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Summary

Machine learning (ML) is a powerful tool for automating some tasks that humans
can easily accomplish but, at the same time, are difficult to implement using
"classic" algorithms.

In recent years, thanks to the increase in the computing power of computers and
the amount of data collected, algorithms have become more complex and efficient
in solving increasingly difficult tasks.

The increase in the complexity of algorithms, such as Deep Learning, has made
the models black boxes, i.e. machines capable of performing a task faster and
sometimes even better than humans, but without a way of understanding to which
criteria and which calculations the algorithm provided a certain output.

One of the most promising areas for these technologies is medical diagnosis [1],
because the identification of pathologies is a simple classification of medical data
that can be collected in databases and often made up of numerical values and
images, formats that can be easily processed by modern machine learning.

In this sector, however, trust in the outcome of the diagnosis and the legal
responsibility of the doctor as regards his professionalism and any errors made are
of fundamental importance.

However much an algorithm can be tested and, however it can be often shown
that it has a lower error rate than the human one, it is inevitable that it will
make mistakes and misdiagnoses too, and there is also the problem of entrusting
responsibility for the life of patients to a non-human agent using non-interpretable
methods [2].

This thesis proposes an empirical mathematical analysis of artificial neural
networks (ANN) from which it is possible to develop a new metric to evaluate the
diagnostic models under the aspect of interpretability.

The purpose of this thesis is to extrapolate certain statistical information on the
reliability of the output of ML models through which it is possible to implement
rational decision making protocols.

Underlying the ideas of the proposed new metric is a new mathematical formalism
developed by Professor Audun Josang called Subjective Logic [3] which provides a
series of tools aimed at the problem of decision making under uncertainty.

i



ii



Table of Contents

1 Machine learning 1
1.1 Neural Networks for binary classification . . . . . . . . . . . . . . . 1

1.1.1 Neural network basic concepts . . . . . . . . . . . . . . . . . 2
1.1.2 Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 CNN and image processing . . . . . . . . . . . . . . . . . . . 6
1.1.4 Softmax output layer . . . . . . . . . . . . . . . . . . . . . . 7
1.1.5 Cross entropy loss function . . . . . . . . . . . . . . . . . . . 7

1.2 Classical metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Probability distributions 12
2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Beta distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Subjective logic 20
3.1 Opinions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Mapping with Beta distribution . . . . . . . . . . . . . . . . . . . . 23

4 The new metric 26
4.1 Neural network as probability distributions . . . . . . . . . . . . . . 26
4.2 Perfect calibration assumption . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Perfect calibration optimality . . . . . . . . . . . . . . . . . 28
4.2.2 Perfect calibration output distributions . . . . . . . . . . . . 29
4.2.3 Calibration measure . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Beta distribution assumption . . . . . . . . . . . . . . . . . . . . . 31
4.3.1 ANN output with Beta distribution assumption . . . . . . . 32
4.3.2 Mapping with classical metrics . . . . . . . . . . . . . . . . . 36
4.3.3 Interpretation with Subjective Logic . . . . . . . . . . . . . 38

4.4 Beta AND calibration assumptions case . . . . . . . . . . . . . . . . 39

iii



5 Numerical results 44
5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3 Beta distribution assumption . . . . . . . . . . . . . . . . . . . . . 49

5.3.1 Inference error measure . . . . . . . . . . . . . . . . . . . . . 49
5.3.2 Classical metric mapping error . . . . . . . . . . . . . . . . . 51

5.4 Training and overfitting . . . . . . . . . . . . . . . . . . . . . . . . 52

6 Application 58
6.1 Summary of the new metric . . . . . . . . . . . . . . . . . . . . . . 58

6.1.1 For the developer . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1.2 For the doctor . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

List of Figures 64

Bibliography 67

iv



Chapter 1

Machine learning

This chapter is an introduction to the main definition and the aim of machine
learning and ANNs in binary classification and to some of the most important
concept used in the thesis .

1.1 Neural Networks for binary classification
Machine learning (ML) [4] is the scientific branch that studies a specific kind of
algorithms that are able to perform statistical analysis of data by a system of
continuous improvement that takes place through the observation of samples of
data provided in input. The types of tasks that such an algorithm can accomplish
are very difficult for any algorithm that doesn’t fit into the ML category, but they
are eventually very easy for humans to solve. For this reason these techniques are
often associated with the term Artificial Intelligence.

Recently, thanks to the increase in the computational power of computers and
the amount of data collected from the real world, machine learning is currently
widely used in industry and has achieved remarkable results in many sectors such as
text categorization [5], spam filter [6], artificial vision [7, p. 15] and search engines
[8].

The most successful and famous models in ML are artificial neural networks.
This family of models are inspired by the neural structure of living beings. The
information is processed through signals that travel through neurons, which are
simple computing units that work in parallel, forming a structure capable of
performing very complex calculations.

One of the main tasks that ANN’s can perform thanks to machine learning is
binary classification, that is the task of classifying objects in two groups on the basis
of classification rules. In the case of ANN’s the classification rule is contained in
the values of the many parameters of the model, and it is very difficult to interpret
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Machine learning

because of the complexity and non-linearity of the structure of the neural network
[9][10].

1.1.1 Neural network basic concepts
Mathematically speaking, an artificial neural network can be interpreted as a
multidimensional parametric function. The input has the same shape of the
instance of the database (typically a multidimensional array of real numbers), and
the output has a shape depending on the type of the task that the network has to
perform. In the case of binary classification, it is typically used an output composed
by two values (y1, y2 in fig 1.1) ranging from 0 to 1, with the objective that each
one will represent the prospect of belonging to the respective class.

In the fig 1.1 is represented the structure of the Dense NN (the most common
and simple example of ANN) of which the algorithm is discussed in more detail.

Figure 1.1: A Dense neural network architecture

The operation performed by the neural network can be summarized in this way:
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• The input of every neuron of a layer is the linear combination of the output of
the previous layer with a set of free parameters that will be adjusted during
the training.

Ii,j =
niØ

k=1
bi−1,k,j · Oi−1,k−1 (1.1)

• Every neuron of each layer applies a non linear function (called the activation
function) to its input. One of the most simple and used activation function is
the ReLU (Rectified Linear Unit) [11] showed in fig 1.2.

Oi,j = f(Ii,j) (1.2)

Figure 1.2: Plot of the ReLU activation function

Now that is clear how an ANN can compute the output starting from the input,
it is possible to understand the basics of the learning algorithm by which all the
parameters are adjusted in order to execute a classification or regression task. First
we can notice that, by means of recursion of derivative of composite functions, it is
possible to compute the derivative of each parameter with respect to the output
neurons. So it is possible to apply any gradient descendent type of algorithms.
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For each sample of the training set is performed the output and measured the
error with respect to the real label of the sample. Then all the derivatives of
the parameters with respect of the error are performed, and finally the gradient
descendent slightly modify the values of all parameters. This method of parameter
adjustment is called Back propagation [12], because the information propagates
from the last layer backward along the network. These kind of algorithms usually
converge to a local minimum, even if it’s not yet generally demonstrated.

1.1.2 Overfitting

A very important concept in machine learning and which will have an important
impact in this thesis, as will be illustrated in the chapter 5.4, is overfitting [13].

Overfitting is a training problem of machine learning models due to the limited
size of the dataset with respect to the size of the model.

To explain the nature of this phenomenon, it is useful to imagine a neural
network as a set of free parameters that can store information on datasets regarding
the classification of elements.

The dataset used is a limited set of examples, but the algorithm is designed to
work even in cases outside the dataset used for training. For this reason, datasets
are usually divided into two, the training set and the test set. In this way the
neural networks train by learning to classify the elements of the training set and,
to verify that their ability is valid even for elements never seen by the network, we
test on the test set.

It is easy to imagine that, if the model has too many parameters and the dataset
is too small, it is possible to accumulate in the parameters the information of the
training set with too high a level of detail, which is therefore not respected in the
test set, in which the elements are distributed slightly differently.

To better visualize this phenomenon, it is very useful to view examples. The
following image shows an example in the context of regression and one in the
context of binary classification, which is of more interest in this thesis.
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Figure 1.3: Overfitting representation scheme.

Apparently, looking only at the training set, overfitting does not lead to any
problems, but a better classification. Only by looking at the test set does one
realize that the model will no longer be able to classify well elements not present
in the training set.

This difference between train and test set is the key to identifying the presence
of overfitting.

In fact, looking at how the loss function of the training set and of the test set
varies during the training, we notice a point where, while in the training set the
loss function continues to decrease, in the test set it begins to increase. This is

5



Machine learning

a clear sign of overfitting, shown in figure 1.3, but also observable in the cases
addressed in this thesis, as in figure 5.5.

1.1.3 CNN and image processing
This session briefly describes the most important application of neural networks in
image processing, a task of fundamental importance in the medical field.

The ability to recognize patterns in images is a very difficult operation to perform
through deterministic algorithms and at the same time a task that some types of
neural networks are able to perform very successfully.

