is almost equivalent to the Google Pixel 4.

Figure 4.1. Framework performance varying the number of cores used.

4.2 Bug Reproducibility

The first step towards fuzzing closed source libraries is to have the guarantee that our harness is
capable of detecting crashes and generating valid POCs. We tested it on two targets: a manually
inserted stack buffer overflow in the HelloJNI-Callback sample application, and on a real-world
CVE. In both cases, the harness was successful, proving that it is capable of finding bugs and can
be applied to real-world applications.

37

Results

Real World CVE

The real-world CVE taken into consideration was CVE-2019-11932 [36], a double-free bug residing
inside a GIF parsing library called Android-Gif-Drawable [9] allowing remote code execution [37].
The library is used in several different applications (33000+), including WhatsApp, and it is open
source. The bug is triggered using a corrupted GIF file when the following steps are executed:

• an attacker sends the corrupted GIF via WhatsApp message;

• the victim downloads it into the device’s gallery;

• the victim then decides to send any file present in the gallery and clicks on the paper clip
button to open it;

• the GIF file is loaded by the parsing library to show the user a preview of it, triggering the
double-free bug;

The operation of loading the GIF file is performed using the function DDGifSlurp from decoding.c.
It parses each frame individually, reallocating a buffer called rasterBits whenever certain con-
ditions are met, briefly whenever the frame size changes. For reallocation it uses function
reallocarray. When a frame has size 0, it performs a re-allocation of size 0, meaning a free
operation. Accordingly, parsing two subsequent frames with one size of 0 (either height or width)
means double freeing the same memory location. The bug is then exploited by controlling first the
program counter, then dealing with ASLR and WˆX (both mitigations increasing the complexity
to exploit the bug).

An example of a GIF causing the double free is reported in Figure 4.2. A GIF file is composed
of 2 initial fixed length blocks specifying the version and the canvas size, and then several variable
length fields. The field of our interest is the one starting with 0x2C, representing a single image.
Each image (or frame) starts with a header block of 10 bytes, which stores the image’s dimensions.
In the example, we have 4 frames, with the 2nd and 3rd being the ones causing the double free,
with dimensions 0x00 and 0xf1c.

47 49 46 38 39 61 18 00 0A 00 F2 00 00 66 CC CC

FF FF FF 00 00 00 33 99 66 99 FF CC 00 00 00 00

00 00 00 00 00 2C 00 00 00 00 08 00 15 00 00 08

9C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 F0 CE 57 2B 6F EE FF FF 2C 00 00

00 00 1C 0F 00 00 00 00 2C 00 00 00 00 1C 0F 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 2C 00 00 00 00

18 00 0A 00 0F 00 01 00 00 3B

Figure 4.2. Corrupted GIF causing CVE-2019-11932 (source: GitHub).

To reproduce the crash using our harness, we had to first analyze the source code of the library
to locate how we could reach the vulnerable portion of code. The call stack generated to reach
the bug is as follows:

38

https://awakened1712.github.io/hacking/hacking-whatsapp-gif-rce/

Results

• load GIF file: first we load the GIF file as a Java byte-array inside a native structure, and
return a pointer to such structure. The native method responsible for loading the file is
Java_pl_droidsonroids_gif_GifInfoHandle_openByteArray;

• trigger double-free: then, we use the loaded GIF file simulating the GIF preview operation,
by calling Java_pl_droidsonroids_gif_GifInfoHandle_renderFrame. It takes as input
both a Java bitmap and the pointer to the native GIF structure, and later calls DDGifSlurp.

The harness is in charge of loading into a Java byte-array the GIF file, extracting its dimensions,
generating a valid bitmap using them, and calling both methods in the correct order. As we
can see, the only way to reproduce this bug is to call both methods in sequence. Calling for
example the second method only would have resulted in a state violation and a consequent invalid
execution. This fact highlights the importance of building first a valid state for a certain native
method and then using it for fuzzing. We let AFL++ run on a single device, the Google Pixel 4,
for over 48 hours, and it was able to reproduce the crash generating the corrupted GIF file.

