
École polytechnique de Louvain

EEG for Parkinson’s disease
detection

Author: Guglielmo COLOMBO
Supervisor: Benoît MACQ, Gabriella OLMO
Readers: Nicolas DELINTE, Gaetan RENSONNET, Laurence DRICOT,
Cyril DE BODT
Academic year 2021–2022
Master [120] in Computer Science and Engineering

List of Figures

I.2 Illustration of the main parts of human brain, from [6] 7
I.3 General Illustration of Dentrites Structure from [8] 8
I.4 General Illustration of Synapses from [8] 9
I.4 General Illustraction of Action Potential Spikes after that the voltage

value reaches the Action Potential Spike, from [8] 9
I.5 Illustration of the different stages of a neurological signal in the brain,

from the microscopic to the actual EEG rilevation with electrodes,
from [5]. It clearly shows how the electrode registers the combined
electrical activity of multiple spikes in a precise area of the brain. . 10

I.6 Illustration of the electrodes positioning of patient scalp following
the 10-20 system approach, from [23] 11

I.7 Bands of interest in the EEG analysis, separated for the different
frequency range, from [24] . 12

II.0 Illustration of the data processing pipeline that leads to the Machine
Learning prediction. 16

II.2 Illustration of the different types of artifacs (eye bliking and muscle
contractions) that could affect the EEG signals as well as the possible
environment interferences which cause discontinuity or linear trends
in the signals, from [31] . 20

II.2 Illustration realized with the MNE python library using one sample
signal of the dataset. Shows the effect of the notch filter applied at
the frequency of 60Hz, with a before and after view of the power
spectral density of the signal. 21

II.3 Screenshot of the Matlab pop up window for the Clean Raw Data
window. 23

II.4 This illustration, from [17], shows the interval of the delta band in
the Welch’s power spectral density in the range 0-10Hz. The area
with the blue background corresponds to the average total power,
and will be computed using the Simpson’s method. 28

II.5 Shape of the logit function used for the classification in the Logistic
Regression method, from [87] . 30

II.5 Illustration of the steps for the classification of a sample using the
KNN classification method, using 3 neighbors, from [50] 31

II.5 This illustration shows the best hyperplane that separates two classes
in a 2D chart of a non linearly separable dataset. It is shown the
penalty cost, xii associated to the misclassified points, from [52] . . 33

II.5 This illustration, from [52], shows non linearly separable classes,
which can be separated using a kernel. 34

II.5 Random Forest Algorithm mechanism Random Forest Algorithm
runs into two stages: the creation and prediction, from [54] 36

II.6 Illustration in 2D, from [50], and 3D, from [52] of the loss function
that the Gradient Descent Algorithm aims to minimize. This task
is reached finding the minimum of the function through derivatives. 39

II.8 Steps for the creation of the best possible model to avoid poor
performances in the final evaluation due to overfitting or underfitting,
using k-fold cross validation for the parameters tuning, from [78] . 50

i

LIST OF FIGURES LIST OF FIGURES

II.8 Illustration of the k-fold cross validation technique for the hyper-
parameters tuning, from [78] . 51

II.8 Visual representation of the confusion matrix, to evaluate the per-
formances of a model, from [79]. 52

II.9 Visual summary of the pipeline’s steps which lead to the creation of
the classification model. 62

III.0 Resulting char plot of the prediction on the Train and Test set
without any technique of dimensionality reduction 66

III.1 Illustration of the results obtained with the Principal Component
Analysis to reduce the dataset Curse of Dimensionality, comparing
the different performance’s score metrics, selecting 50 features. . . . 67

III.1 Illustration of the results obtained with the Principal Component
Analysis to reduce the dataset Curse of Dimensionality, comparing
the different performance’s score metrics, selecting 100 features. . . 68

III.1 Illustration of the results applying Standardization and removing
the features highly correlated between each other. 69

III.1 Representation of the Confusion Matrix obtained for Random For-
est. It shows how only two samples were misclassified during the
prediction step, one per class. 69

III.1 Char plot of metrics’ performances after selecting the 200 features
with an higher correlation with the target. 70

III.1 Char plot of metrics’ performances after selecting the 70 features
with an higher correlation with the target. 71

IV.2 Screenshot of the page for the signal prediction, shows all the features
implemented. 76

IV.2 Screenshot of the page for the creation of a new model, shows all
the features implemented. 79

ii

Contents

Abstract 1

Acknowledgment 2

I Medical and Biological Background 3

Medical Introduction 4
I.1 Electroencephalogram . 6
I.2 Brain structure . 6
I.3 Structure of the Neuron . 7
I.4 Action Potentials . 7
I.5 Synapses . 9
I.6 Electrodes Placements . 11
I.7 Bands . 11
I.8 Parkinson Disease . 13

I.8.1 Parkinson’s Symptoms . 13
I.8.2 Diagnosis . 13

II Computer Science methods applied for EEG Analysis 15

Methods 16
II.1 Data . 17
II.2 Preprocessing . 18

II.2.1 Filtering . 20
II.2.2 Artifacts Detection . 22
II.2.3 Resampling of Data . 22

II.3 Automatic Preprocessing . 23
II.3.1 Clean Raw Data . 23
II.3.2 Automatic ICA Label Preprocessing 25
II.3.3 Independent Component Analysis 26

iii

CONTENTS CONTENTS

II.4 Feature Extraction . 27
II.4.1 Power of EEG signals . 27

II.5 Machine Learning Methods . 29
II.5.1 How Does it Works a Machine Learning algorithm? 29
II.5.2 Logistic Regression . 29
II.5.3 K-Nearest Neighbors . 31
II.5.4 Support Vector Machine . 32
II.5.5 Linear Discriminant Analysis 35
II.5.6 Random Forest . 36

II.6 Feature Scaling . 38
II.6.1 Gradient Descent Algorithm 38
II.6.2 Normalization . 39
II.6.3 Standardization . 40
II.6.4 Normalization vs Standardization 40

II.7 Feature Selection . 41
II.7.1 Curse of Dimensionality . 41
II.7.2 Filter Methods . 42
II.7.3 Projection Methods . 44
II.7.4 Wrapper Methods . 46
II.7.5 Embedded Methods . 47

II.8 Training and Test Phase . 48
II.8.1 Generalization . 48
II.8.2 k-Fold Cross Validation . 49
II.8.3 Performance Metrics . 51
II.8.4 Hyperparameters Tuning . 55

II.9 Summary of Data Management Pipeline 61

III Results of Machine Learning Application 63

Results 64
III.1 Filter Methods . 67

III.1.1 PCA Dimensionality Reduction 67
III.1.2 Remove High Correlated Features 68

III.2 Wrapper Methods . 71
III.2.1 Forward and Backward Selection 72

III.3 Embedded Methods . 72

iv

CONTENTS CONTENTS

IV Web Application Implementation 73

Web Interface 74
IV.1 Motivation . 74
IV.2 Implementation . 75

IV.2.1 Signal Prediction . 75
IV.2.2 Model Creation . 78
IV.2.3 Signal Prediction with Own Models 79

IV.3 Chosen Technologies . 80
IV.3.1 React-Bootstrap . 80
IV.3.2 Node.js . 81

Conclusion 82

v

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder that mainly affects
dopamine-producing neurons in the substantia nigra region of the brain.
Unfortunately, the conventional screening methods for PD patients are subjective
and manual. Hence, to perform automatic screening of PD patients, objective
methods are needed. The electroencephalographic (EEG) data has been used to
study the differences in brain signals between PD patients and healthy controls and
was further developed an automatic screening tool for Parkinson’s disease, using
Machine Learning to individuate its discriminating pattern.
To permit an easier access and usage of these algorithms, a web interface was
created to ease the access to the results. The purpose of the web interface is to give
the possibility to doctors and whoever is interested in the prediction of whether a
patient is affected by Parkinson’s or not,to face a familiar and ready to use interface,
rather than a laborious Python IDE.

1

Acknowledgment

I would like to thank Benoit Macq and Gabriella Olmo for giving me the opportu-
nity to work on this subject during my master’s thesis.
I would also like to show my gratitude to Nicolas Delinte who took the time to
answer my questions and assisted me for some technical organizational issues.

And thanks to all the people I care about, from A to Zeno.

2

Part I

Medical and Biological
Background

3

Medical Introduction

In mental healthcare, advances in data and computational science are rapidly
changing, with the state of the art of some new technologies, such as the Elec-
troencephalogram. Additionally, the use of machine learning (ML) for automatic
classification, has increased.
ML may prospectively test the performance of predictions on unobserved data
not used to fit the model using out-of-sample estimations, providing customized
information and possibly high clinical translation results. This approach is contrary
to classical inference based on null hypothesis tests. ML is expected to help or
possibly replace clinical decisions such as diagnosis, prediction, and prognosis or
treatment outcome.[7]
Many studies related to these new methods became more and more popular, how-
ever, their potential is still not fully exploited in the practical medical diagnosis.

The majority of neurological research applied a supervised Machine Learning
approach for diagnostic binary classification between patients and healthy controls,
however, EEG studies that include a variety of psychiatric disorders are beginning to
emerge. Studies have predominantly focused on Alzheimer’s disease, schizophrenia,
alcoholism, and depression but have more recently expanded to other diagnostic
topics. The literature suggests that ML can be used to discriminate psychiatric
disorders using brain data with over 75% accuracy.[1]

Electroencephalography (EEG) measures brain activity and delivers information
about the voltage measured through electrodes placed on the scalp. EEG is non-
invasive, cost-effective, and suitable for measuring resting-state brain activity in
natural settings, allowing easy acquisition of large amounts of data.[2] Considering
all these advantages related to this technology, is now widely used and is gaining
importance in the studies of neurological diseases.
The aim of this thesis is therefore to identify, using machine learning algorithms,
whether EEG data can be used to identify Parkinson’s disease. To achieve this
objective, ML methods will be applied on the EEG dataset to classify the PD

4

. MEDICAL INTRODUCTION

patients.
Afterwards, the development of a web application that will allow easier access to
the classification results through a user-friendly interface.

The project is divided into four parts.

• The first one provides a theoretical background of the EEG data acquisition
process and of the main brain structures involved in the process.

• In the second part are presented all the steps implemented to reach the
final classification of the EEG signals and for the evaluation of the relative
performances.

• The third part contains an inspection of the obtained result with automatic
machine learning prediction.

• In the final part is presented the web interface deployed to access the signals
classification.

5

I.1. ELECTROENCEPHALOGRAM . MEDICAL INTRODUCTION

I.1 Electroencephalogram
The main source of data for this thesis project is coming from Electroencephalo-
grams.
In the following sections, the focus will be on explaining what is an electroen-
cephalogram, how is obtained, and what it records. To fully understand how
the electroencephalogram can record the activity coming from the brain, a short
medical insight is given to the brain functions activity and its fundamental parts.[2]
Electroencephalography (EEG) is a method to record the electrical activity on the
scalp, that has been shown to represent the macroscopic activity of the surface
layer of the brain underneath.[2] One of the biggest advantages of this technique
is that it is non-invasive, with the electrodes placed along the scalp outside the
human body.
EEG measures voltage variations produced by ionic current in the brain’s neurons.
Clinically, it refers to the recording of the brain’s spontaneous electrical activity
over a period of time, and is recorded from multiple electrodes. [14]
EEG is most often used to diagnose pathologies that cause abnormalities in EEG
readings as they affect the normal operation of the brain in a subject with a neuro-
logical disease. This technique can be used to be a first-line method of diagnosis
for tumors, stroke and other focal brain disorders, even if this use has decreased
with the advent of high-resolution anatomical imaging techniques such as magnetic
resonance imaging (MRI), which are still more difficult to record with respect to
EEG. [15]
However, EEG doesn’t record the electrical events that neurons use to communicate
with each other, which are called in medical terms "action potentials". Instead, it
surveys the summed activity of hundreds of thousands or millions of neurons in the
form of oscillatory activity.[8] It’s not possible to know which type of information
these oscillations carry, as with action potentials; however different frequencies of
oscillations correlate with different behavioural states, and for each behavioural
state is possible to detect a sort of standard in oscillations for healthy patients,
and is on this concept that is based the research of this project. [15]

I.2 Brain structure
The brain is the main source of input features for this project, as the EEG registers
the brain activity through the electrodes. For this reason a short insight of the
brain structure will be given in the current section.
Three main parts compose the brain structure: the forebrain, midbrain and hind-
brain, each composed of multiple subparts.[3]
The forebrain is the most interesting as it comprehends the "cerebrum", the biggest

6

I.3. STRUCTURE OF THE NEURON . MEDICAL INTRODUCTION

section of the brain. Also known as the cerebral cortex, the cerebrum is the largest
part of the human brain, and it is associated with higher brain functions such as
thought and action. The grey matter is made of nerve cells, the white matter of
nerve fibers that carry signals between nerve cells in other parts of the brain and
body [4]. The white surface is then the actual part of the brain which produces
the electrical signals recorded during the EEG experiment.

Figure I.2: Illustration of the main parts of human brain, from [6]

I.3 Structure of the Neuron
The neuron is the base cell in the brain. It has three main parts: dendrites, an
axon, and a cell body or soma (see figure I.3).
A dendrite is where input from other cells is received by a neuron. Dendrites
branch as they move towards their tips create leaf-like structures on them, called
spines. The output structure of the neuron is the axon; when a neuron wants to
communicate with another neuron, it sends the action potential throughout the
entire axon.[8] The soma is where the nucleus lies, where the neuron’s DNA is
housed, and where proteins are made to be transported throughout the axon and
dendrites. [20]

I.4 Action Potentials
Action Potentials are the base component for brain functioning.
With the following four steps can be summarized the neurons’ activity of communi-
cation between each other through Action Potentials.[19] [16]

7

I.4. ACTION POTENTIALS . MEDICAL INTRODUCTION

Figure I.3: General Illustration of Dentrites Structure from [8]

1. Through electrical events called ‘action potentials’ and chemical neurotrans-
mitters, neurons communicate with each other .

2. An action potential causes a neuron to release a chemical neurotransmitter
in the synapse, which is the junction between two neurons.

3. The action of the neurotransmitter could either excite or inhibit the receiving
neuron, at the other side of the synapse, from firing its own action potential.

4. A combination of hundrends of exciting and inhibiting inputs will determine
the result of the Action Potential.

Neurons are essentially electrical devices, their possibility to carry voltage is
guaranteed by their structure. The cell membrane, which is the boundary between
the inside and outside of the cell, contains a big number of canals that allow the
flow of positive and negative ions in both directions of the cells.[8] The constant
flow of positive and negative ions, cause the membrane potential to be not static,
but it’s constantly going up and down, depending on the inputs coming from other
neurons. [16]

8

I.5. SYNAPSES . MEDICAL INTRODUCTION

Figure I.4: General Illustration of Synapses from [8]

When the neurons’ membrane potentials reach a specific value called the action
potential threshold, which is around -50mV, due to the continuous excitatory and
inhibitory activity, the Action Potential occurs, generating a spike, as shown in
Figure I.4.[16]

Figure I.4: General Illustraction of Action Potential Spikes after that the voltage
value reaches the Action Potential Spike, from [8]

I.5 Synapses
Neurons communicate between each other across synapses. When an action po-
tential reaches the presynaptic terminal, as a conequence the neurotransmitter is
released from the neuron into the synaptic cleft, a gap between the presynaptic
axon terminal and the postsynaptic dendrite.[19]
The synapses convert the electrical signal (the action potential) into a chemical one,
as the neurotransmitter is released in the synaptic cleft (see figure I.4). The receiver

9

I.5. SYNAPSES . MEDICAL INTRODUCTION

of the chemical neurotransmitter convert then the signal back into an electrical
one, with the flow of positive and negative ions in and out the cell membrane of
the postsynaptic neuron (the receiver of the signal in the synapse). [18]

Figure I.5: Illustration of the different stages of a neurological signal in the brain,
from the microscopic to the actual EEG rilevation with electrodes, from [5]. It
clearly shows how the electrode registers the combined electrical activity of multiple
spikes in a precise area of the brain.

