
POLITECNICO DI TORINO

Master Degree in Data Science and Engineering

Master Thesis

Enabling Unsupervised Domain
Adaptation in Semantic Segmentation

from Deep to Lightweight Model

Supervisors

Prof. BARBARA CAPUTO

Dr. ANTONIO TAVERA

Candidate

CLAUDIA CUTTANO

OCTOBER 2022

Abstract

Semantic segmentation is the task of detecting and classifying each pixel of an
image with a semantic class (i.e, road, sidewalk, pedestrian, etc). It is a powerful
tool for various applications, ranging from robotics to aerial image analysis, but its
primary application is in autonomous driving, where recognizing the entire scene is
critical to making the best driving decision.

One of the major challenges with semantic segmentation is the shortage of
large pixel-by-pixel annotated datasets, which are costly in terms of both human
and financial resources. A common approach is to train models using synthetic
datasets composed of simulated images and pixel-accurate ground truth labels, and
then utilize Domain Adaptation (DA) approaches to bridge the gap between such
artificial domains (referred to as source) and the real ones (to which we refer as
target).

Deep learning networks are nowadays built on the notion of "infinite resources",
resulting in larger and more accurate deep models (in terms of learnable parameters),
but at the expense of efficiency. This model complexity affects both the inference
time and the hardware requirements. Furthermore, data can be confidential or
secret, reason why some companies opt to supply only a pretrained model without
data access. With this in mind, we suggest extending existing DA techniques in
order to harness the fine-grained information of these complex and deep networks
while training efficient and lighter models on new domains.

We present a benchmark in which we examine the ability of three traditional DA
settings to transfer knowledge from a Deep to a Lightweight model: (i) Adversarial,
(ii) Self-Learning (SSL), and (iii) the combination of Adversarial+SSL.

Given the promising results obtained in the Self-Learning setting, we focus
on existing SSL-based DA techniques to further improve the performance of the
lightweight network. We extend the Cross-Domain mixing technique proposed in the
DAFormer paper by introducing a novel cross-domain mixing via instance selection
combined with a dynamic weighted segmentation loss. All of the experiments
were carried out by applying the two conventional synthetic-to-real protocols: (i)
Synthia to Cityscapes and (ii) GTA5 to Cityscapes.

ii

Acknowledgements

Sin dalla prima lezione con la professoressa Barbara Caputo, ormai quasi più di un
anno e mezzo fa, ho desiderato poter fare la tesi con lei. Voglio quindi ringraziare
immensamente la mia relatrice per avermi dato questa opportunità.

Un ringraziamento di cuore va ad Antonio Tavera, che mi ha pazientemente
aiutata e supportata in tutto il percorso della tesi. Nessun grazie può esprimere
tutta la mia gratitudine per la sua disponibilità e gentilezza, e sono certa di poter
dire che non avrei potuto avere supervisor migliore.

In questi anni, ho avuto la fortuna di avere accanto persone speciali. Alcune di
queste le ho conosciute lungo il percorso, altre mi accompagnano da più tempo,
qualcuna di loro da sempre. Sarebbero molte le persone che vorrei ringraziare, ma
mi limiterò a qualche nome.

Ad Alessandro, una delle persone più care che ho. In tutti questi anni, le nostre
vite si sono sempre mosse parallelamente nella stessa direzione, intersecandosi
inaspettatamente in un susseguirsi di eventi. Spero che, qualsiasi sia la direzione
che il futuro ci riserverà, troveremo sempre il modo di incontrarci.

Ad Isabella, per avermi regalato leggerezza e tante risate.
A Nicola e Niccolò, per tutti i dilemmi informatici e le confessioni notturne che

abbiamo condiviso. Siete i migliori amici nerd che potessi desiderare.
A Gianni, per avermi pazientemente ospitata come "terza quasi-coinquilina" in

questi anni, non ti ringrazierò mai abbastanza.
A Francesco, che la vita mi ha dato la fortuna di conoscere. Abbiamo sempre

scherzato sul fatto che meriteresti una laurea ad honorem in "Machine Learning"
per quanto ti ho riempito la testa di idee, dubbi e ragionamenti in questi anni e, in
fondo, molto di questo traguardo lo devo a te.

Ai miei genitori, per la fiducia riposta in me.

iii

Per ultima, ma la più importante, a mia sorella Erika.
Ti ho accompagnata per mano tutta la vita, e ora che sei diventata grande riguardo
indietro e mi accorgo che non ho ricordo in cui tu non ci sia.
Da quando ho memoria, ti sei sempre cacciata in qualche guaio e io ho sempre
fatto l’impossibile per tirartene fuori. E’ sempre stato il tuo sport preferito, farmi
arrabbiare, e il mio sport preferito, lasciartelo fare.
Ora che sei grande devi essere forte, ma ricorda sempre che, quando la testa sembra
non voler collaborare, ci sarò sempre io a stringerti la mano.
Questo traguardo lo dedico interamente, e completamente, a te.

iv

Table of Contents

1 Introduction 1

2 Related works 6
2.1 Artificial Intelligence, Machine Learning & Deep Learning 6
2.2 Neural Networks . 8

2.2.1 Perceptron . 8
2.2.2 Multi-Layer Perceptrons . 10
2.2.3 Non linear Activation functions 11
2.2.4 Gradient Descent Algorithm 16

2.3 Convolutional Neural Networks . 17
2.3.1 Convolutional Layer . 18
2.3.2 Pooling Layer . 20
2.3.3 Fully Connected Layers . 21

2.4 Semantic segmentation . 22
2.4.1 Architectures . 26

2.4.1.1 DeepLabV2 . 26
2.4.1.2 MobileNetV2 . 28

2.5 Unsupervised Domain Adaptation 31
2.5.1 Adversarial based Domain Adaptation 32

2.5.1.1 ADVENT . 36
2.5.2 Self Training based Domain Adaptation 38

2.5.2.1 CBST . 41
2.5.2.2 FDA . 43
2.5.2.3 DACS . 46
2.5.2.4 DAFormer . 48

2.6 Datasets . 51
2.6.1 GTA5 . 51
2.6.2 SYNTHIA . 51
2.6.3 Cityscapes . 52

vi

3 Benchmark 54
3.1 Protocols . 55

3.1.1 Deep2Light Adversarial . 56
3.1.2 Deep2Light Self-Learning . 59
3.1.3 Deep2Light Adversarial+SSL 65

3.2 Implementation details . 66
3.3 Results . 71

4 Extension 78
4.1 Method . 78
4.2 Implementation Details . 81
4.3 Results . 82

5 Conclusions 87

Bibliography 89

vii

Chapter 1

Introduction

One of the most active field of research in Artificial Intelligence is Computer Vision
(CV). We can describe Computer Vision as the interdisciplinary field that enables
machines to observe and understand the real world, emulating the capabilities of
the human visual system with sensors, data and algorithms rather than retinas,
optic nerves and a visual cortex.
This artificial vision allows machines to monitor the surrounding environment and
eventually take autonomous decisions without human intervention, based on the
digital images collected and processed. Given this premise, it is not surprising
that Computer Vision attracted the attention of several industries and has been
already integrated in many sectors, such as healthcare, manufacturing and robotics.
However, between the innumerable applications of CV, self-driving cars is probably
the most active one, for what concerns investment and research.

1

Introduction

The broad field of Computer Vision can be subdivided in several sub-tasks.
The classical problem is image classification, where the intent is to identify which

Figure 1.1: Computer Vision can be subdivided in several tasks, including Image
Classification (on the top right), Object Detection (on the bottom left) and Semantic
Segmentation (on the bottom right). Images borrowed from [1].

objects exist in an image by assigning it one or more category labels. For example,
in fig 1.1, the classification algorithm is telling us that several object categories,
such as buildings, trees and cars, are depicted in the image.
Object detection takes a step further, identifying not only the presence of certain
objects but also detecting their location. In fig 1.1, the detection algorithm locates
some objects in the image with annotated rectangles.
The next step is semantic segmentation, that consists is partitioning the image space
into mutually exclusive subsets, therefore locating the objects but also accurately
delineating their boundaries. This task has great potential since makes it possible
to obtain fine grained understand of images.

If on one hand the availability of Image Classification datasets with millions
of labeled images pushed the improvements in Computer Vision, on the other
side Semantic Segmentation task lacked for many time of appropriate annotated
datasets.

2

Introduction

Clearly, pixel-wise labeling requires a huge human effort, especially in the anno-
tation of object boundaries. For example, the annotation of a single image from
the Cityscapes [2] dataset takes up to 90 minutes [3]. For this reason, usually, the
more detailed the semantic labeling is, the smaller the size of dataset ("curse of
dataset annotation" [4]).
However, 3D games engine have enabled the creation of very large datasets, re-
ferred to as synthetic datasets, composed of highly realistic images along with
pixel-accurate ground-truth labels. Despite being characterized by high fidelity of

Figure 1.2: On the right, an example of synthetic image from the GTA5 [5]
dataset, on the left, its ground truth label.

appearance and detailed environments, synthetic datasets alone cannot be effec-
tively used to tackle real world semantic segmentation tasks, due to the domain
shift between the artificial images and the real ones. Intuitively, if we train a model
on the artificial images extracted from the GTA5 [5] video game, we cannot expect
the model to perform in the same way in a real context, thought the images may
be realistic.
To bridge the gap between the different domains, several Domain Adaptation (DA)
techniques have been studied and proposed in recent years, making the models
more and more able to generalize on target domains characterized by different
data distributions. In parallel, more and more complex architectures have been
designed, making it possible to obtain remarkable results in Semantic Segmentation.

The combination of these two aspects, combined with the today’s high per-
formance of graphic cards and processors, creates a strong starting point for the
development of autonomous driving systems based on image segmentation, where
data collected from multiple sensors, such as cameras, LiDAR and GPS, are modeled
to make driving decisions. Making machines capable to emulate drivers capabilities
is not trivial. Actions that from human perspective are immediately recognizable,
such as the prediction of vehicle driving or pedestrian trajectory, represent instead
a big challenge for autonomous systems.

3

Introduction

With the outstanding progresses in Computer Vision, the gap between human
drivers and machines is gradually decreasing. However, what makes humans dif-
ferent from machines is not only the capability of observe and recognize multiple
situations, but also the time necessary to perform this operation (i.e. the inference
time).
To understand this concept, we suppose to design a powerful autonomous driving
system able to perfectly recognize car surrounding. If a pedestrian suddenly crosses
the street and the model takes more than some milliseconds to recognize the
presence of the human on the road, the car cannot brake in time. This example
explains why the overall performance of the system cannot be simply described by
the segmentation precision, but should also take into account the inference time. In
other words, to make autonomous systems safely usable in real-world applications,
they need to run real-time.
Furthermore, often the segmentation precision is proportional to the complexity
of the model. The computing resources needed inside the vehicle might need
manufacturers to make special modifications to the car to make it compatible with
the hardware requirements, increasing the design and production costs. Reducing
the complexity of the models could potentially broad the application conditions,
enabling the diffusion also on systems with limited computational resources. This
reasoning highly resembles the logic of IoT, where the implementation of lightweight
models on edge devices makes it possible to rapidly process data directly on low-cost
boards.
The necessity for faster and lighter networks led researchers to design new architec-
tures, characterized by limited complexity and latency.
In this work, we aim at training while transferring knowledge from a deep Semantic
Segmentation model to a lightweight network, characterized by limited complexity
and inference time, balancing the trade-off between number of learnable parameters,
latency and performances.

We start from the benchmarking of existing Domain Adaptation techniques,
traditionally applied on top of powerful but slow Deep Learning networks, and
investigate how to extend these algorithms to transfer knowledge and train our
lightweight model (see Chapter 3).
A straightforward approach consists in directly adopt the aforementioned Domain
Adaptation techniques to train the lighter model. However, we imagine a different
scenario, especially from companies point of view, in which in phase of deployment
we want to use the lightweight model, but, during training, we actually have
access to a complex but slower network, which guarantees high performances in the
semantic segmentation task. In this scenario, we also start imagining the possibility,
for companies, of having at disposal a pretrained deep network, but without having
access to the original source data used in phase of training, for various reasons

4

Introduction

which range from costs to privacy constraints.

We suggest to exploit the fine grained knowledge of the deep network to train
the lighter model, reducing as much as possible the lightweight network dependence
from the source dataset. In particular, we propose a benchmark in which we test
the capability of the existing Domain Adaptation techniques (i.e. Adversarial,
Self-Learning and Adversarial+Self-Learning) to transfer knowledge from a Deep
to a Lightweight model. This set of experiments demonstrates, on the one hand,
the unimpressive outcomes of the Adversarial technique, and, on the other, the
potential of the Self-Learning settings.

Given that, we further improve the performances of our lightweight network by
means of a new Instance-based Cross-Domain mixing strategy and by re-weighting
the loss on the basis of the per-class confidence of the lighter network step after
step (see Chapter 4).
All of the experiments were carried out by applying the two conventional synthetic-
to-real protocols: GTA5 → Cityscapes and SYNTHIA → Cityscapes.

5

Chapter 2

Related works

2.1 Artificial Intelligence, Machine Learning &
Deep Learning

Alan Turing, in its paper "Computing Machinery and Intelligence" [6] (1950), posed
a simple question:

”Can machines think?”

Naturally, even if most people still think at sentient robots when hearing the terms
Artificial Intelligence, machines cannot consciously think, but could be programmed
to replicate human intelligence. As a result, we could obtain machines able to learn
with experience and perform human-like tasks, improving the quality of our lives
on several fronts.
For instance, AI has many applications in the healthcare sector, where it can be used
to aid in surgical procedures or to dose drugs. In the self-driving industry, AI utilizes
data collected from sensors, radars and cameras to drive vehicles to destinations,
preventing collisions. Also the financial industry makes use of Artificial Intelligence,
for example to spot either anomalies or longer-term trends that otherwise would
not have been detected by standard reporting methods.

AI is an interdisciplinary science consisting of multiple approaches, but the
greatest achievements have been made in the fields of Machine Learning and Deep
Learning.

In 1959, the American pioneer in the field of computer gaming and artificial
intelligence Arthur Samuel defined the field of Machine Learning (ML) as:

”the field of study that gives computers the ability to learn without being
explicitly programmed."

6

Related works

In particular, instead of using hand-coded set of instructions to accomplish a specific
task, Machine Learning combines statistics with experience to train algorithms able
to draw inference from data. In an iterative process, large volume of structured
data, known as training data, are fed to the ML models, that are automatically
trained by optimizing an objective function, which varies on the algorithm and
the task. At the end of the learning process, known as training, the model can be
used in inference on new unseen data, based on the knowledge extracted from the
training examples.

Deep Learning is a sub-field of Machine Learning that uses Artificial Neural
Networks, complex algorithms inspired by the structure of the brain.
With respect to traditional Machine Learning methods, Deep Learning algorithms
are highly scalable, that implies that their performance keep increasing if we
increase the training data in input. This scalability, enhanced by the availability of
large amount of data and the increasing computational power of computers, has
made Deep Learning a revolutionary player in the area of Artificial Intelligence.

Figure 2.1: When the amount of training data is small, traditional Machine
Learning algorithms equal (or even outperform) Deep Learning models. On the
contrary, when the amount of data increases, old ML models performances start
saturating until they reach a plateau, while DL models performances keep increasing.

7

Related works

2.2 Neural Networks
In the human brain, the information received by our senses is transmitted to the
neurons and here processed. These neurons are interconnected each others in a

Figure 2.2: The structure of a biological and artificial neuron, respectively on the
left and on the right.
A neuron receives signals from the other neurons thanks to special branches called
dendrites. The cell body contains the nucleus and controls the cell’s activity.
Through the axon, the neuron sends out spikes of electrical activity, than can
inhibit or excite the activity of a connected neuron.

complex interconnection network, that allows the brain to perform highly complex
computations.
Artificial Neural Networks mimic human brain structure, with neurons and links
that are artificially created on a computer. Specifically, the neural network structure
can be modelled as a directed graph, where neurons are the nodes and the edges
represent the links between them.
Since Neural Network are multi-layer perceptrons, it is worth starting with the
concept of perceptron.

2.2.1 Perceptron
A perceptron is a binary classifier that takes several inputs x1, x2, ..., xn and produces
a single output value.
In particular, to weight the importance of each input, a set of parameters, called

weights, is introduced. Each input xi is multiplied by the corresponding weight

8

Related works

Figure 2.3: Graphical structure of a perceptron. Inputs are multiplied by a set of
parameters, called weights, and then summed up. Through the step function, the
output is reduced to a binary value, that can be either 0 or 1.

wi, to obtain the weighted sum u:

u =
nØ

i=1
wi ∗ xi

Therefore, the weights are real numbers that quantify the importance of the
respective input to the output.
To determine the final output, the weighted sum is compared with a threshold
value: if u is less than the threshold the output is set to 0, otherwise is set equal 1.

output =
0 if qn

i=1 wi ∗ xi > threshold

1 if qn
i=1 wi ∗ xi < threshold

Therefore, it is possible to modify the decision making function by varying the
threshold value.
Introducing another parameter, the bias b = - threshold, and replacing the weighted
sum formulation with the dot product between the weight and input vectors, the
perceptron rule can be replaced with the more lightweight:

output =
0 if wi ∗ xi + b > 0

1 if wi ∗ xi + b < 0

9

Related works

The perceptron architecture represents a single-layer neural network and is
particularly useful when the data are linearly separable. However, in real-case
scenarios, data are usually non-linearly separable, making it necessary to have more
complex structures characterized by:

• Multiple layers, consisting of several perceptrons

• Non linear activation functions

2.2.2 Multi-Layer Perceptrons
Multi-layer percetrons are architectures composed of one or more layers, where
each layer is obtained by stacking several perceptrons on each other.
As we can see in fig. 2.4, MLP are composed of 3 parts:

• The input layer: composed of input neurons, takes raw data in input without
performing any operation.

• The hidden layer: the intermediate layer(s), not exposed on the outside.

• The output layer: the fixed length output vector of the network.

For example, in fig. 2.4 the number of layers is 4, since the network contains 2
hidden layers.
In this architecture, we feed the input into the network, and the intermediate

Figure 2.4: Graphical structure of a Multi-Layer Perceptron.

10

Related works

result is computed layer by layer, until it reaches the output layer. The information
always flows forward, without any loop in the network. For this reason, it is referred
to as Feedforward Neural Network.