Humans and other animals learn very easily to recognize the objects around them
through sight. This is due to the structure of the neurons involved in vision, which
are distributed on various layers which, one after the other, identify patterns of
increasing complexity, up to the point of segmenting very complex and characteristic
patterns of certain types of objects. allowing for easy classification. To develop
this skill it is necessary to practice, in fact we need to see the same category of
objects several times to become good at distinguishing it.

Indeed, it is precisely this biological characteristic that has inspired the computer
structure of Convolutional Neural Networks (CNN) [14][15].

Figure 1.4: Structure representation of a deep CNN with final Dense layer for
classification

As you can see in figure 1.4, this type of network uses filters that scan the whole
image for a certain pattern. Each filter trains itself to recognize different patterns,
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the choice of which patterns to look for is automated in the training process: the
network itself learns which patterns to look for.

While the first layer is able to recognize very simple patterns (e.g. vertical
and horizontal contours), through non-linearity each subsequent layer is able to
construct more complex patterns (e.g. geomeric figures such as ovals or curves).

In the case of deep learning, where the number of hiden layers is quite high, the
final layeers are able to adapt if they recognize patterns of arbitrary complexity
(eg eyes, people, etc).

The output of these layers provides information on the presence of these patterns,
which are easily processed by dense layers to obtain the final classification.

1.1.4 Softmax output layer
For the binary classification, we want the model to produce an output that gives
information about what class the sample belong to. This is a binary information,
but each neuron produce a real number. One possible strategy is to chose a 2
neuron output layer and add a Softmax function to the final output. The Softmax
function [16] is often used for this kind of problems and it is very important for the
main idea of the thesis. The function take two number as input and gives as output
two positive numbers with unitary sum, according to the following formula:

O(I1, I2) =
 eI1

eI1 + eI2
,

eI2

eI1 + eI2

 (1.3)

The final output has only one degree of freedom, because the two values are
constrained by the fact that the sum is equal to one. The two values are greater
then zero and less the one, which make them useful for representing probabilities.
in fact the network is trained in a way that the two values refers to the two classes
and value 0 and 1 will represent the state of truth of belonging to the relative class.
So a well trained model will activate more the neuron corresponding to the more
probable belonging class of the sample. This does not means that the output can
be interpreted as the probability of belonging to the classes. This aspect is very
important for the aim of the thesis and will be discussed in section 4.2

1.1.5 Cross entropy loss function
In section 1.1.1 is discussed the learning algorithm of the ANN and it is mentioned,
without further investigation, the error between the output and the real label
of a sample of the training set. In order to "teach" the network, it is needed to
understand how far its prediction is from the real value that has to be predicted.
This distance is called loss function and generally is an arbitrary choice. In this
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section is presented one of the most used loss function in binary classification tasks
with Softmax output layer: the Cross entropy [17, p. 82]. In section 4.2 will be
clear why this loss function is very important for the aim of the thesis. Given
(y1, y2) the output of the network and (l1, l2) the state of truth of belonging to the
two classes, the cross entropy formula is given by:

Loss = −l1 · log(y1) − l2 · log(y2) (1.4)

which can be also expressed by:

Loss =

− log(y1) if l1 = 1
− log(1 − y1) if l1 = 0

(1.5)

Figure 1.5: Plot of the cross entropy values when l1 = 1

This function is very important because it derives from the Kullback-Leibler
divergence between two distributions. If p(x) is the empirical probability distribution
of a sample to belong to one of the two classes and q(x) is the model distribution
(corresponding to the output value y1) the cross entropy can be expressed as:
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CE(p||q) = −
Ø
x∈χ

p(x) · log q(x) = S(p) + DKL(p||q) (1.6)

Where:

• χ is the set of input samples

• H(p) is the entropy of the distribution p(x):

S(p) = −
Ø
x∈χ

p(x) log p(x) (1.7)

• DKL(p||q) is the Kullback-Leibler divergence between p(x) and q(x) :

DKL(p||q) =
Ø
x∈χ

p(x) log
A

p(x)
q(x)

B
(1.8)

All this concept are better explained in section 2.3.

1.2 Classical metrics
When a neural network for binary classification is trained, it’s important to evaluate
the performance in predicting the true class of a sample. A metric is a set of
quantitative and computable parameters useful to evaluate and understand the
performance of a machine learning model [18]. In this section are presented some
of the most used metrics for binary classification All of them are based on a very
simple interpretation of the output of the network. Section 1.1.4 shows that a
network with Softmax output return a value (y1) between zero and one representing
the state of truth of belonging to one of the classes. The simplest interpretation
of this value is to set a threshold (typically 0.5) and consider all the sample with
y1 greater then the threshold classified with class 1 (and vice-versa for class 2).
Basically, this method force the output into a binary value, and does not care
about the shade given by the variety of possible values. A 0.51 is equivalent to a
0.99. This is clearly a limitation of the classical metrics and one of the results of
this thesis is overcome this "waste" of information. Anyway, this interpretation is
very simple and gives rise to very practical and intuitive metrics.

Now it is possible to define four important values that compose the confusion
matrix :

• True positive (TP): The number of element belonging to class 1 and
predicted with class 1
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• True negative (TN): The number of element belonging to class 2 and
predicted with class 2

• False positive (FP): The number of element belonging to class 2 and
predicted with class 1

• False negative (FN): The number of element belonging to class 1 and
predicted with class 2

Figure 1.6: Representation of the confusion matrix

From this values, it is obtained the most important metric: the accuracy:

Accuracy = TP + TN

TP + TN + FP + FN
(1.9)

Which of course express the fraction of the samples well classified.
There are some other relevant metric values deriving from this values like:

• Recall or true positive rate (TPR):

TPR = TP

TP + FN
(1.10)

• Specificity or true negative rate (TNR):

TPR = TN

TN + FP
(1.11)

• Precision or positive predictive value (PPV):

PPV = TP

TP + FP
(1.12)
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• Fall-out or false positive rate (FPR):

TPR = FP

TN + FP
(1.13)

The last metric covered by this section is the ROC AUC (Area under Receiver
Operating characteristic Curve). This curve is obtained by varying the value of
the threshold and putting on the x and y axis the false positive rate and the true
positive rate, respectively. It can be shown that the area between this curve and
the line y = x is a good measure of the overall performance of the model.

Figure 1.7: Plot of an instance of ROC
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Chapter 2

Probability distributions

This chapter is an introduction to the basic concept of probability distributions
[19] and a deepening of Beta distribution and Inference algorithms, which are the
focus of the thesis.

2.1 Basic concepts
The probability of an event is a real number between 0 and 1 which express "how
likely" the event is to occur in a way that 0 indicates impossibility and 1 indicates
certainty.

0 < p(E) < 1 (2.1)

In a purely theoretical setting, probabilities can be easy estimated by counting
the number of positive and negative outcomes of the event that can be repeated
indefinitely, but in practical application this is not possible and probability lose
the definition of its fundamental nature.

For this reason, currently exist two categories of interpretations [20] of the
probabilities:

• Objectivist interpretation: This interpretation uses numbers to describe
some objective or physical state. A very common example is the frequentist
probability, in which the probability is interpreted by the relative frequency of
occurrence of a random event experiment’s outcome when the experiment is
repeated many times.

• Subjectivist interpretation: In this case the probability is a measure of
the degree of belief, and it is a subjective concept. The degree of belief can
be interpreted as "the price at which a rational agent would make a bet with
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jackpot equal to 1 if case of winning, and 0 in case of losing". The most famous
is the Bayesan probability, according to which probability is interpreted as
reasonable representation of a state of knowledge of a subjective belief.

Normally, the subjective probability converges to the frequentist probability in case
where empirical data is avaliable, and it is possible to make statistics about the
occurence of the event. [21]. These concepts are important for machine learning and
for this thesis because, as discussed in section 1.1.4, artificial neural networks for
binary classification are "entities" which, via complex non-interpretable calculation,
return a value between 0 and 1 that we want to interpret as the belief of the
network of the sample belonging to a certain class. Part of the idea of this thesis is
based on the consequence of applying these concepts [22] to neural networks, as
will be discussed in section 4.2.

So far, has not yet been fully discussed the concept of stochastic variable. Before
in this section it was mentioned only the event E, which is a binary random variable.
That means that the outcome of the event can numerically be represented as either
0 or 1. In general, a stochastic (or random) variable is an event whose outcome is
unknown a priori and can be formalized by a mathematical object.