10

I.6. ELECTRODES PLACEMENTS . MEDICAL INTRODUCTION

I.6 Electrodes Placements
The 10–20 system is a method that describes how to apply the location of scalp
electrodes in the context of an EEG exam, and to allow comparable results across
different studies internationally recognized. This approach was created to maintain
uniform testing methodologies so that a subject’s study results may be compiled,
reproduced, then examined and compared successfully, using the scientific method.
[21]
The system is based on the relationship between an electrode’s placement and the
brain’s underneath area. The "10" and "20" refer to the fact that the actual distances
between contiguous electrodes are either 10% or 20% of the overall front–back or
right–left distance of the skull. [22] In other words, as can be seen in the figure
below, all the electrodes placed on the skull have a distance between each other
which corresponds to a specific value based on the skull dimensions. This method
allows a standardized approach to the EEG recordings.
Pre-frontal (Fp), frontal (F), temporal (T), parietal (P), occipital (O), and central
(C) are the letters assigned to each electrode placement location to indicate which
lobe or area of the brain it is reading from.[23]

Figure I.6: Illustration of the electrodes positioning of patient scalp following the
10-20 system approach, from [23]

I.7 Bands
Electroencephalograms are recorded during a state of rest of the patient, eyes closed
(EC) and eye open (EO) conditions without being involved in any experimental
activity, and for this reason can be also named resting EEG (rEEG).
The rEEG data are of composite nature and may be decomposed into frequency

11

I.7. BANDS . MEDICAL INTRODUCTION

bands such as delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30
Hz) and gamma (> 30 Hz).[17] Each frequency bands carry different physiological
information associated with the brain activities.

• Delta and Theta bands are manifested during information encoding in order
to create new memory, as are associate to a sleep/drowsiness phase. [26]

• Alpha band indicates the information retrieval from memory and attention.
[26]

• Beta and Gamma bands are associated with perception, learning and attention.
[27]

In a patient affected by Parkinson, or any other disease that could be detected
through the EEG analysis, the values reached by each of these bands present a
distortion from the ones of a healthy patient. [25]

Figure I.7: Bands of interest in the EEG analysis, separated for the different
frequency range, from [24]

12

I.8. PARKINSON DISEASE . MEDICAL INTRODUCTION

I.8 Parkinson Disease
Parkinson’s disease (PD) is a progressive disorder that affects nerve cells in the brain
responsible for body movement. When neurons responsible for the production of
dopamine die, symptoms such as tremors, slowness, stiffness, and balance problems
occur.[9]
As seen before, when an impulse comes to the end of the axon, it is converted
from electrical to chemical, releasing the neurotrasmitter in the synapse’s cleft. In
patients affected by Parkinson, the dopamine neurotransmitter is no longer released
by the axons.
The dopamine-producing nerve cells of the substantia nigra, one of the brain’s key
dopamine-producing regions, begin to die out in certain people for unknown causes.
PD symptoms such as tremors, slowness of movement, stiffness, and balance issues
appear after 80% of dopamine is lost.[9]
Body movement is controlled by a complex chain of decisions involving inter-
connected groups of nerve cells called ganglia.[10]
The basal ganglia and cerebellum are in charge of ensuring that movement is
smooth and fluid. When the quantity of neurotransmitters released during the
neurons’ communications is no longer enough, all this chain is interrupted, and
causes tremors and other symptoms in the affected subjects.[11]
The Electroencephalograms record the electrical activity of the basal ganglia, which
is the part of the brain highly affected by Parkinson disease.

I.8.1 Parkinson’s Symptoms
Symptoms of Parkinson Disease vary from person to person, as does the rate of
progression. These are the most common "hallmark" symptoms:[12]

1. Bradykinesia: slowness of movement, impaired dexterity, decreased blinking,
drooling, expressionless face.

2. Tremor at rest: involuntary shaking that decreases with purposeful movement.
It usually begins on one side of the body, most commonly the hand.

3. Rigidity: stiffness caused by an involuntary increase in muscle tone.

4. Postural instability: a sense of imbalance. Patients frequently compensate by
lowering their center of gravity, leading to a stooped posture.

I.8.2 Diagnosis
Because other illnesses and medications can create symptoms similar to Parkin-
son’s disease, it’s important to get a proper diagnosis from a physician. Because

13

I.8. PARKINSON DISEASE . MEDICAL INTRODUCTION

symptoms differ from person to person, no single test can validate a diagnosis of
PD.
During the physical examination, suspected PD patients are asked to complete
certain movements, which can help establish the diagnosis. For example, in people
with Parkinson’s disease, when they are asked to touch their nose with the hand, the
tremor lessens or disappear. People with the condition also have trouble completing
rapid alternate movements, such as placing their hands on their thighs and rapidly
turning them back and forth numerous times. [13]

Due to this difficulty in diagnosing an actual state of Parkinson’s diesease, the anal-
ysis of patients’ EEG through Machine Learning could be highly effective and useful.

One of the most common technique for the diagnosis of Parkinson is the Uni-
fied Parkinson Disease Rating Scale Test, which consists of a series of tests for the
patients to gauge the curse of their disease level of Parkinson. This was the same
test conducted on the patients of the dataset used for this project.

Unified Parkinson Disease Rating Scale Test (UPDRST)

Several medical organizations have improved the UPDRS scale throughout the
years, and it remains one of the therapy and research bases in PD clinics. The
UPDRS scale consists of a series of ratings for typical Parkinson’s symptoms that
cover all movement issues associated with the condition. The UPDRS scale consists
of the following five divisions:[28]
1) Mentation, Behavior, and Mood,
2) ADL,
3) Motor sections,
4) Modified Hoehn and Yahr Scale,
5) Schwab and England ADL scale.

During patient interviews, a medical professional specialized in Parkinson’s disease
evaluates each answer on the scale. On the UPDRS scale, a score of 199 indicates
total disability, while a score of zero indicates no disability.[28]

14

Part II

Computer Science methods
applied for EEG Analysis

15

Methods

This chapter outlines the different steps taken during this work, starting from the
raw signals, to the final machine learning prediction. First data should be recorded,
and the EEG signal should then be preprocessed. From these preprocessed signals,
features can be extracted, and only the most suitable ones are selected. From
these features, machine learning algorithms could be applied to predict the binary
prediction problem. This is explained in further details in the machine learning
section. All the steps are summarized in Figure II.0.

Figure II.0: Illustration of the data processing pipeline that leads to the Machine
Learning prediction.

16

II.1. DATA . METHODS

II.1 Data
Data used for this project come from an open-source dataset available online,
disposable on [29]. This website makes available several open-source datasets, and
their contribution to the study of psychiatric disease’s patterns in EEG is significant.
Indeed, there are very few online sources that offer patient-specific EEG data, and
even fewer are arranged as PRED+CT, for the purpose of patients classification.
Particularly other available dataset comprehends a limited number of samples,
and do not control patients. This makes the task of EEG classification even more
difficult, as it’s necessary for a classification algorithm to have at disposal both the
labels to classify. The purpose of the PRED+CT is to provide datasets with these
characteristics.

The dataset used is composed of ninety-one PD patients (62 men and 29 women),
who were recruited from the movement-disorders clinic at the University of Iowa.
Their movement-disorders were examined by a physician to verify that they met the
diagnostic criteria and tested with the Unified Parkinson Disease Rating Scale Test.
Thirty-seven control participants were recruited from the Iowa City community
and matched for age, sex, and education.[30] In accordance with the Declaration
of Helsinki and the Ethics Committee on Human Research, all PD and control
participants were assessed to have the decisional capacity to provide informed
permission.
Eighty PD patients participated in the study while assuming their prescribed
medications, which could affect interval timing and brain activity of determined
bands. These PD patients were tested when they were taking medications as usual,
and then they were asked to withhold the dopaminergic medications for 12 h before
repeating EEG testing.[30]
Patients whose experimental extraction produced immediately observable artifacts
or noise were discarded.
EEG signals were collected from 64 channels of EEG actiCAP (Brain Products
GmbH), sampled at a frequency of 500 Hz and high-pass filtered at 0.1Hz. Two of
the 64 electrodes recordings were discarded, as the reference was associated with
electrode Pz, and the ground to electrode Fpz.[30]
A first pre-processing was performed with Matlab EEGLAB library, where bad
channels and bad epochs were identified using the FASTER algorithm, and were
then interpolated and rejected. Eye blinks artifacts were removed using independent
component analysis (ICA).[30] This means the dataset available on line had already
undergone some steps of preprocessing.

17

II.2. PREPROCESSING . METHODS

II.2 Preprocessing
The preprocessing step, in the context of developing a machine learning algorithm,
doesn’t have to be underestimated. Indeed, algorithms and computers work with
numbers as are just a series of mathematical formulas, and is important to have
reliable input values. This is achieved through preprocessing techniques consisting
in rescaling the features and deleting the ones are not useful for the prediction.

Why preprocessing is an important step?

For many reasons, preprocessing is necessary for EEG data. The signals picked
up by the scalp are not always an accurate representation of the impulses coming
from the brain, as the spatial information of the electrodes placement gets lost.[32]
Additionally, EEG data has a lot of noise in it, which might obscure the actual
signals. Blinking or muscle movement can distort the actual value of the signal,
but luckily this kind of artifacs can be detected through some preprocessing tech-
niques, as ICA preprocessing. [33] Other noise could come from the surrounding
environment of the experiment or some functioning problems of the electrodes.
Finally, could be necessary to separate the relevant neural signals from random
neural activity that occurs during EEG recordings. Indeed, is the patient should
stay in a rest condition during the experiment, however eye blinking, heart beats
or small muscle contractions could be recorded by the electrodes.

Figure II.2 shows the different types of anomalies that could be detected in
EEG signals.

Different types of Preprocessing

There is no commonly accepted EEG preprocessing pipeline as it is still an open
research topic, indeed for each different signal, different types of steps could be
more suitable.
Some considerations regarding the dataset could help understand which steps could
actively improve the validity and meaning of the data.[32]

• Considering which kind of artifacts has to be removed, ICA is a valuable
approach to individuate eye blinking and eye movement and remove them
from the signals.

• If the preprocessing of data happens as soon as they arrive, it might not be
the best approach to use as ICA Preprocessing requires high computational
time, and an active interaction of the user to exclude the right components.

18

II.2. PREPROCESSING . METHODS

However, any pre-processing techniques will be able to restore validity for bad
data if these are irremediably compromised. If the experiment was not conducted
properly by the doctor or by the subject, or due to a malfunctioning in the
equipment, it may be best to simply run the experiment again, rather than trying
to salvage the data.

Bad Channels

Sometimes there are ’bad’ channels in EEG data that don’t provide reliable
information. It’s important to eliminate those from the analysis as soon as possible
because preserving that data will have an impact on subsequent analyses.[32] There
are a few reasons why a channel might be excluded [34]:

• A malfunctioning of the channel.

• A wrong placement of the electrode or a loss of contact with the scalp.

• Two or more channels were bridged.

• The electrode got saturated.
Bad channels can be noticed even during the extraction process, noticing for

example that one of the electrodes detached from the scalp, can be marked as
excluded during the experiment.[32] After data gathering, the most frequent method
of detecting bad channels to use, is by visualizing the raw data. Through visual
observation, is possible to detect noisy signals, or partially static signals.
This operation could be time spending, considering a visual review by the user for
every single signal in each time domain portion. That’s why is possible to use pre
implemented method, which automatically reject bad portions of the data.

Bad Channels Interpolation

Once the bad channels or bad portions of signals have been detected, it’s a standard
procedure to interpolate data for bad channels using data from good channels,
instead of deleting the bad portion. Interpolation is a technique for filling in missing
data using existing data.[32] This approach allows not to waste portions of the
data, and as a consequence important features for the classification [35].
However, for the purpose of this thesis of data classification, interpolating portions
of the data and changing their actual value mixing with informations coming from
other sources, could bias the data and cause a poor performance in the classification
algorithm. In this project both the approaches were tried, in one case deleting the
bad portion and in the other interpolating.
The most common interpolation technique is by spherical splines. This method
consists of the following steps [36]:

19

II.2. PREPROCESSING . METHODS

Figure II.2: Illustration of the different types of artifacs (eye bliking and muscle
contractions) that could affect the EEG signals as well as the possible environment
interferences which cause discontinuity or linear trends in the signals, from [31]

• Project the channel locations onto a sphere which represents the head.

• Describe the relationship between the good and bad channels using a matrix.

• Interpolate the results of the bad channels, using the results coming from the
second step.

II.2.1 Filtering
One of the basic operation to be computed on a digital signal, consists in applying
a filter. This technique allows acting directly on the frequencies of the signals,
removing the ones that are not useful to the analysis [37].
These are all the different kinds of filters that can be applied to the signals:

1. Low-pass filter: frequencies below a certain value are kept (’low’ frequencies
‘pass’), while high frequencies are removed, considering as high frequencies
the ones above a certain threshold.[32]

20

II.2. PREPROCESSING . METHODS

2. High-pass filter: the same as above, but only high frequencies remain, and
only those below a certain value are removed.[32]

3. Band-pass filter: combining the two previous filters, this keeps only frequencies
between a lower and upper bound.[32]

4. Notch filter: this filter removes a single frequency. The combination of multiple
notch filters can be used to remove a particular set of single frequencies.[32]

In the world of EEG, these are useful for several possible issues when processing.

1. Removing electricity noise: generally the electrical circuits surrounding the
measurement will introduce noise in the 50Hz or 60Hz range. To obtain this
result a notch filter is applied, to discard that specific frequency.

Figure II.2: Illustration realized with the MNE python library using one sample
signal of the dataset. Shows the effect of the notch filter applied at the frequency
of 60Hz, with a before and after view of the power spectral density of the signal.

2. To perform the analysis separately for each band, performing a band-pass
filter between these values removes any noise outside that range. Indeed, the
band-pass filter isolates a section of the signal in between two frequencies
values. As a consequence it can be applied the band-pass to perform feature
extraction for each band frequency.

21

II.2. PREPROCESSING . METHODS

3. Very low frequency are too slow to originate from the brain, and are usually
a sign of long-term drift in the recording environment.[?] For this reason
frequencies lower than 1Hz are discarded unsing an high pass-filter.