2.2.3 Non linear Activation functions
In the perceptron structure presented in 2.2.2, the activation function adopted is
the so-called Heaviside step function. This function simply returns 0 and 1 for
negative and positive inputs, respectively:

f(x) =
0 if x > 0

1 if x < 0

Despite working reasonably well for linearly separable data, this function has several
drawbacks:

• To obtain high quality predictions, a small change in the weights of the network
should result in a small variation of the output. This small change in the
output is not achievable with a function that can only assume 2 values.

• Neural Network are trained using gradient descent with backpropagation,
which requires differentiable activation functions. Heaviside step function is
non differentiable at x = 0, while the derivative in all the other points is equal
to 0, therefore blocking the learning process.

To face these issues, one could suggest to simply use the identity (or linear) function
as activation:

f(x) = x

In fact, adopting the linear function, a small change in weights would correspond
in a small variation in the output.
However, despite being differentiable in all its points, it cannot be effectively used in
the backpropagation algorithm, because its derivative is a constant, independently
from the input. In addition, it can be proven that a multi-layer perceptron
containing linear activation function in all neurons can be reduced to a 2-layer
input-output model, whatever was its original depth.
Therefore, to enhance the representational power of neural networks, it is crucial
to insert non linear activation functions.

Sigmoid Function The Sigmoid Function, often referred to as Logistic Function,
takes any real value in input and produces an output value in the range [0,1].

11

Related works

Figure 2.5: Sigmoid or Logistic

Mathematically, the Sigmoid Function implements:

sigmoid(x) = 1
1 + e−x

This function is historically popular, especially because it can be intuitively used
to represent probabilities. However, it has some drawbacks.
As we can see inf fig. 2.5, when the input value x is very small or really big the
Sigmoid Function will output values close to 1: in these regions, the gradient will
tend to 0. This implies that even a large modification in the parameters cannot
change the output much, making the training process slower and slower. This
phenomenon is referred to as vanishing gradient problem.
Other minor problems are the fact that sigmoid outputs are not zero-centered and
that the exponential computation is an expensive operation.

Tanh Function The Tanh Function (or hyperbolic function) solves the not-zero
centered problem of the Sigmoid Function by producing output values in the range
[−1,1]:

tanh(x) = ez − e−z

ez + e−z

Having a zero-centered range leads to faster convergence and allows the network to
better model inputs with strongly negative, positive or neutral values.
Despite the different span range, its curve is very similar to the one characterizing

12

Related works

Figure 2.6: Tanh or Hyperbolic

the Sigmoid function. As a consequence, also the hyperbolic activation suffers from
the vanishing gradient problem, as well as the computational complexity of the
exponential function.

ReLU ReLU (Rectified Linear Unit) are the most common activation functions
used in neural networks. They return the same value received in input, except
when the values are negative. In this cases, they return 0.
Mathematically:

f(x) = max(0, x)

Despite their simplicity, they are very effective.
First of all, since only a portion of neurons are activated at a time, they are
extremely computationally efficient, especially when compared with the exponential
functions previously analyzed.
Then, they solve the vanishing gradient problem, because their output is propor-
tional to the node activation, for positive inputs.
In addition, given their non saturating property, ReLU accelerate the gradient
descent toward the global minimum of the loss function, therefore speeding up the
convergence.

Despite these advantages, ReLU has an important limitation. As we can see in
fig. 2.7, since the negative inputs are mapped to 0, the derivative of this function on
the negative part of the graph is 0. This implies that, during the backpropagation,

13

Related works

Figure 2.7: Rectified Linear Unit (ReLU)

some neurons are never activated, therefore their weights never updated, causing
the existence of dead neurons. This phenomenon is referred to as Dying ReLU
problem.

Leaky ReLU Leaky ReLU solve the dying ReLU problem by inserting a small
positive slope in the negative region of the graph.
Mathematically, Leaky ReLU implement:

f(x) = max(0.01 ∗ x, x)

Besides the advantages of the ReLU, this function enables the gradient backpropa-
gation also for the negative values, eliminating the existence of dead neurons.

Parametric Leaky ReLU In the Leaky ReLU activation function, the small
value determining the slope for the negative region is fixed. This has shown a
negligible increase in the accuracy of neural networks.
Parametric Leaky ReLU introduce the parameter α to determine the slope of the
activation function in the negative part of the graph:

f(x) = max(α ∗ x, x)

This parameter is learnt during the backpropagation at a negligible increase in the
cost of training.

14

Related works

Figure 2.8: Leaky ReLU

Figure 2.9: Parametric Leaky ReLU

15

Related works

2.2.4 Gradient Descent Algorithm

Now, we describe how the training process works, more specifically how the weights
of neural networks are updated iteration by iteration.

Figure 2.10: The cost function measures how bad the network is modeling the
relationship between the input and the output. Gradient Descent can be imagined
as the direction to reach the minimum error: at each step the set of weights moves
towards the minimum point, making jumps proportional to a parameter called
learning rate.

Typically, when a neural network is designed, its weights are randomly initial-
ized. We can then feed our input to the network and obtain a prediction, in the
so-called forward propagation process. Clearly, initially, we cannot expect high
quality results, but we want to update iteratively the network until it converges to
a optimal configuration able to output satisfying predictions.
Therefore, we develop a cost function (often referred to as loss), that penalizes

16

Related works

outputs far from the expected values. In particular, since each output can be rep-
resented as a composition of functions, the cost function can be directly expressed
as a function of the weights of the network. As a consequence, it is possible to
optimize the weights by minimizing the cost function, exploiting their relationship.
More specifically, we can compute the vector of partial derivatives of the cost
function f(w) with respect to each learnable parameter ∇f(w) =

3
∂f(w)
∂w[1] , ..., ∂f(w)

∂w[d]

4
and apply the so-called gradient descent algorithm to move toward the global
minimum of the loss function by backpropagating those gradients.
In particular, we exploit the recursive application of the chain rule in the back-
propagation of the error, which enables the efficient calculation of the derivatives
of composed functions by exploiting the derivative of the parent function.
Mathematically, at each iteration we take a step in the direction of the negative of
the gradient at the current point:

w(t+1) = w(t) − µ∇f(w(t))

where µ is the learning rate parameter, controlling the step size.

2.3 Convolutional Neural Networks
Great advances are being made in the field of Computer Vision, especially thanks
to the introduction of special Neural Network called Convolutional Neural Networks
(CNN).
These family of architectures are designed to process data having grid pattern (i.e.
images) to perform several tasks, such as Image Analysis & Classification, Video
Recognition or Image Segmentation.
At this point, one could ask why we cannot simply apply to images the multi-layer
perceptrons architecture previously discussed. To address this concept, we should
analyze the structure of an RGB image (see fig. 2.11).
An image can be visualized as a matrix of values, each representing a pixel. Taking
as example a image with size 200 × 200 × 3, a single fully-connected neuron would
require 200 ∗ 200 ∗ 3 = 120.000 weights. Considering a MLP with 40.000 hidden
units, the number of parameters would increase up to ≈ 5 bilion parameters.
Besides being computationally expensive, the huge number of weights results in
overfitting, making the network completely unable to generalize. In addition, this
fully connectivity does not allow the network to capture the spatial dependencies
and correlations between pixels.

Convolutional Neural Networks rearrange the internal structure of the neurons
to take advantage of the images input structure (see fig. 2.12). In particular,
neurons are arranged in 3 dimensions, so that each layer of the network receives a

17

Related works

Figure 2.11: Matrix structure of an RGB image.

3D input and outputs a 3D output volume of neuron activations.

Figure 2.12: 3-Dimensions structure of neurons of Convolutional Neural Networks.

More specifically, the layers composing CNN are essentially of 3 types: Convolu-
tional Layers, Pooling Layers and Fully Connected Layers.

2.3.1 Convolutional Layer
Convolution operation consists in sliding (or, more precisely, convolve) a small filter
(referred to as kernel) across the input image, computing an element-wise dot
product between the filter and the input area of the image and then summing the
result to produce the corresponding output value in the so-called feature map.
This process can be repeated by applying an arbitrary number of kernels, each
one producing a different feature map, as depicted in fig. 2.14. In this sense, each

18

Related works

Figure 2.13: An example of 3 × 3 convolution. The same kernel slides across the
input tensor: elements are multiplied pixel-wise and then summed to obtain, at
each location, the resulting value of the output feature map. Image borrowed from
[7].

kernel can be understood as a feature extractor, looking for a particular feature in
the image.
The first layer of the CNN extracts low-level features, such as edges, lines and colors.
Going deeper in the networks, convolutional layers are able to capture features of
higher and higher level, gradually recognizing bigger shapes and eventually objects.

This weight sharing approach has several advantages, that we can illustrate
through some examples.
First, with respect to the fully connected structure, the number of weights are far

19

Related works

Figure 2.14: Different learnable kernels produce different feature maps.

fewer. Taking the same example as before, we consider a CNN with 40.000 hidden
units and we apply a 10 × 10 filter to the same 200 × 200 × 3 image. The total
number of parameters drastically decreases from 5 billions to 12 millions.
Another advantage is that we exploit the fact that statistics, in different locations,
are similar. This hypothesis allows the network to successfully use the same feature
extractor in different parts of the input. We take as example a kernel detecting
edges. If this edge detector is useful in a certain part of the image, it will be
probably useful also in another part of the image.
Last point, convolutional neural networks benefit of translation invariance. This
means that if we feed an image containing a car, and another image containing the
same car but shifted of some pixels, the output feature maps won’t be so different.
This happens because kernels travel across the entire image and this operation is
repeated in all the layers, making the neural network more robust to small shifts.

2.3.2 Pooling Layer
In the Pooling Layers the spatial size of the feature maps is reduced by performing a
downsampling operation. Since the output at each location is replaced by deriving
a summary of the nearby values, this layer has no learnable parameters.
This operation is essential to enhance the translation invariance to shifts and
distorsions of the network and, at the same time, to limit overfitting.
The most used pooling operation is called Max Pooling. It extracts the maximum

value from each patch, and discard all the other values.
In the commonly used 2x2 filter with stride = 2, 75% of the activations are discarded,
width and height are halved, while the number of channels remain unchanged.
Examples of pooling operations are described in fig. 2.15.

20

Related works

Figure 2.15: On the left, example of Max-Pooling layer with 2 × 2 filter: the
mximum value is extracted from each patch. On the right, an example of Average
Pooling layer with 2 × 2 filter: each patch is replaced with the average of its values.

2.3.3 Fully Connected Layers

After the last convolutional or pooling layer, feature maps are usually flattened
and connected to a Fully Connected Layer (e.g. dense layer), to produce the final
output of the network. Therefore, similarly to standard Neural Networks, each
neuron of the Fully Connected Layer is connected, by a learnable weight, to all the
activations in the previous layer.
Usually, the activation function of this last layer is different from the others, ac-
cording to the task of the network. For example, if the network is trained on a
multi-class classification problem, an appropriate activation is the softmax function,
which normalize the output values to obtain probabilities.

Putting together the pieces, we obtain the overall architecture of a Convolutional
Neural Network, as shown in fig. 2.16.

Figure 2.16: Convolutional Neural Network.

21

Related works

2.4 Semantic segmentation
Given a predefined set of classes, semantic segmentation aims at correctly assigning
each pixel of an image to its category label, by partitioning the visual space into
mutually exclusive subsets. From another perspective, the semantic segmentation
task can be conceived as a classification problem at pixel level.
Given this fine grained understanding of images, this task has many real world
applications, such as self-driving vehicles, medical image diagnosis, aerial image
processing and agriculture precision.

Figure 2.17: Real-world applications of Semantic Segmentation.

With the growing popularity of Deep Learning, several architecture have been
proposed to deal with this powerful but challenging task.
The first attempts consisted in simply adapting existing classification networks (such
as VGG [8] and AlexNet [9]) by fine-tuning the fully connected layers. However,
the use of fully connected layers makes the training phase very time consuming,
and cause the model to overfit on the training data. In addition, these traditional
CNN networks fail in combining the semantic-aware features extracted from the
deeper layers with the spatial details elaborated by the shallow layers.
To solve these issues, researchers proposed a new architecture, shown in fig. 2.18,
named Fully Convolutional Networks (FCN) [10], that replaces the fully connected
layers with convolutional layers. In particular, given not-fixed sized images in input,

22

Related works

they produce segmented outputs having the same size of the input.
Since the network produces progressively decreasing feature maps, this method

Figure 2.18: Architecture of Fully Convolutional Networks [10].

requires an upsampling strategy to produce outputs with the same size of the
input, called deconvolution. In addition, to enhance the fusion of features extracted
from different layers, skip connections are introduced in the architecture. These
connections are able to bypass the pooling layers and to forward the localized
informations extracted from the first layers into to deeper layers of the network,
preserving precious details especially for the segmentation of the image at border
objects.
This approach evolved in the encoder-decoder architecture. The encoder (or
contraction part) uses convolutions to compress the information content of an
input image, which is gradually recovered by the decoder (or expansion part),
that upscales the encoded features back to the original resolution. The pioneer of
this study is Ronneberger, who proposed U-NET [11], shown in fig. 2.19. In this
network, each layer of the decoder is directly linked, through the skip connection, to
the same layer in the encoder part, resulting in a symmetrical architecture, which
guarantees precise localization.
DeconvNet [12] and the corresponding lightweight SegNet [13] propose a new
strategy, as shown in fig. 2.20, to upsample the low resolution encoded input in
the decoder part. In particular, they perform non-linear upsampling by using the
pooling indices (i.e. the location of maximum values) computed and stored in the
corresponding encoder part, therefore eliminating the upsampling learning.
Another family of models, called Pyramid Network Based Models, take advantage

23

Related works

Figure 2.19: Architecture of U-NET [11].

Figure 2.20: Architecture of SegNet [13]

of multi-scale analysis to deal with the challenging task of classifying objects having
different scale, in particular small objects. Feature Pyramid Network (FPN) [14]
combines the usual bottom-up convolutional network with a top-down pathway
and lateral connections. The top-down pathway is used to convert the semantic
rich layer into high resolution layers, while the lateral connections helps locating
the reconstructed objects in the space (see fig. 2.21).
The advanced Pyramid Scene Parsing Network (PSPN) [15], in fig. 2.22, captures

24

Related works

both local and global context information. It feeds the feature maps extracted from
a residual network to a pyramid pooling module to distinguish input at different
scales, by pooling them at 4 different scales. To retain both global and local context,
the resulting feature maps are upsampled and concatenated to the original feature
maps, before generating the pixel-wise prediction.

Figure 2.21: Architecture of Feature Pyramid Network [14]

Figure 2.22: Architecture of advanced Pyramid Scene Parsing Network [15]

To enlarge the receptive field of convolutional filters, the Dilated Convolutional
Models introduce a new parameter into their filters: the dilatation rate. This
parameter allows the network to face the decreasing resolution of the input caused
by max pooling and striding, without impacting on the computational cost. In
this set of architectures, some of the most important are the DeepLab family [16],
densely connected Atrous Spatial Pyramid Pooling (DenseASPP) [17], multi scale
context aggregation [18] and the efficient neural network ENet [19].

25

Related works

2.4.1 Architectures
2.4.1.1 DeepLabV2

DeepLab [16] is a semantic segmentation model, designed and open-sourced by
Google in 2016. Since then, this family of models has constantly evolved, and
DeepLabV2, DeepLabV3 [20] and DeepLabV3+ [21] have been released. Despite
being now far from state-of-the-art performance, DeepLabV2 represented a turning
point in semantic segmentation, reason why it has been adopted in this work.

The key characteristic of this family of models is the introduction of the dilation
rate parameter in their filters, the so-called atrous convolution.
Before going into the details of atrous convolution, we should make a digression
about the concept of receptive field. Receptive field is defined as the size of input
region of the feature map that produces each output element.
For example, in fig. 2.23 the receptive field for the layer 2 is 3x3, as each element in

Figure 2.23: Receptive field.

the output feature map sees 3x3 input elements. However, the concept of receptive
field is relative, since elements on the feature map of a certain layer can see different
areas on the previous layers [22].
Since Deep-CNN use repeated combinations of standard convolutions and max-
pooling layers, there is a gradual reduction in the spatial resolution of the feature
maps, that impacts negatively on the semantic segmentation objective. Chen et Al.
[16] proposed to enlarge the receptive field to permit dense feature extraction, by
introducing the dilation rate parameter in the convolutions.
This parameter defines the space between values in the kernel, while setting equal
to zero the values in between.

26

Related works

Mathematically, considering the 1-D signal x[i], the filter w[k] of length K and the
dilation rate r, the output y[i] of the atrous convolution can be defined as:

y[i] =
KØ

(k=1)
x[i + r ∗ k]w[k]

When setting r = 1, we return to the standard convolution definition.
Moving to 2D-space, it is possible to enlarge the kernel size of a K x K filter to
Ke = k + (k − 1)(r − 1) without increasing neither the number of parameters or
the number of operations per position. For example, a 3x3 kernel with dilatation
rate equal to 2 will have the same receptive field of a 5x5 kernel, while using only 9
parameters instead of 25. This ensures an efficient trade-off between localization
(small receptive field) and context assimilation (large field of view).

Returning to the DeepLabV2 architecture, it is composed of 2 modules, the
backbone (or feature extractor) and the head.

Figure 2.24: DeepLabV2 architecture.

Backbone: ResNet101 In the original paper [16], they re-purpose two popular
classification networks (VGG [8] and ResNet101 [23]) as backbones of DeepLabV2.
Since they obtained better results with ResNet-101, we adopt this backbone in our
DeepLabV2.
In particular, they used an adapted version of ResNet101, repurposed for the
semantic segmentation task, by making these modifications:

• All the fully connected layers have been transformed into convolutional layers.

• The feature resolution has been increased using atrous convolution on the last
2 convolutional layers (conv4_x and conv5_x), reducing the degree of signal
downsampling.

27

Related works

Head: Atrous Spatial Pyramid Pooling Handling scale variability (e.g.
objects at multiple scales) is a challenging task in semantic segmentation. To deal
with this problem, they introduced the Atrous Spatial Pyramid Pooling (ASPP)
module.
The proposed solution consists in applying multiple atrous convolutions to the last
feature map, each with a different dilation rate, and then fuse together the outputs.