The simplest random variables are those which outcome is a real number
belonging to some domain. For these variable, each possible value is an outcome
of a random event so it must have a probability. However there is a uncountable
number of real numbers (and so outcomes), so it is only possible to define the
probability that the variable belong to an arbitrary small interval of possible values
in the following way:

P (z < X < z + dz) = f(z)dz (2.2)
Where f(z) is called the probability distribution (PDF) associate with the

variable X, and can be expressed as a real function defined on the domain of the
variable. Since the outcome of the variable has to be one of the values of the
domain, the probability of X belonging to the domain must be 1, imposing the
following normalization property:

P (X ∈ D) =
Ú

z∈D
f(z) dz = 1 (2.3)

It is possible to define the probability that the variable is less then a value, this
quantity is called the cumulative distribution function(CDF):

F (z) = P (X < z) =
Ú z

z0
f(y) dy (2.4)

So it is immediate that:
f(z) = dF (z)

dz
(2.5)

There are other two noteworthy quantities connected to probability distributions:

13
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• The expectation value:

E[X] =
Ú

z∈D
zf(z) dz (2.6)

Which can be interpreted as the average value obtained from a very large
numbers of experiments.

• The variance:

V AR[X] = E[(X − E[X])2] =
Ú

z∈D
(z − E[X])2f(z) dz (2.7)

Expressible also in the following way:

V AR[X] = E[X2] − E[X]2 =
Ú

z∈D
z2f(z) dz −

3Ú
z∈D

zf(z) dz
42

(2.8)

Which indicates how "sparse" around the average the outcomes of many
experiments would be.

2.2 Beta distribution
The family of probability distributions discussed and deepened in this section is a
very useful tool for the aim of this thesis. from now on there will be a slight change
of notation, in particular x will be used to indicate what was previously indicated
by z.

The beta distribution[23] is a family of probability distributions defined on
interval [0,1]. It can be expressed by the following PDF:

f(x; α, β) = 1
B(α, β)xα−1(1 − x)β−1 (2.9)

Where α ≥ 0, β ≥ 0 are the shape parameters,

B(α, β) = Γ(α)Γ(β)
Γ(α + β) (2.10)

is the normalization constant and Γ is the Gamma function.
The beta distribution model is often used for the description of the random

behavior of fractions and can be used as probability distribution of probabilities.
(see chapters 4 and 3)

Furthermore, beta distribution is the maximum entropy or least informative
probability distribution with constraints E[log(x)] and E[log(1 − x)].

Following, some other useful properties of the Beta distribution:
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• The cumulative distribution function:

F (x; α, β) = B(x; α, β)
B(α, β) (2.11)

Where

B(x; α, β) =
Ú 1

0
xα−1(1 − x)β−1 dx (2.12)

Is the regularized incomplete beta function [24].

• The expectation value:

E[X] = α

α + β
(2.13)

• The variance:

V AR[X] = αβ

(α + β)2(α + β + 1) (2.14)

Lastly, a useful and intuitive graphic representation of the beta distribution
family:

15
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Figure 2.1: Plots of beta distribution for different parameter values

2.3 Inference
Inference[Inference] is the process by which a conclusion is inferred from multiple
observations is called inductive reasoning. In statistics, inference means find
the "best" probability distribution that explain a set of observation. In order to
understand what "best" means, it is necessary to recall the Bayes theorem. Given
two events A and B, the Bayes theorem states that:

P (A|B) = P (B|A)P (A)
P (B) (2.15)

Where P (A|B) is the conditional probability of A given B, that is the probability
of the event A when it is known that the event B is already happened.

Now consider some samples of a random variable x and a probability distribution
q. In order to find the "best" distribution q that explain the data, it is natural
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to look for the most likely distribution that may have generated that data. This
correspond to maximize the conditional probability of the distribution given the
data, also called the posterior probability:

P (q|x) = P (x|q)P (x)
P (q) (2.16)

Where P (x|q) is called the likelihood of the data given the distribution and P (q)
the prior probability of the distribution, which indicates how much it is likelihood
that distribution without knowing any data.

Under the assumption of uniform prior probability, maximizing the posterior is
equivalent to maximizing the likelihood.

Now consider a model, parameterized with a set of parameter θ, that return a
probability distribution q(x|θ), and the empirical distribution defined as follows:

p̃(x) = 1
N

NØ
µ=1

δ(x, xµ) (2.17)

The following quantities can be defined:

• Shannon’s Entropy [25] of the empiric distribution:

S(p̃) = −
Ø
x∈χ

p̃(x) log p̃(x) (2.18)

• Cross entropy [17] between empirical and model distribution:

CE(p̃||q) = −
Ø
x∈χ

p̃(x) · log q(x|θ) (2.19)

• Kullback-Leibler Divergence [26] between empirical and model distribution:

DKL(p̃||q) =
Ø
x∈χ

p̃(x)log

A
p̃(x)

q(x|θ)

B
(2.20)

It is possible to demonstrate that minimizing the Kullback-Leibler Divergence
with respect to the model parameter θ is equivalent to minimizing the cross entropy
and to maximizing the likelihood.

First, it is easy to notice that the difference between the cross entropy and the
Kullback-Leibler Divergence is the empirical entropy, which does not depend on
θ, so minimizing the Kullback-Leibler Divergence is equivalent to minimizing the
cross entropy.

DKL(p̃||q) = CE(p̃||q) − S(p̃) (2.21)
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Second, it is possible to demonstrate that the cross entropy is proportional to
the opposite of the logarithm of the likelihood in the following way:

CE(p̃||q) = −
Ø
x∈χ

p̃(x) · log q(x|θ)

= − 1
N

Ø
x∈χ

NØ
µ=1

δ(x, xµ) log q(x|θ)

= − 1
N

NØ
µ=1

log q(xµ|θ)

= − 1
N

log
NÙ

µ=1
q(xµ|θ)

= − 1
N

log q(x|θ)

(2.22)

The previous calculations show the importance of the cross entropy loss function
discussed in section 1.1.5.

For Beta distributions, it is possible to calculate the likelihood with respect to
the shape parameters. If the samples are statistically independent beta distributed
variables, the expression of the log-likelihood of N observations is:

lnL(α, β|X) =
NØ

µ=1
ln

xα−1
µ (1 − xµ)β−1

B(α, β)


= (α − 1)

NØ
µ=1

ln(xµ) + (β − 1)
NØ

µ=1
ln(1 − xµ) − NlnB(α, β)

(2.23)

It is possible to find the maximum by setting the derivatives with respect to the
parameters values equal to zero:

δln(α, β|X)
δα

=
NØ

µ=1
ln(xµ) − N

δlnB(α, β)
δα

= 0

δln(α, β|X)
δβ

=
NØ

µ=1
ln(1 − xµ) − N

δlnB(α, β)
δβ

= 0
(2.24)

From the previous condition, it is possible to obtain the value of the parameters
by inverting, via numerical techniques, the following coupled equations:
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E[ln(X)] = 1
N

NØ
µ=1

ln(xµ)

E[ln(1 − X)] = 1
N

NØ
µ=1

ln(1 − xµ)
(2.25)
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Chapter 3

Subjective logic

This chapter is an introduction to the original mathematical formalism developed
by professor Audun Josang in 1996 [3] to better express concepts like uncertainty
and trust. This topic is important for the thesis because, under some conditions, it
is possible to perform a mapping between Subjective Logic and well trained ANN
outputs.

Subjective logic gives a very useful approach to decision making under uncer-
tainty, so by this mapping it is possible to apply to neural network all the tools
developed in this formalism.
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Figure 3.1: Subjective Logic book cover

3.1 Opinions
Subjective logic tries to formalize the description of stochastic phenomena in which
the probability of an event is not even known.

It is an extension of binary logic and probabilistic logic which are sometimes
not sufficient to explain some human behavior, as demonstrated by the Ellsberg
Paradox [27].

The Subjective Logic can be summarized in the following scheme:

• Binary logic [28]: Each event or proposition E is either True or False.

• Probabilistic logic [29]: The state of a sentence is not known and it is
introduced the concept of probability, which assign a number that express
"how likely" the statement is True.

0 < p(E) < 1 (3.1)
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• Subjective logic [3]: Also the probability is subject to uncertainty, so the
statement of a sentence has to contain the information of the probability of
the event and the confidence about the probability.

This is done by introducing the concept of Opinion.

Definition (Opinion). Let X = x, x̄ be a binary domain with stochastic
variable X ∈ X. A binomial opinion about x is the set of numbers w = (b, d, u, a),
where the constraint:

b + d + u = 1 (3.2)

is satisfied, and where the respective parameters are defined as:

• b: belief mass in support of x being TRUE

• d: disbelief mass in support of x being FALSE

• u: uncertainty mass in support of x being TRUE

• a: base rate, i.e. prior probability of x without any evidence

Except for the base rate (that is usually set 0.5), which is a prior knowledge, an
opinion can be represented by a point in a 3-axis Barycentric plot [30], as shown in
fig 3.2.

22



Subjective logic

Figure 3.2: Barycentric triangle visualization of binomial opinion

Those just described are the binary opinions, which express the state of knowledge
of a binary state. Opinions can be generalized in case the event can be multiclass.

