
POLITECNICO DI TORINO

Master’s degree course in Computer Engineering

Master’s Degree Thesis

Use of Trusted Computing techniques to
counteract Cybersecurity attacks in

Critical Infrastructures

Supervisors
prof. Antonio Lioy
dr. engr. Diana Gratiela Berbecaru

dr. Ignazio Pedone

Candidate

Enrico Bravi

Academic Year 2021-2022

Alla mia famiglia, che mi ha

sempre supportato e

incoraggiato

Abstract

Nowadays to manage critical infrastructures there are largely adopted paradigms such as Cloud
Computing, Fog Computing, and Edge Computing. They introduce several advantages, like ensur-
ing great flexibility, availability and reducing management costs. These goals are mostly achieved
thanks to the advantages of virtualization technologies. Despite these techniques introduce sev-
eral advantages in terms of performance, they introduce also several security threats like attacks
against software integrity. To mitigate these kinds of threats can be used Trusted Computing
techniques like Remote Attestation (RA) which permits a third party (Verifier) to verify the soft-
ware and configurations’ integrity of a platform (Attester) to determine its trustworthiness. To
perform RA there are several techniques that can be based on some secure hardware (e.g. TPM
and TEE based) or based only on software solutions (e.g. Pioneer). The problem addressed by
this work is the lack of a generic model for remote attestation which makes it difficult to attest
different objects and aggregate different attestation technologies. The proposed solution consists
of a new version of an already proposed system called Trust Monitor. The purpose of this thesis
is to propose a new design and a new implementation of this platform in order to can reach the
highest level of flexibility that this system can offer and to be able to integrate this platform into
the largest number of possible scenarios. The solution proposed permits to be independent of the
objects on which performing RA (physical nodes, virtual machines, containers, pods, enclaves),
introducing an object model completely general in order to can save the necessary information
for each kind of possible entity. In addition, it permits to reach the independence of the plat-
form from the RA technologies (Keylime, Open Attestation, Intel SGX) used to perform this
verification thanks to a dynamic load of ad hoc plugins for each technology used.

Summary

The following thesis is carried out in the context of Cloud Computing, which is a computing
paradigm that has had dizzying growth in recent years. This growth is justified by the great ad-
vantages that this paradigm introduces like ensuring great flexibility and availability and reducing
the management cost making available to the client the possibility to not directly manage the
hardware used to deploy the IT infrastructure but only the high-level services. These goals are
achieved thanks to the advantages of virtualization technologies which are highly used in a Cloud
Computing scenario. These technologies can be of full virtualization (e.g. VMware, Hyper-V,
KVM) that permits to create and manage virtual machines, or they can be lightweight virtualiza-
tion (e.g. Docker) that permits to create and manage containers. These are elements that allow
to deploy services as a set of micro-services, which permits reaching a high level of availability
and flexibility. Despite the cloud computing paradigm introduces several advantages in terms of
performance, it introduces also several security threats such as malicious insider, isolation failure,
and economic denial of service, which expose companies and users to important privacy and se-
curity dangers. For all these reasons it is very important the possibility of verifying the integrity
and the correct configuration of the software running on cloud nodes in order to be able to detect
tampering and react accordingly.

The mechanism used for this integrity checking is Remote Attestation (RA) which permits a
third party to verify if the software running on both physical nodes and virtual nodes, realized
as tradition or lightweight virtual machines, is the expected one in order to determine the trust-
worthiness of the system. In order to perform RA, there are several techniques and technologies
which can be based on some secure hardware or based only on software solutions. These solu-
tions can be adopted in different scenarios, from IoT to large cloud infrastructures. One of these
scenarios is the case of Network Function Virtualization (NFV) which exploits the advantages of
virtualization in order to offer an infrastructure with virtualized components, called Virtualized
Network Functions (VNFs), instead of physical ones. In the particular case of NFV, the European
Telecommunications Standards Institute (ETSI) has defined several standards regarding the com-
ponents and how should take place the process of RA of VNFs, defining a particular component,
called Trust Manager, to integrate into the NFV infrastructure in order to verify the integrity of
VNFs.

The TORSEC research group proposed a system called Trust Monitor, which can be con-
sidered an implementation of the Trust Manager, in order to be able to verify the integrity of
an NFV infrastructure, in particular running Virtual Network Security Functions (vNSFs) which
implements specific components with security purposes. The purpose of this thesis is to propose
a generic attestation model in order to attest different objects and aggregate different attestation
technologies. In order to reach this result, it has been proposed a new design and implementation
of the Trust Monitor. This is necessary in order to can reach the highest level of flexibility that this
system can offer. The goal of this work was to realize a system that can add an abstraction layer
above the RA one in order to make the Trust Monitor independent from the objects that need
integrity verification (physical nodes, virtual machines, containers, pods, enclaves), and also inde-
pendent from the RA technologies used to perform this verification (Keylime, Open Attestation,
Intel SGX).

Functional and performance tests have been performed on the proposed solution in order to
verify that the system works as expected and that is able to scale depending on the number of
objects to manage.

1

Acknowledgements

I would like to express my gratitude to Prof. Antonio Lioy and Dr. Engr. Diana Gratiela
Berbecaru for the opportunity they gave me of working on this thesis.

I would also like to thank Dr. Ignazio Pedone for his insightful comments and suggestions.

I would like to extend my sincere thanks to Dr. Silvia Sisinni for the technical support she offered
me.

My most important thanks go to my family to whom I am deeply grateful for always believing in
me.

Finally, I would like to thank my dearest friends who accompanied me during my studies, allevi-
ating the resulting tiredness and tension.

2

Contents

1 Introduction 6

2 Trusted Computing and Remote Attestation 9

2.1 Trusted Computing . 9

2.1.1 Trusted Platform Module (TPM) . 10

2.2 Roots of Trust (RoTs) . 12

2.2.1 Root of Trust for Storage (RTS) . 12

2.2.2 Root of Trust for Measurement (RTM) . 12

2.2.3 Root of Trust for Reporting (RTR) . 12

2.3 Trusted Boot . 12

2.4 Remote Attestation Techniques . 14

2.4.1 Remote Attestation . 14

2.4.2 Harware-based Attestation . 15

2.4.3 Software-based Attestation . 17

2.4.4 Hybrid Attestation . 18

2.5 Trusted Execution Environment (TEE) overview 18

2.5.1 Intel SGX . 19

3 Remote attestation standards and use cases 21

3.1 Device Identifier Composition Engine (DICE) . 21

3.2 Remote Attestation Procedures (RATS) . 23

3.2.1 Topological Pattern . 25

3.3 Trusted Execution Environment Provisioning (TEEP) 26

3.3.1 Architecture . 26

3.4 ETSI GR NFV-SEC 018 . 27

3.4.1 Network Functions Virtualization . 27

3.4.2 NFV Remote Attestation Architecture . 28

3

4 Trust Monitor (TM) 31

4.1 Overview and Motivation . 31

4.2 Architecture . 31

4.2.1 Attestation Process . 33

4.3 Trust Monitor 2.0 . 34

4.3.1 Keylime Attestation Framework . 34

4.3.2 Keylime Attestation Driver . 36

4.3.3 Whitelist Web Service . 38

4.4 Criticalities and open challenges of the classic version 38

5 Trust Monitor Redesign 39

5.1 Architecture of new Trust Monitor . 39

5.2 Level of Abstraction . 40

5.2.1 Attestation Adapters . 40

5.3 Description of the Componets . 41

5.3.1 TM Core Application . 41

5.3.2 Connectors . 41

5.3.3 Databases . 42

5.3.4 Queues . 43

5.4 Interfaces and High-Level Workflow . 43

5.4.1 TM Operations . 44

6 Trust Monitor Implementation 46

6.1 Tools and Libraries . 47

6.1.1 Configuration File . 47

6.1.2 APIs Manager . 48

6.1.3 Databases . 49

6.1.4 Queues . 50

6.1.5 Databases’ connectors . 50

6.2 Low-level workflow of the solution . 51

6.2.1 Adapters . 51

6.2.2 TM Core Application . 52

6.2.3 Adapters’ connector . 53

6.3 APIs and Operations . 53

7 Test and Validation 55

7.1 Testbed . 55

7.2 Keylime attestation adapter . 55

7.3 Functional tests . 57

7.4 Performance tests . 62

4

8 Conclusions and future work 65

Bibliography 67

A User’s Manual 70

A.1 System deployment . 70

A.1.1 Enabling TLS . 71

A.1.2 Keylime . 71

A.1.3 Adding attestation adapters . 71

A.2 Use of databases . 73

B Developer’s reference guide 75

B.1 Trust Monitor APIs . 75

5

Chapter 1

Introduction

IT infrastructure security is becoming more and more important in a business context, because
the services offered manage sensitive data, or execute code, which could be tampered with and
becomes dangerous for the infrastructure itself. The Cloud Computing approach permits the
management of several aspects of an IT Infrastructure, from hardware to applications deployed.
In this scenario a Cloud Provider can make available the infrastructure to the client, at different
levels: it can supply hardware (virtual hardware), so that the client can build its infrastructure
as it would be on-premise, but not manage the maintenance of physical nodes. This approach
is called Infrastructure as a Service (IaaS). The Cloud Provider could make available directly an
application or a service, hiding all the infrastructure details. In this case, the approach is called
Software as a Service (SaaS).

The key concept of all cloud computing models is the possibility to offer a flexible service, in
this way it becomes easier for the client to access it and easier for the cloud provider to offer and
manage it. Over the year this paradigm has become more and more used, raising several security
issues. In fact, security is one of the biggest barriers to the wider adoption of cloud computing
[1].

The concept of virtualization has radically changed the network and cloud world, permitting
the optimization of the resources utilization and services provided. virtualization introduces some
security features hidden in the concept itself, in fact, the concept of Virtual Machine (VM) permits
to achieve a high level of isolation at the application level, so each VM has a separate environment
from the others, having also its own (virtual) hardware. The entity that permits the virtualization
is the Hypervisor, which can be executed at several levels of privileges on a physical machine, it
depends on what is the purpose of the system. In an industrial context, the Hypervisor generally
is a very stripped-down OS that runs on bare metal and executes and manages some “special”
processes (VMs). This permits to have accurate control of the physical hardware. In a personal
context, this solution could be excessive from a management point of view. For this reason, a
Hypervisor can be executed at the application level, as a normal process running over an OS. In
this case, there are some considerations on the privileges associated with the Hypervisor because
in order to use the hardware has to call the underneath OS which has the actual control of the
physical device. There are also other solutions to obtain isolated environments, like Lightweight
Virtualization, which instead of using software developed to virtualize, exploits several OS features
and concepts in order to isolate some processes but at the kernel level, without the hardware
Virtualization process. In this context, it introduces the concept of Container which is the isolated
entity from the machine environment. In this way, the isolation can be different based on the
necessity of the moment, because can be, for example, at the network level, at the process level, at
the user level, and even combine these levels of isolation. Of course, virtualization introduces also
some vulnerabilities [2], and for this reason, some techniques to monitor a virtualized environment
are needed.

An important example of how can be used virtualization to add flexibility in a network context
is Network Function Virtualization (NFV), which permits to move all the services provided by
a network provider to a higher level, not making available hardware, because of the difficulty of

6

Introduction

managing several tenants that can require very different services (e.g. proxies, firewalls, gate-
ways), but making available Virtualized Network Functions (VNFs). This paradigm permits the
management of network security by providing security functions called Virtual Network Security
Functions (vNSFs). Thanks to this technology it is possible to offer services for the security of
infrastructures following the concept of Security as a Service (SECaaS) [3]. These functions allow
to protect the entire infrastructure from malicious intentions that can compromise the security
of the entire infrastructure. They are also vulnerable to attack though, in fact, they could be
subjected to some kind of manipulation that compromise their behavior.

A possible technique that could be adopted to mitigate these manipulation threats, is Remote
Attestation [4]. This process is based on the possession of some information about the expected
behavior of an entity (Attester) of the infrastructure, which has to send its current state, which
typically consists of a set of measurements of software components running on the system, to
another entity (Verifier) that has the duty to confront this data with the already possessed to
check if the Attester is in a trusted state or not. This technique can rely on some secure hardware
installed on the device, for example, the Trusted Computing Group (TCG) has designed the
Trusted Platform Module (TPM) [5], which permits to build a chain of trust from the hardware
up to the software. In not every case is possible to use a TPM though, in fact, especially for IoT
devices that have limited resources, because the system cannot be provided with additional secure
chips like the TPM. For these scenarios have been developed some solution that permits to achieve
an acceptable level of trustworthiness of devices, based only on the software that runs on the
system and some secret securely stored in the device’s memory. The European Telecommunications
Standards Institute (ETSI) has designed a standard [6] for Remote Attestation, specific for NFV
environments where it explains the procedure to obtain proof of the trustworthiness of services
(VNFs). ETSI proposed an entity called Trust Manager which has the purpose to verify the
integrity VNFs in NFV infrastructure and permits to centralize all these operations.

The TORSEC research group has developed a system called Trust Monitor which is a
possible implementation of the Trust Manager entity. It was designed for the remote attestation
of physical nodes and VNFs, in particular vNSFs in a SECaaS scenario, of an NFV infrastructure
introducing the needed centralization of attestation processes. Even though the Trust Monitor was
proposed for a specific SECaaS scenario, the goal of this system is the possibility to be integrated
into several kinds of infrastructures in order to be able to manage the remote attestation of more
generic objects like VMs or containers, so for a generic Cloud Computing scenario. A great
possibility that the Trust Monitor offers is using different remote attestation technologies because
its architecture introduces a component called Attestation Driver. An Attestation Driver is a
module that implements the necessary logic to interface with a particular attestation technology.
In this way, it is possible to use several technologies deploying several Attestation Drivers for
each technology. The proposed architecture of the Trust Monitor originally implements a verifier
which confronts the Integrity Report received from the Attester with the reference values of that
particular entity and decides if the object is trusted or not. This could be a problem from the
flexibility point of view because the Trust Monitor is dependent on the attestation technologies
used.

The purpose of this thesis work is to propose a generic model of remote attestation in order to
attest different objects and aggregate different attestation technologies. This has been reached by
redesigning the entire architecture of the Trust Monitor in order to achieve a system completely
independent from the remote attestation technologies used in the infrastructure and from the
objects to be verified for integrity. This redesign would permit obtaining a system that can be
deployed in several Cloud Computing scenarios without the modification of the core of the system
but only by integrating different components. This is achieved by moving the main remote attes-
tation logic on the Attestation Drivers, called Attestation Adapters in this new version, in order
to obtain the independence wanted. In addition, the logic of the Verifier is not implemented in
the Trust Monitor but it is used the verifier implementation of each technology integrated into the
system, so the Trust Monitor has only the purpose to aggregate all the results received from these
verifiers. This approach permits adding a level of abstraction to the remote attestation process
because all the logic that controls a single attestation technology is moved in the relative adapter
so the administrator interface became the Trust Monitor which hides all these sub-processes. The
solution proposed provides an adapter for the Keylime attestation framework. In this particular

7

Introduction

case, it is a modified version of Keylime which permits the remote attestation of nodes and pods,
developed for remote attestation in a Kubernetes [7] infrastructure.

The tests performed on the system have been both functional and performance. The results
show that the system works as expected and that the overhead time added to the Keylime frame-
work is negligible. In addition, for performance tests, has been deployed a simulated environment
that has permitted test the system with up to 36 nodes under attestation, and the result is that
the proposed solution scale correctly with an increasing number of objects under attestation.

8

Chapter 2

Trusted Computing and Remote
Attestation

2.1 Trusted Computing

Trusted Computing was introduced in the 1990s to deal with the problem of platform trustwor-
thiness, which is defined as the expectation that the behavior will be a particular one, depending
on the purpose of the platform.

Being able to understand if a node is in a trusted or untrusted state, is very important in a cloud
environment because nodes are exposed to the outside world and they could be compromised. A
node could be manipulated in several ways and a possible one is by software alteration. For this
reason, it’s needed a mechanism that permits ascertaining if a component of the infrastructure
is in the expected state, and can securely communicate with other components. This mechanism
has to demonstrate that the node is “trusted”, otherwise a node that is identified as “untrusted”
should be disconnected from the network and restored.

The Trusted Computing Group (TCG) is the organization that develops and promotes tools
related to trusted computing, and it has defined the concept of Trusted Platform (TP). Moreover,
the TCG has proposed a possible implementation of the TP, which relies on an additional chip
called Trusted Platform Module (TPM), which is widely accepted by the industrial world [8].
Several other devices that fit this definition of “trusted platform”, or have a sufficient overlap
that it must be considered their contribution to the family’s lineage [9]:

• Secure Coprocessor which is a subcomponent of a computing system, that executes
security-sensitive computation. The key concept of a secure coprocessor is not security
per se, but instead is building a trusted environment, where sensitive applications can be
executed in it, increasing protection against possible attackers (Figure 2.1)

• Cryptographic Accelerators that permits to perform intensive cryptographic computa-
tion. They are considered trusted computing platforms because they began to store sensitive
keys, that permit to obtain features like physical security and programmability.

• Personal Tokens which is a dedicated hardware a user can use to perform several op-
erations, such as to authenticate themself, cryptographic operations, etc. Those devices
require some physical security, that permits preventing a malicious user to learn enough
from a token or modify the token state.

• Dongles that is typically used to prevent copying of the software. The main idea is the
software runs on a general-purpose system, with a dongle attached, and this software in-
teracts with this device, and it cannot run successfully without the dongle’s response. This
solution is often provided by a software vendor.

9

Trusted Computing and Remote Attestation

Legacy Apps

Legacy OS

Host Machine
(weak assurance)

traps/syscalls

User mode

Kernel mode

constrained
communication

Trusted Apps

Trusted OS

Secure
coprocessor

(higher assurance)

traps/syscalls

Figure 2.1. Secure Coprocessor (source: [9])

• Trusted Platform Module is an independent chip, mounted on the motherboard of a
general-purpose machine, that permits to increase in the security of the computation. One
advantage of this solution is that it can potentially secure the entire general-purpose ma-
chine, on the other hand, providing effective security for an entire system by physically
protecting the TPM and leaving the CPU and memory exposed is a delicate matter. This
is currently one of the most used solutions at the industrial level.

• Hardended CPUs which is the idea to add additional functionality to the CPU instead
of adding physical security, in this way it could be possible to transform an entire general-
purpose machine into a trusted platform.

2.1.1 Trusted Platform Module (TPM)

Those solutions have been introduced because it become obvious that trying to detect malicious
software with software-only solutions, could be easily substituted with some hardware [10]. As
reported before, one of the most used hardware solutions is the TPM which was developed to be
a minimal chip that could be placed on the PC’s motherboard. Another characteristic was to
have the instructions set reduced, containing only the necessary functions delegating all the more
sophisticated functionalities to the software layer. All those specifications were introduced in the
publication of the TPM version 1.1b which contained the following functionalities [11]:

• key generation;

• storage of integrity metrics in special registers named Platform Configuration Registers
(PCRs);

• reporting of integrity metrics;

• secure authorization;

• cryptographic operations;

• use of Attestation Identity Keys (AIKs), related with the TPM identity;

This version of the TPM was introduced by the Trusted Computing Platform Alliance (TCPA),
which become the TCG and published the TPM version 1.2 [5] that was aimed to address the
following major issues in the industry [11]:

• Identification of devices: It was necessary because, before the release of the TPM specifi-
cations, devices were identified by MAC addresses and IP addresses, which are not secure
identifiers.

10

Trusted Computing and Remote Attestation

• Secure generation of keys: For creating secure keys, a hardware random-number generator
is needed, because many security solutions have been broken.

• Secure storage of keys: TPM permits to keep secure the generated keys, particularly from
software attacks.

• NVRAM storage: Having a non-volatile RAM permits the TPM to maintain a certificate
store, even if a hard drive is rewritten.

• Device health attestation: TPM is used by organizations to attest the health of a device.
But if a system was compromised, it might report it was healthy, even when it wasn’t.

This version had great success, it was introduced on most of the x86-based client PCs starting
from 2005 and on most servers starting from 2008.

While the TPM 1.2 began to be widely used, the TCG started to work on the TPM version
2.0, represented in figure 2.2. This was necessary because of the publication, in 2005, of the
first significant attack against the SHA-1 digest algorithm, which was heavily used in the TPM
1.2. TPM 2.0 implementation enables the same features of TPM 1.2, plus several more. One of
the most significant improvements was the Algorithm Agility, which permits changing algorithms
without revisiting the specification [5]. This feature was the first motivation for the design of
TPM 2.0, but during the work, other features were added, such as support for the Elliptic Curve
Cryptography algorithms, dedicated BIOS support, and others.

TPM 1.2

Input/Output

Cryptographic
co-processor

Key generation

HMAC engine

Random number
generator

Power detection

Opt-In

SHA-1 engine

Comunication Bus

Volatile memory

Authorization

Execution engine

Non-volatile
memory

TPM 2.0

Input/Output

Asymmetric
engine(s)

Key generation

Hash engine(s)

Random number
generator

Power detection

Management

Symmetric
engine(s)

Data comunication
path

 Volatile memory
 (RAM)

PCR banks
Key in use
Session
etc.