Figure 2.25: Atrous Spatial Pyramid Pooling (ASPP).

This solution allows the network to recognize both large and small objects, and to
robustly segment objects at multiple scales.

2.4.1.2 MobileNetV2

In 2017, a group of researchers from Google presented MobileNet [24], a new network
designed for mobile devices, optimized to obtain high accuracy while keeping as
low as possible the number of parameters and operations. The innovation in this
network consists in the introduction of a new layer, the inverted residual and linear
bottleneck layer, built on depth-wise separable convolutions.

Depth-wise separable convolution Depth-wise separable convolutions are fac-
torized convolutions that can approximate standard convolutions while significantly
decreasing the computational complexity.
To understand how they work, we have a look to the standard convolution opera-
tion. Given the input tensor Li : hi × wi × cin, it applies a convolutional kernel
K ∈ Rk×k×cin×cout to produce the hj ×wj ×cout output tensor Lj . The corresponding

28

Related works

computational cost is:
hi × wi × cin × cout × k × k

Depthwise Separable convolutions split convolutions into 2 consecutive operations:

• Depth-wise Convolution applies a separate filter per input channel, with total
complexity hi × wi × cin × k × k

• Point-wise Convolution applies a 1 × 1 convolution to combine the different
channels, with complexity hi × wi × cin × cout

Therefore, the overall complexity decreases to:

hi × wi × cin × (k2 + cout)

To better get this reduction, we can take as example an input feature map
having cin = 32, and apply a convolution with k = 3 and cout = 64. For standard
convolution, the number of operations per single output location is 18432, while
this number reduces to 2336 (8x reduction) when applying depthwise-separable
convolution.

a) Standard Convolution.

b) Depthwise Convolution.

Figure 2.26

Linear Bottleneck Layer Starting from the premise that layer activations
(e.g. the feature maps) could be embedded in low-dimensional subspaces (1), Mo-
bileNetV1 introduced the width multiplier parameter to reduce the dimensionality

29

Related works

of its layers.
However, the presence of non-linearity activations inevitably causes an information
loss, as they collapse some channels (2). To retain as much information as possible,
a solution consists in increasing the number of channels (3), so that the part of the
information lost on one channel could still be preserved in another one.

Based on hypothesis (1) and (2), MobileNetV2 introduced linear bottlenecks to
fully preserve the information contained in the low-dimensional feature maps, by
simply discarding the last non-linearity activation of each residual block.
Instead, to deal with the information loss on the intermediate activation layers of
the residual blocks, the number of channels of the feature maps are expanded by
the expansion factor parameter, relying on hypothesis (3).
Therefore, the operating of each residual block can be essentially decomposed in
the following steps:

• The low-dimensional feature maps are expanded by using a 1x1 convolution
and moved into the higher dimensional space, more suitable for non-linear
activation. The ReLU6 activation function is applied

• A depth-wise 3x3 convolution is performed on the higher-dimensional tensor.
The ReLU6 activation function is applied.

• The resulting feature map is projected back to the low-dimensional space using
another 1x1 convolution. In this step, no activation function is applied.

Inverted Residual Residual blocks connect the beginning and the end of convo-
lutional blocks with skip connections.
Based on the hypothesis that bottlenecks contain all the necessary information (1),
in MobileNetV2 the shortcuts are inserted between the low-dimensional feature
maps, rather than between the expansion layers.

The overall structure of the inverted residual and linear bottleneck layer is shown
in 2.27.

MobileNetV2 for Semantic Segmentation For the task of Semantic Segmen-
tation, in the original paper[24], authors adopted DeepLabV3 head on MobileNetV2
feature extractor.
However, in this work, we choose to build DeepLabV2 head (described in paragraph
2.4.1.1) on top of MobileNetV2 in order to have more similar and comparable
architectures.

30

Related works

Figure 2.27: MobileNetV2: inverted residual and linear bottleneck layer.

2.5 Unsupervised Domain Adaptation

Generally, Deep Learning methods rely on a large quantity of labeled data. How-
ever, data collection is a very expensive and time consuming process. This is
especially true for semantic segmentation datasets, where each pixel of images
should be manually labeled. For example, the annotation of a single image from
the Cityscapes [2] dataset takes up to 90 minutes [3].
A naive solution consists in directly applying models trained on a large-scale labeled
domain to the target domain. However, this approach results in poor performances,
caused by the domain shift (or dataset bias) between the two domains.
We can understand this phenomenon taking into consideration a real-world example.
We want to build a model and use it on Italian roads (i.e. the target domain), but
we lack labeled data for this domain. Given the availability of annotated data from
American roads, we decide to use them as source data to train the model. When
testing the model on the American road images, we will obtain highly accurate
results, but when switching to Italian roads we will see a significant drop in the
performances, caused by the gap between the 2 domains.
Another option is finetuning the pretrained models in the target domain, but
this still requires a relatively large quantity of labeled target images, not always
available.
Domain Adaptation (DA) is a form of Transfer Learning (TL) that consists in
learning a model from a source domain that can generalize well to a different, but
related, domain. These techniques attempt to bridge the gap between domains,
transferring the knowledge from the label-rich domain to the target one, character-
ized by the same (or similar) semantic information.
This approach is very promising in the autonomous driving scenario, where the
traffic data obtained with different sensors is particularly difficult to label [3] and

31

Related works

where the training of models requires a huge amount of data derived from different
scenarios and climate conditions. The success and the level of fidelity reached
by 3D graphical engines have made possible the adoption of synthetic datasets,
artificially created by a software. These datasets are very powerful tool, since they
can depict images from a multitude of weather and environmental conditions and,
at the same time, guarantee perfect and effortless labeling. On the other hand, they
have made it necessary to explore new techniques to face the drop of performance
caused by the gap between virtual and real-world images. This problem is the
so-called synthetic-to-real Domain Adaptation.
Formally, the domain adaptation setting can be subdivided in 3 categories, accord-
ing to the number of labeled target samples available. In particular, denoting as
NT the number of source samples and as NT L the number of labeled ones, we can
categorize DA as:

• Unsupervised DA, when NT L = 0

• Fully supervised DA, when NT L = NT

• Semi supervised DA, otherwise

We pose ourselves in the unsupervised DA scenario, assuming we can only access
the labeled source domain and the unlabeled target samples and we analyze the
main technique of DA, following [3].

2.5.1 Adversarial based Domain Adaptation
Adversarial Generative Models Generative Adversarial Networks (GAN) [25]
were proposed by Ian Goodfellow in 2014 and were immediately considered as “the
most interesting idea in the last 10 years in ML.”
GAN are deep-learning-based generative model composed of a generator g and a
discriminator d. The first sub-module, the generator, takes random noise z and
generates a virtual sample. In this generative process a fixed-length random vector
is converted into a multi-dimensional vector representing a new image.
The second sub-module, the discriminator, is asked to distinguish (or to discrimi-

nate) between real images and generated ones, where the real samples come from
the source dataset and the fake ones from the generator.
The learning process is based on a competitive scenario, where the generator must
compete against an adversary: the discriminator tries to maximize the binary
probability of correctly classify whether the input sample comes from the generator
or the real dataset, while the generator tries to generate more and more realistic
images to maximize the probability of d to make a mistake.
Therefore, they are playing the so-called zero-sum game. Zero-sum implies that
when the discriminator d correctly classifies the incoming image, it is rewarded

32

Related works

Figure 2.28: Generative adversarial Networks (GAN) [25].

with no modification in its parameters and the generator g is penalized by a large
update in its weights. On the contrary, when the generator produces a image able
to fool the discriminator, its weights remain unchanged while the discriminator
undergoes a significant modification.
Ideally, the limit is reached when the discriminator is not able to distinguish
between real and fake images, and assigns a 50% probability to each input sample.

Adversarial Discriminative Models To minimize the divergence between
source and target domains, neural networks should learn domain invariant represen-
tations. In fact, once the distributions in the 2 domains are aligned, the classifier
trained on the source data can be directly applied in the target domain. On this
basis, adversarial discriminative models aims at learning features that are both
domain-invariant and discriminative.
Inspired by the Generative Adversarial Nets [25], Ganin et al. [26] proposed the
Domain-Adversarial Neural Network (DANN), illustrated in fig. 2.29.
The overall architecture is composed of 3 modules:

• The feature extractor Gf : given an input image, coming from the source or
target domain, extracts the features f. It acts as generator in the adversarial
network.

• The domain classifier Gd: receives the features f extracted from Gf and
distinguishes them as coming from the source or target domain. It acts as
discriminator in the adversarial network.

• The label predictor Gy: receives the features f extracted from Gf and performs
the classification

33

Related works

Figure 2.29: Domain-Adversarial Neural Network (DANN) [26].

The feature extractor Gf is optimized to minimize the loss of the label predictor
Gy, while maximizing the loss of the domain classifier Gd. This dual optimization is
achieved by the introduction of the gradient reversal layer (GRL), inserted between
the feature extractor Gf and the domain classifier Gd. During the forward pass,
it acts as an identity operation, but during the backpropagation it multiplies the
gradient by -1 before passing it to the feature extractor, therefore encouraging Gf

to generate features more and more similar.

Tzeng et Al. proposed Adversarial Discriminative Domain Adaptation (ADDA)
[27], in which they split the optimization process by considering indipendent source
and target mappings.
The architecture is composed of:

• The feature extractor Ms: takes the source images xs as input and extracts
the features Ms(xs)

• The feature extractor Mt: takes the target images xt as input and extracts
the features Mt(xt)

• The discriminator D: receives the features extracted from Ms and Mt and
distinguishes them as coming from the source or target domain

• The classifier C: performs the classification on the incoming features Ms and
Mt

There is a pre-training phase where Ms learns a discriminative representation
using the labeled images from the source domain. Then, the target model Mt is

34

Related works

Figure 2.30: Adversarial Discriminative Domain Adaptation (ADDA) [27],

initialized with the parameters of the pre-trained-in-source model MS and the data
are mapped into the same space by using a domain-adversarial loss to train Mt:

LadvM
(Xs, Xt, D) = −Ext∼Xt

5
log D(Mt(xt))

6
At the end of training phase, Ms is discarded: the target input image are mapped
through the target encoder Mt in the domain invariant feature space and classified
by the source classifier C. The whole pipeline is described in fig. 2.30.

Tsai et al. extends these approaches to address the pixel-level prediction task in
semantic segmentation, by proposing their work "Learning to Adapt Structured
Output Space for Semantic Segmentation" [28] in 2018.
They explore the idea that even images very different in appearance in the visual

Figure 2.31: Architecture proposed in Learning to Adapt Structured Output
Space for Semantic Segmentation [28].

35

Related works

space share many similarities in the segmentation output. Therefore, they pose the
pixel-level domain adaptation problem in the output space, trying to directly align
the predicted label distributions of source and target images.
The adversarial architecture is composed of:

• The generator G: the segmentation model, that takes in input an image and
predicts the segmented output result.

• The discriminator D: receives the segmented output from G and determines
whether it corresponds to a source or target image.

The generator is trained with the segmentation loss Lseg on the labeled source
data, while the discriminator learns how to distinguish between source and target
images with the discriminator loss Ld. To encourage the segmentation network
to learn domain invariant features, a second loss on the generator is introduced:
the adversarial loss Ladv. In particular, the generator G tries to fool the discrim-
inator, passing him the segmented output of a target image G(Xt) but labeled
as source. Minimizing Ladv encourages the segmentation network G to generate
similar segmentation distributions in both the domains.

2.5.1.1 ADVENT

Models trained exclusively on source domains tend to produce over-confident
predictions on source-like images and under-confident predictions on target ones.
Visualizing the entropy maps of the predictions (in fig. 2.32), it is evident that
this phenomenon results in low-entropy for source-like images and high-entropy for
images coming from target.
Starting from this considerations, Vu et Al. propose ADVENT [29], in which
they attempt to bridge the gap between domains by forcing low-entropy on target
predictions through a unified adversarial training framework.
In particular, since models trained on source images naturally produce low-entropy
predictions for source-like images, minimizing the distance between source and target
in the weighted self-information space implies an indirect entropy minimization of
the predictions on target images.
Denoting as F the segmentation network, x an input image and F (x) = Px =è
Px

(h,w,c)
é

h,w,c
the C-dimensional segmentation map, each pixel-wise vector behaves

as a discrete distribution over classes. If scores are evenly distributed over classes,
it means that the uncertainty, and consequently the entropy, for the pixel is high.
On the contrary, if one class stands out, the entropy associated to the pixel is low.
This concept can be mathematically expressed through the weighted self-information
maps Ix

(h,w):
Ix

(h,w) = −Px
(h,w) · log Px

(h,w)

36

Related works

Figure 2.32: A model trained without adaptation produces highly confident
prediction for a source image (on the top left), to which corresponds a low-entropy
map (on bottom right). On the contrary, the model produces under-confident
prediction for a target sample (on the top left) which results in a high-entropy map
(on the bottom right).

Figure 2.33: ADVENT [29] overview.

Ix is fed as input to a fully convolutional discriminator D, trained to classify
whether the input is coming from the source domain Xs or from the target domain
Xt, labeled respectively as 1 and 0, with a cross-entropy domain classification loss
LD. The training objective for the discriminator is:

min
θD

1
|Xs|

Ø
xs

LD(Ixs ,1) + 1
|Xt|

Ø
xt

LD(Ixt ,0)

At the same time, the segmentation network F is trained with a standard cross-
entropy loss Lseg on the source domain. Jointly, an adversarial loss on F forces the
alignment between the source and target domain. In particular, the segmentation

37

Related works

network tries to fool the discriminator by passing it the weighted self-information
maps of target images but labeled as source. The adversarial loss encourages the
segmentation network to produce low entropy predictions also on the target domain,
minimizing the distance between source and target in the weighted self-information
space. Combining the segmentation loss and the adversarial loss, the optimization
problem on the segmentation network F can be formulated as:

min
θF

1
|Xs|

Ø
xs

Lseg(xs, ys) + λadv

|Xt|
Ø
xt

LD(Ixt ,1)

where λadv is a parameter weighting the contribution of the adversarial loss.

2.5.2 Self Training based Domain Adaptation
A promising approach in DA is Self-Learning. It consists in training a model
using the labeled samples from the source domain and then applying the resulting
model to generate artificial pseudolabels for some of the unlabeled images. These
predictions are then used as ground truth labels for the target images and used
to re-train the model in a following iteration. This procedure can be repeated
iteratively, typically until no more unlabeled data are available.
Following the notation of [30], we denote the set of labeled samples as S =
(xi, yi)1≤i≤m, and the set of unlabeled samples as XU = (xi)m+1≤i≤m+u. At each
iteration, a set XT of unlabeled samples is removed from XU and corresponding
pseudo-labels ỹ are generated. These pseudo-labeled samples are added to the
labeled points set and a new supervised classifier h is trained over S ∪ XT . In
particular, h is trained to minimize the regularized empirical loss:

1
m

Ø
(xi,yi)∈S

ℓ(h(x), y) + γ

|XT |
Ø

(x,ỹ)∈XT

ℓ(h(x), ỹ) + λ∥h∥2 (2.1)

where γ is an hyperparameter that controls the impact of the pseudo-labels in
learning and λ is a regularization parameter.

This approach admits a multitude of variations and design decisions. Most
important, it is necessary to determine which data select during the pseudo-labeling
phase, since this choice highly affect the performance of the model. Usually, this
criterion is based on the prediction confidence of the generated pseudo-labels,
therefore the ranking of prediction probability for the unlabeled samples should
reflect the true confidence ranking. Then, it is necessary to decide whether to
re-use pseudo-labelled data in later stages of the training. Another decision affects
the weight of the pseudo-labelled data. In fact, in the first stages, the generated

38

Related works

pseudo-labels are less reliable, therefore it is necessary to design a way to increase
their weights during the training stages.
In addition, some approaches, instead of pre-computing the pseudo-labels offline
and consequently repeat the training process, generate the pseudo-labels online.

To avoid training instabilities, many solutions have been proposed.
For instance, Pan et al. [31] hypothesize that updating the pseudo-labels at the end
of one training stage leads the network to overfit on the noisy labels. Therefore they
proposed to use representative prototypes to estimate the likelihood of pseudo-labels
to facilitate online correction during training, by exploiting the distances from the
prototypes (the centroids of the classes) to rectify the pseudo-labels.
Other approaches combine consistency regularization with Data Augmenta-
tion, based on the idea that predictions on unlabelled samples should be invariant
to perturbations. An example is [32], that uses photometric noise, flipping and
scaling to ensure consistency of the predictions across transformations. In particu-
lar, the set of augmentation is applied to each target image and the corresponding
pseudo-label is generated by selecting confident pixels from the averaged map using
thresholds based on running statistics.
Another Data Augmentation based method is FixMatch [33], that applies weak
augmentations on the target samples and feeds the weakly augmented images into
the model to obtain predictions. The pseudo-labels are generated by retaining

Figure 2.34: FixMatch [33] approach.

the classes predicted with probability above a certain threshold. Then, the same
images are augmented with strong transformation and coupled with the previously
generated pseudo-labels to train the network (see fig. 2.34).
A promising augmentation technique is mixing (or domain-mixup), that con-
sists in combining pixels from different training images to produce new perturbed
samples.
As the title of their paper states, French et Al. [34] affirm that "Semi-supervised

39

Related works

semantic segmentation needs strong, varied perturbations". In their work, they
explore variants of the popular CutOut and CutMix augmentations, where a rectan-
gular region is cut from one image and pasted into another one. The corresponding
pseudo-label is generated by mixing, in the same way, their predictions. As result,
strongly perturbed images are generated and used, along with their pseudo-labels,
to train the model. Similar approaches are the one proposed by ClassMix [35],
where half of the classes of the first image are selected and corresponding pixels
are pasted into a second image (see fig. 2.35), and by Domain Adaptation via
Cross-domain mixed Sampling (DACS) [36] (see section 2.5.2.3).

Figure 2.35: ClassMix [35]. Half of the classes of the first images are selected
and corresponding pixels are copied and pasted into the second image.