3.2 Mapping with Beta distribution
As already mentioned, uncertainty represents ignorance about the probability of a
stochastic event. The lack of information on probability can be formalized through
a probability distribution of probabilities. These types of distributions must be
defined on the probability domain, therefore in the range [0,1]. A distribution often
used to describe probabilities or fractions is the Beta distribution (eq 2.9), due to
its flexibility. Audun Josang showed how a objective mapping between an opinion
and a Beta [3, p. 24] distribution is possible. The mapping is given by the following
comparison between the expectation value and the variance of the distribution and
the belief and the uncertainty of the opinion:E[x] = b + u

2
V ar[x] = E[x](1−E[x])u

w+u

(3.3)
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These relations, through the relations 2.13 and 2.14, lead to the following
mapping with the parameters of the beta distribution:


b = 2α−1

2α+2β

d = 2β−1
2α+2β

u = 1
α+β

(3.4)

Notice that we have chosen the value w = 1, which is not the only possible
choice, as explained in the book itself.

The figure 3.3 shows the mapping between the Beta parameters and the belief
and uncertainty values of the associated opinion.

Figure 3.3: Mapping between Beta and opinion parameters

From the following figure (3.4) we notice that the belief value shifts the peak of
the distribution towards the value one, while the uncertainty widens the distribution.
This is consistent with the interpretation of the parameters of opinion.

24



Subjective logic

Figure 3.4: Beta distribution for 3 different opinions. In this case it is used also
a base rate different from 0.5 and w=2.

This mapping falls into the domain of b and u only for α ≥ 1 and beta ≥ 1, and
therefore excludes part of the domain of the Beta distributions, as can be seen
from the darker, and therefore negative, areas of figure 3.3). This is a problem
when it will be applied to neural networks as shown in sect. 4.3.1.

Regions of space for which a Beta distribution exists that is mapped to an
opinion that has parameters less than 0 and/or greater than 1 are called Improper
Opinions.

The mapping between Beta Distributions and Opinions is not unique, you
can use other mappings that actually extend the space of opinions, changing the
interpretation of Belief, Disbelief and Uncertainty.

In any case, an Improper Opinion can be seen as a case of extreme certainty in
which the Subjective Logic is no longer necessary and a discussion with Probabilistic
Logic is sufficient.
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Chapter 4

The new metric

This chapter contains the main ideas of the thesis. In particular some empirical
mathematical properties observable in ANN’s output are shown. For each obser-
vation some proves, clues or validity limits are provided. In this chapter are also
discussed all the implications of the empirical assumptions made. The aim of this
mathematical properties is to build a new metric very useful in task in which we
don’t just want a yes or no answer from the model, but instead a useful probability
that we need to integrate to other information in order to make a decision.

4.1 Neural network as probability distributions
First it is needed to specify some assumption and notation for the concept that
this chapter will discuss.

The two classes of the binary classification are called A and B and the number
of element of the classes are, respectively, NA and NB. So the probability of an
element X to belong to a class is given by:

P (X ∈ A) = 1 − P (X ∈ B) = NA

NA + NB

(4.1)

Now consider the element X belonging to class A and B separately, they form two
empirical distributions (eq 2.17), one for each class. So they can be considered as
outcomes of two different random variables whose domain is the multidimensional
sample space χ. In particular, the stochastic process assign to a sample X a position
x in the space χ, extracted by the distributions FA(x) or FB(x).

Eq 1.3 shows that the output of the network ending with a Softmax layer is
composed by two numbers relative to the two classes. In this chapter the notation
o(x) is used to indicate the class A output of the neural network to the input x.
The value for class B is just 1 − o(x).
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All the neural network does is a non linear transformation of a point x in a
one-dimensional domain by the function o(x).

It is very important to underline the distinction between the transformation
o(x), which transform every point in the multi-dimensional space χ in the one-
dimensional space [0,1], and the stochastic variable o(X) that assumes a random
value in [0,1] because X assumes a random value x ∈ χ. So o(x) is completely
deterministic, whereas o(X) is stochastic because the position x of X has not yet
been extracted.

It is possible to define the two probability distributions of the variable o(X):

fA(p)dp = P
1
p < o(X) < p + dp|X ∈ A

2
fB(p)dp = P

1
p < o(X) < p + dp|X ∈ B

2 (4.2)

By varying the parameter, the network modify the transformation o(x) and
so the distribution of o(X). And this training process is finalized to minimizing
the cross entropy (and so the likelihood thanks to eq 2.22) between empirical
probability of the dataset and the value o(x).

The output o(x) of the network fulfill the property of a probability 0 ≤ o(x) ≤ 1
and from figure 1.5 it is easy to understand that the network, in order to minimize
the loss function, is incentivized to return value closer to 1 if it "thinks" that the
sample belongs to class A, and closer to 0 for class B. However, from what has
been discussed so far, there is no evidence that the value o(x) can be interpreted
as a probability of belonging to class A. As already said, o(x) is deterministic and
it is impossible to repeat the experiment x, which is just a tuple of coordinates.
It is possible to "repeat" the sample X, but it will assume another position y and
so we will get o(y) instead of o(x). The only probability that o(x) can represent
is the probability to find an element of class A in point x, given that a sample is
found in that point.

In fact, assuming to extract enough (N → ∞) samples from both classes, it is
possible to calculate the probability of finding a sample of class A in a space dx
around point x using the frequentist definition of probability (section 2.1):

P (X ∈ A|x) = FA(x)dx

FA(x)dx + FB(x)dx
= FA(x)

FA(x) + FB(x) (4.3)

4.2 Perfect calibration assumption
From the discussions in the previous section it might seem obvious that, during
the training, the network try to fit the probability map expressed in formula 4.3
with o(x), but it is not yet proven nor is it clear why it should.
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If it were so, o(x) could be interpreted as the frequentist probability that X ∈ A
and so the following equality would be true:

P (X ∈ A|o(x) = p) = p (4.4)

This is the definition of perfect calibration [31].

4.2.1 Perfect calibration optimality
It is possible to show that in fact the perfect calibration condition is the optimal
strategy for the network to minimize the expectation value of loss function.

Consider a binary stochastic variable:

X =

1 with probability p
0 with probability 1-p

(4.5)

And a penalty:

L(X, o) =

− log o if X = 1
− log(1 − o) if X = 0

(4.6)

Where o is the output of an agent that want to minimize the total penalty over
multiple repetition of the experiment.

The rational strategy is to chose the value of o that minimize the expectation
value of the penalty:

E[L(o)] = −p log o − (1 − p) log(1 − o) (4.7)

Which is a convex function so is very easy to calculate the optimal value:

dE[L(o)]
do

= −p

o
− 1 − p

1 − o
dE[L(o)]

do
= 0 ⇒ o = p

(4.8)

It is useful to emphasize that this result is only due to the penalty being equal
to the cross entropy loss function. Indeed, using the more simple penalty given by
the distance between the prediction and the stochastic value it would be obtained
a different result:

L(X, o) =

1 − o if X = 1
o if X = 0

(4.9)
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E[L(o)] = p(1 − o)2 + (1 − p)o2 (4.10)

dE[L(o)]
do

= −p + (1 − p) = 1 − 2p (4.11)


dE[L(o)]

do
> 0 if p < 1

2
dE[L(o)]

do
< 0 if p > 1

2
(4.12)

dE[L(o)]
do

= 0 ⇒

o = 0 if p < 1
2

o = 1 if p > 1
2

(4.13)

So in this case the network would learn to "shoot" 1 every time is slightly more
likely that X = 1, and 0 otherwise, which is a very risky strategy. Instead a rational
agent that wants to maximize the logarithm of the error (like in the cross-entropy
penalty) tries to infer the probability of event X and "bets" an amount of risk equal
to that probability. This situation recalls the definition of subjective probability
mentioned in section 2.1. In game theory this behaviour is called risk aversion[32],
because the agent prefers not to gain as much, rather than risk losing. This is also
related to the concept of maximum entropy.

4.2.2 Perfect calibration output distributions
Assuming perfect calibration, it is possible to conclude an interesting property of
the output distribution functions in formulas 4.2.

From Bayes theorem:

P (X ∈ A|o(X) = p) = P (o(X) = p|x ∈ A) P (x ∈ A)
P (o(X) = p) = (4.14)

fA(p)
fA(p) NA

NA+NB
+ fB(p) NB

NA+NB

NA

NA + NB

== fA(p)
fA(p)NA + fB(p)NB

= p (4.15)

This implies:

fB(p) = NA

NB

fA(p)1 − p

p
(4.16)
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From now on, it is considered only the case of balanced classes, but it is possible
to generalize to the non balanced case. So imposing NA = NB:

fB(p) = fA(p)1 − p

p
(4.17)

Last equation implies that the two probability distribution are related and not
independent. With the purpose of finding a family of distributions to which they
belong, it is useful to extrapolate the infinitesimal (or infinite) part of the function
for p → 0 and p → 1:

fA(p) = gA(p)pαA−1(1 − p)βA−1

fB(p) = gB(p)pαB−1(1 − p)βB−1 (4.18)

From 4.17 it is easy to show that:


gA(p) = gB(p)
αB = αA − 1
βB = βA + 1

(4.19)

Where new constraints are introduced: αA > 1, βB > 1.
From now on, will be used the following notation: αA → α , βA → β.
In summary, this section showed that, under perfect calibration assumption, the

probability distributions of the output of the network can be written in the form:

fA(p) = g(p)pα−1(1 − p)β−1

fB(p) = g(p)pα−2(1 − p)β
(4.20)

With:


g(0) /= 0
g(1) /= 0
limp→0 g(p) /= ∞
limp→1 g(p) /= ∞

(4.21)

This family of distribution has infinite degree of freedom because it is not
possible to make assumptions on g(p) other the normalization of the distributions.
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4.2.3 Calibration measure
A neural network in a real training case can never achieve perfect calibration. For
this it is necessary to define and use parameters to evaluate how well the network
is [31].