II.2.2 Artifacts Detection
Artifacts are signals that are picked up by the EEG system but do not actually
originate from the brain. The sources of the signals can be both biological or
environmental, and sometimes could be difficult to classify their different sources.
[38]

1. Outside-world interference, such as power lines, electrodes breaking contact, or
other persons moving during the experiment, causes environmental artifacts.
Adjusting the environment is the simplest strategy to reduce the impact of
those artifacts. A notch filter at 50 or 60 Hz can be used to eliminate power
line interference, and some headsets already have this filter built-in. [32]

2. The human body is the source of biological artifacs, and they mix with the
actual sources from the brain. Blinks, eye movements, head movements, heart
beats, and muscular noises are some of the most prevalent biological artifacts.
Having access to other biometric data, such as electrooculogram (EOG) or
eye-tracking data for eye movement, accelerometer data for head movement,
and electrocardiogram (ECG) data for the heartbeats, it is possible to detect
those artifacts.[32]

• Some of the signals coming from the brain activity can also be considered
a source of artifacts. Participants who are tired, will often have large
Alpha wave spikes, or due to specific medical treatment of the patients,
the activity in specific bands could be biased.[32]

II.2.3 Resampling of Data
Resampling could be useful to reduce computation time without losing informations.[32]
Indeed for each EEG, signals are sampled with a certain sampling rate, which
indicates the number of recorded points per second. A high number of samples
per second, increases the quality and accuracy of the data, but consequently their
relative memory space requirements, and time complexity necessary for each op-
eration on them. Applying some of the preprocessing techniques could be highly
time demanding, especially if the information for each signal is very accurate and
specific, that’s why a resampling could be helpful.

22

II.3. AUTOMATIC PREPROCESSING . METHODS

II.3 Automatic Preprocessing
If it’s necessary to preprocess a big amount of signals could be useful to preprocess
automatically all the signals, using several methods available through Matlab
software, more specifically using the EEGLAB Library.
EEGLAB is a Matlab toolbox for processing continuous and event-related EEG,
MEG, and other electrophysiological data. It includes independent component
analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics,
and several useful visualisation modes for averaged and single-trial data. For the
purpose of this project will be used for the analysis of continuous EEG.

II.3.1 Clean Raw Data
Clean Raw Data is a function available on the EEGLAB library, defined to allow
an automatic and reliable preprocessing of the signals. This function allows not
only the discard of bad channels and portions of channels, but also a possible
interpolation of bad sections using the clean sections of the signals.

Figure II.3: Screenshot of the Matlab pop up window for the Clean Raw Data
window.

Clean Raw Data, methods [41]:

23

II.3. AUTOMATIC PREPROCESSING . METHODS

• The top section is about high-pass filtering the data. Usually is applied an
high-pass filter to discard all the frequencies below the threshold of 0.5Hz as
it would be impossible for the brain to produce so low value frequencies.[41]

• The second option involves the removal of bad channels. Three different
options for bad channel removal can be considered.

– Flat channels may be removed.
– Channels with a large amount of noise may be removed based on their

standard deviation. The standard deviation is a measure of how far the
signal fluctuates from the mean.
The value of the mean for a signal x, composed of xi from 0 to N − 1
samples:

µ = 1
N

N−1Ø
i=0

xi (II.3)

Once computed the mean of the signal, the standard deviation is ex-
pressed as:

σ2 = 1
N − 1

N−1Ø
i=0

(xi − µ) (II.3)

If the standard deviation is higher than a certain threshold value, it
means it’s probably affected by some source of noise.

– Channels, which are poorly correlated with other channels, may be
removed.[41] Correlation describes the mutual relationship which exists
between two or more signals. Correlation between signals indicates the
measure up to which the given signal resembles another signal, and is
expressed on a scale [0, 1].
The threshold for the rejection is channel correlation set to 0.8 by default.
Indeed a poor correlation is a symptom that one of the two channels is
affected by noise, and this cause the difference between the two signals.

• The Artifact Subspace Reconstruction (ASR) approach is used in the third
stage to reject bad data chunks. ASR can be used to either correct or delete
bad data segments.ASR determines the standard deviation of PCA-extracted
components by finding clean parts of data (calibration data).[41] It discards
data regions that exceed more than 20 times the calibration data’s standard
deviation.

• The fourth option deals with further data rejection based on a predetermined
number of channels passing a standard deviation threshold in a given time
window, which duration can be chosen. This enables for the rejection of bad
data segments that ASR may have missed.[41]

24

II.3. AUTOMATIC PREPROCESSING . METHODS

II.3.2 Automatic ICA Label Preprocessing
The ICLabel plugin of Luca PionTonachini is an EEGLAB plugin installed by
default with EEGLAB, which provides an estimation of the type of each of the
independent components (brain, eye, muscle, line noise, etc.). The ICLabel plugin
performs an EEG IC classifier that is reliable and accurate enough to be use in
large-scale studies. The current classifier implementation is trained on thousands
of manually labelled ICs and hundreds of thousands of unlabeled ICs.

Several Indipendent Components can be detected: [42]

• The activity in brain ICs is thought to arise from locally synchronized activity
in one cortical region. The cortical signals are usually tiny and produce
dipolar projections onto the scalp that fluctuates smoothly. Power spectrum
densities in brain ICs are generally inversely related to frequency and power,
with increasing power in frequency bands between 5 and 30 Hz. [42]

• Activity from clusters of muscle motor units is contained in muscle ICs. High
broad-band power at frequencies over 20–30 Hz distinguishes them. They
can sometimes appear dipolar, similar to brain ICs, but because their origins
are outside the skull, their dipolar pattern is considerably more confined than
brain sources. [42]

• Eye ICs relate to activity that originates from the eyes and is caused by an
electrical dipole within the eye. The projection of this standing dipole to the
frontal scalp is shifted by rotating the eyes. [42]

• Heart ICs can be identified in EEG recordings, however they are relatively in-
frequent. Electrocardiographic (ECG) signals are effectively recorded utilizing
scalp EEG electrodes. [42]

• Line Noise ICs capture the impacts of line current noise from surrounding
electrical fixtures or EEG amplifiers that aren’t properly grounded. Their
concentration at 50Hz to 60Hz, depending on voltage local requirements,
makes them easily identifiable. However, a single IC is unlikely to be able to
represent line noise activity; instead, all components may be contaminated
to varying degrees. [42]

• Channel Noise ICs are often an indication of poor signal quality or massive
artifacts impacting single channels, and are caused by excessive impedance
at the scalp-electrode interface or physical electrode movement. [42]

• Other ICs take into account all ICs that don’t fit into any of the other cate-
gories. There are two types of ICs in this category: those with indeterminate

25

II.3. AUTOMATIC PREPROCESSING . METHODS

noise and those with several signals that ICA decomposition couldn’t separate
well. [42]

II.3.3 Independent Component Analysis
Independent Component Analysis (ICA) is a technique that separates and localizes
independent signals, from different sources, that have been added together by the
electrode recording. ICA assumes that signals are static and that signals from
different sources are statistically independent, which may not be appropriate for
some neural signals [39]. ICA is used to separate components to identify artifacts
from eye movements or heartbeats for Artifact Correction. Once performed the
ICA separation of certain number of sources, is then possible to individuate the
Independent Component of Eye Blinking or Heartbeats quite easily as they present
a fixed recognizable shape.[40]
The main steps of ICA Preprocessing are:

1. Centering: the purpose of this step is to center the data by subtracting the
mean from all signals.

2. Whitening: this step consists in transforming signals into uncorrelated and
then rescaling each signal to be with unit variance. This is done through
a Decorrelation step, which makes each signal uncorrelated with the other,
followed by the Scaling step.

3. Once the data are whitened, to retrieve the original distributions, is computed
a rotation of the axis, obtained with an Uncorrelation Matrix.

In the case of EEG recordings each axis correspond to a electrode, and its value is
mixed with the recordings of all the other electrodes.

26

II.4. FEATURE EXTRACTION . METHODS

II.4 Feature Extraction
Features are the most important attribute for a Machine Learning algorithm, the
best are the features, the best the machine learning algorithm can learn, and the
classification will be then more effective.
From a signal, many different features can be extracted, both in the time domain
and frequency domain. For this project was defined that the most suitable feature
to extract for signal classification, is the Power associated with the signal.

II.4.1 Power of EEG signals
Spectral analysis is one of the standard methods used for quantification of the EEG.
The power spectral density (power spectrum) reflects the ‘frequency content’ of the
signal or the distribution of signal power over frequency. Indeed, the power spectral
density of a signal consists in a value, one for each different frequency. This array
of values describes the power present in the signal as a function of frequency, per
unit frequency.[44]

Spectral analysis of EEG signal is a central part of EEG data analysis, indeed
the power spectral density is the main feature used to train the classification
Machine Learning algorithm.[43]
One of the most widely used methods to analyze EEG data is to decompose the
signal into functionally distinct frequency bands, such as delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz).[45] This
implies the decomposition of the EEG signal into frequency components, which is
achieved through Fourier transforms, and in particular the Fast Fourier Transform,
which transform a signal from time domain to its frequency domain. For each
frequency corresponds a complex number from which to extract the phase and the
amplitude.[46]
To retrieve the power spectral density, is then necessary to compute the squared-
magnitude, which returns a periodogram. However this method is not effective
with EEG data, as is very unlikely for the signal to be a perfect sum of sine waves,
rather changes over time. The classic periodogram requires a stationary signal
to perform well, and with EEG signals the results that produce are biased with
high variance.[17] The most widely-used method to reduce the effect of variance is
Welch’s periodogram, which consists of averaging consecutive Fourier transform
of small windows of the signal, with or without overlapping. By averaging the
periodograms obtained over short segments of the windows, Welch’s method allows
to drastically reduce this variance. This comes at the cost, however, of a lower
frequency resolution. [47]
Once the power spectral density is computed through Welch’s periodogram method,

27

II.4. FEATURE EXTRACTION . METHODS

the average power for each different band has to be extracted. The average power
consists in the the area occupied by the Welch’s periodogram shape in the considered
frequencies intervals, for the considered band.

Figure II.4: This illustration, from [17], shows the interval of the delta band in
the Welch’s power spectral density in the range 0-10Hz. The area with the blue
background corresponds to the average total power, and will be computed using
the Simpson’s method.

The absolute delta power is equal to the blue area of the previous plot, for
the delta band, between 1Hz and 4Hz. To approximate the value of this area, is
commonly used the Simpson’s rule. The area is decomposed into several parabolas,
which are summed to approximate its value.[17] This method returns a single value
for each different band, which corresponds to the power of the signals for the
specified interval. For the Machine Learning purpose of the project, this could be
highly effective, as it returns a single value as a key representative feature of an
entire band of the signal, which can then easily be fed to the algorithms.

28

II.5. MACHINE LEARNING METHODS . METHODS

II.5 Machine Learning Methods
To classify the different EEG signals between Parkinson’s and healthy patients,
some machine learning algorithms were implemented to find the most effective
ones. All the Machine Learning methods implemented are supervised. Supervised
methods allow the classification of input signals, using a dataset of labelled samples.
Through this dataset, the algorithm is trained, in order to recognize and classify
correctly in a second time the unseen data.
For the purpose of this project the classification is bimary, as for each sample has
to be predicted if is a PD’s or healthy subject. In the training dataset is important
to have a certain number of samples for each class present, and the number of
samples should be balanced, unless the training of the algorithms will be likely
biased by the larger one.

II.5.1 How Does it Works a Machine Learning algorithm?
Except for the KNN, all the used algorithms need a training phase during which
the corresponding weights and bias have to be tuned in order to reach the smallest
cost associated to the prediction, compared to the actual value of the sample. The
steps to reach the minimum cost function are described in the section relative to
Gradient Descent.
In the following sections will be analyzed the functioning of the machine learning
algorithms used and their cost functions.

II.5.2 Logistic Regression
It’s a classification algorithm used for classifying categorical response variables.
The goal of Logistic Regression is to discover a link between features and the
likelihood of a specific outcome.
Binomial Logistic Regression is a type of problem in which the response variable
has two values: 0 and 1. The logistic model uses the sigmoid function (denoted by
sigma) to estimate the probability that a given sample y belongs to class 1 given
inputs X and weights W ,

P (y = 1|x) = σ(W T X) (II.5)

sigma is the sigmoid function, which produces as output a value comprised
between 0 and 1 (see Figure II.5), this value corresponds to the probability for the
input n to be of class y. Since is a binary classification, the probability for the
other class is 1 − p. If the probability is higher then the threshold value 0.5 the
point is considered of class 1, although of class 0. [48]

29

II.5. MACHINE LEARNING METHODS . METHODS

This formula corresponds to the probability for the sample yn:

yn = anσ(an) = 1
1 + ean

(II.5)

Figure II.5: Shape of the logit function used for the classification in the Logistic
Regression method, from [87]

Given that yn is the prediction for the sample that has to be classified, and tn

the actual value of the sample, the purpose of the algorithm is to maximize the
following objective function L:

L =
NÙ

n=1
ytn

n (1 − yn)1−tn (II.5)

To avoid numerical exception due to overflows, the logarithm is applied to the
function.

L =
NØ

n=1
ynlog(tn) + (1 − yn)log(1 − tn) (II.5)

The purpose of the machine learning algorithm is to find the best set of parameters,
this is called Maximum Likelihood Estimation. These sets of regression coefficients
can be infinite. The set of regression coefficients for which the probability of
getting the data observed is highest is known as the Maximum Likelihood Estimate.
Gradient Descent is then applied to the function to retrieve the best values for
weights; as Gradient Descent task is to find the minimum of a function, the negative
of the objective function is computed. This takes the name of cross-entropy. [48]

J = −
NØ

n=1
ynlog(tn) + (1 − yn)log(1 − tn) (II.5)

30

II.5. MACHINE LEARNING METHODS . METHODS

II.5.3 K-Nearest Neighbors
K- Nearest Neighbors (KNN) is a Supervised machine learning algorithm as target
variable is known. It doesn’t make any assumption regarding the distribution data
pattern, that’s why is considered nonparametric.
Differently from all the others presented algorithms, it does not imply any training
phase and all the data points will be used only at time of prediction. This means
that the prediction step will be more costly, but the training phase very fast.

The K in KNN stands for the most important parameter for this algorithm.
When a new sample has to be classified, its label is chosen considering the K closest
points in the spatial distribution of the training points. Then the relative label is
assigned considering the class with more samples between the K neighbors of the
sample to classify. [90]

Figure II.5: Illustration of the steps for the classification of a sample using the
KNN classification method, using 3 neighbors, from [50]

31

II.5. MACHINE LEARNING METHODS . METHODS

II.5.4 Support Vector Machine
A Support Vector Machine (SVM) is a supervised discriminative classifier formally
defined by a separating hyperplane. Given labeled training data (supervised
learning), the algorithm during the training phase computes the best separating
hyperplane between the two categorical classes in the feature space.[89]
There are numerous hyperplanes from which to choose in order to separate the
two types of data points. The objective of the training phase, through Gradient
Descent, is to find a plane that has the maximum distance between data points
of both classes.[52] Maximizing the margin distance reinforces the classification,
increasing the probability that future data points will be correctly classified. To
classify data points, falling on one of the two sides in the spatial representation of
the hyperplane, is the discriminative decision boundary.
The hyperplane has the following expression, which corresponds to a line in the
feature dimensional space:

wT x + w0 = 0 (II.5)

To maximize the margin of the hyperplane during the training phase, peculiar
points of the training data are considered, the support vectors. Support vectors
are data points from the two classes that are closer to the hyperplane and have
a direct impact on the hyperplane’s position and orientation. The margin of the
classifier is maximized using these support vectors. [89]
The formula to express the maximization of the margin is

maxw,w0

2
∥w∥

(II.5)

Finding the maximum value of weight w and w0 will give the best margin, given
the constraint of correct classification. This constraint is expressed in the following:

yi(wT xi + w0) ≥ 1 (II.5)

Given that yi is the class label of a sample (-1 or 1) and wT xi + w0 express the
relative position of the sample xi with respect to the hyperplane. The position can
be positive, if the sample is spatially located above the separation hyperplane, or
negative if it is below.
However is not always possible to find an hyperplane to perfectly separate two
classes, as sometimes their spatial representation doesn’t allow it, and the constraint
cannot be guaranteed. To come over this issue two possible solutions can be adopted:
the soft margin and the kernel trick.