A more sophisticated technique has been formulated by Zhou et al. [37]. They pro-
posed end-to-end Context-Aware Mixup (CAMix), which exploits contexts as prior
knowledge to mitigate the domain gaps and guide the context-aware domain-mixup.
In particular, given a source and a target image as input, the contextual mask is
generated, by leveraging spatial distribution of source and contextual relationships
of target. Then, this mask is used to combine source and target images to produce
mixed images, mixed pseudo-labels and mixed significance masks, where the latter
are used to guide the significance-reweighted consistency loss (SRC) on the mixed
images and mixed pseudo-labels.

A common problem in self training is the model bias towards easy classes,
caused essentially by two factors. First, datasets are often unbalanced and follow
long-tail distributions. Second, SSL-methods usually choose pseudo-labels with
high prediction confidence, therefore penalising the performances for the hard

40

Related works

classes.
To address this issue, many strategies have been proposed.
For example, [38] design the self-motivated pyramid curriculum domain adapta-
tion (PyCDA), where they combine curriculum domain adaptation (CDA) with
self-training (ST). As shown in fig.2.36, they merge the estimated target label

Figure 2.36: Self-motivated pyramid curriculum domain adaptation (PyCDA)[38].

distributions with the pseudo-labeled target pixels to construct a three-layers pyra-
mid containing precious information regarding the target domain, mainly about
the desired label distributions over the target domain images (over the top-layer),
image regions (over the middle-layers), and pixels (over the bottom-layer).
Other techniques rely on re-weighting, such as Class-Balanced Self-Training (CBST)
(see section 2.5.2.1) and Instance Adaptive Self-Training for Unsupervised Domain
Adaptation (IAST) [39]. IAST uses an instance adaptive selector to adapt the
pseudo-label threshold for each semantic class, gradually decreasing the proportion
of hard classes, while a region guided regularization prevents the model to overfit
on the pseudo-labels by smoothing the prediction results of the confident regions
and sharpening the prediction of the ignored areas.
Other strategies apply class-based sampling to perform oversampling on the rarest
classes. An example is DAFormer [40] (see section 2.5.2.4), that addresses the
co-occurrence of rare and common classes in a single semantic segmentation sample
by performing Rare Class Sampling.

2.5.2.1 Unsupervised Domain Adaptation for Semantic Segmentation
via Class-Balanced Self-Training: CBST

Simply using the generated pseudo-labels to optimize the model is self-referential,
because it is not possible to guarantee the correctness of the predictions.

41

Related works

Therefore, an effective solution is to follow the self paced curriculum scheme, that
consists in consider the most confident predictions to update the model, and then
explore the remaining pseudo-labels with less confidence. This approach is inspired
by the human learning process, where the training proceeds from easy to more
complex samples [41].

Self-Training with self-paced Learning We denote the sth training source
sample as Is, the corresponding ground truth of the nth pixel as ys,n and pn(w, Is)
the softmax output for the n-pixel of sample Is. Similarly, It is the target sample
with corresponding pseudo-label ŷt,n. C is the number of classes, e(i) a one hot
vector and w the weights of the network.
With this notation, the self-paced curriculum learning can be described as:

min
w,ŷ

LST (w, ŷ) = −
SØ

s=1

NØ
n=1

yT
s,n log(pn(w, Is))

−
TØ

t=1

NØ
n=1

5
ŷT

t,n log(pn(w, It)) + k|ŷt,n|1
6

s.t. ŷt,n ∈ {{e(i)|e(i) ∈ RC} ∪ 0}, ∀t, n

k > 0

(2.2)

When the pseudo-label ŷt,n is assigned to 0, it is not considered in the learning
process. To prevent the model to trivially ignore all the pseudo-labels, the L1
regularization term is introduced as a negative sparse. This term is controlled by
the hyperparameter k, which determines the amount of ignored pseudo-labels.

Class-Balanced Self-Training Since it is common to obtain higher prediction
scores for the easy-to-transfer classes, setting a unique hyperparameter k to control
the amount of selected pseudo-labels will encourage the bias toward the initially
well-transferred classes, causing the model to ignore the hard classes.
To face this problem, Zou et Al. propose Class-Balanced Self-Training [42], in which
they suggest the introduction of a class-balanced self-training framework, where
the amount of selected pseudo-labels is controlled by a different hyperparameter kc

42

Related works

for each class:

min
w,ŷ

LCB(w, ŷ) = −
SØ

s=1

NØ
n=1

yT
s,n log(pn(w, Is))

−
TØ

t=1

NØ
n=1

CØ
c=1

5
ŷ(c)

t,n log(pn(c|w, It)) + kcŷ
(c)
t,n

6
s.t. ŷt,n =

5
ŷ

(1)
t,n , ..., ŷ

(C)
t,n

6
∈ {{e(i)|e(i) ∈ RC} ∪ 0}, ∀t, n

kc > 0, ∀c

(2.3)

The optimization flow consists in the repetition of several rounds, where each
round is composed of 2 steps:

1. The most confident pseudo-labels from the target domain are selected.
More specifically, the model is used to generate the predictions for the target
images, retaining the maximum probability for each pixel and its corresponding
class.
Given each class c, the class c probabilities are selected and sorted in descending
order. Denoting as Nc the number of pixels assigned to c, the parameter kc is
set such that exp(−kc) equals to the amount (p * Nc), where the probability
value of p starts from 20% and it is empirically increased of 5% at each round.
Intuitively, the p × 100% most confident pseudo-labels for each class c are
selected at each round.

2. Pseudo-labels are used as ground truth labels for the target images to train
the network with a standard Cross-entropy loss.

2.5.2.2 Fourier Domain Adaptation: FDA

In 2020, Yang et Al. published their paper Fourier Domain Adaptation for Semantic
Segmentation [43] in CVPR.
In their work, they observe that even if images from different domains share sev-
eral characteristics at high level, there are low-level source of variability, such us
illumination or sensors quality, that can vary substantially without affecting the
visual perception. In particular, it is possible to observe that even if pictures are
perceptually very close the corresponding low-level spectrum can vary significantly.
To make the model able to properly generalize, it is necessary to represent this
variability also in the source domain, therefore aligning the low-level statistics of
the source and target domain.

43

Related works

Fourier Alignment The proposed solution consists in computing the Fast Fourier
Transform (FFT) of each source image and replacing its low-level frequencies with
the low-level spectrum of a random sampled target image.

Figure 2.37: Fourier Alignment. Source and target images are mapped into the
frequency domain. The low-level spectrum of the target image is copied and pasted
into the spectrum of the source sample, which is then converted back into the
image space.

In particular, given an input image Is from the source domain Ds, its Fourier
Transform can be computed as:

F(Is)(m, n) =
Ø

(h,w)
Is(h, w)e−j2π(h

H
m+ w

W
n), j2 = −1

from which amplitude FA(Is) and phase FP (Is) can be extracted.
Analogously, we can compute the Fourier transform of a randomly picked image It

from Dt and extract its amplitude FA(It) and phase FP (It).
The amplitude component has dimension H × W . Assuming that the image is
centered in (0,0), the low-frequencies are contained in the (0,0)-centered rectangle
[βH : βH, −βW : βW], where β is a parameter in (0,1).
To extract the low-level spectrum of the target image we select a mask of dimension
[−βH : βH, −βW : βW] centered in (0,0), where all the values inside the rectangle
are set equal to 1, while the ones outside are set equal to 0:

Mβ(h, w) = 1(h,w)∈[−βH:βH,−βW :βW]

44

Related works

This mask is applied to the target image spectrum FA(It) to retain only its low-
frequencies amplitude, which are replaced into FA(Is).
Finally, the inverse Fourier transform F−1 is computed to return into the image
space.
Following these steps, the resulting image will have:

• low-frequencies amplitude of It

• high frequencies amplitude of Is

• phase of Is

This procedure can be formalized as:

Is→t = F−1([Mβ ◦ FA(It) + (1 − Mβ) ◦ FA(Is), FP (Is)])

The result is an image having the same content of Is, but with appearance closer
to It. An example is shown in fig. 2.37.

Fourier Alignment for Semantic Segmentation Given the adapted source
dataset Ds→t composed of source-in-target images xs→t

i and corresponding labels
ys

i , the segmentation network ϕw with parameters w is trained by minimizing the
cross-entropy loss:

Lce(ϕw; Ds→t) = −
Ø

i

=
ys

i , log(ϕw(xs→t
i))

>

Fourier Alignment combined with Self Learning Once the segmentation
network ϕw has been trained, it is possible to perform Self-Supervised training to
boost the performances of the network.
The proposed solution consists in averaging the predictions of multiple models to
generate the pseudo-labels, regularizing the learning process and making the model
robust to variance.
In particular, 3 different models are trained separately using different values of β.
Once the models are trained, each target image It is passed through ϕj, j = 1,2,3
to obtain the predictions ϕj(It).
Setting M = 3, the mean prediction for It can be computed as:

ŷ = arg max
k

1
M

Ø
m

ϕj(It)

To create the pseudolabel for It only the highly confident predictions are retained.
This means that, for each pixel, its predicted semantic class is retained only if its

45

Related works

confidence is within the top 66% or above 0.9; otherwise the pixel is set to void.
The entire set of highly confident mean predictions is Ypsu.
Finally, the pseudo-labels are used as if they were ground truth labels for the target
domain, obtaining the pseudo-labeled dataset (D̂t, Ypsu), combined with (Ds→t, Ys)
to train again the 3 segmentation networks. The entire procedure can be repeated
for many rounds.

2.5.2.3 Domain Adaptation via Cross-Domain Mixed Sampling: DACS

Existing methods mix images from the unlabeled target domain, along with their
pseudo-labels, to generate augmented samples. These new samples are then used
in parallel with the source images to train the networks.

Figure 2.38: Naive Mixing: images XT1 and XT2 from the target domain are
mixed to produce the mixed image XM and corresponding mixed label YM . The
network is optimized on batches of augmented images and of source images.

However, this approach, referred to as "Naive Mixing", causes the model to conflate
some of the classes in the target domain. For example, the rare rider class is
confused with the more frequent person, and the sidewalk with the more popular
road, similarly to the previously described bias toward easy-to-transfer classes. This
phenomenon occurs only for the target domain, and does not affect the images
sampled from the source domain.
Rather than exclusively consider the target domain for the domain-mixup, Tran-
heden et Al. [36] proposed to mix images from the source and the target domain,
adapting the mixing strategy of ClassMix [35].

Cross-Domain Mixed Sampling Each augmented image is generated by se-
lecting half of the classes from a source image and pasting them into a target
image. To construct the corresponding label, first of all the target image is passed
through the network to obtain its pseudo-label. Then, the generated pseudo-label
is combined pixel-wise with the ground-truth label of the source image in the same
way as the images. An example is shown in fig. 2.40.

46

Related works

Figure 2.39: DACS mixing: a target image XT is mixed with a source image XS

to produce the mixed image XM . The corresponding mixed label YM is obtained
by mixing the source label with the target pseudo-label. The network is optimized
on batches of augmented images and of source images.

Figure 2.40: Cross-Domain mixing. Half of the classes of a source images are
selected and the corresponding pixels are copied and pasted into the target image;
the same mask is applied on the source label and the selected pixels are pasted
into the pseudo-label generated for the target image.

Cross-Domain Mixed Sampling for Semantic Segmentation Denoting as
XS the source images with corresponding ground truth YS, XM and YM the mixed
images and pseudo-labels, the network parameters θ are trained by minimizing the

47

Related works

loss:
L(θ) = E

5
H(fθ(XS), YS) + λH(fθ(XM), YM)

6
where H is the cross-entropy loss and λ an hyperparameter weighting the unsuper-
vised part of the loss.

2.5.2.4 Improving Network Architectures and Training Strategies for
Domain-Adaptive semantic Segmentation: DAFormer

Despite several effective domain adaptation methods have been proposed in recent
years, they are mostly based on outdated networks architectures. In addition,
recent studies for Image Classification have proven Convolutional Neural Networks
to be sensitive to distribution shifts such as adversarial noise [44], image corruptions
[45] and domain shifts [46].
Starting from these premises, Hoyer et Al. [40] proposed to combine the mixing
strategy of DACS (see 2.5.2.3) with a new architecture, referred to as DAFormer,
based on attention-based Transformers [47, 48], which has been proven to be more
robust than CNN with respect to these shifts.
In addition, to limit overfitting on the source domain, three strategies are introduced
during training: Rare Class Sampling, Thing-Class ImageNet Feature Distance and
learning rate warmup.

DAFormer architecture The self-attention mechanism is quite similar to the
standard convolutions, since they both perform a weighted sum. However, stan-
dard convolutions use weights learned during the training but fixed in inference,
while the attention-mechanism involve weights that are dynamically computed
based on the affinity between every pair of tokens, making the model more adaptive.

In particular, the architecture of DAFormer is composed of a Transformer en-
coder, which follows the design of Mix Transformers (MiT) [49], and a multi level
context-aware feature fusion decoder.
The encoder treats images as sequences of tokens, where each token is extracted
dividing the input images into patches of size 4 × 4, using an overlapping patch
merging process to preserve local continuity. These small patches are then fed as
input to the hierarchical Transformer encoder, that performs efficient Self-Attention
using sequence reduction [50]. This mechanism produces multi-level multi-scale
features Fi with resolution of H

2i+1 × W
2i+1 ×Ci, where i ∈ {1,2,3,4}. This hierarchical

representation is essential to semantic segmentation, because it permits to retain
both high-resolution coarse features and low resolution fine-grained features.
To this purpose, before the feature fusion, each feature map is embedded to the
same number of channels Ce by a 1× 1 convolution and upsampled to the size of F1.

48

Related works

Then the resulting feature maps are concatenated and passed to the context-aware
feature fusion module.
In this module, multiple parallel 3 × 3 depthwise separable convolutions with
different dilation rates are applied, followed by a 1 × 1 convolution to fuse the
stacked multi-level features.
The architecture of DAFormer is depicted in fig 2.41

Figure 2.41: DAFormer [40] architecture.

Training strategies: Rare Class Sampling, Thing-Class ImageNet Fea-
ture Distance and Learning Rate Warmup In parallel with this powerful
architecture, some strategies to limit overfitting on the source data have been
proposed.

Starting from the premise that the later a certain class in seen during training,
the worse will be the network performance on that class, Rare Class Sampling
(RCS) attempts to mitigate the bias toward initially well-transferred class by
sampling more frequently images containing rare classes.
The frequency of each class fc is simply the number of pixels of class c in the source
dataset:

fc =
qNS

i=1
qH×W

j=1

è
Y

(i,j,c)
S

é
NS ∗ H ∗ W

Consequently, it is possible to define the sampling probability for each class c in
function of fc :

P (c) = e
(1−fc)

TqC
c′=1 e

(1−fc′)
T

49

Related works

where T is referred to as temperature and controls the smoothness of the distribu-
tion.
To select a source image, a class is sampled from the probability distribution c ∼ P
and the image is sampled from the subset of images containing the selected class c.
It is worth noting that sampling more frequently images containing rare classes
does not imply ignoring the common classes during training, since they co-occurs
with multiple rare classes and therefore are already covered.

Analysing the behaviour of DAFormer in UDA, authors have noticed that the
performances of the network over some classes decrease over time. This phenomenon
is related to the initialization of the network. In particular, it is common to initialize
the segmentation network with the weights from ImageNet classification, because
this dataset provides useful information since it contains real-world images.
During training, meaningful features from ImageNet are corrupted while the model
overfits to synthetic data. To face this gradual corruption, the proposed solution,
referred to as Thing-Class ImageNet Feature Distance, consists in regularizing
the distance between the bottleneck features of the segmentation network fθ and
the bottleneck features FimageNet of the ImageNet model:

d(i,j) = ∥FImageNet(x(i)
s)(j) − Fθ(x(i)

s)(j)∥

More specifically, the Feature Distance loss is calculated exclusively on thing-classes,
since the ImageNet model is mostly trained on objects with well-defined shape
(such as cars or buildings), rather than stuff-classes, characterized by amorphous
background (such as road or sky). Denoting as Mthings the binary mask identifying
the thing-classes pixels, the Feature Distance loss is defined as:

L(i)
F D =

qHF ×WF
j=1 d(i,j) · M

(i,j)
thingsq

j M
(i,j)
things

In particular, to obtain the mask Mthings, the label yc
s is downsampled to the

bottleneck feature size, performing average pooling with patch H
HF

× W
WF

to each
class channel. A class is kept when it exceed the ratio r:

yc
S,small =

5
AvgPool

3
yc

s,
H

HF

,
W

WF

4
> r

6

In order to consider only feature pixels containing dominant thing-class, the mask
is computed as:

M
(i,j)
things =

CØ
c′=1

yi,j,c′

S,small ·
5
c′ ∈ Cthings

6
50

Related works

Lastly, to avoid that a large adaptive learning rate distorts features from ImageNet
pretraining, authors proposed Learning Rate Warmup, adapting to UDA a
successful technique adopted to train both CNN and Transformers. In particular,
during the warmup period, referred to as twarm, the learning rate at iteration t is
calculated as:

ηt = ηbase · t

twarm

The overall loss L is:

L = LS + LT + λF DLFD

where LS and LT are the cross-entropy losses computed, respectively, on the labeled
source images and the pseudolabeled mixed images.

2.6 Datasets
To validate and compare the methods that we are going to describe, we use a
popular synthetic-2-real Unsupervised Domain Adaptation setting, where the syn-
thetic source labeled data comes from either GTA5 [5] or SYNTHIA [51], and the
unlabeled target data from Cityscapes [2].

2.6.1 GTA5
GTA5 [5] dataset consists of 24.966 images, each having resolution 1914 x 1052. Each
image is paired with the corresponding label, provided with pixel-level semantic
annotation of 33 classes.
To make the dataset compatible with other Semantic Segmentation datasets for
outdoor scenes, only a subset of 19 classes is considered.
All the images are from car perspective and the represented streets are from
American-style virtual cities.

2.6.2 SYNTHIA
SYNTHIA (a SYNTHetic collection of Imagery and Annotations of urban scenarios)
[51] is a collection of photo-realistic frames, subdivided in 2 complementary sets of
images: SYNTHIA-Rand (the folder adopted in this work) and SYNTHIA-Seqs.
SYNTHIA-Rand consists of 13.400 images, each of resolution 960 x 720 pixels,
paired with the corresponding label, provided with precise pixel-level semantic
annotation of 13 classes.

51

Related works

Figure 2.42: Examples of GTA5 images and ground truth labels.