Calling up the 4.4 definition:

P (X ∈ A|o(x) = p) = p (4.22)
Define the expected calibration error as follows:

CalErr = E

C---P (X ∈ A|o(x) = p) − p
---D (4.23)

Or, alternatively, the expected calibration squared error :

CalSqErr =

öõõôE

C1
P (X ∈ A|o(x) = p) − p

22
D

(4.24)

Utilizzando le distribuzioni definite nell’eq 4.2 possiamo riscrivere i seguenti
parametri come:

CalErr =
Ú 1

0

---- fA(p)
fA(p) + fB(p) −p

----fA(p) + fB(p)
2 dp = 1

2

Ú 1

0

---fA(p)(1−p)−pfB(p)
--- dp

(4.25)
It is easy to show that the last equation vanishes in the case of the perfect

calibration hypothesis described in section 4.2.2.
The study of the calibration error in the next section is very useful, where the

output distributions are modeled by a few parameters.
From the application point of view, to calculate this integral it is sufficient to

divide the probability interval from 0 to 1 into a certain number of bins, and to
calculate the integral numerically as a summation, using the empirical distributions
of the train set, or alternatively of the test set.

For the purpose of this thesis, the calibration error is very useful because it
allows us to understand, with a good approximation, if the output of the neural
network can be reasonably interpreted as a frequentist probability.

4.3 Beta distribution assumption
This section shows how the output of a neural network can be modeled via a Beta
distribution. This modeling is very useful for constructing the new metric proposed
by this thesis. Since the assumption is totally empirical, some considerations
regarding its validity and limitations will also be indicated.
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4.3.1 ANN output with Beta distribution assumption
Taking into consideration the models discussed in the numerical results (cap 5), it
can be seen

Taking into consideration a well-trained artificial neural network for classification
(avoiding overfitting) and with a good level of calibration we can note, in the
examples considered in chap 5, that the distribution of the model’s outputs on the
database takes a form which is well suited to the Beta distribution.

The figure 4.1 shows one of the examples of the neural networks analyzed. These
are the histograms constructed by taking the outputs of the various samples of
the train and the test set. The samples form two clouds corresponding to the two
classes. Class A has a label corresponding to 1, while class B to 0. This implies
that the model’s ability to successfully classify the samples is proportional to "how
much" the two clouds move away from each other, decreasing their intersection
surface.

Figure 4.1: Histograms of the outputs (divided in two classes) of the neural
network for train and test set, fitted by beta distributions.

As seen in the 2.3, given an empirical distribution and a parametric family of
distributions, it is possible to find the distribution that best represents the data.
In the case of the Beta family this can be done through the algorithm shown in
the appendix ??.

The result of the fitting is shown in figure 4.1, and more generally in the section
5.3.

In the cases taken into consideration, it is noted that the fitting manages to
describe the data well.
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fA(p) = 1
B(αA, βA)pαA−1(1 − p)βA−1

fB(p) = 1
B(αB, βB)pαB−1(1 − p)βB−1

(4.26)

From the parameters α and β of the two distributions, it is possible to trace the
performance of the model. In particular, the model will be able to better classify
the elements of the set the more the two distributions are separated, one pushed
towards the value 0, and the other towards the value 1, which correspond to the
two classes. This happens when the alpha parameter for class A and the beta
parameter for class B decrease towards 0.

It is possible to note that the beta distribution is a particular case of the family
of distributions obtained in the section 4.20. In particular, we add a degree of
freedom because the parameters α and β are both free, but we impose g(p) = 1,
which eliminates infinite degrees of freedom from the distribution. By freeing the
α and β parameters, you give up the perfect calibration constraint. It is therefore
possible to calculate, by applying the formula 4.25 applied to the beta distribution,
the calibration error.

the error will depend on 4 parameters, which can be reduced to 2 by assuming
the symmetry of the distributions of the two classes.

Let’s assume fA(p) = fB(1 − p) ⇒ αA = βB = α, βA = αB = β

CalErr = 1
2

Ú 1

0

---fA(p)(1 − p) − pfB(p)
--- dp (4.27)

Questo integrale può essere calcolato sdoppiando il modulo e usando le proprietà
della funzione Beta incomplet [24], ottenendo:

CalErr =

---2B 1
2
(α, β + 1) − 1

---
B(α, β) (4.28)

Below is the graph that shows how the calibration error varies according to the
parameters α and β, from which the straight line also corresponds to the perfect
calibration (error equal to zero).
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Figure 4.2: Heatmap of the calibration error with respect to α and β values..

Describing the output of the neural network with a Beta distribution is very
useful for building a new metric because it allows to synthesize its performance in
the 4 extracted parameters. Therefore it is useful to try to understand the validity
and the limitations of the assumption that a well trained and calibrated neural
network should distribute the samples according to a Beta distribution.

In fact, we have seen that, during training, the neural network adjusts its
parameters in order to minimize the loss function in eq 1.4 and that the Beta
distribution is the distribution that maximizes entropy for constant values of log(x)
and log(1 − x).

It is possible to make another observation starting from the link between the
Beta and Gamma distribution families, namely that a random variable distributed
according to a Beta distribution can be obtained from the following combination
of random variables distributed according to a Gamma distribution:
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γ(x) = xα−1e−βxβα

Γ(α) (4.29)

To prove this, consider the joint PDF:

fX,Y (x, y) = 1
Γ(α)Γ(β)xα−1yβ−1e−(x+y) (4.30)

Perform the transformation:

U = X

X + Y

V = X + Y
(4.31)

X = V U

Y = V (1 − U)
(4.32)

The Jacobian of the transformation is equal to V so the joint probability of U
and V is:

fU,V (u, v) = 1
Γ(α)Γ(β)vα+β−1e−vuα−1(1 − u)β−1 (4.33)

and hence U and V are independent (because the pdf factors over u and v) with:

V ∼ Gamma(α + β,1)
U ∼ Beta(α, β)

(4.34)

Now noticing that the last layer of the neural network consists of the softmax
function (eq 1.3) and the similarity with the transformation in eq 4.31 it is possible
to deduce that the last layer before the softmax must produce some random
variables zA and zB must be distributed according to a log-gamma [33] distribution:

lγ(x) = Keαz−ez (4.35)

Where K is the normalization constant. The Gamma distribution also maximizes
entropy with two mean values being equal: x and log(x).

It is difficult to rigidly demonstrate that the training of a neural network has
as its optimal point a state in which the layers are distributed according to the
log-gamma and the beta, but this is what is observed in many cases.
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However, this behavior starts to be violated in case of strong overfitting, and
loses its meaning in case the two classes are so easily separable that an accuracy
very close to 100/100 is reached.

It is worth noting that the Beta distribution has two free parameters and is
capable of representing a large spectrum of empirical distributions, which is why it
is often used to describe probabilities of probabilities.

4.3.2 Mapping with classical metrics
As discussed in the 1.2 the main classical metrics can be calculated starting from
the output of the neural network on each sample of the dataset.

By modeling the neural network with the Beta distribution, it is possible to
calculate the classical metrics also through integrals of the Beta distribution, by
making the limit to the continuum of the operations to calculate these values.

The following are the main metrics calculated using Beta distribution:

• True positive:

TP = N

2

Ú 1

1
2

βA(x) dx = N

2

3
1 − IA

31
2

44
(4.36)

• True negative:

TN = N

2

Ú 1
2

0
βB(x) dx = N

2 IB

31
2

4
(4.37)

• False positive:

FP = N

2

Ú 1

1
2

βB(x) dx = N

2

3
1 − IB

31
2

44
(4.38)

• False negative:

FN = N

2

Ú 1
2

0
βA(x) dx = N

2 IA

31
2

4
(4.39)

• Accuracy:

Acc = 1
2

Ú 1

1
2

βA(x) dx + 1
2

Ú 1
2

0
βB(x) dx = 1

2

5
1 − IA

31
2

4
+ IB

31
2

46
(4.40)

• ROC AUC area:

Roc =
Ú 1

0
IB

1
IA(x)

2
dIA(x) =

Ú 1

0
IB

1
IA(x)

2
βA(x) dx (4.41)
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Where IA(x) is the incomplete Beta function [24] calculated at point x with the
parameters of the distribution relative to class A.