Authorization

Execution engine

 Non-volatile
 memory

Platform seed
Endorsement
seed
Storage seed
Monotonic
counters
etc.

Figure 2.2. Comparison between TPM 1.2 and TPM 2.0 architecture (source: [5] [12])

11

Trusted Computing and Remote Attestation

2.2 Roots of Trust (RoTs)

TCG-defined methods rely on the Roots of Trust. This is a set of elements that has to be trusted
because misbehavior cannot be detected. The aspect that a Root of Trust can’t be checked if
it is behaving properly or not, it is possible to know how it’s implemented. For this reason,
Certificates are used to prove that the root has been implemented in a trustworthy way. An
example could be a certificate provided by an independent testing laboratory that may report the
Evaluated Assurance Level (EAL) of a TPM, consequently providing confidence in the correct
implementation of its RoTs.

In a Trusted Platform are required three Roots of Trust by the TCG:

• Root of Trust for Storage (RTS);

• Root of Trust for Measurement (RTM);

• Root of Trust for Reporting (RTR).

2.2.1 Root of Trust for Storage (RTS)

The TPM memory is not accessible by any other component other than the TPM. Not all the
information, contained in the TPM memory, is sensitive. Some non-sensitive information is not
protected from disclosure, while other information is not accessible without the proper authenti-
cation (for example the private part of an asymmetric key).

2.2.2 Root of Trust for Measurement (RTM)

This component sends measurements to the RTS. Typically it is the CPU controlled by the Core
Root of Trust for Measurement (CRTM), which is the first set of instructions executed when a
new chain of trust is established. When the system is reset the CRTM is executed and sends
values that indicate the identity of the RTS. It supports the integrity measurement of the Trusted
Platform calculating digests on code and data and sending them to the RTS.

2.2.3 Root of Trust for Reporting (RTR)

This is the component that reports the content of the RTS. The report typically is a signed digest
of the TPM content requested. The TPM doesn’t report for every Shielded location, for example
in the case of the private part of keys, the TPM will not report for that Shielded location.
In general, values on which the RTR reports are platform state in PCRs, audit logs, and key
properties (certify that an object with a specific name is loaded in the TPM, and guarantee that
a public area, with a specific name, is associated with a corresponding sensitive area). The RTR
is identified by asymmetric aliases (Endorsement keys) derived from a common seed (that should
be unique for each TPM). The RTR needs to be bound with the platform because it’s required
the assurance that PCR values accurately represent the state of the platform. The proof of this
binding can be a Platform Certificate.

2.3 Trusted Boot

A significant example of a technique to evaluate if a platform is in a trusted state is the Trusted
Boot, in which each component executed during the boot process is measured and this value is
stored in the TPM (RTS). This mechanism doesn’t prohibit booting in an insecure state but
permits registering the boot state and communicating it to an independent entity that will be
able to verify if the system booted securely. This procedure is based on the Transitive trust,
which exploits the trustiness of the RoTs and transfers it in a transitive way from an executable
function to the next one that takes control over the machine.

12

Trusted Computing and Remote Attestation

The measure calculated on every boot component (code or data) is a digest performed with
a cryptographic hash function and then stored in the TPM, more precisely in a PCR, which
has the role of a shielded location of the RTS. The PCR’s value can be modified with only two
operations. the first one is the Reset operation, which is executed when the platform is powered
on, and afterward only if the PCR has an attribute that allows the reset. The second one is the
Extend operation which permits storing several hashes taking the old value contained in the PCR,
concatenating it with the new measure and performing again the hash function on this string:

PCRnew = HhashAlg(PCRold || measure)

It is possible to store the whole sequence of boot in a single PCR, but for performance reasons
typically are provided multiple PCRs for each module (the BIOS, the OS boot loader, ...).

In order to check the value contained in the PCR, if the boot sequence is known a priori,
is sufficient to perform again the extension with the known values and confront the result with
the value contained in the PCR. If the boot sequence is not known a priori it is possible to
leverage the RTM that keeps a Measurement Log where is recorded each change of the system
state (Measurement Event).

 Load Core BIOS

CRTM measures Core BIOS

CRTM measures Rest of BIOS

CRTM measures Motherboard Configuration
Setting

Load Rest of BIOS

BIOS measures ROM Firmware

BIOS measures ROM Firmware Configuration

Load Firmware
Control returned to BIOS

BIOS measures IPL

BIOS measures IPL Configuration

Load IPL

IPL measures GRUB

IPL measures GRUB Configuration

Load GRUB

GRUB measures files, commands and kernel
command line parameters

Load kernel

IMA measures user space applications and
files

 PCR 0: CRTM, Host Platform Code

 PCR 1: Host Platform Configuration

 PCR 2: UEFI driver code

 PCR 3: UEFI driver configuration and data

 PCR 4: UEFI Boot Manager Code

 PCR 5: Boot Manger configuration and data

 PCR 6: Host Platform Manufacturer Specific

 PCR 7: Secure Boot policy

 PCR 8: GRUB commands
 kernel command line parameters
 kernel module command line parameters

 PCR 9: Files read by GRUB

 PCR 10: IMA measurements

Normal boot sequence

Measured boot sequence

Figure 2.3. Trusted Boot (source: [10])

During the Measured Boot, described in figure 2.3, all software components invoked during
the boot phase are measured and these values are stored in PCRs. Typically the first ten PCRs
are reserved to record measures deriving from the boot process, the PCRs with an index higher
than 9 are used to store values deriving from events after the boot phase. A possible description
of the Measured Boot id that starts from the CRTM, a subset of the BIOS, that measures itself,
the rest of the BIOS and extends the value in PCR 0. After that it measures the motherboard
configuration settings and extends the value of PCR 1, then it passes the control to the rest of
the BIOS, which measures the ROM Firmware Configuration and Data and extends the PCR 3,
and then passes the control to the ROM Firmware. The control returns to the BIOS after the
execution of the ROM Firmware which measures the Initial Program Loader (IPL), referred to as
the primary boot loader, and extends the value of PCR 4, then it measures the IPL Configuration
and Data and extends the value of PCR 5. After that the control passes to the IPL which load

13

Trusted Computing and Remote Attestation

the secondary boot loader (GRUB is the default one in x86 platforms) and passes the control to
it, which extends the value of PCR 8 with all grub command executed, all parameters passed to
the kernel and the modules of the kernel. It also extends the PCR 9 with any file it reads and
then passes the control to the kernel.

Another kind of Measured Boot is the Secure Boot, which instead of just measuring boot
components, checks them and if one of them has a measure different from the expected one, the
boot is interrupted.

2.4 Remote Attestation Techniques

In several sectors, such as companies, industry, and critical infrastructure, Network Infrastruc-
ture (NI) is becoming more and more important. Those infrastructures could reach very large
dimensions (figure 2.4), which make it almost impossible to attest the whole system, attesting one
node at a time, and in case the integrity of a node would be compromised, could have a devasting
effect on the whole infrastructure. Remote Attestation permits to attest integrity of a single node,
which has to prove its trusted state to a remote verifier, but there are several proposals that try
to aim for the attestation of more than one node. NIs are composed of many devices, of different
kinds, like routers, switches, firewalls, and wireless access points, where each one of them has
a specific software running on them. Moreover, in recent years there have been many research
works regarding NIs to create higher-level abstractions [13], in this way it is possible to separate
network functions from network devices using virtualization (Network Function Virtualization)
and separate the network control from the actual network devices (Software Defined Networking).
For all those reasons remote attestation become more and more important because even though
devices are used in different ways, they still need to be protected from malicious users, so it is
crucial to check their integrity.

Enterprise Network

Firewall

Server PC Wireless
Router

Networking

Core
Router

Core
Router

Core
Router

Core
Router

Edge
Router

Edge
Router

Edge
Router

Edge
Router

RouterSwitch

Mobile Network

Car

PC
Mobile

BTS

Cloud Data Center

SBx8100

SBx8100

Servers

Data
Center
SwitchData

Center
Switch

L2/L3 Switch

RouterRouter

Virtualization
Layer

Figure 2.4. Network infrastructure deployed in several context (source: [13])

2.4.1 Remote Attestation

Remote attestation is a mechanism that enables a remote verifier to ascertain the integrity of a
host that is in a known state. This mechanism follows a challenge-response protocol and the main
entities in this protocol are the Prover(P) and the Verifier(V) [13]. The Prover has to send a

14

Trusted Computing and Remote Attestation

response that proves it was in an acceptable state at the time the attestation was requested by
the Verifier.

The mechanism of attestation is typically based on a challenge-response protocol, where a
trusted device (Verifier), verifies the integrity of an untrusted device (Prover). The process of
attestation, as shown in figure 2.5, begins with the Verifier, which generally is assumed that knows
in advance the correct state of the Prover, which challenges the Prover. At this point, the Prover
has to compute the response, to demonstrate its trusted state. The untrusted device starts the
attestation routine and computes the response based on the challenge received from the Verifier
and its internal state. Once the Verifier receives this value, it can compare it with the known
value, and if they match, the Verifier can assert that the Prover hasn’t been compromised.

Verifier (V) Prover (P)

c

att_data = Attest()

σ

AuthProver(P)

s = P_known_state
c ∈R {0, 1}k

σ = Sign(att_data, c)

Verify(k, σ, P, s)

Figure 2.5. Attestation process. It is assumed the verifier and the prover have generated key pairs
according to parameter k (source: [13])

Several attestation mechanisms have been proposed, but they are very different and use in-
trinsically different ways to achieve their goals [14]. For this reason, in general, all techniques are
divided into three categories: hardware-based, software-based, and hybrid attestation.

2.4.2 Harware-based Attestation

Hardware-based techniques are based on a hardware device or component for realizing a remote
attestation schema.

TPM

This device is one of the most significant examples of a tamper-resistant chip for remote attesta-
tion. As already reported before, the first version largely used was the TPM 1.2 and subsequently
upgraded with the TPM 2.0. The TPM has some registers, where it stores hashes used for remote
attestation, called Platform Configuration Registers (PCRs). The TPM 1.2 was based on the
SHA-1 hash algorithm, which was substituted, in version 2.0, with the possibility to use more
than one algorithm, making the design more agile and secure. Moreover, the TPM stores infor-
mation (keys) regarding its identity, to be considered trusted. The first key enclosed in the TPM
is the Endorsement Key (EK) and is generated during the manufacturing process. This key is
used in almost all key-related operations in the TPM. Other keys that can be generated are the
Attestation Identity Keys (AIK) used in digital signature operations and the storage keys used
in encryption and decryption of data [13]. Several techniques have been proposed for supporting
remote attestation with TPM 1.2, one of the first approaches used a Trusted Third Party (TTP)
called Privacy-CA, which had problems with privacy [15]. It was used to perform the attestation
of a single platform identity. To prove its identity, the platform uses the AIK certificate which
is emitted by a trusted third-party Privacy CA. The problems related to privacy, derive from
this procedure because in this way the Privacy CA will know the platform identity. Another
problem is that this Privacy CA it’s a single point of failure, which can be a bottleneck in case
the verifier queries it at each attestation. Another schema proposed was the Direc Anonymus

15

Trusted Computing and Remote Attestation

Attestation (DAA), which can be seen as a group signature without the feature that a signature
can be opened, i.e., the anonymity is not revocable. In addition, DAA allows for pseudonyms, i.e.,
for each signature a user can decide whether or not the signature should be linkable to another
signature [16].

Direct Anonymus Attestation

Another schema proposed was the Direc Anonymus Attestation (DAA), which can be seen as a
group signature without the feature that a signature can be opened, i.e., the anonymity is not
revocable. In addition, DAA allows for pseudonyms, i.e., for each signature a user can decide
whether or not the signature should be linkable to another signature [16]. This schema includes
three entities:

• Platform: It is a system composed of a host computer and a TPM, and both components
participate to create a signature that can prove to the verifier that the platform itself was
indeed issued a credential by the issuer. In this way, the verifier is not able to know the
platform identity

• Issuer : Its main role is issuing credentials to platforms and checking a revocation list to
know if a platform is compromised and if so, revoke it.

• Verifier : It has the purpose to verify it the platform is compromised or not.

This schema uses zero-knowledge proof to attest that the remote attestation originates from an
authentic TPM without disclosing to the verifier the exact identity of the TPM. The issuer in
DAA is provided with an anonymous credential instead of an identity for the TPM. Then the
TPM proves its identity to the verifier using zero-knowledge proofs and its pseudonym [13].

Binary Remote Attestation

In this case, PCRs represent the state of the platform and the TPM has to sign values contained
in PCRs. After this process, the signature is sent to the verifier together with the measurement
log, which is the list of all files and binaries, with the relative hash, in execution on the platform.
Once the verifier receives all this data, it can verify the current state of the platform. Examples
of realization of this technique are IBM Integrity Measurement Architecture (IMA) [17] and the
Trusted Linux Client (TLC), which permits to protect desktop and mobile Linux clients from
online and off-line integrity attacks [18]. Some disadvantages of this schema are that the config-
uration of the software and the hardware are disclosed to the verifier and a minimal change in
software or their configuration could create problems for the integrity evaluation.

Property-based Attestation (PBA)

This technique permits the attestation of the platform configuration without disclosing it The
check is performed on the properties which are the mapping of the platform configuration.

Physical Unclonable Functions (PUFs)

A Physical Unclonable Function (PUF) is a noisy function that is embedded int a physical object
[19]. These hardware-based security primitives can be used for the construction of a hardware
component that can protect the attestation process.

16

Trusted Computing and Remote Attestation

2.4.3 Software-based Attestation

Hardware-based attestation is a very good solution for remote attestation, but it is not always
suitable, because it needs hardware and software resources that may not always be available, for
example in embedded devices. For this reason, some software-only remote attestation approaches
have been proposed, to remedy the hardware overhead.

An example of a software-based primitive is Pioneer [20] which is one of the first approaches to
remote attestation without being based on CPU-architecture extension or any secure co-processor.
This solution is based on a challenge-response protocol (figure 2.6) between two entities: the first
one is an external trusted entity called dispatcher, and the second one is an untrusted entity
called untrusted platform. The key concept of this technique is that the dispatcher uses Pioneer
to dynamically build a trusted computing base (dynamic root of trust) on the untrusted platform,
and once established is guaranteed that all the code contained is unmodified. The component
which permits the instantiation of this dynamic root of trust is the verification function.

Checksum code

Send function

Hash function

Executable

Dispatcher

Checksum code

Send function

Hash function

Executable

Untrusted Platform

Verification function Verification function
1. Challenge

3. Checksum

5. Hash of code

7. Result (optional)

2. C
om

pute checksum

4. Hash 6. Invoke

Expected memory layout

Figure 2.6. Schematic representation of how Pioneer works (source: [20])

This component is the main one of Pioneer because is the one designated to perform an
integrity measurement on the executable, setting up an environment that ensures untampered
execution, and it has three parts:

• Checksum code: This part is used to create an untampered execution environment for the
secure execution of the hash function, the send function, and the executable, and it has to
compute the checksum on the whole verification function, which is like a fingerprint. In this
way, a correct checksum will prove to the dispatcher that the verification function hasn’t
been modified. Some malicious users could try to manipulate the checksum forcing it to
be the correct one, even if the verification function has been modified. In this case, it can
be possible to detect this behavior because the verification function is made in such a way
that if someone were to try to manipulate the checksum this computation would take much
longer than the normal computation, and therefore you might notice the manipulation.

• Hash function: To calculate the integrity measurement of the executable it is used the SHA-
1 hash algorithm. Even if the collision resistance of this algorithm has been compromised, it
is used because of the second-preimage property, for which SHA-1 is still considered secure.
For this reason, the has is not calculated only on over the executable, because in this case,
an attacker could be able to find another executable that would produce the same hash. The
measurement of the executable is performed as a function of a nonce sent by the dispatcher,
and after that, the hash function invokes the executable.

• Send function: This function sends the checksum and the integrity measurement to the
dispatcher.

17

Trusted Computing and Remote Attestation

The main idea behind Pioneer is to create a special checksum function with run-time side-
effects for attestation, in this way any malicious manipulation of this function can be detected
through additional timing overhead incurred from the absence of those side-effects [21].

2.4.4 Hybrid Attestation

The main shortcoming of the software-based approach is that it makes strong assumptions about
adversarial capabilities, which may not hold in practical networked settings [21]. A hybrid ap-
proach consists of a software-hardware design. One example is SMART [22]: Secure and Minimal
Architecture for (Establishing a Dynamic) Root of Trust. This approach is based on a minimal
hardware modification of actual embedded Micro Controller Units (MCUs), which represents the
first minimal hardware solution for establishing a dynamic root of trust in embedded devices.
This primitive has two characters, a Prover (P), which will be the entity to attest, and a Verifier
(V), which will be the entity that will have the duty to verify the integrity of the prover. As
already reported many times, the basic schema consists of the prover which attests a specific
region of code and sends a proof of execution to the verifier. A characteristic of SMART is that
it guarantees the execution of a piece of code even if the prover is totally compromised.

Like many remote attestation technologies, SMART is based on a challenge-response protocol,
started by the verifier (V), that exploits some specific hardware resources of the prover (P), and
the basic functioning is shown in figure 2.7. The protocol starts with V that computes a nonce,
and sends it to P, with other values: a and b which are the boudries of the region of code to
attest; x which is the address of the code to execute after measurement process only if xflag is
setted. The value C is computed with a ROM-resident code on P, which calculates a checksum
on the nonce received and the region between a and b, and, if xflag is set, pass the control to x,
and terminating the execution of this piece of code P send C to V. The checksum is computed
using an HMAC algorithm and a key K, which is stored in a secure portion of the P’s MCU, and
the access to K is restricted so that only the code used to compute the checksum can use it. V to
verify the value received from P will compute a new value with the same parameters and K.

Verfier (V) Prover (P)

Generates nonce n

n, a, b, x, xflag

C = SMART(n, a, b, x, xflag, -, -)
if xflag is True then
 exec(x)

C

if C is correct then
 Accept
else
 Reject

Figure 2.7. SMART overview (source: [22])

2.5 Trusted Execution Environment (TEE) overview

The Trusted Execution Environment (TEE) technology has been developed for being able to exe-
cute sensitive code, and read data, in a protected way. Several CPU vendors have developed their
versions (e.g. Intel SGX, ARM TrustZone, and AMD SEV). The secure execution environment
is typically called enclave. Unfortunately, each vendor TEE enables only a small subset of the
possible design space across threat models, hardware requirements, resource management, port-
ing effort, and feature compatibility. Recently it has been proposed some open-source frameworks

18

Trusted Computing and Remote Attestation

OS

Enclave

App Stack

App Code

Entry Table

Enclave Heap

Enclave Stack

Enclave Code

Figure 2.8. Enclave within application’s virtual address space (source: SGX: the good,
the bad and the downright ugly)

like Keystone [23] that work without hardware modification but use abstractions provided by the
hardware like memory isolation and programmable layers under untrusted components (e.g. OS).

2.5.1 Intel SGX

Intel Software Guard Extension (SGX) is an extension of the assembly language of the Intel
architecture regarding instructions and memory access, which allows an application to instantiate
a protected container called enclave.

An enclave is a separated and encrypted memory zone for code and data, figure 2.8, in applica-
tion’s address space. This region provides confidentiality and integrity, and only the code resident
in the enclave can access it, all other requests are prevented, even from privileged software like
operating systems or BIOS [24]. The enclave is stored in a subset of DRAM, called Processor
Reserved Memory (PRM), which is a continuous memory region with a size that is a power of
two and the start address must be aligned to the same power of two.

The enclave’s content and the associated data structures are stored in the Enclave Page Cache
(EPC), which is a subset of the PRM [25]. An enclave is created and initialized by untrusted
software, and the hardware assures that the enclave can be modified only before the initialization.
During the initialization phase, the enclave is measured, and the value measured will be used for
local and remote attestation.

Intel has modified the hardware memory controller: since the only way to read/write on RAM
is to go through the controller, then this modified controller can block access from the outside.
Encrypting everything is not a solution because if the actual enclave’s code must be executed, and
everything is encrypted in the RAM, what happens is that you need to decrypt the code, which is
done by the OS, before starting the scheduling. By doing this, the code is stored decrypted in the
RAM and there is no assurance. So, this is why it’s needed to have the enclave’s code and data
unencrypted in RAM but in a way where only the enclave’s code can access the enclave’s data
in RAM. And this is why the memory controller actually denies everyone to access this memory.
The structure of the memory is represented in figure 2.9. Inside the PRM there is the EPC. Inside
the EPC there will be the OS paging. This is compatible with the existing paging scheme since
the idea is to have retro compatibility. There will be pages of 4 KB that will contain the enclave’s
code and data. Then, in another part of the RAM, there will be the Enclave Page Cache Map
(EPCM), which is an array with one entry per EPC page, so computing the address of a page’s
EPCM entry only requires a bitwise shift operation and an addition [25]. Each entry will contain
three sub-entries: the first one is a VALID bit, which permits understanding if the page is valid
or not, where valid means if the page contains the enclave’s data and code of an active enclave.
The second one is the Page Type (TP) used to distinguish if the page is assigned to a normal

19

https://www.virusbulletin.com/virusbulletin/2014/01/sgx-good-bad-and-downright-ugly
https://www.virusbulletin.com/virusbulletin/2014/01/sgx-good-bad-and-downright-ugly

Trusted Computing and Remote Attestation

software enclave or an enclave used by the SGX implementation. The last one is ENCLAVESECS
which is a structure that identifies the enclave that owns the page, so it is a reference to another
structure that identifies an enclave.