32

II.5. MACHINE LEARNING METHODS . METHODS

Soft Margin

The idea behind the soft margin, is that misclassifications are allowed, but a penalty
weight is given to each of them. The new formulation becomes try to minimize:

L = 1
2∥w∥2 + C(#misclassifications) (II.5)

This differs from the original objective function in the second term. C is
a hyperparameter that determines the trade-off between increasing margin and
reducing errors. When C is small, classification errors are less important, and
the focus is more on maximising the margin, but when C is large, the focus is on
preventing misclassification at the price of maintaining a small margin.
Not all mistakes are equal, indeed data points on the wrong side of the decision
boundary that are far should be penalised more than those that are closer. To
every data point xi is associated a variable ξi, which is the distance of xi from
the corresponding class’s margin. If the point is correctly classified then his value
will be zero. As a result, the points on the incorrect side of the margin would be
penalised more, based on their distance.

Figure II.5: This illustration shows the best hyperplane that separates two classes
in a 2D chart of a non linearly separable dataset. It is shown the penalty cost, xii

associated to the misclassified points, from [52]

The constraint becomes:

yi(wT xi + w0) ≥ 1 − ξi (II.5)

And the relative function to minimize is:

33

II.5. MACHINE LEARNING METHODS . METHODS

minw∥w∥2 + C(
Ø

i∈N+

ξi +
Ø

i∈N−

ξi) (II.5)

Kernel trick

The kernel approach enables to work in the original feature space without having
to compute the data’s coordinates in a higher-dimensional space. The kernel
trick offers a more efficient and less expensive way to transform data into higher
dimensions, mainly using the dot product between the features of the input data.
[53] In an higher dimension then, the same linear separation approach can be used.
Basically the kernel function is a dot product of two transformed input vectors.

Figure II.5: This illustration, from [52], shows non linearly separable classes, which
can be separated using a kernel.

Sometimes, the two approaches of Kernel Trick and Soft Margin has to be
mixed to obtain the best solution.

34

II.5. MACHINE LEARNING METHODS . METHODS

II.5.5 Linear Discriminant Analysis
Linear Discriminant Analysis’ purpose is to project features from a higher-dimensional
space onto a lower-dimensional space.
This can be achieved in three steps :

1. The first step is to calculate the between-class variance, which is the distance
between the mean of different classes, and expresses separability between
different classes.

2. Second Step is to calculate the within-class variance, which represents the
distance between the mean and sample of each class

3. The third step consists in maximizing the between class variance and min-
imizing the within class variance, and projecting points on this new lower
dimensional space. Indeed the main purpose of LDA is to separate the two
classes, projecting the data points in such a way the points of the same class
will be close, and the points of different classes far.

The LDA’s purpose is basically to maximize the distance between the mean
of each class and minimize the spreading within the class itself.[93] However,
this formulation is only possible if the dataset has a Normal distribution. This
assumption might bring a disadvantage because if the distribution of data is
significantly non-Gaussian, the LDA might not perform very well.
This method could be used as well as a dimensionality reduction, like PCA.

35

II.5. MACHINE LEARNING METHODS . METHODS

II.5.6 Random Forest
Random Forest Classifier is an ensemble algorithm, as it combines more Decision
Tree for classifying objects. Random forest classifier creates a set of decision trees
from randomly selected subset of training set. It then aggregates the votes from
different decision trees to decide the final class of the test object. The same input
will be passed to multiple trees, the output of each tree will be combined, and the
class with more than 50% predictions will be the one assigned to the input sample.
[54] All the decision trees which compose the forest are trained with different
sub-samples of the training data, not to train equal decision trees that will predict
all the same output.

Figure II.5: Random Forest Algorithm mechanism Random Forest Algorithm runs
into two stages: the creation and prediction, from [54]

Decision Tree

Decision Tree is a supervised learning technique used for classification problems.
Internal nodes represent decisions over dataset features, branches represent decision
rules, and each leaf node provides the outcome in this tree-structured classifier.
A decision tree simply asks a question in each decision node, and it further split
the tree into subtrees, based on the answer.

The following are the steps to train a decision tree.[57]

1. Begin the tree with the root node which contains the complete dataset.

36

II.5. MACHINE LEARNING METHODS . METHODS

2. Find the best attribute in the dataset on which to compute the best split.
The best feature can be found using an Attribute Selection Measure (Gini
Index or Information Gain).

3. The tree is then splitted into two different subtrees, based on the separation
feature individuated at the step before. All the samples above a certain
threshold value for the chosen feature will be part of a tree, the others will
be part of the other.

4. Iteratively makes new decision trees using the subsets of the dataset created
in the third step. This process continues until a stage is reached where the
nodes contain a number of features below a certain threshold or contain only
features of the same class. The node then becomes a leaf, as it corresponds
to a specific class.

To classify a sample, it is given as input to the tree, then it follows the path
through it considering the splitting made on the features until it reaches a leaf. At
that point ,the sample is labelled as the class of that leaf.
The biggest challenge that emerges while developing a Decision tree is how to
choose the best attribute for the root node and sub-nodes. A technique known
as attribute selection measure, or ASM, can be used to tackle such challenges.
The best characteristic for the tree’s nodes can be easily determined using this
measurement. The two techniques used to select the best features are Information
Gain and Gini Index.

Information Gain

Information gain is the calculation of how much information a feature offers about
a class by measuring changes in entropy after segmenting a dataset depending on
an attribute. Indeed it associates a value to each feature based on:

InformationGaini = EntropyBeforeSplitting−EntropyAfterSplittingi (II.5)

The attribute of the node that maximizes the value of Information Gain is chosen.
[58]

Gini Index

The Gini Index, also known as the Gini Impurity, is calculated by subtracting the
sum of each class’s squared probability from one and it calculates the probability
of a randomly picked feature being erroneously classified. [59]
The Gini Index ranges from 0 to 1, with 0 denoting classification purity and 1
denoting a random distribution of items among multiple classes. A Gini Index of
0.5 indicates that elements are distributed evenly across several classes.

37

II.6. FEATURE SCALING . METHODS

II.6 Feature Scaling
Feature scaling is a method used to normalize the range of features of data of each
sample, in the same way.

Why should be considered an important step in data preprocessing?

II.6.1 Gradient Descent Algorithm
All the algorithms previously described, during the training phase try to find the
best values for weights and bias to optimize and reach the minimum of the cost
function, iteratively moving in the direction of steepest descent as defined by the
negative of the gradient.[60]

The cost function can be represented as a 3D curve, with maximum and
minimum values, depending on the parameters, which correspond to the cartesian
axes. To find the minimum of the cost function, the derivative of the function tells
the direction to follow to move to the minimum, moving for a certain size step. To
find the minimum, the value is subtracted from the actual position to find the new
one.
The learning rate is the size of these steps. With a high learning rate more ground
is covered at each step, however because the hill’s slope is always shifting, there’s a
chance of overshooting the lowest spot. With a very low learning rate, the learning
will be slower, but confidently in the direction of the negative gradient since the
recalculation is frequent. However, in this second case, there’s the risk to be stuck
in a local minima, considering it as the global. [61]

Most of the Machine learning algorithms used in this project, use gradient
descent as an optimization technique, and so require data to be scaled.
The following is the formula associated to Gradient Descent:

θj = θj − α∇J(θ) (II.6)

Where J is the associated cost function, and is computed its derivative function.
Given the presence of feature value x, which is implied in the formula of the cost
function, the step size of the gradient descent will be affected by the variation in
feature ranges, which will result in distinct step sizes for each feature.[62] To ensure
that the gradient descent progresses smoothly towards the minima and that all of
the features’ gradient descent steps are updated at the same time, the data are
scaled before feeding it to the model. The value α represents the step size. [60]
Having features that are on the same scale helps speed up the gradient drop to the
minimum.

38

II.6. FEATURE SCALING . METHODS

Figure II.6: Illustration in 2D, from [50], and 3D, from [52] of the loss function
that the Gradient Descent Algorithm aims to minimize. This task is reached finding
the minimum of the function through derivatives.

.

• Scaling the range of features with distance algorithms like KNN, and SVM
provides another benefit. This is because these algorithms use distances
between data points to infer similarity, and the range of characteristics has
the greatest impact on them.[62]

• Tree-based algorithms, on the other hand, are relatively unaffected by feature
scale.[62] A decision tree splits a node exclusively on the basis of a single
feature.
The decision tree splits a node based on a feature that increases the node’s
homogeneity, and this split is unaffected by other features.
As a result, the remaining features have no effect on the split, which is why
they are invariant to the scale of the features.

II.6.2 Normalization
Normalization is a scaling technique that shifts and rescales values to make them
range between 0 and 1, it is also known as Min-Max scaler.[62]

39

II.6. FEATURE SCALING . METHODS

x′ = x − xmin

xmax − xmin

(II.6)

Here, xmax and xmin are the maximum and the minimum values of the feature
respectively. [64] When the value of x is the column’s minimal value, the numerator
is 0, and so x’ equals 0. When the value of x is the maximum value in the column,
on the other hand, the numerator equals the denominator, and so the value of x’ is
1. The value of x’ is between 0 and 1 if the value of x is between the lowest and
maximum value.
Indeed the Normalization will squash the variables’ ranges in between 0 and 1.

II.6.3 Standardization
Another scaling strategy is standardization, in which the values are centered around
the mean with a unit standard deviation. As a result, the attribute’s mean becomes
zero, and the resulting distribution has a unit standard deviation.[62]

x′ = x − µ

σ
(II.6)

Feature scaling: mu is the mean of the feature values and sigma is the standard
deviation of the feature values. The values, in this case, are not limited to any
fixed range. [64]

II.6.4 Normalization vs Standardization
Which type of feature standardization should be chosen between the two? [64]

• When the data distribution does not follow a Gaussian distribution, normal-
ization is useful. This is useful in algorithms like K-Nearest Neighbors, which
do not presuppose any data distribution.

• In situations where the data follows a Gaussian distribution, standardization
can be beneficial. Standardization also lacks a boundary range, which means
that even if data contains outliers, standardization will has no effect on them.

For this project, the data distribution is not known, then both the standardiza-
tion and normalization will be taken into consideration.

40

II.7. FEATURE SELECTION . METHODS

II.7 Feature Selection
Extracting the power spectral density for each of the 5 bands and each signal, will
result in 100 features extracted from each signal. Having a high number of features
for each sample could lead to a problem known as course of dimensionality.

II.7.1 Curse of Dimensionality
Curse of dimensionality is an issue related to the presence of a high number of
features compared to the total samples available. There is not a strict rule related
to the ratio between the number of samples and the number of features for each
sample, but is a common approach not to have more features than samples in the
dataset. [65]
Having an high number of features for each sample could lead to two main issues:

1. Have more features than observations increases the risk of massively overfitting
the model, with consequently in terrible results out of sample performance.
[66]

2. When there are too many features, it becomes more difficult to cluster
observations because there are too many dimensions, making one observation
appear equidistant from the rest.
This is a serious concern since clustering requires a distance measure like
Euclidean distance to estimate the similarity between observations. No
meaningful clusters can be created if the distances are all roughly equal. [66]

Feature selection is a process which selects the features contributing the most to
classify output features of the machine learning algorithms. The feature selection
methods that are proposed in the next section are heuristics since the problem of
finding best features as input of machine learning models is NP hard, and there’s no
specific rule for considering one of the method would perform better than another
one. [66]

The perfect Dataset for the prediction of a Machine Learning Algorithm, shows
the following features: [66]

1. High Variance: a good model must have features with a lot of variance since
they contain a lot of potential information.

2. Uncorrelated: features that are highly correlated with each other are less
helpful and, in some situations, outright harmful (when the correlation is so
high that it causes multicollinearity); moreover, being correlated means they
contain similar information, thus having two for algorithm training is not
necessary.

41

II.7. FEATURE SELECTION . METHODS

3. Not That Many: low number of features compared to the number of target
variable observations. An overfit model that performs badly out of sample
would result from having too many features relative to data.

Many methods have been developed to select features and reduce the risk of
curse of dimensionality, divided in three categories: Filter Methods, Wrapper
Methods, Embedded Methods.

II.7.2 Filter Methods
• This method is done as one of the pre-processing step before passing the data

to build a model, so the features are selected blindly to the model.

• Various Statistical test are performed and the feature’s are selected on the
basis of their score.

• Filter Methods are less accurate but faster to compute, for this reason it is
preferable to use filter methods for larger dataset. [70]

Correlation Analysis

To guarantee a low level of correlation between variables this approach is used.
Many variables are frequently associated with one another and thus redundant;
therefore, deleting one of them will not result in a significant loss of information.[67]
The variable to be kept is the one that has a higher correlation coefficient with the
target.
The following is the formula for the correlation:

rxy =
qN

i=1(xi − x̄)(y − ȳ)ñqN
i=1(xi − x̄)2(y − ȳ)2

(II.7)

r refers to to the correlation between features x and y, and N is the total number
of samples in the dataset.

Amount of variation

If the feature is mostly all the same value or has a very low variation, then for the
model is also hard to learn from it.[68]
In this case the approach is:

1. To account for variables with different scales, standardise all variables or use
standard deviation.

2. Drop variables with zero variation (unary).

42

II.7. FEATURE SELECTION . METHODS

Correlation with the Target

This method consists in removing variables with a very low connection to the target.
If a variable has a very low correlation with the target, it’s not going to be useful
for building the model and the prediction.[68]

However this approach could miss a useful feature as there might be a feature
interaction. Two variables taken singularly could not correlate with the target,
however, they are associated with the target after they have been merged into a
feature.[69]

43

II.7. FEATURE SELECTION . METHODS

II.7.3 Projection Methods
Projection Method is a subcategory of Filter Methods, as it does not take into
account the performance of the model in selecting the features. The most common
method is Principal Component Analysis, widely used due to his ductility and
effectiveness.

Principal Component Analysis

Principal Component Analysis (PCA) is a technique for reducing the number of
variables in a data collection while keeping as much information as possible. It
creates a set of principal components that are ranked by variance (the variance of
the first component is higher than the second, the second component is higher than
the third, and so on), uncorrelated, and low in number (lower-ranking components
can be discarded because they have minimal signal), as the number of components
will correspond to the final number of features kept.[71]
To apply PCA features selection, fixed steps have to be applied on the starting
dataset that has to be reduced.

Standardization

This phase is used to normalise the range of continuous initial variables so that their
contribution to the analysis is equal. As seen in the previous section, standardization
allows creating an equal range for the features of the dataset.[71]

Covariance Matrix Computation

The aim of this step is to check if there is any link between the variables in the
input data set and how they differ from the mean with respect to each other. This
is achieved by computing the covariance matrix and it helps for the detection of
strongly linked variables, as they contain redundant data. [71]
The covariance matrix is symmetric and of shape p x p (where p is the number of
features) and its entries are the covariances associated with the complete set of
pairs of the initial variables.