This mapping is very useful for evaluating fitting with the Beta distribution. In
fact, to measure the quality of the fitting, the Kullback-Leibler Divergence is used,
as shown in the 2.3 section but, in the context of neural networks, it is natural that
an excellent indicator of the fitting can be given by the error on classic metrics,
such as accuracy or ROC AUC curves. In the case of the figure 4.3, it is easy to
see that the fitting reproduces the real ROC AUC Curve very well.

Figure 4.3: ROC AUC CURVE calculated with empirical distribution and Beta
distribution distribution.

Assuming, for simplicity, that the two classes are distributed in a specular
way, it is easy to show that the parameters of the two classes will be specular:
αA = βB, βA = αB.

we can recalculate the accuracy from the eq 4.40 using the last approximation
obtaining:

Acc = 1 − I
31

2

4
(4.42)
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In which it is recalled that I(0.5) depends on the parameters α and β. This
dependency can be visualized by the following heat map (fig. 4.4):

Figure 4.4: Accuracy calculated for each value of Beta parameters.

4.3.3 Interpretation with Subjective Logic
As we have just seen, the output of a neural network can be successfully described
by a Beta distribution for each class. This creates the ability to map to subjective
logic, whose views can equally be described by a Beta distribution.

In subjective logic, an opinion expresses the level of uncertain or subjective
knowledge about a statement.

In the case of neural networks, the probability density modeled by Beta refers
to the probability that the neural network returns a certain output value, knowing
that the element belongs to a given class.
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So it is an "a posteriori" opinion because it is necessary to know belonging to
the class as a priori information.

The value of belief (b) tells us how likely it is that the output of the neural
network is close to the true class, while the uncertainty gives us indications on the
variability of this value.

It is possible to interpret these two values using the concepts of likelihood and
confidence [3, p. 48].

To make these values more humanly interpretable, it is useful to identify discrete
qualitative levels and, as will be shown in the chapter 6.1.2, it is possible to create
a dashboard that describes in detail all the properties of a model, actually going
to build a new, more complex and interpretable metric to add to the classic ones,
which is the final aim of this thesis.

In addition to the definition of a new metric, the connection with the subjective
logic allows to use all the decision criteria under uncertainty developed in the
theory, that is, it allows to use a very precise protocol based on the data of the
neural network metrics. These issues are not dealt with in this thesis.

Finally, it is emphasized that it is possible to apply this mapping also in the case
of problems with non-binary classes and multiclass problems, using hyperopinions
or multinomial opinions, which can be mapped with the distribution of Dirichlet
[34], which is the generalization multidimensional Beta distribution.

4.4 Beta AND calibration assumptions case

In this last section, the case in which both the assumptions of the 4.2 and of the
4.3 are accepted.

It is emphasized that this configuration empirically does not occur, but is subject
to an error. For this reason the content of this section has the sole purpose of
completing the picture mathematically, but is not used for the application purpose
of creating a new metric applicable in real cases such as medical diagnosis.

Let’s summarize the two hypotheses we take into consideration (eq 4.20 and eq
4.26):

fA(p) = g(p)pα−1(1 − p)β−1 = 1
B(αA, βA)pαA−1(1 − p)βA−1

fB(p) = g(p)pα−2(1 − p)β = 1
B(αB, βB)pαB−1(1 − p)βB−1

(4.43)

Comparing the exponents we get:
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αA = α

βA = β

αB = α − 1
βB = β + 1

(4.44)

While comparing the g(p) function with the normalization constant B(α, β):

g(p) = B(αA, βA) = B(αB, βB)
B(α, β) = B(α − 1, β + 1)
Γ(α)Γ(β)
Γ(α + β) = Γ(α − 1)Γ(β + 1)

Γ(α + β)
Γ(α)Γ(β) = Γ(α − 1)Γ(β + 1)
(α − 1)Γ(α − 1)Γ(β) = Γ(α − 1)βΓ(β)
β = α − 1

(4.45)

We note that from the 4 initial parameters we have introduced such restrictions
that only one parametric degree of freedom is left. The final distributions are
therefore:

fA(p) = 1
B(α, α − 1)pα−1(1 − p)α−2

fB(p) = 1
B(α − 1, α)pα−2(1 − p)α−1

(4.46)

In which we also notice the α ≥ 1 constraint, similarly to what has already
happened in section 4.2.2.

In this scenario, the metrics of a neural network boil down entirely to the single
free parameter α.

The mapping with accuracy is shown below (using the 4.40 with a change of
notation to highlight the parameters):
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Whose plot is shown below:

Figure 4.5: Relation between Accuracy and the Beta distribution parameter of
the one-parameter metric.

Finally, as regards the mapping with Subjective Logic, we note that having only
one parameter also restricts the field of action of the neural network in the opinion
space, which has two degrees of freedom.
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By inserting this restriction in the subjective logic mapping (eq. 3.4), we get
(for class 1): 

u = 1
2α−1

b = 1
2

d = 2α−3
4α−2

(4.48)

So the belief value will be confined to 0.5, and we note that the uncertainty is
inversely proportional to alpha.

This means that a more accurate network decreases the value of the disbelief
not in favor of belief, which remains constant, but of uncertainty.

It is therefore useful to plot the curve of the value 1−d as a function of accuracy.

Figure 4.6: Relation between Accuracy and the Opinion parameter of the one-
parameter metric.

From this last analysis shown in figure 4.6 one of the limits of this mapping
emerges: the dashed line corresponds to the boundary of the opinion space, The part
of the line to the right of the graph, which corresponds to all accuracy greater than
about 83%, cannot be expressed by Beta distributions attributable to the Opinions
of subjective logic and at the same time corresponding to perfect calibration, but
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we enter the region of improper opinions, seen in the chapter 3.2. It is possible to
use other mappings between Beta distributions and Subjective Logic that improve
the problem, pushing beyond the value of 83%, but the problem persists in any
case for very high accuracy. This means that one of the two hypotheses (Perfect
Calibration and Beta Fitting) must fail. As will be shown in the results section 5.2
and 5.3.2, the calibration remains unchanged as statistical inference begins to be
more inaccurate with the Beta distribution.

We conclude that, in any case, the new metric is less effective in the case of very
high accuracy, a phenomenon that can be explained by the fact that if a model is
able to identify distinctive patterns of the classes, it has no need to distribute the
outputs according to a generic distribution of maximum entropy.
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Chapter 5

Numerical results

This chapter provides all the empirical evidences of the assumptions made in the
previous chapter.

These results testify that the new metric can be adopted in most application
cases.

5.1 Setup

5.1.1 Database
The new metric described in this thesis aims to provide the end user of the predictive
algorithm with more information on the meaning of the neural network output.
This type of application is very useful in the field of medical diagnosis, where the
analysis of the neural network is not the only information in the hands of the
doctor and the decision-making process involves many responsibilities.

For this reason, the tests to verify the applicability of the hypotheses underlying
the new metric have been applied to concrete cases similar to those that may arise
in the medical field.

The problems solved concern image processing tasks, the most common field
of application for neural networks and which is very frequently addressed in the
medical field (x-rays, ultrasound scans, etc.)

2 MNIST databases were used, one containing images of digits 0-9 handwritten
[35], and the other black and white images of photos of [36] clothes.

The reason for this choice lies in the fact that in the medical field one often has to
deal with images of various types, but at the same time there is no need or possibility
to test this new metric on the many and difficult real medical tasks, because the
purpose of the discussion is to demonstrate that the new metric is applicable for
a certain range of models, not to demonstrate its universal applicability in every
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possible case.
Since the difficulty of the tasks depends on many variables, including the

database, the "recognizability" of the classes and the size of the network, it was
decided to carry out the study at different levels of difficulty, adjustable by inserting
noise in the images.

In fact, square "spots" have been inserted that cover part of the images. The
analysis was done on 5 different noise levels. Level 1 contains few spots, while level
5 contains a large number of randomly placed spots in the image, which often make
it difficult to recognize the object even with the naked eye.

Figure 5.1: Example of a dataset image with (right) and without (left) artificial
noise.

The type of classification for which this metric applies is binary classification,
so the database has been divided into 2 classes.

Regarding the figures, the state of the art on the classification of this database
has reached a very high accuracy [37][38]. From this it is clear that the classification
of the figures is a problem that can be easily solved by neural networks, even with
few parameters. This means that we can simulate any level of difficulty, inserting
enough noise.

Two types of classifications have been made: the odd / even digit division and
the greater / less than 5 digit division.

In this way the black network is forced to recognize complex patterns of different
nature.

Instead, as far as clothes are concerned, they are divided into 9 categories, to
make the task binary simply 2 classes have been created, each consisting of 5
categories.
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In summary, we have 2 databases for 4 noise levels, for a total of 8 classification
tasks on different databases.