DRAM PRM

PRM EPC

EPC

4kB page

4kB page

4kB page

4kB page

4kB page

Entry

Entry

Entry

Entry

Entry

EPCM

VALID

PT (Page Type)

ENCLAVESECS

EPCM entry

Figure 2.9. PRM structure (source: [25])

SGX permits both the local and the remote attestation. The base process for the remote
attestation is the Enclave Measurement, which identifies the software running in the enclave. It is
computed with 256-bit SHA-2 secure hash function, and this hash is stored in the enclave’s SECS
(MRENCLAVE field). This value is computed by the OS during the enclave initialization in the
following way:

1. ECREATE : It executes the SHA-2 initialization algorithm, so goes into the SECS, in MREN-
CLAVE, and inserts the results of the initialization algorithm;

2. EADD : It hashes the enclave virtual address + a structure that contains the security at-
tributes relative to the page (SECINFO), in fact, this is what goes inside the EPCM (meta-
data of the page in the enclave page cache map);

3. EEXTEND : It hashes 256 bytes of the enclave data (must be called multiple times);

4. EINIT : It is the SHA-2 finalization algorithm, that computes the valid final hash, which
will be inserted in MRENCLAVE (valid enclave measurement).

The software attestation phase begins with an attestation challenge made by the user,
then the EREPORT instruction is called, and it takes the Measurement of the enclave and the
signer to create a report. The report is signed with a unique key (inside the CPU). This report,
before being sent to the user, goes to the SGX Quoting Enclave which checks the signature and
reauthorizes the report. Then the attestation signature is sent to the user.

To make everything work, there is a shared secret between the CPU e-fuses (one-time pro-
grammable part of the CPU that is tamper-resistant) and the Intel Provisioning Service (which
checks the signature). The provisioning Enclave, which runs inside the untrusted computer, ob-
tains an attestation private key from the Intel Provisioning Service (IPS). This private key is
stored encrypted in DRAM. Then, the remote party challenges the application enclave, the ap-
plication enclave calls EREPORT instruction, the quoting Enclave verifies the report locally, and
then, if the verification is valid, it sends the report to the remote party signed with the attestation
private key. In this way, the remote party knows that the remote computer is running a correct
SGX implementation because the remote party asks the IPS for the attestation public key and
verifies the report’s signature.

20

Chapter 3

Remote attestation standards and
use cases

3.1 Device Identifier Composition Engine (DICE)

The specification Device Identifier Composition Engine (DICE) [26] provides new basis for remote
attestation specifically suitable for IoT devices. This was necessary because it could be needed
remote attestation of devices’ identity and firmware integrity of IoT devices that cannot have
a Trusted Platform Module attached cause the limited resources. DICE-based approaches per-
mit the establishment of an IoT secure environment without modifying the hardware of already
deployed devices.

In industrial and academic contexts several techniques for remote attestation of devices with
limited resources have been developed. For example, an industrial solution is TrustZone by ARM
which establishes a Trusted Execution Environment (TEE) that permits the integrity firmware
attestation. Academic solutions are SMART [22] or Sancus [27] that expand existing MCUs’ ar-
chitecture to establish secure attestation schemes. Unfortunately, none of the mentioned solutions
is usable for devices based on older MCUs.

The DICE solution was created by the Trusted Computing Group (TCG) in order to support
the presence or the absence of a TPM. This technique permits to derive the cryptographic identity
of a device from its firmware and a Unique Device Secret (UDS), in this way is possible to derive
keys for attestation and other purposes. DICE’s purpose is to anchor a Root of Trust in devices
with minimal hardware overhead. For this reason, the necessary resources are kept as minimal as
possible [28]:

• Read-only boot code is possible, preferably on time programmable;

• A UDS of at least 128 bits can be stored on the device. A one-time programmable UDS is
preferred;

• Only the boot code may access the UDS. A lockout mechanism prevents the firmware from
accessing it.

It is implemented as the first code executed by the device after it’s powered on, deriving the
cryptographic identity, called Compound Device Identifier (CDI), from the UDS and the measure
of the first mutable code, calculated with a one-way function. The CDI, once calculated, has to
be delivered to the first mutable code. In this way, it will be possible to derive keys from the CDI,
and those keys will be bound to the UDS and the firmware, so a change in one of them would be
detected because it would result in a different CDI and so different keys. The basic architecture
is two-layered, as shown in figure 3.1, which is based on the first layer, DICE, and the second
layer, mutable Firmware. One large disadvantage of this architecture is that if there is a firmware
update, the device’s identity derived from the CDI will change.

21

Remote attestation standards and use cases

UDS

CDI

DICE

KDF

Keys

Identification

Attestation

Sealing

Firmware

Figure 3.1. DICE two-layered architecture (source: [28])

A solution to this problem is the RIoT [29] architecture, where firmware consists in n layers
and each layer i is provided with its key KL,i which derives and it is correct only is the key KL,i−1

is correct. In this case, it could be possible to divide the firmware into multiple layers, so the first
mutable code derives the identification key (KID) from the CDI. After that, it can provide the
second mutable code with a key KL,2 derived from the second mutable code and the CDI, and
then hand both (KID) and KL,2 over to the second mutable code. For this solution to work, it’s
needed that the first mutable code is designed as bug-free as possible in order to remain on the
device for its whole lifetime. In this context, the UDS is the same of KL,0 and the CDI is the
same of KL,1 An example of how DICE and RIoT can be integrated into a system is shown in
figure 3.2.

UDS

DICE

K_1 / CDI

RIoT Core

Generate K_ID K_ID

K_2

Boot-Loader OS

K_3 Attestation

Sealing

Identification

Figure 3.2. DICE in a RIoT architecture with three layers (source: [28])

For remote attestation in [29] are reported two schemes:

1. Asymmetric Cryptography : This solution is based on the derivation of an asymmetric key
pair (KID) from the CDI. After that, it is randomly generated another key pair for the second
mutable code (KL,2), and a measurement of the second mutable code is concatenated with
its public key and everything is signed with KID,private. Once completed this operation,
the signature, KID,public and the key pair KL,2 are passed to the second mutable code, in
this way the device can check the integrity of the second mutable code and identify itself,
using the signature, KL,2,public, and KID,public.

2. Symmetric Cryptography : This scheme is based on a shared secret (Satt), between the
attestation server and the device, which is stored on the device encrypted with KID,public.
In this way is possible to use a proof-of-possession attestation protocol, being able to use
symmetric cryptography.

The first scheme, using asymmetric cryptography, has many problems from the performance
point of view, especially on very small IoT devices. The second one is more lightweight than

22

Remote attestation standards and use cases

the first one because of the symmetric cryptography, but it still needs asymmetric cryptography
for the encryption of the shared secret. A possible solution to avoid this issue is using MACs to
protect the authenticity and integrity of data. As already mentioned before, the CDI is computed
with the UDS, and a measurement of the first mutable code, and it is derived correctly only if
these data are correct. For this reason, the CDI could be used as a way for checking the device’s
identity and firmware integrity. For this purpose, using a one-way key derivation function, are
calculated two symmetric keys: KATT for attestation, and KID for device identification. This
mechanism works because KATT is derived correctly only if CDI was derived correctly, which
proves the correctness of UDS, so it is possible to prove the correctness of CDI and the integrity
of the first mutable code using it in a proof-of-possession protocol for attestation to the server.
For this solution, it is assumed that the device has a structure with DICE and mutable firmware,
but it can be easily implemented on a multi-layer-firmware. An example of how this scheme could
work is shown in figure 3.3, where the server sends a nonce (N) to the device, which computes a
MAC (R) on N and KATT . This operation is made also by the server that computes R’ using its
copy of KATT . Then the device sends R to the server which will confront it with R’.

DICE device Server

Attestation request

N = nonce
N

R = MAC(N, K_att)

Validate R == R' ?

R R' = MAC(N, K_att)

Figure 3.3. MAC-based attestation protocol (source: [28])

3.2 Remote Attestation Procedures (RATS)

Remote ATtestation ProcedureS (RATS) architecture permits in an easier way the attestation
of devices’ characteristics generally based on the trustworthiness of another specific device. Gen-
erally, attestation is based on messages that communicate trustworthiness properties associated
with a specific Attested Environment (Evidence). This Evidence is compared with the reference’s
values, which typically consist of firmware or software digests and some information that explains
why the attesting module is a trusted source of Evidence. After this operation will be produced
Attestation Results that help Relying Parties to determine levels of trust [30].

In RATS architecture are introduced several roles and relationships between them. These
roles, shown in figure 3.4, are assigned to entites which typically are system components, such as
devices [31]:

• Attester. The purpose of this role is to create Evidence that will be transferred to the
Verifier in order to be checked.

• Verifier. The entity to which this role has been assigned, uses the Evidence, any Reference
Values from Reference Value Providers, and any Endorsements from Endorsers, applying
an Appraisal Policy for Evidence in order to be able to verify the trustworthiness of the
Attester. After that, the Verifier generates the Attestation Results.

• Verifier Owner. It is typically assigned to an administrative entity, which has the autho-
rization to configure Appraisal Policy for Evidence in a Verifier.

23

Remote attestation standards and use cases

• Appraisal Policy for Evidence. There are several methods in which the Verifier can have
this information. The first one is that this data is provided by the Verifier Owner, or can be
configured on the Verifier by the Verifier Owner. Another possibility is that the Appraisal
Policy for Evidence is programmed into the Verifier, but it can be obtained with some other
mechanism.

• Relying Party. This role is assigned to the entity which performs the appraisal of Attestation
Results. This operation consists in using the Attestation Result to make some decisions,
related to the specific application.

• Relying Party Owner. This role has the same characteristics as the Verifier Owner, but
in this case for the Appraisal Policy for Attestation Results, having the authorization to
configure it in a Relying Party.

• Appraisal Policy for Attestation Results. It can be obtained in a similar mechanism to
Appraisal Policy for Evidence. In this case, it can be programmed on the Relying Party, it
can be obtained from the Relying Party Owner, it can be configured on the Relying Party
by the Relying Party Owner or in some other way.

• Endorser. The entity which has this role can help Verifiers to check the authenticity of
Evidence with its Endorsements. In this way, Verifiers can also deduce further capabilities
of the Attester.

• Reference Value Provider. This role is typically assigned to a manufacturer entity and its
Reference Values help Verifiers to check Evidence in order to decide if acceptable known
Claims have been recorded by the Attester.

Verifier

Endorser

Reference
Value

Provider

Attester

Verifier Owner

Relaying Party

Relying Party
Owner

Appraisal
Policy for
Evidence

Evidence Attestation
Results

Endorsements

Reference
Values

Appraisal
Policy for

Attestation Results

Figure 3.4. RATS’s roles overview (source: [31])

In figure 3.4 are reported also Conceptual Messages exchanged between entities:

• Evidence. It is a set of Claims about a specific environment that with them, reveals its
operational status. This information is used by a Verifier to determine its relevance, compli-
ance, and timeliness. The Evidence has to be associated in a secure way with the Attester,
in order that the Verifier is able to understand if Claims originated from a different envi-
ronment. In addition, Claims have to be collected in some way that the Attester cannot lie
about its trustworthiness.

• Endorsements. This object is a declaration that some entity guarantees the integrity of sev-
eral functionalities of the device. An example could be the signing capability in hardware.
In this case, the endorsement can be the manufacturer certificate that signs a public key

24

Remote attestation standards and use cases

where the corresponding private key is accessible only inside the device’s hardware. Using
Endorsement together with Evidence permits to run an appraisal procedure, based on ap-
praisal policies. These policies can be specified for the device or specific to the manufacturer
which provides the Endorsement.

• Reference Values. These are values used by a Verifier to compare to Evidence provided
by an Attester. They are provided by a Reference Value Provider and if they match the
Evidence that means acceptable Claims, also based on appraisal Policy.

• Attestation Results. They are the information used by the Relying Party to decide if a
particular Attester can be considered trusted or not. The structure of Attestation Results
can contain a single boolean that permits to evaluate the trustworthiness of the Attester
or can be more complex, containing a larger set of Claims. An Attester is considered not
compliant by default by the Relying Party; it can be considered so by the Verifier, after some
analysis that contemplates Appraisal Policy for Attestation Results and the information
provided by Attestation Result.

• Appraisal Policies. These policies specified some constraints that will be used from the
Verifier when apprising Evidence, and the Relying Party when apprising Attestation Results.

3.2.1 Topological Pattern

In [31] are reported two reference models that reifne the data-flow shown in figure 3.4:

Passport Model

This model is conceptually very similar to how passports are issued to citizens. It is possible to
make an analogy by thinking of the citizen as the Attester, the Passport issuing agency as the
Verifier, the passport application as the Evidence, the passport as the Attestation Result, and
the immigration desk as the Relying Party. The logical flow of this model (figure 3.5) is that the
Attester produces the Evidence and sends it to the Verifier. At this point, the Verifier compares
the Evidence against its appraisal policy and produces the Attestation Result which will be sent
back to the Attester. The Attester stores this information and then it can send to a Relying Party
which will compare it with its appraisal policy, in order to be able to make a decision.

Verifier Attester

Relying Party

Evidence

Attestation
Result

Attestation
Result

1
2

3

Figure 3.5. Passport Model (source: [31])

Background-Check Model

This model is a bit different from the previous one, in fact, in this case, an Attester produces the
Evidence and then sends it to a Relying Party. The Relying Party treats the Evidence received
as a blob, and it forwards to a Verifier. The Verifier, like in the previous case, confronts the
Evidence with its appraisal policy and produces the Attestation Result. Then the Verifier sends
the Attestation Result to the Relying Party which confronts it with its own appraisal policy.

25

Remote attestation standards and use cases

Verifier

Attester Relying Party
 Evidence

Attestation
Result

2

3

1

Figure 3.6. Background-check Model (source: [31])

3.3 Trusted Execution Environment Provisioning (TEEP)

Some critical applications need some protection during their execution in order to not compromise
them or to not disclose data that they are working on. In many contexts, an application is executed
in a system that can run other software in parallel, so if an application needs to be protected,
should be isolated in some way from the others. As explained in the previous chapter, the Trusted
Execution Environment (TEE) concept can be a solution to protect critical code or data, because
it permits the execution of an application in a protected environment that prevents code to be
tampered with or data to be read outside that environment. Because the fact there are several
TEEs, because different vendors have proposed their own solutions, it’s needed some protocol that
helps developers and service providers to manage Trusted Applications (TAs) running in different
TEEs. This protocol would permit several possibilities [32]:

• The first possibility is that a Service Provider that intends to provide a service through a
TA, needs to check the device on which will run the TA, so, for example, it needs to verify
the root of trust of the device or the type of TEE offered by the device;

• On the other hand a TEE has to verify if a Service Provider that wants to execute TAs in
the device is authorized to manage TAs in the TEE;

• All the parties that take part in the protocol need to be able to verify that a TEE can
provide the security required by a TA;

• A Service Provider must have the capability to understand if a TA is installed on a device
and if not it can install on its TEE. In addition, it has to be able to get the version of the
TA too, and update it if it is not the latest version available;

• A Service Provider must be able to remove a TA in a TEE depending on the fact that this
TA is still offered or not, or maybe has been revoked for some reason;

• A Service Provider must have the ability to define relationships between TAs under its
control in order to decide in which way they have to communicate and share data or keys.

This approach can be used in several scenarios, for example in electronic payments, where its
needed high security and trust in the hosting device (e.g. mobile device). In this case, could be
needed some biometric information that can be stored in a TEE. Another possible use case is
confidential cloud computing. In this case, a tenant could have sensitive data, such as credit card
numbers to manage, and can store them in a TEE. In this way the tenant will be the only one
that can access that data, so neither the cloud hosting provider will be able to access this data.

3.3.1 Architecture

In figure 3.7 is represented the set of components typically present in a device with TEE [33].
Starting from the outside components, Trusted Component Signer and Device Administrators

26

Remote attestation standards and use cases

mage TAs running on devices using services made available by a Trusted Application Manager
(TAM) permitting a remote administration. A TAM is a component responsible for the man-
agement of Trusted Components, which are code and data in a Tee, under the instructions of
the Trusted Component Signer and Device Administrator. The management that is done by
the TAM occurs because of the interactions that have with devices’ TEEP Broker which relays
communication and messages between a TAM and a TEEP Agent that are executed in the TEE.
A TAM can be publically available, in order to be reached by Trusted Component Signers and
Device Administrators, or can be private in order to limit entities that can access it. The TEEP
Broker, as already reported manage communication between a TAM and a TEEP Agent. It runs
in a Rich Execution Environment (REE), so outside the TEE. The TEEP Agent runs inside the
TEE and receives requests of a TAM through the TEEP Broker, and it can parse or forward these
requests, depending on the TEE provider’s implementation. In any case, it will send a response
to the TAM, again passing through the TEEP Broker.

TEE-1

TA-2 TA-1

TEEP
Agent

TEEP
Broker

App-1

App-2

TAM-1

TAM-2

Device

Trusted Component
Signer

Device
Admistrator

Figure 3.7. TEEP Architecture (source: [33])

In some cases is possible that a device implements more than one TEE. In these cases, it could
be possible having one TEEP Broker that manages all TEEs, but for some TEE implementations
this solution doesn’t work (e.g. Intel SGX), so it would need a TEEP Broker for each TEE.

3.4 ETSI GR NFV-SEC 018

3.4.1 Network Functions Virtualization

In traditional networks, in order to implement all the Network Functions (NFs), such as Firewall,
IDS, and Network Monitor, it is needed an important number of dedicated hardware. To offer
a more flexible service an Internet Service Provider (ISP) offers the possibility to install these
special-purpose apparatuses which the network administrator has the duty to manually configure.
Unfortunately, this approach causes an important waste of resources and time, because of the
continuously growing demand of customers.

A solution proposed to manage all these problems is the Network Functions Virtualization
(NFV) paradigm. This innovative network paradigm permits to substitute the traditional net-
work components that implement NFs, with a virtualized infrastructure that permits to deploy
NFs as Virtualized Network Functions (VNFs). They are a software implementation of physical
components that run inside containers or virtual machines. This approach has several advantages:
it consents to separate NFs from hardware dependencies decreasing the deploying, configuration,
and managing time. In fact, now VNFs run on servers, and the virtualization enables autoscaling

27

Remote attestation standards and use cases

NetworkStorageCompute

Hardware Resources

Virtualization Layer

Virtual
Compute

Virtual
Storage

Virtual
Network

NFV Infrastructure (NFVI)

VNF VNF VNF VNF VNFVNF

Virtualized Network Functions (VNFs)

NFV
Management

and
Orchestration

Figure 3.8. High-level NFV framework (source: [34])

of components which could be Vertical Scaling (add more resources to the single NF) or Horizon-
tal Scaling (increase the number of VMs running that implement the same NF and add a load
balancer in order to split the incoming traffic).

In order to allow the integration and the possibility for several stakeholders to deploy NFV in
their architecture, the “European Telecommunications Standards Institute” (ETSI) established an
“Industry Specification Group” (ISG) which works on the standardization of the NFV technology
[34]. As shown in figure 3.8, an NFV framework is based on three main components:

• Virtualized Network Function, it is the network implementation of a network function, that
can run in an NFVI;

• NFVI Infrastructure (NFVI), it is the set of infrastructure physical components, virtualized
components, and technologies that allow Virtualization;

• NFV Management and Orchestration (MANO), it is the block that manages the lifecycle
and orchestration of physical and software resources that enable the virtualization in the
infrastructure, and it manages the lifecycle of VNFs.

The NFV paradigm, as already mentioned, introduces several advantages, but it introduced
also some issues from the security point of view. For this reason, ETSI created the NFV-SEC
Working Group (WG) which defines the set of possible threats of NFV, which include generic
threats of virtualization, like memory leakage or interrupt isolation, and also threats of physical
NF, like flooding attacks or routing-related security issues. Because all these problems become
more and more important the monitoring activity in an NFV scenario because all VNFs are
software implementations so they are vulnerable to manipulation from malicious actors.

To address all of these problems Remote Attestation can be used, to verify the trustworthiness
of NFVs and resources that enable virtualization. ETSI proposed a document [6] (ETSI GR NFV-
SEC 018) that identifies Remote Attestation architecture usable for NFV systems. The attestation
scope, represented in figure 3.9, includes Hypervisor, which implements virtualization techniques,
VMs, that run on top of the Hypervisor, and application processes running inside VMs. This
permits to achieve the assurance that the service exposed is trusted.

3.4.2 NFV Remote Attestation Architecture

In a context of non-virtualization, remote attestation typically consists of a process that involves a
System under Evaluation (SuE), which is the attester, and the Remote Attestation Server (RAS),
which is the verifier. This process is characterized by three phases [6]:

28

Remote attestation standards and use cases

Hypervisor

Application
Process n

...