Images are acquired from multiple-points, by letting several cameras move randomly
in the city, at at a height from the ground ranging between [1.5m, 2m]. In addition,
to increase the visual variability, each camera is forced to stay at least 10 meters
far from all the other cameras.

2.6.3 Cityscapes
Cityscapes [2] is a large-scale benchmark dataset, designed to capture the high
variability of outdoor street scenes.
Images have been collected letting a vehicle move in 50 cities, mainly in Germany.
The process lasted few months, making it possible to collect image during 3 different
seasons: spring, summer and fall.
For what concern the annotation, 5000 images from 27 cities have been selected for

52

Related works

dense pixel wise annotations. It is worth notice that, on average, annotation and
quality control required 90 minutes, for each single image.
From the remaining 23 cities, other 20.000 frames were extracted. To reach a
trade-off between quality and speed, these images were provided of coarse pixel-wise
annotations, which required a span of maximum 7 minutes.

The 5000 densely annotated images have been subdivided in 3 sets, to support
training, validation and test. In particular, to make each split reflect the variability
of each street scene, the dataset has been subdivided to equally share frames from:

• Large, medium and small cities

• Geographic west, center and east

• Geographic north, center and south

• Beginning, middle and end of the year

At the end of this split process, we end up having 2975 images for training, 500 for
validation and the remaining 1525 images for test.

53

Chapter 3

Benchmark

The methods described in section 2.5 attempt to bridge the gap between synthetic
and real domains, by making use of the most frequently used Domain Adaptation
techniques that can be subdivided in Adversarial-based or Self-Learning-based
(SSL). In these works, and more in general in DA literature, it is common to adopt
Domain Adaptation techniques on top of large scale Deep Learning models, since
their large number of learnable parameters allows to reach remarkable results in
terms of mean Intersection over Union (mIoU) on the target domain.
One of the most adopted networks is DeepLabV2 (see 2.4.1.1). This network is
characterized by a huge number of parameters and high latency, but guarantees
high quality segmentation outputs on the target domain.
Usually, the segmentation model is trained on the labeled source domain, with an
Adversarial or SSL optimization on the unlabelled target domain.

At this point, we’d like to make some considerations.

• Despite being characterized by high performance in terms of mIoU, the com-
plexity of the segmentation network has a significant impact on the inference
time. Taking as reference the DeepLabv2 network, the total number of pa-
rameters of the model is around 44 million and the average time to process
a single image on a NVIDIA-TITAN RTX is 13.75 ms. Even if this latency
is undoubtedly very limited, it is not negligible in the real world self-driving
scenario.
In addition, the huge number of parameters of the network has an impact
on the hardware requirements needed to run the model inside the vehicle,
increasing the design and production costs from manufacturers point of view.
To face this issues, in the last years researchers have proposed lightweight

54

Benchmark

models characterized by lower number of learnable parameters, and, conse-
quently, by lower latency. Taking as reference MobileNetV2 with ASPPv2 as
head, the total number of parameters is around 3 million, while the average
inference time drops down to 6.06 ms .
On the other hand, due to the lower number of parameters of the lightweight
model, the capacity of the network is reduced, at the expense of performances.

• The second consideration is about the training of the lightweight network
in the Domain Adaptation setting. A straightforward solution could be to
simply adopt the aforementioned DA techniques to train the MobileNetV2
segmentation network.
However, we imagine a different scenario, especially from companies point of
view, in which in phase of deployment we expect to integrate the lightweight
models on the vehicles, but, in phase of training, we actually have access
to the powerful but slower DeepLabV2 network. This scenario pushes us to
research a way to take advantage of the fine grained knowledge of DeepLabV2
when training the lightweight MobileNetV2.

• The third point is about the availability of the datasets. Starting from the
scenario just described, we imagine a situation in which a company has access
to the pre-trained DeepLabV2 network and aims to exploit its fine knowledge
to train the lightweight MobileNetV2 on a real target domain, without having
access to source dataset originally used to train the DeepLabv2.

3.1 Protocols
Putting together all these aspects, we can finally introduce our work. We propose to
extend three traditional DA settings (Adversarial, Self-Learning, Adversarial+Self-
Learning) to exploit the fine grained knowledge of DeepLabV2 to train the
lightweight MobileNetV2. Since we expect to move the knowledge from a com-
plex model to the lighter one, we refer to DeepLabV2 as source model and to
MobileNetV2 as target model.
Rather than adopting a pre-trained version of DeepLabV2, in this work we decided
to train jointly the source and the target model, exploiting the gradual knowledge
of DeepLabV2 to train the lightweight network step after step. To this purpose,
we relax the constraint about the not-availability of the source dataset (essential
for training DeepLabV2), but we try to reduce as much as possible the dependency
of the lightweight model from the images coming from the source domain.
In particular, we begin by extending the conventional Adversarial Domain Adap-
tation setting to align the features of the target images fed to MobileNetV2 to
those extracted by DeepLabV2 on the source images, making it possible to use

55

Benchmark

the classifier trained on the source domain to segment the target images fed to
the lightweight network. As a result, the classifier (the ASPPv2 module) in this
configuration is shared by the DeepLabV2 and MobileNetV2 feature extractors.
We next switch to the Self Learning DA configuration where we suggest optimizing
the lightweight network using the pseudolabels produced by the source model. We
design a simple SSL framework in which the generation of pseudolabels is based on
a threshold on the confidence. In order to make this method comparable with the
Adversarial-based one, we maintain the same architecture with the shared classifier.
We then extend the existing SSL Domain Adaptation techniques described in
section 2.5.2: CBST, FDA, DACS and DAFormer. For this frameworks, we treat
the source and the target models as separate networks.
Then, using the architecture with the shared classifier, we train MobileNetV2
by combining the Adversarial and SSL Domain Adaptation approaches. While
MobileNetV2’s features are aligned using an adversarial loss, DeepLabV2’s pseudo-
labels are used to train the lightweight model on the target domain.

3.1.1 Deep2Light Adversarial

We begin with the Adversarial-based Domain Adaptation scenario, using the
ADVENT-proposed architecture described in section 2.5.1.1 as starting point for
our Deep2Light adversarial framework.
In the original configuration, described in fig. 3.1a, the segmentation network is
optimized with two losses. The first one is the segmentation loss, computed on the
synthetic images coming from the source domain and the corresponding ground
truth labels. The second is the adversarial loss, used to align the weighted self-
information distributions of source and target images, by training a discriminator
to classify whether an image is coming from source or from target and, at the same
time, training the segmentation network to fool the discriminator.

56

Benchmark

(a) Traditional Adversarial Domain adaptation Setting, with reference to ADVENT.

(b) Deep2Light Adversarial setting.

Figure 3.1

Taking inspiration from ADDA (see section 2.5.1), we imagine the possibility
of learning, on the source model, a discriminative representation for the source
domain along with a unique classifier and, jointly, mapping the target data into
the same space of source images through a domain-adversarial loss on the target
model.
In particular, we denote the sets of labeled and unlabeled samples respectively as
S and T . At each iteration, an image XS from the source domain S is fed as input
to the DeepLabV2 feature extractor MS, which produces the feature representation
MS(XS) for the source image. MS(XS) is then fed as input to the classifier C,
which produces the segmentation output C(MS(XS)). MS and C are trained using
a standard cross-entropy loss.

57

Benchmark

In the same iteration, an image XT is sampled from the target domain T and
fed as input to MobileNetV2 feature extractor MT , which produces the target
mapping MT (XT). MT (XT) is then passed to the classifier C, that generates the
corresponding segmentation map C(MT (XT))
A domain discriminator D receives the weighted self-information computed from
C(MS(XS)) and C(MT (XT)) and is trained to classify whether the input is drawn
from the source or from the target domain, with a cross entropy domain classification
loss.
At the same time, with the parameters of the classifier freezed, the feature extractor
of MobileNetV2 is trained with an adversarial loss to fool the discriminator. In
particular, it feeds the discriminator with the segmented output of the target image
but labeled as source. This loss will encourage the feature extractor MT to align
the features of the target images to the ones produced by DeepLabV2 for the source
images, making it possible to use the classifier optimized on the source images to
segment the target samples.
In this architecture, the head of DeepLabV2 (i.e. the ASPPv2 module) behaves as
shared classifier for the two networks. However, since the number of channels of
the source and target output features does not match, we insert a 1 × 1 convolution
block on the output features of DeepLabV2 to reduce the number of channels from
2048 to 1280, making it compatible with the output features of MobileNetV2.
The overall architecture is illustrated in fig. 3.1b.

58

Benchmark

(a) Traditional Self-Learning Domain adaptation Setting.

(b) Deep2Light Self-Learning setting.

Figure 3.2

3.1.2 Deep2Light Self-Learning
Traditionally, in the SSL setting, the segmentation network is trained with a seg-
mentation loss, computed on the annotated images coming from the source domain.
In addition, the segmentation network in asked, at the same time or in a following
iteration, to generate the pseudo-labels for the target images. These pseudo-labels
are used as ground truth labels for the target images to further optimize the
segmentation network with a second loss, which we refer to as segmentation pseudo
loss.
The traditional SSL framework is illustrated in fig. 3.2a.

59

Benchmark

Deep2Light SSL-with-Threshold

We modify the framework so that DeepLabV2 is trained exclusively on the source
domain, but is still used to generate the pseudo-labels for the target images. In
contrast with the traditional approach, now we propose to use the target images
with the pseudo-labels generated by the source model to train the lightweight
network. Both the feature extractors and the classifier are trained using a standard
cross-entropy loss.
In this setting, theoretically, we could separate the source and the target model,
but we choose to stick with the previously described architecture, complete with a
shared classifier and a convolution block on the output features of DeepLabV2, in
order to make the results comparable to those obtained in the adversarial scenario.
The overall architecture is illustrated in fig. 3.2b.
For the pseudo-labels generation strategy, we set a threshold on the confidence of
the prediction. In particular, for each semantic class we only accept predictions
having confidence > 0.968.

Deep2Light CBST

The original work of CBST has been illustrated in section 2.5.2.1.
Synthetically, the whole pipeline can be described as the repetition of several
rounds, where each round can be summarized as:

1. Target images are fed into the network, which outputs the predictions with
the corresponding confidence map.

2. The confidence maps of the whole set of target images are used to determine
the thresholds Kc for each class, which drive the pseudolabel generation for
the target set of images.

3. The network is finetuned with the pseudolabeled target images, plus a small
portion of source images, for 2 epochs.

In the original work, a pre-trained-in-source version of DeepLabV2 is adopted,
reason why, during the CBST pipeline, the model is fed with only a negligible
portion of source images.

We propose to use the pseudo-labels generated by DeepLabV2 not only to
finetune the weights of the source network, but also to train MobileNetV2 on the
target domain. Images from source domain, instead, are forwarded exclusively to
DeepLabV2, since we want to reduce as much as possible the use of source images
in the training of MobileNetV2.
The overall framework is described in fig. 3.3.

60

Benchmark

Figure 3.3: Deep2Light CBST. The pipeline can be summarized as the repetition
of several rounds, each composed of 2 steps. In the first step, on the left, target
images are fed to DeepLabV2 to generate pseudo-labels. In the second step,
on the right, DeepLabV2 is finetuned on the labeled source domain and on the
pseudo-labeled target images. In addition, the target images, paired with the same
pseudolabels generated by DeepLabV2, are used to train MobileNetV2.

Deep2Light FDA

The original approach of FDA has been presented in section 2.5.2.2.
The work starts the observation that even if images are perceptually very close, their
low-level spectrum can vary significantly. To make the network able to generalize
on the target domain, the proposed strategy consists in training the network with
source-in-target images, obtained by replacing the low-level spectrum of source
images with the ones extracted from the target samples (see section 2.5.2.2 for
details about the generation of source-in-target images).
In this process, to amount of low-level spectrum moved from target to source can
be controlled by a parameter, named β, that permits to create multiple datasets,
each having a different degree of translation in target.
The overall framework can be subdivided in the following stages:

1. Source-in-target dataset creation. Multiple datasets are created using different
values of β.

2. Round 0. In parallel, multiple networks are optimized with a standard Cross
Entropy loss, each one on a different adapted dataset composed of source-in-
target images.

3. Pseudolabels generation. Target images are fed to the networks and their
predictions are averaged to obtain the final pseudo-labels for the set of target
images.

61

Benchmark

Figure 3.4: Deep2Light FDA. Multiple source-in-target datasets are created,
each one with a different value of β, and used to optimize multiple DeepLabV2
models. Once trained, the networks are asked to generate pseudo-labels for the
target images, that are later used to train MobileNetV2.

4. Round 1. The networks are trained again from scratch, each one using
a different source-in-target dataset plus the target images paired with the
generated pseudo-labels.

We propose to extend this framework to use the target images and the pseudo-labels
generated by DeepLabV2 during the point 3) to train MobileNetV2 with a standard
Cross Entropy loss. This means that the whole process remains unchanged, apart
from the round 1. In this round, instead of training DeepLabV2 with the source-in-
target dataset plus the pseudo-labeled target images, we use exclusively the target
images, paired with the pseudo-labels generated by DeepLabV2, to optimize the
lightweight network.
The workflow is described in fig. 3.4.

Deep2Light DACS

The original work of DACS has been presented in section 2.5.2.3.
In this paper, authors affirm that training networks with images mixed from the
unlabeled target dataset cause the model to conflate some of the classes in the target
domain. Since this problem does not occur when images are sampled from the
source domain, they propose Cross-Domain Mixing, adapting the mixing strategy
of ClassMix to mix together images from source and target domain (see section

62

Benchmark

2.5.2.3 for details about the generation of mixed images).
In the previous frameworks, we trained MobileNetV2 exclusively on the target
images and the pseudo-labels generated by DeepLabV2, without using not even a
source image during the optimization of the lightweight model.
Now, we relax the restriction on MobileNetV2’s complete independence from the
source dataset, giving access to the mixed images to benefit from DeepLabV2’s
developing capacity to segment target images.
In particular, we modify the original pipeline of DACS to exploit the mixed images
in order to train MobileNetV2.

Figure 3.5: Deep2Light DACS. At each iteration, a labeled image is sampled
from the source domain and used to train DeepLabV2. An unlabeled image
from the target domain is sampled and fed to DeepLabV2, which generates the
corresponding pseudo-label. Images and labels are mixed together and used to
optimize MobileNetV2.

At each iteration, the pipeline is then modified as follows:
1. Train with source. DeepLabV2 is optimized on the source domain.

2. Mixing. Half of the classes of a source image are selected and the corresponding
pixels are pasted into a selected target image to obtain the mixed image.
DeepLabV2 receives the target image and is asked to generate a pseudo-label,
that is combined with the source label with the same mask to obtain the
mixed label.

3. Train with mixed images. MobileNetV2 is optimized with the pseudolabeled
mixed images with a standard Cross Entropy loss.

63

Benchmark

The architecture is described in fig. 3.5.

Deep2Light DAFORMER

DAFormer has been detailed in section 2.5.2.4.
The primary idea of this work is the adoption of a new architecture, called DAFormer,
that is built on attention-based Transformers (see section 2.5.2.4 for details about
DAFormer architecture). In the paper, authors propose three strategies to limit
overfitting on the source domain: Rare Class Sampling (RCS), Thing-Class Im-
ageNet Feature Distance (FD), Learning Rate Warmup. During training, the
Cross-Domain Mixing strategy of DACS (see 2.5.2.3) is adopted to augment images
of the target domain.
We extend the original framework to integrate MobileNetV2 in the training process.
In specifically, using the extension of DACS in section 3.5 as a guide, we train
MobileNetV2 using the mixed images and related mixed labels, that were originally
utilized to optimize DAFormer.

Figure 3.6: Deep2Light DAFormer.

The whole workflow, described in fig. 3.6, can be summarized as the repetition of
the following steps:

1. Rare Class Sampling. To each class c is associated the frequency fc, corre-
sponding to the number of pixels of class c in the source dataset. Computing

64

Benchmark

the sampling probability of each class c as:

P (c) = e
(1−fc)

TqC
c′=1 e

(1−fc′)
T

it is possible to sample, at each iteration, a class c from the probability
distribution P (c). A source image is sampled from the subset of images
containing the selected class c.

2. Train DAFormer in source. DAFormer is trained with the source image
and its label with a standard Cross Entropy loss.

3. Thing-Class ImageNet Feature Distance (FD). The distance d(i,j) be-
tween the features of DAFormer and the features of the model pretrained on
ImageNet is used to compute the Feature Distance loss LF D on the thing-classes
identified by the mask Mthing:

L(i)
F D =

qHF ×WF
j=1 d(i,j) · M

(i,j)
thingsq

j M
(i,j)
things

LF D is backpropagated in DAFormer.

4. Cross-Domain Mixing. To create the mixed image, half of the classes of the
source image are chosen, and the associated pixels are pasted into a sampled
image from the target domain. When given the target image, DAFormer is
asked to create a pseudo-label, that is combined with the source label using
the same mask in order to create the mixed label.

5. Train MobileNetV2 with mixed images. MobileNetV2 is optimized on
the pseudolabeled mixed image with a standard Cross-Entropy loss.

The whole pipeline is described in fig. 3.6.

3.1.3 Deep2Light Adversarial+SSL
In the last experiment, we combine the Adversarial and Self-Learning settings
into a unique framework, using the shared-classifier-architecture adopted in the
Adversarial and SSL-with-threshold approaches. While DeepLabV2 is trained
on the source domain, the lightweight model is optimized with two losses. The
first one is the segmentation pseudo loss, computed on the target images and the
pseudo-labels generated by the source model. This loss optimizes MobileNetV2’s
feature extractor and the shared classifier. With the parameters of the classifier
freezed, the adversarial loss optimizes MobileNetV2, encouraging it to produce,

65

Benchmark

for the target images, features more and more similar to the ones generated by
DeepLabV2 for the source domain.
The architecture is described in fig. 3.7.

Figure 3.7: Deep2Light Adversarial+Self-Learning.

3.2 Implementation details

This section details the experimental setup for our experiments. All of the experi-
ments are carried out by applying the two conventional synthetic-to-real protocols:
GTA5 to Cityscapes and SYNTHIA to Cityscapes.