In addition, we were able to involuntarily reproduce and generate the POC of a heap buffer
overflow bug caused by another portion of code, the prepareCanvas function, and generated by
a corrupted GIF file when its image height is greater than its canvas height (the same is valid for
its width, but exclusively). The bug was fixed with v1.2.20.

4.3 Dataset

For evaluation purposes, we used as a dataset the applications provided by the Androzoo col-
lection. We collected all applications with the dexdate starting from 01/01/2021 and with a
maximum size of 10MB. This resulted in a set of 25,988 applications. We then filtered them to
keep only the ones using the NDK, based on the presence of a /lib folder in the APK, remaining
with 3,743 native applications.

4.4 Native Methods Extractor Evaluation

We evaluated the success rate of the NativeExtractor using it on our dataset. This step is required
by the inability to decompile 100% of the source code with Jadx, and by the fact that QDox orig-
inally works with the Java source code, not the decompiled one. Our strategy removes any Java
file creating problems with QDox, mainly syntax errors. Analyzing 3743 Android applications
(for a total of 17+ million Java files), QDox was unable to parse only 743 Java files (failure rate
of 0.0042%). Those files contained 15 missed native methods, which is low considering 275171
native methods overall.

The NativeExtractor, after extracting all native methods, performs a signature frequency
analysis on them. We used its output to set up an automated fuzzer, considering which kind of
input could generate interesting vulnerabilities (for example strings or byte-arrays). In Table 4.2
we report the top 40 signatures considering all unique native methods for our dataset, with their
frequency. For instance, the 5th most frequent, with signature void:String, handles a single
string, which is an ideal source for buffer overflows. Another insight we noticed is the high number
of libraries reused among applications. Most of the applications use the same libraries, generating
a low number of unique native methods, in respect of the total number of native methods used.

4.5 Fuzzing Results

Using the output generated by the NativeExtractor, we chose to target native methods taking
strings parameters only, either 1, 2, or 3 strings. We evaluated our framework to test the success
rate of fuzzing in black-box fashion targets without considering their Java and native state, and
to find unknown bugs in Android applications. In the following subsections, we present the results
of both evaluations.

39

Results

Frequency Signature Frequency Signature
2487 void: 160 void:a,

1343 int: 142 void:long,long,

921 String: 138 void:CharSequence,int,int,int,

721 void:int, 138 String:String,

640 void:String, 132 boolean:Object,

583 boolean: 126 void:RecyclerView.b0,int,

523 Dialog:Bundle, 117 void:long,int,

509 void:long, 115 boolean:int,

437 void:Bundle, 112 void:String,String,

436 void:View, 111 void:p,int,int,

416 void:Context, 111 String:Context,

393 void:boolean, 109 String:int,

339 int:long, 105 View:LayoutInflater,ViewGroup,Bundle,

283 int:int, 103 boolean:long,

233 void:Object, 97 void:long,float,

212 void:int,int, 96 void:DialogInterface,int,

211 long: 94 byte[]:

206 long:long, 91 boolean:MenuItem,

179 long:int, 89 void:CharSequence,

172 void:DialogInterface, 84 int:String,

Table 4.2. Top 40 frequent signatures.

4.5.1 Stateless Fuzzing Success Rate

As we highlighted before, fuzzing native methods in a stand-alone way is often inconclusive. The
reason resides in the way Android applications call native methods. Certain native functions
should be always called after others, performing some form of initialization or loading, or after
creating a Java state (creating objects, initializing variables, and other operations). In addition,
often native methods do not perform safety checks on those state and simply assume that the
application follows the correct call sequence. Unfortunately, retrieving the call sequence and the
parameters constraints would require another full project, so we only calculated the percentage
of methods that can be executed without the state by considering a method crashing for any
input as non-testable. We report in Table 4.3 the percentage of testable methods among the
ones taking strings parameters only, with the parameters used and the number of crashes found.
We run the fuzzing framework on 1 Google Pixel 4 and 5 Samsung A40 devices. The results
show that we can test 23.4% native methods on average. Opposite, to prove that the reason for
76.6% of non-testable methods is a state violation, we statically analyzed them picking some at
random and analyzing both with GDB and Ghidra/Radare2. The results always reported a state
violation. Most of them to be testable would need a harness somewhat similar to the one used in
section 4.2 for CVE-2019-11932 initializing a native state, or a harness with a series of JNI calls
initializing a Java state. In addition, none of the crashes was generated by a problem inside a
JNI function, confirming the ability of our harness to reliably handle all JNI calls and solving the
problem partially addressed by JNIFuzzer.