Application
Process 1

VM

Application
Process n

...

Application
Process 1

...

Application
Process n

...

Application
Process 1

VM

Service

Overall Attestation Scope

Application
Sub-Scope

Virtual Machine
Sub-Scope

Hypervisor
Sub-Scope

affects

affectsdepends

depends

Figure 3.9. NFV attestation scope (source: [6])

1. Measurement, that is the phase where the SuE accumulates all the needed information to
check if is in a trustworthy state or not. To do so it is executed a measurement function
that collects all the required data, maintains it in the Measurement List, and securely stores
it.

2. Reporting, is the phase executed once all evidence of the SuE is stored. A reporting
function is executed which takes the integrity information with the Measurement List and
creates a Report to send to the RAS assuring some security properties, such as integrity,
authenticity, confidentiality, and replay protection.

3. Verification, is the last phase executed once the RAS receives the report from the SuE. At
this point, the RAS runs a verification function that confronts values received in the report
with reference values already present in the RAS. After this computation, the verifier will
produce a Result that contains the details about the trustworthiness of the SuE.

In the NFV context, for evaluating the trustworthiness of a network service, it’s needed to
evaluate all components that are “under” the network service, so every element on which the
service depends. To achieve so, the remote attestation of an NFV has to start from the hypervisor-
platform, in order that if it is trusted, the physical hardware, the hypervisor’s software, and
eventually the virtualized hardware can be considered trusted. Once NFVI layers have been
attested, the next step is checking VNF layers that include all VMs’ software stacks and all
packages that implement the network function. Following this process is possible to build a Chain
of Trust (figure 3.10) from physical hardware up to the network service software.

The phase of collecting evidence consists in acquiring all needed measurements and storing
them inside the RoTs, which can be a Root of Trust for Storage (RTS) or a virtual RTS (vRTS),
then these values will be used for the reporting phase under the assistance of the Root of Trust
for Reporting (RTR) or vRTR. The first step in collecting evidence is measuring the load phase
that comprehends the boot process until the kernel takes control of the system. Then the OS has
to have the components that are responsible for the measurement of applications at run-time. All
components necessary during the load time and hypervisor components are measured and stored
in the RTS, and it’s responsible also to measure the VM’s scope and store it in the RTS.

29

Remote attestation standards and use cases

Physical Hardware

Hypervisor

Virtualized Hardware

VM 1 VM 2

VNFI

Network Service

NFVI
Layer

VNF
Layer

Networ
Service
Layer

C
ha

in
 o

f T
ru

st

Figure 3.10. Chain of Trust (source: [6])

For what concerns the application sub-scope the measurement process is performed and su-
pervised by the VM’s kernel, and when all data has been collected is stored in the virtual RoT,
in the vRTS, which is provided by the hypervisor. The vRTS, and generally the vRoT, is used
only for what concerns the applications running under the control of the VMs, but not for what
concerns the VM platform.

After having acquired and stored all necessary data and measurements for the attestation
process, this information will be used to create a report that represents the current state of the
system. The generated document has to be sent, in a secure way, to a RAS, which verifies the
authenticity of the report, checking the identity of the system. Once this phase terminates with
success, the RAS extracts the measurement information from the report and confronts them with
some reference values already present in the local environment. If all the measurements match
the corresponding reference value or not, the RAS emits the result of the verification. This result
can report binary information that determines if the system is trusted or not or can contain a set
of information that has to be processed at a later time to come to a final conclusion about the
trustworthiness of the system.

30

Chapter 4

Trust Monitor (TM)

4.1 Overview and Motivation

ETSI defined an entity, called Trust Manager [35], inside an NFV infrastructure, more precisely
inside the MANO domain, that has the purpose to verify the integrity of VNFs. This entity should
be the only one in the infrastructure to attest VNFs, in this way it would be easier to know if a
VNF is in the expected state or not because it would be necessary to communicate with the Trust
Manager, which can verify the integrity of VNFs in any specific moment. An advantage of this
entity is that it can be the only one that implements the logic for the remote attestation, in this
way all other entities can be lighter from the implemented logic point of view. A disadvantage of
this solution is that the Trust Manager would be a single point of failure, so if this entity would
stop working, because of damage or an attack, it would not be possible anymore to verify the
integrity of the NVFI. For this reason, it becomes fundamental to protect this system against
attacks. ETSI has defined this system it has not developed a common solution for the attestation
of network functions.

The Trust Monitor (TM), developed by the TORSEC research group of “Politecnico di
Torino”, is a system proposed to manage the Remote Attestation of VNFs in a SECaaS scenario.
It was developed as part of the SHIELD project and presented at the “IEEE Conference on Net-
work Softwarization” [36] in 2019. The TM has been designed to be a stand-alone component
in the MANO administrative domain, but not isolated in an NFV platform, which manages the
attestation process of vNSFs and NVFI. In addition, being an external component to the MANO
entity permits verifying the integrity status of MANO entities as well. It can be considered as an
implementation of the Trust Manager proposed by ETSI.

4.2 Architecture

The TM architecture was designed as a modular one, whose schematic representation is repre-
sented in figure 4.1, and it provides the following functionalities:

• Integrity Verification of both heterogeneous nodes of the NFVI and vNSFs;

• Notification and Reporting of integrity status information about the infrastructure to
external entities;

• Audit of Integrity Verification logs about the infrastructure.

The attestation of the hosts of the infrastructure is performed by the sub-components called
Attestation Drivers permitting to instantiate different remote attestation workflow, depending on
the type of the node, developing them as plugins. This approach permits the TM to manage
the attestation of hosts based on different architectures (e.g. ARM, x86), but also with different

31

Trust Monitor (TM)

NFVI node

vNSF 1 vNSF 2

NFV Infrastructure

TM Core Application

NFVI node
vNSF 1 vNSF 2

White-list Database

Notification and
Reporting
connectors

Attestation and
Management APIs

Attestation Driver

Trust Monitor

NFV MANO / DARE / vNSF Store / Dashboard

Audit DB

Figure 4.1. Trust Monitor Architecture (source: [36])

RoTs, which could be AMD SEV, Intel SGX, or TPM, in order to not be bonded with just one
vendor. This process is available also for virtulized TEEs, despite the fact that these offer a
lower assurance than hardware-based ones. At the moment, several attestation drivers have been
developed to support:

• Open Attestation (OAT) framework, which allows the integrity verification of NFVI nodes
and vNSFs deployed as Docker [37] containers exploiting the DIVE technology [38], but it
supports only version 1.2 of the TPM;

• Open Cloud Integrity Technology (OpenCIT), which allows attesting only the nodes of NFVI
and it supports both TPM 1.2 and TPM 2.0;

• Hewlett Packard Enterprise Switch (HPESwitch), which is used for attestation of SDN
switches and controllers;

• Keylime framework (this driver has been developed for an updated version of the TM
described afterward).

The TM manages the reference values for the attestation of nodes and vNSFs. The databases
that store this information are different for NFVI nodes and vNFSs. In the case of NFVI nodes,
reference measurements for the Linux distribution installed are used as whitelists. Regarding
vNSFs the management of whitelists relies on the vNSF Store, which provides reference mea-
surements for each vNSF provided by the developers or obtained by executing some statistic
analysis on the vNSF image. The Whitelist Database is a sensitive component because it stores
all reference values that indicate which is the correct state for nodes and vNSFs. For this reason,
it is important to use authorization and authentication policies, but also replication and high
availability of data are mandatory.

The TM has also an Audit Database that saves attestation results in order that external
entities can retrieve historical information about the state of the infrastructure. This is a sensitive

32

Trust Monitor (TM)

component too, for the data that manages, so it should be protected against attacks like data
manipulation.

For the interaction with TM are exposed Attestation and Management APIs that permit the
registration of NFVI nodes and to start the attestation. Furthermore, via pluggable Connectors,
are implemented also the Notification and Reporting functionalities that permit the interaction
with other components defined in a SECaaS scenario:

• vNSF Store Connector : it permits to retrieve the reference values for all the vNSFs;

• Dashboard Connector : it is the connector that allows the end-user to watch the attestation
results;

• DARE Connector : The Data Analysis and Remediation Engine (DARE) is the component
of an NFV infrastructure that has the purpose to process data deriving from vNSFs to
detect possible malicious behaviors. This connector permits to carry of information about
the trustworthiness of the infrastructure;

• vNSFO Connector : it makes available the possibility to query the vNSF Orchestrator in
order to get the list of nodes in the infrastructure and also the list of vNSFs running on
them.

4.2.1 Attestation Process

DARE

Trust Monitor

Attestation Driver

White-list Database

VNF Store

Orchestrator (MANO)

Dashboard (GUI)

1

Query NFVI
status

vNSF 1 vNSF 2

NFVI node

Attester

RoT

IR

RA request
2

NFVI

vNSF
whitelist 3

Attestation
Result

4

Audit log

5

ISP Admin

SECaaS
customer

Figure 4.2. Trust Monitor Attestation Process (source: [36])

Figure 4.2 represents the attestation process implemented by the TM and the interactions
with components of the infrastructure:

1. The TM retrieves all the infrastructure information, so the list of physical hosts and vNSFs,
from the Orchestrator;

2. The TM communicates with the Attester exposed by an NFVI node to start the Attesta-
tion Process. The node starts collecting integrity measurements that will use to create an
Integrity Report (IR) and will send it to the TM;

3. The TM retrieves for each vNSF the list of reference measurements and stores them in the
Whitelist Database. Now the TM can verify the authenticity of the IR and confront the
values with the reference measurements;

33

Trust Monitor (TM)

4. The TM produces a notification containing the attestation result, which aggregates informa-
tion about the trustworthiness of the physical and virtual platforms. This result is forwarded
to the Dashboard that provides different views for the ISP Administrator and the SECaaS
client;

5. The TM saves in the Audit Database the attestation result and sends it to the DARE which
will process it together with vNSFs data.

4.3 Trust Monitor 2.0

As mentioned before, it has been proposed another version of the Trust Monitor with some dif-
ferences from the original one. This new version was introduced because of the fact that the
TM, cause of its modular architecture, can be deployed in other scenarios, in general, cloud de-
ployments based on lightweight virtualization, rather than only the SECaaS one. In fact, the
TM 2.0 is able to interact with a container orchestrator (e.g. Kubernetes) providing attestation
for applications deployed as sets of containers. The updates in this version are the implemen-
tation of a new attestation driver allowing the integration of a custom version of the Keylime
attestation framework [39], and the implementation of a Whitelist Web Service that permit to
create and manage hosts and containers whitelists. The TM exposes a set of APIs that permits
communication with the TM itself in order to control available operations and send all necessary
data.

4.3.1 Keylime Attestation Framework

The Keylime framework was proposed by a security research team in MIT’s “Lincoln Labora-
tory”. It is an open-source project proposed as a solution for bootstrapping hardware-rooted
cryptographic identities for cloud hosts and for periodic attestation of those hosts to verify their
integrity in an IaaS environment. Keylime relies on the TPM device functionalities, that permit
the management of keys and sensitive data. It was designed to provide several features that are
considered needful for a trusted computing system:

• The first feature made available by Keylime is Secure Bootstrapping implementing a new
bootstrap key derivation protocol that permits injecting identities or other secrets into cloud
nodes.

• The second feature provided by Keylime is System Integrity Monitoring. This is achieved
by performing periodic remote attestation of cloud nodes in order to detect unexpected
behaviors and revoke their identity.

• Another feature provided by Keylime is Secure Layering which means that the previous
functionalities are provided in both bare-metal and VMs.

• The next feature provided is Compatibility because it can be integrated with common ser-
vices in an IaaS scenario (e.g. IPsec, Puppet, Vault, cloud-init).

• Another important feature is Scalability because in a cloud context the number of managed
nodes can become considerable. For this reason, Keylime is able to manage thousands of
nodes and check thousands of IRs per second.

Architecture

The simplified architecture described in this section is referred to the case in which cloud nodes
are physical hosts. Components are:

34

Trust Monitor (TM)

Cloud Agent
(Host)

Bootstrap key
(Kb)

unwrapIdentity
key

TPM

Software CA

Revocation
Service

Certificate Authority

Trust

Tenant

Cloud Verifier (CV)

Bootstrap Key
Derivation Revocation

Notifier

Tenant Registrar

AIK
good?

Enrollment

TPM / Platform
Manufacturer

Bound at
manufacturing

TPM good?

Figure 4.3. Keylime simplified architecture (source: [39])

• Registrar: This component stores public part of TPM’s keys, AIKpub, Endorsement Key
(EKpub) and EK certificates indexed by cloud nodes’ UUID. It implements the protocol for
Attestation Key identity Certification [40], for this reason, it can be considered a simplified
implementation of the TCG Attestation CA. Requests for TPM’s credentials are managed
by the Registrar through an authenticated TLS channel.

• Cloud Verifier (CV): This is the main component of Keylime design. It performs the
verification that the tenant’s resources are in a trusted state. It retrieves the AIKpub from
the Registrar in order to be able to validate a TPM quote.

• Cloud Agent: This component runs on each node of the infrastructure and it is responsible
to create and send IRs in order to provide information about the current state of the host.

• Tenant: This is the component that represents the client of the IaaS resources, in fact, it
starts the framework by contacting the agent and sending it some encrypted data related
to his service and contacting the CV sending it all the information needed to attest the
integrity status of the node that runs the service.

• Software CA: This software-only Certification Authority permits binding integrity mea-
surements rooted in the TPM with security services of a higher level.

• Revocation Service: This service permits to complete the binding between trusted com-
puting services and higher-level services. This component allows reacting to changes in
nodes’ states. The procedure begins when a CV detects that a node has become untrusted,
so the Revocation Notifier contacts the Software CA sending it, and to all nodes registered
for this service, a “Revocation Event”. Once received this message, the Software CA, which
manages a CRL service, publishes an updated CRL with the information related to the
revocation of the software identity key of the untrusted node.

The Keylime attestation framework can be subdivided into four main operational phases:

1. Physical Registration Protocol

This operation permits the exchange of identity keys and credentials between a host and
the framework. When the Cloud Agent starts up it contacts the Registrar, sending all the
information related to the identity of the host and the TPM. The Cloud Agent sends to
the Registrar its UUID, and the AIKpub, the EKpub and the EKcert of the TPM. Once
the Registrar receives all this data, stores it and sends to the Cloud Agent a challenge. If
the response of the Cloud Agent is correct, it proves that it posses the AIKpriv and the
EKpriv, so the Registrar can set the Cloud Agent UUID as active and starting send its
TPM credential when asked.

35

Trust Monitor (TM)

2. Three Party Bootstrap Key Derivation Protocol

It can be executed after the node registration protocol, in order to securely deliver the
bootstrap key to the new node (after having verified it is in a secure state). This sharing
permits verifying the trusted state of the node, so, if the node at the end, is untrusted,
it won’t receive the second half of the key, and it will not be able to decrypt the payload
received. This operation can be divided into three phases. The first one consists of the
Tenant that communicates to the Verifier that a particular node exists and sends to the
Verifier all the information regarding this particular node (UUID, IP address, port, etc.),
together with a part of Kb. During the second and third phases, the CV and the Tenant
perform an attestation of the node, at the end of which the node will receive both halves of
Kb [39].

3. Continuous Remote Attestation After the end of the Three Party Bootstrap Key
Derivation Protocol, it starts the Continuous Remote Attestation. After having verified
that the node is securely booted, so applications will be deployed in a trusted environment,
the CV periodically polls the node to monitor its integrity state. This procedure relies on
the integrity measurements made by IMA [17] on applications launched on the system. The
CV periodically asks for an IR from the Cloud Agent and validates it.

4. Revocation Framework

When the CV detects that a node is untrusted, it triggers the Revocation Frameworks.
The Revocation Notifier implements the publish/subscribe pattern, in particular, the CV
publishes a new revocation event sending a signed message to the Revocation Notifier, which
it sends to all subscribers. A subscriber can be the software CA, the Cloud Agent, and other
tools that want to be notified.

4.3.2 Keylime Attestation Driver

Keylime

Keylime attestation
driver

Trust Monitor
Core Application

Whitelist Web
Service

App 1

App 2

App 3Container 1

Container 2

Node

1

2

3

4

5

6

7

Trust
Monitor

Figure 4.4. Node registration workflow

The Keylime attestation driver is a particular implementation for interfacing with a specific
attestation framework. It exposes four methods:

• registerNode(): This method permits registering a new node in the attestation framework,
which is the operation that enables the attestation process. In the specific case of Keylime,
shown in figure 4.4, the workflow starts from (1) the first call to the register node API of the

36

Trust Monitor (TM)

Keylime

Keylime attestation
driver

Trust Monitor
Core Application

Whitelist Web
Service

App 1

App 2

App 3Container 1

Container 2

Node

1

2

3

4

Trust
Monitor

Figure 4.5. Check node integrity status workflow

TM passing all the necessary information about the host (UUID, IP address, OS distribution,
list of containers running on the host, etc.). Then the TM calls the registerNode() (2)
method of Keylime’s driver which asks the Whitelist Service (3) to create the Whitelist
correspondent to the host and the whitelist for every container based on the information
passed. The driver contacts Keylime (4) passing all the data about the host, passing the
URLs from where Keylime can download whitelists for the node and containers. Once
Keylime has downloaded whitelists (5) it can register the host and its containers and start
the periodic attestation (6). If everything is completed successfully the node is registered
in the internal database (7).

• pollHost(): This method permits obtaining information about the integrity state of a host.
The process workflow is illustrated in figure 4.5. The TM receives a request (1) on its attest
node API, then it contacts the Keylime driver (2) through the pollHost() methods so the
driver will send a request (3) to the Keylime framework in order to obtain information
about the integrity status of a host. Once the driver receives all this information it builds
an attestation log and sends it back to the TM (4) as a JSON object.

• getStatus(): This method is called by the TM to retrieve information about the attes-
tation framework status. Once the TM receives a request on its status API it invokes the
getStatus() method of the Keylime driver which will contact the framework in order to
obtain all the information about its status.

• deleteNode(): This method permits to remove a host from the framework previously reg-
istered. The workflow of this operation is similar to all others previously explained. The
TM receives a request on its delete node API that will remove the specified host from the
internal database of the TM and subsequently will contact the deleteNode() method of the
driver that interacts with the Keylime framework will remove the specified host from the
attestation framework.

The structure of a driver is fixed, in this way, the TM can understand and use drivers for several
attestation technologies, with the constraint that these drivers respect the expected structure.

37

Trust Monitor (TM)

4.3.3 Whitelist Web Service

The Whitelist Web Service is a component introduced in the updated TM architecture in order
to manage whitelists of hosts and containers in a centralized way. This service has several sources
for the reference values, and originally these sources are three:

1. A database that contains the whitelist for the Linux distribution used on all the nodes of
the infrastructure;

2. The internal database that saves digests of proprietary software running on hosts in the
KnowDigest table;

3. The vNSF Store, which contains whitelists related to containers. It is accessed through the
vNSF Store Connector which once retrieved the whitelists stores them in order to use them
during attestation.

Having more than one source for whitelists is a cause of increasing the TM core complexity.
On the other hand, the concept of a single component that manages whitelists in a centralized way
offers a simplified way to access them. In addition, the Whitelist Web Service allows creating a
custom whitelist for each node based on its configuration. For this reason, service databases need
to be constantly updated, with respect to the software updates uploaded on standard repositories
of Linux distributions.

4.4 Criticalities and open challenges of the classic version

The Trust Monitor introduces several advantages for managing the continuous remote attestation
of infrastructure because it adds a level of abstraction to the attestation framework allowing to
use more than one. This permits a more flexible utilization of these technologies. The goal of this
project is to achieve the possibility to manage attestation in a more heterogeneous environment
which could be an NFV infrastructure but also a more general purpose cloud environment that
allows the user to instantiate different objects, such as VMs, containers, also pods (in a Kubernetes
context), enclaves (in a TEE context) and more. For this reason, a very important improvement
is implementing the possibility to manage the most generic objects, in order to achieve the wanted
flexibility.

Another improvement that is necessary is making the TM completely independent from attes-
tation drivers because in the original version attestation drivers are developed as plugins, but there
is still a bond between attestation drivers and the TM core application. An example could be the
Keylime attestation driver that implements the interface with Keylime, but in the pollHost()

method implements a single request for the integrity status of the node. The logic for contin-
uous attestation is implemented in the TM core application, so the TM needs to be aware of
the attestation technology used. The goal should be to move the whole attestation process to
the attestation driver, in this way the TM could use them without knowing anything about the
internal implementation.

There are other possible updates needed, for example implementing a process to build whitelists
in an automatic way permitting considerably increasing the flexibility of the entire system. This
improvement would permit to deploy nodes (physical or virtual), applications, services, and more
not providing a fixed whitelist for each one, but deriving them from some analysis of those systems
in order to achieve a more automatic way to deploy them in a secure way having the possibility
to continuous attest them.

38

Chapter 5

Trust Monitor Redesign

This chapter focus of illustrate the new architecture of the Trust Monitor designed during the
development of this thesis work. It will consider several aspects of the components and the purpose
of each one and how they collaborate together.