5.1.2 Models
As regards the models used, it was decided to use two very common types of neural
networks. The first model is the dense neural network, which is the simplest and
most generic model in this category. In this network all the neurons of a layer are
connected with the following ones, and therefore has a greater computing capacity,
at the expense of a greater number of parameters and therefore greater inefficiency.

The second model is the CNN convolutional neural network, already discussed
in the 1.1.3 chapter. This model is designed for use in image processing. It is based
on the identification of local patterns in images, and on the construction, layer by
layer, of increasingly complex patterns, which are finally used to distinguish two
categories. It has the strong advantage of optimizing the number of parameters
thanks to the ability to "delocalize" the patterns, ie recognize the same pattern
regardless of the position in the image.

In practical applications, every problem requires the development of a model
specifically designed for the type of task and the type of database. In any case,
the most common neural networks used are the two taken into consideration, often
also used together to compose a larger model.

Neural networks are also characterized by the number of parameters and the
structure of the layers, for this reason, to simulate more possibilities, each model
was used 3 times, with 3 levels of complexity, proportional to the size and number
of layers, and therefore of total parameters.

In total we have 2 networks with 3 levels of complexity, for a total of 6 models.
6 models that solve 8 tasks correspond to 48 experiments, for each of which the

parameters of the new proposed metric were studied.
The analyzes must be performed on the models at the end of the training, but

care must be taken to recognize overfitting. In the event of overfitting, in fact,
some hypotheses underlying the validity of the new metric could be lacking, such as
the probabilistic interpretation of the elements of the datasets. In fact, overfitting
is a condition in which the model is able to capture patterns with a level of detail
greater than the average distance between two neighboring elements of a dataset,
therefore it ignores the uncertainty due to the fact that the training set is only a
sample of the distribution from which it is extracted.

For this reason the values discussed in this chapter refer to the point of the
training where the overfitting does not yet occur, measured as the minimum point
of the loss function of the test set.

Finally, in the 1.1.2 section, the variation of the parameters discussed during
the training of the models will also be analyzed, in order to better identify the
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validity limits of the hypotheses underlying this new metric.

5.2 Calibration

This section relates to the verification of the hypothesis of perfect calibration. As
demonstrated in the 4.2.1 chapter, perfect calibration is an optimal condition for
an agent that, in its training process, tries to optimize a cross entropy type loss
function.

On the other hand, it is not certain that, on a practical level, a neural network
will be able to reach this optimal point. the causes can be linked to an inability of
the model to converge to this optimal state, to problems intrinsic to the task or to
overfitting phenomena, which invalidate the hypothesis of being able to consider
the various elements of the database as aleratory variables.

From a practical point of view, one can measure the calibration error 4.24, which
is the content of this section.

The calibration error, in the real case, must be calculated by dividing the interval
[0,1] into a certain number of bins, the error will measure the uncertainty of the
probability of belonging to a class in that bin.

It is therefore necessary to compare the calibration error with the size of the
bin, and consider the calibration as maximum if the two dimensions correspond.

If the calibration error is much larger than the bin size, it means that the model
is not well calibrated.

This parameter is useful, in the new metric, to ensure interpretability of the
network output. In the event that the network is not well calibrated, it is possible
to use it anyway, but with the awareness that its output cannot be considered as a
frequentist probability.

Note that the calibration error may be due to the accuracy of the model. In
particular, if the model is extremely accurate, the calibration error could increase,
as suspected from the considerations made on the 4.6 graph. This phenomenon
can be explained by the fact that, if the two classes are easily separable, the
probabilities of belonging to the classes are around 100% and also the division into
bins becomes less sensible.

For this reason, it was decided to use a scatter plot in which this dependence is
highlighted:
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Figure 5.2: Calibration error VS Accuracy in all the experimental cases

We note that the average value of the ratio between calibration error and bin
size is around 2.5%, and testifies that all networks reach a good level of calibration.

The perfect calibration level is only consistent with errors around the value of
1%, which corresponds to the size of the bins. This condition does not occur in the
experiments, but it must be said that the tested neural networks were subjected
to a standardized training with the same hyperparameters. If each network were
subjected to specific training, a better local minimum of the parameters would be
achieved, which would also allow to improve the calibration.

The most important observation is that there is no correlation with accuracy,
this is a strong indication that the optimality of perfect calibration is a property
guaranteed by the gradient descendent process and by the universal expressiveness
of neural networks.
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5.3 Beta distribution assumption

In this chapter, we analyze the hypothesis according to which a "well trained" neural
network converts the distribution of the elements of a class into a distribution
belonging to the family of Beta distributions as output.

This hypothesis is very useful because it allows to create a mapping with
subjective logic, but its validity must be supported by empirical and experimental
data.

5.3.1 Inference error measure

A first method to evaluate this hypothesis is to find the Beta distribution that best
represents the output distributions and to calculate a measure of distance between
the empirical distribution and that of the model.

This can be done through the inference algorithm which allows to find the
theoretical distribution that minimizes the Kullback-Leibler divergence 2.20 with
the empirical distribution, illustrated in the appendix ??.

Please note that, as discussed in chap. 2.3, the Kullback-Leibler divergence gives
an indication of the probability that the empirical distribution can be obtained
from a sampling of the theoretical distribution, and therefore is an excellent metric
for the inference error between the two distributions.

Also in this case, the results depend on the accuracy, similar to the calibration
error, and it is therefore convenient to view them in the form of a scatter plot.
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Figure 5.3: Kullback-Leibler Divergence VS Accuracy in all the experimental
cases

It is noted that the value of the KL divergences increases a lot with accuracy.
This is probably partly due to the shape of the distribution, which by its nature
involves higher values of this parameter than an empiric.

In any case, it is an indication that the new metric has a limit of applicability
proportional to the accuracy: for easy tasks in which the model is able to classify
with extreme precision, the metric partially loses its meaning. This makes sense
because the underlying hypothesis is to consider the network as a probability
distribution, but if the task is easy the network does not need probabilities, but it
is safe in its classification.

These values have the defect of not being easily interpretable, because they do
not give useful indications on the validity of the hypothesis according to which the
Beta distribution represents the data well. On a visual level, it is very useful to
represent the two distributions as done in the figure 4.1, because it is possible to
realize the similarity between the distributions.

The next section discusses the second method for evaluating the fitting, which
is much more intuitive and therefore useful on a practical level.
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5.3.2 Classical metric mapping error
The second method to evaluate the accuracy of the Beta distribution in representing
data is obtained starting from the final objective of the discussion: to create a new
metric, more in-depth than the classic ones.

A necessary but not sufficient condition to achieve this result is that the new
metric is able to reproduce all the results of the classic metrics.

Classic metrics are parameters calculated on empirical output distributions.
These parameters can be similarly calculated from the theoretical Beta distributions,
as shown in Eq. 4.3.2.

Therefore, the relative errors of some classical metrics are taken into considera-
tion: accuracy, secondary diagonal of the confusion matrix and ROC AUC. In the
case of accuracy, we used the relative error of 1 − accuracy, to point out the error
of high accuracy.

Again, it pays to show data in relation to accuracy.

Figure 5.4: Classical metrics errors VS Accuracy in all the experimental cases

The first graph on the left represents the accuracy of 1 − accuracy, so its
correlation with accuracy is that small percentages of difference are amplified in the
relative error calculation. In any case, it is noted that the error remains contained
and is accentuated only for very high accuracy.

The last graph on the right, relating to the ROC AUC, shows that the Beta
distribution is able to reproduce this classic metric very well.

The central graph shows the same phenomenon, only partly caused by accuracy.
It is deduced that the Beta distribution could differ with the empirical distribution
as regards the calculation of false positives and false negatives. This is only a
problem if you don’t look at the network output for false positives. Indeed, if the
output is analyzed, it turns out that it is around 0.5 and therefore, even if the
misclassification model of the elements, however, gives an indication of uncertainty
in the classification. Put simply, an output of 0.47 is a false negative only based on
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the 0.5 threshold, but if we interpret the output as a probability then we do not
classify it as negative but as an uncertain case.

Based on the considerations made regarding the 4.6 graph and on the results
shown in the 5.2 graph, it is concluded that the mapping with the Beta distribution
begins to be inaccurate for accuracy around 90% . For very easy tasks, the
assumptions of the hypothesis that the output of a neural network can be distributed
according to a Beta distribution are lacking.

From this it is concluded that the new metric is valid in cases in which the
model is not in any case able, due to lack of information, to solve the classification
by itself, and therefore it makes much more sense to reason in a probabilistic way,
using the tools of Logic Subjective.

5.4 Training and overfitting

Finally, it is interesting to observe the behavior of the neural network during
training through the use of the new parameters discussed. In particular, the
analysis is interesting as regards the overfitting behavior and the mapping with
the opinions of subjective logic.

Below is an analysis of all the parameters referred to one of the cases tested.

First of all, we analyze the training process from the point of view of the loss
function. In this way we can already observe the overfitting from the point of
separation of the graph between train and test set.