4.5.2 Discovered Bugs

Any crash discovered fuzzing the dataset resulted in a real bug in the native side of the application.
Unfortunately, there is no guarantee that the bug discovered is triggerable from the Java side, thus
a real security threat. The results show once again that the harness and the fuzzing framework
work, and that it can be easily coupled with another tool dealing with the “state” aspect to find
only bugs triggerable from the Android application, reducing false positives. In addition, one
would need to run each fuzzing campaign for at least 24 to 48 hours to increase the number of
crashes detected. We report a subset of the bugs discovered, and deemed significant.

40

Results

Signature
Testable
Ratio

Testable
Percentage

Fuzzing
Duration[h]

Number
Cores

Number
Crashes

void:String, 42/238 17.6% 2 4 3
long:String, 6/12 50.0% 2.5 6 0
String:String, 14/60 23.3% 2 6 1
boolean:String, 8/39 20.5% 2 8 0
int:String, 16/46 34.8% 2 8 4
void:String,String, 12/34 35.3% 2.5 8 2
long:String,String, 1/1 100.0% 2 8 0
int:String,String, 6/8 75.0% 2 8 0
boolean:String,String, 4/8 50.0% 2 8 0
String:String,String, 1/12 8.33% 2 8 0
boolean:String,String,String, 1/6 16.0% 2 8 0
void:String,String,String, 3/10 30.0% 2 8 0
Total 114/474 24.1% - - 10

Table 4.3. Results of multiple fuzzing campaigns per signature.

Bug #1

An off-by-one stack buffer overflow in the native method Java_net_sourceforge_zbar_Image_-

setFormat from applications Chimpa Bazaar, Onix Worker and Barcode And QR Code Generator.
The bug is classifiable using the Common Weakness Enumeration code as CWE-111 (direct use
of unsafe JNI). The portion of code generating the buffer overflow is the initial call to the JNI
function GetStringUTFRegion, responsible to convert a Java string into its native version. The
buffer used as target is allocated with an invalid size considering all allowed input lengths, and an
overflow by 1B occurs whenever the input string has size 4. As the native method has the stack
canary mitigation activated, it aborts when it detects the overflow. This bug is not triggerable
from the Java size: the string provided to the native method is hard-coded in the source code of
the application.

Bug #2

A bug in the implementation of the JNI function NewStringUTF, used by the harness. The bug was
discovered fuzzing the Android application Guide for Scary Teacher 3D, in particular its native
method Java_com_secrethq_store_PTStoreBridge_purchaseDidComplete, and it is present in
a total of 4 applications of our dataset. The function NewStringUTF creates a java.lang.String

object from an array of characters (char *) in modified UTF-8 encoding. Its specification states
that it returns NULL in case the string cannot be constructed (e.g. the input string is not UTF-
8 or modified UTF-8 encoded). Instead, when provided with a non-UTF-8 array of characters
(several 0xff bytes) it frees it without invalidating its pointer and it returns a valid Java object
(not NULL). A call to malloc after its use returns the same address as the original array of
characters. This bug can lead to use after free, and it highlights a serious threat for all Android
devices using this function in their native components, if it can be exploited.

Bug #3

A stack-based buffer overflow present in several methods of application Live Microphone to Speaker
(100K+ downloads on Google Play Store), specifically:

• Java_top_oply_opuslib_OpusTool_play

• Java_top_oply_opuslib_OpusTool_startRecording

• Java_top_oply_opuslib_OpusTool_openOpusFile

41

Results

• Java_top_oply_opuslib_OpusTool_isOpusFile

The bug can again be classified as CWE-111, considering that it is generated by improper use of
the JNI function GetStringUTFRegion. The native function does not perform any input validation
before interacting with the JNI, and any strings provided with a size greater than 256 overflows
the target buffer allocated on the stack. As in bug #1, the stack canary detects the violation and
promptly aborts the program. To understand if it is reproducible, we analyzed the Java side of
the application. The string provided to all native methods corresponds to the file name of an opus
audio file either registered through the application or received via any communication means (e.g
WhatsApp). Although the file name must conform to the Linux limitation on file name’s length
(255 bytes), the application appends to it its file paths, generating the overflow for sufficiently
long file names. The bug can be converted into arbitrary code execution, as long as the stack
canary value is retrieved from a previous leak.