5.1 Architecture of new Trust Monitor

Trust Monitor
Instances

Data Whitelists Reports

TM Core Application

API

Adapters'
Connector

Adapter 1 Attestation
technology 1

Policies

Orchestrator 1

Instance DB
connector

Whitelist DB
connector

Report DB
connector

Adapter 2 Attestation
technology 2

Infrastructure 1 Entity

Orchestrator 2 Infrastructure 2
Entity

Policy DB
connector

Single Result
 queues

Aggregate Report
queue

Verifiers
Data

Verifier DB
connector

CLI

Databases

Figure 5.1. New Trust Monitor Architecture

The architecture of the new Trust Monitor is based on the classic implementation, in order to
maintain the same basic structure. The new concept is making the TM more independent from
the attestation technologies used and the kind of infrastructure. The new architecture is shown
in figure 5.1 and represents all components that are part of it.

The key concept of this new version is making the Trust Monitor more independent from
the attestation technologies used to verify the integrity of the objects on which it is intended to

39

Trust Monitor Redesign

perform the remote attestation. This goal is obtained by moving the most significant logic for
the attestation on Attestation Adapters, which are very similar to the Attestation Drivers of the
previous version of the TM. This idea permits to maintain the TM unaware of which attestation
technologies are used, so it has the purpose to contact the correct Adapters, specified for each
entity registered, and then managing their results. Once received, these attestation results are
aggregated into a report for each entity that has an active remote attestation process. The report
produced permits to have an instant view of the status of the object under evaluation. This
process is possible thanks to message queues that permit sorting attestation results coming from
different attestation technologies in a quick and easy way. The TM core application in this way
can obtain this information in an asynchronous way that allows elaborating other requests during
the wait. Some queues receive attestation results from all the attestation adapters and permit
the TM core application to read those results and aggregate them based on the entity. Another
queue, on the basic logic proposed, receives all the reports created by the TM core application
in order that a custom consumer, developed ad-hoc based on the necessities, can process those
reports and make some decisions.

The TM exposes APIs that permit controlling and managing it. These APIs are the interface
with the administrator, they allow to manage all other components and the attestation process.

Other fundamental components are the databases, that store all the information needed for
the attestation process. In this way, it is possible to maintain a different state from the attestation
frameworks used. This permits to store information independent of the attestation process and
independent of the attestation frameworks that will be used.

5.2 Level of Abstraction

The purpose of the TM is to add a level of abstraction to the remote attestation process. Adding
this layer permits obtaining an independent workflow for remote attestation. Once all information
is stored in the TM, such as data about objects to attest, data related to verifiers and attesta-
tion technologies that will be used, the entire process of attestation becomes independent of the
technologies used because the only system contacted to start the integrity verification is the TM
which then will interact with all required attestation technologies. This approach allows attes-
tation of an entity with more than one technology because it will be only necessary to specify
which technologies will be used for remote attestation on that particular object and then when
the process will start, the TM will manage all technologies specified and will aggregate all results
in a single report.

5.2.1 Attestation Adapters

The possibility to manage the attestation process in a more flexible way is obtained through the
Attestation Adapter which is the key to the abstraction brought by the TM. This component
permits to connect an attestation framework with the TM core application but without giving to
the TM itself any information about the framework used. The idea is very similar to the previous
versions of the TM, in fact, an adapter must have a fixed structure in order to expose to the
TM core application a common interface allowing to use it without knowing anything about its
implementation and the framework attestation workflow. Each adapter can be developed following
the best approach for the specific attestation framework to which is referred but following a specific
schema in order that the TM can understand it.

The flexibility of this system is also thanks to several metadata fields present in the databases.
These fields permit to save custom data that will be obscure to the TM core application but can
be used by the adapters, so developing a custom adapter is possible to design some custom data
to store in databases that will be useful during the remote attestation phase. In addition, the
structure of whitelists is also customizable because different attestation technologies can support
different whitelist structures, so also in this case the structure of whitelists will be obscure to the
TM core application and will be clear to the specific attestation adapter which will be able to
manage it and use it for the attestation process.

40

Trust Monitor Redesign

5.3 Description of the Componets

5.3.1 TM Core Application

The TM Core Application is the main component that manages all the requests about the at-
testation processes. It manages the central high-level logic, so it does not manage directly the
attestation process of an entity, but when it receives a request that specifies an entity on which
start the remote attestation, it retrieves all necessary data, contacting the Database Connectors,
and pass it to the adapters that will manage the remote attestation process. The TM Core Ap-
plication then receives all the attestation results sent by the adapters. In addition, the TM Core
maintains the memory of attestation processes that are currently running making available the
possibility to retrieve externally this state in order to be able to know the actual state of the TM
at any moment.

The logic of the TM Core is quite simple because, as already reported before, the purpose of
this work is to move the attestation logic on the adapters in order to maintain the TM Core more
light and flexible.

5.3.2 Connectors

The Connectors (figure 5.2) are the interface of the TM Core with all other components of the
system. They permit to send and receive data between the Core Application and other ele-
ments. The connectors that allow this flow of data are the Database Connectors, which permit
the databases to be queried by the TM Core in order to retrieve or store data. These are modules
which the purpose to implement the necessary logic to contact the database, which uses different
technologies. In this way, the technology used for databases is not important for the TM Core
Application because it will contact the connector without knowing anything about the database
implementation.

The Adapter’s Connector has the more important role to interface the TM Core Application
with all the attestation adapters deployed. The purpose of this module is to contact all the
adapters needed for the attestation of each entity. This is possible thanks to the dynamic loading
of the adapters, which permits loading all the adapters that are declared in a configuration file.
This mechanism increases considerably the flexibility of the system because to add or remove an
attestation technology is only necessary to edit a configuration file in order to make load a specific
adapter or not.

Trust Monitor
Instances

Data Whitelists Reports

TM Core Application

API

Adapters'
Connector

Adapter 1

Policies

Instance DB
connector

Whitelist DB
connector

Report DB
connector

Adapter 2

Policy DB
connector

Single Result
 queues

Aggregate Report
queue

Verifiers
Data

Verifier DB
connector

Connectors

Figure 5.2. Trust Monitor Connectors

41

Trust Monitor Redesign

5.3.3 Databases

The first components that have been redesigned are databases in order to satisfy the requirements
necessary for each one. These are crucial components because they store information that permits
the verification of the integrity of infrastructure’s objects and allows to save those results in order
to be able to perform analysis with them. For each database is available a Connector that permits
the TM core application to interface and communicate with them. The total number of databases
is five and they are:

• Instances database

• Whitelist database

• Report database

• Verifier database

• Policy database

Instances Database

The Instances Database is the main database that contains all the information related to each
object that will be attested. It is a relational database has one table called entities and the schema
contains the following attributes:

• entity_uuid: This is the primary key of the table and it is an internal identifier for the
single object to attest. It is assigned by the outside at the moment of the registration of
the entity and it will be used for all the operations exposed by the TM on entities.

• inf_id: This attribute allows to identify the infrastructure to which the entity belongs.

• att_tech: This attribute is a list of attestation technologies that will be used to verify the
integrity of the specific entity. This permits to be able to use more than one attestation
technology for each object.

• name: This field represents the name of the object. It is assigned at the moment of reg-
istration and it has no impact on the logic of the TM, but it can be useful for quicker
identification of entities.

• external_id: It is an identifier of the entity external to the TM. It is assigned at registration
time by the outside and it permits to define an identifier that can be used for example by
an attestation technology.

• type: This attribute represents the type of the entity, such as node, VM, container, etc.

• whitelist_uuid: This value is an external reference to the whitelist database, in order to
link an entity to a whitelist, which will be used during the attestation process.

• child: This attribute is a list of entity_uuid values, which permits to know the objects
contained in another one. For example, a physical node can have a list of containers running
on it.

• parent: This value has the opposite meaning of the previous one. In this case, it represents
the entity_uuid of the entity that contains the represented object.

• state: This value represents the state of the entity in the TM in order to be able to
understand which process is running related to the specific entity.

• metadata: This is an important field because it represents in some way the flexibility of
the TM. Inside this field can be stored custom information, that the TM interprets as a
blob, so this data is not relevant for the primary logic of the TM, but they can be used by
attestation technologies, which could need some additional information to properly work.

42

Trust Monitor Redesign

Whitelist Database

The whitelist database store all information about reference values for the remote attestation.
These values are not used directly by the TM, because it has the purpose to manages different
attestation technologies and aggregating their attestation results, so these reference values will
be retrieved from the whitelist database and passed to the respective attestation technology.
In particular, it is a NoSQL (non-relational) database that allows storing whitelist with different
structures depending on the attestation technology used. The document associated with a specific
whitelist contains two fields: the first one is dedicated to metadata in order to be more flexible
and be able to define some custom values; the second one, whitelist, is dedicated to containing
the reference values in the most suitable structure.

Report Database

The Report Database permits to store reports produced by the TM during the process of aggrega-
tion of attestation results received from attestation frameworks. The presence of this component
allows doing historical analysis of attestation results related to specific entities. The document
that stores a report contains the time of creation, the state of the entity at that particular moment
(based on some policies) and the list of attestation results for every attestation technology that
is performing integrity verification on that particular entity.

Verifier Database

The Verifier Database has the purpose to memorize the information related to the attestation
technology of each infrastructure managed by the system. In this case, there is only one field
associated with an attestation technology which is a metadata field. The presence of this attribute
permits to store custom information, in a structured way, about a Verifier that will be used
during the remote attestation phase. The metadata attribute is treated the same as the metadata
attribute of the Instances Database, so it is not interpreted by the TM core application, which
manages it as a black box but will be understood by the proper adapter, that will use that
information to interact with the specific attestation framework.

Policy Database

The Policy Database allows storing policies, bound with entities, which will be used during the
aggregation phase, so during the construction of the report. In this way, it is possible to have
different results about the trustworthiness of an entity depending on the policies specified.

5.3.4 Queues

In the TM architecture are present two kinds of queues, the Single Result Queue and the Aggregate
Report Queue. The first one has the purpose to collect all the attestation results coming from the
attestation technologies through the adapters. This module permits the TM Core Application to
receive attestation results in an asynchronous way allowing a more optimized managing of them
in order to create reports that aggregate these results following the policies specified for entities.
In this case, there will be a single queue for each entity under integrity verification. The second
one has the purpose to make available for live consummation the report created. In this way, it
is possible to develop a custom consumer that can elaborate on reports produced a make some
actions or decisions based on them. In this case there will a single queue.

5.4 Interfaces and High-Level Workflow

The interfaces that the TM has to relate to other external systems are the Adapters, which permit
communicating with attestation technologies, and the APIs Manager. The APIs Manager is the

43

Trust Monitor Redesign

component that has the purpose to control and serve all the requests coming from an external
system. It makes available several possible operations that permit to correctly perform the remote
attestation process.

5.4.1 TM Operations

All the operations made available by the TM are managed by the APIs Manager which receives the
requests and then contacts the TM Core Application which will perform the procedure requested.
The operations permitted are:

• Register Entity: This operation permits to store a new entity in the Instances Database,
in this way is possible to specify all the information needed for the attestation of that
specific object. In this case, data are only stored in the TM database without contacting
any attestation adapters.

• Edit Entity: This operation makes available the possibility to edit one or more attributes
of a specific entity stored in the TM database. This operation modifies only the information
stored in the Instances Database without contacting any adapter.

• Delete Entity: Requesting this operation is possible to delete an entity from the Instances
Database, but also in this case the information modified is only in the TM database, so no
adapter is contacted.

• Add Whitelist: This operation, similar to the Register Entity, permits to save a new
whitelist in the Whitelist Database of the TM. This whitelist will be linked to a specific
entity during the registration of the entity or during the edit operation.

• Delete Whitelist: This operation permits to delete a whitelist from the TM database.
Also in this case is an action limited to the TM context.

• Add Verifier: This operation permits to add all the information needed by a specific
attestation framework related to a specific infrastructure. This operation doesn’t give any
information about the adapter to the TM, it permits only to store the necessary information
to be able to contact the framework.

• Delete Verifier: This operation permits to delete the information about a particular at-
testation technology. The adapter will still be loaded because this action modifies only the
information stored in the Verifier Database.

• Add Policy: This operation permits to add a new policy for a specific entity that will
be used during the creation of the report once received all the results from the attestation
technologies that are performing the remote attestation of that particular entity.

• Delete Policy: This operation removes a policy for a specific entity from the Policy
Database.

• Start Attestation: This is the main operation that permits, once all the necessary data are
stored in the TM databases, to start the attestation of a specific entity. This procedure, as
shown in figure 5.3, begins with a request to the APIs manager (1) that contact the TM Core
Application which retrieves all the necessary data (2) (3) (4) to start the remote attestation
process. Once the TM Core has retrieved all the information it can contact the Adapters’
Connector (5) which selects the correct adapter. In case it is used more than one attestation
technology the Adapters’ Connector will contact all the necessary adapters. Once contacted,
the selected adapter starts the communication with the attestation framework (6) in order
to control the attestation process performed by the attestation technology (7). The results
of the process are published on the Single Report queue (8) which makes them available
to the TM Core Application, which read them (9) and periodically produces a report that
aggregates all this information publishing it on the Aggregate Report queue (10). Reports
are also stored in the Report Database which will permit to perform historical analysis on
all reports created for a specific entity.

44

Trust Monitor Redesign

TM Core
Application

API

1

Adapters'
Connector

Adapter 1 Attestation
technology 1

Single Report queue

Aggregate Report
queue

5

6

8

9

10

Instance DB
connector

2

Whitelist DB
connector

3

Verifier DB
connector

4

Entity

7

Whitelist
DB

Verifier
DB

Instacnces
DB

Report DB
connector

Report
DB

Figure 5.3. High-level workflow for entity attestation

• Stop Attestation: This operation permits stopping the attestation process on the attes-
tation framework and on the TM.

45

Chapter 6

Trust Monitor Implementation

This chapter explains the new implementation of the Trust Monitor component by component,
the tools and libraries used and the motivation behind the choice of these technologies. As already
described in the previous chapter, the Trust Monitor is composed of several components. Each
component has been developed as a file that exposes some methods in order to interface with
other components. The entire Trust Monitor system has been implemented using the Python [41]
programming language. The structure has several files as shown below:

trust-monitor

adapters

keylime.py

databases_connectors

instances.py

reports.py

verfiers.py

whitelists.py

policies.py

kafka_connectors

kafka_connector.py

report_reader.py

docker-compose

docker-compose.yml

init-docker.sh

adapters_connector.py

api-manager.py

core.py

config.ini

Dockerfile

Some of these files are the actual implementation of the logic and some are configuration files
needed for the execution or deployment.

The entire system is deployed as a set of Docker containers using the docker-compose tool.
This tool permits to set up and run several containers at the same time, specifying all the con-
figurations in a YAML file (docker-compose.yml). The set of containers, shown in figure 6.1, is
composed of four containers: one for the NoSQL databases, one for the relational databases, one
for the queues and the last one for the TM core logic. The init-docker.sh file is a Bash script
that initializes databases after the first deployment of them.

46

Trust Monitor Implementation

Trust Monitor

TM Core Application

API

Adapters'
Connector

Adapter 1

Whitelist DB
connector

Adapter 2

Policy DB
connector

Verifier DB
connector

Report DB
connector

Instance DB
connector

Instances
Data DB

Verifier
DB Policy DBWhitelist

DB
Report

DB

Aggregate Report
queue

Single Result
 queues

Figure 6.1. Trust Monitor containers deployment

6.1 Tools and Libraries

The TM system, as already reported before, has been developed using the Python programming
language, version 3.8, in order to maintain compatibility with previous versions of the TM. Each
logical component has been developed as a single python file which exposes all the necessary
methods in order that other components can interface with it.

6.1.1 Configuration File

All the configurable information is saved into a configuration file called config.ini. This file is
an INI file (an example is shown in listing 6.1), which has a specific syntax and structure which
is based on the key-value structure. All necessary values are represented in this form and in
addition, there is also the possibility to divide these values in sections, in order to have a more
understandable structure.

1 [section_a]

2 key_a = value_a

3 key_b = value_b

4

5 [section_b]

6 key_c = value_c

7 key_d = value_d

Listing 6.1. INI file example

This file permits to specify all configurable parameters, for example, it is possible to declare the
adapters to load at run time, specifying the name of the adapters in the section adapters.

In order to load this file during the TM execution, it has been used the configparser python
library, which permits to dynamically load the configuration file and saving all the information
into a python dictionary in order to make them available during the execution. An example is
reported in listing 6.2 that is the result taking as configuration file the example reported in listing
6.1.

1 {

2 "section_a": {

47

Trust Monitor Implementation

3 "key_a": "value_a",

4 "key_b": "value_b"

5 },

6 "section_b": {

7 "key_c": "value_c",

8 "key_d": "value_d"

9 }

10 }

Listing 6.2. configparser dictionary example

6.1.2 APIs Manager

The APIs Manager component is implemented in the api-manager.py file which is the first file
launched in order to start the TM execution. This file contains the definition of all the logic in
order to serve the various operation permitted. To implement this component, which behaves as a
web server, it has been used the Quart python framework. Quart is an asyncio reimplementation
of the popular Flask microframework API, this permits to manage requests in an asynchronous
way without blocking the flow of execution until the request is served. Asyncio is a component of
the Python standard library and it provides an event loop with input/output operations, so this
permits to implement concurrency and obtaining better performance in CPU utilization. In listing
6.3 is shown how this logic can be implemented in order to obtain the concurrency execution of
different tasks that can terminate in different moments but each task is executed in parallel with
others in order to not block the flow of execution.

1 import asyncio

2

3

4 async def simulated_fetch(url, delay):

5 await asyncio.sleep(delay)

6 print(f"Fetched {url} after {delay}")

7 return f"<html>{url}"

8

9

10 def main():

11 loop = asyncio.get_event_loop()

12 results = loop.run_until_complete(asyncio.gather(

13 simulated_fetch(’http://google.com’, 2),

14 simulated_fetch(’http://bbc.co.uk’, 1),

15))

16 print(results)

Listing 6.3. Asyncio demonstration (source: [42])

This behavior is very suitable for a web server because it receives asynchronous requests and in this
way is possible to serve them in parallel independent of their complexity. As already mentioned,
Quart is a reimplementation of Flask so the syntax remains very simple and understandable as
shown in listing 6.4.

1 from quart import Quart

2

3 app = Quart(__name__)

4

5 @app.route(’/’)

6 async def helloWorld():

7 return ’Hello World!’

8

48

Trust Monitor Implementation

9 app.run()

Listing 6.4. Quart example

6.1.3 Databases

The databases are realized with two technologies: PostgreSQL for relational databases, which are
the Instances database, the Verifiers database and the Policy database, and MongoDB for NoSQL
databases which are the Whitelists database and the Report database.

In the case of relational databases, the choice of PostgreSQL is motivated by the need for some
native way to can manage short information and JSON objects. This technology, in fact, permits
to store JSON objects in relational tables with native management of them. For this reason,
PostgreSQL makes available the json type in order to directly manage JSON objects without
the need to convert them to string or other types. It supports SQL so all the operations can be
done using it.

In the case of NoSQL databases, MongoDB was chosen because of its performance, because
the documents managed, for example in the Whitelists database, could become very big, so there
was the necessity for a system that can manage very big documents. In this case, with the fact
that MongoDB is a NoSQL database, it doesn’t support SQL, so all the operations are managed
by a specific query language. In addition, also the structure is different from a relation database,
in fact, there are no tables but collections which substitute them. A collection can contain several
documents (an example is shown in listing 6.5) that are the equivalent of an object saved in the
database which is the equivalent of a tuple in the case of a relational database. The structure of
a document is that of a JSON object where there can be several attributes, and each attribute
can be another JSON object, an array or just a value. The only constraint is that a document
must contain the _id attribute which is the identifier of that particular document. It can be set
manually when the object is inserted into the collection, in any case, if this attribute is not passed
when the document is inserted, it will be generated automatically.

1 {

2 "_id": 1,

3 "first_name": "Mario",

4 "email": "mario@polito.it",

5 "cell": "765-555-5555",

6 "likes": [

7 "fashion",

8 "sports",

9 "shopping"

10],

11 "businesses": [

12 {

13 "name": "Entertainment 1080",

14 "partner": "Rosa",

15 "status": "Bankrupt",

16 "date_founded": {

17 "$date": "2012-05-19T04:00:00Z"

18 }

19 },

20 {

21 "name": "Best of Sports",

22 "date_founded": {

23 "$date": "2012-11-01T04:00:00Z"

24 }

25 }

26]

49

Trust Monitor Implementation

27 }

Listing 6.5. MongoDB document example

6.1.4 Queues

To implement the necessary queues it is used Apache Kafka [43], which permits to implement a
publish/subscribe protocol used to transmit attestation results and aggregate reports. In addition,
it is used this technology to maintain compatibility with previous versions of the TM. Messages
sent in this infrastructure are organized in topics, which can be considered similar to folders of a
filesystem. Each topic can have more than one producer, that publishes messages on the topic, and
more than one consumer, that reads and processes messages sent on the topic. In the particular
case of the TM (figure 6.2) the topics are of two kinds:

• result_entity_{entity_uuid}: for these topics producers are all the attestation technolo-
gies that are running. Each attestation process in execution publishes its result on a specific
topic created when the attestation process starts. The consumer is the TM itself which
reads these results and aggregates them into reports for each entity under verification.