EigenVectors and EigenValues

Principal components are new variables created by combining the initial variables in
a linear way. These combinations are made in such a way that the new variables are
uncorrelated and most of the information within the initial variables is compressed
into the first components.[71]
Principal components, in geometric terms, are the data directions that explain the

44

II.7. FEATURE SELECTION . METHODS

most variance, as well as the lines that capture the most data information.[72] The
link between variance and information is that the greater the variance carried by a
line, the wider the dispersion of data points along it, and the more information it
holds.[72]
Principal components are, in fact, those lines on which the projection of dataset
points is as large as possible. It’s important to note that this technique does not
take into consideration the samples’ labels. [71]
The eigenvectors of the Covariance matrix are referred to as Principal Components
because they are the directions of the axis with the largest variance (information).
The coefficients associated with eigenvectors represent the amount of variation held
in each Principal Component, and eigenvalues are just the coefficients attached to
eigenvectors.
Ranking eigenvectors in order of their eigenvalues, highest to lowest, the principal
components are ranked in order of significance too. [71]

Feature Values

The feature vector is essentially a matrix with as many columns as the number of
features retained as eigenvectors of the components. This consists in the first step
towards dimensionality reduction. In fact, choosing to keep only p eigenvectors
(components) out of n, the final dataset will result in having only p dimensions.
[71]

Project the Data Along the Principal Components Axes

The aim of this step, which is the last one, is to reorient the data from the original
axis to the ones recommended by the principal components using the feature vector
formed by the eigenvectors of the covariance matrix. This can be accomplished
by multiplying the original dataset’s transpose by the feature vector’s transpose,
resulting in a new feature space with fewer features. [71]

45

II.7. FEATURE SELECTION . METHODS

II.7.4 Wrapper Methods
Wrapper methods use greedy search algorithms to examine all possible feature
combinations and select the one that delivers the best result for a particular machine
learning algorithm.
Testing all possible combinations of the features can be computationally very
expensive and this is a drawback of this approach for feature selection, particularly
if the feature set is very large, as it is specifically for this project. Moreover this
set of features, as it was selected for one specific algorithm, may not be optimal for
every other machine learning algorithm.[75]

The wrapper methods inspected in this thesis are of two different types: [74]

• Forward Selection: an iterative method that starts with having no feature in
the model. In each iteration, it keeps adding the feature which best improves
the model’s performances till adding a new variable does not increase the
model’s performance.[74]

• Backward Elimination: backward elimination starts with the complete set of
features and removes the least significant at each iteration, which improves
the performance of the model. This process is repeated until no improvement
can be shown on the features that have been deleted.[74]

46

II.7. FEATURE SELECTION . METHODS

II.7.5 Embedded Methods
Embedded methods combine the advantageous aspects of both Filter and Wrapper
methods. Similarly to wrapper methods, select features based on the learning
procedure of the Machine Learning model. However, Wrapper methods identify
unimportant features iteratively using an evaluation metric, whereas Embedded
methods perform feature selection and training of the algorithm in parallel, indeed
the feature selection process is an integral part of the classification model. [75]

Wrapper and Filter Methods are discrete processes in the sense that features
are either maintained or eliminated; as a result, compared to Embedded Methods,
the data variance may be higher.
One example of a widely used embedded algorithm is Lasso.

Least Absolute Shrinkage and Selection Operator

The Least Absolute Shrinkage and Selection Operator (LASSO) is a shrinkage
approach that simultaneously conducts variable selection and regularization.
Regularization is a technique for reducing coefficients (weights) to zero and punish-
ing more complex models in order to minimise overfitting. When coefficients are
set to zero, a feature selection is performed, and that feature is then eliminated.
[75]

47

II.8. TRAINING AND TEST PHASE . METHODS

II.8 Training and Test Phase
To build a reliable machine learning model, the best approach is to split the whole
available samples dataset into the training set, validation set, and test set. Not
following this approach means that there will be the risk to face a result biased by
the training set.

• The Train Set is the set of data that is used to train and make the model
learn the hidden features/patterns in the data.

• The Test Set is a set of data, separate from the training, that is used to
finally evaluate the performances of the model on new data, unseen during
the training.

It’s important that the Test Set is never considered when training the mode,
not even for the hyper parameters tuning, and is just used to evaluate the model
performances. In this way the model is not affected by the test set, and the results
obtained in its predictions are comparable to the ones that could be obtained with
data coming from the real world.
In this project the full dataset was splitted with the ratio 80-20, as 80% was used
for the training phase and the remaning 20% for the test.

However testing the model directly on the test set, without a previous check
of the intermediate result will likely cause a high level of overfitting, as the hyper
parameter cannot be properly tuned and the model won’t generalize enough.

II.8.1 Generalization
The term "generalization" refers to how well a machine learning model’s features
apply to specific cases not seen by the model while it was learning. A good machine
learning model generalizes well from the training data to any data from the problem
domain. This allows making predictions in the future on data the model has never
seen.[77]
A model that do not generalize enough leads to overfitting.
When a model learns the information and noise in the training data to the point
where it degrades the model’s performance on new data, this is known as overfitting.
This means that the model picks up on noise or random fluctuations in the training
data and learns them as concepts.[77] The issue is that these notions do not apply
to new data, limiting the models’ ability to generalize.
On the contrary, underfitting refers to a model that can neither model the training
data nor generalizes to new data. Overfitting is a much more common error in
Machine Learning algorithms, and whether is easy to detect, is not immediate to

48

II.8. TRAINING AND TEST PHASE . METHODS

solve. The most effective tool to avoid overfitting, in a machine learning algorithm
is the k-fold cross-validation.[76]
Another possible approach to mitigate the effect of overfitting is considering not
too complex models in the training phase; in this way, the random fluctuations in
the training data are not learned too specifically. [76]
To detect a possible overfitting, a common approach consists in testing the prediction
of the algorithm not only on the test set, but also on the train set that was used to
train the model. In this way, if the performances’ metrics for the train are much
higher than in the test, could be an evident symptom of over-fit.

II.8.2 k-Fold Cross Validation
To solve the problem related to overfitting, training proceeds on the training set,
and evaluation is done on the validation set, which is a portion of the training set, to
consider the goodness of chosen hyperparameters, and when the experiment seems
to be successful, final evaluation can be done on the test set.[78] This validation
process gives information to tune the model’s hyperparameters and configurations
accordingly, understanding whether the training is moving in the right direction or
not.

However, splitting the available data into three sets lowers the number of samples
that can be used to train the model, and the results can be influenced by a random
selection of the train and validation sets.
Cross-validation (CV for short) is the procedure that can be the solution to this
problem. A test set is held out for final evaluation, but there’s no more a clear
distinction between the validation and the training set, as the latter is split into k
smaller sets.
This is the procedure followed for each of the k “folds”:[78]

1. A model is trained considering the k-1 of the folds as training data.

2. The resulting model is validated on the remaining fold. It is used as a test set,
to check the performance of the model with the considered hyper parameters,
and the results are saved.

3. Once all the k folds have been used at least once as a validation set, as overall
performance score is considered the average of the different scores.

The average of the values computed in the loop is the performance metric
reported by k-fold cross-validation, for each single fold kept as validation. CV is
for sure more computationally expensive, but does not waste data as having a
fixed validation set size, which is an advantage in this project, where the number

49

II.8. TRAINING AND TEST PHASE . METHODS

Figure II.8: Steps for the creation of the best possible model to avoid poor
performances in the final evaluation due to overfitting or underfitting, using k-fold
cross validation for the parameters tuning, from [78]

.

of samples is very small.
Cross-validation is then a powerful resampling procedure used to evaluate machine
learning models on a limited data sample. [78]
The process includes only one parameter, k, which specifies the number of groups
into which a given data sample should be divided. For this reason, the procedure
is also called k-fold cross-validation.
When k is equal to the number of samples in the dataset, it means that at every
iteration the model is built on N-1 samples, and evaluated on the remaining one.
This leads to a particularly strong algorithm, however this approach increases the
computational time required for the training, as a total of N-1 of different models
has to be trained, which consequently increases the required computational time.
[78]

The models in this project will be trained using a 10-folds cross-validation
technique and the Leave One Out approach.

50

II.8. TRAINING AND TEST PHASE . METHODS

Figure II.8: Illustration of the k-fold cross validation technique for the hyper-
parameters tuning, from [78]

II.8.3 Performance Metrics
Once the model has been built, how is it possible to measure its performances first
on the validation sets and then on the test set?

All the performance metrics are based on the confusion matrix. A confusion
matrix is a technique for summarizing the performance of a classification algorithm.
The confusion matrix is divided into 4 different sections, 2 for each possible
classification class. Considering one class (A) as the positive one, and the other as
negative (B). [79]

1. TP = True Positive, the samples correctly classified as class A

2. TN = True Negative, the samples correctly classified as class B

3. FP = False Positive, the samples wrongly classified as class A

4. FN = False Negative, the samples wrongly classified as class B

51

II.8. TRAINING AND TEST PHASE . METHODS

Figure II.8: Visual representation of the confusion matrix, to evaluate the perfor-
mances of a model, from [79].

A perfect output of the confusion matrix, classifies all the samples as True
Positive and True Negative, and none of them is wrongly classified (False Positive
and False Negative).
Through the analysis of the confusion matrix and the different spreding of predic-
tions among the four different categories, several scoring functions can be computed.

Accuracy

Accuracy is the starting point for evaluation metrics and the easiest to calculate.
It computes the number of correctly predicted samples, above all the possible ones.

Accuracy = TP + TN

TP + FP + TN + FN
(II.8)

Classification accuracy alone can be misleading if the training dataset has an
unequal number of observations in each class.[82]
Observing the result of accuracy through a confusion matrix can give a better
idea of what the classification model is getting right and what types of errors it is
making. [81] Considering the example of having an unbalanced dataset between the
two classes, it could be achieved an accuracy of 90% or more, but this is not a good
score if 90 records for every 100 belong to one class. This means this score could
have been achieved by always predicting the most common class value. Observing

52

II.8. TRAINING AND TEST PHASE . METHODS

the values distribution of the confusion matrix, can be easily detected if a high
value of accuracy is obtained due to the imbalanced prediction of the class. Indeed,
given that the positive class is the most common one, all the values in the confusion
matrix will occupy the True Positive and False Positive positions.
But for an algorithm that only considers numbers, is not easy to detect a wrong
configuration in the confusion matrix and will only evaluate the performance on
the accuracy value. That’s why further performance metrics have to be taken into
account.

Precision and Recall

The precision is the ratio:

Precision = TP

TP + FP
(II.8)

where TP is the number of true positives and FP is the number of false positives.
Precision is the capacity of the classifier to not label a sample that is negative, as
positive. [81]

The recall is the ratio:

Recall = TP

TP + FN
(II.8)

The recall is the measure of the model correctly identifying True Positives.[81]
Precision and Recall are two inverse measures, if the value of one increases, is

very likely the other will decrease. That’s why is important to choose one of the two
metrics and focus on it. In the case of this project, the more useful feature is the
precision, given that the positive class is the one of control patients. Indeed is more
important to detect as many Parkinson’s patients as possible, and keep the value
of False Negative classifications low. However it could be interpreted that even the
patients wrongly classified as negative (with Parkinson disease), could suffer from
another related desease. In this case another performance metric could then be
used, to guarantee a precision and recall as high as possible, the F1 score.[83]

F1 score

The F1-score combines the precision and recall of a classifier into a single metric
by taking the harmonic mean. It is primarily used to compare the performance of
two classifiers. Suppose that classifier A has a higher recall, and classifier B has
higher precision. In this case, the F1-scores for both the classifiers can be used to

53

II.8. TRAINING AND TEST PHASE . METHODS

determine which one produces better results. [84]

F1 − score = 2 ∗ Precision ∗ Recall

Precision + Recall
(II.8)

Summary

While learning, the machine learning models will tune their hyperparameters
considering the one that will produce a better result for the chosen scoring function.
To avoid overfitting the whole dataset is splitted in three different sets. Training
and Validation set are used to train the model and to chose the best parameters
and hyperparameters. If the model parameters, on one hand, are set automatically
by the gradient descent technique of the algorithm, on the other hand the model
hyperparameters are set manually, in accordance of the performances obtained by
the validation set. Once the best performing configuration of hyperparameters is
found, the model trained with this ultimate set is tested on the prediction of the
Test Set, which was never involved in the construction and validation of the model
and will then give the ultimate response on the performance of the algorithm.
Hyperparameters are different for each classification algorithm, and reflect their
main characteristics. In the next section will be given an insight on all the possible
choices and how to select the best set of hyperparameters among the possible ones
for each algorithm.

54

II.8. TRAINING AND TEST PHASE . METHODS

II.8.4 Hyperparameters Tuning
In this project, to choose the best hyperparameters for each trained model, has
been used the method available on Python GridSeacrhCV of the sklearn python
library, which will automatically perform a grid search among all the possible
hyperparameters, using a cross validation technique on the train set. This method
will explore all the combinations of the set of values for hyperparameters specified
for a model, and using a k-fold cross-validation technique individuates the best
parameters to achieve the best results for the model. These are individuated
considering the average score on the chosen metrics, between the k different models
evaluated on the trained set. Once the best parameters are found, the model has to
be retrained considering the whole training set, not separated from the validation
set, and then evaluated on the test set. This allows to reduce the risk of overfitting,
using a k-fold cross validation, and automatically performs the validation of the
possible parameters.[85]

For each different model several parameters con be chosen, and will be investi-
gated on them in the following.

Class Imbalance

Before inspecting the hyperparameters of each model, it’s important to give an
insight to this aspect which characterizes almost all the methods. Most machine
learning algorithms assume that the data is equally distributed within the two
classes. The fundamental issue with class imbalance difficulties is that the algorithm
will be biased toward forecasting the majority class and will lack sufficient data to
understand the patterns present in the minority class.[80] This problem is common
to almost all the algorithms considered for this project, and exists a common
solution, which consists in giving different weights, to two different classes, not to
bias the learning with the most common one.[86]

Logistic Regression

The following are the main hyper-parameters that is possible to tune, through the
sklearn library, for the Logistic Regression: [87]

• Penalty: type of regularization applied to the function, in order to minimize
overfitting and reduce its generalization error.
Adding the regularization parameter to the Logistic Regression, will make its
cost function become like this:

J = −
NØ

n=1
ynlog(tn) + (1 − yn)log(1 − tn) + CR(β) (II.8)

55

II.8. TRAINING AND TEST PHASE . METHODS

Where R is the regularization function, which depends on beta, the coefficients
of the function. C is the regularization parameter, and will be investigated
in the following.
Two different types of regularization techniques exist, L1 and L2 regularization.
For L1 regularization the equation is:

L1 =
NØ

i=0
|βi| (II.8)

Whereas in L2 regularization the parameter is:

L2 = 1
2

NØ
i=0

β2
i (II.8)

And N is the total number of samples in the dataset.

• C: Inverse of regularization strength. This represents the coefficient of
the regularization step seen previously. The higher this value, the smaller
contribution is given to the regularization, this means giving a high relevance
to the data. On the contrary, with a smaller value of C, more importance is
given to the regularization step, and less confidence in the data.

• Solver: options to choose solver algorithm for optimization. Each solver tries
to find the parameter weights that minimize a cost function. The default
solver often works great in most situations, other solutions can be used for
specific occasions, for example in case of very large datasets, but is not the
case in this project.