We observe that overfitting begins to arrive around epoch 20.
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Figure 5.5: Train and test set loss function in each epoch

We proceed with a look at the classic metrics. Accuracy and ROC AUC were
chosen.

It is observed that in the test set the ROC AUC begins to decrease in overfitting,
while the accuracy remains the same. This means that the outputs change, but
not significantly around the 0.5 value, which corresponds to the threshold on the
basis of which accuracy is calculated.
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Figure 5.6: Accuracy and ROC AUC in each epoch

Now we analyze the errors related to the two assumptions underlying the new
metric: calibration and fitting with the Beta distribution.

As for the calibration, there is a substantial increase in error with overfitting
only in the test set, while the training set remains well calibrated. This means
that overfitting does not undermine the optimality of the calibration per se, but,
of course, today it offsets reliability as regards the test set.

As for the Beta fitting, we notice both an increase in the error with overfitting in
both sets, but also a basic difference between the two classes even before overfitting.

Figure 5.7: Calibration and Beta fitting error in each epoch

The fitting error can also be measured by the relative errors of the classic metrics
calculated with the model.

From the graph we observe that overfitting leads to an increase in the error in
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both sets, but much more accentuated in the test set.

It can be concluded that in overfitting the hypothesis of fitting with the Beta
distribution is no longer valid, which instead remains valid in the absence of
overfitting.

Figure 5.8: Classical metrics errors in each epoch

Finally, two graphs are shown that show the trajectory of the neural network in
the two-dimensional space of the Beta distributions and in the "triangular" space of
the hypotheses. The heatmap represents the accuracy, given by the formula 4.42,
while the straight line represents the restriction in the case of perfect calibration,
discussed in section 4.4. The 4 groups of points represent the Beta distributions
relating to the 2 classes and 2 sets. The size of the points is inversely proportional
to the fitting error. So the smaller points are less significant. The "motion" of the
neural network begins with the largest points.

The first thing that is observed is the overfitting, which manifests itself with
a clear separation between the two sets, simultaneously with a reduction of the
points, corresponding to an increase in the fitting error.

Finally, it is observed that the points are around the line corresponding to the
perfect calibration.
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Figure 5.9: Training represented as trajectory in the Beta distributions space

In the "triangular" space of opinions, it is observed that, after overfitting, the
train set tends towards absolute opinion, corresponding to the total certainty and
accuracy of 100%, while the test set approaches the vacuous opinion , or the total
uncertainty. This is consistent with the fact that, with a fairly large over fitted
model, you can get to 100% accuracy for the training set and total inaccuracy for
the test set.
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Figure 5.10: Training represented as trajectory in the Opinion space
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Chapter 6

Application

In this chapter the conclusions and applicative aspects of the properties discussed
during the thesis are discussed.

The previous chapters are very focused on the mathematical considerations
underlying the new metric because it is necessary to have more or less rigid
indications of the validity of the ideas discussed.

Once the theoretical bases have been discussed, it is possible to exploit the
results obtained on a practical level. Taking medical diagnosis as the main purpose,
it is of fundamental importance to extrapolate as much information as possible
from the automated diagnosis model, because neural networks are "black boxes"
and, on a social level, it is difficult to put people’s health in hand. an algorithm
whose output cannot be interpreted. Further information on the characteristics of
the algorithm can be very useful both to the programmer, who may have further
tools to correct the model, and to the doctor, who will be able to follow a more
reliable decision-making process based on extra information extracted from the
neural network.

6.1 Summary of the new metric
All the metrics of a model, including the one proposed) are made up of parameters
obtainable through calculations applied to the empirical distributions of the outputs
of the two classes.

The proposed metric, in particular, consists of 7 parameters: the calibration
error, the 2 Beta fitting errors and the 4 parameters of the opinions of the subjective
logic (obtained from the parameters of the Beta distributions).

It is possible to divide the metric in two according to the type of applications
for which it can be used.

The 3 parameters relating to calibration and fitting errors are very useful for
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the programmer to improve the performance of the model, while the 4 parameters
relating to opinions are very useful for the doctor to implement a rational decision-
making process on the outcome of the diagnoses.

6.1.1 For the developer

The programmer’s purpose is to optimize the model’s performance. The type of
performance required strongly depends on the type of task, but is usually measured
by classic metrics.

Two classic examples are the war drone algorithm, for which it is very important
to minimize false positives, which would involve friendly fire, and medical diagnosis,
in which it is important to minimize false negatives, which correspond to not
detecting a disease. potentially serious of a patient.

The new metric allows programmers to also consider 2 other neural network
performances that are related to the interpretability of the output.

This interpretability is represented by calibration and mapping with subjective
logic: the calibration allows to interpret the output as "true" probability, while the
mapping allows to interpret the neural network as an opinion, and to exploit all
the decision making techniques already developed in this field of mathematics and
statistics.

Neural networks, from the programmer’s point of view, can be classified on the
basis of the errors of these two characteristics. In particular, by setting a threshold
for these errors, we can identify 4 types of models, represented in the 4 quadrants
in fig 6.1.
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Figure 6.1: Qualitative division of interpretability of a trained model.

The programmer’s goal, of course, is to direct the network towards the lower left
quadrant, which minimizes errors and allows to state that the output is interpretable
as probability and to respect the criteria underlying certain protocols of decision
making.

The results reported in the 5 chapter show that the networks converge sponta-
neously to that quadrant but, even in more complex and difficult cases where this
does not happen, there are techniques to correct the calibration of the model [31].

If the programmer fails to fit his model into the "interpretable" quadrant, then
he can declare that the model cannot be interpreted using the new metric. Without
the new metric, in fact, the programmer has no information about which quadrant
his model fits. So high levels of error are not a problem per se, they simply result
in less interpretability of the output.

This metric for the programmer can only be obtained with the 3 parameters of
fitting and calibration errors and does not need the 4 parameters referring to Beta
distributions and opinions.

60



Application

6.1.2 For the doctor

Once an algorithm is classified as interpretable, and is used in the medical field,
the 4 parameters of opinions come into play.

The parameters contain information on how likely a patient is to be classified
as sick. This information has two degrees of freedom, which can be interpreted as
belief and uncertainty, discussed in the 3 chapter, or as confidence and likelihood
[39].

Likelihood refers to how high the output of the algorithm will be on average in
the presence of a patient. Confidence, on the other hand, refers to how likely it is
that two clients with the same disease will be classified with different outputs.

In this case, however, it doesn’t make much sense to divide the space into just 4
quadrants, but it becomes much more useful to segment the classification more.
An example of practical levels is described is Sherman Kent’s Words os Extimated
Probability [40]; based on the Admirality Scale as used within the UK National
Intelligence Model [41].

Figure 6.2: Qualitative levels of Likelihood and Confidence.
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Figure 6.3: Qualitative levels division of opinion space.

From a human point of view it is useful to identify these qualitative levels to
evaluate the performance of the algorithm, but the new metric has even more
quantitative applications, linked to the decision making protocol to be implemented
after having carried out the medical examination and having had the result. from
the output of the [3, p. 51] machine.

Of course, this division into qualitative levels is only one of many possible,
and is not intended for the specific case of machine learning models for binary
classification, so it is possible to develop a classification more suited to specific [42]
cases.

Through the use of Bayesian statistics and the techniques discussed in the
book of Subjective Logic it is possible to efficiently use the additional information
extracted from the model to organize medical services to a large number of patients
whose probabilistic truths about the presence and severity are known. of a certain
pathology [3, p. 133].

These applications are not the object of study of this thesis, if not only the
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example discussed in the following section.

6.2 Conclusions
Machine learning is a technology that is very promising in the medical field but is
still in its infancy.

The use of artificial intelligences will lead to a paradigm shift in the world of
medical diagnosis and therefore, as technology advances very quickly, regulations
and standardization are slow in coming.

Currently all over the world the responsibility for errors lies with the doctor,
which guarantees a disincentive to make mistakes and protection towards the client.
Even if it is shown that the performance of artificial intelligences exceeds that of
humans, the problem of responsibility for errors that is at the basis of the system
of incentives and protections remains.

For this reason, more and more transparency [43] will be required in the future
and more and more regulation on these technologies will be implemented.

This thesis is an attempt to extrapolate as much humanly interpretable infor-
mation as possible from a classical neural network.

The proposed new metric does not intend to be an alternative to classical metrics
because it does not aim to evaluate the classical accuracy performances, but tries
to describe other properties of the algorithm concerning the interpretability and
reliability of the model output.

The way of interpreting the model as probability distribution and mapping with
subjective logic is just one of the many approaches that can be taken to extrapolate
more [44] [45] information. Another approach, for example, is to investigate the
output of neurons located in the internal layers of a CNN to understand the patterns
recognized by the network that led to a certain final output.

The method proposed in this thesis shows that, at least in a certain range of
cases, it is possible to extrapolate more information on interpretability only from
the model output, to give the programmer the tools to make the model more
interpretable and the doctor the tools to frame the diagnosis of an algorithm in a
larger context of decision making that can be implemented more automatically.
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