• report: the producer for this topic is the TM which after having produced reports that
aggregate the attestation results received, it publishes them on this topic in order to make
them available for processing. The consumers for this topic are not defined, because the
TM makes available reports on this topic but the processing and the decision taken from
these reports must be implemented by the user that decides how to use these reports.

TM

report

Attestation
process 1

Attestation
process n

Attestation
process 2

.

.

.

Result

Report

KAFKA

result_entity_n

result_entity_2

result_entity_1

.

.

.

Figure 6.2. Results and reports workflow

6.1.5 Databases’ connectors

Databases’ connectors implement all the functionalities needed in order to store and manipulated
data that are necessary for the remote attestation processes. Each connector is implemented as a
python. Each connector validates objects received from requests, and this validation is performed
using the jsonschema library which is an implementation of the JSON Schema specification [44]
for python. The concept is specifying a base schema of the expected JSON object in order to
check if the received object has the required characteristics or not. The schema is declared as a
JSON object (listing 6.6) which specifies the attributes required and the type of each attribute
and if the data of the request doesn’t match this schema is discarded.

50

Trust Monitor Implementation

1 schema = {

2 "type" : "object",

3 "properties" : {

4 "name" : {"type" : "string"},

5 "price" : {"type" : "number"}

6 },

7 }

8

9 {

10 "name" : "Eggs",

11 "price" : 34.99

12 } # Valid object

13

14 {

15 "name" : "Eggs",

16 "price" : "Invalid"

17 } # Invalid object

Listing 6.6. JSON Schema example

Two different libraries are used in order to create database connections. The first one is
psycopg2 that permits to manage PostgreSQL databases. The second one is pymongo that permits
to manage MongoDB databases.

6.2 Low-level workflow of the solution

6.2.1 Adapters

An Adapter is the main component for the interface with the specific remote attestation technol-
ogy, in fact, it is the element that implements the logic for managing the attestation process di-
rectly on the attestation framework. In order to obtain the feature of dynamic loading of adapters
has been defined a fixed structure (listing 6.7) for each adapter in order that the methods exposed
are always the same.

1 class className:

2

3 def register(entity, whitelist, verifier):

4 ...

5

6 def attest(entity, verifier, whitelist, se, topic):

7 ...

8

9 def delete(entity, verifier):

10 ...

11

12 def status(verifier):

13 ...

Listing 6.7. Adapter’s structure

The structure of the file must contain a class that must implement three methods:

1. register(entity, whitelist, verifier): This method receives all information about
the entity to attest, about the whitelist and the verifier to contact.

2. attest(entity, verifier, whitelist, se, topic): This method receives all informa-
tion about the entity to attest, the whitelist and the verifier to contact. In addition, it

51

Trust Monitor Implementation

receives se which is an Event object of the standard python library threading that permits
set a termination condition for a thread. This object can be useful if the adapter needs
to implement a loop for the attestation process and it is performed by a secondary thread.
The last parameter is the topic on which publish the attestation results received from the
attestation framework.

3. delete(entity, verifier): This method receives all information about the entity and
the verifier to contact.

4. status(verifier): This method receives only the information about the verifier in order
to be able to retrieve its status.

Each adapter developed needs to be declared into the configuration file in order to be loaded
by the TM. This declaration has to be done in the [adapters] section of the config.ini file,
inserting a line with the following structure:

<name_of_the_adapter_file> = <name_of_the_class_implemented>

In addition, an adapter in order to be loaded needs to be placed in the adapters directory of
the project.

Keylime Adapter

In order to be able to test the system has been developed an adapter for the Keylime framework.
In this case, the version of Keylime is a custom one, to which has been added the feature of pods
attestation in a Kubernetes infrastructure.

In this case, the whole attestation logic is implemented in the attest method, because in the
case of Keylime the registration and the delete of an object are done respectively at the start of
the attestation and at the end of the attestation. The implementation of the attest method of
the Keylime adapter is based on a loop. Before the loop, its is performed the registration of the
object into Keylime. In the case the entity to attest has the child field set, it retrieves all the
information about the pods that are running on that particular entity. After having retrieved
all information it sends a request on the registration API of the Tenant which will perform it
and start the remote attestation. Inside the loop, it is performed a cyclic request to the Tenant
asking for the attestation result related to the entity under verification. Once received a result it
publishes it on the result_entity_{entity_uuid} topic which will be processed by the Kafka
consumer that once received a result for each attestation technology that is performing remote
attestation on the entity, it produces a report and publishes it on the report topic. When se is
set the loop stops and the entity is deleted from Keylime which is the operation that stops the
remote attestation on it. The attest method is executed by a dedicated thread (figure 6.3) which
permits it to be executed in parallel with other tasks.

6.2.2 TM Core Application

The TM Core Application is implemented as a set of methods called by the APIs Manager in order
to interface with all other components of the infrastructure. In order to maintain the attestation
status, the TM store the information about each attestation process in a dictionary, which saves
data about the Verify thread and the corresponding stop eventse. In this way, when the DELETE
attest_entity is called for an entity, the TM can locate the specific thread and terminate it in
order to stop the remote attestation process.

The attestation process, shown in figure 6.4, starts at the moment the APIs manager receives
a request on the POST attest_entity API. Once received this request, the TM core retrieves
all the information about the entity, the whitelist and the verifier, then launches a thread (Verify
thread) that will manage the entire process and creates the specific topic, in this way it can
serve several requests in parallel. The Verify thread launches two other threads. The first one
is the Kafka consumer thread that will perform the consumer which reads attestation results on
the result_entity_{entity_uuid} topic and produces the reports. This thread is linked to

52

Trust Monitor Implementation

attest(entity, verifier, whitelist, se,
topic)

start a loop for the entity
attestation until the se is set.

It publishes results on the
specific topic

Keylime attestation thread

The se is set so the
attestation process

terminates

Figure 6.3. Keylime attestation thread

a stop event (stop_event) which will be set at the moment when the attestation process will
terminate, in this way the thread will terminate. The second one is the Attestation thread which
executes the attest method of the adapter, in this particular case, the Keylime adapter. This
thread is linked to a stop event (se) too, which will be set when it’s received a request on the
DELETE attest_entity API. The Verify thread, once launched the Kafka consumer thread and
the Attestation thread wait for the Attestation thread to terminate. When the Main thread set se
the Attestation thread stops the attestation on the attestation framework and terminates. Once
it is terminated the Verify thread set stop_event and the Kafka consumer thread terminates too.
At this point, the Verify thread joins the Kafka consumer thread and terminates.

6.2.3 Adapters’ connector

The Adapters’ Connector is the component that permits the TM to interface with different remote
attestation technologies without being aware of which one is contacting, in order to be able to add
and remove attestation technologies without having to modify the TM core. In order to do so, this
component uses the [adapters] section of the configuration file. The key of each pair identifies
the file where it can be found the module to import. After having collected all this information
and imported the declared adapters, it is performed a check when a method is invoked in order
to verify that an adapter has implemented that specific method.

6.3 APIs and Operations

Each TM operation has a corresponding API in order to be invoked. The available APIs are:

• /entity: It permits registering, retrieving, deleting or modifying an entity in the Instances
database. The registration needs to be called with POST method, the updating with PUT
method and the deletion with DELETE method. To retrieve information about an entity
the API needs to be called with GET and the URL must include the entity_uuid in the
form /entity?entity_uuid=<id>.

• /attest_entity: This API called with method POST permits to start the periodic re-
mote attestation of an entity already registered in the TM. When it is called with method
DELETE permits to stop periodic remote attestation for the specified entity.

53

Trust Monitor Implementation

Main thread

POST attest_entity/
start kafka

consumer thread

start verify thread

Kafka consumer
thread

Read results on the specific result
topic for the specific entity and

produce reports publishing them
on the report topic until a

stop_event is set

The stop_event is set
and the consumer

terminates

attest(entity, verifier, whitelist, se,
topic)

implementation

Attestation thread

The se is set so the
attestation process

terminates

save information about the
attestation process (threads

information)

.

.

.

DELETE attest_entity/

set se and join the verify
thread

.

.

.

.

.

.

Verify thread

start attestation thread

wait attestation
thread termination

set stop_event
and join the kafka
consumer thread

the thread terminates

Figure 6.4. Attestation threads

• /verifier: It permits to manage the information stored in the Verifier database. It makes
available three methods. When called with GET method it returns the information about
the attestation technology specified in the body. In case it is called with method POST
permits to add the information of a new attestation technology into the database. The last
method allowed is the DELETE which permits to delete the information of the attestation
technology specified.

• /whitelist: This API offers three methods. The GET method permits retrieving a single
whitelist specified in the URL in the form /whitelist?whitelist_uuid=<id>. The POST
method permits to store a new whitelist in the database. The DELETE method permits to
delete from the database the specified whitelist.

• /policy: It also makes available the methods GET, POST and DELETE. The GET method
permits retrieving from the database the policy related with a specific entity specified in the
URL in the form /policy?entity_uuid=<id>. The POST method permits to store a new
policy in the database. The DELETE method permits to delete a policy already present in
the database.

• /status: This API permits knowing the current running remote attestation process in order
to know which entities are under integrity verification.

• /report: This API permits retrieving reports included in a specific time interval.

54

Chapter 7

Test and Validation

The tests performed on the system can be divided into two categories: functional tests and per-
formance tests. In order to perform the functional tests, it was used, as attestation technology, a
patched version of the Keylime framework with support for remote attestation of pods, for which it
has been developed a specific attestation adapter. In addition, to verify the correct behavior of the
system, it was exploited a running instance of the containers orchestrator Kubernetes which has
permitted to evaluate the possibility of attesting platforms (hosts) that contains subcomponents
(pods).

7.1 Testbed

To evaluate the correct functioning of the proposed implementation, the testbed used was com-
posed by:

• two attester machines which are Intel NUC equipped with an Intel Core i5-5300U Processor,
16 GB of RAM, and a TPM 2.0 chip, running the Keylime Agent component. The OS used
is Ubuntu server 20.04 LTS with a patched Linux kernel based on version 5.13;

• one verifier machine which is an Intel NUC equipped with an Intel Core i5-5300U Processor,
16 GB of RAM, and a TPM 2.0 chip, running the Keylime Tenant, Registrar, and Verifier
components. The OS used is Ubuntu server 20.04 LTS.

• one machine which is a DELL XPS 15 9500 equipped with an Intel Core i7-10750H Processor,
16 GB of RAM, running the Trust Monitor. The OS used is Ubuntu desktop 20.04 LTS.

7.2 Keylime attestation adapter

To perform these tests has been developed a specific attestation adapter for the Keylime framework
version used. the APIs exposed by the component Tenant Webapp have been used to communicate
with Keylime:

• POST /agents/{agent_id:UUID}

This API permits to register a new Cloud Agent, identified by the agent_id, in the Cloud
Verifier, in order to start the remote attestation. This API accepts several parameters to
add a new agent. In the adapter developed the parameters used are:

– agent_ip (string): indicates the IP address of the agent to add;

– ptype (int) - optional : “payload type”, it can have one of the following values: 0 =
FILE (default), 1 = KEYFILE, 2 = CA DIR;

55

Test and Validation

– file_data (string) - optional : it is the payload, base64 encoded, that is sent to the
agent; if ptype = FILE, it will be encrypted by the Tenant with a random bootstrap
key Kb; if ptype = KEYFILE, it is already encrypted with a Kb specified in the body
attribute keyfile_data;

– a_list_data (list[string]) - optional : it is the whitelist of the host on which the agent
runs;

– e_list_data (list[string]) - optional : it is the exclude list of the host which specify
the files that have to be excluded from the system attestation. It is a list of regular
expressions. Empty strings or strings starting with “#” will be removed from the list;

– pods (JSON object) - optional : it is the list of pods’ information and for each pod
contains as key the uuid of the pod and as value a JSON object containing a filed
a_list_data which is a list of strings and represents the whitelist of the pod.

Example body request:

1 {

2 "agent_ip": "192.168.0.103",

3 "ptype": 0,

4 "file_data": "",

5 "a_list_data": [

6 "000... boot_aggregate",

7 "c168a1...3777f7 /bin/sh",

8 "5945a4...3d72fb /bin/gcc",

9 ...

10],

11 "e_list_data": [

12 "/var/log/wtmp",

13 "/root/etc/fstab",

14 "/boot/grub/grubenv",

15 "/sys/fs/.*",

16 ...

17],

18 "pods": {

19 "9be621ca-7746-4217-8a28-eab90077ac33": {

20 "a_list_data": [

21 "38ad97...52489b /pause",

22 "1edf98...56d6b7 /usr/bin/local-path-provisioner"

23]

24 },

25 "a94e4991-a53f-4952-87ee-6a2b0269e3bf": {

26 "a_list_data": [

27 "38ad97...52489b /pause",

28 "d84ccc...2e4dae /metrics-server"

29]

30 }

31 }

32 }

33

• GET /agents/{agent_id:UUID}

This API permits getting the current state of a Cloud Agent, identified by the agent_id, to
be able to determine its trustworthiness. It returns several parameters but in the proposed
adapter the only field used is operational_state, which can have the following values:

0 = REGISTERED, 1 = START, 2 = SAVED, 3 = GET QUOTE, 4 = GET QUOTE
RETRY, 5 = PROVIDE V, 6 = PROVIDE V RETRY, 7 = FAILED, 8 = TERMINATED,
9 = INVALID QUOTE, 10 = TENANT FAILED.

56

Test and Validation

The only value that permits to consider the host trusted is 3 (GET QUOTE). Of course, it
is possible to check more parameters to make a more precise analysis.

• DELETE /agents/{agent_id:UUID}

This API permits to remove a, identified by the agent_id, from the Cloud Verifier, in order
to stop the remote attestation.

7.3 Functional tests

Functional tests are performed using the deployment of a Kubernetes cluster, composed of two
worker nodes and one master node. The two worker nodes, in the Remote Attestation context,
have the role of attester, and the master node has the role of the verifier. The process consists of
the continuous remote attestation of the two attester nodes and the pods running in each node.

The first step was registering the Keylime framework in the Trust Monitor, in order to make
available the information to contact its APIs. this registration has been performed calling the
POST /verfier API with the following body request:

1 {

2 "att_tech":"keylime_v6_3_2",

3 "inf_id": 1,

4 "metadata":{

5 "tenant_ip":"192.168.0.114",

6 "tenant_port":444

7 }

8 }

Listing 7.1. Request body of Keylime verifier registration

Before registering nodes and pods, all the whitelists have been stored in the TM’s database,
in order to link them to entities at the registration moment. To store the whitelist it has been
used the POST /whitelist API, with the following request body:

1 {

2 "_id":2,

3 "metadata":{

4 "att_tech":"keylime_v6_3_2",

5 "hash_algo":"sha265"

6 },

7 "whitelist":{

8 "a_list_data":[

9 "38ad97...2489b /usr/bin/ntfs-3g",

10 "1edf98...6d6b7 /usr/bin/local-path-provisioner"

11]

12 }

13 }

Listing 7.2. Example of request body of whitelist storing

In this case, in listing 7.2, is reported only an example, because the actual request body, in the
case of the node, has a significant dimension. This operation has been performed for each whitelist
needed, both for nodes and pods. In this case, whitelists related to pods have been registered
only for the first node, because the pods running on the two nodes are equal instances, so pods
running on the second node had the same whitelists as the ones related to pods running on the
first node.

Once performed the registration of the whitelists, all the nodes, and relative pods, have been
registered, specifying the necessary information in the case of entity with type node or pod. In
the case of nodes, the registration has been performed with the POST /entity API, sending the
following body in the requests:

57

Test and Validation

1 {

2 "entity_uuid": 1,

3 "inf_id": 1,

4 "att_tech": ["keylime_v6_3_2"],

5 "name": "attester",

6 "external_id": "90e71d86-13e0-4bd3-9ec4-1521f10a5194",

7 "type": "node",

8 "whitelist_uuid": 1,

9 "child": [2,3,4,5,6,7],

10 "metadata": {

11 "keylime_v6_3_2": {

12 "agent_ip": "192.168.0.103",

13 "e_list_data": ["^(?!/usr/bin/).*$"]
14 }

15 }

16 }

Listing 7.3. Request body of the first node registration

1 {

2 "entity_uuid": 8,

3 "inf_id": 1,

4 "att_tech": ["keylime_v6_3_2"],

5 "name": "attester_2",

6 "external_id": "d432fbb3-d2f1-4a97-9ef7-75bd81c00000",

7 "type": "node",

8 "whitelist_uuid": 7,

9 "child": [9,10,11,12,13,14,15,16,17,18,19],

10 "metadata": {

11 "keylime_v6_3_2": {

12 "agent_ip": "192.168.0.100",

13 "e_list_data": ["^(?!/usr/bin/).*$"]
14 }

15 }

16 }

Listing 7.4. Request body of the second node registration

the external_id represents for both nodes the identifier in the Keylime framework. In the
metadata field has been declared some information that is used inside the Keylime adapter. The
attribute agant_ip is sent by the adapter to the Keylime verifier. In this way, the verifier can
contact the agent in order to start the remote attestation process. The attribute e_list_data

represents the exclude list that can be specified in order to exclude some paths from the integrity
verification.

Calling the same API all the pods running on each node have been registered. The registration
of a pod required less information, which is reported below:

1 {

2 "entity_uuid": 19,

3 "att_tech": ["keylime_v6_3_2"],

4 "name": "svclb",

5 "external_id": "dd5e909a-f74a-407d-99a5-1f97020099b8",

6 "type": "pod",

7 "whitelist_uuid": 6,

8 "parent": 8,

9 "metadata": {}

10 }

Listing 7.5. Request body of one of svclb pods registration

58

Test and Validation

In this case, some information is not necessary, like the inf_id field, because this kind of object
(pod) cannot be attested directly, in the case of Keylime, but there is the necessity to attest
the entire node. For this reason, the management of these objects is performed by the Keylime
adapter, because it is strictly related to the framework workflow.

After having registered all this data, it has been started the remote attestation process, calling
the POST /attest_entity API for each node with their respective bodies:

1 {

2 "entity_uuid": 1

3 }

1 {

2 "entity_uuid": 8

3 }

receiving as a response, for each request, the remote attestation successfully started:

1 {

2 "Message": "entity 1 - attestation thread started successfully"

3 }

1 {

2 "Message": "entity 8 - attestation thread started successfully"

3 }

It has been checked the state of the TM, after having started the remote attestation, and the
result was the following:

1 {

2 "adapters_loaded":[

3 "keylime_v6_3_2"

4],

5 "att_processes":[

6 {

7 "att_tech":[

8 "keylime_v6_3_2"

9],

10 "entity_uuid":1,

11 "external_id":"90e71d86-13e0-4bd3-9ec4-1521f10a5194",

12 "name":"attester"

13 },

14 {

15 "att_tech":[

16 "keylime_v6_3_2"

17],

18 "entity_uuid":8,

19 "external_id":"d432fbb3-d2f1-4a97-9ef7-75bd81c00000",

20 "name":"attester_2"

21 }

22]

23 }

where:

• "adapters_loaded" contains the list of adapters currently loaded by the TM;

• "att_processes" contains the list of active attestation processes;

• "att_tech" contains the list of attestation technologies that are attesting the entity;

59

Test and Validation

• "entity_uuid" represents the entity identifier;

• "external_id" is the identifier used inside the Keylime attestation adapter;

• "name" is the name of the entity.

Once started the remote attestation processes on the entities, the TM core modifies their state
in the database, that change from registered to attesting, and it has been verified by calling
the GET /entity?entity_uuid=1 and /entity?entity_uuid=8 receiving as responses:

1 {

2 "entity_uuid": 1,

3 "inf_id": 1,

4 "att_tech": ["keylime_v6_3_2"],

5 "name": "attester",

6 "external_id": "90e71d86-13e0-4bd3-9ec4-1521f10a5194",

7 "type": "node",

8 "whitelist_uuid": 1,

9 "child": [2,3,4,5,6,7],

10 "parent": null,

11 "state": "attesting",

12 "metadata": {

13 "keylime_v6_3_2": {

14 "agent_ip": "192.168.0.103",

15 "e_list_data": ["^(?!/usr/bin/).*$"]
16 }

17 }

18 }

1 {

2 "entity_uuid": 8,

3 "inf_id": 1,

4 "att_tech": ["keylime_v6_3_2"],

5 "name": "attester_2",

6 "external_id": "d432fbb3-d2f1-4a97-9ef7-75bd81c00000",

7 "type": "node",

8 "whitelist_uuid": 7,

9 "child": [9,10,11,12,13,14,15,16,17,18,19],

10 "parent": null,

11 "state": "attesting",

12 "metadata": {

13 "keylime_v6_3_2": {

14 "agent_ip": "192.168.0.100",

15 "e_list_data": ["^(?!/usr/bin/).*$"]
16 }

17 }

18 }

To read the aggregate reports has been developed a dummy consumer that permits to verify
the reports are correctly published on the queue. This consumer read the queue with a 5 seconds
timeout in case of empty queue and an example of the output can be the following:

1 {

2 "entity_uuid": 8,

3 "trust": true,

4 "state": [

5 {

6 "att_tech": "keylime_v6_3_2",

7 "trust": true

60

Test and Validation

8 }

9],

10 "time": "2022-09-08 11:08:17.979403"

11 }

12

13 {

14 "entity_uuid": 8,

15 "trust": true,

16 "state": [

17 {

18 "att_tech": "keylime_v6_3_2",

19 "trust": true

20 }

21],

22 "time": "2022-09-08 11:08:38.187520"

23 }

24

25 ...

where:

• "entity_uuid" represents the entity identifier;

• "trust" indicates the trustworthiness of the entity, based on attestation results received
from all attestation technology that are attesting the entity;

• "state" contains the list of attestation results, one for each attestation technology that is
attesting the entity;

• "att_tech" indicates a specific attestation technology;

• "trust" represents the attestation result for a specific technology;

• "time" indicates the time at which has been created the report.