Deep2Light Adversarial

We train the shared-classifier-architecture for 90.000 iteration with SYNTHIA and
for 120.000 with GTA5. Images from GTA are resized to 1280×720, those from
SYNTHIA to 1280×760 and the target images from Cityscapes to 1024×512. We
use batch size = 1 for both the source and target samples. The segmentation
networks are optimized via Stochastic Gradient Descent, with learning rate=2.5e-4,
momentum=0.9 and weight decay=0.0005, while the discriminator is trained using
Adam as optimizer, with learning rate=1e-4.
The adversarial loss used to optimize the lightweight model is weighted by the
parameter λadv. We perform two experiments, setting λadv = 0.001 and λadv = 1.

66

Benchmark

Deep2Light Self-Learning with Threshold

We optimize the shared-classifier-architecture architecture with SYNTHIA and
GTA5, respectively for 90.000 and 120.000 iterations, using SGD with learning
rate=2.5e-4, momentum=0.9 and weight decay=0.0005. Images from GTA are
resized to 1280×720, those from SYNTHIA to 1280×760 and the target images
from Cityscapes to 1024×512. We use batch size = 1 for both the images coming
from source and target domain.
The threshold on the confidence of the predictions for the pseudolabel generation
is set to 0.968.

Deep2Light CBST

Following the original work of CBST, we use a pretrained-in-source version of
DeepLabV2.
In particular, we train the network with standard Cross Entropy loss on GTA5
(analogously on SYNTHIA) for 120000 iterations, batch size = 4, SGD as optimizer
with learning rate=2.5e-4, momentum=0.9 and weight decay=0.0005.
The backbone of MobileNetV2 is pretrained on ImageNet.
Images coming from source domain, either GTA5 or SYNTHIA, are resized, ran-
domly scaled, cropped and randomly flipped.
505 images from the train set of Cityscapes are selected and used in the training
process as target images. During this process, images are neither resized, cropped
or scaled.
At each round, the p × 100% most confident pseudo-labels for each class are selected
(see section 2.5.2.1 for details). The parameter p starts from an initial value and is
gradually increased at each round.
Once the images are pseudolabeled by DeepLabV2, the 505 target images are
loaded again, with their pseudolabels. In particular, after being randomly resized,
a hard sample mining strategy is applied to give priority, during cropping, to the
portion of images containing rare classes, where the rare classes are the worst 3
classes extracted from the target predictions.
The portion of source images used to finetune DeepLabV2, although very limited,
gradually increases round after round.
We perform hyperparameter tuning in order to find the most suitable number of
epochs per round for the optimization of MobileNetV2, which we discover to be 24.
Table 3.1 lists the parameters utilized for the training.

Deep2Light FDA

Both the backbones of DeepLabV2 and MobileNetV2 are pretrained on ImageNet.
During the first round, named round 0, we perform 3 experiments, each training

67

Benchmark

GTA5 SYNTHIA

RESIZE SOURCE IMAGES 1914 × 1052 1280 × 760
RESIZE TARGET IMAGES 2048 × 1024 2048 × 1024
RANDOM SCALE SOURCE 0.5-1.5 0.8-1.2
RANDOM SCALE TARGET 0.5-1.5 0.6-1.5

CROP SIZE OF SOURCE IMAGES 1024 × 512 900 × 600
OPTIMIZER Adam Adam

LEARNING RATE 5e-5 5e-5
MOMENTUM 0.9 0.9

WEIGHT DECAY 0.0005 0.0005
BATCH SIZE 2 2

NUMBER OF ROUNDS 4 3
EPOCHS PER ROUND - DEEPLAB 2 2

EPOCHS PER ROUND - MOBILENET 24 24
INITIAL VALUE OF p 0.2 0.2

STEP OF p 0.05 0.05
MAXIMUM VALUE OF p 0.5 0.5

INITIAL PORTION OF SOURCE 3% 2%
PORTION STEP OF SOURCE 0.25% 0.25%
MAX PORTION OF SOURCE 6% 6%

Table 3.1: Parameters of Deep2Light CBST.

DeepLabV2 with a different β, which determines the degree of translation in target.
Source images are cropped and resized, whereas target images are just resized.
Once the models are trained, they are used to generate the pseudolabels for the
train set of Cityscapes. The predictions of the models are averaged and, for each
pixel, the semantic class is retained only if its confidence is within the top 66% or
above 0.9.
During the second round, named round 1, target images and pseudolabels are
loaded, resized and used to train MobileNetV2 with a Cross Entropy loss.
Parameters are reported in tab. 3.2.

Deep2Light DACS

Both the backbones of DeepLabV2 and MobileNetV2 are pretrained on ImageNet.
Source images, coming from GTA5 or SYNTHIA, and target images, coming from
the train set of Cityscapes, are resized and cropped.
DeeplabV2 is trained on the labeled source images with Cross Entropy loss.

68

Benchmark

GTA5 / SYNTHIA

RESIZE SOURCE IMAGES 1024 × 512 / 1280 × 760
RESIZE TARGET IMAGES 1280 × 720

β 0.01, 0.05, 0.09
NUMBER OF STEPS 100000

OPTIMIZER SGD
LEARNING RATE 2.5e-4

MOMENTUM 0.9
WEIGHT DECAY 0.0005

BATCH SIZE 1

Table 3.2: Parameters of Deep2Light FDA.

For the pseudo-labels generation strategy, we set a threshold on the confidence of
the prediction. In particular, for each semantic class we only accept predictions
having confidence > 0.968.
Images are mixed with ClassMix, and then augmented by Color Jitter and Gaussian
Blur.
MobileNetV2 is trained on the pseudolabeled mixed images with a Cross Entropy
loss.
Parameters are reported in tab. 3.3.

GTA5 / SYNTHIA

RESIZE SOURCE IMAGES 1280 × 720
RESIZE TARGET IMAGES 1024 × 512

CROP SIZE 512 × 512
COLOR JITTER TRUE

GAUSSIAN BLUR TRUE
BATCH SIZE 2

NUMBER OF STEPS 250000
OPTIMIZER SGD

LEARNING RATE 2.5e-4
MOMENTUM 0.9

WEIGHT DECAY 0.0005

Table 3.3: Parameters of Deep2Light DACS.

69

Benchmark

Deep2Light DAFormer

The encoder of DAFormer is MiT-B5 [49], pretrained on ImageNet-1k. The
backbone of MobileNetV2 is also pretrained on ImageNet.
Source and target images are resized, cropped and randomly flipped.
Labeled source images are used to train DAFormer with a Cross-Entropy loss, while
the bottleneck features are used to compute the Feature Distance loss LFD, that is
weighted by the factor λF D in the DAFormer optimization process.
For the pseudo-labels generation strategy, we set a threshold on the confidence of
the prediction. In particular, for each semantic class we only accept predictions
having confidence > 0.968.
In the Cross-Domain Mixing, images are mixed with ClassMix and then augmented
with Color Jitter and Gaussian Blur.
MobileNetV2 is trained on the pseudolabeled mixed images with Cross Entropy
loss.
Parameters are reported in tab. 3.4.

GTA5 / SYNTHIA

RESIZE SOURCE IMAGES 1280 × 720 / 1280 × 760
RESIZE TARGET IMAGES 1024 × 512

CROP SIZE 512 × 512
RANDOM FLIP TRUE

ITERATIONS 40000
BATCH SIZE 2

CROSS-DOMAIN COLOR JITTER TRUE
MIXING GAUSSIAN BLUR TRUE

RARE
CLASS T 0.01

SAMPLING
FEATURE r 0.75
DISTANCE λF D 0.005

OPTIMIZER AdamW
LR LEARNING RATE 6e-5

WARMUP WARMUP PERIOD 1500
WEIGHT DECAY 0.01

Table 3.4: Parameters of Deep2Light DAFormer.

70

Benchmark

Deep2Light Adversarial+Self-Learning

We train the shared-classifier-architecture for 90.000 iteration with SYNTHIA and
for 120.000 with GTA5. Images from GTA are resized to 1280×720, those from
SYNTHIA to 1280×760 and the target images from Cityscapes to 1024×512. We
use batch size = 1 for both the source and target samples. The segmentation
networks are optimized via Stochastic Gradient Descent, with learning rate=2.5e-4,
momentum=0.9 and weight decay=0.0005, while the discriminator is trained using
Adam as optimizer, with learning rate=1e-4. The adversarial loss used to optimize
the lightweight model is weighted by the parameter λadv. We perform 2 experiments,
setting λadv = 0.001 and λadv = 1.
The threshold on the confidence of the predictions for the pseudolabel generation
is set to 0.968.

3.3 Results
We established few baselines before reporting the outcomes of our experiments. To
define a lower bound for our framework, we first train MobileNet on the source
domain (GTA and SYNTHIA) and then test the model on the target domain.
As upper bound, we directly train MobileNet on the training set of the Cityscapes
dataset.
Results are reported in table 3.5.
In table 3.6 we report the outcomes of the first Deep2Light frameworks: Adver-

sarial and SSL-with-threshold.
The results unequivocally show a significant imbalance in MobileNetV2’s perfor-
mance when trained using the two alternative paradigms.
We originally choose λadv = 0.001 in the adversarial scenario, sticking to the basic
strategy of ADVENT[29], which served as the basis for our research. In contrast to
ADVENT, where the reference network is optimized using both the adversarial and
segmentation losses, in our framework the target network (i.e. MobileNetV2) is
trained purely using adversarial loss. Starting from this observation, we increased
the weight of the adversarial loss, by setting λadv = 1. Despite obtaining lower
performance in terms of mIoU, in this second experiment the amount of correctly
assigned pixels is better distributed over classes, even if several classes are still
completely ignored. Since MobileNetV2 does not even reach the lower bound set
for GTA5 and SYNTHIA, neither with λadv = 0.001 and λadv = 1, we can affirm
that the adversarial framework fails in this task.
On the other hand, by adopting the Self-Learning framework, we achieve promising
results, outperforming the lower bounds established for GTA5 and SYNTHIA in
nearly every class as well as in the final mIoU.
Despite the unsatisfactory outcomes of the adversarial framework, we merge it with

71

Benchmark

LOWER BOUNDS UPPER BOUND

GTA5 SYNTHIA Cityscapes

Road 8.04 33.77 95.28
Sidewalk 4.86 16.37 68.12
Building 52.51 48.52 83.35

Wall 1.02 4.35 34.55
Fence 9.82 0.14 39.55
Pole 5.37 7.71 14.94
Light 7.24 0.00 27.44
Sign 1.14 0.03 35.34

Vegetation 61.16 50.98 83.00
Terrain 3.14 - 49.80

Sky 61.01 63.96 83.99
Person 22.20 28.43 50.10
Rider 0.45 0.59 28.42
Car 16.08 25.21 83.94

Truck 5.54 - 43.59
Bus 2.08 4.91 53.25

Train 0.00 - 35.72
Motorbike 2.15 0.00 29.84

Bicicle 0.00 3.49 51.58
mIoU-19 13.88% - 52.20%
mIoU-16 - 18.03% 53.92%

Table 3.5: We report the lower bounds established for MobileNetV2 in the two
conventional settings GTA5→Cityscapes and SYNTHIA→Cityscapes, as well as
the upper bound. Results are shown as per-class IoU and mIoU for 16 and 19
classes.

SSL in the final experiment. Results are reported in table 3.7.
Performances substantially decrease with λadv = 1, reaching those observed with

the adversarial-only configuration. We try to lessen this effect by lowering the
weight of the adversarial loss, setting λadv = 0.001. By doing this, we get results
that are similar to those of the SSL-only configuration.
In light of this, we disregard the adversarial framework, which doesn’t seem to add
anything to our framework, and solely concentrate on Self-Learning approaches.
In table 3.8 we report the results of the Deep2Light Self-Learning techniques:

72

Benchmark

ADVERSARIAL SELF-LEARNING

GTA2CS SYNTHIA2CS GTA2CS SYNTHIA2CS

λ = 0.001 λ = 1.0 λ = 0.001 λ = 1.0
Road 70.96 61.51 64.55 10.60 42.86 56.48

Sidewalk 0.00 0.04 11.93 3.00 13.95 25.51
Building 43.36 32.36 36.83 29.38 75.4 59.13

Wall 0.00 0.03 0.00 0.95 14.37 0.03
Fence 0.00 0.02 0.00 0.03 14.33 0.00
Pole 0.00 0.18 0.00 1.46 5.35 9.71
Light 0.00 0.00 0.00 0.00 6.09 0.00
Sign 0.00 0.00 0.00 0.17 5.03 4.09

Vegetation 0.00 3.55 0.39 0.58 78.04 74.00
Terrain 0.00 0.43 - - 35.92 -

Sky 0.00 4.17 0.00 0.07 68.32 74.34
Person 0.00 0.01 0.00 0.29 40.03 37.87
Rider 0.00 0.00 0.00 0.00 0.00 4.03
Car 0.00 3.67 0.00 2.91 69.11 70.92

Truck 0.00 0.19 - - 16.1 -
Bus 0.00 0.00 0.00 0.21 22.17 13.12

Train 0.00 0.00 - - 0.00 -
Motorbike 0.00 0.00 0.00 0.17 0.00 0.11

Bicicle 0.00 0.00 0.00 0.04 0.00 0.76
mIoU 6.02% 5.59% 7.11% 3.12% 26.69% 26.88%

Table 3.6: Results of our Deep2Light Adversarial and Deep2Light Self-Learning
frameworks in the two conventional settings GTA→Cityscapes (GTA2CS in the
table) and SYNTHIA→Cityscapes (SYNTHIA2CS in the table).

CBST, FDA, DACS and DAFormer. Our results are quite low when using CBST,
even worse than when using SSL-with-threshold, yet they are still greater than the
lower bounds established for GTA and SYNTHIA.
We obtain higher performances with FDA, especially in the GTA→Cityscapes
setting, where the results are comparable with the ones obtained with DACS, which
instead guarantees good quality results also on SYNTHIA→Cityscapes.
However, the technique that unequivocally provides the best results in both the
synthetic2real settings is DAFormer. This framework outperforms the other SSL

73

Benchmark

ADV+SSL

GTA→Cityscapes SYNTHIA→Cityscapes

λadv = 0.001 λadv = 1.0 λadv = 0.001 λadv = 1.0
Road 62.37 15.21 59.98 43.38

Sidewalk 18.26 4.61 26.43 13.13
Building 73.72 31.57 60.48 41.50

Wall 9.18 0.00 0.00 0.00
Fence 8.27 0.00 0.00 0.00
Pole 4.00 0.00 7.78 0.00
Light 5.23 0.00 0.00 0.00
Sign 6.20 0.00 3.36 0.00

Vegetation 77.95 19.87 73.59 24.07
Terrain 32.89 1.19 - -

Sky 65.73 5.79 73.37 47.21
Person 39.52 0.21 40.98 0.37
Rider 0.00 0.00 4.73 0.00
Car 68.40 16.96 73.31 4.03

Truck 16.08 0.00 - -
Bus 9.66 0.00 17.37 0.00

Train 0.00 0.00 - -
Motorbike 0.00 0.00 0.00 0.00

Bicicle 0.00 0.00 0.37 0.00
mIoU 26.18% 5.02% 27.61% 10.86%

Table 3.7: Results of our Deep2Light Adversarial+Self-Learning framework.

techniques in nearly every class as well as in the final mIoU. In particular, if we
compare the results with the upper bounds, we can observe a gap in the mIoU of
around 10% in GTA→Cityscapes setting and 15% in the SYNTHIA→Cityscapes
one. In light of this, the results obtained with the Deep2Light DAFormer framework
are quite encouraging, as we are able to successfully exploit a network trained
exclusively on the source domain to approach the upper bound, which, we recall, is
established by taking advantage of the target annotations.

In fig. 3.8 we provide some graphical results of our Self-Learning based
Deep2Light techniques in the GTA→Cityscapes setting, which qualitatively confirm

74

Benchmark

Deep2Light Deep2Light
GTA→CITYSCAPES SYNTHIA→CITYSCAPES

CBST FDA DACS DAF CBST FDA DACS DAF
Road 20.56 89.21 81.31 83.79 16.76 49.80 61.36 77.65

Sidewalk 0.40 42.89 28.82 26.16 7.94 18.19 24.62 28.78
Building 65.09 75.10 79.02 80.03 42.03 64.63 71.55 77.14

Wall 1.24 16.89 22.31 31.33 0.04 0.23 10.25 16.82
Fence 8.20 18.42 24.46 22.45 0.01 0.04 0.02 1.32
Pole 14.90 13.29 8.85 13.19 2.97 11.56 10.21 14.05
Light 0.17 10.44 10.46 23.55 6.16 0.04 0.15 21.68
Sign 1.18 12.49 7.62 17.82 11.08 9.49 6.70 7.39

Vegetation 69.88 74.79 80.20 81.34 68.41 58.05 78.10 78.39
Terrain 28.92 32.68 36.31 36.90 - - - -

Sky 58.97 68.88 79.64 81.77 66.66 70.66 77.00 78.48
Person 36.86 41.08 43.40 48.81 31.24 36.30 45.24 42.45
Rider 13.66 13.58 0.82 25.39 12.80 6.43 8.00 17.71
Car 46.94 71.25 78.35 80.39 59.12 67.32 77.66 79.32

Truck 1.08 18.29 30.55 31.79 - - - -
Bus 0.83 29.67 37.09 45.06 5.88 9.62 19.54 40.65

Train 0.00 0.00 1.40 23.11 - - - -
Motorbike 5.90 13.80 13.80 27.88 1.80 0.24 2.31 11.62

Bicicle 35.24 36.85 18.79 32.35 13.25 27.27 36.39 31.96

mIoU (%) 21.58 35.77 35.96 42.80 21.63 26.87 33.07 39.09

Table 3.8: Results of our Deep2Light i) CBST, ii) FDA, iii) DACS, iv) DAFormer
(DAF in the table).

the results reported in table 3.8.
To further reduce the complexity of the lightweight model, and consequently

reduce the inference time as well as the hardware requirements needed to run the
model, we perform an additional experiment in which we simplify the backbone of
MobileNetV2.
In particular, since the second last feature map of MobileNet is composed of only
320 channels instead of 1280, we build the ASSPV2 head on top of this second
last feature map, rather than on the original one. We repeat the aforementioned
Deep2Light SSL-based experiments (CBST, FDA, DACS and DAFormer) replacing
the target network with the simplified MobileNetV2 just described.