Bug #4

A buffer overflow in function Java_Runtime_Native_init from the Android game PnuYozhika
3. The overflow is prevented by the use of additional safety checks provided by the FORTIFY
extension of the Bionic library, using function __strcpy_chk. As soon as the violation is detected,
the program is aborted. The bug is not exploitable, but it emphasizes the ability of our fuzzing
framework to find existing ones.

Bug #5

Stack buffer overflows in a total of 71 dictionary applications provided by Dictionary Creator
and available in the Google Play Store. The most used one is a Thai dictionary, with 1M+
downloads. The bugs were discovered when attempting to perform a library-based analysis,
instead of a signature one, on the dataset, which induced us to target a specific library called
libgetData.so. The vulnerable native method is Java_bestdict_common_code_BisObject_-

GetSound, which takes the word chosen in the dictionary and other 3 strings as parameters and
using the word constructs a query to Google translator, by concatenating it with an hard-coded
string. The source of the bug depends on the application’s version, and not all applications share
the same version:

• v.18 : the source of the overflow is a call to sprintf using as target a stack buffer of size
40960 bytes, without checking the input buffer length;

• v.19+: the source of the overflow is a call to memcpy using as source a hard-coded string
with size 335 bytes and as destination a buffer which might be already full. A dictionary
word with a size greater than 40625 but lower than 40960 generates the overflow.

Both bugs are exploitable in different ways by providing each application with a corrupted dic-
tionary database.

42

Chapter 5

Conclusion

In this project, we showed how to port and use the fuzzing engine AFL++ on an Android device
to fuzz Android application’s native components. Our technique integrates existing tools, with the
needed patches, to achieve automated black-box fuzzing, and primarily deals with the recreation
and use of a valid state to fulfill JNI invocations. As it stands, it is capable of handling 100% of JNI
calls. The core component is the harness and its interaction with the ART, while the framework
orchestrates each fuzzing campaign on multiple devices. Its evaluation shows the ability to find
new bugs in native methods, and reproduce them with the generated POC.

5.1 Future Work

In section 4.1, we reported how a single fuzzing campaign has low executions per second, even
if testing the performance of the device proves the contrary. The main cause is having the ART
loaded at all times, and using a deferred fork server initialization. To build up on our work,
one could apply the caching mechanism presented in subsection 3.2.2 to the harness, to increase
fuzzing throughput. Another improvement, simpler from our perspective, would be to understand
why the deferred fork server initialization drastically reduces binary performance.

Then, we highlight how our framework mainly focuses on the complexity introduced by JNI
calls. It is to be considered as a starting point to the incorporation of tools handling different
aspects of application’s fuzz testing, mainly stateful fuzzing and code instrumentation. The first
one is required to both fuzz a wider range of native functions and has the guarantee that any
POC generated corresponds to a crash triggerable from the Java side. The second instead is an
optimization step. Following is a more detailed description.

5.1.1 Stateful fuzzing

All native functions crashing for any inputs provided resulted in a state assumption being violated.
Most of the time, the correct call stack to reach the function under test requires first a call to one
or multiple initialization native functions. Calling JNI_OnLoad only results sufficient in few cases.
Symbolic execution on the Java side, following a source-to-sink approach, would help recreate
a valid call stack of all native functions invoked. Here the source would be a user-generated
input, while the sink is the target native method. In addition to a source-to-sink static analysis,
solving all generated constraints on the user-provided input would create valid requirements to
apply to the fuzzing input. Inputs would then assume values that the application alone could
have generated, reducing the number of false positives. Tools performing similar tasks exist, for
example Letterbomb [38] or FlowDroid [20], and both use the Soot [39] framework as symbolic
execution engine.