A host becomes untrusted, for example, if an unexpected script, so not present in the whitelist,
is executed:

$ echo "#!/bin/bash\necho "Hacked!"" > malicious_script.sh

$ chmod +x malicious_script.sh

$./malicious_script.sh

In this case, the host becomes untrusted, so the operationl_state returned to the attestation
adapter is 9 = INVALID QUOTE and the report becomes the following one:

1 {

2 "entity_uuid": 8,

3 "trust": false,

4 "state": [

5 {

6 "att_tech": "keylime_v6_3_2",

7 "trust": false

8 }

9],

10 "time": "2022-09-08 12:34:15.852947"

11 }

12 ...

In order to stop the remote attestation processes it has been called, for each host, the DELETE
/attest_entity API specifying the entity in the body:

61

Test and Validation

1 {

2 "entity_uuid": 1

3 }

1 {

2 "entity_uuid": 8

3 }

receiving as a response, for each request, the remote attestation successfully stopped:

1 {

2 "Message": "entity 1 - attestation stopped successfully"

3 }

1 {

2 "Message": "entity 8 - attestation stopped successfully"

3 }

7.4 Performance tests

The tests performed to evaluate the solution’s performance are focused on the following metrics:
time taken by the Trust Monitor to start a new attestation process, depending on the whitelist
dimension; time taken for the registration of a new entity, depending on the whitelist dimension;
CPU utilization and RAM utilization depending on the number of attestation processes running.

0.001 0.01 0.1 1 10
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Whitelists simulated Real Pod whitelist Real Node whitelist

Whitelist Dimension (MB)

T
im

e
(s

)

Figure 7.1. Time taken by the TM to start attestation process depending on whitelist dimension

Figure 7.1 shows how the time required to start the attestation process change using whitelists
of an increasing dimension. This measure represents how much time is used by the TM core to
retrieve the information needed and starts all threads in order to begin the attestation process.
The tested dimensions are 5kB, 50kB, 500kB, 1MB, 5MB and 10 MB. In the figure are also

62

Test and Validation

0.001 0.01 0.1 1 10
0.07

0.075

0.08

0.085

0.09

0.095

Whitelists simulated Real Pod registration Real Node registration

Whitelist Dimension (MB)

T
im

e
o

f
E

n
ti

ty
 r

eg
is

tr
at

io
n

 (
s)

Figure 7.2. Time taken by the TM to start attestation process depending on whitelist dimension

0 6 12 18 24 30 36
0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

Nodes

%
 C

P
U

 U
ti

liz
ed

 b
y

th
e

T
M

Figure 7.3. TM CPU consumption depending on the number of attested nodes

reported the results obtained using two real cases: a node whitelist and a pod whitelist. The
results show that the time starts to significantly increase when the whitelist dimension becomes
bigger than 1 MB.

Figure 7.2 shows the registration time depending on the dimension of the whitelist associated.
The tested dimensions are the same as in the previous case. The results show an almost linear
behavior of the time of entity registration.

In order to evaluate CPU and RAM consumption because of attestation processes managed

63

Test and Validation

0 6 12 18 24 30 36
0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

Nodes

%
 R

A
M

 U
ti

liz
ed

 b
y

th
e

T
M

Figure 7.4. TM RAM consumption depending on the number of attested nodes

by the TM, it has been deployed a test environment. This environment is composed of six attes-
tation technologies (infrastructures) simulated running in Docker containers. These attestation
technologies simulate the behavior of the Keylime framework, in order to be able to use the
attestation adapter developed. Six nodes have been registered for each infrastructure.

Figure 7.3 shows CPU consumption depending on the number of nodes under attestation. The
results show an almost linear increase in the CPU percentage used.

The figure 7.4 shows the memory consumption which has a linear behavior in relation to the
number of nodes under attestation.

From the data obtained, it is possible to notice that the proposed solution is scalable in relation
to the number of entities under attestation.

64

Chapter 8

Conclusions and future work

The main objective of this thesis was to introduce a solution that can define a general model for
remote attestation in order to be able to attest different objects. Another objective was that this
solution has to be able to manage different attestation technologies and aggregate their results. In
addition, it has to be able to manage several attestation processes of multiple entities in order to
be integrable in cloud environments. In order to reach these goals, the solution proposed consists
of a redesign and reimplementation of the Trust Monitor.

The new design was necessary to make the TM completely independent from the attestation
technologies used to perform remote attestation on the objects that compose the infrastructure.
This was possible by introducing an Adapter’s Connector, which permits to dynamically load
several drivers, called Adapters, which implement the interface with different attestation tech-
nologies. In this way, it is possible to add an attestation technology developing the corresponding
adapter and add it to the TM which will use it in case an entity requires that particular tech-
nology. An adapter must respect a fixed structure in order that the correctors can understand
it. This solution moves the most of attestation logic on the adapter because it implements the
specific process to interact with the corresponding attestation framework. The fixed structure
of attestation adapters also permits to identify a specific attestation process that is able to ab-
stract the underlying technology, so providing a general model applicable independently from the
framework used to perform the specific remote attestation process.

In order to be able to register several kinds of objects into the TM database, it was designed a
specific schema that permits to specify all the information needed to start the remote attestation.
In addition, some variable fields have been added which permit the user to add some custom
information (metadata) used by the developed adapters. In this way, even if the structure of an
entity is fixed, a lot of flexibility is added. This flexibility is available also in the case of whitelists,
because it is possible to register a whitelist in any form needed, and it will be processed by the
attestation adapter of the right attestation framework. Also in the case of the whitelists, there is
the possibility to store some metadata which permits to add custom information.

To test the system it has been developed an attestation adapter a patched version of the remote
attestation framework Keylime. This particular version has the support for remote attestation
of nodes and Kubernetes’ pods, which has permitted to perform the remote attestation of nested
objects, allowing to verify the objects model designed. In addition, it has been developed a
simulated environment in order to test the management of the attestation of different entities
belonging to different infrastructures. To realize this environment it has been created a simulation
of the Keylime framework, which has been deployed as a container permitting to run more than
one instance in order to be able to simulate the presence of multiple infrastructures. This has also
permitted to perform some performance tests on the solution, that show how the system behaves
in different situations. In particular, tests show that the system is scalable in terms of attestation
processes managed at the same time, and the overhead added by the TM to start the attestation
process remains acceptable even if the whitelists used have dimensions of the order of 10 MB.

The proposed solution can be improved by adding a system of automatic generation of

65

Conclusions and future work

whitelists that can infer them for nodes, containers, pods, etc. In addition, it can update them
when the software is updated. Another improvement could be brought by introducing an external
interface for the TM which can be command-line based, graphical or an integration for some
infrastructure orchestrator like Kubernates. They can also be performed other tests that can help
to verify and improve the possibility to use TEE technologies, such as Intel SGX, AMD SEV and
ARM TrustZone. This solution has many possibilities for expansion and improvement that can
allow it to be integrated into emerging IT infrastructure scenarios.

66

Bibliography

[1] R. Yeluri and E. Castro-Leon, “Building the infrastructure for cloud security: A solutions
view”, Springer Nature, 2014

[2] T. T. Brooks, C. Caicedo, and J. S. Park, “Security vulnerability analysis in virtualized
computing environments”, International Journal of Intelligent Computing Research, vol. 3,
December 2012, pp. 277–291, DOI 10.20533/ijicr.2042.4655.2012.0034

[3] V. Varadharajan and U. Tupakula, “Security as a service model for cloud environment”,
IEEE Transactions on Network and Service Management, vol. 11, March 2014, pp. 60–75,
DOI 10.1109/TNSM.2014.041614.120394

[4] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon, J. Ramsdell, A. Segall,
J. Sheehy, and B. Sniffen, “Principles of remote attestation”, International Journal of Infor-
mation Security, vol. 10, June 2011, pp. 63–81, DOI 10.1007/s10207-011-0124-7

[5] TCG, “TPM main part 1 design principles”, TCG White Paper, 2011

[6] G. ETSI, “Network Functions Virtualisation (NFV); Security; Report on NFV
Remote Attestation Architecture”, ETSI GR NFV-SEC 018 V1.1.1, November
2019. https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/018/01.01.01_60/

gr_NFV-SEC018v010101p.pdf

[7] The Kubernetes project, https://kubernetes.io/

[8] T. Su, A. Lioy, and N. Barresi, “Trusted computing technology and proposals for resolving
cloud computing security problems”, Cloud Computing Security, pp. 371–384, CRC Press,
2016, DOI 10.1201/9781315372112-41

[9] S. W. Smith, “Trusted computing platforms: design and applications”, Springer, 2013

[10] D. Challener, K. Yoder, R. Catherman, D. Safford, and L. Van Doorn, “A practical guide to
trusted computing”, Pearson Education, 2007

[11] W. Arthur, D. Challener, and K. Goldman, “A practical guide to TPM 2.0: Using the new
trusted platform module in the new age of security”, Springer Nature, 2015

[12] TCG, “Trusted platform module library part 1: Architecture”, 2018

[13] I. Sfyrakis and T. Gross, “A survey on hardware approaches for remote attesta-
tion in network infrastructures”, arXiv preprint arXiv:2005.12453, May 2020, DOI
10.48550/arXiv.2005.12453

[14] R. V. Steiner and E. Lupu, “Attestation in wireless sensor networks: A survey”, ACM
Comput. Surv., vol. 49, September 2016, DOI 10.1145/2988546

[15] L. Chen and B. Warinschi, “Security of the tcg privacy-ca solution”, 2010 IEEE/IFIP In-
ternational Conference on Embedded and Ubiquitous Computing, 2010, pp. 609–616, DOI
10.1109/EUC.2010.98

[16] E. Brickell, J. Camenisch, and L. Chen, “Direct Anonymous Attestation”, Proceedings of the
11th ACM Conference on Computer and Communications Security, New York (NY, USA),
2004, pp. 132–145, DOI 10.1145/1030083.1030103

[17] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and implementation of a TCG-
based integrity measurement architecture”, USENIX Security symposium, San Diego (CA,
USA), August 2004, pp. 223–238

[18] D. Safford and M. Zohar, “Trusted computing and open source”, Information Security Tech-
nical Report, vol. 10, August 2005, pp. 74–82, DOI 10.1016/j.istr.2005.05.001

[19] S. Schulz, A.-R. Sadeghi, and C. Wachsmann, “Short paper: Lightweight remote attestation
using physical functions”, Proceedings of the Fourth ACM Conference on Wireless Network
Security, Hamburg (Germany), June 2011, pp. 109–114, DOI 10.1145/1998412.1998432

67

https://doi.org/10.20533/ijicr.2042.4655.2012.0034
https://doi.org/10.1109/TNSM.2014.041614.120394
https://doi.org/10.1007/s10207-011-0124-7
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/018/01.01.01_60/gr_NFV-SEC018v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/018/01.01.01_60/gr_NFV-SEC018v010101p.pdf
https://kubernetes.io/
https://doi.org/10.1201/9781315372112-41
https://doi.org/10.48550/arXiv.2005.12453
https://doi.org/10.1145/2988546
https://doi.org/10.1109/EUC.2010.98
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1016/j.istr.2005.05.001
https://doi.org/10.1145/1998412.1998432

Bibliography

[20] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla, “Pioneer: Verifying code
integrity and enforcing untampered code execution on legacy systems”, Proceedings of the
Twentieth ACM Symposium on Operating Systems Principles, Brighton (United Kingdom),
December 2005, pp. 1–16, DOI 10.1145/1095810.1095812

[21] K. Eldefrawy, N. Rattanavipanon, and G. Tsudik, “Hydra: Hybrid design for remote at-
testation (using a formally verified microkernel)”, Proceedings of the 10th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, Boston (MA, USA), July 2017,
pp. 99–110, DOI 10.1145/3098243.3098261

[22] K. Eldefrawy, G. Tsudik, A. Francillon, and D. Perito, “Smart: secure and minimal archi-
tecture for (establishing dynamic) root of trust”, Proceedings of the 10th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, Boston (MA, USA), July 2017,
pp. 99–110

[23] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song, “Keystone: An open frame-
work for architecting trusted execution environments”, Proceedings of the Fifteenth Eu-
ropean Conference on Computer Systems, Heraklion (Greece), April 2020, pp. 1–6, DOI
10.1145/3342195.3387532

[24] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and U. R.
Savagaonkar, “Innovative instructions and software model for isolated execution”, Hasp@
isca, vol. 10, June 2013, DOI 10.1145/2487726.2488368

[25] V. Costan and S. Devadas, “Intel SGX Explained.” Cryptology ePrint Archive, Paper
2016/086, 2016, https://eprint.iacr.org/2016/086

[26] TCG, “Hardware requirements for a device identifier composition engine”, TCG Published,
2018

[27] J. Noorman, P. Agten, W. Daniels, R. Strackx, A. V. Herrewege, C. Huygens, B. Preneel,
I. Verbauwhede, and F. Piessens, “Sancus: Low-cost trustworthy extensible networked de-
vices with a zero-software trusted computing base”, 22nd USENIX Security Symposium
(USENIX Security 13), Washington D.C. (USA), August 2013, pp. 479–498

[28] L. Jäger, R. Petri, and A. Fuchs, “Rolling dice: Lightweight remote attestation for cots iot
hardware”, Proceedings of the 12th International Conference on Availability, Reliability and
Security, Reggio Calabria (Italy), August 2017, DOI 10.1145/3098954.3103165

[29] P. England, A. Marochko, D. Mattoon, R. Spiger, S. Thom, and D. Wooten,
“Riot - a foundation for trust in the internet of things”, Tech. Rep. MSR-
TR-2016-18, April 2016. https://www.microsoft.com/en-us/research/publication/

riot-a-foundation-for-trust-in-the-internet-of-things/

[30] H. Birkholz, M. Wiseman, H. Tschofenig, N. Smith, and M. Richardson, “Remote Attes-
tation Procedures Architecture”, Internet-Draft draft-birkholz-rats-architecture-03, Internet
Engineering Task Force, November 2019. Work in Progress https://datatracker.ietf.

org/doc/draft-birkholz-rats-architecture/03/

[31] H. Birkholz, D. Thaler, M. Richardson, N. Smith, and W. Pan, “Remote Attestation
Procedures Architecture”, Internet-Draft draft-ietf-rats-architecture-18, Internet Engineer-
ing Task Force, June 2022. Work in Progress https://datatracker.ietf.org/doc/

draft-ietf-rats-architecture/18/

[32] M. Pei, H. Tschofenig, D. Wheeler, A. Atyeo, and D. Liu, “Trusted Execution Environ-
ment Provisioning (TEEP) Architecture”, Internet-Draft draft-ietf-teep-architecture-01, In-
ternet Engineering Task Force. Work in Progress https://datatracker.ietf.org/doc/

draft-ietf-teep-architecture/01/

[33] M. Pei, H. Tschofenig, D. Thaler, and D. Wheeler, “Trusted Execution Environment Pro-
visioning (TEEP) Architecture”, Internet-Draft draft-ietf-teep-architecture-17, Internet En-
gineering Task Force, April 2022. Work in Progress https://datatracker.ietf.org/doc/
draft-ietf-teep-architecture/17/

[34] G. ETSI, “Network Functions Virtualisation (NFV): Architectural Framework”, ETSI GS
NFV 002 v1.1.1, October 2013. https://www.etsi.org/deliver/etsi_gs/NFV/001_099/

002/01.01.01_60/gs_NFV002v010101p.pdf

[35] G. ETSI, “Network Functions Virtualisation (NFV); NFV Security; Security and Trust Guid-
ance”, ETSI GR NFV-SEC 003 V1.2.1, August 2016. https://www.etsi.org/deliver/

etsi_gr/NFV-SEC/001_099/003/01.02.01_60/gr_NFV-SEC003v010201p.pdf

[36] M. De Benedictis and A. Lioy, “A proposal for trust monitoring in a network functions

68

https://doi.org/10.1145/1095810.1095812
https://doi.org/10.1145/3098243.3098261
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/2487726.2488368
https://eprint.iacr.org/2016/086
https://doi.org/10.1145/3098954.3103165
https://www.microsoft.com/en-us/research/publication/riot-a-foundation-for-trust-in-the-internet-of-things/
https://www.microsoft.com/en-us/research/publication/riot-a-foundation-for-trust-in-the-internet-of-things/
https://datatracker.ietf.org/doc/draft-birkholz-rats-architecture/03/
https://datatracker.ietf.org/doc/draft-birkholz-rats-architecture/03/
https://datatracker.ietf.org/doc/draft-ietf-rats-architecture/18/
https://datatracker.ietf.org/doc/draft-ietf-rats-architecture/18/
https://datatracker.ietf.org/doc/draft-ietf-teep-architecture/01/
https://datatracker.ietf.org/doc/draft-ietf-teep-architecture/01/
https://datatracker.ietf.org/doc/draft-ietf-teep-architecture/17/
https://datatracker.ietf.org/doc/draft-ietf-teep-architecture/17/
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV/001_099/002/01.01.01_60/gs_NFV002v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/003/01.02.01_60/gr_NFV-SEC003v010201p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-SEC/001_099/003/01.02.01_60/gr_NFV-SEC003v010201p.pdf

Bibliography

virtualisation infrastructure”, 2019 IEEE Conference on Network Softwarization (NetSoft),
June 24-28, 2019, pp. 1–9, DOI 10.1109/NETSOFT.2019.8806655

[37] The Docker project, https://www.docker.com/
[38] M. De Benedictis and A. Lioy, “Integrity verification of docker containers for a lightweight

cloud environment”, Future Generation Computer Systems, vol. 97, August 2019, pp. 236–
246, DOI 10.1016/j.future.2019.02.026

[39] N. Schear, P. T. Cable, T. M. Moyer, B. Richard, and R. Rudd, “Bootstrapping and main-
taining trust in the cloud”, Proceedings of the 32nd Annual Conference on Computer Security
Applications, December 2016, pp. 65–77, DOI 10.1145/2991079.2991104

[40] TCG, “Attestation key identity certification”, Trusted Platform Module Library Part 1:
Architecture, pp. 28–29, TCG Published, November 2019

[41] The Python project, https://www.python.org/
[42] Introduction to asyncio, https://pgjones.gitlab.io/quart/tutorials/asyncio.html#

asyncio

[43] The Apache Kafka Project, https://kafka.apache.org/
[44] The JSON Schema specification for Python, https://json-schema.org/

69

https://doi.org/10.1109/NETSOFT.2019.8806655
https://www.docker.com/
https://doi.org/10.1016/j.future.2019.02.026
https://doi.org/10.1145/2991079.2991104
https://www.python.org/
https://pgjones.gitlab.io/quart/tutorials/asyncio.html#asyncio
https://pgjones.gitlab.io/quart/tutorials/asyncio.html#asyncio
https://kafka.apache.org/
https://json-schema.org/

Appendix A

User’s Manual

A.1 System deployment

The entire system can be deployed as a set of Docker containers using the tool docker-compose.
The first requirement is to install Docker Engine following the instructions specified in the refer-
ence documentation of the Docker official website https://docs.docker.com/engine/install/
ubuntu/. In addition, it is required also to install docker-compose following the documentation
on the official website https://docs.docker.com/compose/install/.

In order to be able to reach a correct deployment, it is needed to build the Docker image of
the Trust Monitor. To do so, it is sufficient to use the Dockerfile present in the main project
directory. The procedure to build the image is the following:

1. Move in the main directory of the project trust-monitor;

2. execute the following command:

$ docker build -t trust-monitor:<tag> .

where <tag> is the version of the current image that is being built;

3. move into the docker-compose subdirectory;

4. modify the trust-monitor section in the docker-compose.yml file substituting the previous
version (under the image label) with the new one;

5. remaining in the docker-compose subdirectory launch the command:

$ docker-compose -f docker-compose.yml up -d

6. if it is the first execution of the system, execute the init-docker.sh script in order to
initialize databases:

$./init-docker.sh

Once completed this procedure, the Trust Monitor will be available on the localhost on port
5000.