75

Benchmark

(a) Target image (b) Ground Truth Label

(c) Deep2Light CBST (d) Deep2Light FDA

(e) Deep2Light DACS (f) Deep2Light DAFormer

Figure 3.8: Qualitative results of a validation image from Cityscapes, when
training models on the GTA5 dataset with the Deep2Light frameworks c) CBST,
d) FDA, e) DACS and f) DAFormer.

We report the results in table tab. 3.9.
As we can see from the table, with the lighter MobileNetV2 we obtain similar
performances in all the tested Deep2Light SSL-techniques. Therefore, with this
simplification of the network, we are able to reduce the latency as well as the
number of learnable parameters, which decreases from 3 million to 2 million, with
a negligible loss of accuracy.

76

Benchmark

Deep2Light Deep2Light
GTA→CITYSCAPES SYNTHIA→CITYSCAPES

CBST FDA DACS DAF CBST FDA DACS DAF
Road 18.60 89.44 80.76 79.93 12.87 42.57 59.14 80.34

Sidewalk 1.23 42.85 29.39 28.88 5.42 17.14 23.25 29.14
Building 63.65 75.68 78.32 76.22 42.53 62.41 71.89 77.47

Wall 4.47 15.49 21.34 28.02 0.09 1.20 1.90 11.25
Fence 11.77 20.73 22.82 22.05 0.53 0.27 0.11 1.14
Pole 16.98 13.48 6.47 11.53 3.64 12.39 9.26 15.45
Light 5.77 13.64 10.00 25.59 4.43 0.68 2.76 19.00
Sign 8.13 12.79 7.55 23.24 8.36 10.38 5.98 11.55

Vegetation 70.42 76.46 80.10 81.03 65.18 58.10 77.61 77.66
Terrain 27.24 36.60 37.29 36.47 - - - -

Sky 44.74 67.70 79.61 81.32 67.23 68.24 79.48 78.57
Person 32.42 39.73 42.58 49.37 29.33 37.94 44.04 44.23
Rider 15.53 12.93 3.25 20.20 11.99 9.17 8.18 16.72
Car 29.65 70.65 78.61 80.94 57.65 65.57 77.17 77.93

Truck 1.55 17.31 17.58 31.97 - - - -
Bus 0.66 21.65 31.07 44.43 12.46 8.91 15.95 37.19

Train 0.00 0.34 0.00 16.37 - - - -
Motorbike 1.13 9.03 14.34 27.04 0.22 1.15 2.68 10.71

Bicicle 34.24 33.78 22.35 38.53 14.48 26.96 24.46 32.60

mIoU (%) 20.43 35.28 34.92 42.27 21.03 26.45 31.49 38.81

Table 3.9: Results of the simplified MobileNet with our Deep2Light i) CBST, ii)
FDA, iii) DACS, iv) DAFormer (DAF in the table).

77

Chapter 4

Extension

Starting from the promising results obtained with the Deep2Light DAFormer
framework, we propose a new method to further improve the performances of the
lightweight network.
In particular, we propose a novel mixing strategy for self-learning which takes
advantage of the several instances for each class and re-weights the loss according
to the network confidence.
In the first part of this section, we are going to revise the mixing strategy adopted
in DAFormer as well as the standard Cross-Entropy loss used in the optimization
process of MobileNetV2, and we will describe how to extend them them to improve
the perfomances of the target model. The second and the third part, respectively,
detail the experimental setup for our experiments and the results.

4.1 Method

Following the original approach of DAFormer [40], in the benchmark we mixed
together source and target images via Cross-Domain Mixed Sampling [36].
Synthetically, this technique consists in selecting half of the classes from an image
sampled from the source domain and pasting the corresponding pixels into an
image coming from the target domain. The mixed label is constructed in the same
manner, combining the source label with the pseudolabel generated for the target
sample (see section 2.5.2.3 for details about Cross-Domain Mixed Sampling). A
graphical representation is depicted in fig. 4.1.

78

Extension

(a) Cross-Domain Mixing proposed in DACS.

(b) For the mixing, half of the classes are selected from the source image. For example, one of
the selected classes is car. Pixels corresponding to cars in the source image are copied and pasted
into the target image. In the same manner, pixels corresponding to cars in the source label are
pasted into the target pseudolabel.

Figure 4.1

We propose a novel mixing strategy, which is conditioned on the instances
identified in the source image rather than on the classes.
Before detailing our strategy, we should delineate the difference between the concept
of class and instance. When we refer to class we treat multiple objects within a
single category as one entity. On the contrary, when we move to the concept of
instance, we identify the individual objects within the same category as separate
entities. Fig. 4.2 shows this difference through an example.
In this work, we propose to move from the original class selection of DACS to a
more sophisticated instance selection.

79

Extension

Figure 4.2: On the left, three different classes are identified in the image: road,
sheep, grass. On the right, the class sheep is segmented into individual entities,
each representing a different instance.

In particular, given an image sampled from the source domain, we identify the
set of instances within each category. Then, we select half of the instances from
the source image and we paste the corresponding pixels into a sampled target
image. The mixed label is obtained applying the same mask on the source label
and pasting the corresponding pixels into the target pseudo-label generated by the
source model.
A graphical representation is depicted in fig. 4.3.
In addition, we propose to re-weight the pseudo segmentation loss in the optimiza-
tion process of the lightweight network.
In all the Deep2Light Self-Learning-based techniques explored in the benchmark,
we trained MobileNetV2 with a standard Cross Entropy loss:

LPSU(XT, ŶT) = −
HØ

h=1

WØ
w=1

CØ
c=1

Ŷ(h,w,c)
T · log PXT

(h,w,c)

where XT and ŶT are respectively the target image and its pseudolabel and PXT

the lightweight network prediction for XT.
We propose to re-scale the weight given to each class on the basis of the confidence
of MobileNetV2’s predictions on the mixed images:

LPSU(XT, ŶT) = −
HØ

h=1

WØ
w=1

CØ
c=1

wc · Ŷ(h,w,c)
T · log PXT

(h,w,c)

where wc is the confidence associated to the class c.
In particular, the confidence is a measure of the ability of the network to represent
each pixel. The more the network is able to correctly classify the pixels of class c,
the lower will be the contribution of the loss on this class. On the opposite, if the

80

Extension

network has an high uncertainty on c, the loss on that class will be weighted more.
In this sense, the confidence measures the certainty of the predictions.

(a) Our Cross-Domain Instance-based Mixing.

(b) The individual instances within each class are identified in the source image. For example, in
the source image, the whole class car can be decomposed into two instances. For the mixing, half
of the instances are selected and the corresponding pixels are pasted into the target sample. In
this example, only one of the two cars has been chosen in the instance selection.

Figure 4.3

4.2 Implementation Details
We recognize instances in the source image through an algorithm which labels
connected regions of integers arrays. In particular, two pixels are connected if
they are neighbors and have the same value. The concept of neighbors is not

81

Extension

absolute, but depends on an hyperparameter which controls the maximum number
of orthogonal hops that we accept between two pixels having the same value. In
our experiments, we set this hyperparameter equal to 1. All the background pixels
are ignored in this algorithm and labeled as 0.
To re-weight the loss, at each iteration we extract the probability pc

i(x) for each
predicted class c at pixel i. Denoting as Nc the number of pixels predicted as c,
the confidence wc for each class c is computed as:

wc = 1 − 1
Nc

NcØ
i=1

pc
i(x)

The other parameters used during training are the ones reported in tab. 3.4.

4.3 Results
In tab. 4.1 we report the results obtained with our new Deep2Light DAFormer
framework, as well as the original results of our Deep2Light DAFormer (see section
3.2) and the upper bound established for MobileNetV2.
We can see that this framework outperforms the standard Deep2Light DAFormer
in nearly every class as well as in the final mIoU, in both the settings.
In particular, in GTA→Cityscapes, we obtain an improvement of 1.68% with
respect to the standard Deep2Light DAFormer setting. Compared with the upper
bound, we are able to reduce the gap from 9.4% to 7.7%.
In SYNTHIA→Cityscapes, results show an improvement in the mIoU of 2.5% and,
with respect to the upper bound, a consequent gap reduction from 15% to 12.5%.
These results are qualitatively confirmed in Fig. 4.4, where our new Deep2Light
DAFormer provide a better adaptation for small and rare classes, such as traffic
sign or traffic light.
We also test, separately, Deep2Light DAFormer with Instance-based Cross-Domain
Mixing Strategy and Deep2Light DAFormer with confidence-based re-weighted loss,
and compare it with our proposed Deep2Light DAFormer where the two techniques
are combined.
We report these intermediate results for GTA→Cityscapes in table 4.2 and for
SYNTHIA→Cityscapes in table 4.3.

For what concerns the first protocol, GTA→Cityscapes, we can see that, with
respect to the original Deep2Light DAFormer, the two techniques (i.e. instance-
based mixing and confidence-based weghted loss) enable a marginal improvement,
that does not exceed the 1%. By combining the two, instead, we can observe a
boost in the final mIoU of around 1.68%, and a relative improvement in almost all
the classes.

82

Extension

GTA→Cityscapes SYNTHIA→Cityscapes

Standard Our Standard Our Upper
Deep2Light Deep2Light Deep2Light Deep2Light Bound
DAFormer DAFormer DAFormer DAFormer

Road 83.79 83.60 77.65 79.68 95.28
Sidewalk 26.16 28.21 28.78 31.12 68.12
Building 80.03 81.04 77.14 79.19 83.35

Wall 31.33 31.94 16.82 20.59 34.55
Fence 22.45 24.81 1.32 3.33 39.55
Pole 13.19 17.82 14.05 18.63 14.94
Light 23.55 29.19 21.68 26.26 27.44
Sign 17.82 23.01 7.39 12.49 35.34

Vegetation 81.34 81.39 78.39 79.11 83.00
Terrain 36.90 35.86 - - 49.80

Sky 81.77 81.12 78.48 79.63 83.99
Person 48.81 50.26 42.45 43.44 50.10
Rider 25.39 27.25 17.71 20.48 28.42
Car 80.39 79.26 79.32 74.98 83.94

Truck 31.79 28.71 - - 43.59
Bus 45.06 48.48 40.65 39.44 53.25

Train 23.11 26.41 - - 35.72
Motorbike 27.88 28.50 11.62 16.13 29.84

Bicicle 32.25 38.21 31.96 40.84 51.58
mIoU-19 42.80% 44.48% - - 52.20%
mIoU-16 - - 39.09% 41.58% 53.92%

Table 4.1: Results of our new Deep2Light DAFormer. We report also the
results of the standard Deep2Light DAFormer and the upper bound established for
MobileNetV2.

In SYNTHIA→Cityscapes, instead, we can observe a marginal increase when
applying the Instance-based Cross-Domain mixing but a significant boost with the
confidence weighted loss (+2.57%). With this second technique, performances, in
terms of final mIoU, are higher than those obtained with our proposed technique.
However, if we observe the per-class IoU, we can see that with our framework we
obtain higher results in almost all the classes, especially in the difficult classes such

83

Extension

(a) Target image (b) Ground Truth Label

(c) Deep2Light DAFormer (d) Our new Deep2Light DAFormer

Figure 4.4: Qualitative results of a validation image from Cityscapes, when
training models on the GTA5 dataset.

as wall, fence and pole.

84

Extension

GTA→Cityscapes

Confidence- Instance-based
Standard based Cross-Domain Our Upper

Deep2Light weighted loss Mixing Deep2Light Bound
DAFormer Deep2Light Deep2Light DAFormer

DAFormer DAFormer

Road 83.79 83.06 84.44 83.60 95.28
Sidewalk 26.16 30.31 20.58 28.21 68.12
Building 80.03 80.61 79.96 81.04 83.35

Wall 31.33 29.77 32.61 31.94 34.55
Fence 22.45 21.79 23.92 24.81 39.55
Pole 13.19 17.71 12.63 17.82 14.94
Light 23.55 27.19 26.15 29.19 27.44
Sign 17.82 20.65 18.68 23.01 35.34

Vegetation 81.34 80.58 82.04 81.39 83.00
Terrain 36.90 35.34 34.75 35.86 49.80

Sky 81.77 81.62 80.41 81.12 83.99
Person 48.81 49.59 49.56 50.26 50.10
Rider 25.39 25.11 27.62 27.25 28.42
Car 80.39 80.13 79.67 79.26 83.94

Truck 31.79 32.48 30.11 28.71 43.59
Bus 45.06 44.23 46.78 48.48 53.25

Train 23.11 19.86 26.68 26.41 35.72
Motorbike 27.88 29.10 32.85 28.50 29.84

Bicicle 32.25 38.74 30.47 38.21 51.58

mIoU-19 42.80% 43.57% 43.15% 44.48% 52.20%

Table 4.2: Results of GTA→Cityscapes Deep2Light: i) Standard DAFormer, ii)
DAFormer with Confidence-based Weighted loss, iii) DAFormer with Instance-based
Cross-Domain Mixing strategy, iv) Our proposed DAFormer, v) Upper bound.

85

Extension

SYNTHIA→Cityscapes

Confidence- Instance-based
Standard based Cross-Domain Our Upper

Deep2Light weighted loss Mixing Deep2Light Bound
DAFormer Deep2Light Deep2Light DAFormer

DAFormer DAFormer

Road 77.65 82.86 76.66 79.68 95.28
Sidewalk 28.78 33.30 29.21 31.12 68.12
Building 77.14 78.94 77.82 79.19 83.35

Wall 16.82 19.15 18.68 20.59 34.55
Fence 1.32 2.14 1.69 3.33 39.55
Pole 14.05 18.39 15.16 18.63 14.94
Light 21.68 26.51 23.08 26.26 27.44
Sign 7.39 12.35 7.21 12.49 35.34

Vegetation 78.39 78.95 78.71 79.11 83.00
Sky 78.48 78.76 78.41 79.63 83.99

Person 42.45 42.40 42.97 43.44 50.10
Rider 17.71 19.66 19.02 20.48 28.42
Car 79.32 78.42 78.19 74.98 83.94
Bus 40.65 39.22 40.86 39.44 53.25

Motorbike 11.62 16.77 14.31 16.13 29.84
Bicicle 31.96 38.75 34.08 40.84 51.58

mIoU-16 39.09% 41.66% 39.75% 41.58% 53.92%

Table 4.3: Results of SYNTHIA→Cityscapes Deep2Light: i) Standard DAFormer,
ii) DAFormer with Confidence-based Weighted loss, iii) DAFormer with Instance-
based Cross-Domain Mixing strategy, iv) Our proposed DAFormer, v) Upper
bound.

86

Chapter 5

Conclusions

Summary In this work we attempt to address some of the challenges arising
in the Self-Driving scenario related to the adoption of Deep Learning models to
perform Unsupervised Domain Adaptation in Semantic Segmentation. In particular,
if on one hand deep and complex models guarantee highly accurate predictions,
on the other hand they are often overparametrized, impacting on the inference
time to process images and on the hardware requirements needed to run the models.

Given this premise, we shift our attention to lighter models, characterized by a
significant lower number of parameters, which are clearly more suitable for real-
world applications. However, rather than directly training a lightweight model
with existing Domain Adaptation techniques, we imagine the possibility, especially
from companies point of view, of having access to a deep and complex model at
training time, which provides highly accurate predictions. We suggest to exploit
the fine-grained understanding of images of the deep model to train our lightweight
network, moving knowledge from a complex model to a lighter one.
In particular, we propose a benchmark to test the capability of existing Do-
main Adaptation algorithms to transfer knowledge from a Deep to a Lightweight
model, exploring three conventional DA settings: Adversarial, Self-Learning and
Adversarial+Self-Learning.

Results show that the Adversarial-based Deep2Light frameworks fail in the task,
while the SSL-based Deep2Light configuration allows to achieve promising results
in both GTA→Cityscapes and SYNTHIA→Cityscapes.
Starting from this encouraging result, we further extend the benchmark by adapting
several existing SSL-based DA techniques to integrate the lightweight network in
the optimization process.
The technique that allows to achieve the higher performances is Deep2Light
DAFormer, through which we are able to move knowledge from a powerful

87

Conclusions

Transformers-based deep architecture to our lightweight network, by using mixed
images obtained via Cross-Domain Mixed Sampling.
Starting from Deep2Light DAFormer, we further improve the performances of our
lightweight model by proposing a novel mixing strategy for Self-Learning which
takes advantage of the several instances for each class and re-weights the loss
according to the lightweight network confidence.

Future works This work represents a starting point towards most complex
solutions, which include:

• Weighted Cross-Domain Instance Mixing. Rather than randomly select-
ing the instances from the source images, we suppose that driving the instance
selection on the basis of the lightweight network per-class confidence could
encourage the representation of hard classes.

• Thing Cross-Domain Instance Mixing. The presence of several instances
deriving from amorphous classes as sky or road causes, often, the generation
of highly unrealistic mixed images. We suppose that considering only the
instances of the "thing" classes (as person, car or traffic sign) could have a
positive impact on the quality of the generated images.

• Pretrained Deep Network. The next step consists in taking advantage
of a pretrained-in-source version of the deep and complex network to train
the lightweight network, by adapting the Deep2Light techniques to this new
scenario.

• Exploit the knowledge of the lightweight network on target. Since
the deep network is trained exclusively on the source domain, the knowledge
on the target that it can offer is limited. On the contrary, the developing
knowledge of the lightweight network on the target domain could be exploited
to further optimize the network with an appropriate SSL-based technique.

88

Bibliography

[1] Shijie Hao, Yuan Zhou, and Yanrong Guo. «A Brief Survey on Semantic
Segmentation with Deep Learning». In: Neurocomputing 406 (Apr. 2020).
doi: 10.1016/j.neucom.2019.11.118 (cit. on p. 2).

[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
The Cityscapes Dataset for Semantic Urban Scene Understanding. 2016. doi:
10.48550/ARXIV.1604.01685. url: https://arxiv.org/abs/1604.01685
(cit. on pp. 3, 31, 51, 52).

[3] Sicheng Zhao et al. A Review of Single-Source Deep Unsupervised Visual
Domain Adaptation. 2020. doi: 10.48550/ARXIV.2009.00155. url: https:
//arxiv.org/abs/2009.00155 (cit. on pp. 3, 31, 32).