• Class Weight: this parameter is used to overcome the problem of class
imbalance. If the option for class weight is balanced, the model automatically
assigns the class weights inversely proportional to their respective frequencies.
To be more precise, the formula to calculate this is:

wj = N

#classes ∗ Nj

(II.8)

Where,
wj is the weight for each class(j signifies the class),
N the total number of samples or rows in the dataset,
#classes the total number of unique classes in the target,
Nj is the total number of rows of the respective class,

56

II.8. TRAINING AND TEST PHASE . METHODS

Support Vector Machine Classifier

The following are the main hyper-parameters that are possible to tune, through
the sklearn library, for the Support Vector Machine: [88]

• C: as for the previous algorithm, it signifies the inverse of regularization
value. The regularization parameter is a value of importance that is given to
misclassifications. SVM solves a quadratic optimization problem trying to
maximize the margin between both classes and minimizing the number of
misclassifications. But in the case of non-separable problems, to find a solution,
the misclassification constraint must be relaxed using the relative parameter.
This parameter is the coefficient of the value ϵ which corresponds to the
distance of the point from its actual margin of the separation hyperplane. The
more lambda expands, the fewer incorrectly labelled examples are permitted.
When lambda tends to infinite the solution tends to the hard-margin which
does not allow miss-classification. When lambda tends to 0 more miss-
classification are allowed.[89]
The formula then becomes:

minw||w||2 + C(
Ø

i∈C+

ϵi +
Ø

i∈C−

ϵi) (II.8)

The same approach is used in the case of a non-linear-kernel. Given this,
overfitting could be a consequence of the high value of λ, whereas for lower
values of lambda the possibilities of underfitting increase.

• Class Weight: as before class weights can be used to deal with imbalanced
dataset, in this case the formula becomes:

minw||w||2 + C(β+ Ø
i∈C+

ϵi + β+ Ø
i∈C−

ϵi) (II.8)

Where β are the different weights associated to the classes, based on their
relative number of samples in the dataset.

• kernel: Signifies the kernel selection for SVM Machine Learning Algorithm,
in order to overcome the problem of non linearly separable class, through the
kernel trick. There are several possilbe kernels function that could be used:
“rbf” (A very popular kernel, which stands for “radial basis function”), “linear“
(Liner kernel), “poly“ (Polynomial kernel), “sigmoid” (Sigmoid kernel).

57

II.8. TRAINING AND TEST PHASE . METHODS

K Nearest Neighbours

The following are the main hyper-parameters that are possible to tune, through
the sklearn library, for the K-Nearest Neighbours: [90]

• n_neighbor: This is the most important and significant parameter with kNN
algorithms as it regulates the number of neighbors that should be checked
when an item is being classified, to decide the label based on the most common
one represented in between the neighbors.

• weights: This parameter signifies how weights should be distributed between
neighbor values, based on their distance from the sample that has to be
classified.

1. “uniform”: weights will be distributed equally among all neighbor’s
values.

2. “distance”: weights will be distributed based on their distance and closer
neighbors will have a higher weight in the algorithm.

• algorithm: Signifies the algorithm that will be used to compute nearest
neighbors. Choosing one or another of these algorithms won’t change the
final output but just the speed of the learning process, that’s why just one of
them will be picked. The difference between the possible algorithms consists
in the way training samples and their relative positions are represented, for
example with an ordered tree rather than randomly in an array. When a new
sample has to be classified, looking for neighbors in an ordered tree is much
faster than using a brute force approach in an unordered array.

• metric: The distance metric to use for the distances. The default metric is
Minkowski, but can be chosen even Euclidean metric or Manhattan.

Random Forest Classifier

The following are the main hyper-parameters that is possible to tune, through the
sklearn library, for the Random Forest Classifier: [91]

• criterion: This parameter allows choosing between two values: gini or entropy.
The two parameters usually lead to very similar results, but there is a
performance difference as Gini is usually faster since it uses a logarithmic
algorithm to compute the entropy.

• splitter: This parameter can be used to define the split strategy and takes
two values: best or random.

58

II.8. TRAINING AND TEST PHASE . METHODS

best will initiate splits on the feature that provides the most information after
the split (the best one), instead random will chose the splitting on random
features. The difference is that best will provide reduced computation and
as a consequence more efficiency. Random might be useful when all features
provide equal or similar importance to the classification, and the computation
needs to be faster.

• max_depth: This parameter is a reference of the maximum depth of the deci-
sion tree. When left at default (None), nodes will be expanded until all leaves
are pure or they contain samples less than the value of min_samples_split.
This value can be used to reduce the overfitting of the model, as with a small
depth the model is less complex and is likely to generalize more.

• min_samples_split: The minimum number of samples necessary to split an
internal node, even this term can be used to reduce or increase the complexity
of the model. If the number of samples left on the current node is less than
the value of this parameter, the node will be then considered as a leaf, and
its label will be the class with a higher number of samples.

• bootstrap: If False, the whole dataset is used to build each tree; in the other
case the Bootstrap Aggregation technique is used. Bootstrap Aggregation
is a useful procedure to reduce the variance of a decision tree algorithm, as
their shape depends on the specific data on which they are trained.[92]
If the training data is changed the resulting decision tree can be quite different
and as a consequence its relative prediction.
The reason for this lies in the hierarchical nature of the tree classifiers. An
error that occurs in a node at a high level of the tree propagates all the way
down to the leaves below it.
And so Bagging (bootstrap aggregating) can reduce the variance and improve
the generalization error performance. The basic idea is to create variants
of the training set, using bootstrap techniques, by uniformly sampling with
replacement. For each of the training set variants, a tree is constructed, and
the final decision follows the same approach as the normal decision trees.

• max_features: not all the features should be considered when looking for the
best split, but a different subset can be chosen:

– Auto =
max_features =

ñ
n_features. (II.8)

– log2 =
max_features = log2n_features. (II.8)

59

II.8. TRAINING AND TEST PHASE . METHODS

– None =
max_features = n_features (II.8)

• class_weights: same use of previous algorithms, to overcome the problems
related to class imbalance.

Linear Discriminant Analysis

The following are the main hyper-parameters that are possible to tune, through
the sklearn library, for the Linear Discriminant Analysis: [93]

• solver: solver to use, possible values:
‘svd’: Singular value decomposition (default). Does not compute the co-
variance matrix, therefore this solver is recommended for data with a large
number of features. ‘lsqr’: Least squares solution. Can be combined with
shrinkage or custom covariance estimator. ‘eigen’: Eigenvalue decomposition.
Can be combined with shrinkage or custom covariance estimator.

• shrinkage: matrix inversion is a base operation for LDA, and is an extremely
sensitive operation. A small amount of noise will be amplified in the matrix
inversion, which then is likely to introduce overfitting. Regularizing LDA is a
way to overcome this problem. It basically replaces Sw with

Sw = (1 − t)Sw + tI (II.8)

where I is the identity matrix, and t is the regularization parameter (shrinkage
constant).

60

II.9. SUMMARY OF DATA MANAGEMENT PIPELINE . METHODS

II.9 Summary of Data Management Pipeline
This section contains a summary of the technologies used in the inspected steps for
the management and analysis of the data, to lead to the final prediction.
The first step is the preprocessing, and as seen before consists of noise and artifact
removal, and ICA preprocessing to individuate the noise sources. These two actions
are performed using the EEGLAB Library of MatLab, which allows to perform
those two important steps automatically through the functions Clean_Raw_Data
and Perform_ICA.
After these two initial steps on Matlab, each cleaned signal is exported from Matlab
in a data format suitable for the MNE library in Python. Indeed, Python is then
used for the further steps, through the MNE library, specifically developed for EEG
analysis. After the import of the data, the main feature is extracted, which is as
seen before, the power spectral density. This is achieved through the MNE function
mne.time_frequency.psd_welch, which extracts the power spectral density using
the Welch method for each signal specified in the function parameter picks. This
function transforms the signals from the time domain to the frequency domain,
computing the total value of the signal for each frequency in the specified frequency
interval. The Welch method consists in computing a Fast Fourier Transform with
a window of a certain length which moves through the signal length. Using the
parameter for the length of the Fast Fourier Transform (FFT) is possible to specify
the number of frequencies to consider in the Power Spectral Density.
Once the power spectral density is computed, to retrieve the Average Total Power
separately for each band of interest, is used the Simpson method implemented in the
NumPy Python library, that for a given array computes the internal covered area,
which represents the actual total power. For each patient and for each electrode
the total power is calculated for the five different bands of interest. These values
are saved in a Data Frame of the pandas library, where each row corresponds
to a sample/patient and each column to a feature (i.e. the total power for the
specific electrode and the specific band). Before the training of the model, features
need to be scaled, and both the approaches are tried with Normalization and
Standardization.
After the scaling, to avoid problems related to curse of dimensionality, relevant
features are selected. This is done through one of the feature selection methods
previously described, comparing the effect of different models’ performances.
After the feature selection, the classification models are trained, using the Grid-
SearchCV for the hyperparameters tuning and once the best performing ones are
detected, the model is used to predict on the test set, evaluating the actual results
of the algorithm, comparing the Precision, Recall, F1-Score and visually analyzing
the confusion matrix.

61

II.9. SUMMARY OF DATA MANAGEMENT PIPELINE . METHODS

Figure II.9: Visual summary of the pipeline’s steps which lead to the creation of
the classification model.

62

Part III

Results of Machine Learning
Application

63

Results

This section contains an overview of the obtained performance’s scores, using all
the methods previously presented.
Since preprocessing is not a fixed science, is not possible to identify a priori the
perfect combination of techniques to achieve the best results. For this reason, a
combination of the different techniques is tried, and the results of the best perform-
ing ones are presented in the following.

The results presented are the outcome of the algorithm applied on the data
already preprocessed with the techniques previously described.
Given the unbalance of the dataset, it is important to correctly label the positive
and negative classes, for the evaluation of performances’ scores using the confusion
matrix and interpreting the accuracy, precision, recall and f1. Indeed in the case of
an unbalanced classification, not only the accuracy score, but even the recall and
precision would present an high unjustified scores, if the class with more samples
in the dataset is considered the positive one. For this reason the positive class is
the one associated to control patients (37 samples), and the negative class to the
larger dataset of PD patients (91 samples).
Given these assumptions, Precision is considered the most important metric to
account for. Indeed, given the formulation of the Precision, a high result implies a
small value for False Positive. As the positive class is the one associated to the
controls patients, it means having few false predictions for PD subjects, wrongly
considered controls.
On the contrary, considering not strictly necessary a high value for the Recall,
means having found many False Negative predictions. However wrongly predicting
a Parkinson’s patient, rather than wrongly predicting him as healthy is less harmful
rather than predicting healthy an ill patient. Moreover the wrong classified patients
could conceal another illness that caused the alteration of their EEG from the
standard recordings of Control patients.

The dataset presents 128 rows (91 PD + 37 Controls) and 301 columns, as it

64

. RESULTS

was computed the average total power for each of the 5 bands for 60 channels +
target label column. The channels are just 60 and not 64, which is the number of
channels used in the experiment to build the dataset used in this project, because
4 of them were noisy for certain samples and were discarded.
Given the higher number of features compared to the number of samples, to avoid
the Curse of Dimensionality presented in the previous chapter, was necessary to
proceed with feature selection.

These are the results without applying any sort of dimensionality reduction, us-
ing the complete dataset just after a feature range normalization, comparing the
prediction’s results on the test and train dataset.

65

. RESULTS

Figure III.0: Resulting char plot of the prediction on the Train and Test set without
any technique of dimensionality reduction

As it can be seen from the previous results, an high number of feature leads to
an high overfitting, as the results on the train dataset are much better than the
ones on the test.
Given the overall performances of Random Forest, accuracy of 85% and F1 close to
80%, it can be considered as a possible model to be uploaded on the application.

In the following sections are presented the three different approaches for feature
selection, and the relative performances.

66

III.1. FILTER METHODS . RESULTS

III.1 Filter Methods

III.1.1 PCA Dimensionality Reduction
Even if it’s a sub-category of the filters method, PCA is anyway inserted in this
section.
The first analysis was made using the PCA method for features selection, both
with 50 or 100 features. However it didn’t provide any good results, as can be seen
in the below figures.

Figure III.1: Illustration of the results obtained with the Principal Component
Analysis to reduce the dataset Curse of Dimensionality, comparing the different
performance’s score metrics, selecting 50 features.

67

III.1. FILTER METHODS . RESULTS

Figure III.1: Illustration of the results obtained with the Principal Component
Analysis to reduce the dataset Curse of Dimensionality, comparing the different
performance’s score metrics, selecting 100 features.

As can be seen, none of the models produced an acceptable result. The higher
value for the Recall performances are due to the class unbalance, and due to the
fact almost all the controls are misclassified as PD patients.

III.1.2 Remove High Correlated Features
The technique of removing high correlated features is the one that provided the
best results in the performance metrics.
First is applied the features reduction technique for removing the ones that are
highly correlated within each other, with a threashold value of 90% of correlation for
being discarded, after a feature standardization. With this approach, the Random
Forest provides good results and the model is one of the selected to be uploaded
on the Web App backend predictor. Indeed the accuracy reaches the value of 93%
and both Precision and Recall are slightly higher than 80%, as it can be seen in
the graph (see Figure III.1), as in the successive relative Confusion Matrix (see
Figure III.1). This was the best performance obtained.

68

III.1. FILTER METHODS . RESULTS

Figure III.1: Illustration of the results applying Standardization and removing the
features highly correlated between each other.

Figure III.1: Representation of the Confusion Matrix obtained for Random Forest.
It shows how only two samples were misclassified during the prediction step, one
per class.

Further analyses can be done with a previous Normalization/Standardization
and a subsequent feature selection, keeping just the top-N variables with an higher
correlation with the target. Many trials were made considering different numbers
of N features to keep.
In the first chart the kept features were the top 200 with an higher correlation with
the target, which provided poor results, due to an high overfitting.

69

III.1. FILTER METHODS . RESULTS

Figure III.1: Char plot of metrics’ performances after selecting the 200 features
with an higher correlation with the target.

The value of Recall, Precision and F1 of the KNN classifier are at zero such as
the value of True Positive (correctly classified Controls), because all the samples
are classified as PD subjects. This behaviour is probably due to overfitting in the
training phase, which was not possible to solve with the standard anti-overfitting
approaches.
Similar results were obtained with 150 features, whereas with 70 the performaces
increase, and the overall metrics perform like:

70

III.2. WRAPPER METHODS . RESULTS

Figure III.1: Char plot of metrics’ performances after selecting the 70 features with
an higher correlation with the target.

In this case, the values for Precision and Recall for the Random Forest Model
are perfectly balanced, even if the overall score is not particularly high.

The hyper parameters of the previous results were tuned using 10 cross-validation
techniques. It was even tried the Leave One Out approach, to build a more robust
algorithm. It leaded to similar results between all the methods, but not better
than with the standard Cross-Validation, and given the higher computational cost
associated to this method, it was not further taken into consideration.

The bigger issue related to the the classification was the overfitting. Indeed,
many models with different combinations of features selections, gained metrics
score >95% on the train set, but poor ones in the test set, even considering all the
possible solutions to overcome the overfitting.

III.2 Wrapper Methods
The application of Wrapper Methods is highly time consuming, as it relies on the
decision of which features to select, training every time a different model, on the
new sub set.
To implement this approach was used the python function "SequentialFeatureS-
elector" of the sklearn library. This function allows both forward and backward
methods changing one parameter. The parameter n_features_to_select of the

71

III.3. EMBEDDED METHODS . RESULTS

function is used to select the number of features to consider for the model, which
is trained with a k-fold cross validation approach.

III.2.1 Forward and Backward Selection
Given the high computational time required for the training of all the different
models, only two models was trained with this approach, the Random Forest
Classifier and Logistic Regression, which are the one that provided the best results
in the feature selection using filter methods.
Even in this case, as discovered with filter methods, overfitting ruined the final
results of the prediction. The scores obtained with the prediction of the train set
were at 100%, however the scores in the prediction of the test set were not above
70%, with the 70 best features selected.