The system can be deployed running the Trust Monitor, not in a docker container. In this
case the section trust-monitor, in the docker-compose.yml file, has to be commented. At his
point, inside the docker-compose directory, launch the command:

$ docker-compose -f docker-compose.yml up -d

and in case of the first execution run also the command:

$./init-docker.sh

Once started the containers, it is necessary to set the environment variable:

70

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/compose/install/

User’s Manual

QUART_APP=api-manager:app

and then move into the main directory and run the command:

$ quart run

Once completed this procedure, the Trust Monitor will be available on the localhost on port
5000.

A.1.1 Enabling TLS

In order to enable TLS on the API Manager it is sufficient to uncomment the tls section in the
configuration file config.ini and modify the three associated parameters:

• ca_certs="path/of/CA/certificate"

• certfile="path/of/certificate"

• keyfile="path/of/key"

These files need to be added to the project directory in order to be copied during the docker
image build.

A.1.2 Keylime

In case there is a necessity to install the Keylime framework, it can be done following the docu-
mentation on the official website https://keylime.dev/.

A.1.3 Adding attestation adapters

In order to be able to add a new attestation adapter, it has to be developed following some
constraints.

The structure of the adapter must be a single python file and the name has to be the same as
the attestation technology name that will be used in the TM (e.g. if the attestation technology
name is keylimev6_3_2 the file name must be keylimev6_3_2.py).

The file must contain one class with a name that can be chosen by the developer. The class
must contain four methods:

1. register(entity, whitelist, verifier)

This method is called when a new entity is registered in the TM, after having saved it in
the TM database. It receives three parameters. The first one is entity (listing A.1) which
contains all the information about the new entity to register.

1 {

2 "entity_uuid": 1,

3 "inf_id": 1,

4 "att_tech": ["keylime_v6_3_2"],

5 "name": "attester",

6 "external_id": "90e71d86-13e0-4bd3-9ec4-1521f10a5194",

7 "type": "node",

8 "whitelist_uuid": 1,

9 "child": [2,3,4,5,6,7],

10 "parent": null,

11 "state": "registered",

12 "metadata": {

13 "keylime_v6_3_2": {

71

https://keylime.dev/

User’s Manual

14 "agent_ip": "192.168.0.103",

15 "e_list_data": ["^(?!/usr/bin/).*$"]
16 }

17 }

18 }

19

Listing A.1. entity object example

The second one is whitelist (listing A.2) which contains all the information about the
whitelist linked with the object.

1 {

2 "_id":2,

3 "metadata":{

4 "att_tech":"keylime_v6_3_2",

5 "hash_algo":"sha265"

6 },

7 "whitelist":{

8 "a_list_data":[

9 "38ad97...2489b /pause",

10 "1edf98...6d6b7 /usr/bin/local-path-provisioner"

11]

12 }

13 }

14

Listing A.2. whitelist object example

The third object is verifer (listing A.3) and contains all the information about the verifier
to contact.

1 {

2 "att_tech":"keylime_v6_3_2",

3 "inf_id": 1,

4 "metadata":{

5 "tenant_ip":"192.168.0.114",

6 "tenant_port":444

7 }

8 }

9

Listing A.3. verifier object example

All the metadata fields are defined by the user so the semantics of those fields is defined by
the administrator.

2. attest(entity, verifier, whitelist, se, topic)

This method is called when the POST /attest_entity API is called. This method is
executed in a dedicated thread. The entity, whitelist and verifier parameters are the
same of the previous case. The se parameter is a Threading Event which permits to maintain
the thread running until the DELETE /attest_entity API is called. After this call the
se will be set and the condition se.is_set() will become true. The topic parameter is a
string and represents the topic on which publish the attestation results received from the
attestation framework.

3. delete(entity, verifier)

This method is called when an entity is deleted from the TM database and permits to delete
the object from the attestation framework. The parameters are the same as in the previous
cases.

72

User’s Manual

4. status(verifier)

This method permits obtaining information about the current state of the remote attestation
framework. The verifier parameter is the same as in the previous cases.

Once developed the new attestation adapter, in order to make it available in the TM it needs
to be placed in the adapters subdirectory of the project. After having added the file to this
subdirectory, it has to be declared in the configuration file config.ini in the adapters section.
The line to add is:

<name of the attestation technology> = <name of the class implemented>

in this way it will be possible to dynamically load the new adapter in the TM logic.

After having added the new adapter it will be needed to execute the procedure to build a new
image of the Trust Monitor in order to deploy the system as explained in paragraph A.1.

A.2 Use of databases

All the databases have some attributes that have fixed semantics because they are used inside the
TM logic. Some other attributes have flexible semantics which means that the administrator or
the attestation adapters’ developer can in order to can use those values in new adapters with the
needed semantics.

Instances database

In the Instances database, there are eight attributes with a fixed meaning that can be changed
by the administrator. These attributes are:

• entity_uuid;

• type;

• inf_id;

• name;

• att_tech;

• whitelist_uuid;

• child;

• parent.

These attributes are used inside the TM logic so they have a specified role that cannot be changed
as explained in paragraph 5.3.3. The other attributes can be used by the administrator or the
attestation adapters’ developer to store some useful information needed in the remote attestation
process. Attributes with free semantics are external_id, and metadata where the content and
the meaning of these fields can be decided by the administrator. The field metadata, in the
current implementation, has the only constraint to be divided into different sub-objects, where
each one represents the metadata for a single attestation technology. The content of each section
is free to be decided by the administrator or the developer. The type field has fixed semantics
but it is not used directly in the TM core logic, so it can be used in several ways depending on
the needs.

73

User’s Manual

Whitelist database

In this case, the only attribute with specific semantics is _id which must contain an integer to
identify the whitelist. The metadata field can contain any information that could be useful during
the whitelist utilization. The whitelist field is the most important one which contains the actual
data about the whitelist. This field can have a custom structure depending on the needs of the
attestation technology.

Verfiers database

In this case, the attributes are three and only the metadata field can have custom content and
structure. The att_tech must contain the name of the attestation technology according to the
name of the corresponding adapter. The inf_id must contain the identifier of the infrastructure
to which the attestation framework refers. The metadata must be a JSON object which can have
a custom structure and contains custom information needed.

74

Appendix B

Developer’s reference guide

B.1 Trust Monitor APIs

This section describes the Trust Monitor APIs made available in order to control the system and
the remote attestation processes.

GET /entity?entity_uuid=<id>

Get the information about an entity registered in the TM or about all entities registered.

Response JSON object

• entity_uuid (int): Identifier of the object in the TM’s database;

• inf_id (int): The identifier of the infrastructure;

• att_tech (string[]): List of all attestation technologies which perform the remote attestation
on the object;

• name (string): Name of the entity;

• external_id (string): External identifier set during registration;

• type (string): Type of the entity;

• whitelist_uuid (int): The identifier of the entity whitelist;

• child (int[]): List of the entities contained in the specified one (it could be empty).

• parent (int): The identifier of the entity that contains the specified one (it could be null);

• state (string): The state of the entity in the TM system;

• metadata (json): The JSON object containing all metadata about the entity.

Example response:

1 {

2 "entity_uuid": 1,

3 "inf_id": 1,

4 "att_tech": ["keylime_v6_3_2"],

5 "name": "attester",

6 "external_id": "90e71d86-13e0-4bd3-9ec4-1521f10a5194",

75

Developer’s reference guide

7 "type": "node",

8 "whitelist_uuid": 1,

9 "child": [2,3,4,5,6,7],

10 "parent": null,

11 "state": "registered",

12 "metadata": {

13 "keylime_v6_3_2": {

14 "agent_ip": "192.168.0.103",

15 "e_list_data": ["^(?!/usr/bin/).*$"]
16 }

17 }

18 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

In case no entity_uuid is provided in the URL, the response will contain the whole list of entitties
registered in the TM.

Example response:

1 {

2 "entities": [

3 {

4 "entity_uuid": 1,

5 "inf_id": 1,

6 "att_tech": ["keylime_v6_3_2"],

7 ...

8 },

9 {

10 "entity_uuid": 2,

11 "inf_id": 1,

12 "att_tech": ["keylime_v6_3_2"],

13 ...

14 },

15 ...

16]

17 }

POST /entity

Register a new entity in the TM.

Request JSON object

• entity_uuid (int): Identifier of the object in the TM’s database;

• inf_id (int): The identifier of the infrastructure;

• att_tech (string[]): List of all attestation technologies which perform the remote attestation
on the object;

• name (string): Name of the entity;

• external_id (string): Custom identifier;

76

Developer’s reference guide

• type (string): Type of the entity;

• whitelist_uuid (int): The identifier of the entity whitelist;

• child (int[]): List of the entities contained in the specified one (it could be empty).

• parent (int): The identifier of the entity that contains the specified one (it could be null);

• metadata (json): The JSON object containing all metadata about the entity (it is custom
information that can be needed during the process of remote attestation).

Example request:

1 {

2 "entity_uuid": 1,

3 "inf_id": 1,

4 "att_tech": ["keylime_v6_3_2"],

5 "name": "attester",

6 "external_id": "90e71d86-13e0-4bd3-9ec4-1521f10a5194",

7 "type": "node",

8 "whitelist_uuid": 1,

9 "child": [2,3,4,5,6,7],

10 "metadata": {

11 "keylime_v6_3_2": {

12 "agent_ip": "192.168.0.103",

13 "e_list_data": ["^(?!/usr/bin/).*$"]
14 }

15 }

16 }

Response JSON object

If the registration is completed successfully the TM returns 200 with a response body like the
following:

1 {

2 "Message": "entity 1 successfully registered"

3 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

PUT /entity

Edit an entity registered in the TM.

Request JSON object

In this case, the parameters to send in the request body are all optional. In this way, values that
will be modified are only those in the request body.

• entity_uuid (int): Identifier of the object in the TM’s database. This is the only value
that cannot be modified but it is necessary in order to identify the specific entity;

• att_tech (string[]): List of all attestation technologies which perform the remote attestation
on the object;

77

Developer’s reference guide

• name (string): Name of the entity;

• external_id (string): Custom identifier;

• type (string): Type of the entity;

• whitelist_uuid (int): The identifier of the entity whitelist;

• child (int[]): List of the entities contained in the specified one (it could be empty).

• parent (int): The identifier of the entity that contains the specified one (it could be null);

• metadata (json): The JSON object containing all metadata about the entity (it is custom
information that can be needed during the process of remote attestation).

Example request:

1 {

2 "entity_uuid": 1,

3 "whitelist_uuid": 3,

4 "child": [2,3,4],

5 "metadata": {

6 "keylime_v6_3_2": {

7 "agent_ip": "192.168.0.173",

8 "e_list_data": ["^(?!/usr/bin/).*$"]
9 }

10 }

11 }

Response JSON object

If the modification is completed successfully the TM returns 200 with a response body like the
following:

1 {

2 "Message": "entity 1 successfully updated"

3 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

DELETE /entity

Delete an entity registered in the TM.

Request JSON object

• entity_uuid (int): Identifier of the object in the TM’s database.

Example request:

1 {

2 "entity_uuid": 1

3 }

78

Developer’s reference guide

Response JSON object

If the delete is completed successfully the TM returns 200 with a response body like the following:

1 {

2 "Message": "entity 1 successfully deleted"

3 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

GET /verifier

Get the information about an attestation technology registered in the TM.

Request JSON object

• att_tech (string): The name of the attestation technology;

• inf_id (int): The identifier of the infrastructure.

Example request:

1 {

2 "att_tech": "keylime_v6_3_2",

3 "inf_id": 1

4 }

Response JSON object

• att_tech (string): The name of the attestation technology;

• inf_id (int): The identifier of the infrastructure;

• metadata (json): The JSON object containing all metadata about the attestation technol-
ogy.

Example response:

1 {

2 "att_tech":"keylime_v6_3_2",

3 "inf_id": 1,

4 "metadata":{

5 "tenant_ip":"192.168.0.114",

6 "tenant_port":444

7 }

8 }

POST /verifier

Register a new attestation technology in the TM.

Request JSON object

79

Developer’s reference guide

• att_tech (string): The name of the attestation technology;

• inf_id (int): The identifier of the infrastructure;

• metadata (json): The JSON object containing all metadata about the attestation technol-
ogy.

Example request:

1 {

2 "att_tech":"keylime_v6_3_2",

3 "inf_id": 1,

4 "metadata":{

5 "tenant_ip":"192.168.0.114",

6 "tenant_port":444

7 }

8 }

Response JSON object

If the registration is completed successfully the TM returns 200 with a response body like the
following:

1 {

2 "Message": "verifier keylime_v6_3_2 successfully registered"

3 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

DELETE /verifier

Delete an attestation technology registered in the TM.

Request JSON object

• att_tech (string): The name of the attestation technology.

• inf_id (int): The identifier of the infrastructure.

Example request:

1 {

2 "att_tech": "keylime_v6_3_2",

3 "inf_id": 1

4 }

Response JSON object

If the delete is completed successfully the TM returns 200 with a response body like the following:

1 {

2 "Message": "verfier keylime_v6_3_2 successfully deleted"

3 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

80

Developer’s reference guide

1 {

2 "Error": "This string will report the error occurred"

3 }

GET /whitelist?whitelist_uuid=<whitelist_uuid>

Get the information about a whitelist stored in the TM.

Response JSON object

• _id (int): The identifier of the whitelist (whitelist_uuid);

• metadata (json): The JSON object containing all metadata about the whitelist;

• whitelist (json): The JSON object which contains the whitelist.

Example response:

1 {

2 "_id":2,

3 "metadata":{

4 "att_tech":"keylime_v6_3_2",

5 "hash_algo":"sha265"

6 },

7 "whitelist":{

8 "a_list_data":[

9 "38ad97...2489b /pause",

10 "1edf98...6d6b7 /usr/bin/local-path-provisioner"

11]

12 }

13 }

POST /whitelist

Insert a new whitelist in the TM.

Request JSON object

• _id (int): The identifier of the whitelist (whitelist_uuid);

• metadata (json): The JSON object containing all metadata about the whitelist;

• whitelist (json): The JSON object which contains the whitelist.

Example request:

1 {

2 "_id":2,

3 "metadata":{

4 "att_tech":"keylime_v6_3_2",

5 "hash_algo":"sha265"

6 },

7 "whitelist":{

8 "a_list_data":[

9 "38ad97...2489b /pause",

10 "1edf98...6d6b7 /usr/bin/local-path-provisioner"

81

Developer’s reference guide

11]

12 }

13 }

Response JSON object

If the insertion is completed successfully the TM returns 200 with a response body like the
following:

1 {

2 "Message": "whitelist 2 added successfully""

3 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

DELETE /whitelist

Delete a whitelist stored in the TM.

Request JSON object

• _id (int): The identifier of the whitelist (whitelist_uuid).

Example request:

1 {

2 "_id": 2

3 }

Response JSON object

If the delete is completed successfully the TM returns 200 with a response body like the following:

1 {

2 "Message": "whitelist 2 successfully deleted"

3 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

POST /attest_entity

Start the remote attestation process for a specific entity.

Request JSON object

• entity_uuid (int): The identifier of the entity for which start the remote attestation process.

82

Developer’s reference guide

Example request:

1 {

2 "entity_uuid": 2

3 }

Response JSON object

If the remote attestation process starts successfully the TM returns 200 with a response body like
the following:

1 {

2 "Message": "entity 2 - attestation thread started successfully"

3 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

DELETE /attest_entity

Stop the remote attestation process for a specific entity.

Request JSON object

• entity_uuid (int): The identifier of the entity for which start the remote attestation process.

Example request:

1 {

2 "entity_uuid": 2

3 }

Response JSON object

If the remote attestation process stops successfully the TM returns 200 with a response body like
the following:

1 {

2 "message": "attestation stopped successfully"

3 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

GET /policy?entity_uuid=<entity_uuid>

Get the information about a whitelist stored in the TM.

Response JSON object

83

Developer’s reference guide

• entity_uuid (int): The identifier of the entity for which is defined the policy;

• policy (string): The value of the policy.

Example response:

1 {

2 "entity_uuid": 1,

3 "policy": "policy value"

4 }

POST /policy

Insert a new policy in the TM.

Request JSON object

• entity_uuid (int): The identifier of the entity for which starts the remote attestation
process;

• policy (string): The value of the policy.

Example request:

1 {

2 "entity_uuid": 1,

3 "policy": "policy value"

4 }

Response JSON object

If the insertion is completed successfully the TM returns 200 with a response body like the
following:

1 {

2 "Message": "policy for entity 1 added successfully"

3 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

DELETE /policy

Delete a policy from the TM.

Request JSON object

• entity_uuid (int): The identifier of the entity for which start the remote attestation process.

Example request:

1 {

2 "entity_uuid": 1

3 }

84

Developer’s reference guide

Response JSON object

If the delete is completed successfully the TM returns 200 with a response body like the following:

1 {

2 "message": "policy for entity 1 successfully deleted"

3 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

GET /report

Get reports of an entity from the TM.

Request JSON object

• entity_uuid (int): The identifier of the entity for which starts the remote attestation
process;

• from (string): This is an optional value and it represents the first date, in ISOFormat
("yyyy-mm-ddThh:mm:ss"), from which retrieving reports;

• to (string): This is an optional value and it represents the last date, in ISOFormat ("yyyy
-mm-ddThh:mm:ss"), from which retrieving reports.

Example request:

1 {

2 "entity_uuid": 1,

3 "from": "2022-08-29T08:26:00",

4 "to": "2022-08-29T08:35:00"

5 }

Response JSON object

If the request is served successfully the TM returns 200 with a response body like the following:

1 {

2 "report_list":

3 [

4 {

5 "_id": "62ea9ff6cd03ce4ce1b0aebd",

6 "entity_uuid": 8, "trust": False,

7 "state": [

8 {

9 "att_tech": "keylime_v6_3_2",

10 "trust": False

11 }

12],

13 "time": "Mon, 29 Aug 2022 08:26:42 GMT"

14 },

15 {

16 "_id": "62eaa082be86d83bee075ff7",

17 "entity_uuid": 8,

85

Developer’s reference guide

18 "trust": True,

19 "state": [

20 {

21 "att_tech": "keylime_v6_3_2",

22 "trust": True

23 }

24],

25 "time": "Mon, 29 Aug 2022 08:33:53 GMT"

26 },

27 ...

28]

29 }

In case of failure the returned code depends on the cause of the failure and the response body
will communicate the error occurred:

1 {

2 "Error": "This string will report the error occurred"

3 }

GET /status

Get information about the current state of the TM.

Response JSON object

If the request is served successfully the TM returns 200 with a response body like the following,
showing the adapters correctly loaded and working and the list of attestation processes running:

1 {

2 "adapters_loaded":[

3 "keylime_v6_3_2"

4],

5 "att_processes":[

6 {

7 "entity_uuid":1,

8 "external_id":"90e71d86-13e0-4bd3-9ec4-1521f10a5194",

9 "name":"attester",

10 "att_tech":[

11 "keylime_v6_3_2"

12]

13 },

14 {

15 "entity_uuid":8,

16 "external_id":"d432fbb3-d2f1-4a97-9ef7-75bd81c00000",

17 "name":"attester_2",

18 "att_tech":[

19 "keylime_v6_3_2"

20]

21 }

22]

23 }

86

	Introduction
	Trusted Computing and Remote Attestation
	Trusted Computing
	Trusted Platform Module (TPM)

	Roots of Trust (RoTs)
	Root of Trust for Storage (RTS)
	Root of Trust for Measurement (RTM)
	Root of Trust for Reporting (RTR)

	Trusted Boot
	Remote Attestation Techniques
	Remote Attestation
	Harware-based Attestation
	Software-based Attestation
	Hybrid Attestation

	Trusted Execution Environment (TEE) overview
	Intel SGX

	Remote attestation standards and use cases
	Device Identifier Composition Engine (DICE)
	Remote Attestation Procedures (RATS)
	Topological Pattern

	Trusted Execution Environment Provisioning (TEEP)
	Architecture

	ETSI GR NFV-SEC 018
	Network Functions Virtualization
	NFV Remote Attestation Architecture

	Trust Monitor (TM)
	Overview and Motivation
	Architecture
	Attestation Process

	Trust Monitor 2.0
	Keylime Attestation Framework
	Keylime Attestation Driver
	Whitelist Web Service

	Criticalities and open challenges of the classic version

	Trust Monitor Redesign
	Architecture of new Trust Monitor
	Level of Abstraction
	Attestation Adapters

	Description of the Componets
	TM Core Application
	Connectors
	Databases
	Queues

	Interfaces and High-Level Workflow
	TM Operations

	Trust Monitor Implementation
	Tools and Libraries
	Configuration File
	APIs Manager
	Databases
	Queues
	Databases' connectors

	Low-level workflow of the solution
	Adapters
	TM Core Application
	Adapters' connector

	APIs and Operations

	Test and Validation
	Testbed
	Keylime attestation adapter
	Functional tests
	Performance tests

	Conclusions and future work
	Bibliography
	User's Manual
	System deployment
	Enabling TLS
	Keylime
	Adding attestation adapters

	Use of databases

	Developer's reference guide
	Trust Monitor APIs