43

Conclusion

5.1.2 Binary Instrumentation

Even if AFL++ performs “smart” black box fuzzing, coverage-guided fuzzing would help maximize
coverage and generate more interesting inputs. Considering that most Android application’s
native components are closed source, the only techniques able to achieve it either use binary
rewriting tools such as Retrowrite [40], or dynamic instrumentation tools like CoreSight [29]. A
valid improvement of our work would require integrating one of those tools as a preprocessing
step. In Appendix A, we report the steps we followed to integrate AFL++ CoreSight mode on
Android and the reasons it did not succeed.

44

Bibliography

[1] A. Cranz, “There are over 3 billion active Android devices.” https://www.theverge.com/

2021/5/18/22440813/android-devices-active-number-smartphones-google-2021

[2] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “AndroZoo: Collecting Millions of
Android Apps for the Research Community”, Proceedings of the 13th International Con-
ference on Mining Software Repositories, New York, NY, USA, 2016, pp. 468–471, DOI
10.1145/2901739.2903508

[3] Google and Open Handset Alliance n.d. Android API Guide, https://developer.android.
com/guide/

[4] S. Wentworth and D. D. Langan, “Performance Evaluation: Java vs C++”, 39th Annual
ACM Southeast Regional Conference, March 16-17, 2001, p. 2002

[5] G. Tan and J. Croft, “An Empirical Security Study of the Native Code in the JDK”, Pro-
ceedings of the 17th Conference on Security Symposium, USA, 2008, pp. 365–377, DOI
10.5555/1496711.1496736

[6] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven pernicious kingdoms: a taxonomy of
software security errors”, IEEE Security Privacy, vol. 3, November 2005, pp. 81–84, DOI
10.1109/MSP.2005.159

[7] V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupé, M. Polino, P. De Geus, C. Kruegel, and
G. Vigna, “Going Native: Using a Large-Scale Analysis of Android Apps to Create a Practical
Native-Code Sandboxing Policy”, Symposium on Network and Distributed System Security
(NDSS), February 2016, DOI 10.14722/ndss.2016.23384

[8] F-Droid, “The f-droid repository.” https://f-droid.org/

[9] Koral, “Android-gif-drawable.” https://github.com/koral--/android-gif-drawable.

git, 2013
[10] Oracle, “JNI 6.0 API Specification.” https://docs.oracle.com/javase/7/docs/

technotes/guides/jni/

[11] M. Zalewski, “American Fuzzy Lop.” https://github.com/google/AFL, 2013
[12] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combining Incremental Steps of

Fuzzing Research”, 14th USENIX Workshop on Offensive Technologies (WOOT 20), USA,
August 2020

[13] GOOGLE, “HonggFuzz”, 2016, https://google.github.io/honggfuzz/
[14] LLVM, “libFuzzer - a library for coverage-guided fuzz testing”, 2017, http://llvm.org/

docs/LibFuzzer.html

[15] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “AddressSanitizer: A Fast
Address Sanity Checker”, 2012 USENIX Annual Technical Conference (USENIX ATC 12),
Boston, MA, June 2012, pp. 309–318

[16] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C. Rinard, “Information
flow analysis of android applications in droidsafe”, NDSS, 2015, p. 110

[17] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt, S. Rasthofer, E. Bodden,
D. Octeau, and P. McDaniel, “Iccta: Detecting inter-component privacy leaks in android
apps”, 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, 2015,
pp. 280–291

[18] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “CHEX: Statically Vetting Android Apps
for Component Hijacking Vulnerabilities”, Proceedings of the 2012 ACM Conference on
Computer and Communications Security, New York, NY, USA, 2012, p. 229?240, DOI
10.1145/2382196.2382223