III.3 Embedded Methods
For what concerns the embedded methods, Lasso regression was the approach
considered to perform the feature selection.
As seen in the section relative to the hyper parameters tuning, the LASSO regression
is equivalent to a Logistic Regression with L1 penalty.
The results obtained with however are quite poor, in this case probably due to
underfitting. Indeed, both for the training and test datset the results of accuracy
are not higher than 75%.

72

Part IV

Web Application Implementation

73

Web Interface

Nowadays a huge amount of web interfaces are available on the web, and the
personal approach to the world is moved through these. The most important
characteristics of an application developed for user interaction, is to dispose of a
clear and intuitive interface and the time latency between the user interaction and
the application response, is a relevant aspect to take into account.
To allow these qualities to the application, during the implementation the best
practices have been followed, in order to provide an application with the best
possible experience for the target final users and for its scope.

IV.1 Motivation
To allow a more efficient usage of the developed machine learning algorithm directly
by the doctors, part of this project consists in developing a web interface to ease
the usage of the potentiality of the computer science tools to someone who is not
used to work with raw code, on a Python IDE interface. Indeed, retrieving the
results of the prediction for a certain signal through a programming interface and
lines of code, could be a challenging task for a doctor, unskilled for this kind of
environment. This is the reason why one of the main purposes of this thesis was
to develop this tool to ease the access to Machine Learning algorithms, and work
with them even if those are hidden behind a easy and ready-to-use user interface.
Moreover, this interface is designed in order to be a starting point for the aim
of this project, and new tools and technologies can be easily implemented in it.
Further research could be done in this field, for example exploring the different
levels of stages of Parkinson’s disease and not just discerning between PD and
healthy subjects.
For these reasons, the technologies used for the development are the most common
ones nowadays, with the most powerful development possibilities. This will allow
an easy implementation of new features, keeping this interface as the backbone for
further projects and studies in this field.

74

IV.2. IMPLEMENTATION . WEB INTERFACE

IV.2 Implementation
The web interface consists of 3 different main pages:

1. The first page provides an easy access to the prediction of a signal, in
order to predict if the patient who originated that signal is affected by
Parkinson’s or not. This prediction will be generated using a pre-trained
model previously uploaded to the application’s backend. This means the
signals whose prediction is required, should come from the same source as
the ones used to train the model, to retrieve accurate results, as the same
features of the model has to be selected even in the new signal.

2. In case a new dataset of signals is available, in the second page is even possible
to train new Machine Learning models directly from the web page. Indeed,
after uploading all the signals of the patients and healthy subjects, is possible
to choose which model to train among the available ones.

3. The own trained models in the second page, are saved in back-end of the
application, and is then possible to use them to predict a single signal in the
third page of the application.

IV.2.1 Signal Prediction
The first page of the website is the one designed for the prediction of the signals.
The user after uploading the patient’s EEG, can easily obtain an answer if it’s a
PD patient or not. Indeed this interface allows to upload a file, in the specified
data format, as there are many different equipments for the recording and each of
them save the signals in a file with a different extension. The MNE python library,
here used to read the files, supports many different data formats, and this is why
is necessary to specify it.
The technology used for the file upload is multer, which uses the backend of the
application as a server and sends there the uploaded files.
Multer is a node.js middleware for handling multipart/form-data, which is primar-
ily used for uploading files. The uploaded files are saved in the backend of the
application, in a predefined folder.
After the uploading, is possible to choose if performing or not the ICA preprocessing
of the signal. This step will perform the Independent Component Analysis of the
signal previously uploaded, using a python code which exploits the MNE library
and the pre implemented ICA processing function. At the end of the computation
of the ICA preprocessing, two different plots are shown to the user.
The first one shows the distribution of the Independent Components using a visual
representation of the scalp, the second shows the shape of the ICs along time. Using

75

IV.2. IMPLEMENTATION . WEB INTERFACE

these two plots, the user can then choose which components exclude from the signal,
selecting them from the radio buttons that appear in the interface. Differently
from the model building, in this case, the Independent Component exclusion is
performed manually by the user and not exploiting the automatic steps used with
the EEGLAB MatLab library. In fact, is not possible to connect Matlab to a web
interface easily and efficiently.

Figure IV.2: Screenshot of the page for the signal prediction, shows all the features
implemented.

After this first pre-processing step, is possible to extract the main components
of the signal, the average total power for each band, using the power spectral
density. This is the feature that will be used by machine learning to discern the
nature of the signal. Pressing the button "Extract Power Spectral Density", the
signal will be sent to the back-end of the application where a python script will
perform the steps to extract the power spectral density. This processing step is
still computed using the MNE library. Once the signal has been pre-processed, it’s
time to compute his prediction. Is possible to compute this step using different
pre-trained algorithms already present in the back-end of the application, with
a decision of the user. It is important to notice that the used model, must be
produced with the training dataset signals coming from the same source of the new
signal which was chosen to be analyzed, as the exact same features used to build
the model have to be extracted from the signal.
Once the desired models have been chosen is then possible to press the button

76

IV.2. IMPLEMENTATION . WEB INTERFACE

"Compute the Prediction", to obtain the expected prediction of the signal, combining
the results of the chosen algorithms.
The results will be shown in the frontend, as an overall percentage score comparing
the decision of the different algorithms and the single decision for each of them.

77

IV.2. IMPLEMENTATION . WEB INTERFACE

IV.2.2 Model Creation
The second page of the web interface allows the creation of new models starting
from scratch. In this way is possible to create new models starting from a new
dataset of signals, in case different from the one used for the pre-trained models in
the application.
Moreover, since the steps for the creation of an algorithm for the analysis and
prediction of EEG signals, could be the same even for any type of disease that
could be detected through an encephalograms experiment, this page allows creating
new algorithms even for the detection of other diseases.
As the previous one, this interface allows the user to upload the controls’ and
patients’ files, using the multer technology. The two different sets of signals, are
then saved in two different folders in the backend of the application. On these files
will be computed and extracted the Power Spectral Density and subsequently the
average power for every different band, to fill the data matrix that will be used
to train the algorithm. The user has the possibility to choose the channels of the
relative electrodes, for each signal, to analyze or discard. This provides a smaller
number of features and a faster algorithm. Some radio check buttons provide the
choice of the different algorithms that can be trained, and more than one could be
chosen. Once all these decisions have been made, the new models will be computed.

Since MNE does not provide any method for automatic pre-processing of
the signals, but each signal should be manually analyzed one after the other, is
suggested to pre-process the signals using a Matlab script and the EEGLAB python
Library, and then upload them on the application, or use a dataset where a sort of
preprocessing was already implemented.
To overcome problems related to the curse of dimensionality, it is set a number of
features equal to 50% of the total number of samples. To reduce the number of
features down to this value, the used techniques are correlation analysis between
the features, and between features and target, which have shown to be the best
performing, more reliable and faster.
The new produced models will be then saved in the backend of the application, with
the given name and the associated description, inserted in input by the user. To
the user is presented as output the performances obtained by these new algorithms,
comparing the different metrics score on a char plot. On the base of these results,
the user can understand which of the model can be more reliable.
It will be then possible to make use of these new models from the third interface of
the web page.

78

IV.2. IMPLEMENTATION . WEB INTERFACE

Figure IV.2: Screenshot of the page for the creation of a new model, shows all the
features implemented.

IV.2.3 Signal Prediction with Own Models
The models built in the previous section, become available in this section of the
web interface. This allows to produce a prediction for a signal, with a model
trained with a different dataset and even for a different disease. The interface has
the same structure as the section for "Signal Prediction", the only difference is
that the available models to retrieve the prediction are the ones produced in the
previous section. Again is important to notice that the models and the signals
must have the same history, i.e. the dataset used to produce the model must have
been created with signals with the same source and structure as the EEG uploaded
for the prediction.
A new feature in this interface is the possibility to upload a new model already
trained offline on a Python IDE, possibly using more complete techniques of
preprocessing and having the possibility of tuning the hyperparameters in a more
depth way. Once uploaded, the model can then be used in the application as all
the other models.

79

IV.3. CHOSEN TECHNOLOGIES . WEB INTERFACE

IV.3 Chosen Technologies
The frontend of the application was developed with Bootrap-React, whereas for
the backend the chosen technology was Nodejs. These choices were moved by the
necessity to create an application with the best technologies available by now.

IV.3.1 React-Bootstrap
React is a JavaScript-based UI development library run by an open-source developer
community. React has to be considered a library rather than a language, but still
it is widely used in web development. The library was released in May 2013 and
has since grown to become one of the most widely used frontend libraries for web
development. [94]

React is today the most widely used front-end development framework. These
are the main reasons:

1. Easy creation of dynamic applications: React ease the creation of dynamic
web applications because it requires less coding and offers more functionality.

2. Improved performance: React uses Virtual DOM, thereby creating web
applications faster. Virtual DOM updates only the items in the Real DOM
that were changed, instead of updating all of the components again, speeding
the building of the application.

3. Reusable components: Components are the building blocks of any React
application, and a single app usually consists of multiple components, which
are reusable in the application, and this reduces the time required for the
creation of the application.

4. The possibility of using pre implemented objects, makes it easier to understand
and learn the language.

Bootstrap is a free and open-source web development framework, created to
make the process of developing responsive websites easier by offering a set of syntax
for template designs. It is made up of HTML, CSS, and JS-based scripts for a
variety of web design functions and components.[94]. Indeed this library contains
many different components, optimized for web interfaces, realized with Js, CSS,
HTML that can be easily used just importing them from the library and without
concerns regarding the way they work.

80

IV.3. CHOSEN TECHNOLOGIES . WEB INTERFACE

IV.3.2 Node.js
Node.js is an open-source and cross-platform JavaScript runtime environment.
Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the
browser and for this reason very performant.
A Node.js application operates in a single process, rather than starting a new
thread for each request, and its standard library includes a set of asynchronous
I/O primitives that prevent JavaScript code from blocking.

Instead of blocking the thread and wasting CPU cycles waiting for a response,
when Node.js conducts an I/O action, such as reading from the network, accessing
a database, or accessing the filesystem, it will restart the operations when the
response comes back utilising non blocking techniques. Node.js takes advantage of
this behaviour to create faster functions.
This allows Node.js to handle thousands of concurrent connections with a single
server without adding the overhead of thread concurrency management, which may
be a major source of errors.

81

Conclusion

In this work, the focus was on finding the links between EEG and a certain psychi-
atric disease. More specifically, there was an interest in the use of machine learning
methods using EEG to classify Parkinson’s and healthy subjects. To do so, it was
first conducted a literature search on the medical background and functioning of
EEG, and on features’ bio-markers that could be extracted to study and interpret
these diseases in a computer science framework. A dataset containing EEG features
studied in the literature research was exploited for the task. Composed of 128 sub-
jects (91 PD and 37 Control subjects), for each subject were recorded 60 channels,
and for each signal the power spectral density for the 5 different bands, in total
300 features for each subject. It was then made a research on the classification
methods that would have been most suitable for these data.
The first limitation of this work was the number of subjects in the dataset, which
if new studies on the same topic were to be initiated, has to be increased, and its
unbalance. A balanced dataset would give the possibility of an even learning and
avoid the necessity of using a class weight penalty. A higher number of subjects
would allow more reliable results and the possibility to train different and more
developed learning techniques, such as deep learning methods, that require a higher
number of samples to converge.
The highest result obtained for the accuracy was 93% which can be considered
an acceptable result. Indeed, even with the mentioned limitations, the results
obtained are already very encouraging and strengthen the hypothesis of using
machine learning to predict EEG. Indeed this data could be used to help the
diagnosis of psychiatric patients and their potential should be exploited to design
new treatments and more complex problems.

The web interface developed puts into practice the possibility of using these
methods for an automatic diagnosis, with a simple access. The application is
intended to be the starting point of this usage and appliance of algorithms, as it
even permits the development of new models for different diseases starting from
scratch, and applying the best data analysis techniques to train them automatically

82

. CONCLUSION

without the direct intervention of the user. This second feature can be considered
quite ambitious, as the training of a new machine learning model normally requires
an active intervention, however results showed how with EEG data this approach
can be reliable. Moreover, is an attempt to give at disposal of people without a deep
knowledge of data science and machine learning the chance of taking advantage of
these technologies autonomously.

83

Bibliography

[1] Park SM, Jeong B, Oh DY, et al. Identification of Major Psychiatric Dis-
orders From Resting-State Electroencephalography Using a Machine Learn-
ing Approach. Front Psychiatry. 2021;12:707581. Published 2021 Aug 18.
doi:10.3389/fpsyt.2021.707581

[2] Niedermeyer E.; da Silva F.L. (2004). Electroencephalography: Basic Princi-
ples, Clinical Applications, and Related Fields. Lippincott Williams Wilkins.
ISBN 978-0-7817-5126-1.[page needed]

[3] https://www.brainlab.org/get-educated/brain-tumors/learn-brain-anatomy-
basics/brain-anatomy/

[4] https://www.hopkinsmedicine.org/health/conditions-and-
diseases/anatomy-of-the-brain

[5] Ros, Tomas Baars, Bernard Lanius, Ruth Vuilleumier, Patrik. (2014). Tun-
ing pathological brain oscillations with neurofeedback: A systems neuroscience
framework. Frontiers in Human Neuroscience. 8. 10.3389/fnhum.2014.01008.

[6] https://www.simplypsychology.org/forebrain-midbrain-hindbrain.html

[7] Park SM, Jeong B, Oh DY, et al. Identification of Major Psychiatric Dis-
orders From Resting-State Electroencephalography Using a Machine Learn-
ing Approach. Front Psychiatry. 2021;12:707581. Published 2021 Aug 18.
doi:10.3389/fpsyt.2021.707581

[8] https://qbi.uq.edu.au/brain

[9] https://mayfieldclinic.com/pe-pd.htm

[10] https://www.nia.nih.gov/health/parkinsons-disease

[11] Fahn S, Sulzer D. Neurodegeneration and neuroprotection in Parkinson
disease. NeuroRx. 2004;1(1):139-154. doi:10.1602/neurorx.1.1.139

84

BIBLIOGRAPHY BIBLIOGRAPHY

[12] https://www.parkinsonsdaily.com/what-part-of-the-brain-does-parkinsons-
affect/

[13] https://www.nhs.uk/conditions/parkinsons-disease/diagnosis/

[14] J. Satheesh Kumar, P. Bhuvaneswari, Analysis of Electroencephalography
(EEG) Signals and Its Categorization–A Study, Procedia Engineering, Volume
38, 2012, ISSN 1877-7058, https://doi.org/10.1016/j.proeng.2012.06.298.

[15] E. van Diessen, T. Numan, E. van Dellen, A.W. van der Kooi, M.
Boersma, D. Hofman, R. van Lutterveld, B.W. van Dijk, E.C.W. van
Straaten, A. Hillebrand, C.J. Stam, Opportunities and methodological
challenges in EEG and MEG resting state functional brain network re-
search, Clinical Neurophysiology, Volume 126, Issue 8, 2015, ISSN 1388-2457,
https://doi.org/10.1016/j.clinph.2014.11.018.

[16] Kress GJ, Mennerick S. Action potential initiation and propagation: up-
stream influences on neurotransmission. Neuroscience. 2009;158(1):211-222.
doi:10.1016/j.neuroscience.2008.03.021

[17] https://raphaelvallat.com/bandpower.html

[18] Südhof TC, Malenka RC. Understanding synapses: past, present, and future.
Neuron. 2008;60(3):469-476. doi:10.1016/j.neuron.2008.10.011

[19] https://qbi.uq.edu.au/brain-basics/brain/brain-physiology/action-
potentials-and-synapses

[20] Sidiropoulou K, Pissadaki EK, Poirazi P. Inside the brain of a neuron. EMBO
Rep. 2006;7(9):886-892. doi:10.1038/sj.embor.7400789

[21] Klem, GH; Lüders, HO; Jasper, HH; Elger, C (1999). "The ten-twenty elec-
trode system of the International Federation. The International Federation of
Clinical Neurophysiology". Electroencephalography and Clinical Neurophysi-
ology. Supplement. 52: 3–6. PMID 10590970.