[4] Jun Xie, Martin Kiefel, Ming-Ting Sun, and Andreas Geiger. Semantic
Instance Annotation of Street Scenes by 3D to 2D Label Transfer. 2015. doi:
10.48550/ARXIV.1511.03240. url: https://arxiv.org/abs/1511.03240
(cit. on p. 3).

[5] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing
for Data: Ground Truth from Computer Games. 2016. doi: 10.48550/ARXIV.
1608.02192. url: https://arxiv.org/abs/1608.02192 (cit. on pp. 3, 51).

[6] Alan M. Turing. «Computing Machinery and Intelligence A.M. Turing». In:
2007 (cit. on p. 6).

[7] Rikiya Yamashita, Mizuho Nishio, Richard Do, and Kaori Togashi. «Con-
volutional neural networks: an overview and application in radiology». In:
Insights into Imaging 9 (June 2018). doi: 10.1007/s13244-018-0639-9
(cit. on p. 19).

[8] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2014. doi: 10.48550/ARXIV.1409.1556.
url: https://arxiv.org/abs/1409.1556 (cit. on pp. 22, 27).

89

https://doi.org/10.1016/j.neucom.2019.11.118
https://doi.org/10.48550/ARXIV.1604.01685
https://arxiv.org/abs/1604.01685
https://doi.org/10.48550/ARXIV.2009.00155
https://arxiv.org/abs/2009.00155
https://arxiv.org/abs/2009.00155
https://doi.org/10.48550/ARXIV.1511.03240
https://arxiv.org/abs/1511.03240
https://doi.org/10.48550/ARXIV.1608.02192
https://doi.org/10.48550/ARXIV.1608.02192
https://arxiv.org/abs/1608.02192
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.48550/ARXIV.1409.1556
https://arxiv.org/abs/1409.1556

BIBLIOGRAPHY

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «ImageNet Classifi-
cation with Deep Convolutional Neural Networks». In: Advances in Neural
Information Processing Systems. Ed. by F. Pereira, C.J. Burges, L. Bottou,
and K.Q. Weinberger. Vol. 25. Curran Associates, Inc., 2012. url: https:
//proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e
924a68c45b-Paper.pdf (cit. on p. 22).

[10] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully Convolutional
Networks for Semantic Segmentation. 2014. doi: 10.48550/ARXIV.1411.4038.
url: https://arxiv.org/abs/1411.4038 (cit. on pp. 22, 23).

[11] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional
Networks for Biomedical Image Segmentation. 2015. doi: 10.48550/ARXIV.
1505.04597. url: https://arxiv.org/abs/1505.04597 (cit. on pp. 23,
24).

[12] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning Deconvolution
Network for Semantic Segmentation. 2015. doi: 10.48550/ARXIV.1505.
04366. url: https://arxiv.org/abs/1505.04366 (cit. on p. 23).

[13] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation. 2015.
doi: 10.48550/ARXIV.1511.00561. url: https://arxiv.org/abs/1511.
00561 (cit. on pp. 23, 24).

[14] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. Feature Pyramid Networks for Object Detection. 2016. doi:
10.48550/ARXIV.1612.03144. url: https://arxiv.org/abs/1612.03144
(cit. on pp. 24, 25).

[15] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia.
Pyramid Scene Parsing Network. 2016. doi: 10.48550/ARXIV.1612.01105.
url: https://arxiv.org/abs/1612.01105 (cit. on pp. 24, 25).

[16] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L. Yuille. DeepLab: Semantic Image Segmentation with Deep Con-
volutional Nets, Atrous Convolution, and Fully Connected CRFs. 2016. doi:
10.48550/ARXIV.1606.00915. url: https://arxiv.org/abs/1606.00915
(cit. on pp. 25–27).

[17] Maoke Yang, Kun Yu, Chi Zhang, Zhiwei Li, and Kuiyuan Yang. «DenseASPP
for Semantic Segmentation in Street Scenes». In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2018, pp. 3684–3692. doi:
10.1109/CVPR.2018.00388 (cit. on p. 25).

[18] Fisher Yu and Vladlen Koltun. Multi-Scale Context Aggregation by Dilated
Convolutions. 2015. doi: 10.48550/ARXIV.1511.07122. url: https://
arxiv.org/abs/1511.07122 (cit. on p. 25).

90

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.48550/ARXIV.1411.4038
https://arxiv.org/abs/1411.4038
https://doi.org/10.48550/ARXIV.1505.04597
https://doi.org/10.48550/ARXIV.1505.04597
https://arxiv.org/abs/1505.04597
https://doi.org/10.48550/ARXIV.1505.04366
https://doi.org/10.48550/ARXIV.1505.04366
https://arxiv.org/abs/1505.04366
https://doi.org/10.48550/ARXIV.1511.00561
https://arxiv.org/abs/1511.00561
https://arxiv.org/abs/1511.00561
https://doi.org/10.48550/ARXIV.1612.03144
https://arxiv.org/abs/1612.03144
https://doi.org/10.48550/ARXIV.1612.01105
https://arxiv.org/abs/1612.01105
https://doi.org/10.48550/ARXIV.1606.00915
https://arxiv.org/abs/1606.00915
https://doi.org/10.1109/CVPR.2018.00388
https://doi.org/10.48550/ARXIV.1511.07122
https://arxiv.org/abs/1511.07122
https://arxiv.org/abs/1511.07122

BIBLIOGRAPHY

[19] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Eugenio Culurciello.
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmen-
tation. 2016. doi: 10.48550/ARXIV.1606.02147. url: https://arxiv.org/
abs/1606.02147 (cit. on p. 25).

[20] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.
Rethinking Atrous Convolution for Semantic Image Segmentation. 2017. doi:
10.48550/ARXIV.1706.05587. url: https://arxiv.org/abs/1706.05587
(cit. on p. 26).

[21] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam. Encoder-Decoder with Atrous Separable Convolution for Se-
mantic Image Segmentation. 2018. doi: 10.48550/ARXIV.1802.02611. url:
https://arxiv.org/abs/1802.02611 (cit. on p. 26).

[22] Pengcheng Xu, Zhongyuan Guo, Lei Liang, and Xiaohang Xu. «MSF-Net:
Multi-Scale Feature Learning Network for Classification of Surface Defects
of Multifarious Sizes». In: Sensors 21 (July 2021), p. 5125. doi: 10.3390/
s21155125 (cit. on p. 26).

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. doi: 10.48550/ARXIV.1512.03385.
url: https://arxiv.org/abs/1512.03385 (cit. on p. 27).

[24] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. «MobileNetV2: Inverted Residuals and Linear Bottlenecks». In:
(2018). doi: 10.48550/ARXIV.1801.04381. url: https://arxiv.org/abs/
1801.04381 (cit. on pp. 28, 30).

[25] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Ad-
versarial Networks. 2014. doi: 10.48550/ARXIV.1406.2661. url: https:
//arxiv.org/abs/1406.2661 (cit. on pp. 32, 33).

[26] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
«Domain-Adversarial Training of Neural Networks». In: (2015). doi: 10.
48550/ARXIV.1505.07818. url: https://arxiv.org/abs/1505.07818
(cit. on pp. 33, 34).

[27] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial
Discriminative Domain Adaptation. 2017. doi: 10.48550/ARXIV.1702.05464.
url: https://arxiv.org/abs/1702.05464 (cit. on pp. 34, 35).

[28] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan
Yang, and Manmohan Chandraker. Learning to Adapt Structured Output
Space for Semantic Segmentation. 2018. doi: 10.48550/ARXIV.1802.10349.
url: https://arxiv.org/abs/1802.10349 (cit. on p. 35).

91

https://doi.org/10.48550/ARXIV.1606.02147
https://arxiv.org/abs/1606.02147
https://arxiv.org/abs/1606.02147
https://doi.org/10.48550/ARXIV.1706.05587
https://arxiv.org/abs/1706.05587
https://doi.org/10.48550/ARXIV.1802.02611
https://arxiv.org/abs/1802.02611
https://doi.org/10.3390/s21155125
https://doi.org/10.3390/s21155125
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385
https://doi.org/10.48550/ARXIV.1801.04381
https://arxiv.org/abs/1801.04381
https://arxiv.org/abs/1801.04381
https://doi.org/10.48550/ARXIV.1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.48550/ARXIV.1505.07818
https://doi.org/10.48550/ARXIV.1505.07818
https://arxiv.org/abs/1505.07818
https://doi.org/10.48550/ARXIV.1702.05464
https://arxiv.org/abs/1702.05464
https://doi.org/10.48550/ARXIV.1802.10349
https://arxiv.org/abs/1802.10349

BIBLIOGRAPHY

[29] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick
Pérez. ADVENT: Adversarial Entropy Minimization for Domain Adaptation
in Semantic Segmentation. 2018. doi: 10.48550/ARXIV.1811.12833. url:
https://arxiv.org/abs/1811.12833 (cit. on pp. 36, 37, 71).

[30] Massih-Reza Amini, Vasilii Feofanov, Loic Pauletto, Emilie Devijver, and Yury
Maximov. Self-Training: A Survey. 2022. doi: 10.48550/ARXIV.2202.12040.
url: https://arxiv.org/abs/2202.12040 (cit. on p. 38).

[31] Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong Wang, and Fang
Wen. Prototypical Pseudo Label Denoising and Target Structure Learning for
Domain Adaptive Semantic Segmentation. 2021. doi: 10.48550/ARXIV.2101.
10979. url: https://arxiv.org/abs/2101.10979 (cit. on p. 39).

[32] Nikita Araslanov and Stefan Roth. Self-supervised Augmentation Consistency
for Adapting Semantic Segmentation. 2021. doi: 10.48550/ARXIV.2105.
00097. url: https://arxiv.org/abs/2105.00097 (cit. on p. 39).

[33] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang,
Colin A Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li.
«FixMatch: Simplifying Semi-Supervised Learning with Consistency and
Confidence». In: Advances in Neural Information Processing Systems. Ed. by
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33.
Curran Associates, Inc., 2020, pp. 596–608. url: https://proceedings
.neurips.cc/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-
Paper.pdf (cit. on p. 39).

[34] Geoff French, Samuli Laine, Timo Aila, Michal Mackiewicz, and Graham
Finlayson. Semi-supervised semantic segmentation needs strong, varied per-
turbations. 2019. doi: 10.48550/ARXIV.1906.01916. url: https://arxiv.
org/abs/1906.01916 (cit. on p. 39).

[35] Viktor Olsson, Wilhelm Tranheden, Juliano Pinto, and Lennart Svensson.
ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learn-
ing. 2020. doi: 10.48550/ARXIV.2007.07936. url: https://arxiv.org/
abs/2007.07936 (cit. on pp. 40, 46).

[36] Wilhelm Tranheden, Viktor Olsson, Juliano Pinto, and Lennart Svensson.
DACS: Domain Adaptation via Cross-domain Mixed Sampling. 2020. doi:
10.48550/ARXIV.2007.08702. url: https://arxiv.org/abs/2007.08702
(cit. on pp. 40, 46, 78).

[37] Qianyu Zhou, Zhengyang Feng, Qiqi Gu, Jiangmiao Pang, Guangliang Cheng,
Xuequan Lu, Jianping Shi, and Lizhuang Ma. Context-Aware Mixup for
Domain Adaptive Semantic Segmentation. 2021. doi: 10.48550/ARXIV.2108.
03557. url: https://arxiv.org/abs/2108.03557 (cit. on p. 40).

92

https://doi.org/10.48550/ARXIV.1811.12833
https://arxiv.org/abs/1811.12833
https://doi.org/10.48550/ARXIV.2202.12040
https://arxiv.org/abs/2202.12040
https://doi.org/10.48550/ARXIV.2101.10979
https://doi.org/10.48550/ARXIV.2101.10979
https://arxiv.org/abs/2101.10979
https://doi.org/10.48550/ARXIV.2105.00097
https://doi.org/10.48550/ARXIV.2105.00097
https://arxiv.org/abs/2105.00097
https://proceedings.neurips.cc/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf
https://doi.org/10.48550/ARXIV.1906.01916
https://arxiv.org/abs/1906.01916
https://arxiv.org/abs/1906.01916
https://doi.org/10.48550/ARXIV.2007.07936
https://arxiv.org/abs/2007.07936
https://arxiv.org/abs/2007.07936
https://doi.org/10.48550/ARXIV.2007.08702
https://arxiv.org/abs/2007.08702
https://doi.org/10.48550/ARXIV.2108.03557
https://doi.org/10.48550/ARXIV.2108.03557
https://arxiv.org/abs/2108.03557

BIBLIOGRAPHY

[38] Qing Lian, Fengmao Lv, Lixin Duan, and Boqing Gong. Constructing Self-
motivated Pyramid Curriculums for Cross-Domain Semantic Segmentation:
A Non-Adversarial Approach. 2019. doi: 10.48550/ARXIV.1908.09547. url:
https://arxiv.org/abs/1908.09547 (cit. on p. 41).

[39] Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang. Instance Adaptive
Self-Training for Unsupervised Domain Adaptation. 2020. doi: 10.48550/
ARXIV.2008.12197. url: https://arxiv.org/abs/2008.12197 (cit. on
p. 41).

[40] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. DAFormer: Improving Net-
work Architectures and Training Strategies for Domain-Adaptive Seman-
tic Segmentation. 2021. doi: 10.48550/ARXIV.2111.14887. url: https:
//arxiv.org/abs/2111.14887 (cit. on pp. 41, 48, 49, 78).

[41] Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander Hauptmann.
«Self-paced Curriculum Learning». In: Jan. 2015 (cit. on p. 42).

[42] Yang Zou, Zhiding Yu, B. V. K. Vijaya Kumar, and Jinsong Wang. Domain
Adaptation for Semantic Segmentation via Class-Balanced Self-Training. 2018.
doi: 10.48550/ARXIV.1810.07911. url: https://arxiv.org/abs/1810.
07911 (cit. on p. 42).

[43] Yanchao Yang and Stefano Soatto. «FDA: Fourier Domain Adaptation for
Semantic Segmentation». In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). 2020, pp. 4084–4094. doi: 10.1109/
CVPR42600.2020.00414 (cit. on p. 43).

[44] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. 2013. doi: 10.48550/ARXIV.1312.6199. url: https://arxiv.
org/abs/1312.6199 (cit. on p. 48).

[45] Dan Hendrycks and Thomas Dietterich. Benchmarking Neural Network Ro-
bustness to Common Corruptions and Perturbations. 2019. doi: 10.48550/
ARXIV.1903.12261. url: https://arxiv.org/abs/1903.12261 (cit. on
p. 48).

[46] Dan Hendrycks et al. The Many Faces of Robustness: A Critical Analysis of
Out-of-Distribution Generalization. 2020. doi: 10.48550/ARXIV.2006.16241.
url: https://arxiv.org/abs/2006.16241 (cit. on p. 48).

[47] Alexey Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale. 2020. doi: 10.48550/ARXIV.2010.11929. url:
https://arxiv.org/abs/2010.11929 (cit. on p. 48).

93

https://doi.org/10.48550/ARXIV.1908.09547
https://arxiv.org/abs/1908.09547
https://doi.org/10.48550/ARXIV.2008.12197
https://doi.org/10.48550/ARXIV.2008.12197
https://arxiv.org/abs/2008.12197
https://doi.org/10.48550/ARXIV.2111.14887
https://arxiv.org/abs/2111.14887
https://arxiv.org/abs/2111.14887
https://doi.org/10.48550/ARXIV.1810.07911
https://arxiv.org/abs/1810.07911
https://arxiv.org/abs/1810.07911
https://doi.org/10.1109/CVPR42600.2020.00414
https://doi.org/10.1109/CVPR42600.2020.00414
https://doi.org/10.48550/ARXIV.1312.6199
https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1312.6199
https://doi.org/10.48550/ARXIV.1903.12261
https://doi.org/10.48550/ARXIV.1903.12261
https://arxiv.org/abs/1903.12261
https://doi.org/10.48550/ARXIV.2006.16241
https://arxiv.org/abs/2006.16241
https://doi.org/10.48550/ARXIV.2010.11929
https://arxiv.org/abs/2010.11929

BIBLIOGRAPHY

[48] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. Training data-efficient image transformers
amp; distillation through attention. 2020. doi: 10.48550/ARXIV.2012.12877.
url: https://arxiv.org/abs/2012.12877 (cit. on p. 48).

[49] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez,
and Ping Luo. SegFormer: Simple and Efficient Design for Semantic Segmen-
tation with Transformers. 2021. doi: 10.48550/ARXIV.2105.15203. url:
https://arxiv.org/abs/2105.15203 (cit. on pp. 48, 70).

[50] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding
Liang, Tong Lu, Ping Luo, and Ling Shao. Pyramid Vision Transformer: A
Versatile Backbone for Dense Prediction without Convolutions. 2021. doi:
10.48550/ARXIV.2102.12122. url: https://arxiv.org/abs/2102.12122
(cit. on p. 48).

[51] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio
M. Lopez. «The SYNTHIA Dataset: A Large Collection of Synthetic Images
for Semantic Segmentation of Urban Scenes». In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2016, pp. 3234–3243. doi:
10.1109/CVPR.2016.352 (cit. on p. 51).

94

https://doi.org/10.48550/ARXIV.2012.12877
https://arxiv.org/abs/2012.12877
https://doi.org/10.48550/ARXIV.2105.15203
https://arxiv.org/abs/2105.15203
https://doi.org/10.48550/ARXIV.2102.12122
https://arxiv.org/abs/2102.12122
https://doi.org/10.1109/CVPR.2016.352

	Introduction
	Related works
	Artificial Intelligence, Machine Learning & Deep Learning
	Neural Networks
	Perceptron
	Multi-Layer Perceptrons
	Non linear Activation functions
	Gradient Descent Algorithm

	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Fully Connected Layers

	Semantic segmentation
	Architectures
	DeepLabV2
	MobileNetV2

	Unsupervised Domain Adaptation
	Adversarial based Domain Adaptation
	ADVENT

	Self Training based Domain Adaptation
	CBST
	FDA
	DACS
	DAFormer

	Datasets
	GTA5
	SYNTHIA
	Cityscapes

	Benchmark
	Protocols
	Deep2Light Adversarial
	Deep2Light Self-Learning
	Deep2Light Adversarial+SSL

	Implementation details
	Results

	Extension
	Method
	Implementation Details
	Results

	Conclusions
	Bibliography