45

https://www.theverge.com/2021/5/18/22440813/android-devices-active-number-smartphones-google-2021
https://www.theverge.com/2021/5/18/22440813/android-devices-active-number-smartphones-google-2021
https://doi.org/10.1145/2901739.2903508
https://developer.android.com/guide/
https://developer.android.com/guide/
https://doi.org/10.5555/1496711.1496736
https://doi.org/10.1109/MSP.2005.159
https://doi.org/10.14722/ndss.2016.23384
https://f-droid.org/
https://github.com/koral--/android-gif-drawable.git
https://github.com/koral--/android-gif-drawable.git
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/
https://github.com/google/AFL
https://google.github.io/honggfuzz/
http://llvm.org/docs/LibFuzzer.html
http://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/2382196.2382223

Bibliography

[19] F. Wei, S. Roy, X. Ou, and Robby, “Amandroid: A Precise and General Inter-Component
Data Flow Analysis Framework for Security Vetting of Android Apps”, ACM Trans. Priv.
Secur., vol. 21, apr 2018, DOI 10.1145/3183575

[20] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, and
P. McDaniel, “Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware
taint analysis for android apps”, Acm Sigplan Notices, vol. 49, no. 6, 2014, pp. 259–269, DOI
10.1145/2666356.2594299

[21] H. Shahriar, S. North, and E. Mawangi, “Testing of Memory Leak in Android Applications”,
2014 IEEE 15th International Symposium on High-Assurance Systems Engineering, 2014,
pp. 176–183, DOI 10.1109/HASE.2014.32

[22] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “DroidFuzzer: Fuzzing the Android Apps with
Intent-Filter Tag”, Proceedings of International Conference on Advances in Mobile Comput-
ing and Multimedia, New York, NY, USA, 2013, p. 68?74, DOI 10.1145/2536853.2536881

[23] T. Su, Y. Yan, J. Wang, J. Sun, Y. Xiong, G. Pu, K. Wang, and Z. Su, “Fully Automated
Functional Fuzzing of Android Apps for Detecting Non-Crashing Logic Bugs”, Proc. ACM
Program. Lang., vol. 5, oct 2021, DOI 10.1145/3485533

[24] S. Arzt and E. Bodden, “StubDroid: Automatic Inference of Precise Data-Flow Summaries
for the Android Framework”, 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE), May 2016, pp. 725–735, DOI 10.1145/2884781.2884816

[25] G. Fourtounis, L. Triantafyllou, and Y. Smaragdakis, “Identifying Java Calls in Native
Code via Binary Scanning”, Proceedings of the 29th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, New York, NY, USA, 2020, p. 388?400, DOI
10.1145/3395363.3397368

[26] J. Samhi, J. Gao, N. Daoudi, P. Graux, H. Hoyez, X. Sun, K. Allix, T. F. Bissyand’e, and
J. Klein, “JuCify: A Step Towards Android Code Unification for Enhanced Static Analy-
sis”, 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE), 2022,
pp. 1232–1244, DOI 10.48550/ARXIV.2112.10469

[27] Z. Kan, H. Wang, L. Wu, Y. Guo, and D. X. Luo, “Automated Deobfuscation of Android
Native Binary Code”, 2019, DOI 10.48550/ARXIV.1907.06828

[28] C. Rizzo, “Static Flow Analysis for Hybrid and Native Android Applications”. PhD thesis,
Royal Holloway, University of London, 2020. (unpublished)

[29] A. Moroo and Y. Sugiyama, “ARMored CoreSight: Towards Efficient Binary-
only Fuzzing”, November 2021. https://ricercasecurity.blogspot.com/2021/11/

armored-coresight-towards-efficient.html

[30] Google, “Hello JNI Callback.” https://github.com/android/ndk-samples/tree/main/

hello-jniCallback, 2015
[31] Google and Open Handset Alliance, “Android bionic status.” https://android.

googlesource.com/platform/bionic/+/master/docs/status.md

[32] Skylot, “jadx.” https://github.com/skylot/jadx, 2019
[33] P. Hammant, “QDox.” https://github.com/paul-hammant/qdox, 2016
[34] NSA, “Ghidra.” https://github.com/NationalSecurityAgency/ghidra, 2019
[35] S. Alvarez, “Radare2.” https://github.com/radareorg/radare2, 2006
[36] CVE-2019-11932, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11932
[37] Awakened, “How a double-free bug in WhatsApp turns to RCE”, October 2019. https:

//awakened1712.github.io/hacking/hacking-whatsapp-gif-rce/

[38] J. Garcia, M. Hammad, N. Ghorbani, and S. Malek, “Automatic Generation of Inter-
Component Communication Exploits for Android Applications”, Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, New York, NY, USA, 2017,
p. 661?671, DOI 10.1145/3106237.3106286

[39] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot - a Java
Bytecode Optimization Framework”, Proceedings of the 1999 Conference of the Centre for
Advanced Studies on Collaborative Research, Mississauga, Ontario, Canada, 1999, p. 13

[40] S. Dinesh, N. Burow, D. Xu, and M. Payer, “RetroWrite: Statically Instrumenting COTS
Binaries for Fuzzing and Sanitization”, 2020 IEEE Symposium on Security and Privacy (SP),
05 2020, pp. 1497–1511, DOI 10.1109/SP40000.2020.00009

[41] E. Dolstra, “patchelf.” https://github.com/NixOS/patchelf

46

https://doi.org/10.1145/3183575
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1109/HASE.2014.32
https://doi.org/10.1145/2536853.2536881
https://doi.org/10.1145/3485533
https://doi.org/10.1145/2884781.2884816
https://doi.org/10.1145/3395363.3397368
https://doi.org/10.48550/ARXIV.2112.10469
https://doi.org/10.48550/ARXIV.1907.06828
https://ricercasecurity.blogspot.com/2021/11/armored-coresight-towards-efficient.html
https://ricercasecurity.blogspot.com/2021/11/armored-coresight-towards-efficient.html
https://github.com/android/ndk-samples/tree/main/hello-jniCallback
https://github.com/android/ndk-samples/tree/main/hello-jniCallback
https://android.googlesource.com/platform/bionic/+/master/docs/status.md
https://android.googlesource.com/platform/bionic/+/master/docs/status.md
https://github.com/skylot/jadx
https://github.com/paul-hammant/qdox
https://github.com/NationalSecurityAgency/ghidra
https://github.com/radareorg/radare2
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-11932
https://awakened1712.github.io/hacking/hacking-whatsapp-gif-rce/
https://awakened1712.github.io/hacking/hacking-whatsapp-gif-rce/
https://doi.org/10.1145/3106237.3106286
https://doi.org/10.1109/SP40000.2020.00009
https://github.com/NixOS/patchelf

Appendix A

AFL++ CoreSight in Android

Fuzzing engines such as AFL++, libfuzzer or Honggfuzz perform coverage-guided fuzzing using
program instrumentation. To find new interesting program paths they benefit from run-time
feedback. The feedback is generated by instrumentation inserted in the program under test either
statically or dynamically. Static tools rewrite the target binary by inserting instrumentation.
They do not influence fuzzing performance, while are complex to develop. For example, for ARM
devices there is no public tool yet available, except for Retrowrite [40] which is still a work in
progress, especially in Android. Dynamic tools instead insert code at run-time, resulting in obvious
performance degradation. The de-facto standard tool to dynamically instrument without the
source code is QEMU emulator mode. As an alternative, Ricerca Security developed ARMored
CoreSight [29], a tool integrable with AFL++ and leveraging CoreSight ARM processor CPU
feature to provide instrumentation. Coresight is for ARM CPU as Processor Trace is for Intel
CPU, and it can capture branch executions at runtime. Compared to QEMU, it uses a native
CPU feature instead of executing the PUT on a VM, outperforming it by nature (Figure A.1).

Our targets are closed-source Android application binaries, and as such we looked into Core-
Sight to have a working dynamic tool to instrument them. We spent quite some time trying to
use it, so accordingly in this appendix we present AFL++ CoreSight mode, the steps we applied
to build it, and the reasons why we were not able to accomplish it in Android. This section is to
be considered as a first attempt and a starting point for future efforts.

PUT

QEMU VM

CPU

Fuzzer

PUT

CPU

CoreSight

Input

Feedback

Feedback

Figure A.1. QEMU and CoreSight modes in fuzzing (source: Ricerca Security).