[22] https://www.ers-education.org/lrmedia/2016/pdf/298830.pdf

[23] https://www.ers-education.org/lrmedia/2016/pdf/298830.pdf

[24] https://eeglab.org/tutorials/ConceptsGuide/Time_frequency_tutorial.html

[25] Nacy, Somer Kbah, Sadeem Jafer, Hind Al-Shaalan, Ibraheem. (2016).
Controlling a Servo Motor Using EEG Signals from the Primary Mo-
tor Cortex. American Journal of Biomedical Engineering. 2016. 139-146.
10.5923/j.ajbe.20160605.02.

85

BIBLIOGRAPHY BIBLIOGRAPHY

[26] B. Schack, N. Vath, H. Petsche, H.-G. Geissler, E. Möller, Phase-coupling of
theta–gamma EEG rhythms during short-term memory processing, Interna-
tional Journal of Psychophysiology, Volume 44, Issue 2, 2002, Pages 143-163,
ISSN 0167-8760, https://doi.org/10.1016/S0167-8760(01)00199-4.

[27] Mumtaz W, Vuong PL, Malik AS, Rashid RBA. A review on EEG-based
methods for screening and diagnosing alcohol use disorder. Cogn Neurodyn.
2018;12(2):141-156. doi:10.1007/s11571-017-9465-x

[28] https://www.theracycle.com/resources/links-and-additional-
resources/updrs-scale/

[29] http://predict.cs.unm.edu/

[30] Singh, A., Cole, R.C., Espinoza, A.I. et al. Timing variability and midfrontal
4 Hz rhythms correlate with cognition in Parkinson’s disease. npj Parkinsons
Dis. 7, 14 (2021). https://doi.org/10.1038/s41531-021-00158-x

[31] https://sccn.ucsd.edu/githubwiki/files/eeglab2019_aspet_artifact_and_ica.pdf

[32] http://learn.neurotechedu.com/preprocessing/

[33] AUTHOR=Bigdely-Shamlo Nima, Mullen Tim, Kothe Christian,
Su Kyung-Min, Robbins Kay A. TITLE=The PREP pipeline:
standardized preprocessing for large-scale EEG analysis JOUR-
NAL=Frontiers in Neuroinformatics VOLUME=9 YEAR=2015
URL=https://www.frontiersin.org/article/10.3389/fninf.2015.00016
DOI=10.3389/fninf.2015.00016 ISSN=1662-5196

[34] Kim, SP. (2018). Preprocessing of EEG. In: Im, CH. (eds) Computational
EEG Analysis. Biological and Medical Physics, Biomedical Engineering.
Springer, Singapore. https://doi.org/10.1007/978-981-13-0908-3_2

[35] https://doi.org/10.48550/arxiv.2009.12244, doi =
10.48550/ARXIV.2009.12244, url = https://arxiv.org/abs/2009.12244,
author = Saba-Sadiya, Sari and Alhanai, Tuka and Liu, Taosheng and
Ghassemi, Mohammad M., title = EEG Channel Interpolation Using Deep
Encoder-decoder Netwoks publisher = arXiv, year = 2020

[36] Dong, L., Zhao, L., Zhang, Y. et al. Reference Electrode Standardization
Interpolation Technique (RESIT): A Novel Interpolation Method for Scalp
EEG. Brain Topogr 34, 403–414 (2021). https://doi.org/10.1007/s10548-021-
00844-2

86

BIBLIOGRAPHY BIBLIOGRAPHY

[37] Alain de Cheveigné, Israel Nelken, Filters: When, Why, and How
(Not) to Use Them, Neuron, Volume 102, Issue 2, 2019, Pages 280-
293, ISSN 0896-6273, https://doi.org/10.1016/j.neuron.2019.02.039.
(https://www.sciencedirect.com/science/article/pii/S0896627319301746)
Keywords: filter; distortions; Fourier analysis; time-frequency representation;
ringing; causality; impulse response; oscillations

[38] Jiang X, Bian GB, Tian Z. Removal of Artifacts from EEG Sig-
nals: A Review. Sensors (Basel). 2019;19(5):987. Published 2019 Feb 26.
doi:10.3390/s19050987

[39] N. T. Rachman, H. Tjandrasa and C. Fatichah, "Alcoholism classification
based on EEG data using Independent Component Analysis (ICA), Wavelet
de-noising and Probabilistic Neural Network (PNN)," 2016 International
Seminar on Intelligent Technology and Its Applications (ISITIA), 2016, pp.
17-20, doi: 10.1109/ISITIA.2016.7828626.

[40] http://martinos.org/mne/stable/auto_tutorials/plot_artifacts_correction_ica.html
[?] https://www.medicine.mcgill.ca/physio/vlab/biomed_signals/eeg_n.htm

[41] https://eeglab.org/tutorials/06_RejectArtifacts/cleanrawdata.html

[42] Pion-Tonachini, Luca et al. “ICLabel: An automated electroencephalographic
independent component classifier, dataset, and website.” NeuroImage vol. 198
(2019): 181-197. doi:10.1016/j.neuroimage.2019.05.026

[43] O. Dressler, G. Schneider, G. Stockmanns, E. F. Kochs, Awareness and
the EEG power spectrum: analysis of frequencies, BJA: British Jour-
nal of Anaesthesia, Volume 93, Issue 6, December 2004, Pages 806–809,
https://doi.org/10.1093/bja/aeh270

[44] Zainuddin Lubis, Muhammad Manik, Henry. (2016). SIGNAL PROCESSING
FOR POWER SPECTRAL DENSITY (PSD). 10.13140/RG.2.1.2106.2006.

[45] https://eeglab.org/tutorials/ConceptsGuide/Time_frequency_tutorial.html

[46] Hindarto, H., & Sumarno, S. (2016). Feature Extraction of Elec-
troencephalography Signals Using Fast Fourier Transform. CommIT
(Communication and Information Technology) Journal, 10(2), 49.
https://doi.org/10.21512/commit.v10i2.1548

[47] Z. Sun, H. Chen and Y. Chen, "Application of Periodogram and Welch Based
Spectral Estimation to Vortex Frequency Extraction," 2012 Second Interna-
tional Conference on Intelligent System Design and Engineering Application,
2012, pp. 1383-1386, doi: 10.1109/ISdea.2012.689.

87

BIBLIOGRAPHY BIBLIOGRAPHY

[48] Chao-Ying Joanne Peng, Kuk Lida Lee Gary M. Ingersoll (2002) An In-
troduction to Logistic Regression Analysis and Reporting, The Journal of
Educational Research, 96:1, 3-14, DOI: 10.1080/00220670209598786

[49] Pádraig Cunningham and Sarah Jane Delany. 2021. K-Nearest Neighbour
Classifiers - A Tutorial. ACM Comput. Surv. 54, 6, Article 128 (July 2022),
25 pages. https://doi.org/10.1145/3459665

[50] https://ai.plainenglish.io/knn-classification-using-scikit-learn-efb34151a8b9

[51] Cristianini N., Ricci E. (2008) Support Vector Machines. In: Kao
MY. (eds) Encyclopedia of Algorithms. Springer, Boston, MA.
https://doi.org/10.1007/978-0-387-30162-4_415

[52] https://towardsdatascience.com/support-vector-machines-soft-margin-
formulation-and-kernel-trick-4c9729dc8efe

[53] A. Patle and D. S. Chouhan, "SVM kernel functions for classification," 2013 In-
ternational Conference on Advances in Technology and Engineering (ICATE),
2013, pp. 1-9, doi: 10.1109/ICAdTE.2013.6524743.

[54] Breiman, L. Random Forests. Machine Learning 45, 5–32 (2001).
https://doi.org/10.1023/A:1010933404324

[55] Azhari, Mourad Alaoui, Altaf Acharoui, Zakia Ettaki, Badia Zerouaoui,
Jamal. (2019). Adaptation of the random forest method: solving the problem
of pulsar search. SCA ’19: Proceedings of the 4th International Conference
on Smart City Applications. 1-6. 10.1145/3368756.3369004.

[56] https://towardsdatascience.com/is-lda-a-dimensionality-reduction-
technique-or-a-classifier-algorithm-eeed4de9953a

[57] Jijo, Bahzad Mohsin Abdulazeez, Adnan. (2021). Classification Based on
Decision Tree Algorithm for Machine Learning. Journal of Applied Science
and Technology Trends. 2. 20-28.

[58] Appavu, S., Rajaram, R., Nagammai, M., Priyanga, N., Priyanka, S. (2011).
Bayes Theorem and Information Gain Based Feature Selection for Maximizing
the Performance of Classifiers. In: Meghanathan, N., Kaushik, B.K., Naga-
malai, D. (eds) Advances in Computer Science and Information Technology.
CCSIT 2011. Communications in Computer and Information Science, vol 131.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17857-3_49

88

BIBLIOGRAPHY BIBLIOGRAPHY

[59] Frank A. Farris (2010) The Gini Index and Measures of Inequal-
ity, The American Mathematical Monthly, 117:10, 851-864, DOI:
10.4169/000298910X523344

[60] https://blog.paperspace.com/intro-to-optimization-in-deep-learning-
gradient-descent/

[61] P. Baldi, "Gradient descent learning algorithm overview: a general dynamical
systems perspective," in IEEE Transactions on Neural Networks, vol. 6, no.
1, pp. 182-195, Jan. 1995, doi: 10.1109/72.363438.

[62] https://www.analyticsvidhya.com/blog/2020/04/feature-scaling-machine-
learning-normalization-standardization/

[63] https://medium.com/towards-data-science/understanding-the-
mathematics-behind-gradient-descent-dde5dc9be06e

[64] https://www.analyticsvidhya.com/blog/2020/04/feature-scaling-machine-
learning-normalization-standardization/

[65] Venkat, Naveen. (2018). The Curse of Dimensionality: Inside Out.
10.13140/RG.2.2.29631.36006.

[66] https://towardsdatascience.com/the-curse-of-dimensionality-50dc6e49aa1e

[67] https://www.questionpro.com/features/correlation-analysis.html

[68] https://towardsdatascience.com/how-to-use-variance-thresholding-for-
robust-feature-selection-a4503f2b5c3f

[69] https://androidkt.com/find-correlation-between-features-and-target-using-
the-correlation-matrix/

[70] Sánchez-Maroño, N., Alonso-Betanzos, A., Tombilla-Sanromán, M. (2007).
Filter Methods for Feature Selection – A Comparative Study. In: Yin, H., Tino,
P., Corchado, E., Byrne, W., Yao, X. (eds) Intelligent Data Engineering and
Automated Learning - IDEAL 2007. IDEAL 2007. Lecture Notes in Computer
Science, vol 4881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-
3-540-77226-2_19

[71] https://builtin.com/data-science/step-step-explanation-principal-
component-analysis

[72] Jolliffe Ian T. and Cadima Jorge 2016 Principal component analysis: a
review and recent developmentsPhil. Trans. R. Soc. A.3742015020220150202
http://doi.org/10.1098/rsta.2015.0202

89

BIBLIOGRAPHY BIBLIOGRAPHY

[73] https://towardsdatascience.com/principal-component-analysis-pca-
explained-visually-with-zero-math-1cbf392b9e7d

[74] https://towardsdatascience.com/feature-selection-for-machine-learning-in-
python-wrapper-methods-2b5e27d2db31

[75] https://medium.com/analytics-vidhya/feature-selection-for-dimensionality-
reduction-embedded-method-e05c74014aa

[76] https://deepai.space/what-is-generalization-in-machine-learning/

[77] https://machinelearningmastery.com/overfitting-and-underfitting-with-
machine-learning-algorithms/

[78] https://scikit-learn.org/stable/modules/cross_validation.html

[79] https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html

[80] https://www.analyticsvidhya.com/blog/2020/10/improve-class-imbalance-
class-weights

[81] https://scikit-learn.org/stable/modules/model_evaluation.html

[82] https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html

[83] Ting K.M. (2011) Precision and Recall. In: Sammut C., Webb
G.I. (eds) Encyclopedia of Machine Learning. Springer, Boston, MA.
https://doi.org/10.1007/978-0-387-30164-8_652

[84] Sokolova, M., Japkowicz, N., Szpakowicz, S. (2006). Beyond Accuracy, F-Score
and ROC: A Family of Discriminant Measures for Performance Evaluation.
In: Sattar, A., Kang, Bh. (eds) AI 2006: Advances in Artificial Intelligence.
AI 2006. Lecture Notes in Computer Science(), vol 4304. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/11941439_114

[85] https://scikit-learn.org/stable/modules/grid_search.html

[86] https://vitalflux.com/class-imbalance-class-weight-python-sklearn/

[87] https://scikit-learn.org/stable/modules/generated/sklearn.linear
_model.LogisticRegression.html

[88] https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.
html#sklearn.svm.SVC

90

BIBLIOGRAPHY BIBLIOGRAPHY

[89] https://medium.com/analytics-vidhya/regularization-in- machine-learning-
and-deep-learning-f5fa06a3e58a

[90] https://scikit-learn.org/stable/modules/generated/sklearn.neighbors
.KNeighborsClassifier.html

[91] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble. Ran-
domForestClassifier.html

[92] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble. Bag-
gingClassifier.html

[93] https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.
LinearDiscriminantAnalysis.html

[94] https://react-bootstrap.github.io/

[95] https://nodejs.org/it/

91

UNIVERSITÉ CATHOLIQUE DE LOUVAIN
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl

	Abstract
	Acknowledgment
	I Medical and Biological Background
	Medical Introduction
	Electroencephalogram
	Brain structure
	Structure of the Neuron
	Action Potentials
	Synapses
	Electrodes Placements
	Bands
	Parkinson Disease
	Parkinson's Symptoms
	Diagnosis

	II Computer Science methods applied for EEG Analysis
	Methods
	Data
	Preprocessing
	Filtering
	Artifacts Detection
	Resampling of Data

	Automatic Preprocessing
	Clean Raw Data
	Automatic ICA Label Preprocessing
	Independent Component Analysis

	Feature Extraction
	Power of EEG signals

	Machine Learning Methods
	How Does it Works a Machine Learning algorithm?
	Logistic Regression
	K-Nearest Neighbors
	Support Vector Machine
	Linear Discriminant Analysis
	Random Forest

	Feature Scaling
	Gradient Descent Algorithm
	Normalization
	Standardization
	Normalization vs Standardization

	Feature Selection
	Curse of Dimensionality
	Filter Methods
	Projection Methods
	Wrapper Methods
	Embedded Methods

	Training and Test Phase
	Generalization
	k-Fold Cross Validation
	Performance Metrics
	Hyperparameters Tuning

	Summary of Data Management Pipeline

	III Results of Machine Learning Application
	Results
	Filter Methods
	PCA Dimensionality Reduction
	Remove High Correlated Features

	Wrapper Methods
	Forward and Backward Selection

	Embedded Methods

	IV Web Application Implementation
	Web Interface
	Motivation
	Implementation
	Signal Prediction
	Model Creation
	Signal Prediction with Own Models

	Chosen Technologies
	React-Bootstrap
	Node.js

	Conclusion