Design

Modern ARM CPUs include in their design the hardware components for CoreSight. Three
components called trace source, trace sink and trace link produce and provide to external entities
trace data, such as information about branches useful when dealing with coverage fuzzing. AFL++

47

https://ricercasecurity.blogspot.com/2021/11/armored-coresight-towards-efficient.html

AFL++ CoreSight in Android

CoreSight is composed of coresight-trace and coresight-decoder, both running on user-space. The
first handles and control CoreSight components and monitors the PUT. It is implemented as a
derivation of the afl-proxy skeleton file provided by AFL++, and it works in fork server mode.
The second instead uses the data trace output to generate meaningful coverage information,
understandable by AFL++. Information is partial and is encoded in form of packets. Considering
branches, for example, coresight-trace only stores the location of the branch instruction, not the
destination address. To retrieve such information, the decoder disassembles the target binary.

Port on Android

As a prerequisite, AFL++ CoreSight requires only the Capstone disassembly library. The building
process is divided into two steps: first, we must compile the coresight-trace and coresight-decoder
components; then, the target binary must be linked against a patched version of the libc to provide
the advantages of the fork server even in CoreSight mode. In our case, the fork server must be
present considering that ART start-up time in the harness is non-negligible.

To compile both CoreSight components in Android, the only modification required to their
source code is about function pthread_setaffinity_np used by CoreSight-trace. The function
is used to set the CPU affinity mask of the given thread to a CPU set provided. It is a per-
thread call, and it is part of the NON-POSIX extension of the libc. Bionic libc comprises only a
subset of all NON-POSIX functions, and this one is not present. Instead, it can be substituted
by sched_setaffinity, which does the same operation but per-process, providing a PID. To use
it, we must slightly modify its implementation as follows:

1. fetch the preferred CPU before invoking pthread_create. It is later used inside the thread’s
routine;

2. make the thread routine decoder_worker call a modified version of set_pthread_cpu_-

affinity only if required (the preferred CPU value is non-negative);

3. patch function set_pthread_cpu_affinity to call sched_affinitity on the current thread,
by passing 0 as PID.

Then, the target binary is linked against a modified version of the GNU C library (glibc)
using the Patchelf [41] utility, containing the function used by AFL++ to start the fork-server.
Problems arise when building the glibc patched implementation with LLVM/Clang. Due to its
reliance on different GNU toolchain extensions or specific non-standard GCC behaviors, glibc
requires to have a GNU GCC compiler with version 6.2 or higher. In Android, GCC is not
available by default, and although few un-official releases exist none seems to be working as
expected. The last available GCC compiler for Android was provided together with NDK r17,
and it was version 4.9, too old to be used in our case. Using as an alternative to glibc musl also
resulted in several missing symbols.

Even if the fuzzing advantage is noticeable, the final goal would be to use the fuzzing framework
together with Retrowrite, and so we stopped any further attempts to build CoreSight.

48

	Android Native Libraries
	Background
	Android Applications

	Native Development Kit
	Native Libraries in Android Applications
	Analysis and Testing

	Java Native Interface
	Design
	JNI Functions and Primitive Types
	Naming Conventions

	Fuzz Testing
	Design
	Fuzzing libraries

	Previous Effort
	Related Work
	JniFuzzer
	Design
	Evaluation Results
	Limitations

	Problem Evaluation and Design
	JNI Functions Problem Evaluation
	Considered solutions
	ART Reuse
	Mocks with caching strategy

	AFL++ In Android
	Native Methods Extractor
	Harness Design
	Load ART
	Function Pointer Extraction
	Deferred Fork Server
	Analyst Harness

	Framework Design
	Manual Set-Up and Usage
	AFL++ on Android
	NativeExtractor
	Harness
	AndroidNativeFuzzingFramework
	Debug POC

	Results
	Fuzzing Performance
	Bug Reproducibility
	Dataset
	Native Methods Extractor Evaluation
	Fuzzing Results
	Stateless Fuzzing Success Rate
	Discovered Bugs

	Conclusion
	Future Work
	Stateful fuzzing
	Binary Instrumentation

	Bibliography
	AFL++ CoreSight in Android

